CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–18 of 18 results for author: <span class="mathjax">Lamprou, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Lamprou%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lamprou, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lamprou%2C+T&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lamprou, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17452">arXiv:2410.17452</a> <span> [<a href="https://arxiv.org/pdf/2410.17452">pdf</a>, <a href="https://arxiv.org/format/2410.17452">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Generation of non-classical and entangled light states using intense laser-matter interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Tsatrafyllis%2C+N">N. Tsatrafyllis</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">P. Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17452v1-abstract-short" style="display: inline;"> Non-classical and entangled light states are of fundamental interest in quantum mechanics and they are a powerful tool for the emergence of new quantum technologies. The development of methods that can lead to the generation of such light states is therefore of high importance. Recently, we have demonstrated that intense laser-matter interactions can serve towards this direction. Specifically, we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17452v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17452v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17452v1-abstract-full" style="display: none;"> Non-classical and entangled light states are of fundamental interest in quantum mechanics and they are a powerful tool for the emergence of new quantum technologies. The development of methods that can lead to the generation of such light states is therefore of high importance. Recently, we have demonstrated that intense laser-matter interactions can serve towards this direction. Specifically, we have shown how the use of fully quantized approaches in intense laser-matter interactions and the process of high harmonic generation, can lead to the generation high photon-number non-classical (optical Schr枚dinger's "cat" or squeezed) and entangled states from the far-infrared (IR) to the extreme-ultraviolet (XUV). Here, after a brief introduction on the fundamentals, we summarize the operation principles of these approaches and we discuss the future directions of non-classical light engineering using strong laser fields, and the potential applications in ultrafast and quantum information science. Our findings open the way to a novel quantum nonlinear spectroscopy method, based on the interplay between the quantum properties of light with that of quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17452v1-abstract-full').style.display = 'none'; document.getElementById('2410.17452v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited Topical Review submitted to J. Phys. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07577">arXiv:2408.07577</a> <span> [<a href="https://arxiv.org/pdf/2408.07577">pdf</a>, <a href="https://arxiv.org/format/2408.07577">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.063118">10.1103/PhysRevA.110.063118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Squeezed states of light after high-harmonic generation in excited atomic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Crispin%2C+H+B">H. B. Crispin</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Kr%C3%BCger%2C+M">M. Kr眉ger</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">P. Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07577v2-abstract-short" style="display: inline;"> High-harmonic generation (HHG) has recently emerged as a promising method for generating non-classical states of light with frequencies spanning from the infrared up to the extreme ultraviolet regime. In this work, we theoretically investigate the generation of squeezed states of light through HHG processes in atomic systems that had been initially driven to their first excited state. Our study re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07577v2-abstract-full').style.display = 'inline'; document.getElementById('2408.07577v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07577v2-abstract-full" style="display: none;"> High-harmonic generation (HHG) has recently emerged as a promising method for generating non-classical states of light with frequencies spanning from the infrared up to the extreme ultraviolet regime. In this work, we theoretically investigate the generation of squeezed states of light through HHG processes in atomic systems that had been initially driven to their first excited state. Our study reveals significant single-mode squeezing in both the driving field and low-order harmonic modes. Additionally, we characterize two-mode squeezing features in the generated states, both between fundamental and harmonic modes, and among the harmonic modes themselves. Using these correlations, we demonstrate the generation of optical Schr枚dinger kitten states through heralding measurements, specifically via photon subtraction in one of the modes influenced by two-mode squeezing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07577v2-abstract-full').style.display = 'none'; document.getElementById('2408.07577v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages (10 main text + 7 appendix), 6 figures (4 main text + 2 appendix). Comments are welcome. In v2 we have modified the text accordingly to the comments received by the anonymous reviewers of Physical Review A. We have also updated the references that have been already published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 110, 063118 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17949">arXiv:2405.17949</a> <span> [<a href="https://arxiv.org/pdf/2405.17949">pdf</a>, <a href="https://arxiv.org/format/2405.17949">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond spectroscopy using vacuum-ultraviolet pulses emitted from laser-driven semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nayak%2C+A">A. Nayak</a>, <a href="/search/physics?searchtype=author&query=Rajak%2C+D">D. Rajak</a>, <a href="/search/physics?searchtype=author&query=Farkas%2C+B">B. Farkas</a>, <a href="/search/physics?searchtype=author&query=Granados%2C+C">C. Granados</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&query=Varju%2C+K">K. Varju</a>, <a href="/search/physics?searchtype=author&query=Mairesse%2C+Y">Y. Mairesse</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">P. Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17949v1-abstract-short" style="display: inline;"> Strongly laser-driven semiconductor crystals offer substantial advantages for the study of many-body physics and ultrafast optoelectronics via the high harmonic generation process. While this phenomenon has been employed to investigate the dynamics of solids in the presence of strong laser fields, its potential to be utilized as an attosecond light source has remained unexploited. Here, we demonst… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17949v1-abstract-full').style.display = 'inline'; document.getElementById('2405.17949v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17949v1-abstract-full" style="display: none;"> Strongly laser-driven semiconductor crystals offer substantial advantages for the study of many-body physics and ultrafast optoelectronics via the high harmonic generation process. While this phenomenon has been employed to investigate the dynamics of solids in the presence of strong laser fields, its potential to be utilized as an attosecond light source has remained unexploited. Here, we demonstrate that the high harmonics generated through the interaction of mid--infrared pulses with a ZnO crystal leads to the production of attosecond pulses, that can be used to trace the ultrafast ionization dynamics of alkali metals. In a cross--correlation approach, we photoionize Cesium atoms with the vacuum-ultraviolet (VUV) high-harmonics in the presence of a mid-infrared laser field. We observe strong oscillations of the photoelectron yield originating from the instantaneous polarization of the atoms by the laser field. The phase of the oscillations encodes the attosecond synchronization of the ionizing high-harmonics and is used for attosecond pulse metrology. This light source opens a new spectral window for attosecond spectroscopy, paving the way for studies of systems with low ionization potentials including neutral atoms, molecules and solids. Additionally, our results highlight the significance of the source for generating non--classical massively entangled light states in the visible--VUV spectral region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17949v1-abstract-full').style.display = 'none'; document.getElementById('2405.17949v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages (7 main text + 2 supplementary material), 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15030">arXiv:2310.15030</a> <span> [<a href="https://arxiv.org/pdf/2310.15030">pdf</a>, <a href="https://arxiv.org/format/2310.15030">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.143603">10.1103/PhysRevLett.132.143603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entanglement and squeezing of the optical field modes in high harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Arg%C3%BCello-Luengo%2C+J">Javier Arg眉ello-Luengo</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15030v1-abstract-short" style="display: inline;"> Squeezing of optical fields, used as a powerful resource for many applications, and the radiation properties in the process of high harmonic generation have thus far been considered separately. In this Letter, we want to clarify that the joint quantum state of all the optical field modes in the process of high harmonic generation is in general entangled and squeezed. We show that this is already t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15030v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15030v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15030v1-abstract-full" style="display: none;"> Squeezing of optical fields, used as a powerful resource for many applications, and the radiation properties in the process of high harmonic generation have thus far been considered separately. In this Letter, we want to clarify that the joint quantum state of all the optical field modes in the process of high harmonic generation is in general entangled and squeezed. We show that this is already the case in the simplest scenario of driving uncorrelated atoms by a classical laser light field. The previous observation of product coherent states after the high harmonic generation process is a consequence of the assumption that the ground state depletion can be neglected, which is related to vanishing dipole moment correlations. Furthermore, we analyze how the resulting quadrature squeezing in the fundamental laser mode after the interaction can be controlled and explicitly show that all field modes are entangled. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15030v1-abstract-full').style.display = 'none'; document.getElementById('2310.15030v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages (2 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 143603 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14435">arXiv:2309.14435</a> <span> [<a href="https://arxiv.org/pdf/2309.14435">pdf</a>, <a href="https://arxiv.org/format/2309.14435">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nonclassical states of light after high-harmonic generation in semiconductors: a Bloch-based perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14435v2-abstract-short" style="display: inline;"> High-harmonic generation has emerged as a pivotal process in strong-field physics, yielding extreme ultraviolet radiation and attosecond pulses with a wide range of applications. Furthermore, its emergent connection with the field of quantum optics has revealed its potential for generating non-classical states of light. Here, we investigate the process of high-harmonic generation in semiconductors… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14435v2-abstract-full').style.display = 'inline'; document.getElementById('2309.14435v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14435v2-abstract-full" style="display: none;"> High-harmonic generation has emerged as a pivotal process in strong-field physics, yielding extreme ultraviolet radiation and attosecond pulses with a wide range of applications. Furthermore, its emergent connection with the field of quantum optics has revealed its potential for generating non-classical states of light. Here, we investigate the process of high-harmonic generation in semiconductors under a quantum optical perspective while using a Bloch-based solid-state description. Through the implementation of quantum operations based on the measurement of high-order harmonics, we demonstrate the generation of non-classical light states similar to those found when driving atomic systems. These states are characterized using diverse quantum optical observables and quantum information measures, showing the influence of electron dynamics on their properties. Additionally, we analyze the dependence of their features on solid characteristics such as the dephasing time and crystal orientation, while also assessing their sensitivity to changes in driving field strength. This study provides insights into HHG in semiconductors and its potential for generating non-classical light sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14435v2-abstract-full').style.display = 'none'; document.getElementById('2309.14435v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages (16 main text + 6 appendix), 7 figures (5 main text + 2 appendix)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109, 035203 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12381">arXiv:2307.12381</a> <span> [<a href="https://arxiv.org/pdf/2307.12381">pdf</a>, <a href="https://arxiv.org/format/2307.12381">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Quantum optical analysis of high-order harmonic generation in H$_2^+$ molecular ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">P. Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12381v1-abstract-short" style="display: inline;"> We present a comprehensive theoretical investigation of high-order harmonic generation in H$_2^+$ molecular ions within a quantum optical framework. Our study focuses on characterizing various quantum optical and quantum information measures, highlighting the versatility of HHG in two-center molecules towards quantum technology applications. We demonstrate the emergence of entanglement between ele… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12381v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12381v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12381v1-abstract-full" style="display: none;"> We present a comprehensive theoretical investigation of high-order harmonic generation in H$_2^+$ molecular ions within a quantum optical framework. Our study focuses on characterizing various quantum optical and quantum information measures, highlighting the versatility of HHG in two-center molecules towards quantum technology applications. We demonstrate the emergence of entanglement between electron and light states after the laser-matter interaction. We also identify the possibility of obtaining non-classical states of light in targeted frequency modes by conditioning on specific electronic quantum states, which turn out to be crucial in the generation of highly non-classical entangled states between distinct sets of harmonic modes. Our findings open up avenues for studying strong-laser field-driven interactions in molecular systems, and suggest their applicability to quantum technology applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12381v1-abstract-full').style.display = 'none'; document.getElementById('2307.12381v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages (14 main text + 7 appendix), 9 figures (8 main text + 1 appendix)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.14480">arXiv:2306.14480</a> <span> [<a href="https://arxiv.org/pdf/2306.14480">pdf</a>, <a href="https://arxiv.org/format/2306.14480">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.134.013601">10.1103/PhysRevLett.134.013601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear optics using intense optical coherent state superpositions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.14480v2-abstract-short" style="display: inline;"> Superpositions of coherent light states, are vital for quantum technologies. However, restrictions in existing state preparation and characterization schemes, in combination with decoherence effects, prevent their intensity enhancement and implementation in nonlinear optics. Here, by developing a decoherence--free approach, we generate intense femtosecond--duration infrared coherent state superpos… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14480v2-abstract-full').style.display = 'inline'; document.getElementById('2306.14480v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.14480v2-abstract-full" style="display: none;"> Superpositions of coherent light states, are vital for quantum technologies. However, restrictions in existing state preparation and characterization schemes, in combination with decoherence effects, prevent their intensity enhancement and implementation in nonlinear optics. Here, by developing a decoherence--free approach, we generate intense femtosecond--duration infrared coherent state superpositions (CSS) with a mean photon number orders of magnitude higher than the existing CSS sources. We utilize them in nonlinear optics to drive the second harmonic generation process in an optical crystal. We experimentally and theoretically show that the non--classical nature of the intense infrared CSS is imprinted in the second-order autocorrelation traces. Additionally, theoretical analysis shows that the quantum features of the infrared CSS are also present in the generated second harmonic. The findings introduce the optical CSS into the realm of nonlinear quantum optics, opening up new paths in quantum information science and quantum light engineering by creating non-classical light states in various spectral regions via non-linear up-conversion processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14480v2-abstract-full').style.display = 'none'; document.getElementById('2306.14480v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In v2 we have modified the text accordingly to the comments obtained from the reviewers of Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 134, 013601 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04692">arXiv:2302.04692</a> <span> [<a href="https://arxiv.org/pdf/2302.04692">pdf</a>, <a href="https://arxiv.org/format/2302.04692">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/acea31">10.1088/1361-6633/acea31 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong laser physics, non-classical light states and quantum information science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+U">Utso Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04692v1-abstract-short" style="display: inline;"> Strong laser physics is a research direction that relies on the use of high-power lasers and has led to fascinating achievements ranging from relativistic particle acceleration to attosecond science. On the other hand, quantum optics has been built on the use of low photon number sources and has opened the way for groundbreaking discoveries in quantum technology, advancing investigations ranging f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04692v1-abstract-full').style.display = 'inline'; document.getElementById('2302.04692v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04692v1-abstract-full" style="display: none;"> Strong laser physics is a research direction that relies on the use of high-power lasers and has led to fascinating achievements ranging from relativistic particle acceleration to attosecond science. On the other hand, quantum optics has been built on the use of low photon number sources and has opened the way for groundbreaking discoveries in quantum technology, advancing investigations ranging from fundamental tests of quantum theory to quantum information processing. Despite the tremendous progress, until recently these directions have remained disconnected. This is because, the majority of the interactions in the strong-field limit have been successfully described by semi-classical approximations treating the electromagnetic field classically, as there was no need to include the quantum properties of the field to explain the observations. The link between strong laser physics, quantum optics, and quantum information science has been developed in the recent past. Studies based on fully quantized and conditioning approaches have shown that intense laser--matter interactions can be used for the generation of controllable entangled and non-classical light states. This achievement opens the way for a vast number of investigations stemming from the symbiosis of strong laser physics, quantum optics, and quantum information science. Here, after an introduction to the fundamentals of these research directions, we report on the recent progress in the fully quantized description of intense laser--matter interaction and the methods that have been developed for the generation of non-classical light states and entangled states. Also, we discuss the future directions of non-classical light engineering using strong laser fields, and the potential applications in ultrafast and quantum information science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04692v1-abstract-full').style.display = 'none'; document.getElementById('2302.04692v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">60 pages, 20 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16478">arXiv:2211.16478</a> <span> [<a href="https://arxiv.org/pdf/2211.16478">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.optcom.2023.129359">10.1016/j.optcom.2023.129359 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of micro-Joule level coherent quasi-continuum extreme ultraviolet radiation using multi-cycle intense laser-atom interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tsafas%2C+V">Vassilis Tsafas</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Skantzakis%2C+E">Emmanouil Skantzakis</a>, <a href="/search/physics?searchtype=author&query=Nayak%2C+A">Arjun Nayak</a>, <a href="/search/physics?searchtype=author&query=Charalambidis%2C+D">Dimitris Charalambidis</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Orfanos%2C+I">Ioannis Orfanos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16478v1-abstract-short" style="display: inline;"> In the present work we report on the current progress of the recently constructed GW attosecond extreme ultraviolet (XUV) source developed at the Institute of Electronic Structure and Laser of the Foundation for Research and Technology-Hellas (I.E.S.L-FO.R.T.H.). By the implementation of a compact-collinear polarization gating arrangement, the generation of a broadband, coherent XUV quasi-continuu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16478v1-abstract-full').style.display = 'inline'; document.getElementById('2211.16478v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16478v1-abstract-full" style="display: none;"> In the present work we report on the current progress of the recently constructed GW attosecond extreme ultraviolet (XUV) source developed at the Institute of Electronic Structure and Laser of the Foundation for Research and Technology-Hellas (I.E.S.L-FO.R.T.H.). By the implementation of a compact-collinear polarization gating arrangement, the generation of a broadband, coherent XUV quasi-continuum produced by the interaction of a many-cycle infrared field with a gas phase medium is achieved. The spectral width of the XUV emission generated in Xenon, is spanning in the range of 17-32 eV and can support isolated pulses of duration in the range from 0.4 fs to 1.3 fs and pulse energy in the 1 渭J level.Theoretical calculations, taking into account the experimental conditions of this work, are supporting the observations, offering also an insight regarding the temporal profile of the emitted radiation. Finally, the high intensity of the produced XUV pulses has been confirmed by investigating the two-XUV-photon double ionization process of Argon atoms. The demonstrated results inaugurate the capability of the beamline to produce intense isolated attosecond pulses towards their exploitation in studies of non-linear XUV processes, attosecond pulse metrology and XUV pump XUV probe experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16478v1-abstract-full').style.display = 'none'; document.getElementById('2211.16478v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00033">arXiv:2211.00033</a> <span> [<a href="https://arxiv.org/pdf/2211.00033">pdf</a>, <a href="https://arxiv.org/format/2211.00033">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Entanglement and non-classical states of light in a strong-laser driven solid-state system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00033v2-abstract-short" style="display: inline;"> The development of sources delivering non-classical states of light is one of the main needs for applications of optical quantum information science. Here, we demonstrate the generation of non-classical states of light using strong-laser fields driving a solid-state system, by using the process of high-order harmonic generation, where an electron tunnels out of the parent site and, later on, recom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00033v2-abstract-full').style.display = 'inline'; document.getElementById('2211.00033v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00033v2-abstract-full" style="display: none;"> The development of sources delivering non-classical states of light is one of the main needs for applications of optical quantum information science. Here, we demonstrate the generation of non-classical states of light using strong-laser fields driving a solid-state system, by using the process of high-order harmonic generation, where an electron tunnels out of the parent site and, later on, recombines on it emitting high-order harmonic radiation, at the expense of affecting the driving laser field. Since in solid-state systems the recombination of the electron can be delocalized along the material, the final state of the electron determines how the electromagnetic field gets affected because of the laser-matter interaction, leading to the generation of entanglement between the electron and the field. These features can be enhanced by applying conditioning operations, i.e., quantum operations based on the measurement of high-harmonic radiation. We study non-classical features present in the final quantum optical state, and characterize the amount of entanglement between the light and the electrons in the solid. The work sets the foundation for the development of compact solid-state-based non-classical light sources using strong-field physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00033v2-abstract-full').style.display = 'none'; document.getElementById('2211.00033v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We present a different formulation to that of the previous version, more in line with the approach followed in our previous works. 12 pages (8 main text + 4 Methods), 4 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14769">arXiv:2208.14769</a> <span> [<a href="https://arxiv.org/pdf/2208.14769">pdf</a>, <a href="https://arxiv.org/format/2208.14769">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond Physics and Quantum Information Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Baldelli%2C+N">N. Baldelli</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+U">U. Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Biegert%2C+J">J. Biegert</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Elu%2C+U">U. Elu</a>, <a href="/search/physics?searchtype=author&query=Grass%2C+T">T. Grass</a>, <a href="/search/physics?searchtype=author&query=Grochowski%2C+P+T">P. T. Grochowski</a>, <a href="/search/physics?searchtype=author&query=Johnson%2C+A">A. Johnson</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A">A. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&query=Tyulnev%2C+I">I. Tyulnev</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">P. Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14769v1-abstract-short" style="display: inline;"> In this article, we will discuss a possibility of a symbiosis for attophysics (AP) and quantum information (QI) and quantum technologies (QT). We will argue that within few years AP will reach Technology Readiness Level (RTL) 4-5 in QT, and will thus become a legitimate platform for QI and QT. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14769v1-abstract-full" style="display: none;"> In this article, we will discuss a possibility of a symbiosis for attophysics (AP) and quantum information (QI) and quantum technologies (QT). We will argue that within few years AP will reach Technology Readiness Level (RTL) 4-5 in QT, and will thus become a legitimate platform for QI and QT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14769v1-abstract-full').style.display = 'none'; document.getElementById('2208.14769v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures, ATTO VIII Conference Proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05245">arXiv:2208.05245</a> <span> [<a href="https://arxiv.org/pdf/2208.05245">pdf</a>, <a href="https://arxiv.org/format/2208.05245">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.106.063705">10.1103/PhysRevA.106.063705 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light-matter entanglement after above-threshold ionization processes in atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05245v2-abstract-short" style="display: inline;"> Light-matter entanglement plays a fundamental role in many applications of quantum information science. Thus, finding processes where it can be observed is an important task. Here, we address this matter by theoretically investigating the entanglement between light and electrons generated in above-threshold ionization (ATI) process. The study is based on the back-action of the ATI process on the q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05245v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05245v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05245v2-abstract-full" style="display: none;"> Light-matter entanglement plays a fundamental role in many applications of quantum information science. Thus, finding processes where it can be observed is an important task. Here, we address this matter by theoretically investigating the entanglement between light and electrons generated in above-threshold ionization (ATI) process. The study is based on the back-action of the ATI process on the quantum optical state of the system, and its dependence on the kinetic energy and direction of the emitted photoelectrons. Taking into account the dynamics of the process, we demonstrate the creation of hybrid entangled states. The amount of entanglement has been studied in terms of the entropy of entanglement. Additionally, we use the Wigner function of the driving field mode to motivate the entanglement characterization when considering electrons propagating in opposite directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05245v2-abstract-full').style.display = 'none'; document.getElementById('2208.05245v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages (13 main text + 7 supplementary material), 8 figures (6 main text + 2 supplementary material). Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.09521">arXiv:2202.09521</a> <span> [<a href="https://arxiv.org/pdf/2202.09521">pdf</a>, <a href="https://arxiv.org/format/2202.09521">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Energetic, tunable, highly-elliptically polarized higher harmonics generated by intense two-color counter rotating laser fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Vassakis%2C+E">E. Vassakis</a>, <a href="/search/physics?searchtype=author&query=Madas%2C+S">S. Madas</a>, <a href="/search/physics?searchtype=author&query=Spachis%2C+L">L. Spachis</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">T. Lamprou</a>, <a href="/search/physics?searchtype=author&query=Orfanos%2C+I">I. Orfanos</a>, <a href="/search/physics?searchtype=author&query=Kahaly%2C+S">S. Kahaly</a>, <a href="/search/physics?searchtype=author&query=Kahaly%2C+M+U">M. Upadhyay Kahaly</a>, <a href="/search/physics?searchtype=author&query=Charalambidis%2C+D">D. Charalambidis</a>, <a href="/search/physics?searchtype=author&query=Skantzakis%2C+E">E. Skantzakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.09521v4-abstract-short" style="display: inline;"> In this work, we demonstrate experimentally the efficient generation and tunability of energetic highly-elliptical high-harmonics in Ar gas, driven by intense two-color counter rotating laser electric fields. A bi-chromatic beam tailored by a MAZEL-TOV apparatus generates HHG, where the output spectrum of the highly elliptical HHG radiation can be tuned for a energy range of \DeltaE\HF150meV in th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09521v4-abstract-full').style.display = 'inline'; document.getElementById('2202.09521v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.09521v4-abstract-full" style="display: none;"> In this work, we demonstrate experimentally the efficient generation and tunability of energetic highly-elliptical high-harmonics in Ar gas, driven by intense two-color counter rotating laser electric fields. A bi-chromatic beam tailored by a MAZEL-TOV apparatus generates HHG, where the output spectrum of the highly elliptical HHG radiation can be tuned for a energy range of \DeltaE\HF150meV in the spectral range of ~20 eV with energy per pulse EXUV~400 nJ at the source. Furthermore we employ time-dependent density functional simulations to probe in-depth the dependence of the harmonic ellipticity and the strength of the isolated atto pulses on the driving field parameters and demonstrate the robustness of the HHG with the bichromatic field. We show how by properly tuning the central frequency of the second harmonic, the central frequency of the extreme ultraviolet (XUV) high harmonic radiation is continuously tuned. The demonstrated energy values largely exceed the output energy from many other laser driven attosecond sources reported so far and prove to be sufficient for inducing (along with tight XUV focusing geometries) the nonlinear processes in the atomic system. We envisage that such tunable energetic highly-elliptical HHG spectra can remove the facility restrictions from requirements of few-cycle driving pulses for isolated circular attosecond pulse generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09521v4-abstract-full').style.display = 'none'; document.getElementById('2202.09521v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2106.08690</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01032">arXiv:2110.01032</a> <span> [<a href="https://arxiv.org/pdf/2110.01032">pdf</a>, <a href="https://arxiv.org/format/2110.01032">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.033714">10.1103/PhysRevA.105.033714 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong laser fields and their power to generate controllable high-photon-number coherent-state superpositions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01032v3-abstract-short" style="display: inline;"> Recently, intensely driven laser-matter interactions have been used to connect the fields of strong laser field physics with quantum optics by generating non-classical states of light. Here, we make a further key step and show the potential of strong laser fields for generating controllable high-photon-number coherent-state superpositions. This has been achieved by using two of the most prominent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01032v3-abstract-full').style.display = 'inline'; document.getElementById('2110.01032v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01032v3-abstract-full" style="display: none;"> Recently, intensely driven laser-matter interactions have been used to connect the fields of strong laser field physics with quantum optics by generating non-classical states of light. Here, we make a further key step and show the potential of strong laser fields for generating controllable high-photon-number coherent-state superpositions. This has been achieved by using two of the most prominent strong-laser induced processes: high-harmonic generation and above-threshold ionization. We show how the obtained coherent-state superpositions change from an optical Schr枚dinger "cat" state to a "kitten" state by changing the atomic density in the laser-atom interaction region, and we demonstrate the generation of a 9-photon shifted optical "cat" state which, to our knowledge, is the highest photon number optical "cat" state experimentally reported. Our findings anticipate the development of new methods that naturally lead to the creation of high-photon-number controllable coherent-state superpositions, advancing investigations in quantum technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01032v3-abstract-full').style.display = 'none'; document.getElementById('2110.01032v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version submitted to Physical Review A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 105, 033714 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12887">arXiv:2107.12887</a> <span> [<a href="https://arxiv.org/pdf/2107.12887">pdf</a>, <a href="https://arxiv.org/format/2107.12887">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.123603">10.1103/PhysRevLett.128.123603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High photon number entangled states and coherent state superposition from the extreme-ultraviolet to the far infrared </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12887v3-abstract-short" style="display: inline;"> We present a theoretical demonstration on the generation of entangled coherent states and of coherent state superpositions, with photon numbers and frequencies orders of magnitude higher than those provided by the current technology. This is achieved by utilizing a quantum mechanical multimode description of the single- and two-color intense laser field driven process of high harmonic generation i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12887v3-abstract-full').style.display = 'inline'; document.getElementById('2107.12887v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12887v3-abstract-full" style="display: none;"> We present a theoretical demonstration on the generation of entangled coherent states and of coherent state superpositions, with photon numbers and frequencies orders of magnitude higher than those provided by the current technology. This is achieved by utilizing a quantum mechanical multimode description of the single- and two-color intense laser field driven process of high harmonic generation in atoms. It is found that all field modes involved in the high harmonic generation process are entangled, and upon performing a quantum operation, leads to the generation of high photon number optical cat states spanning from the far infrared to the extreme-ultraviolet spectral region. This provides direct insights into the quantum mechanical properties of the optical field in intense laser matter interaction. Finally, these states can be considered as a new resource for fundamental tests of quantum theory, quantum information processing or sensing with non-classical states of light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12887v3-abstract-full').style.display = 'none'; document.getElementById('2107.12887v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages (3 figures) + 4 pages supplement (2 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 123603 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12811">arXiv:2107.12811</a> <span> [<a href="https://arxiv.org/pdf/2107.12811">pdf</a>, <a href="https://arxiv.org/format/2107.12811">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> New schemes for creating large optical Schrodinger cat states using strong laser fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12811v1-abstract-short" style="display: inline;"> Recently, using conditioning approaches on the high-harmonic generation process induced by intense laser-atom interactions, we have developed a new method for the generation of optical Schr枚dinger cat states (M. Lewenstein et al., arXiv:2008.10221 (2020)). These quantum optical states have been proven to be very manageable as, by modifying the conditions under which harmonics are generated, one ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12811v1-abstract-full').style.display = 'inline'; document.getElementById('2107.12811v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12811v1-abstract-full" style="display: none;"> Recently, using conditioning approaches on the high-harmonic generation process induced by intense laser-atom interactions, we have developed a new method for the generation of optical Schr枚dinger cat states (M. Lewenstein et al., arXiv:2008.10221 (2020)). These quantum optical states have been proven to be very manageable as, by modifying the conditions under which harmonics are generated, one can interplay between $\textit{kitten}$ and $\textit{genuine cat}$ states. Here, we demonstrate that this method can also be used for the development of new schemes towards the creation of optical Schr枚dinger cat states, consisting of the superposition of three distinct coherent states. Apart from the interest these kind of states have on their own, we additionally propose a scheme for using them towards the generation of large cat states involving the sum of two different coherent states. The quantum properties of the obtained superpositions aim to significantly increase the applicability of optical Schr枚dinger cat states for quantum technology and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12811v1-abstract-full').style.display = 'none'; document.getElementById('2107.12811v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages (12 main text + 1 appendix), 8 figures. This paper has been submitted to the JCEL Special Issue on Wigner Functions in Computational Electronics and Photonics. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00372">arXiv:2106.00372</a> <span> [<a href="https://arxiv.org/pdf/2106.00372">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/photonics8060192">10.3390/photonics8060192 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-Optical Spectrometry in Relativistic Laser-Plasma Interactions Using the High-Harmonic Generation Process: A Proposal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Lopez-Martens%2C+R">Rodrigo Lopez-Martens</a>, <a href="/search/physics?searchtype=author&query=Haessler%2C+S">Stefan Haessler</a>, <a href="/search/physics?searchtype=author&query=Liontos%2C+I">Ioannis Liontos</a>, <a href="/search/physics?searchtype=author&query=Kahaly%2C+S">Subhendu Kahaly</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00372v1-abstract-short" style="display: inline;"> Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser-matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00372v1-abstract-full').style.display = 'inline'; document.getElementById('2106.00372v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00372v1-abstract-full" style="display: none;"> Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser-matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving laser field towards the generation of a strong laser-field interaction product, such as high-order harmonics. In this case, the harmonic spectrum is reflected in the photon number distribution of the infrared (IR) driving field after its interaction with the high harmonic generation medium. The method was implemented in non-relativistic interactions using high harmonics produced by the interaction of strong laser pulses with atoms and semiconductors. Very recently, it was used for the generation of non-classical light states in intense laser-atom interaction, building the basis for studies of quantum electrodynamics in strong laser-field physics and the development of a new class of non-classical light sources for applications in quantum technology. Here, after a brief introduction of the QS method, we will discuss how the QS can be applied in relativistic laser-plasma interactions and become the driving factor for initiating investigations on relativistic quantum electrodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00372v1-abstract-full').style.display = 'none'; document.getElementById('2106.00372v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Photonics 8 no. 6, 192 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.10221">arXiv:2008.10221</a> <span> [<a href="https://arxiv.org/pdf/2008.10221">pdf</a>, <a href="https://arxiv.org/format/2008.10221">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-021-01317-w">10.1038/s41567-021-01317-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of optical Schr枚dinger cat states in intense laser-matter interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.10221v4-abstract-short" style="display: inline;"> The physics of intense laser-matter interactions is described by treating the light pulses classically, anticipating no need to access optical measurements beyond the classical limit. However, the quantum nature of the electromagnetic fields is always present. Here, we demonstrate that intense laser-atom interactions may lead to the generation of highly non-classical light states. This was achieve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10221v4-abstract-full').style.display = 'inline'; document.getElementById('2008.10221v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.10221v4-abstract-full" style="display: none;"> The physics of intense laser-matter interactions is described by treating the light pulses classically, anticipating no need to access optical measurements beyond the classical limit. However, the quantum nature of the electromagnetic fields is always present. Here, we demonstrate that intense laser-atom interactions may lead to the generation of highly non-classical light states. This was achieved by using the process of high-harmonic generation in atoms, in which the photons of a driving laser pulse of infrared frequency are up-converted into photons of higher frequencies in the extreme ultraviolet spectral range. The quantum state of the fundamental mode after the interaction, when conditioned on the high-harmonic generation, is a so-called Schr枚dinger cat state, which corresponds to a superposition of two distinct coherent states: the initial state of the laser and the coherent state reduced in amplitude that results from the interaction with atoms. The results open the path for investigations towards the control of the non-classical states, exploiting conditioning approaches on physical processes relevant to high-harmonic generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10221v4-abstract-full').style.display = 'none'; document.getElementById('2008.10221v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We dedicate this work to the memory of Roy J. Glauber, the inventor of coherent states</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. 17, 1104-1108 (2021) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>