CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–36 of 36 results for author: <span class="mathjax">Pisanty, E</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Pisanty%2C+E">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Pisanty, E"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Pisanty%2C+E&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Pisanty, E"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07577">arXiv:2408.07577</a> <span> [<a href="https://arxiv.org/pdf/2408.07577">pdf</a>, <a href="https://arxiv.org/format/2408.07577">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.063118">10.1103/PhysRevA.110.063118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Squeezed states of light after high-harmonic generation in excited atomic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Crispin%2C+H+B">H. B. Crispin</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Kr%C3%BCger%2C+M">M. Kr眉ger</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">P. Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07577v2-abstract-short" style="display: inline;"> High-harmonic generation (HHG) has recently emerged as a promising method for generating non-classical states of light with frequencies spanning from the infrared up to the extreme ultraviolet regime. In this work, we theoretically investigate the generation of squeezed states of light through HHG processes in atomic systems that had been initially driven to their first excited state. Our study re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07577v2-abstract-full').style.display = 'inline'; document.getElementById('2408.07577v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07577v2-abstract-full" style="display: none;"> High-harmonic generation (HHG) has recently emerged as a promising method for generating non-classical states of light with frequencies spanning from the infrared up to the extreme ultraviolet regime. In this work, we theoretically investigate the generation of squeezed states of light through HHG processes in atomic systems that had been initially driven to their first excited state. Our study reveals significant single-mode squeezing in both the driving field and low-order harmonic modes. Additionally, we characterize two-mode squeezing features in the generated states, both between fundamental and harmonic modes, and among the harmonic modes themselves. Using these correlations, we demonstrate the generation of optical Schr枚dinger kitten states through heralding measurements, specifically via photon subtraction in one of the modes influenced by two-mode squeezing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07577v2-abstract-full').style.display = 'none'; document.getElementById('2408.07577v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages (10 main text + 7 appendix), 6 figures (4 main text + 2 appendix). Comments are welcome. In v2 we have modified the text accordingly to the comments received by the anonymous reviewers of Physical Review A. We have also updated the references that have been already published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 110, 063118 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03737">arXiv:2407.03737</a> <span> [<a href="https://arxiv.org/pdf/2407.03737">pdf</a>, <a href="https://arxiv.org/format/2407.03737">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Topological phase transitions via attosecond x-ray absorption spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mosquera%2C+J+F+P">Juan F. P. Mosquera</a>, <a href="/search/physics?searchtype=author&query=Cistaro%2C+G">Giovanni Cistaro</a>, <a href="/search/physics?searchtype=author&query=Malakhov%2C+M">Mikhail Malakhov</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Dauphin%2C+A">Alexandre Dauphin</a>, <a href="/search/physics?searchtype=author&query=Plaja%2C+L">Luis Plaja</a>, <a href="/search/physics?searchtype=author&query=Chac%C3%B3n%2C+A">Alexis Chac贸n</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Pic%C3%B3n%2C+A">Antonio Pic贸n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03737v1-abstract-short" style="display: inline;"> We present a numerical experiment that demonstrates the possibility to capture topological phase transitions via an x-ray absorption spectroscopy scheme. We consider a Chern insulator whose topological phase is tuned via a second-order hopping. We perform time-dynamics simulations of the out-of-equilibrium laser-driven electron motion that enables us to model a realistic attosecond spectroscopy sc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03737v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03737v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03737v1-abstract-full" style="display: none;"> We present a numerical experiment that demonstrates the possibility to capture topological phase transitions via an x-ray absorption spectroscopy scheme. We consider a Chern insulator whose topological phase is tuned via a second-order hopping. We perform time-dynamics simulations of the out-of-equilibrium laser-driven electron motion that enables us to model a realistic attosecond spectroscopy scheme. In particular, we use an ultrafast scheme with a circularly polarized IR pump pulse and an attosecond x-ray probe pulse. A laser-induced dichroism-type spectrum shows a clear signature of the topological phase transition. We are able to connect these signatures with the Berry structure of the system. This work extend the applications of attosecond absorption spectroscopy to systems presenting a non-trivial topological phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03737v1-abstract-full').style.display = 'none'; document.getElementById('2407.03737v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14826">arXiv:2311.14826</a> <span> [<a href="https://arxiv.org/pdf/2311.14826">pdf</a>, <a href="https://arxiv.org/format/2311.14826">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Quantum tunnelling without a barrier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Weber%2C+A">Anne Weber</a>, <a href="/search/physics?searchtype=author&query=Khokhlova%2C+M">Margarita Khokhlova</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14826v1-abstract-short" style="display: inline;"> Tunnelling is a renowned concept in modern physics that highlights the peculiarity of non-classical dynamics. Despite its ubiquity questions remain. We focus on tunnelling through the barrier created by a strong laser field that illuminates an atomic target, which is essential to the creation of attosecond pulses and ultimately all attosecond processes. Here, we present an optical tunnelling event… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14826v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14826v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14826v1-abstract-full" style="display: none;"> Tunnelling is a renowned concept in modern physics that highlights the peculiarity of non-classical dynamics. Despite its ubiquity questions remain. We focus on tunnelling through the barrier created by a strong laser field that illuminates an atomic target, which is essential to the creation of attosecond pulses and ultimately all attosecond processes. Here, we present an optical tunnelling event that, unexpectedly, happens at a time when the instantaneous electric field is zero and there is no barrier. We discover this strong-field ionisation event by introducing the colour-switchover technique $-$ the gradual replacement of a laser field with its second harmonic $-$ within which the zero-field tunnelling appears when the two amplitudes are equal. This event is a topologically stable feature and it appears at all Keldysh parameters. The tunnelling without a barrier highlights the disconnect between the standard intuition built on the picture of a quasi-static barrier, and the nonadiabatic nature of the process. Our findings provide a key ingredient to the understanding of strong-field processes, such as high-harmonic generation and laser-induced electron diffraction, driven by the increasingly accessible class of strongly polychromatic light fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14826v1-abstract-full').style.display = 'none'; document.getElementById('2311.14826v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14435">arXiv:2309.14435</a> <span> [<a href="https://arxiv.org/pdf/2309.14435">pdf</a>, <a href="https://arxiv.org/format/2309.14435">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nonclassical states of light after high-harmonic generation in semiconductors: a Bloch-based perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14435v2-abstract-short" style="display: inline;"> High-harmonic generation has emerged as a pivotal process in strong-field physics, yielding extreme ultraviolet radiation and attosecond pulses with a wide range of applications. Furthermore, its emergent connection with the field of quantum optics has revealed its potential for generating non-classical states of light. Here, we investigate the process of high-harmonic generation in semiconductors… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14435v2-abstract-full').style.display = 'inline'; document.getElementById('2309.14435v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14435v2-abstract-full" style="display: none;"> High-harmonic generation has emerged as a pivotal process in strong-field physics, yielding extreme ultraviolet radiation and attosecond pulses with a wide range of applications. Furthermore, its emergent connection with the field of quantum optics has revealed its potential for generating non-classical states of light. Here, we investigate the process of high-harmonic generation in semiconductors under a quantum optical perspective while using a Bloch-based solid-state description. Through the implementation of quantum operations based on the measurement of high-order harmonics, we demonstrate the generation of non-classical light states similar to those found when driving atomic systems. These states are characterized using diverse quantum optical observables and quantum information measures, showing the influence of electron dynamics on their properties. Additionally, we analyze the dependence of their features on solid characteristics such as the dephasing time and crystal orientation, while also assessing their sensitivity to changes in driving field strength. This study provides insights into HHG in semiconductors and its potential for generating non-classical light sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14435v2-abstract-full').style.display = 'none'; document.getElementById('2309.14435v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages (16 main text + 6 appendix), 7 figures (5 main text + 2 appendix)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109, 035203 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12381">arXiv:2307.12381</a> <span> [<a href="https://arxiv.org/pdf/2307.12381">pdf</a>, <a href="https://arxiv.org/format/2307.12381">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Quantum optical analysis of high-order harmonic generation in H$_2^+$ molecular ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">P. Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12381v1-abstract-short" style="display: inline;"> We present a comprehensive theoretical investigation of high-order harmonic generation in H$_2^+$ molecular ions within a quantum optical framework. Our study focuses on characterizing various quantum optical and quantum information measures, highlighting the versatility of HHG in two-center molecules towards quantum technology applications. We demonstrate the emergence of entanglement between ele… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12381v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12381v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12381v1-abstract-full" style="display: none;"> We present a comprehensive theoretical investigation of high-order harmonic generation in H$_2^+$ molecular ions within a quantum optical framework. Our study focuses on characterizing various quantum optical and quantum information measures, highlighting the versatility of HHG in two-center molecules towards quantum technology applications. We demonstrate the emergence of entanglement between electron and light states after the laser-matter interaction. We also identify the possibility of obtaining non-classical states of light in targeted frequency modes by conditioning on specific electronic quantum states, which turn out to be crucial in the generation of highly non-classical entangled states between distinct sets of harmonic modes. Our findings open up avenues for studying strong-laser field-driven interactions in molecular systems, and suggest their applicability to quantum technology applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12381v1-abstract-full').style.display = 'none'; document.getElementById('2307.12381v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages (14 main text + 7 appendix), 9 figures (8 main text + 1 appendix)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.10932">arXiv:2303.10932</a> <span> [<a href="https://arxiv.org/pdf/2303.10932">pdf</a>, <a href="https://arxiv.org/format/2303.10932">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-024-01499-8">10.1038/s41566-024-01499-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral topological light for detecting robust enantio-sensitive observables </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mayer%2C+N">Nicola Mayer</a>, <a href="/search/physics?searchtype=author&query=Ayuso%2C+D">David Ayuso</a>, <a href="/search/physics?searchtype=author&query=Decleva%2C+P">Piero Decleva</a>, <a href="/search/physics?searchtype=author&query=Khokhlova%2C+M">Margarita Khokhlova</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ivanov%2C+M">Misha Ivanov</a>, <a href="/search/physics?searchtype=author&query=Smirnova%2C+O">Olga Smirnova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.10932v4-abstract-short" style="display: inline;"> The topological response of matter to electromagnetic fields is a property in high demand in materials design and metrology due to its robustness against noise and decoherence, stimulating recent advances in ultrafast photonics. Embedding topological properties into the enantio-sensitive optical response of chiral molecules could therefore enhance the efficiency and robustness of chiral optical di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10932v4-abstract-full').style.display = 'inline'; document.getElementById('2303.10932v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.10932v4-abstract-full" style="display: none;"> The topological response of matter to electromagnetic fields is a property in high demand in materials design and metrology due to its robustness against noise and decoherence, stimulating recent advances in ultrafast photonics. Embedding topological properties into the enantio-sensitive optical response of chiral molecules could therefore enhance the efficiency and robustness of chiral optical discrimination. Here we achieve such a topological embedding by introducing the concept of chiral topological light~-- a light beam which displays chirality locally, with an azimuthal distribution of its handedness described globally by a topological charge. The topological charge is mapped onto the azimuthal intensity modulation of the non-linear optical response, where enantio-sensitivity is encoded into its spatial rotation. The spatial rotation is robust against intensity fluctuations and imperfect local polarization states of the driving field. Our theoretical results show that chiral topological light enables detection of percentage-level enantiomeric excesses in randomly oriented mixtures of chiral molecules, opening a way to new, extremely sensitive and robust chiro-optical spectroscopies with attosecond time resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10932v4-abstract-full').style.display = 'none'; document.getElementById('2303.10932v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04692">arXiv:2302.04692</a> <span> [<a href="https://arxiv.org/pdf/2302.04692">pdf</a>, <a href="https://arxiv.org/format/2302.04692">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/acea31">10.1088/1361-6633/acea31 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong laser physics, non-classical light states and quantum information science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+U">Utso Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04692v1-abstract-short" style="display: inline;"> Strong laser physics is a research direction that relies on the use of high-power lasers and has led to fascinating achievements ranging from relativistic particle acceleration to attosecond science. On the other hand, quantum optics has been built on the use of low photon number sources and has opened the way for groundbreaking discoveries in quantum technology, advancing investigations ranging f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04692v1-abstract-full').style.display = 'inline'; document.getElementById('2302.04692v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04692v1-abstract-full" style="display: none;"> Strong laser physics is a research direction that relies on the use of high-power lasers and has led to fascinating achievements ranging from relativistic particle acceleration to attosecond science. On the other hand, quantum optics has been built on the use of low photon number sources and has opened the way for groundbreaking discoveries in quantum technology, advancing investigations ranging from fundamental tests of quantum theory to quantum information processing. Despite the tremendous progress, until recently these directions have remained disconnected. This is because, the majority of the interactions in the strong-field limit have been successfully described by semi-classical approximations treating the electromagnetic field classically, as there was no need to include the quantum properties of the field to explain the observations. The link between strong laser physics, quantum optics, and quantum information science has been developed in the recent past. Studies based on fully quantized and conditioning approaches have shown that intense laser--matter interactions can be used for the generation of controllable entangled and non-classical light states. This achievement opens the way for a vast number of investigations stemming from the symbiosis of strong laser physics, quantum optics, and quantum information science. Here, after an introduction to the fundamentals of these research directions, we report on the recent progress in the fully quantized description of intense laser--matter interaction and the methods that have been developed for the generation of non-classical light states and entangled states. Also, we discuss the future directions of non-classical light engineering using strong laser fields, and the potential applications in ultrafast and quantum information science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04692v1-abstract-full').style.display = 'none'; document.getElementById('2302.04692v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">60 pages, 20 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00033">arXiv:2211.00033</a> <span> [<a href="https://arxiv.org/pdf/2211.00033">pdf</a>, <a href="https://arxiv.org/format/2211.00033">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Entanglement and non-classical states of light in a strong-laser driven solid-state system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00033v2-abstract-short" style="display: inline;"> The development of sources delivering non-classical states of light is one of the main needs for applications of optical quantum information science. Here, we demonstrate the generation of non-classical states of light using strong-laser fields driving a solid-state system, by using the process of high-order harmonic generation, where an electron tunnels out of the parent site and, later on, recom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00033v2-abstract-full').style.display = 'inline'; document.getElementById('2211.00033v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00033v2-abstract-full" style="display: none;"> The development of sources delivering non-classical states of light is one of the main needs for applications of optical quantum information science. Here, we demonstrate the generation of non-classical states of light using strong-laser fields driving a solid-state system, by using the process of high-order harmonic generation, where an electron tunnels out of the parent site and, later on, recombines on it emitting high-order harmonic radiation, at the expense of affecting the driving laser field. Since in solid-state systems the recombination of the electron can be delocalized along the material, the final state of the electron determines how the electromagnetic field gets affected because of the laser-matter interaction, leading to the generation of entanglement between the electron and the field. These features can be enhanced by applying conditioning operations, i.e., quantum operations based on the measurement of high-harmonic radiation. We study non-classical features present in the final quantum optical state, and characterize the amount of entanglement between the light and the electrons in the solid. The work sets the foundation for the development of compact solid-state-based non-classical light sources using strong-field physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00033v2-abstract-full').style.display = 'none'; document.getElementById('2211.00033v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We present a different formulation to that of the previous version, more in line with the approach followed in our previous works. 12 pages (8 main text + 4 Methods), 4 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.00454">arXiv:2209.00454</a> <span> [<a href="https://arxiv.org/pdf/2209.00454">pdf</a>, <a href="https://arxiv.org/format/2209.00454">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Conservation of a Half-Integer Angular Momentum in Nonlinear Optics with a Polarization M枚bius Strip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Luttmann%2C+M">Martin Luttmann</a>, <a href="/search/physics?searchtype=author&query=Vimal%2C+M">Mekha Vimal</a>, <a href="/search/physics?searchtype=author&query=Guer%2C+M">Matthieu Guer</a>, <a href="/search/physics?searchtype=author&query=Hergott%2C+J">Jean-Fran莽ois Hergott</a>, <a href="/search/physics?searchtype=author&query=Khoury%2C+A+Z">Antonio Z. Khoury</a>, <a href="/search/physics?searchtype=author&query=Hern%C3%A1ndez-Garc%C3%ADa%2C+C">Carlos Hern谩ndez-Garc铆a</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ruchon%2C+T">Thierry Ruchon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.00454v2-abstract-short" style="display: inline;"> Symmetries and conservation laws of energy, linear momentum and angular momentum play a central role in physics, in particular in nonlinear optics. Recently, light fields with non trivial topology, such as polarization M枚bius strips or torus-knot beams, have been unveiled. They cannot be associated to well-defined values of orbital and spin angular momenta (OAM and SAM), but are invariant under co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00454v2-abstract-full').style.display = 'inline'; document.getElementById('2209.00454v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.00454v2-abstract-full" style="display: none;"> Symmetries and conservation laws of energy, linear momentum and angular momentum play a central role in physics, in particular in nonlinear optics. Recently, light fields with non trivial topology, such as polarization M枚bius strips or torus-knot beams, have been unveiled. They cannot be associated to well-defined values of orbital and spin angular momenta (OAM and SAM), but are invariant under coordinated rotations, i.e. rotational symmetries that are generated by the generalized angular momentum (GAM) operator, a mixture of the OAM and SAM operators. The discovery of the GAM, which at variance with integer-valued OAM and SAM, can have arbitrary value, and raises the question of its conservation in nonlinear optical processes. By driving high harmonic generation with a polarization M枚bius strip and implementing novel OAM characterization methods in the XUV range, we experimentally observe the conservation of the GAM, each harmonic carrying a precise half-integer GAM charge equal to that of the fundamental field multiplied by the harmonic order. The GAM is thus revealed as the appropriate quantum number to describe nonlinear processes driven by light fields containing topological polarization singularities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00454v2-abstract-full').style.display = 'none'; document.getElementById('2209.00454v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures in the main text and 13 in the supplemental document</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14769">arXiv:2208.14769</a> <span> [<a href="https://arxiv.org/pdf/2208.14769">pdf</a>, <a href="https://arxiv.org/format/2208.14769">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond Physics and Quantum Information Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Baldelli%2C+N">N. Baldelli</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+U">U. Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Biegert%2C+J">J. Biegert</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Elu%2C+U">U. Elu</a>, <a href="/search/physics?searchtype=author&query=Grass%2C+T">T. Grass</a>, <a href="/search/physics?searchtype=author&query=Grochowski%2C+P+T">P. T. Grochowski</a>, <a href="/search/physics?searchtype=author&query=Johnson%2C+A">A. Johnson</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A">A. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&query=Tyulnev%2C+I">I. Tyulnev</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">P. Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14769v1-abstract-short" style="display: inline;"> In this article, we will discuss a possibility of a symbiosis for attophysics (AP) and quantum information (QI) and quantum technologies (QT). We will argue that within few years AP will reach Technology Readiness Level (RTL) 4-5 in QT, and will thus become a legitimate platform for QI and QT. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14769v1-abstract-full" style="display: none;"> In this article, we will discuss a possibility of a symbiosis for attophysics (AP) and quantum information (QI) and quantum technologies (QT). We will argue that within few years AP will reach Technology Readiness Level (RTL) 4-5 in QT, and will thus become a legitimate platform for QI and QT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14769v1-abstract-full').style.display = 'none'; document.getElementById('2208.14769v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures, ATTO VIII Conference Proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01032">arXiv:2110.01032</a> <span> [<a href="https://arxiv.org/pdf/2110.01032">pdf</a>, <a href="https://arxiv.org/format/2110.01032">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.033714">10.1103/PhysRevA.105.033714 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong laser fields and their power to generate controllable high-photon-number coherent-state superpositions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01032v3-abstract-short" style="display: inline;"> Recently, intensely driven laser-matter interactions have been used to connect the fields of strong laser field physics with quantum optics by generating non-classical states of light. Here, we make a further key step and show the potential of strong laser fields for generating controllable high-photon-number coherent-state superpositions. This has been achieved by using two of the most prominent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01032v3-abstract-full').style.display = 'inline'; document.getElementById('2110.01032v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01032v3-abstract-full" style="display: none;"> Recently, intensely driven laser-matter interactions have been used to connect the fields of strong laser field physics with quantum optics by generating non-classical states of light. Here, we make a further key step and show the potential of strong laser fields for generating controllable high-photon-number coherent-state superpositions. This has been achieved by using two of the most prominent strong-laser induced processes: high-harmonic generation and above-threshold ionization. We show how the obtained coherent-state superpositions change from an optical Schr枚dinger "cat" state to a "kitten" state by changing the atomic density in the laser-atom interaction region, and we demonstrate the generation of a 9-photon shifted optical "cat" state which, to our knowledge, is the highest photon number optical "cat" state experimentally reported. Our findings anticipate the development of new methods that naturally lead to the creation of high-photon-number controllable coherent-state superpositions, advancing investigations in quantum technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01032v3-abstract-full').style.display = 'none'; document.getElementById('2110.01032v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version submitted to Physical Review A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 105, 033714 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.15302">arXiv:2109.15302</a> <span> [<a href="https://arxiv.org/pdf/2109.15302">pdf</a>, <a href="https://arxiv.org/format/2109.15302">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abq1962">10.1126/sciadv.abq1962 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enantiosensitive steering of free-induction decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Khokhlova%2C+M">Margarita Khokhlova</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Patchkovskii%2C+S">Serguei Patchkovskii</a>, <a href="/search/physics?searchtype=author&query=Smirnova%2C+O">Olga Smirnova</a>, <a href="/search/physics?searchtype=author&query=Ivanov%2C+M">Misha Ivanov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.15302v1-abstract-short" style="display: inline;"> Chiral discrimination, a problem of vital importance, has recently become an emerging frontier in ultrafast physics, with remarkable progress achieved in multiphoton and strong-field regimes. Rydberg excitations, unavoidable in the strong-field regime and intentional for few-photon processes, arise in all these approaches. Here we show how to harness this ubiquitous feature by introducing a new ph… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.15302v1-abstract-full').style.display = 'inline'; document.getElementById('2109.15302v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.15302v1-abstract-full" style="display: none;"> Chiral discrimination, a problem of vital importance, has recently become an emerging frontier in ultrafast physics, with remarkable progress achieved in multiphoton and strong-field regimes. Rydberg excitations, unavoidable in the strong-field regime and intentional for few-photon processes, arise in all these approaches. Here we show how to harness this ubiquitous feature by introducing a new phenomenon, enantiosensitive free-induction decay, steered by a tricolour chiral field at a gentle intensity, structured in space and time. We demonstrate theoretically that an excited chiral molecule accumulates an enantiosensitive phase due to perturbative interactions with the tricolour chiral field, resulting in a spatial phase gradient steering the free-induction decay in opposite directions for opposite enantiomers. Our work introduces a general, extremely sensitive, all-optical, enantiosensitive detection technique which avoids strong fields and takes full advantage of recent advances in structuring light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.15302v1-abstract-full').style.display = 'none'; document.getElementById('2109.15302v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Adv. 8, eabq1962 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12887">arXiv:2107.12887</a> <span> [<a href="https://arxiv.org/pdf/2107.12887">pdf</a>, <a href="https://arxiv.org/format/2107.12887">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.123603">10.1103/PhysRevLett.128.123603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High photon number entangled states and coherent state superposition from the extreme-ultraviolet to the far infrared </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12887v3-abstract-short" style="display: inline;"> We present a theoretical demonstration on the generation of entangled coherent states and of coherent state superpositions, with photon numbers and frequencies orders of magnitude higher than those provided by the current technology. This is achieved by utilizing a quantum mechanical multimode description of the single- and two-color intense laser field driven process of high harmonic generation i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12887v3-abstract-full').style.display = 'inline'; document.getElementById('2107.12887v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12887v3-abstract-full" style="display: none;"> We present a theoretical demonstration on the generation of entangled coherent states and of coherent state superpositions, with photon numbers and frequencies orders of magnitude higher than those provided by the current technology. This is achieved by utilizing a quantum mechanical multimode description of the single- and two-color intense laser field driven process of high harmonic generation in atoms. It is found that all field modes involved in the high harmonic generation process are entangled, and upon performing a quantum operation, leads to the generation of high photon number optical cat states spanning from the far infrared to the extreme-ultraviolet spectral region. This provides direct insights into the quantum mechanical properties of the optical field in intense laser matter interaction. Finally, these states can be considered as a new resource for fundamental tests of quantum theory, quantum information processing or sensing with non-classical states of light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12887v3-abstract-full').style.display = 'none'; document.getElementById('2107.12887v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages (3 figures) + 4 pages supplement (2 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 123603 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12811">arXiv:2107.12811</a> <span> [<a href="https://arxiv.org/pdf/2107.12811">pdf</a>, <a href="https://arxiv.org/format/2107.12811">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> New schemes for creating large optical Schrodinger cat states using strong laser fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12811v1-abstract-short" style="display: inline;"> Recently, using conditioning approaches on the high-harmonic generation process induced by intense laser-atom interactions, we have developed a new method for the generation of optical Schr枚dinger cat states (M. Lewenstein et al., arXiv:2008.10221 (2020)). These quantum optical states have been proven to be very manageable as, by modifying the conditions under which harmonics are generated, one ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12811v1-abstract-full').style.display = 'inline'; document.getElementById('2107.12811v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12811v1-abstract-full" style="display: none;"> Recently, using conditioning approaches on the high-harmonic generation process induced by intense laser-atom interactions, we have developed a new method for the generation of optical Schr枚dinger cat states (M. Lewenstein et al., arXiv:2008.10221 (2020)). These quantum optical states have been proven to be very manageable as, by modifying the conditions under which harmonics are generated, one can interplay between $\textit{kitten}$ and $\textit{genuine cat}$ states. Here, we demonstrate that this method can also be used for the development of new schemes towards the creation of optical Schr枚dinger cat states, consisting of the superposition of three distinct coherent states. Apart from the interest these kind of states have on their own, we additionally propose a scheme for using them towards the generation of large cat states involving the sum of two different coherent states. The quantum properties of the obtained superpositions aim to significantly increase the applicability of optical Schr枚dinger cat states for quantum technology and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12811v1-abstract-full').style.display = 'none'; document.getElementById('2107.12811v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages (12 main text + 1 appendix), 8 figures. This paper has been submitted to the JCEL Special Issue on Wigner Functions in Computational Electronics and Photonics. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00372">arXiv:2106.00372</a> <span> [<a href="https://arxiv.org/pdf/2106.00372">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/photonics8060192">10.3390/photonics8060192 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-Optical Spectrometry in Relativistic Laser-Plasma Interactions Using the High-Harmonic Generation Process: A Proposal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Lopez-Martens%2C+R">Rodrigo Lopez-Martens</a>, <a href="/search/physics?searchtype=author&query=Haessler%2C+S">Stefan Haessler</a>, <a href="/search/physics?searchtype=author&query=Liontos%2C+I">Ioannis Liontos</a>, <a href="/search/physics?searchtype=author&query=Kahaly%2C+S">Subhendu Kahaly</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00372v1-abstract-short" style="display: inline;"> Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser-matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00372v1-abstract-full').style.display = 'inline'; document.getElementById('2106.00372v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00372v1-abstract-full" style="display: none;"> Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser-matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving laser field towards the generation of a strong laser-field interaction product, such as high-order harmonics. In this case, the harmonic spectrum is reflected in the photon number distribution of the infrared (IR) driving field after its interaction with the high harmonic generation medium. The method was implemented in non-relativistic interactions using high harmonics produced by the interaction of strong laser pulses with atoms and semiconductors. Very recently, it was used for the generation of non-classical light states in intense laser-atom interaction, building the basis for studies of quantum electrodynamics in strong laser-field physics and the development of a new class of non-classical light sources for applications in quantum technology. Here, after a brief introduction of the QS method, we will discuss how the QS can be applied in relativistic laser-plasma interactions and become the driving factor for initiating investigations on relativistic quantum electrodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00372v1-abstract-full').style.display = 'none'; document.getElementById('2106.00372v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Photonics 8 no. 6, 192 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07453">arXiv:2102.07453</a> <span> [<a href="https://arxiv.org/pdf/2102.07453">pdf</a>, <a href="https://arxiv.org/format/2102.07453">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjd/s10053-021-00214-4">10.1140/epjd/s10053-021-00214-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conservation laws for Electron Vortices in Strong-Field Ionisation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kang%2C+Y">Yuxin Kang</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M">Marcelo Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Faria%2C+C+F+d+M">Carla Figueira de Morisson Faria</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S Maxwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07453v2-abstract-short" style="display: inline;"> We investigate twisted electrons with a well defined orbital angular momentum, which have been ionised via a strong laser field. By formulating a new variant of the well-known strong field approximation, we are able to derive conservation laws for the angular momenta of twisted electrons in the cases of linear and circularly polarised fields. In the case of linear fields, we demonstrate that the o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07453v2-abstract-full').style.display = 'inline'; document.getElementById('2102.07453v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07453v2-abstract-full" style="display: none;"> We investigate twisted electrons with a well defined orbital angular momentum, which have been ionised via a strong laser field. By formulating a new variant of the well-known strong field approximation, we are able to derive conservation laws for the angular momenta of twisted electrons in the cases of linear and circularly polarised fields. In the case of linear fields, we demonstrate that the orbital angular momentum of the twisted electron is determined by the magnetic quantum number of the initial bound state. The condition for the circular field can be related to the famous ATI peaks, and provides a new interpretation for this fundamental feature of photoelectron spectra. We find the length of the circular pulse to be a vital factor in this selection rule and, employing an effective frequency, we show that the photoelectron OAM emission spectra is sensitive to the parity of the number of laser cycles. This work provides the basic theoretical framework with which to understand the OAM of a photoelectron undergoing strong field ionisation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07453v2-abstract-full').style.display = 'none'; document.getElementById('2102.07453v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures and 44 equations. Publication prepared for the EPJ D Topical Issue: Quantum Aspects of Attoscience</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. D (2021) 75: 199 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.10526">arXiv:2101.10526</a> <span> [<a href="https://arxiv.org/pdf/2101.10526">pdf</a>, <a href="https://arxiv.org/format/2101.10526">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.053124">10.1103/PhysRevA.103.053124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Principal frequency of an ultrashort laser pulse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Neyra%2C+E+G">Enrique G. Neyra</a>, <a href="/search/physics?searchtype=author&query=Vaveliuk%2C+P">Pablo Vaveliuk</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.10526v2-abstract-short" style="display: inline;"> We introduce an alternative definition of the main frequency of an ultrashort laser pulse, the principal frequency $蠅_P$. This parameter is complementary to the most accepted and widely used carrier frequency $蠅_0$. Given the fact that these ultrashort pulses, also known as transients, have a temporal width comprising only few cycles of the carrier wave, corresponding to a spectral bandwidth $螖蠅$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.10526v2-abstract-full').style.display = 'inline'; document.getElementById('2101.10526v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.10526v2-abstract-full" style="display: none;"> We introduce an alternative definition of the main frequency of an ultrashort laser pulse, the principal frequency $蠅_P$. This parameter is complementary to the most accepted and widely used carrier frequency $蠅_0$. Given the fact that these ultrashort pulses, also known as transients, have a temporal width comprising only few cycles of the carrier wave, corresponding to a spectral bandwidth $螖蠅$ covering several octaves, $蠅_P$ describes, in a more precise way, the dynamics driven by these sources. We present examples where, for instance, $蠅_P$ is able to correctly predict the high-order harmonic cutoff independently of the carrier envelope phase. This is confirmed by solving the time-dependent Schr枚dinger equation in reduced dimensions, supplemented with the time-analysis of the quantum spectra, where it is possible to observe how the sub-cycle electron dynamics is better described using $蠅_P$. The concept of $蠅_P$, however, can be applied to a large variety of scenarios, not only within the strong field physics domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.10526v2-abstract-full').style.display = 'none'; document.getElementById('2101.10526v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, accepted in PRA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, 053124 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09335">arXiv:2101.09335</a> <span> [<a href="https://arxiv.org/pdf/2101.09335">pdf</a>, <a href="https://arxiv.org/format/2101.09335">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjd/s10053-021-00207-3">10.1140/epjd/s10053-021-00207-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dialogue on analytical and ab initio methods in attoscience </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Armstrong%2C+G+S+J">Gregory S. J. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Khokhlova%2C+M+A">Margarita A. Khokhlova</a>, <a href="/search/physics?searchtype=author&query=Labeye%2C+M">Marie Labeye</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ruberti%2C+M">Marco Ruberti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09335v3-abstract-short" style="display: inline;"> The perceived dichotomy between analytical and ab initio approaches to theory in attosecond science is often seen as a source of tension and misconceptions. This Topical Review compiles the discussions held during a round-table panel at the 'Quantum Battles in Attoscience' CECAM virtual workshop, to explore the sources of tension and attempt to dispel them. We survey the main theoretical tools of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09335v3-abstract-full').style.display = 'inline'; document.getElementById('2101.09335v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09335v3-abstract-full" style="display: none;"> The perceived dichotomy between analytical and ab initio approaches to theory in attosecond science is often seen as a source of tension and misconceptions. This Topical Review compiles the discussions held during a round-table panel at the 'Quantum Battles in Attoscience' CECAM virtual workshop, to explore the sources of tension and attempt to dispel them. We survey the main theoretical tools of attoscience -- covering both analytical and numerical methods -- and we examine common misconceptions, including the relationship between ab initio approaches and the broader numerical methods, as well as the role of numerical methods in 'analytical' techniques. We also evaluate the relative advantages and disadvantages of analytical as well as numerical and ab initio methods, together with their role in scientific discovery, told through the case studies of two representative attosecond processes: non-sequential double ionisation and resonant high-harmonic generation. We present the discussion in the form of a dialogue between two hypothetical theoreticians, a numericist and an analytician, who introduce and challenge the broader opinions expressed in the attoscience community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09335v3-abstract-full').style.display = 'none'; document.getElementById('2101.09335v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the round-table panel discussion 'Quantum Battle 3 - Numerical vs Analytical Methods' at the Quantum Battles in Attoscience online conference (https://www.quantumbattles.com/), the livestream for which can be found at https://www.youtube.com/watch?v=VJnFfHVDym4</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. D 75, 209 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09254">arXiv:2101.09254</a> <span> [<a href="https://arxiv.org/pdf/2101.09254">pdf</a>, <a href="https://arxiv.org/format/2101.09254">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2040-8986/abe8b2">10.1088/2040-8986/abe8b2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical polarization skyrmionic fields in free space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guti%C3%A9rrez-Cuevas%2C+R">Rodrigo Guti茅rrez-Cuevas</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09254v2-abstract-short" style="display: inline;"> We construct optical beams in free space with robust skyrmionic structures in their polarization fields, both in the electric spin vector for near-circular fields and in the polarization direction for near-linear fields, and for both Bloch (spiral) and N茅el (hedgehog) textures. These structures are made possible by the spin-orbit coupling of tightly-focused nonparaxial optics as applied to higher-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09254v2-abstract-full').style.display = 'inline'; document.getElementById('2101.09254v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09254v2-abstract-full" style="display: none;"> We construct optical beams in free space with robust skyrmionic structures in their polarization fields, both in the electric spin vector for near-circular fields and in the polarization direction for near-linear fields, and for both Bloch (spiral) and N茅el (hedgehog) textures. These structures are made possible by the spin-orbit coupling of tightly-focused nonparaxial optics as applied to higher-order Full-Poincar茅 beams, as well as by standing-wave configurations comprising forwards- and backwards-propagating waves. Our constructions show near-uniform circular and linear polarizations, providing a high degree of topological protection in the absence of nonlinear interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09254v2-abstract-full').style.display = 'none'; document.getElementById('2101.09254v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Opt. 23, 024004 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08355">arXiv:2010.08355</a> <span> [<a href="https://arxiv.org/pdf/2010.08355">pdf</a>, <a href="https://arxiv.org/format/2010.08355">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D0FD00105H">10.1039/D0FD00105H <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manipulating Twisted Electrons in Strong-Field Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+G+S+J">G. S. J. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+Y">Y. Kang</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A+C">A. C. Brown</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Faria%2C+C+F+d+M">C. Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08355v1-abstract-short" style="display: inline;"> We investigate the discrete orbital angular momentum (OAM) of photoelectrons freed in strongfield ionization. We use these `twisted' electrons to provide an alternative interpretation on existing experimental work of vortex interferences caused by strong field ionization mediated by two counterrotating circularly polarized pulses separated by a delay. Using the strong field approximation, we deriv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08355v1-abstract-full').style.display = 'inline'; document.getElementById('2010.08355v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08355v1-abstract-full" style="display: none;"> We investigate the discrete orbital angular momentum (OAM) of photoelectrons freed in strongfield ionization. We use these `twisted' electrons to provide an alternative interpretation on existing experimental work of vortex interferences caused by strong field ionization mediated by two counterrotating circularly polarized pulses separated by a delay. Using the strong field approximation, we derive an interference condition for the vortices. In computations for a neon target we find very good agreement of the vortex condition with photoelectron momentum distributions computed with the strong field approximation, as well as with the time-dependent methods Qprop and R-Matrix. For each of these approaches we examine the OAM of the photoelectrons, finding a small number of vortex states localized in separate energy regions. We demonstrate that the vortices arise from the interference of pairs of twisted electron states. The OAM of each twisted electron state can be directly related to the number of arms of the spiral in that region. We gain further understanding by recreating the vortices with pairs of twisted electrons and use this to determine a semiclassical relation for the OAM. A discussion is included on measuring the OAM in strong field ionization directly or by employing specific laser pulse schemes as well as utilizing the OAM in time-resolved imaging of photo-induced dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08355v1-abstract-full').style.display = 'none'; document.getElementById('2010.08355v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, publication prepared for the the strong field theme of the Faraday Discussions conference: Time-resolved imaging of photo-induced dynamics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Faraday Discussions 228, 394 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.10221">arXiv:2008.10221</a> <span> [<a href="https://arxiv.org/pdf/2008.10221">pdf</a>, <a href="https://arxiv.org/format/2008.10221">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-021-01317-w">10.1038/s41567-021-01317-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of optical Schr枚dinger cat states in intense laser-matter interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.10221v4-abstract-short" style="display: inline;"> The physics of intense laser-matter interactions is described by treating the light pulses classically, anticipating no need to access optical measurements beyond the classical limit. However, the quantum nature of the electromagnetic fields is always present. Here, we demonstrate that intense laser-atom interactions may lead to the generation of highly non-classical light states. This was achieve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10221v4-abstract-full').style.display = 'inline'; document.getElementById('2008.10221v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.10221v4-abstract-full" style="display: none;"> The physics of intense laser-matter interactions is described by treating the light pulses classically, anticipating no need to access optical measurements beyond the classical limit. However, the quantum nature of the electromagnetic fields is always present. Here, we demonstrate that intense laser-atom interactions may lead to the generation of highly non-classical light states. This was achieved by using the process of high-harmonic generation in atoms, in which the photons of a driving laser pulse of infrared frequency are up-converted into photons of higher frequencies in the extreme ultraviolet spectral range. The quantum state of the fundamental mode after the interaction, when conditioned on the high-harmonic generation, is a so-called Schr枚dinger cat state, which corresponds to a superposition of two distinct coherent states: the initial state of the laser and the coherent state reduced in amplitude that results from the interaction with atoms. The results open the path for investigations towards the control of the non-classical states, exploiting conditioning approaches on physical processes relevant to high-harmonic generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10221v4-abstract-full').style.display = 'none'; document.getElementById('2008.10221v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We dedicate this work to the memory of Roy J. Glauber, the inventor of coherent states</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. 17, 1104-1108 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.15450">arXiv:2007.15450</a> <span> [<a href="https://arxiv.org/pdf/2007.15450">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6455/ab859c">10.1088/1361-6455/ab859c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Suppression of individual peaks in two-colour high harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mitra%2C+S">Sambit Mitra</a>, <a href="/search/physics?searchtype=author&query=Biswas%2C+S">Shubhadeep Biswas</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%B6tz%2C+J">Johannes Sch枚tz</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=F%C3%B6rg%2C+B">Benjamin F枚rg</a>, <a href="/search/physics?searchtype=author&query=Kavuri%2C+G+A">Gautam Aditya Kavuri</a>, <a href="/search/physics?searchtype=author&query=Burger%2C+C">Christian Burger</a>, <a href="/search/physics?searchtype=author&query=Okell%2C+W">William Okell</a>, <a href="/search/physics?searchtype=author&query=H%C3%B6gner%2C+M">Maximilian H枚gner</a>, <a href="/search/physics?searchtype=author&query=Pupeza%2C+I">Ioachim Pupeza</a>, <a href="/search/physics?searchtype=author&query=Pervak%2C+V">Vladimir Pervak</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Wnuk%2C+P">Pawel Wnuk</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">Matthias F Kling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.15450v1-abstract-short" style="display: inline;"> This work investigates the suppression of individual harmonics, simultaneously affecting specific even and odd orders in the high-harmonic spectra generated by strongly tailored, two-colour, multi-cycle laser pulses in neon. The resulting spectra are systematically studied as a function of the electric-field shape in a symmetry-broken ($蠅$-$2蠅$) and symmetry-preserved ($蠅$-$3蠅$) configuration. The… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.15450v1-abstract-full').style.display = 'inline'; document.getElementById('2007.15450v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.15450v1-abstract-full" style="display: none;"> This work investigates the suppression of individual harmonics, simultaneously affecting specific even and odd orders in the high-harmonic spectra generated by strongly tailored, two-colour, multi-cycle laser pulses in neon. The resulting spectra are systematically studied as a function of the electric-field shape in a symmetry-broken ($蠅$-$2蠅$) and symmetry-preserved ($蠅$-$3蠅$) configuration. The peak suppression is reproduced by macroscopic strong-field approximation calculations and is found to be unique to symmetry-broken fields ($蠅$-$2蠅$). Additionally, semi-classical calculations further corroborate the observation and reveal their underlying mechanism, where a nontrivial spectral interference between subsequent asymmetric half-cycles is found to be responsible for the suppression. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.15450v1-abstract-full').style.display = 'none'; document.getElementById('2007.15450v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. B: At. Mol. Opt. Phys. 53 no. 13, 134004 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.10375">arXiv:2007.10375</a> <span> [<a href="https://arxiv.org/pdf/2007.10375">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0040879">10.1063/5.0040879 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A systematic construction of Gaussian basis sets for the description of laser field ionization and high-harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wo%C5%BAniak%2C+A+P">Aleksander P. Wo藕niak</a>, <a href="/search/physics?searchtype=author&query=Lesiuk%2C+M">Micha艂 Lesiuk</a>, <a href="/search/physics?searchtype=author&query=Przybytek%2C+M">Micha艂 Przybytek</a>, <a href="/search/physics?searchtype=author&query=Efimov%2C+D+K">Dmitry K. Efimov</a>, <a href="/search/physics?searchtype=author&query=Prauzner-Bechcicki%2C+J+S">Jakub S. Prauzner-Bechcicki</a>, <a href="/search/physics?searchtype=author&query=Mandrysz%2C+M">Micha艂 Mandrysz</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M">Marcelo Ciappina</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Zakrzewski%2C+J">Jakub Zakrzewski</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Moszy%C5%84ski%2C+R">Robert Moszy艅ski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.10375v4-abstract-short" style="display: inline;"> A precise understanding of mechanisms governing the dynamics of electrons in atoms and molecules subjected to intense laser fields has a key importance for the description of attosecond processes such as the high-harmonic generation and ionization. From the theoretical point of view, this is still a challenging task, as new approaches to solve the time-dependent Schr枚dinger equation with both good… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.10375v4-abstract-full').style.display = 'inline'; document.getElementById('2007.10375v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.10375v4-abstract-full" style="display: none;"> A precise understanding of mechanisms governing the dynamics of electrons in atoms and molecules subjected to intense laser fields has a key importance for the description of attosecond processes such as the high-harmonic generation and ionization. From the theoretical point of view, this is still a challenging task, as new approaches to solve the time-dependent Schr枚dinger equation with both good accuracy and efficiency are still emerging. Until recently, the purely numerical methods of real-time propagation of the wavefunction using finite grids have been frequently and successfully used to capture the electron dynamics in small one- or two-electron systems. However, as the main focus of attoscience shifts toward many-electron systems, such techniques are no longer effective and need to be replaced by more approximate but computationally efficient ones. In this paper, we explore the increasingly popular method of expanding the wavefunction of the examined system into a linear combination of atomic orbitals and present a novel systematic scheme for constructing an optimal Gaussian basis set suitable for the description of excited and continuum atomic or molecular states. We analyze the performance of the proposed basis sets by carrying out a series of time-dependent configuration interaction calculations for the hydrogen atom in fields of intensity varying from $5 \times 10^{13}\:\rm W/cm^2$ to $5 \times 10^{14}\:\rm W/cm^2$. We also compare the results with the data obtained using Gaussian basis sets proposed previously by other authors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.10375v4-abstract-full').style.display = 'none'; document.getElementById('2007.10375v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor changes in Sec. 1, 2 and 3</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 154, 094111 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.00277">arXiv:2003.00277</a> <span> [<a href="https://arxiv.org/pdf/2003.00277">pdf</a>, <a href="https://arxiv.org/format/2003.00277">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2515-7647/ab8f1e">10.1088/2515-7647/ab8f1e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The imaginary part of the high-harmonic cutoff </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.00277v2-abstract-short" style="display: inline;"> High-harmonic generation - the emission of high-frequency radiation by the ionization and subsequent recombination of an atomic electron driven by a strong laser field - is widely understood using a quasiclassical trajectory formalism, derived from a saddle-point approximation, where each saddle corresponds to a complex-valued trajectory whose recombination contributes to the harmonic emission. Ho… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00277v2-abstract-full').style.display = 'inline'; document.getElementById('2003.00277v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.00277v2-abstract-full" style="display: none;"> High-harmonic generation - the emission of high-frequency radiation by the ionization and subsequent recombination of an atomic electron driven by a strong laser field - is widely understood using a quasiclassical trajectory formalism, derived from a saddle-point approximation, where each saddle corresponds to a complex-valued trajectory whose recombination contributes to the harmonic emission. However, the classification of these saddle-points into individual quantum orbits remains a high-friction part of the formalism. Here we present a scheme to classify these trajectories, based on a natural identification of the (complex) time that corresponds to the harmonic cutoff. This identification also provides a natural complex value for the cutoff energy, whose imaginary part controls the strength of quantum-path interference between the quantum orbits that meet at the cutoff. Our construction gives an efficient method to evaluate the location and brightness of the cutoff for a wide class of driver waveforms by solving a single saddle-point equation. It also allows us to explore the intricate topologies of the Riemann surfaces formed by the quantum orbits induced by nontrivial waveforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00277v2-abstract-full').style.display = 'none'; document.getElementById('2003.00277v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary Material is available at https://imaginary-harmonic-cutoff.github.io with a stable version at https://doi.org/10.5281/zenodo.3692562</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Photonics 2, no. 3 p. 034013 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.08574">arXiv:1912.08574</a> <span> [<a href="https://arxiv.org/pdf/1912.08574">pdf</a>, <a href="https://arxiv.org/format/1912.08574">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.9b01188">10.1021/acsphotonics.9b01188 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perspective on petahertz electronics and attosecond nanoscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schoetz%2C+J">J. Schoetz</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Z. Wang</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+M+F">M. F. Kling</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.08574v1-abstract-short" style="display: inline;"> The field of attosecond nanophysics, combining the research areas of attosecond physics with nanoscale physics, has experienced a considerable rise in recent years both experimentally and theoretically. Its foundation rests on the sub-cycle manipulation and sampling of the coupled electron and near-field dynamics on the nanoscale. Attosecond nanophysics not only addresses questions of strong funda… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08574v1-abstract-full').style.display = 'inline'; document.getElementById('1912.08574v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.08574v1-abstract-full" style="display: none;"> The field of attosecond nanophysics, combining the research areas of attosecond physics with nanoscale physics, has experienced a considerable rise in recent years both experimentally and theoretically. Its foundation rests on the sub-cycle manipulation and sampling of the coupled electron and near-field dynamics on the nanoscale. Attosecond nanophysics not only addresses questions of strong fundamental interest in strong-field light-matter interactions at the nanoscale, but also could eventually lead to a considerable number of applications in ultrafast, petahertz-scale electronics, and ultrafast metrology for microscopy or nanoscopy. In this perspective, we outline the current frontiers, challenges, and future directions in the field, with particular emphasis on the development of petahertz electronics and attosecond nanoscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08574v1-abstract-full').style.display = 'none'; document.getElementById('1912.08574v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in ACS Photonics, copyright American Chemical Society after peer review. The final edited and published work is available as ACS Photonics 6, 12, 3057-3069 (2019)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Photonics 6, 12, 3057-3069 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.10942">arXiv:1901.10942</a> <span> [<a href="https://arxiv.org/pdf/1901.10942">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aaw9486">10.1126/science.aaw9486 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light with a self-torque: extreme-ultraviolet beams with time-varying orbital angular momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rego%2C+L">Laura Rego</a>, <a href="/search/physics?searchtype=author&query=Dorney%2C+K+M">Kevin M. Dorney</a>, <a href="/search/physics?searchtype=author&query=Brooks%2C+N+J">Nathan J. Brooks</a>, <a href="/search/physics?searchtype=author&query=Nguyen%2C+Q">Quynh Nguyen</a>, <a href="/search/physics?searchtype=author&query=Liao%2C+C">Chen-Ting Liao</a>, <a href="/search/physics?searchtype=author&query=Rom%C3%A1n%2C+J+S">Julio San Rom谩n</a>, <a href="/search/physics?searchtype=author&query=Couch%2C+D+E">David E. Couch</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+A">Allison Liu</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Plaja%2C+L">Luis Plaja</a>, <a href="/search/physics?searchtype=author&query=Kapteyn%2C+H+C">Henry C. Kapteyn</a>, <a href="/search/physics?searchtype=author&query=Murnane%2C+M+M">Margaret M. Murnane</a>, <a href="/search/physics?searchtype=author&query=Hern%C3%A1ndez-Garc%C3%ADa%2C+C">Carlos Hern谩ndez-Garc铆a</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.10942v1-abstract-short" style="display: inline;"> Twisted light fields carrying orbital angular momentum (OAM) provide powerful capabilities for applications in optical communications, microscopy, quantum optics and microparticle rotation. Here we introduce and experimentally validate a new class of light beams, whose unique property is associated with a temporal OAM variation along a pulse: the self-torque of light. Self-torque is a phenomenon t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.10942v1-abstract-full').style.display = 'inline'; document.getElementById('1901.10942v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.10942v1-abstract-full" style="display: none;"> Twisted light fields carrying orbital angular momentum (OAM) provide powerful capabilities for applications in optical communications, microscopy, quantum optics and microparticle rotation. Here we introduce and experimentally validate a new class of light beams, whose unique property is associated with a temporal OAM variation along a pulse: the self-torque of light. Self-torque is a phenomenon that can arise from matter-field interactions in electrodynamics and general relativity, but to date, there has been no optical analog. In particular, the self-torque of light is an inherent property, which is distinguished from the mechanical torque exerted by OAM beams when interacting with physical systems. We demonstrate that self-torqued beams in the extreme-ultraviolet (EUV) naturally arise as a necessary consequence of angular momentum conservation in non-perturbative high-order harmonic generation when driven by time-delayed pulses with different OAM. In addition, the time-dependent OAM naturally induces an azimuthal frequency chirp, which provides a signature for monitoring the self-torque of high-harmonic EUV beams. Such self-torqued EUV beams can serve as unique tools for imaging magnetic and topological excitations, for launching selective excitation of quantum matter, and for manipulating molecules and nanostructures on unprecedented time and length scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.10942v1-abstract-full').style.display = 'none'; document.getElementById('1901.10942v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 364 no. 6447, p. eaaw9486 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.11447">arXiv:1812.11447</a> <span> [<a href="https://arxiv.org/pdf/1812.11447">pdf</a>, <a href="https://arxiv.org/format/1812.11447">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/ab2bb1">10.1088/1361-6633/ab2bb1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symphony on Strong Field Approximation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Amini%2C+K">Kasra Amini</a>, <a href="/search/physics?searchtype=author&query=Biegert%2C+J">Jens Biegert</a>, <a href="/search/physics?searchtype=author&query=Calegari%2C+F">Francesca Calegari</a>, <a href="/search/physics?searchtype=author&query=Chac%C3%B3n%2C+A">Alexis Chac贸n</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Dauphin%2C+A">Alexandre Dauphin</a>, <a href="/search/physics?searchtype=author&query=Efimov%2C+D+K">Dmitry K. Efimov</a>, <a href="/search/physics?searchtype=author&query=Faria%2C+C+F+d+M">Carla Figueira de Morisson Faria</a>, <a href="/search/physics?searchtype=author&query=Giergiel%2C+K">Krzysztof Giergiel</a>, <a href="/search/physics?searchtype=author&query=Gniewek%2C+P">Piotr Gniewek</a>, <a href="/search/physics?searchtype=author&query=Landsman%2C+A+S">Alexandra S. Landsman</a>, <a href="/search/physics?searchtype=author&query=Lesiuk%2C+M">Micha艂 Lesiuk</a>, <a href="/search/physics?searchtype=author&query=Mandrysz%2C+M">Micha艂 Mandrysz</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Moszy%C5%84ski%2C+R">Robert Moszy艅ski</a>, <a href="/search/physics?searchtype=author&query=Ortmann%2C+L">Lisa Ortmann</a>, <a href="/search/physics?searchtype=author&query=P%C3%A9rez-Hern%C3%A1ndez%2C+J+A">Jose Antonio P茅rez-Hern谩ndez</a>, <a href="/search/physics?searchtype=author&query=Pic%C3%B3n%2C+A">Antonio Pic贸n</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Prauzner-Bechcicki%2C+J">Jakub Prauzner-Bechcicki</a>, <a href="/search/physics?searchtype=author&query=Sacha%2C+K">Krzysztof Sacha</a>, <a href="/search/physics?searchtype=author&query=Su%C3%A1rez%2C+N">Noslen Su谩rez</a>, <a href="/search/physics?searchtype=author&query=Za%C3%AFr%2C+A">Amelle Za茂r</a>, <a href="/search/physics?searchtype=author&query=Zakrzewski%2C+J">Jakub Zakrzewski</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.11447v2-abstract-short" style="display: inline;"> This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagiello艅ski, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the "simple man's models" which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include High-Harmonic Generation, Above-Threshold Ionization, and Non-S… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.11447v2-abstract-full').style.display = 'inline'; document.getElementById('1812.11447v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.11447v2-abstract-full" style="display: none;"> This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagiello艅ski, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the "simple man's models" which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include High-Harmonic Generation, Above-Threshold Ionization, and Non-Sequential Multielectron Ionization. "Simple man's models" provide, both an intuitive basis for understanding the numerical solutions of the time-dependent Schr枚dinger equation, and the motivation for the powerful analytic approximations generally known as the Strong Field Approximation (SFA). In this paper we first review the SFA in the form developed by us in the last 25 years. In this approach SFA is a method to solve the TDSE using a systematic perturbation theory in a part of the Hamiltonian describing continuum-continuum transitions in the presence of the laser field. In this review we focus on recent applications of SFA to HHG, ATI and NSMI from multi-electron atoms and from multi-atom. The main novel part of the presented theory concerns generalizations of SFA to: (i) time-dependent treatment of two-electron atoms, allowing for studies of an interplay between Electron Impact Ionization (EII) and Resonant Excitation with Subsequent Ionization (RESI); (ii) time-dependent treatment in the single active electron (SAE) approximation of "large" molecules and targets which are themselves undergoing dynamics during the HHG or ATI process. In particular, we formulate the general expressions for the case of arbitrary molecules, combining input from quantum chemistry and quantum dynamics. We formulate also theory of time-dependent separable molecular potentials to model analytically the dynamics of realistic electronic wave packets for molecules in strong laser fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.11447v2-abstract-full').style.display = 'none'; document.getElementById('1812.11447v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We dedicate this work to the memory of Bertrand Carr茅, who passed away in March 2018 at the age of 60. This Accepted Manuscript is available under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rep. Prog. Phys. 82, 116001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.06503">arXiv:1810.06503</a> <span> [<a href="https://arxiv.org/pdf/1810.06503">pdf</a>, <a href="https://arxiv.org/format/1810.06503">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.203201">10.1103/PhysRevLett.122.203201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conservation of torus-knot angular momentum in high-order harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Rego%2C+L">Laura Rego</a>, <a href="/search/physics?searchtype=author&query=Rom%C3%A1n%2C+J+S">Julio San Rom谩n</a>, <a href="/search/physics?searchtype=author&query=Pic%C3%B3n%2C+A">Antonio Pic贸n</a>, <a href="/search/physics?searchtype=author&query=Dorney%2C+K+M">Kevin M. Dorney</a>, <a href="/search/physics?searchtype=author&query=Kapteyn%2C+H+C">Henry C. Kapteyn</a>, <a href="/search/physics?searchtype=author&query=Murnane%2C+M+M">Margaret M. Murnane</a>, <a href="/search/physics?searchtype=author&query=Plaja%2C+L">Luis Plaja</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Hern%C3%A1ndez-Garc%C3%ADa%2C+C">Carlos Hern谩ndez-Garc铆a</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.06503v2-abstract-short" style="display: inline;"> High-order harmonic generation stands as a unique nonlinear optical up-conversion process, mediated by a laser-driven electron recollision mechanism, which has been shown to conserve energy, momentum, and spin and orbital angular momentum. Here we present theoretical simulations which demonstrate that this process also conserves a mixture of the latter, the torus-knot angular momentum $J_纬$, by pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.06503v2-abstract-full').style.display = 'inline'; document.getElementById('1810.06503v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.06503v2-abstract-full" style="display: none;"> High-order harmonic generation stands as a unique nonlinear optical up-conversion process, mediated by a laser-driven electron recollision mechanism, which has been shown to conserve energy, momentum, and spin and orbital angular momentum. Here we present theoretical simulations which demonstrate that this process also conserves a mixture of the latter, the torus-knot angular momentum $J_纬$, by producing high-order harmonics with driving pulses that are invariant under coordinated rotations. We demonstrate that the charge $J_纬$ of the emitted harmonics scales linearly with the harmonic order, and that this conservation law is imprinted onto the polarization distribution of the emitted spiral of attosecond pulses. We also demonstrate how the nonperturbative physics of high-order harmonic generation affect the torus-knot angular momentum of the harmonics, and we show that this configuration harnesses the spin selection rules to channel the full yield of each harmonic into a single mode of controllable orbital angular momentum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.06503v2-abstract-full').style.display = 'none'; document.getElementById('1810.06503v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted Manuscript</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 203201 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.05193">arXiv:1808.05193</a> <span> [<a href="https://arxiv.org/pdf/1808.05193">pdf</a>, <a href="https://arxiv.org/format/1808.05193">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41566-019-0450-2">10.1038/s41566-019-0450-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Knotting fractional-order knots with the polarization state of light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Machado%2C+G+J">Gerard J. Machado</a>, <a href="/search/physics?searchtype=author&query=Vicu%C3%B1a-Hern%C3%A1ndez%2C+V">Ver贸nica Vicu帽a-Hern谩ndez</a>, <a href="/search/physics?searchtype=author&query=Pic%C3%B3n%2C+A">Antonio Pic贸n</a>, <a href="/search/physics?searchtype=author&query=Celi%2C+A">Alessio Celi</a>, <a href="/search/physics?searchtype=author&query=Torres%2C+J+P">Juan P. Torres</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.05193v2-abstract-short" style="display: inline;"> The fundamental polarization singularities of monochromatic light are normally associated with invariance under coordinated rotations: symmetry operations that rotate the spatial dependence of an electromagnetic field by an angle $胃$ and its polarization by a multiple $纬胃$ of that angle. These symmetries are generated by mixed angular momenta of the form $J_纬= L + 纬S$ and they generally induce M枚b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05193v2-abstract-full').style.display = 'inline'; document.getElementById('1808.05193v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.05193v2-abstract-full" style="display: none;"> The fundamental polarization singularities of monochromatic light are normally associated with invariance under coordinated rotations: symmetry operations that rotate the spatial dependence of an electromagnetic field by an angle $胃$ and its polarization by a multiple $纬胃$ of that angle. These symmetries are generated by mixed angular momenta of the form $J_纬= L + 纬S$ and they generally induce M枚bius-strip topologies, with the coordination parameter $纬$ restricted to integer and half-integer values. In this work we construct beams of light that are invariant under coordinated rotations for arbitrary $纬$, by exploiting the higher internal symmetry of 'bicircular' superpositions of counter-rotating circularly polarized beams at different frequencies. We show that these beams have the topology of a torus knot, which reflects the subgroup generated by the torus-knot angular momentum $J_纬$, and we characterize the resulting optical polarization singularity using third-and higher-order field moment tensors, which we experimentally observe using nonlinear polarization tomography. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05193v2-abstract-full').style.display = 'none'; document.getElementById('1808.05193v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted Manuscript, including a subset of the figures from the published Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Photonics 13 no. 8, 569 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.03974">arXiv:1806.03974</a> <span> [<a href="https://arxiv.org/pdf/1806.03974">pdf</a>, <a href="https://arxiv.org/format/1806.03974">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.033414">10.1103/PhysRevA.98.033414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determination of the spectral variation origin in high-order harmonic generation in noble gases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nefedova%2C+V+E">V. E. Nefedova</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Finke%2C+O">O. Finke</a>, <a href="/search/physics?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&query=V%C3%A1bek%2C+J">J. V谩bek</a>, <a href="/search/physics?searchtype=author&query=Kozlov%C3%A1%2C+M">M. Kozlov谩</a>, <a href="/search/physics?searchtype=author&query=Su%C3%A1rez%2C+N">N. Su谩rez</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Nejdl%2C+J">J. Nejdl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.03974v1-abstract-short" style="display: inline;"> One key parameter in the high-order harmonic generation (HHG) phenomenon is the exact frequency of the generated harmonic field. Its deviation from perfect harmonics of the laser frequency can be explained considering (i) the single-atom laser-matter interaction and (ii) the spectral changes of the driving laser. In this work, we perform an experimental and theoretical study of the causes that gen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.03974v1-abstract-full').style.display = 'inline'; document.getElementById('1806.03974v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.03974v1-abstract-full" style="display: none;"> One key parameter in the high-order harmonic generation (HHG) phenomenon is the exact frequency of the generated harmonic field. Its deviation from perfect harmonics of the laser frequency can be explained considering (i) the single-atom laser-matter interaction and (ii) the spectral changes of the driving laser. In this work, we perform an experimental and theoretical study of the causes that generate spectral changes in the HHG radiation. We measured the driving laser spectral shift after high harmonic generation in long medium using a correction factor to take into account the multiple possible HHG initiation distances along the laser path. We separate out the contribution of laser spectral shift from the resultant high harmonic spectral shift in order to elucidate the microscopic effect of spectral shift in HHG. Therefore, in some cases we are able to identify the dominant electron trajectory from the experimental data. Our investigations lead to valuable conclusions about atomic dipole phase contribution to a high harmonic spectral shift. We demonstrate that the significant contribution of a long electron path leads to a high harmonic shift, which differs from that expected from the driving laser. Moreover, we assess the origin of the high-order harmonics spectral broadening and provide an explanation for the narrowest high harmonic spectral width in our experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.03974v1-abstract-full').style.display = 'none'; document.getElementById('1806.03974v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 033414 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.02250">arXiv:1805.02250</a> <span> [<a href="https://arxiv.org/pdf/1805.02250">pdf</a>, <a href="https://arxiv.org/format/1805.02250">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.97.023409">10.1103/PhysRevA.97.023409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Control of attosecond light polarization in two-color bi-circular fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jim%C3%A9nez-Gal%C3%A1n%2C+%C3%81">脕lvaro Jim茅nez-Gal谩n</a>, <a href="/search/physics?searchtype=author&query=Zhavoronkov%2C+N">Nick Zhavoronkov</a>, <a href="/search/physics?searchtype=author&query=Ayuso%2C+D">David Ayuso</a>, <a href="/search/physics?searchtype=author&query=Morales%2C+F">Felipe Morales</a>, <a href="/search/physics?searchtype=author&query=Patchkovskii%2C+S">Serguei Patchkovskii</a>, <a href="/search/physics?searchtype=author&query=Schloz%2C+M">Marcel Schloz</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Smirnova%2C+O">Olga Smirnova</a>, <a href="/search/physics?searchtype=author&query=Ivanov%2C+M">Misha Ivanov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.02250v1-abstract-short" style="display: inline;"> We develop theoretically and confirm both numerically and experimentally a comprehensive analytical model which describes the propensity rules in the emission of circularly polarized high harmonics by systems driven by two-color counter-rotating fields, a fundamental and its second harmonic. We identify and confirm the three propensity rules responsible for the contrast between the 3N+1 and 3N+2 h… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02250v1-abstract-full').style.display = 'inline'; document.getElementById('1805.02250v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.02250v1-abstract-full" style="display: none;"> We develop theoretically and confirm both numerically and experimentally a comprehensive analytical model which describes the propensity rules in the emission of circularly polarized high harmonics by systems driven by two-color counter-rotating fields, a fundamental and its second harmonic. We identify and confirm the three propensity rules responsible for the contrast between the 3N+1 and 3N+2 harmonic lines in the HHG spectra of noble gas atoms. We demonstrate how these rules depend on the laser parameters and how they can be used in the experiment to shape the polarization properties of the emitted attosecond pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02250v1-abstract-full').style.display = 'none'; document.getElementById('1805.02250v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 97 023409 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.04366">arXiv:1709.04366</a> <span> [<a href="https://arxiv.org/pdf/1709.04366">pdf</a>, <a href="https://arxiv.org/format/1709.04366">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.97.033415">10.1103/PhysRevA.97.033415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Above-threshold ionization (ATI) in multicenter molecules: the role of the initial state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Su%C3%A1rez%2C+N">N. Su谩rez</a>, <a href="/search/physics?searchtype=author&query=Chac%C3%B3n%2C+A">A. Chac贸n</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ortmann%2C+L">L. Ortmann</a>, <a href="/search/physics?searchtype=author&query=Landsman%2C+A+S">A. S. Landsman</a>, <a href="/search/physics?searchtype=author&query=Pic%C3%B3n%2C+A">A. Pic贸n</a>, <a href="/search/physics?searchtype=author&query=Biegert%2C+J">J. Biegert</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.04366v1-abstract-short" style="display: inline;"> A possible route to extract electronic and nuclear dynamics from molecular targets with attosecond temporal and nanometer spatial resolution is to employ recolliding electrons as `probes'. The recollision process in molecules is, however, very challenging to treat using {\it ab initio} approaches. Even for the simplest diatomic systems, such as H$_2$, today's computational capabilities are not eno… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.04366v1-abstract-full').style.display = 'inline'; document.getElementById('1709.04366v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.04366v1-abstract-full" style="display: none;"> A possible route to extract electronic and nuclear dynamics from molecular targets with attosecond temporal and nanometer spatial resolution is to employ recolliding electrons as `probes'. The recollision process in molecules is, however, very challenging to treat using {\it ab initio} approaches. Even for the simplest diatomic systems, such as H$_2$, today's computational capabilities are not enough to give a complete description of the electron and nuclear dynamics initiated by a strong laser field. As a consequence, approximate qualitative descriptions are called to play an important role. In this contribution we extend the work presented in N. Su谩rez {\it et al.}, Phys.~Rev. A {\bf 95}, 033415 (2017), to three-center molecular targets. Additionally, we incorporate a more accurate description of the molecular ground state, employing information extracted from quantum chemistry software packages. This step forward allows us to include, in a detailed way, both the molecular symmetries and nodes present in the high-occupied molecular orbital. We are able to, on the one hand, keep our formulation as analytical as in the case of diatomics, and, on the other hand, to still give a complete description of the underlying physics behind the above-threshold ionization process. The application of our approach to complex multicenter - with more than 3 centers, targets appears to be straightforward. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.04366v1-abstract-full').style.display = 'none'; document.getElementById('1709.04366v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 14 Figures. arXiv admin note: text overlap with arXiv:1607.07560</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 97, 033415 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.00397">arXiv:1709.00397</a> <span> [<a href="https://arxiv.org/pdf/1709.00397">pdf</a>, <a href="https://arxiv.org/format/1709.00397">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.96.063401">10.1103/PhysRevA.96.063401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong-field approximation in a rotating frame: High-order harmonic emission from p states in bicircular fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Jim%C3%A9nez-Gal%C3%A1n%2C+%C3%81">脕lvaro Jim茅nez-Gal谩n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.00397v2-abstract-short" style="display: inline;"> High-order harmonic generation with bicircular fields - the combination of counter-rotating circularly polarized pulses at different frequencies - results in a series of short-wavelength XUV harmonics with alternating circular polarizations, and experiments show that there is an asymmetry in the emission between the two helicities: a slight one in helium, and a larger one in neon and argon, where… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00397v2-abstract-full').style.display = 'inline'; document.getElementById('1709.00397v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.00397v2-abstract-full" style="display: none;"> High-order harmonic generation with bicircular fields - the combination of counter-rotating circularly polarized pulses at different frequencies - results in a series of short-wavelength XUV harmonics with alternating circular polarizations, and experiments show that there is an asymmetry in the emission between the two helicities: a slight one in helium, and a larger one in neon and argon, where the emission is carried out by p-shell electrons. Here we analyze this asymmetry by switching to a rotating frame in which the field is linearly polarized; this induces an effective magnetic field which lowers the ionization potential of the $p_+$ orbital that co-rotates with the lower-frequency driver, enhancing its harmonic emission and the overall helicity of the generated harmonics, while also introducing nontrivial effects from the transformation to a non-inertial frame in complex time. In addition, this analysis directly relates the small asymmetry produced by s-shell emission to the imaginary part of the recollision velocity in the standard strong-field-approximation formalism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00397v2-abstract-full').style.display = 'none'; document.getElementById('1709.00397v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Title changed from v1 as enforced by Phys. Rev. A editorial policies</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 96, 063401 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.01931">arXiv:1606.01931</a> <span> [<a href="https://arxiv.org/pdf/1606.01931">pdf</a>, <a href="https://arxiv.org/format/1606.01931">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aabb4d">10.1088/1367-2630/aabb4d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High harmonic interferometry of the Lorentz force in strong mid-infrared laser fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Hickstein%2C+D+D">Daniel D. Hickstein</a>, <a href="/search/physics?searchtype=author&query=Galloway%2C+B+R">Benjamin R. Galloway</a>, <a href="/search/physics?searchtype=author&query=Durfee%2C+C+G">Charles G. Durfee</a>, <a href="/search/physics?searchtype=author&query=Kapteyn%2C+H+C">Henry C. Kapteyn</a>, <a href="/search/physics?searchtype=author&query=Murnane%2C+M+M">Margaret M. Murnane</a>, <a href="/search/physics?searchtype=author&query=Ivanov%2C+M">Misha Ivanov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.01931v1-abstract-short" style="display: inline;"> The interaction of intense mid-infrared laser fields with atoms and molecules leads to a range of new opportunities, from the production of bright, coherent radiation in the soft x-ray range to imaging molecular structures and dynamics with attosecond temporal and sub-angstrom spatial resolution. However, all these effects, which rely on laser-driven recollision of an electron removed by the stron… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.01931v1-abstract-full').style.display = 'inline'; document.getElementById('1606.01931v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.01931v1-abstract-full" style="display: none;"> The interaction of intense mid-infrared laser fields with atoms and molecules leads to a range of new opportunities, from the production of bright, coherent radiation in the soft x-ray range to imaging molecular structures and dynamics with attosecond temporal and sub-angstrom spatial resolution. However, all these effects, which rely on laser-driven recollision of an electron removed by the strong laser field and the parent ion, suffer from the rapidly increasing role of the magnetic field component of the driving pulse: the associated Lorentz force pushes the electrons off course in their excursion and suppresses all recollision-based processes, including high harmonic generation, elastic and inelastic scattering. Here we show how the use of two non-collinear beams with opposite circular polarizations produces a forwards ellipticity which can be used to monitor, control, and cancel the effect of the Lorentz force. This arrangement can thus be used to re-enable recollision-based phenomena in regimes beyond the long-wavelength breakdown of the dipole approximation, and it can be used to observe this breakdown in high-harmonic generation using currently-available light sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.01931v1-abstract-full').style.display = 'none'; document.getElementById('1606.01931v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 20, 053036 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.6242">arXiv:1404.6242</a> <span> [<a href="https://arxiv.org/pdf/1404.6242">pdf</a>, <a href="https://arxiv.org/format/1404.6242">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.90.043829">10.1103/PhysRevA.90.043829 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin conservation in high-order-harmonic generation using bicircular fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ivanov%2C+M">Misha Ivanov</a>, <a href="/search/physics?searchtype=author&query=Sukiasyan%2C+S">Suren Sukiasyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.6242v3-abstract-short" style="display: inline;"> We present an alternative theoretical model for a recent experiment [A.Fleischer et al., Nature Photon. 8, 543 (2014)] which used bichromatic, counter-rotating high intensity laser pulses to probe the conservation of spin angular momentum in high harmonic generation. We separate elliptical polarizations into independent circular fields with definite angular momentum, instead of using the expectati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.6242v3-abstract-full').style.display = 'inline'; document.getElementById('1404.6242v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.6242v3-abstract-full" style="display: none;"> We present an alternative theoretical model for a recent experiment [A.Fleischer et al., Nature Photon. 8, 543 (2014)] which used bichromatic, counter-rotating high intensity laser pulses to probe the conservation of spin angular momentum in high harmonic generation. We separate elliptical polarizations into independent circular fields with definite angular momentum, instead of using the expectation value of spin for each photon in the conservation equation, and we find good agreement with the experimental results. In our description the generation of each individual harmonic conserves spin angular momentum, in contrast to the model proposed by Fleischer et al. Our model also correctly describes analogous processes in standard perturbative optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.6242v3-abstract-full').style.display = 'none'; document.getElementById('1404.6242v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final changes from published version. Updated license to CC-BY-NC-SA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 90, 043829 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.4765">arXiv:1309.4765</a> <span> [<a href="https://arxiv.org/pdf/1309.4765">pdf</a>, <a href="https://arxiv.org/format/1309.4765">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.89.043416">10.1103/PhysRevA.89.043416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Momentum transfers in correlation-assisted tunnelling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ivanov%2C+M">Misha Ivanov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.4765v2-abstract-short" style="display: inline;"> We consider correlation-assisted tunnel ionization of a small molecule by an intense low-frequency laser pulse. In this mechanism, the departing electron excites the state of the ion via a Coulomb interaction. We show that the angular distribution for this process has significant qualitative differences compared to direct tunnelling of an electron from a deeper orbital. These differences could be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.4765v2-abstract-full').style.display = 'inline'; document.getElementById('1309.4765v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.4765v2-abstract-full" style="display: none;"> We consider correlation-assisted tunnel ionization of a small molecule by an intense low-frequency laser pulse. In this mechanism, the departing electron excites the state of the ion via a Coulomb interaction. We show that the angular distribution for this process has significant qualitative differences compared to direct tunnelling of an electron from a deeper orbital. These differences could be used to distinguish the two contributions, and give rise to interference effects when the contributions are comparable. The saddle-point approximation is also shown to require special attention in this geometric analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.4765v2-abstract-full').style.display = 'none'; document.getElementById('1309.4765v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 89, 043416 (2014) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>