CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 142 results for author: <span class="mathjax">Lewenstein, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Lewenstein%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lewenstein, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lewenstein%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lewenstein, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lewenstein%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lewenstein%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lewenstein%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Lewenstein%2C+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08881">arXiv:2412.08881</a> <span> [<a href="https://arxiv.org/pdf/2412.08881">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Quantum Optics and Communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sennary%2C+M">Mohamed Sennary</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=ElKabbash%2C+M">Mohamed ElKabbash</a>, <a href="/search/physics?searchtype=author&query=Pervak%2C+V">Vladimir Pervak</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Hassan%2C+M+T">Mohammed Th. Hassan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08881v1-abstract-short" style="display: inline;"> Advancements in quantum optics and squeezed light generation have revolutionized various fields of quantum science over the past three decades, with notable applications such as gravitational wave detection. Here, we extend the use of squeezed light to the realm of ultrafast quantum science. We demonstrate the generation of ultrafast, broadband quantum light pulses spanning 0.33 to 0.73 PHz using… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08881v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08881v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08881v1-abstract-full" style="display: none;"> Advancements in quantum optics and squeezed light generation have revolutionized various fields of quantum science over the past three decades, with notable applications such as gravitational wave detection. Here, we extend the use of squeezed light to the realm of ultrafast quantum science. We demonstrate the generation of ultrafast, broadband quantum light pulses spanning 0.33 to 0.73 PHz using light field synthesizer and a four-wave mixing nonlinear process. Experimental results confirm that these pulses exhibit amplitude squeezing, which is consistent with theoretical predictions. This work lays the groundwork for a new field of ultrafast quantum science, enabling real-time studies of quantum light-matter interaction dynamics, which expect to reveal new physics. We also demonstrate the encoding of binary digital data onto these quantum light waveforms, synthesized with attosecond resolution, showcasing potential applications in secure quantum communication. This work paves the way for ultrafast quantum optoelectronics, quantum computing, and next-generation encrypted quantum communication networks, capable of achieving petahertz-scale data transmission speeds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08881v1-abstract-full').style.display = 'none'; document.getElementById('2412.08881v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11042">arXiv:2411.11042</a> <span> [<a href="https://arxiv.org/pdf/2411.11042">pdf</a>, <a href="https://arxiv.org/format/2411.11042">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Non-classicality induces recombination in high-harmonic generation with circularly polarized fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11042v2-abstract-short" style="display: inline;"> High-harmonic generation (HHG) is a nonlinear process in which a strong driving field interacts with a material, resulting in the frequency up-conversion of the driver into its high-order harmonics. This process is highly sensitive to the field's polarization: circular polarization, for instance, inhibits HHG. In this work, we demonstrate that the use of non-classical structured light enables HHG… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11042v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11042v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11042v2-abstract-full" style="display: none;"> High-harmonic generation (HHG) is a nonlinear process in which a strong driving field interacts with a material, resulting in the frequency up-conversion of the driver into its high-order harmonics. This process is highly sensitive to the field's polarization: circular polarization, for instance, inhibits HHG. In this work, we demonstrate that the use of non-classical structured light enables HHG in this otherwise prohibitive configuration for classical drivers. In particular, we consider circularly polarized light with non-classical fluctuations, introduced via squeezing along one polarization direction, and show that these non-classical features prompt the HHG process, with the spectral properties of the emitted harmonics depending on the type of squeezing applied. We examine the electron dynamics during HHG, revealing that non-classical fluctuations act as an effective force that guides the electron trajectories toward recombination. This approach opens new pathways for integrating quantum optics in HHG, providing novel means of controlling the light-matter interaction dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11042v2-abstract-full').style.display = 'none'; document.getElementById('2411.11042v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages (9 main text + 19 Supplementary Material), 14 figures (5 main text + 9 Supplementary Material). Comments are welcome. In v2 we have slightly modified the abstract and corrected some typos in the Supplementary Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17452">arXiv:2410.17452</a> <span> [<a href="https://arxiv.org/pdf/2410.17452">pdf</a>, <a href="https://arxiv.org/format/2410.17452">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Generation of non-classical and entangled light states using intense laser-matter interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Tsatrafyllis%2C+N">N. Tsatrafyllis</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">P. Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17452v1-abstract-short" style="display: inline;"> Non-classical and entangled light states are of fundamental interest in quantum mechanics and they are a powerful tool for the emergence of new quantum technologies. The development of methods that can lead to the generation of such light states is therefore of high importance. Recently, we have demonstrated that intense laser-matter interactions can serve towards this direction. Specifically, we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17452v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17452v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17452v1-abstract-full" style="display: none;"> Non-classical and entangled light states are of fundamental interest in quantum mechanics and they are a powerful tool for the emergence of new quantum technologies. The development of methods that can lead to the generation of such light states is therefore of high importance. Recently, we have demonstrated that intense laser-matter interactions can serve towards this direction. Specifically, we have shown how the use of fully quantized approaches in intense laser-matter interactions and the process of high harmonic generation, can lead to the generation high photon-number non-classical (optical Schr枚dinger's "cat" or squeezed) and entangled states from the far-infrared (IR) to the extreme-ultraviolet (XUV). Here, after a brief introduction on the fundamentals, we summarize the operation principles of these approaches and we discuss the future directions of non-classical light engineering using strong laser fields, and the potential applications in ultrafast and quantum information science. Our findings open the way to a novel quantum nonlinear spectroscopy method, based on the interplay between the quantum properties of light with that of quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17452v1-abstract-full').style.display = 'none'; document.getElementById('2410.17452v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited Topical Review submitted to J. Phys. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07577">arXiv:2408.07577</a> <span> [<a href="https://arxiv.org/pdf/2408.07577">pdf</a>, <a href="https://arxiv.org/format/2408.07577">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.063118">10.1103/PhysRevA.110.063118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Squeezed states of light after high-harmonic generation in excited atomic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Crispin%2C+H+B">H. B. Crispin</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Kr%C3%BCger%2C+M">M. Kr眉ger</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">P. Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07577v2-abstract-short" style="display: inline;"> High-harmonic generation (HHG) has recently emerged as a promising method for generating non-classical states of light with frequencies spanning from the infrared up to the extreme ultraviolet regime. In this work, we theoretically investigate the generation of squeezed states of light through HHG processes in atomic systems that had been initially driven to their first excited state. Our study re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07577v2-abstract-full').style.display = 'inline'; document.getElementById('2408.07577v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07577v2-abstract-full" style="display: none;"> High-harmonic generation (HHG) has recently emerged as a promising method for generating non-classical states of light with frequencies spanning from the infrared up to the extreme ultraviolet regime. In this work, we theoretically investigate the generation of squeezed states of light through HHG processes in atomic systems that had been initially driven to their first excited state. Our study reveals significant single-mode squeezing in both the driving field and low-order harmonic modes. Additionally, we characterize two-mode squeezing features in the generated states, both between fundamental and harmonic modes, and among the harmonic modes themselves. Using these correlations, we demonstrate the generation of optical Schr枚dinger kitten states through heralding measurements, specifically via photon subtraction in one of the modes influenced by two-mode squeezing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07577v2-abstract-full').style.display = 'none'; document.getElementById('2408.07577v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages (10 main text + 7 appendix), 6 figures (4 main text + 2 appendix). Comments are welcome. In v2 we have modified the text accordingly to the comments received by the anonymous reviewers of Physical Review A. We have also updated the references that have been already published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 110, 063118 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06105">arXiv:2407.06105</a> <span> [<a href="https://arxiv.org/pdf/2407.06105">pdf</a>, <a href="https://arxiv.org/format/2407.06105">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Colloquium: Synthetic quantum matter in non-standard geometries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Grass%2C+T">Tobias Grass</a>, <a href="/search/physics?searchtype=author&query=Bercioux%2C+D">Dario Bercioux</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+U">Utso Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Nguyen%2C+H+S">Hai Son Nguyen</a>, <a href="/search/physics?searchtype=author&query=Weitenberg%2C+C">Christof Weitenberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06105v1-abstract-short" style="display: inline;"> Quantum simulation is making a significant impact on scientific research. The prevailing tendency of the field is to build quantum simulators that get closer to real-world systems of interest, in particular electronic materials. However, progress in the microscopic design also provides an opportunity for an orthogonal research direction: building quantum many-body systems beyond real-world limitat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06105v1-abstract-full').style.display = 'inline'; document.getElementById('2407.06105v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06105v1-abstract-full" style="display: none;"> Quantum simulation is making a significant impact on scientific research. The prevailing tendency of the field is to build quantum simulators that get closer to real-world systems of interest, in particular electronic materials. However, progress in the microscopic design also provides an opportunity for an orthogonal research direction: building quantum many-body systems beyond real-world limitations. This colloquium takes this perspective: Concentrating on synthetic quantum matter in non-standard lattice geometries, such as fractal lattices or quasicrystals, higher-dimensional or curved spaces, it aims at providing a fresh introduction to the field of quantum simulation aligned with recent trends across various quantum simulation platforms, including atomic, photonic, and electronic devices. We also shine light on the novel phenomena which arise from these geometries: Condensed matter physicists may appreciate the variety of different localization properties as well as novel topological phases which are offered by such exotic quantum simulators. But also in the search of quantum models for gravity and cosmology, quantum simulators of curved spaces can provide a useful experimental tool. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06105v1-abstract-full').style.display = 'none'; document.getElementById('2407.06105v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03737">arXiv:2407.03737</a> <span> [<a href="https://arxiv.org/pdf/2407.03737">pdf</a>, <a href="https://arxiv.org/format/2407.03737">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Topological phase transitions via attosecond x-ray absorption spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mosquera%2C+J+F+P">Juan F. P. Mosquera</a>, <a href="/search/physics?searchtype=author&query=Cistaro%2C+G">Giovanni Cistaro</a>, <a href="/search/physics?searchtype=author&query=Malakhov%2C+M">Mikhail Malakhov</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Dauphin%2C+A">Alexandre Dauphin</a>, <a href="/search/physics?searchtype=author&query=Plaja%2C+L">Luis Plaja</a>, <a href="/search/physics?searchtype=author&query=Chac%C3%B3n%2C+A">Alexis Chac贸n</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Pic%C3%B3n%2C+A">Antonio Pic贸n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03737v1-abstract-short" style="display: inline;"> We present a numerical experiment that demonstrates the possibility to capture topological phase transitions via an x-ray absorption spectroscopy scheme. We consider a Chern insulator whose topological phase is tuned via a second-order hopping. We perform time-dynamics simulations of the out-of-equilibrium laser-driven electron motion that enables us to model a realistic attosecond spectroscopy sc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03737v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03737v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03737v1-abstract-full" style="display: none;"> We present a numerical experiment that demonstrates the possibility to capture topological phase transitions via an x-ray absorption spectroscopy scheme. We consider a Chern insulator whose topological phase is tuned via a second-order hopping. We perform time-dynamics simulations of the out-of-equilibrium laser-driven electron motion that enables us to model a realistic attosecond spectroscopy scheme. In particular, we use an ultrafast scheme with a circularly polarized IR pump pulse and an attosecond x-ray probe pulse. A laser-induced dichroism-type spectrum shows a clear signature of the topological phase transition. We are able to connect these signatures with the Berry structure of the system. This work extend the applications of attosecond absorption spectroscopy to systems presenting a non-trivial topological phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03737v1-abstract-full').style.display = 'none'; document.getElementById('2407.03737v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17949">arXiv:2405.17949</a> <span> [<a href="https://arxiv.org/pdf/2405.17949">pdf</a>, <a href="https://arxiv.org/format/2405.17949">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond spectroscopy using vacuum-ultraviolet pulses emitted from laser-driven semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nayak%2C+A">A. Nayak</a>, <a href="/search/physics?searchtype=author&query=Rajak%2C+D">D. Rajak</a>, <a href="/search/physics?searchtype=author&query=Farkas%2C+B">B. Farkas</a>, <a href="/search/physics?searchtype=author&query=Granados%2C+C">C. Granados</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&query=Varju%2C+K">K. Varju</a>, <a href="/search/physics?searchtype=author&query=Mairesse%2C+Y">Y. Mairesse</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">P. Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17949v1-abstract-short" style="display: inline;"> Strongly laser-driven semiconductor crystals offer substantial advantages for the study of many-body physics and ultrafast optoelectronics via the high harmonic generation process. While this phenomenon has been employed to investigate the dynamics of solids in the presence of strong laser fields, its potential to be utilized as an attosecond light source has remained unexploited. Here, we demonst… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17949v1-abstract-full').style.display = 'inline'; document.getElementById('2405.17949v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17949v1-abstract-full" style="display: none;"> Strongly laser-driven semiconductor crystals offer substantial advantages for the study of many-body physics and ultrafast optoelectronics via the high harmonic generation process. While this phenomenon has been employed to investigate the dynamics of solids in the presence of strong laser fields, its potential to be utilized as an attosecond light source has remained unexploited. Here, we demonstrate that the high harmonics generated through the interaction of mid--infrared pulses with a ZnO crystal leads to the production of attosecond pulses, that can be used to trace the ultrafast ionization dynamics of alkali metals. In a cross--correlation approach, we photoionize Cesium atoms with the vacuum-ultraviolet (VUV) high-harmonics in the presence of a mid-infrared laser field. We observe strong oscillations of the photoelectron yield originating from the instantaneous polarization of the atoms by the laser field. The phase of the oscillations encodes the attosecond synchronization of the ionizing high-harmonics and is used for attosecond pulse metrology. This light source opens a new spectral window for attosecond spectroscopy, paving the way for studies of systems with low ionization potentials including neutral atoms, molecules and solids. Additionally, our results highlight the significance of the source for generating non--classical massively entangled light states in the visible--VUV spectral region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17949v1-abstract-full').style.display = 'none'; document.getElementById('2405.17949v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages (7 main text + 2 supplementary material), 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05799">arXiv:2404.05799</a> <span> [<a href="https://arxiv.org/pdf/2404.05799">pdf</a>, <a href="https://arxiv.org/format/2404.05799">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Coherent Heat Transfer Leads to Genuine Quantum Enhancement in Performances of Continuous Engines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mohan%2C+B">Brij Mohan</a>, <a href="/search/physics?searchtype=author&query=Gangwar%2C+R">Rajeev Gangwar</a>, <a href="/search/physics?searchtype=author&query=Pandit%2C+T">Tanmoy Pandit</a>, <a href="/search/physics?searchtype=author&query=Bera%2C+M+L">Mohit Lal Bera</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Bera%2C+M+N">Manabendra Nath Bera</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05799v1-abstract-short" style="display: inline;"> The conventional continuous quantum heat engines rely on incoherent heat transfer with the baths and, thus, have limited capability to outperform their classical counterparts. In this work, we introduce distinct continuous quantum heat engines that utilize coherent heat transfer with baths, yielding significant quantum enhancement in performance. These continuous engines, termed as coherent engine… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05799v1-abstract-full').style.display = 'inline'; document.getElementById('2404.05799v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05799v1-abstract-full" style="display: none;"> The conventional continuous quantum heat engines rely on incoherent heat transfer with the baths and, thus, have limited capability to outperform their classical counterparts. In this work, we introduce distinct continuous quantum heat engines that utilize coherent heat transfer with baths, yielding significant quantum enhancement in performance. These continuous engines, termed as coherent engines, consist of one qutrit system and two photonic baths and enable coherent heat transfer via two-photon transitions involving three-body interactions between the system and hot and cold baths. The closest quantum incoherent analogs are those that only allow incoherent heat transfer between the qutrit and the baths via one-photon transitions relying on two-body interactions between the system and hot or cold baths. We demonstrate that coherent engines deliver much higher power output and a much lower signal-to-noise ratio in power, where the latter signifies the reliability of an engine, compared to incoherent engines. Coherent engines manifest more non-classical features than incoherent engines because they violate the classical thermodynamic uncertainty relation by a greater amount and for a wider range of parameters. Importantly, coherent engines can operate close to or at the fundamental lower limit on reliability given by the quantum version of the thermodynamic uncertainty relation, making them highly reliable. These genuine enhancements in performance by hundreds of folds over incoherent engines and the saturation of the quantum limit by coherent engines are directly attributed to its capacity to harness higher energetic coherence which is, again, a consequence of coherent heat transfer. The experimental feasibility of coherent engines and the improved understanding of how quantum properties can enhance performance may find important implications in emerging quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05799v1-abstract-full').style.display = 'none'; document.getElementById('2404.05799v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6.5+10 Pages, 8+1 Figures, comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04538">arXiv:2403.04538</a> <span> [<a href="https://arxiv.org/pdf/2403.04538">pdf</a>, <a href="https://arxiv.org/format/2403.04538">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Chirped pulse control over the melting of superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Recasens%2C+M">Maria Recasens</a>, <a href="/search/physics?searchtype=author&query=Kasper%2C+V">Valentin Kasper</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Johnson%2C+A+S">Allan S. Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04538v1-abstract-short" style="display: inline;"> Strong field terahertz pulses are increasingly used to excite and control quantum materials at the ultrafast timescale. They have found widespread application by enabling direct addressing of the superconducting gap or Josephson resonances and are essential in Higgs spectroscopy. Large non-linear optical signals can be induced by the strong coupling of the THz and superconducting degrees of freedo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04538v1-abstract-full').style.display = 'inline'; document.getElementById('2403.04538v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04538v1-abstract-full" style="display: none;"> Strong field terahertz pulses are increasingly used to excite and control quantum materials at the ultrafast timescale. They have found widespread application by enabling direct addressing of the superconducting gap or Josephson resonances and are essential in Higgs spectroscopy. Large non-linear optical signals can be induced by the strong coupling of the THz and superconducting degrees of freedom. However, far less attention has been paid to the strong bi-directional coupling between field and material this implies. Here, we use the framework of the time-dependent Ginzburg-Landau equations to study the full field and material evolution of a superconductor driven by strong field terahertz pulses. We find that at high field strengths, the backreaction of the superconductor induces large changes to the driving pulse, which in turn leads to a runaway melting of the superconducting condensate. This results in a surprisingly large sensitivity to the initial driving pulse chirp, enabling these purely dynamical changes to result in order of magnitude different levels of melting. We also find large-scale spectral shifting of the driving pulse to occur in just a few hundred nanometers of propagation through a superconductor. We attribute these effects to an inverse plasma redshift, in which the driving field breaks Cooper pairs and decreases the free-electron mobility, analogous to reducing the density of a plasma. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04538v1-abstract-full').style.display = 'none'; document.getElementById('2403.04538v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.01266">arXiv:2402.01266</a> <span> [<a href="https://arxiv.org/pdf/2402.01266">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Decoupled few-femtosecond phase transitions in vanadium dioxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Brahms%2C+C">Christian Brahms</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Lin Zhang</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">Xiao Shen</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+U">Utso Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Recasens%2C+M">Maria Recasens</a>, <a href="/search/physics?searchtype=author&query=Osmond%2C+J">Johann Osmond</a>, <a href="/search/physics?searchtype=author&query=Grass%2C+T">Tobias Grass</a>, <a href="/search/physics?searchtype=author&query=Chhajlany%2C+R+W">Ravindra W. Chhajlany</a>, <a href="/search/physics?searchtype=author&query=Hallman%2C+K+A">Kent A. Hallman</a>, <a href="/search/physics?searchtype=author&query=Haglund%2C+R+F">Richard F. Haglund</a>, <a href="/search/physics?searchtype=author&query=Pantelides%2C+S+T">Sokrates T. Pantelides</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Travers%2C+J+C">John C. Travers</a>, <a href="/search/physics?searchtype=author&query=Johnson%2C+A+S">Allan S. Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.01266v2-abstract-short" style="display: inline;"> The nature of the insulator-to-metal phase transition in vanadium dioxide (VO2) is one of the longest-standing problems in condensed-matter physics. Ultrafast spectroscopy has long promised to determine whether the transition is primarily driven by the electronic or structural degree of freedom, but measurements to date have been stymied by their sensitivity to only one of these components and/or… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01266v2-abstract-full').style.display = 'inline'; document.getElementById('2402.01266v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.01266v2-abstract-full" style="display: none;"> The nature of the insulator-to-metal phase transition in vanadium dioxide (VO2) is one of the longest-standing problems in condensed-matter physics. Ultrafast spectroscopy has long promised to determine whether the transition is primarily driven by the electronic or structural degree of freedom, but measurements to date have been stymied by their sensitivity to only one of these components and/or their limited temporal resolution. Here we use ultra-broadband few-femtosecond pump-probe spectroscopy to resolve the electronic and structural phase transitions in VO2 at their fundamental time scales. We find that the system transforms into a bad-metallic phase within 10 fs after photoexcitation, but requires another 100 fs to complete the transition, during which we observe electronic oscillations and a partial re-opening of the bandgap, signalling a transient semi-metallic state. Comparisons with tensor-network simulations and density-functional theory calculations show these features originate from oscillations around the equilibrium high-symmetry atomic positions during an unprecedentedly fast structural transition, in which the vanadium dimers separate and untwist with two different timescales. Our results resolve the complete structural and electronic nature of the light-induced phase transition in VO2 and establish ultra-broadband few-femtosecond spectroscopy as a powerful new tool for studying quantum materials out of equilibrium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01266v2-abstract-full').style.display = 'none'; document.getElementById('2402.01266v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.03452">arXiv:2312.03452</a> <span> [<a href="https://arxiv.org/pdf/2312.03452">pdf</a>, <a href="https://arxiv.org/format/2312.03452">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.L032057">10.1103/PhysRevResearch.6.L032057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Telling different unravelings apart via nonlinear quantum-trajectory averages </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pi%C3%B1ol%2C+E">Eloy Pi帽ol</a>, <a href="/search/physics?searchtype=author&query=Mavrogordatos%2C+T+K">Th. K. Mavrogordatos</a>, <a href="/search/physics?searchtype=author&query=Keys%2C+D">Dustin Keys</a>, <a href="/search/physics?searchtype=author&query=Veyron%2C+R">Romain Veyron</a>, <a href="/search/physics?searchtype=author&query=Sierant%2C+P">Piotr Sierant</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%ADa-March%2C+M+A">Miguel Angel Garc铆a-March</a>, <a href="/search/physics?searchtype=author&query=Grandi%2C+S">Samuele Grandi</a>, <a href="/search/physics?searchtype=author&query=Mitchell%2C+M+W">Morgan W. Mitchell</a>, <a href="/search/physics?searchtype=author&query=Wehr%2C+J">Jan Wehr</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.03452v4-abstract-short" style="display: inline;"> The Gorini-Kossakowski-Sudarshan-Lindblad master equation (ME) governs the density matrix of open quantum systems (OQSs). When an OQS is subjected to weak continuous measurement, its state evolves as a stochastic quantum trajectory, whose statistical average solves the ME. The ensemble of such trajectories is termed an unraveling of the ME. We propose a method to operationally distinguish unraveli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03452v4-abstract-full').style.display = 'inline'; document.getElementById('2312.03452v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.03452v4-abstract-full" style="display: none;"> The Gorini-Kossakowski-Sudarshan-Lindblad master equation (ME) governs the density matrix of open quantum systems (OQSs). When an OQS is subjected to weak continuous measurement, its state evolves as a stochastic quantum trajectory, whose statistical average solves the ME. The ensemble of such trajectories is termed an unraveling of the ME. We propose a method to operationally distinguish unravelings produced by the same ME in different measurement scenarios, using nonlinear averages of observables over trajectories. We apply the method to the paradigmatic quantum nonlinear system of resonance fluorescence in a two-level atom. We compare the Poisson-type unraveling, induced by direct detection of photons scattered from the two-level emitter, and the Wiener-type unraveling, induced by phase-sensitive detection of the emitted field. We show that a quantum-trajectory-averaged variance is able to distinguish these measurement scenarios. We evaluate the performance of the method, which can be readily extended to more complex OQSs, under a range of realistic experimental conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.03452v4-abstract-full').style.display = 'none'; document.getElementById('2312.03452v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, with supplementary material, revised version following the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, L032057 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18100">arXiv:2311.18100</a> <span> [<a href="https://arxiv.org/pdf/2311.18100">pdf</a>, <a href="https://arxiv.org/format/2311.18100">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Quantitative evaluation of methods to analyze motion changes in single-particle experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mu%C3%B1oz-Gil%2C+G">Gorka Mu帽oz-Gil</a>, <a href="/search/physics?searchtype=author&query=Bachimanchi%2C+H">Harshith Bachimanchi</a>, <a href="/search/physics?searchtype=author&query=Pineda%2C+J">Jes煤s Pineda</a>, <a href="/search/physics?searchtype=author&query=Midtvedt%2C+B">Benjamin Midtvedt</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Metzler%2C+R">Ralf Metzler</a>, <a href="/search/physics?searchtype=author&query=Krapf%2C+D">Diego Krapf</a>, <a href="/search/physics?searchtype=author&query=Volpe%2C+G">Giovanni Volpe</a>, <a href="/search/physics?searchtype=author&query=Manzo%2C+C">Carlo Manzo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18100v2-abstract-short" style="display: inline;"> The analysis of live-cell single-molecule imaging experiments can reveal valuable information about the heterogeneity of transport processes and interactions between cell components. These characteristics are seen as motion changes in the particle trajectories. Despite the existence of multiple approaches to carry out this type of analysis, no objective assessment of these methods has been perform… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18100v2-abstract-full').style.display = 'inline'; document.getElementById('2311.18100v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18100v2-abstract-full" style="display: none;"> The analysis of live-cell single-molecule imaging experiments can reveal valuable information about the heterogeneity of transport processes and interactions between cell components. These characteristics are seen as motion changes in the particle trajectories. Despite the existence of multiple approaches to carry out this type of analysis, no objective assessment of these methods has been performed so far. Here, we have designed a competition to characterize and rank the performance of these methods when analyzing the dynamic behavior of single molecules. To run this competition, we have implemented a software library to simulate realistic data corresponding to widespread diffusion and interaction models, both in the form of trajectories and videos obtained in typical experimental conditions. The competition will constitute the first assessment of these methods, provide insights into the current limits of the field, foster the development of new approaches, and guide researchers to identify optimal tools for analyzing their experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18100v2-abstract-full').style.display = 'none'; document.getElementById('2311.18100v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figure, 2 tables. Stage 1 registered report, accepted in principle in Nature Communications (https://springernature.figshare.com/articles/journal_contribution/Quantitative_evaluation_of_methods_to_analyze_motion_changes_in_single-particle_experiments_Registered_Report_Stage_1_Protocol_/24771687)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14524">arXiv:2311.14524</a> <span> [<a href="https://arxiv.org/pdf/2311.14524">pdf</a>, <a href="https://arxiv.org/format/2311.14524">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Topological quantum thermometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Srivastava%2C+A+K">Anubhav Kumar Srivastava</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+U">Utso Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=P%C5%82odzie%C5%84%2C+M">Marcin P艂odzie艅</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14524v1-abstract-short" style="display: inline;"> An optimal local quantum thermometer is a quantum many-body system that saturates the fundamental lower bound for the thermal state temperature estimation accuracy [L. Correa, et. al., Phys. Rev. Lett. 114, 220405 (2015)]. Such a thermometer has a particular energy level structure with a single ground state and highly degenerated excited states manifold, with an energy gap proportional to the esti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14524v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14524v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14524v1-abstract-full" style="display: none;"> An optimal local quantum thermometer is a quantum many-body system that saturates the fundamental lower bound for the thermal state temperature estimation accuracy [L. Correa, et. al., Phys. Rev. Lett. 114, 220405 (2015)]. Such a thermometer has a particular energy level structure with a single ground state and highly degenerated excited states manifold, with an energy gap proportional to the estimated temperature. In this work, we show that the optimal local quantum thermometer can be realized in an experimentally feasible system of spinless fermions confined in a one-dimensional optical lattice described by the Rice-Mele model. We characterize the system's sensitivity to temperature changes in terms of quantum Fisher information and the classical Fisher information obtained from experimentally available site occupation measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14524v1-abstract-full').style.display = 'none'; document.getElementById('2311.14524v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19549">arXiv:2310.19549</a> <span> [<a href="https://arxiv.org/pdf/2310.19549">pdf</a>, <a href="https://arxiv.org/format/2310.19549">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-024-01636-3">10.1038/s42005-024-01636-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synthetic dimensions for topological and quantum phases: Perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Arg%C3%BCello-Luengo%2C+J">Javier Arg眉ello-Luengo</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+U">Utso Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Celi%2C+A">Alessio Celi</a>, <a href="/search/physics?searchtype=author&query=Chhajlany%2C+R+W">Ravindra W. Chhajlany</a>, <a href="/search/physics?searchtype=author&query=Grass%2C+T">Tobias Grass</a>, <a href="/search/physics?searchtype=author&query=P%C5%82odzie%C5%84%2C+M">Marcin P艂odzie艅</a>, <a href="/search/physics?searchtype=author&query=Rakshit%2C+D">Debraj Rakshit</a>, <a href="/search/physics?searchtype=author&query=Salamon%2C+T">Tymoteusz Salamon</a>, <a href="/search/physics?searchtype=author&query=Stornati%2C+P">Paolo Stornati</a>, <a href="/search/physics?searchtype=author&query=Tarruell%2C+L">Leticia Tarruell</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19549v1-abstract-short" style="display: inline;"> In this Perspective article we report on recent progress on studies of synthetic dimensions, mostly, but not only, based on the research realized around the Barcelona groups (ICFO, UAB), Donostia (DIPC), Pozna艅 (UAM), Krak贸w (UJ), and Allahabad (HRI). The concept of synthetic dimensions works particularly well in atomic physics, quantum optics, and photonics, where the internal degrees of freedom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19549v1-abstract-full').style.display = 'inline'; document.getElementById('2310.19549v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19549v1-abstract-full" style="display: none;"> In this Perspective article we report on recent progress on studies of synthetic dimensions, mostly, but not only, based on the research realized around the Barcelona groups (ICFO, UAB), Donostia (DIPC), Pozna艅 (UAM), Krak贸w (UJ), and Allahabad (HRI). The concept of synthetic dimensions works particularly well in atomic physics, quantum optics, and photonics, where the internal degrees of freedom (Zeeman sublevels of the ground state, metastable excited states, or motional states for atoms, and angular momentum states or transverse modes for photons) provide the synthetic space. We describe our attempts to design quantum simulators with synthetic dimensions, to mimic curved spaces, artificial gauge fields, lattice gauge theories, twistronics, quantum random walks, and more. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19549v1-abstract-full').style.display = 'none'; document.getElementById('2310.19549v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 7, 143 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15030">arXiv:2310.15030</a> <span> [<a href="https://arxiv.org/pdf/2310.15030">pdf</a>, <a href="https://arxiv.org/format/2310.15030">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.143603">10.1103/PhysRevLett.132.143603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entanglement and squeezing of the optical field modes in high harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Arg%C3%BCello-Luengo%2C+J">Javier Arg眉ello-Luengo</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15030v1-abstract-short" style="display: inline;"> Squeezing of optical fields, used as a powerful resource for many applications, and the radiation properties in the process of high harmonic generation have thus far been considered separately. In this Letter, we want to clarify that the joint quantum state of all the optical field modes in the process of high harmonic generation is in general entangled and squeezed. We show that this is already t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15030v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15030v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15030v1-abstract-full" style="display: none;"> Squeezing of optical fields, used as a powerful resource for many applications, and the radiation properties in the process of high harmonic generation have thus far been considered separately. In this Letter, we want to clarify that the joint quantum state of all the optical field modes in the process of high harmonic generation is in general entangled and squeezed. We show that this is already the case in the simplest scenario of driving uncorrelated atoms by a classical laser light field. The previous observation of product coherent states after the high harmonic generation process is a consequence of the assumption that the ground state depletion can be neglected, which is related to vanishing dipole moment correlations. Furthermore, we analyze how the resulting quadrature squeezing in the fundamental laser mode after the interaction can be controlled and explicitly show that all field modes are entangled. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15030v1-abstract-full').style.display = 'none'; document.getElementById('2310.15030v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages (2 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 143603 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14435">arXiv:2309.14435</a> <span> [<a href="https://arxiv.org/pdf/2309.14435">pdf</a>, <a href="https://arxiv.org/format/2309.14435">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nonclassical states of light after high-harmonic generation in semiconductors: a Bloch-based perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14435v2-abstract-short" style="display: inline;"> High-harmonic generation has emerged as a pivotal process in strong-field physics, yielding extreme ultraviolet radiation and attosecond pulses with a wide range of applications. Furthermore, its emergent connection with the field of quantum optics has revealed its potential for generating non-classical states of light. Here, we investigate the process of high-harmonic generation in semiconductors… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14435v2-abstract-full').style.display = 'inline'; document.getElementById('2309.14435v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14435v2-abstract-full" style="display: none;"> High-harmonic generation has emerged as a pivotal process in strong-field physics, yielding extreme ultraviolet radiation and attosecond pulses with a wide range of applications. Furthermore, its emergent connection with the field of quantum optics has revealed its potential for generating non-classical states of light. Here, we investigate the process of high-harmonic generation in semiconductors under a quantum optical perspective while using a Bloch-based solid-state description. Through the implementation of quantum operations based on the measurement of high-order harmonics, we demonstrate the generation of non-classical light states similar to those found when driving atomic systems. These states are characterized using diverse quantum optical observables and quantum information measures, showing the influence of electron dynamics on their properties. Additionally, we analyze the dependence of their features on solid characteristics such as the dephasing time and crystal orientation, while also assessing their sensitivity to changes in driving field strength. This study provides insights into HHG in semiconductors and its potential for generating non-classical light sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14435v2-abstract-full').style.display = 'none'; document.getElementById('2309.14435v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages (16 main text + 6 appendix), 7 figures (5 main text + 2 appendix)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109, 035203 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10223">arXiv:2308.10223</a> <span> [<a href="https://arxiv.org/pdf/2308.10223">pdf</a>, <a href="https://arxiv.org/format/2308.10223">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.5.010328">10.1103/PRXQuantum.5.010328 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analog simulation of high harmonic generation in atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Arg%C3%BCello-Luengo%2C+J">Javier Arg眉ello-Luengo</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Weld%2C+D+M">David M. Weld</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10223v2-abstract-short" style="display: inline;"> The demanding experimental access to the ultrafast dynamics of materials challenges our understanding of their electronic response to applied strong laser fields. For this purpose, trapped ultracold atoms with highly controllable potentials have become an enabling tool to describe phenomena in a scenario where some effects are more easily accessible and twelve orders of magnitude slower. In this w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10223v2-abstract-full').style.display = 'inline'; document.getElementById('2308.10223v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10223v2-abstract-full" style="display: none;"> The demanding experimental access to the ultrafast dynamics of materials challenges our understanding of their electronic response to applied strong laser fields. For this purpose, trapped ultracold atoms with highly controllable potentials have become an enabling tool to describe phenomena in a scenario where some effects are more easily accessible and twelve orders of magnitude slower. In this work, we introduce a mapping between the parameters of attoscience platform and atomic cloud simulators, and propose an experimental protocol to access the emission spectrum of high harmonic generation, a regime that has so far been elusive to cold atom simulation. As we illustrate, the benchmark offered by these simulators can provide new insights on the conversion efficiency of extended and short nuclear potentials, as well as the response to applied elliptical polarized fields or ultrashort few-cycle pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10223v2-abstract-full').style.display = 'none'; document.getElementById('2308.10223v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted version of the manuscript</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 5, 010328 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12381">arXiv:2307.12381</a> <span> [<a href="https://arxiv.org/pdf/2307.12381">pdf</a>, <a href="https://arxiv.org/format/2307.12381">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Quantum optical analysis of high-order harmonic generation in H$_2^+$ molecular ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">P. Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12381v1-abstract-short" style="display: inline;"> We present a comprehensive theoretical investigation of high-order harmonic generation in H$_2^+$ molecular ions within a quantum optical framework. Our study focuses on characterizing various quantum optical and quantum information measures, highlighting the versatility of HHG in two-center molecules towards quantum technology applications. We demonstrate the emergence of entanglement between ele… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12381v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12381v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12381v1-abstract-full" style="display: none;"> We present a comprehensive theoretical investigation of high-order harmonic generation in H$_2^+$ molecular ions within a quantum optical framework. Our study focuses on characterizing various quantum optical and quantum information measures, highlighting the versatility of HHG in two-center molecules towards quantum technology applications. We demonstrate the emergence of entanglement between electron and light states after the laser-matter interaction. We also identify the possibility of obtaining non-classical states of light in targeted frequency modes by conditioning on specific electronic quantum states, which turn out to be crucial in the generation of highly non-classical entangled states between distinct sets of harmonic modes. Our findings open up avenues for studying strong-laser field-driven interactions in molecular systems, and suggest their applicability to quantum technology applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12381v1-abstract-full').style.display = 'none'; document.getElementById('2307.12381v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages (14 main text + 7 appendix), 9 figures (8 main text + 1 appendix)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11608">arXiv:2307.11608</a> <span> [<a href="https://arxiv.org/pdf/2307.11608">pdf</a>, <a href="https://arxiv.org/format/2307.11608">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Learning minimal representations of stochastic processes with variational autoencoders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fern%C3%A1ndez-Fern%C3%A1ndez%2C+G">Gabriel Fern谩ndez-Fern谩ndez</a>, <a href="/search/physics?searchtype=author&query=Manzo%2C+C">Carlo Manzo</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Dauphin%2C+A">Alexandre Dauphin</a>, <a href="/search/physics?searchtype=author&query=Mu%C3%B1oz-Gil%2C+G">Gorka Mu帽oz-Gil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11608v2-abstract-short" style="display: inline;"> Stochastic processes have found numerous applications in science, as they are broadly used to model a variety of natural phenomena. Due to their intrinsic randomness and uncertainty, they are however difficult to characterize. Here, we introduce an unsupervised machine learning approach to determine the minimal set of parameters required to effectively describe the dynamics of a stochastic process… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11608v2-abstract-full').style.display = 'inline'; document.getElementById('2307.11608v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11608v2-abstract-full" style="display: none;"> Stochastic processes have found numerous applications in science, as they are broadly used to model a variety of natural phenomena. Due to their intrinsic randomness and uncertainty, they are however difficult to characterize. Here, we introduce an unsupervised machine learning approach to determine the minimal set of parameters required to effectively describe the dynamics of a stochastic process. Our method builds upon an extended $尾$-variational autoencoder architecture. By means of simulated datasets corresponding to paradigmatic diffusion models, we showcase its effectiveness in extracting the minimal relevant parameters that accurately describe these dynamics. Furthermore, the method enables the generation of new trajectories that faithfully replicate the expected stochastic behavior. Overall, our approach enables for the autonomous discovery of unknown parameters describing stochastic processes, hence enhancing our comprehension of complex phenomena across various fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11608v2-abstract-full').style.display = 'none'; document.getElementById('2307.11608v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, 1 table. Code available at https://github.com/GabrielFernandezFernandez/SPIVAE . Corrected a reference, a typographical error in the appendix, and acknowledgments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.04471">arXiv:2307.04471</a> <span> [<a href="https://arxiv.org/pdf/2307.04471">pdf</a>, <a href="https://arxiv.org/format/2307.04471">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.108.043308">10.1103/PhysRevA.108.043308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phonon-assisted coherent transport of excitations in Rydberg-dressed atom arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kosior%2C+A">Arkadiusz Kosior</a>, <a href="/search/physics?searchtype=author&query=Kokkelmans%2C+S">Servaas Kokkelmans</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Zakrzewski%2C+J">Jakub Zakrzewski</a>, <a href="/search/physics?searchtype=author&query=P%C5%82odzie%C5%84%2C+M">Marcin P艂odzie艅</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.04471v2-abstract-short" style="display: inline;"> Polarons, which arise from the self-trapping interaction between electrons and lattice distortions in a solid, have been known and extensively investigated for nearly a century. Nevertheless, the study of polarons continues to be an active and evolving field, with ongoing advancements in both fundamental understanding and practical applications. Here, we present a microscopic model that exhibits a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04471v2-abstract-full').style.display = 'inline'; document.getElementById('2307.04471v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.04471v2-abstract-full" style="display: none;"> Polarons, which arise from the self-trapping interaction between electrons and lattice distortions in a solid, have been known and extensively investigated for nearly a century. Nevertheless, the study of polarons continues to be an active and evolving field, with ongoing advancements in both fundamental understanding and practical applications. Here, we present a microscopic model that exhibits a diverse range of dynamic behavior, arising from the intricate interplay between two excitation-phonon coupling terms. The derivation of the model is based on an experimentally feasible Rydberg-dressed system with dipole-dipole interactions, making it a promising candidate for realization in a Rydberg atoms quantum simulator. Remarkably, our analysis reveals a growing asymmetry in Bloch oscillations, leading to a macroscopic transport of non-spreading excitations under a constant force. Moreover, we compare the behavior of excitations, when coupled to either acoustic or optical phonons, and demonstrate the robustness of our findings against on-site random potential. Overall, this work contributes to the understanding of polaron dynamics with their potential applications in coherent quantum transport and offers valuable insights for research on Rydberg-based quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04471v2-abstract-full').style.display = 'none'; document.getElementById('2307.04471v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The Author Accepted Manuscript (AAM); 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.14480">arXiv:2306.14480</a> <span> [<a href="https://arxiv.org/pdf/2306.14480">pdf</a>, <a href="https://arxiv.org/format/2306.14480">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.134.013601">10.1103/PhysRevLett.134.013601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear optics using intense optical coherent state superpositions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.14480v2-abstract-short" style="display: inline;"> Superpositions of coherent light states, are vital for quantum technologies. However, restrictions in existing state preparation and characterization schemes, in combination with decoherence effects, prevent their intensity enhancement and implementation in nonlinear optics. Here, by developing a decoherence--free approach, we generate intense femtosecond--duration infrared coherent state superpos… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14480v2-abstract-full').style.display = 'inline'; document.getElementById('2306.14480v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.14480v2-abstract-full" style="display: none;"> Superpositions of coherent light states, are vital for quantum technologies. However, restrictions in existing state preparation and characterization schemes, in combination with decoherence effects, prevent their intensity enhancement and implementation in nonlinear optics. Here, by developing a decoherence--free approach, we generate intense femtosecond--duration infrared coherent state superpositions (CSS) with a mean photon number orders of magnitude higher than the existing CSS sources. We utilize them in nonlinear optics to drive the second harmonic generation process in an optical crystal. We experimentally and theoretically show that the non--classical nature of the intense infrared CSS is imprinted in the second-order autocorrelation traces. Additionally, theoretical analysis shows that the quantum features of the infrared CSS are also present in the generated second harmonic. The findings introduce the optical CSS into the realm of nonlinear quantum optics, opening up new paths in quantum information science and quantum light engineering by creating non-classical light states in various spectral regions via non-linear up-conversion processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14480v2-abstract-full').style.display = 'none'; document.getElementById('2306.14480v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In v2 we have modified the text accordingly to the comments obtained from the reviewers of Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 134, 013601 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02025">arXiv:2305.02025</a> <span> [<a href="https://arxiv.org/pdf/2305.02025">pdf</a>, <a href="https://arxiv.org/format/2305.02025">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.214104">10.1103/PhysRevB.108.214104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological phase detection through high-harmonic spectroscopy in extended Su-Schrieffer-Heeger chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bera%2C+M+L">Mohit Lal Bera</a>, <a href="/search/physics?searchtype=author&query=de+Almeida%2C+J+O">Jessica O. de Almeida</a>, <a href="/search/physics?searchtype=author&query=Dziurawiec%2C+M">Marlena Dziurawiec</a>, <a href="/search/physics?searchtype=author&query=P%C5%82odzie%C5%84%2C+M">Marcin P艂odzie艅</a>, <a href="/search/physics?searchtype=author&query=Ma%C5%9Bka%2C+M+M">Maciej M. Ma艣ka</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Grass%2C+T">Tobias Grass</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+U">Utso Bhattacharya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02025v1-abstract-short" style="display: inline;"> Su-Schrieffer-Heeger (SSH) chains are paradigmatic examples of 1D topological insulators hosting zero-energy edge modes when the bulk of the system has a non-zero topological winding invariant. Recently, high-harmonic spectroscopy has been suggested as a tool for detecting the topological phase. Specifically, it has been shown that when the SSH chain is coupled to an external laser field of a freq… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02025v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02025v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02025v1-abstract-full" style="display: none;"> Su-Schrieffer-Heeger (SSH) chains are paradigmatic examples of 1D topological insulators hosting zero-energy edge modes when the bulk of the system has a non-zero topological winding invariant. Recently, high-harmonic spectroscopy has been suggested as a tool for detecting the topological phase. Specifically, it has been shown that when the SSH chain is coupled to an external laser field of a frequency much smaller than the band gap, the emitted light at harmonic frequencies strongly differs between the trivial and the topological phase. However, it remains unclear whether various non-trivial topological phases -- differing in the number of edge states -- can also be distinguished by the high harmonic generation (HHG). In this paper, we investigate this problem by studying an extended version of the SSH chain with extended-range hoppings, resulting in a topological model with different topological phases. We explicitly show that HHG spectra are a sensitive and suitable tool for distinguishing topological phases when there is more than one topological phase. We also propose a quantitative scheme based on tuning the filling of the system to precisely locate the number of edge modes in each topological phase of this chain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02025v1-abstract-full').style.display = 'none'; document.getElementById('2305.02025v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 214104 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01215">arXiv:2305.01215</a> <span> [<a href="https://arxiv.org/pdf/2305.01215">pdf</a>, <a href="https://arxiv.org/format/2305.01215">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Steady-state Quantum Thermodynamics with Synthetic Negative Temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bera%2C+M+L">Mohit Lal Bera</a>, <a href="/search/physics?searchtype=author&query=Pandit%2C+T">Tanmoy Pandit</a>, <a href="/search/physics?searchtype=author&query=Chatterjee%2C+K">Kaustav Chatterjee</a>, <a href="/search/physics?searchtype=author&query=Singh%2C+V">Varinder Singh</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+U">Utso Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Bera%2C+M+N">Manabendra Nath Bera</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01215v1-abstract-short" style="display: inline;"> A bath with a negative temperature is a subject of intense debate in recent times. It raises fundamental questions not only on our understanding of negative temperature of a bath in connection with thermodynamics but also on the possibilities of constructing devices using such baths. In this work, we study steady-state quantum thermodynamics involving baths with negative temperatures. A bath with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01215v1-abstract-full').style.display = 'inline'; document.getElementById('2305.01215v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01215v1-abstract-full" style="display: none;"> A bath with a negative temperature is a subject of intense debate in recent times. It raises fundamental questions not only on our understanding of negative temperature of a bath in connection with thermodynamics but also on the possibilities of constructing devices using such baths. In this work, we study steady-state quantum thermodynamics involving baths with negative temperatures. A bath with a negative temperature is created synthetically using two baths of positive temperatures and weakly coupling these with a qutrit system. These baths are then coupled to each other via a working system. At steady-state, the laws of thermodynamics are analyzed. We find that whenever the temperatures of these synthetic baths are identical, there is no heat flow, which reaffirms the zeroth law. There is always a spontaneous heat flow for different temperatures. In particular, heat flows from a bath with a negative temperature to a bath with a positive temperature which, in turn, implies that a bath with a negative temperature is `hotter' than a bath with a positive temperature. This warrants an amendment in the Kelvin-Planck statement of the second law, as suggested in earlier studies. In all these processes, the overall entropy production is positive, as required by the Clausius statement of the second law. We construct continuous heat engines operating between positive and negative temperature baths. These engines yield maximum possible heat-to-work conversion efficiency, that is, unity. We also study the thermodynamic nature of heat from a bath with a negative temperature and find that it is thermodynamic work but with negative entropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01215v1-abstract-full').style.display = 'none'; document.getElementById('2305.01215v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+2 pages, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.13940">arXiv:2303.13940</a> <span> [<a href="https://arxiv.org/pdf/2303.13940">pdf</a>, <a href="https://arxiv.org/format/2303.13940">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/acee19">10.1088/1367-2630/acee19 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtosecond pulse parameter estimation from photoelectron momenta using machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Szo%C5%82dra%2C+T">Tomasz Szo艂dra</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Werby%2C+N">Nicholas Werby</a>, <a href="/search/physics?searchtype=author&query=Bucksbaum%2C+P+H">Philip H. Bucksbaum</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Zakrzewski%2C+J">Jakub Zakrzewski</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.13940v2-abstract-short" style="display: inline;"> Deep learning models have provided huge interpretation power for image-like data. Specifically, convolutional neural networks (CNNs) have demonstrated incredible acuity for tasks such as feature extraction or parameter estimation. Here we test CNNs on strong-field ionization photoelectron spectra, training on theoretical data sets to `invert' experimental data. Pulse characterization is used as a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13940v2-abstract-full').style.display = 'inline'; document.getElementById('2303.13940v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.13940v2-abstract-full" style="display: none;"> Deep learning models have provided huge interpretation power for image-like data. Specifically, convolutional neural networks (CNNs) have demonstrated incredible acuity for tasks such as feature extraction or parameter estimation. Here we test CNNs on strong-field ionization photoelectron spectra, training on theoretical data sets to `invert' experimental data. Pulse characterization is used as a `testing ground', specifically we retrieve the laser intensity, where `traditional' measurements typically lead to 20% uncertainty. We report on crucial data augmentation techniques required to successfully train on theoretical data and return consistent results from experiments, including accounting for detector saturation. The same procedure can be repeated to apply CNNs in a range of scenarios for strong-field ionization. Using a predictive uncertainty estimation, reliable laser intensity uncertainties of a few percent can be extracted, which are consistently lower than those given by traditional techniques. Using interpretability methods can reveal parts of the distribution that are most sensitive to laser intensity, which can be directly associated with holographic interferences. The CNNs employed provide an accurate and convenient ways to extract parameters, and represent a novel interpretational tool for strong-field ionization spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13940v2-abstract-full').style.display = 'none'; document.getElementById('2303.13940v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 25, 083039 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04692">arXiv:2302.04692</a> <span> [<a href="https://arxiv.org/pdf/2302.04692">pdf</a>, <a href="https://arxiv.org/format/2302.04692">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/acea31">10.1088/1361-6633/acea31 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong laser physics, non-classical light states and quantum information science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+U">Utso Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04692v1-abstract-short" style="display: inline;"> Strong laser physics is a research direction that relies on the use of high-power lasers and has led to fascinating achievements ranging from relativistic particle acceleration to attosecond science. On the other hand, quantum optics has been built on the use of low photon number sources and has opened the way for groundbreaking discoveries in quantum technology, advancing investigations ranging f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04692v1-abstract-full').style.display = 'inline'; document.getElementById('2302.04692v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04692v1-abstract-full" style="display: none;"> Strong laser physics is a research direction that relies on the use of high-power lasers and has led to fascinating achievements ranging from relativistic particle acceleration to attosecond science. On the other hand, quantum optics has been built on the use of low photon number sources and has opened the way for groundbreaking discoveries in quantum technology, advancing investigations ranging from fundamental tests of quantum theory to quantum information processing. Despite the tremendous progress, until recently these directions have remained disconnected. This is because, the majority of the interactions in the strong-field limit have been successfully described by semi-classical approximations treating the electromagnetic field classically, as there was no need to include the quantum properties of the field to explain the observations. The link between strong laser physics, quantum optics, and quantum information science has been developed in the recent past. Studies based on fully quantized and conditioning approaches have shown that intense laser--matter interactions can be used for the generation of controllable entangled and non-classical light states. This achievement opens the way for a vast number of investigations stemming from the symbiosis of strong laser physics, quantum optics, and quantum information science. Here, after an introduction to the fundamentals of these research directions, we report on the recent progress in the fully quantized description of intense laser--matter interaction and the methods that have been developed for the generation of non-classical light states and entangled states. Also, we discuss the future directions of non-classical light engineering using strong laser fields, and the potential applications in ultrafast and quantum information science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04692v1-abstract-full').style.display = 'none'; document.getElementById('2302.04692v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">60 pages, 20 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.00410">arXiv:2302.00410</a> <span> [<a href="https://arxiv.org/pdf/2302.00410">pdf</a>, <a href="https://arxiv.org/format/2302.00410">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.bpj.2023.10.015">10.1016/j.bpj.2023.10.015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inferring pointwise diffusion properties of single trajectories with deep learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Requena%2C+B">Borja Requena</a>, <a href="/search/physics?searchtype=author&query=Mas%C3%B3%2C+S">Sergi Mas贸</a>, <a href="/search/physics?searchtype=author&query=Bertran%2C+J">Joan Bertran</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Manzo%2C+C">Carlo Manzo</a>, <a href="/search/physics?searchtype=author&query=Mu%C3%B1oz-Gil%2C+G">Gorka Mu帽oz-Gil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.00410v1-abstract-short" style="display: inline;"> In order to characterize the mechanisms governing the diffusion of particles in biological scenarios, it is essential to accurately determine their diffusive properties. To do so, we propose a machine learning method to characterize diffusion processes with time-dependent properties at the experimental time resolution. Our approach operates at the single-trajectory level predicting the properties… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00410v1-abstract-full').style.display = 'inline'; document.getElementById('2302.00410v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.00410v1-abstract-full" style="display: none;"> In order to characterize the mechanisms governing the diffusion of particles in biological scenarios, it is essential to accurately determine their diffusive properties. To do so, we propose a machine learning method to characterize diffusion processes with time-dependent properties at the experimental time resolution. Our approach operates at the single-trajectory level predicting the properties of interest, such as the diffusion coefficient or the anomalous diffusion exponent, at every time step of the trajectory. In this way, changes in the diffusive properties occurring along the trajectory emerge naturally in the prediction, and thus allow the characterization without any prior knowledge or assumption about the system. We first benchmark the method on synthetic trajectories simulated under several conditions. We show that our approach can successfully characterize both abrupt and continuous changes in the diffusion coefficient or the anomalous diffusion exponent. Finally, we leverage the method to analyze experiments of single-molecule diffusion of two membrane proteins in living cells: the pathogen-recognition receptor DC-SIGN and the integrin $\alpha5\beta1$. The analysis allows us to characterize physical parameters and diffusive states with unprecedented accuracy, shedding new light on the underlying mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00410v1-abstract-full').style.display = 'none'; document.getElementById('2302.00410v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures, 1 table. Code is found in https://github.com/BorjaRequena/step</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00800">arXiv:2301.00800</a> <span> [<a href="https://arxiv.org/pdf/2301.00800">pdf</a>, <a href="https://arxiv.org/ps/2301.00800">ps</a>, <a href="https://arxiv.org/format/2301.00800">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1751-8121/acb1e1">10.1088/1751-8121/acb1e1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Preface: Characterisation of Physical Processes from Anomalous Diffusion Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manzo%2C+C">Carlo Manzo</a>, <a href="/search/physics?searchtype=author&query=Mu%C3%B1oz-Gil%2C+G">Gorka Mu帽oz-Gil</a>, <a href="/search/physics?searchtype=author&query=Volpe%2C+G">Giovanni Volpe</a>, <a href="/search/physics?searchtype=author&query=Garcia-March%2C+M+A">Miguel Angel Garcia-March</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Metzler%2C+R">Ralf Metzler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00800v2-abstract-short" style="display: inline;"> Preface to the special issue "Characterisation of Physical Processes from Anomalous Diffusion Data" associated with the Anomalous Diffusion Challenge ( https://andi-challenge.org ) and published in Journal of Physics A: Mathematical and Theoretical. The list of articles included in the special issue can be accessed at https://iopscience.iop.org/journal/1751-8121/page/Characterisation-of-Physical-P… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00800v2-abstract-full').style.display = 'inline'; document.getElementById('2301.00800v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00800v2-abstract-full" style="display: none;"> Preface to the special issue "Characterisation of Physical Processes from Anomalous Diffusion Data" associated with the Anomalous Diffusion Challenge ( https://andi-challenge.org ) and published in Journal of Physics A: Mathematical and Theoretical. The list of articles included in the special issue can be accessed at https://iopscience.iop.org/journal/1751-8121/page/Characterisation-of-Physical-Processes-from-Anomalous-Diffusion-Data . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00800v2-abstract-full').style.display = 'none'; document.getElementById('2301.00800v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preface to the Special Issue "Characterisation of Physical Processes from Anomalous Diffusion Data", Journal of Physics A: Mathematical and Theoretical https://iopscience.iop.org/journal/1751-8121/page/Characterisation-of-Physical-Processes-from-Anomalous-Diffusion-Data</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07301">arXiv:2212.07301</a> <span> [<a href="https://arxiv.org/pdf/2212.07301">pdf</a>, <a href="https://arxiv.org/ps/2212.07301">ps</a>, <a href="https://arxiv.org/format/2212.07301">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Exploring the attosecond laser-driven electron dynamics in the hydrogen molecule with different real-time time-dependent configuration interaction approaches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wo%C5%BAniak%2C+A+P">Aleksander P. Wo藕niak</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Moszy%C5%84ski%2C+R">Robert Moszy艅ski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07301v2-abstract-short" style="display: inline;"> Time-dependent quantum chemical methods coupled to Gaussian basis sets are gaining popularity in modeling the electron dynamics of atoms and molecules interacting with intense laser fields. Two approaches most widely used for this purpose, the real-time time-dependent configuration interaction singles and the real-time time-dependent density functional theory, both have their limitations, so the d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07301v2-abstract-full').style.display = 'inline'; document.getElementById('2212.07301v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07301v2-abstract-full" style="display: none;"> Time-dependent quantum chemical methods coupled to Gaussian basis sets are gaining popularity in modeling the electron dynamics of atoms and molecules interacting with intense laser fields. Two approaches most widely used for this purpose, the real-time time-dependent configuration interaction singles and the real-time time-dependent density functional theory, both have their limitations, so the development of more accurate yet computationally efficient time-dependent methods is still in demand. In this work we explore the applicability of the real-time time-dependent configuration interaction singles and doubles (RT-TDCISD) in modeling strong field phenomena. Since the main drawback of RT-TDCISD is its unfavourable scaling, we develop several algorithms for reducing the effective propagation space by selecting these CISD eigenstates that should have dominant contribution to the time-evolution of the wavefunction. We test them by performing calculations of the high harmonic spectra of the H\textsubscript{2} molecule. We find out that the laser-driven electron dynamics is mostly realized in a very small subspace of eigenstates dominated by single excitations, that constitutes about one percent of the whole CISD eigenspectrum. Therefore, by properly selecting this subspace one can reduce the dimension of the propagation equation by two orders of magnitude without affecting the time-resolved observables. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07301v2-abstract-full').style.display = 'none'; document.getElementById('2212.07301v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages in single column, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00033">arXiv:2211.00033</a> <span> [<a href="https://arxiv.org/pdf/2211.00033">pdf</a>, <a href="https://arxiv.org/format/2211.00033">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Entanglement and non-classical states of light in a strong-laser driven solid-state system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00033v2-abstract-short" style="display: inline;"> The development of sources delivering non-classical states of light is one of the main needs for applications of optical quantum information science. Here, we demonstrate the generation of non-classical states of light using strong-laser fields driving a solid-state system, by using the process of high-order harmonic generation, where an electron tunnels out of the parent site and, later on, recom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00033v2-abstract-full').style.display = 'inline'; document.getElementById('2211.00033v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00033v2-abstract-full" style="display: none;"> The development of sources delivering non-classical states of light is one of the main needs for applications of optical quantum information science. Here, we demonstrate the generation of non-classical states of light using strong-laser fields driving a solid-state system, by using the process of high-order harmonic generation, where an electron tunnels out of the parent site and, later on, recombines on it emitting high-order harmonic radiation, at the expense of affecting the driving laser field. Since in solid-state systems the recombination of the electron can be delocalized along the material, the final state of the electron determines how the electromagnetic field gets affected because of the laser-matter interaction, leading to the generation of entanglement between the electron and the field. These features can be enhanced by applying conditioning operations, i.e., quantum operations based on the measurement of high-harmonic radiation. We study non-classical features present in the final quantum optical state, and characterize the amount of entanglement between the light and the electrons in the solid. The work sets the foundation for the development of compact solid-state-based non-classical light sources using strong-field physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00033v2-abstract-full').style.display = 'none'; document.getElementById('2211.00033v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We present a different formulation to that of the previous version, more in line with the approach followed in our previous works. 12 pages (8 main text + 4 Methods), 4 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11983">arXiv:2209.11983</a> <span> [<a href="https://arxiv.org/pdf/2209.11983">pdf</a>, <a href="https://arxiv.org/format/2209.11983">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/acbed6">10.1088/1367-2630/acbed6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulse length effects in long wavelength driven non-sequential double ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jiang%2C+H">H. Jiang</a>, <a href="/search/physics?searchtype=author&query=Mandrysz%2C+M">M. Mandrysz</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+A">A. Sanchez</a>, <a href="/search/physics?searchtype=author&query=Dura%2C+J">J. Dura</a>, <a href="/search/physics?searchtype=author&query=Steinle%2C+T">T. Steinle</a>, <a href="/search/physics?searchtype=author&query=Prauzner-Bechcicki%2C+J+S">J. S. Prauzner-Bechcicki</a>, <a href="/search/physics?searchtype=author&query=Zakrzewski%2C+J">J. Zakrzewski</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=He%2C+F">F. He</a>, <a href="/search/physics?searchtype=author&query=Biegert%2C+J">J. Biegert</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11983v1-abstract-short" style="display: inline;"> We present a joint experimental and theoretical study of non-sequential double ionization (NSDI) in argon driven by a 3100-nm laser source. The correlated photoelectron momentum distribution (PMD) shows a strong dependence on the pulse duration, and the evolution of the PMD can be explained by an envelope-induced intensity effect. Determined by the time difference between tunneling and rescatterin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11983v1-abstract-full').style.display = 'inline'; document.getElementById('2209.11983v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11983v1-abstract-full" style="display: none;"> We present a joint experimental and theoretical study of non-sequential double ionization (NSDI) in argon driven by a 3100-nm laser source. The correlated photoelectron momentum distribution (PMD) shows a strong dependence on the pulse duration, and the evolution of the PMD can be explained by an envelope-induced intensity effect. Determined by the time difference between tunneling and rescattering, the laser vector potential at the ionization time of the bound electron will be influenced by the pulse duration, leading to different drift momenta. Such a mechanism is extracted through a classical trajectory Monte Carlo-based model and it can be further confirmed by quantum mechanical simulations. This work sheds light on the importance of the pulse duration in NSDI and improves our understanding of the strong field tunnel-recollision dynamics under mid-IR laser fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11983v1-abstract-full').style.display = 'none'; document.getElementById('2209.11983v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures, submitted to NJP, comments are welcomed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14769">arXiv:2208.14769</a> <span> [<a href="https://arxiv.org/pdf/2208.14769">pdf</a>, <a href="https://arxiv.org/format/2208.14769">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond Physics and Quantum Information Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Baldelli%2C+N">N. Baldelli</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+U">U. Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Biegert%2C+J">J. Biegert</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Elu%2C+U">U. Elu</a>, <a href="/search/physics?searchtype=author&query=Grass%2C+T">T. Grass</a>, <a href="/search/physics?searchtype=author&query=Grochowski%2C+P+T">P. T. Grochowski</a>, <a href="/search/physics?searchtype=author&query=Johnson%2C+A">A. Johnson</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A">A. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&query=Tyulnev%2C+I">I. Tyulnev</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">P. Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14769v1-abstract-short" style="display: inline;"> In this article, we will discuss a possibility of a symbiosis for attophysics (AP) and quantum information (QI) and quantum technologies (QT). We will argue that within few years AP will reach Technology Readiness Level (RTL) 4-5 in QT, and will thus become a legitimate platform for QI and QT. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14769v1-abstract-full" style="display: none;"> In this article, we will discuss a possibility of a symbiosis for attophysics (AP) and quantum information (QI) and quantum technologies (QT). We will argue that within few years AP will reach Technology Readiness Level (RTL) 4-5 in QT, and will thus become a legitimate platform for QI and QT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14769v1-abstract-full').style.display = 'none'; document.getElementById('2208.14769v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures, ATTO VIII Conference Proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05245">arXiv:2208.05245</a> <span> [<a href="https://arxiv.org/pdf/2208.05245">pdf</a>, <a href="https://arxiv.org/format/2208.05245">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.106.063705">10.1103/PhysRevA.106.063705 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light-matter entanglement after above-threshold ionization processes in atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05245v2-abstract-short" style="display: inline;"> Light-matter entanglement plays a fundamental role in many applications of quantum information science. Thus, finding processes where it can be observed is an important task. Here, we address this matter by theoretically investigating the entanglement between light and electrons generated in above-threshold ionization (ATI) process. The study is based on the back-action of the ATI process on the q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05245v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05245v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05245v2-abstract-full" style="display: none;"> Light-matter entanglement plays a fundamental role in many applications of quantum information science. Thus, finding processes where it can be observed is an important task. Here, we address this matter by theoretically investigating the entanglement between light and electrons generated in above-threshold ionization (ATI) process. The study is based on the back-action of the ATI process on the quantum optical state of the system, and its dependence on the kinetic energy and direction of the emitted photoelectrons. Taking into account the dynamics of the process, we demonstrate the creation of hybrid entangled states. The amount of entanglement has been studied in terms of the entropy of entanglement. Additionally, we use the Wigner function of the driving field mode to motivate the entanglement characterization when considering electrons propagating in opposite directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05245v2-abstract-full').style.display = 'none'; document.getElementById('2208.05245v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages (13 main text + 7 supplementary material), 8 figures (6 main text + 2 supplementary material). Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07289">arXiv:2202.07289</a> <span> [<a href="https://arxiv.org/pdf/2202.07289">pdf</a>, <a href="https://arxiv.org/format/2202.07289">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.233201">10.1103/PhysRevLett.129.233201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong-field chiral imaging with twisted photoelectrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Planas%2C+X+B">Xavier Barcons Planas</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A">Andr茅s Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew Stephen Maxwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07289v2-abstract-short" style="display: inline;"> Ultrafast imaging of molecular chirality is a key step towards the dream of imaging and interpreting electronic dynamics in complex and biologically relevant molecules. Here, we propose a new ultrafast chiral phenomenon exploiting recent advances in electron optics allowing access to the orbital angular momentum of free electrons. We show that strong-field ionization of a chiral target with a few-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07289v2-abstract-full').style.display = 'inline'; document.getElementById('2202.07289v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07289v2-abstract-full" style="display: none;"> Ultrafast imaging of molecular chirality is a key step towards the dream of imaging and interpreting electronic dynamics in complex and biologically relevant molecules. Here, we propose a new ultrafast chiral phenomenon exploiting recent advances in electron optics allowing access to the orbital angular momentum of free electrons. We show that strong-field ionization of a chiral target with a few-cycle linearly polarized 800 nm laser pulse yields photoelectron vortices, whose chirality reveals that of the target, and we discuss the mechanism underlying this phenomenon. Our work opens new perspectives in recollision-based chiral imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07289v2-abstract-full').style.display = 'none'; document.getElementById('2202.07289v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages main text, 2 figures, 8 equations</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 233201 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09515">arXiv:2201.09515</a> <span> [<a href="https://arxiv.org/pdf/2201.09515">pdf</a>, <a href="https://arxiv.org/format/2201.09515">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2207766119">10.1073/pnas.2207766119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High harmonic spectroscopy of quantum phase transitions in a high-T$_c$ superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Alcal%C3%A0%2C+J">Jordi Alcal脿</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+U">Utso Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Biegert%2C+J">Jens Biegert</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M">Marcelo Ciappina</a>, <a href="/search/physics?searchtype=author&query=Elu%2C+U">Ugaitz Elu</a>, <a href="/search/physics?searchtype=author&query=Gra%C3%9F%2C+T">Tobias Gra脽</a>, <a href="/search/physics?searchtype=author&query=Grochowski%2C+P+T">Piotr T. Grochowski</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Palau%2C+A">Anna Palau</a>, <a href="/search/physics?searchtype=author&query=Sidiropoulos%2C+T+P+H">Themistoklis P. H. Sidiropoulos</a>, <a href="/search/physics?searchtype=author&query=Steinle%2C+T">Tobias Steinle</a>, <a href="/search/physics?searchtype=author&query=Tyulnev%2C+I">Igor Tyulnev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09515v1-abstract-short" style="display: inline;"> We report on the new non--linear optical signatures of quantum phase transitions in the high-temperature superconductor YBCO, observed through high harmonic generation. While the linear optical response of the material is largely unchanged when cooling across the phase transitions, the nonlinear optical response sensitively imprints two critical points, one at the critical temperature of the cupra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09515v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09515v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09515v1-abstract-full" style="display: none;"> We report on the new non--linear optical signatures of quantum phase transitions in the high-temperature superconductor YBCO, observed through high harmonic generation. While the linear optical response of the material is largely unchanged when cooling across the phase transitions, the nonlinear optical response sensitively imprints two critical points, one at the critical temperature of the cuprate with the exponential growth of the surface harmonic yield in the superconducting phase, and another critical point, which marks the transition from strange metal to pseudo gap phase. To reveal the underlying microscopic quantum dynamics, a novel strong-field quasi-Hubbard model was developed, which describes the measured optical response dependent on the formation of Cooper pairs. Further, the new theory provides insight into the carrier scattering dynamics and allows to differentiate between the superconducting, pseudo gap, and strange metal phases. The direct connection between non--linear optical response and microscopic dynamics provides a powerful new methodology to study quantum phase transitions in correlated materials. Further implications are light-wave control over intricate quantum phases, light-matter hybrids, and application for optical quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09515v1-abstract-full').style.display = 'none'; document.getElementById('2201.09515v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09339">arXiv:2201.09339</a> <span> [<a href="https://arxiv.org/pdf/2201.09339">pdf</a>, <a href="https://arxiv.org/ps/2201.09339">ps</a>, <a href="https://arxiv.org/format/2201.09339">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0087384">10.1063/5.0087384 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of electronic correlation on the high harmonic generation in helium: a time-dependent configuration interaction singles vs time-dependent full configuration interaction study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wo%C5%BAniak%2C+A+P">Aleksander P. Wo藕niak</a>, <a href="/search/physics?searchtype=author&query=Przybytek%2C+M">Micha艂 Przybytek</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Moszy%C5%84ski%2C+R">Robert Moszy艅ski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09339v1-abstract-short" style="display: inline;"> In this paper, we investigate the effects of full electronic correlation on the high harmonic generation in the helium atom subjected to laser pulses of extremely high intensity. To do this, we perform real-time propagations of the helium atom wavefunction using quantum chemistry methods coupled to Gaussian basis sets. The calculations are done within the real-time time-dependent configuration int… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09339v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09339v1-abstract-full" style="display: none;"> In this paper, we investigate the effects of full electronic correlation on the high harmonic generation in the helium atom subjected to laser pulses of extremely high intensity. To do this, we perform real-time propagations of the helium atom wavefunction using quantum chemistry methods coupled to Gaussian basis sets. The calculations are done within the real-time time-dependent configuration interaction framework, at two levels of theory: time-dependent configuration interation with single excitations (TD-CIS, uncorrelated method) and time-dependent full configuration interaction (TD-FCI, fully correlated method), and analyse obtained HHG spectra. The electronic wavefunction is expanded in Dunning basis sets supplemented with functions adapted to describing highly excited continuum states. We also compare the TD-CI results with grid-based propagations of the helium atom within the single-active-electron approximation. Our results show when including the dynamical electron correlation, a noticeable improvement to the description of HHG can be achieved, in terms of e.g. a more constant intensity in the lower energy part of the harmonic plateau. However, such effects can be captured only if the basis set used suffices to reproduce the most basic features, such as the HHG cutoff position, at the uncorrelated level of theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09339v1-abstract-full').style.display = 'none'; document.getElementById('2201.09339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.07151">arXiv:2201.07151</a> <span> [<a href="https://arxiv.org/pdf/2201.07151">pdf</a>, <a href="https://arxiv.org/format/2201.07151">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.224205">10.1103/PhysRevB.105.224205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unsupervised detection of decoupled subspaces: many-body scars and beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Szo%C5%82dra%2C+T">Tomasz Szo艂dra</a>, <a href="/search/physics?searchtype=author&query=Sierant%2C+P">Piotr Sierant</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Zakrzewski%2C+J">Jakub Zakrzewski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.07151v2-abstract-short" style="display: inline;"> Highly excited eigenstates of quantum many-body systems are typically featureless thermal states. Some systems, however, possess a small number of special, low-entanglement eigenstates known as quantum scars. We introduce a quantum-inspired machine learning platform based on a Quantum Variational Autoencoder (QVAE) that detects families of scar states in spectra of many-body systems. Unlike a clas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07151v2-abstract-full').style.display = 'inline'; document.getElementById('2201.07151v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.07151v2-abstract-full" style="display: none;"> Highly excited eigenstates of quantum many-body systems are typically featureless thermal states. Some systems, however, possess a small number of special, low-entanglement eigenstates known as quantum scars. We introduce a quantum-inspired machine learning platform based on a Quantum Variational Autoencoder (QVAE) that detects families of scar states in spectra of many-body systems. Unlike a classical autoencoder, QVAE performs a parametrized unitary operation, allowing us to compress a single eigenstate into a smaller number of qubits. We demonstrate that the autoencoder trained on a scar state is able to detect the whole family of scar states sharing common features with the input state. We identify families of quantum many-body scars in the PXP model beyond the $\mathbb{Z}_2$ and $\mathbb{Z}_3$ families and find dynamically decoupled subspaces in the Hilbert space of disordered, interacting spin ladder model. The possibility of an automatic detection of subspaces of scar states opens new pathways in studies of models with a weak breakdown of ergodicity and fragmented Hilbert spaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07151v2-abstract-full').style.display = 'none'; document.getElementById('2201.07151v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Author accepted manuscript to be published in PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 224205 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.10148">arXiv:2111.10148</a> <span> [<a href="https://arxiv.org/pdf/2111.10148">pdf</a>, <a href="https://arxiv.org/format/2111.10148">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-32128-z">10.1038/s41467-022-32128-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entanglement of Orbital Angular Momentum in Non-Sequential Double Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Madsen%2C+L+B">Lars Bojer Madsen</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.10148v1-abstract-short" style="display: inline;"> We demonstrate entanglement between the orbital angular momentum (OAM) of two photoelectrons ionized via the strongly correlated process of non-sequential double ionization (NSDI). Due to the quantization of OAM, this entanglement is easily quantified and has a simple physical interpretation in terms of conservation laws. We explore detection by an entanglement witness, decomposable into local mea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.10148v1-abstract-full').style.display = 'inline'; document.getElementById('2111.10148v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.10148v1-abstract-full" style="display: none;"> We demonstrate entanglement between the orbital angular momentum (OAM) of two photoelectrons ionized via the strongly correlated process of non-sequential double ionization (NSDI). Due to the quantization of OAM, this entanglement is easily quantified and has a simple physical interpretation in terms of conservation laws. We explore detection by an entanglement witness, decomposable into local measurements, which strongly reduces the difficulty of experimental implementation. We compute the logarithmic negativity measure, which is directly applicable to mixed states, to demonstrate that the entanglement is robust to incoherent effects such as focal averaging. Using the strong-field approximation, we quantify the entanglement for a large range of targets and field parameters, isolating the best targets for experimentalists. The methodology presented here provides a general way to use OAM to quantify and, in principle, measure entanglement, that is well-suited to attosecond processes, can enhance our understanding and may be exploited in imaging processes or the generation of OAM-entangled electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.10148v1-abstract-full').style.display = 'none'; document.getElementById('2111.10148v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01032">arXiv:2110.01032</a> <span> [<a href="https://arxiv.org/pdf/2110.01032">pdf</a>, <a href="https://arxiv.org/format/2110.01032">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.033714">10.1103/PhysRevA.105.033714 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong laser fields and their power to generate controllable high-photon-number coherent-state superpositions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01032v3-abstract-short" style="display: inline;"> Recently, intensely driven laser-matter interactions have been used to connect the fields of strong laser field physics with quantum optics by generating non-classical states of light. Here, we make a further key step and show the potential of strong laser fields for generating controllable high-photon-number coherent-state superpositions. This has been achieved by using two of the most prominent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01032v3-abstract-full').style.display = 'inline'; document.getElementById('2110.01032v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01032v3-abstract-full" style="display: none;"> Recently, intensely driven laser-matter interactions have been used to connect the fields of strong laser field physics with quantum optics by generating non-classical states of light. Here, we make a further key step and show the potential of strong laser fields for generating controllable high-photon-number coherent-state superpositions. This has been achieved by using two of the most prominent strong-laser induced processes: high-harmonic generation and above-threshold ionization. We show how the obtained coherent-state superpositions change from an optical Schr枚dinger "cat" state to a "kitten" state by changing the atomic density in the laser-atom interaction region, and we demonstrate the generation of a 9-photon shifted optical "cat" state which, to our knowledge, is the highest photon number optical "cat" state experimentally reported. Our findings anticipate the development of new methods that naturally lead to the creation of high-photon-number controllable coherent-state superpositions, advancing investigations in quantum technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01032v3-abstract-full').style.display = 'none'; document.getElementById('2110.01032v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version submitted to Physical Review A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 105, 033714 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.03411">arXiv:2108.03411</a> <span> [<a href="https://arxiv.org/pdf/2108.03411">pdf</a>, <a href="https://arxiv.org/format/2108.03411">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1751-8121/ac3786">10.1088/1751-8121/ac3786 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unsupervised learning of anomalous diffusion data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mu%C3%B1oz-Gil%2C+G">Gorka Mu帽oz-Gil</a>, <a href="/search/physics?searchtype=author&query=Corominas%2C+G+G+i">Guillem Guig贸 i Corominas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.03411v1-abstract-short" style="display: inline;"> The characterization of diffusion processes is a keystone in our understanding of a variety of physical phenomena. Many of these deviate from Brownian motion, giving rise to anomalous diffusion. Various theoretical models exists nowadays to describe such processes, but their application to experimental setups is often challenging, due to the stochastic nature of the phenomena and the difficulty to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.03411v1-abstract-full').style.display = 'inline'; document.getElementById('2108.03411v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.03411v1-abstract-full" style="display: none;"> The characterization of diffusion processes is a keystone in our understanding of a variety of physical phenomena. Many of these deviate from Brownian motion, giving rise to anomalous diffusion. Various theoretical models exists nowadays to describe such processes, but their application to experimental setups is often challenging, due to the stochastic nature of the phenomena and the difficulty to harness reliable data. The latter often consists on short and noisy trajectories, which are hard to characterize with usual statistical approaches. In recent years, we have witnessed an impressive effort to bridge theory and experiments by means of supervised machine learning techniques, with astonishing results. In this work, we explore the use of unsupervised methods in anomalous diffusion data. We show that the main diffusion characteristics can be learnt without the need of any labelling of the data. We use such method to discriminate between anomalous diffusion models and extract their physical parameters. Moreover, we explore the feasibility of finding novel types of diffusion, in this case represented by compositions of existing diffusion models. At last, we showcase the use of the method in experimental data and demonstrate its advantages for cases where supervised learning is not applicable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.03411v1-abstract-full').style.display = 'none'; document.getElementById('2108.03411v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Complementary code can be found in https://github.com/gorkamunoz/Unsupervised-learning-of-anomalous-diffusion</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. A: Math. Theor. 54 504001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12887">arXiv:2107.12887</a> <span> [<a href="https://arxiv.org/pdf/2107.12887">pdf</a>, <a href="https://arxiv.org/format/2107.12887">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.123603">10.1103/PhysRevLett.128.123603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High photon number entangled states and coherent state superposition from the extreme-ultraviolet to the far infrared </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12887v3-abstract-short" style="display: inline;"> We present a theoretical demonstration on the generation of entangled coherent states and of coherent state superpositions, with photon numbers and frequencies orders of magnitude higher than those provided by the current technology. This is achieved by utilizing a quantum mechanical multimode description of the single- and two-color intense laser field driven process of high harmonic generation i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12887v3-abstract-full').style.display = 'inline'; document.getElementById('2107.12887v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12887v3-abstract-full" style="display: none;"> We present a theoretical demonstration on the generation of entangled coherent states and of coherent state superpositions, with photon numbers and frequencies orders of magnitude higher than those provided by the current technology. This is achieved by utilizing a quantum mechanical multimode description of the single- and two-color intense laser field driven process of high harmonic generation in atoms. It is found that all field modes involved in the high harmonic generation process are entangled, and upon performing a quantum operation, leads to the generation of high photon number optical cat states spanning from the far infrared to the extreme-ultraviolet spectral region. This provides direct insights into the quantum mechanical properties of the optical field in intense laser matter interaction. Finally, these states can be considered as a new resource for fundamental tests of quantum theory, quantum information processing or sensing with non-classical states of light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12887v3-abstract-full').style.display = 'none'; document.getElementById('2107.12887v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages (3 figures) + 4 pages supplement (2 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 123603 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12811">arXiv:2107.12811</a> <span> [<a href="https://arxiv.org/pdf/2107.12811">pdf</a>, <a href="https://arxiv.org/format/2107.12811">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> New schemes for creating large optical Schrodinger cat states using strong laser fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12811v1-abstract-short" style="display: inline;"> Recently, using conditioning approaches on the high-harmonic generation process induced by intense laser-atom interactions, we have developed a new method for the generation of optical Schr枚dinger cat states (M. Lewenstein et al., arXiv:2008.10221 (2020)). These quantum optical states have been proven to be very manageable as, by modifying the conditions under which harmonics are generated, one ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12811v1-abstract-full').style.display = 'inline'; document.getElementById('2107.12811v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12811v1-abstract-full" style="display: none;"> Recently, using conditioning approaches on the high-harmonic generation process induced by intense laser-atom interactions, we have developed a new method for the generation of optical Schr枚dinger cat states (M. Lewenstein et al., arXiv:2008.10221 (2020)). These quantum optical states have been proven to be very manageable as, by modifying the conditions under which harmonics are generated, one can interplay between $\textit{kitten}$ and $\textit{genuine cat}$ states. Here, we demonstrate that this method can also be used for the development of new schemes towards the creation of optical Schr枚dinger cat states, consisting of the superposition of three distinct coherent states. Apart from the interest these kind of states have on their own, we additionally propose a scheme for using them towards the generation of large cat states involving the sum of two different coherent states. The quantum properties of the obtained superpositions aim to significantly increase the applicability of optical Schr枚dinger cat states for quantum technology and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12811v1-abstract-full').style.display = 'none'; document.getElementById('2107.12811v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages (12 main text + 1 appendix), 8 figures. This paper has been submitted to the JCEL Special Issue on Wigner Functions in Computational Electronics and Photonics. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.08837">arXiv:2106.08837</a> <span> [<a href="https://arxiv.org/pdf/2106.08837">pdf</a>, <a href="https://arxiv.org/format/2106.08837">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac4126">10.1088/1367-2630/ac4126 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linking topological features of the Hofstadter model to optical diffraction figures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Di+Colandrea%2C+F">Francesco Di Colandrea</a>, <a href="/search/physics?searchtype=author&query=D%27Errico%2C+A">Alessio D'Errico</a>, <a href="/search/physics?searchtype=author&query=Maffei%2C+M">Maria Maffei</a>, <a href="/search/physics?searchtype=author&query=Price%2C+H+M">Hannah M. Price</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Marrucci%2C+L">Lorenzo Marrucci</a>, <a href="/search/physics?searchtype=author&query=Cardano%2C+F">Filippo Cardano</a>, <a href="/search/physics?searchtype=author&query=Dauphin%2C+A">Alexandre Dauphin</a>, <a href="/search/physics?searchtype=author&query=Massignan%2C+P">Pietro Massignan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.08837v2-abstract-short" style="display: inline;"> In two, three and even four spatial dimensions, the transverse responses experienced by a charged particle on a lattice in a uniform magnetic field are fully controlled by topological invariants called Chern numbers, which characterize the energy bands of the underlying Hofstadter Hamiltonian. These remarkable features, solely arising from the magnetic translational symmetry, are captured by Dioph… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08837v2-abstract-full').style.display = 'inline'; document.getElementById('2106.08837v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.08837v2-abstract-full" style="display: none;"> In two, three and even four spatial dimensions, the transverse responses experienced by a charged particle on a lattice in a uniform magnetic field are fully controlled by topological invariants called Chern numbers, which characterize the energy bands of the underlying Hofstadter Hamiltonian. These remarkable features, solely arising from the magnetic translational symmetry, are captured by Diophantine equations which relate the fraction of occupied states, the magnetic flux and the Chern numbers of the system bands. Here we investigate the close analogy between the topological properties of Hofstadter Hamiltonians and the diffraction figures resulting from optical gratings. In particular, we show that there is a one-to-one relation between the above mentioned Diophantine equation and the Bragg condition determining the far-field positions of the optical diffraction peaks. As an interesting consequence of this mapping, we discuss how the robustness of diffraction figures to structural disorder in the grating is a direct analogue of the robustness of transverse conductance in the Quantum Hall effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08837v2-abstract-full').style.display = 'none'; document.getElementById('2106.08837v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 24 (2022) 013028 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.01811">arXiv:2106.01811</a> <span> [<a href="https://arxiv.org/pdf/2106.01811">pdf</a>, <a href="https://arxiv.org/format/2106.01811">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.L140202">10.1103/PhysRevB.104.L140202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detecting ergodic bubbles at the crossover to many-body localization using neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Szoldra%2C+T">Tomasz Szoldra</a>, <a href="/search/physics?searchtype=author&query=Sierant%2C+P">Piotr Sierant</a>, <a href="/search/physics?searchtype=author&query=Kottmann%2C+K">Korbinian Kottmann</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Zakrzewski%2C+J">Jakub Zakrzewski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.01811v3-abstract-short" style="display: inline;"> The transition between ergodic and many-body localized phases is expected to occur via an avalanche mechanism, in which \emph{ergodic bubbles} that arise due to local fluctuations in system properties thermalize their surroundings leading to delocalization of the system, unless the disorder is sufficiently strong to stop this process. We propose an algorithm based on neural networks that allows to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01811v3-abstract-full').style.display = 'inline'; document.getElementById('2106.01811v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.01811v3-abstract-full" style="display: none;"> The transition between ergodic and many-body localized phases is expected to occur via an avalanche mechanism, in which \emph{ergodic bubbles} that arise due to local fluctuations in system properties thermalize their surroundings leading to delocalization of the system, unless the disorder is sufficiently strong to stop this process. We propose an algorithm based on neural networks that allows to detect the ergodic bubbles using experimentally measurable two-site correlation functions. Investigating time evolution of the system, we observe a logarithmic in time growth of the ergodic bubbles in the MBL regime. The distribution of the size of ergodic bubbles converges during time evolution to an exponentially decaying distribution in the MBL regime, and a power-law distribution with a thermal peak in the critical regime, supporting thus the scenario of delocalization through the avalanche mechanism. Our algorithm permits to pin-point quantitative differences in time evolution of systems with random and quasiperiodic potentials, as well as to identify rare (Griffiths) events. Our results open new pathways in studies of the mechanisms of thermalization of disordered many-body systems and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01811v3-abstract-full').style.display = 'none'; document.getElementById('2106.01811v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">version accepted in PRB Lett</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.01193">arXiv:2106.01193</a> <span> [<a href="https://arxiv.org/pdf/2106.01193">pdf</a>, <a href="https://arxiv.org/format/2106.01193">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.013157">10.1103/PhysRevResearch.4.013157 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Heat Engines with Carnot Efficiency at Maximum Power </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bera%2C+M+L">Mohit Lal Bera</a>, <a href="/search/physics?searchtype=author&query=Juli%C3%A0-Farr%C3%A9%2C+S">Sergi Juli脿-Farr茅</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Bera%2C+M+N">Manabendra Nath Bera</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.01193v3-abstract-short" style="display: inline;"> Heat engines constitute the major building blocks of modern technologies. However, conventional heat engines with higher power yield lesser efficiency and vice versa and respect various power-efficiency trade-off relations. This is also assumed to be true for the engines operating in the quantum regime. Here we show that these relations are not fundamental. We introduce quantum heat engines that d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01193v3-abstract-full').style.display = 'inline'; document.getElementById('2106.01193v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.01193v3-abstract-full" style="display: none;"> Heat engines constitute the major building blocks of modern technologies. However, conventional heat engines with higher power yield lesser efficiency and vice versa and respect various power-efficiency trade-off relations. This is also assumed to be true for the engines operating in the quantum regime. Here we show that these relations are not fundamental. We introduce quantum heat engines that deliver maximum power with Carnot efficiency in the one-shot finite-size regime. These engines are composed of working systems with a finite number of quantum particles and are restricted to one-shot measurements. The engines operate in a one-step cycle by letting the working system simultaneously interact with hot and cold baths via semi-local thermal operations. By allowing quantum entanglement between its constituents and, thereby, a coherent transfer of heat from hot to cold baths, the engine implements the fastest possible reversible state transformation in each cycle, resulting in maximum power and Carnot efficiency. Finally, we propose a physically realizable engine using quantum optical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01193v3-abstract-full').style.display = 'none'; document.getElementById('2106.01193v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Research 4, 013157 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00372">arXiv:2106.00372</a> <span> [<a href="https://arxiv.org/pdf/2106.00372">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/photonics8060192">10.3390/photonics8060192 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-Optical Spectrometry in Relativistic Laser-Plasma Interactions Using the High-Harmonic Generation Process: A Proposal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&query=Lopez-Martens%2C+R">Rodrigo Lopez-Martens</a>, <a href="/search/physics?searchtype=author&query=Haessler%2C+S">Stefan Haessler</a>, <a href="/search/physics?searchtype=author&query=Liontos%2C+I">Ioannis Liontos</a>, <a href="/search/physics?searchtype=author&query=Kahaly%2C+S">Subhendu Kahaly</a>, <a href="/search/physics?searchtype=author&query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00372v1-abstract-short" style="display: inline;"> Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser-matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00372v1-abstract-full').style.display = 'inline'; document.getElementById('2106.00372v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00372v1-abstract-full" style="display: none;"> Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser-matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving laser field towards the generation of a strong laser-field interaction product, such as high-order harmonics. In this case, the harmonic spectrum is reflected in the photon number distribution of the infrared (IR) driving field after its interaction with the high harmonic generation medium. The method was implemented in non-relativistic interactions using high harmonics produced by the interaction of strong laser pulses with atoms and semiconductors. Very recently, it was used for the generation of non-classical light states in intense laser-atom interaction, building the basis for studies of quantum electrodynamics in strong laser-field physics and the development of a new class of non-classical light sources for applications in quantum technology. Here, after a brief introduction of the QS method, we will discuss how the QS can be applied in relativistic laser-plasma interactions and become the driving factor for initiating investigations on relativistic quantum electrodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00372v1-abstract-full').style.display = 'none'; document.getElementById('2106.00372v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Photonics 8 no. 6, 192 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06766">arXiv:2105.06766</a> <span> [<a href="https://arxiv.org/pdf/2105.06766">pdf</a>, <a href="https://arxiv.org/format/2105.06766">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-26320-w">10.1038/s41467-021-26320-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Objective comparison of methods to decode anomalous diffusion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mu%C3%B1oz-Gil%2C+G">Gorka Mu帽oz-Gil</a>, <a href="/search/physics?searchtype=author&query=Volpe%2C+G">Giovanni Volpe</a>, <a href="/search/physics?searchtype=author&query=Garcia-March%2C+M+A">Miguel Angel Garcia-March</a>, <a href="/search/physics?searchtype=author&query=Aghion%2C+E">Erez Aghion</a>, <a href="/search/physics?searchtype=author&query=Argun%2C+A">Aykut Argun</a>, <a href="/search/physics?searchtype=author&query=Hong%2C+C+B">Chang Beom Hong</a>, <a href="/search/physics?searchtype=author&query=Bland%2C+T">Tom Bland</a>, <a href="/search/physics?searchtype=author&query=Bo%2C+S">Stefano Bo</a>, <a href="/search/physics?searchtype=author&query=Conejero%2C+J+A">J. Alberto Conejero</a>, <a href="/search/physics?searchtype=author&query=Firbas%2C+N">Nicol谩s Firbas</a>, <a href="/search/physics?searchtype=author&query=Orts%2C+%C3%92+G+i">脪scar Garibo i Orts</a>, <a href="/search/physics?searchtype=author&query=Gentili%2C+A">Alessia Gentili</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Zihan Huang</a>, <a href="/search/physics?searchtype=author&query=Jeon%2C+J">Jae-Hyung Jeon</a>, <a href="/search/physics?searchtype=author&query=Kabbech%2C+H">H茅l猫ne Kabbech</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y">Yeongjin Kim</a>, <a href="/search/physics?searchtype=author&query=Kowalek%2C+P">Patrycja Kowalek</a>, <a href="/search/physics?searchtype=author&query=Krapf%2C+D">Diego Krapf</a>, <a href="/search/physics?searchtype=author&query=Loch-Olszewska%2C+H">Hanna Loch-Olszewska</a>, <a href="/search/physics?searchtype=author&query=Lomholt%2C+M+A">Michael A. Lomholt</a>, <a href="/search/physics?searchtype=author&query=Masson%2C+J">Jean-Baptiste Masson</a>, <a href="/search/physics?searchtype=author&query=Meyer%2C+P+G">Philipp G. Meyer</a>, <a href="/search/physics?searchtype=author&query=Park%2C+S">Seongyu Park</a>, <a href="/search/physics?searchtype=author&query=Requena%2C+B">Borja Requena</a>, <a href="/search/physics?searchtype=author&query=Smal%2C+I">Ihor Smal</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06766v1-abstract-short" style="display: inline;"> Deviations from Brownian motion leading to anomalous diffusion are ubiquitously found in transport dynamics, playing a crucial role in phenomena from quantum physics to life sciences. The detection and characterization of anomalous diffusion from the measurement of an individual trajectory are challenging tasks, which traditionally rely on calculating the mean squared displacement of the trajector… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06766v1-abstract-full').style.display = 'inline'; document.getElementById('2105.06766v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06766v1-abstract-full" style="display: none;"> Deviations from Brownian motion leading to anomalous diffusion are ubiquitously found in transport dynamics, playing a crucial role in phenomena from quantum physics to life sciences. The detection and characterization of anomalous diffusion from the measurement of an individual trajectory are challenging tasks, which traditionally rely on calculating the mean squared displacement of the trajectory. However, this approach breaks down for cases of important practical interest, e.g., short or noisy trajectories, ensembles of heterogeneous trajectories, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams independently applied their own algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, providing practical advice for users and a benchmark for developers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06766v1-abstract-full').style.display = 'none'; document.getElementById('2105.06766v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">63 pages, 5 main figures, 1 table, 28 supplementary figures. Website: http://www.andi-challenge.org</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.14438">arXiv:2104.14438</a> <span> [<a href="https://arxiv.org/pdf/2104.14438">pdf</a>, <a href="https://arxiv.org/format/2104.14438">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.431572">10.1364/OE.431572 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-electron correlations in strong laser field ionization: Spin induced effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Efimov%2C+D">Dmitry Efimov</a>, <a href="/search/physics?searchtype=author&query=Maksymov%2C+A">Artur Maksymov</a>, <a href="/search/physics?searchtype=author&query=Ciapina%2C+M">Marcelo Ciapina</a>, <a href="/search/physics?searchtype=author&query=Prauzner-Bechcicki%2C+J+S">Jakub S. Prauzner-Bechcicki</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Zakrzewski%2C+J">Jakub Zakrzewski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.14438v1-abstract-short" style="display: inline;"> Strong field processes in the non-relativistic regime are insensitive to the electron spin, i.e. the observables appear to be independent of this electron property. This does not have to be the case for several active electrons where Pauli principle may affect the their dynamics. We exemplify this statement studying model atoms with three active electrons interacting with strong pulsed radiation,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14438v1-abstract-full').style.display = 'inline'; document.getElementById('2104.14438v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.14438v1-abstract-full" style="display: none;"> Strong field processes in the non-relativistic regime are insensitive to the electron spin, i.e. the observables appear to be independent of this electron property. This does not have to be the case for several active electrons where Pauli principle may affect the their dynamics. We exemplify this statement studying model atoms with three active electrons interacting with strong pulsed radiation, using an ab-initio time-dependent Schr枚dinger equation on a grid. In our restricted dimensionality model we are able, for the first time, to analyse momenta correlations of the three outgoing electrons using Dalitz plots. We show that significant differences are obtained between model Neon and Nitrogen atoms. These differences are traced back to the different symmetries of the electronic wavefunctions, and directly related to the different initial state spin components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14438v1-abstract-full').style.display = 'none'; document.getElementById('2104.14438v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5pp, 5figs. + suppl. comments most welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07453">arXiv:2102.07453</a> <span> [<a href="https://arxiv.org/pdf/2102.07453">pdf</a>, <a href="https://arxiv.org/format/2102.07453">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjd/s10053-021-00214-4">10.1140/epjd/s10053-021-00214-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conservation laws for Electron Vortices in Strong-Field Ionisation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kang%2C+Y">Yuxin Kang</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M">Marcelo Ciappina</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Faria%2C+C+F+d+M">Carla Figueira de Morisson Faria</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S Maxwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07453v2-abstract-short" style="display: inline;"> We investigate twisted electrons with a well defined orbital angular momentum, which have been ionised via a strong laser field. By formulating a new variant of the well-known strong field approximation, we are able to derive conservation laws for the angular momenta of twisted electrons in the cases of linear and circularly polarised fields. In the case of linear fields, we demonstrate that the o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07453v2-abstract-full').style.display = 'inline'; document.getElementById('2102.07453v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07453v2-abstract-full" style="display: none;"> We investigate twisted electrons with a well defined orbital angular momentum, which have been ionised via a strong laser field. By formulating a new variant of the well-known strong field approximation, we are able to derive conservation laws for the angular momenta of twisted electrons in the cases of linear and circularly polarised fields. In the case of linear fields, we demonstrate that the orbital angular momentum of the twisted electron is determined by the magnetic quantum number of the initial bound state. The condition for the circular field can be related to the famous ATI peaks, and provides a new interpretation for this fundamental feature of photoelectron spectra. We find the length of the circular pulse to be a vital factor in this selection rule and, employing an effective frequency, we show that the photoelectron OAM emission spectra is sensitive to the parity of the number of laser cycles. This work provides the basic theoretical framework with which to understand the OAM of a photoelectron undergoing strong field ionisation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07453v2-abstract-full').style.display = 'none'; document.getElementById('2102.07453v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures and 44 equations. Publication prepared for the EPJ D Topical Issue: Quantum Aspects of Attoscience</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. D (2021) 75: 199 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.10526">arXiv:2101.10526</a> <span> [<a href="https://arxiv.org/pdf/2101.10526">pdf</a>, <a href="https://arxiv.org/format/2101.10526">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.053124">10.1103/PhysRevA.103.053124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Principal frequency of an ultrashort laser pulse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Neyra%2C+E+G">Enrique G. Neyra</a>, <a href="/search/physics?searchtype=author&query=Vaveliuk%2C+P">Pablo Vaveliuk</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.10526v2-abstract-short" style="display: inline;"> We introduce an alternative definition of the main frequency of an ultrashort laser pulse, the principal frequency $蠅_P$. This parameter is complementary to the most accepted and widely used carrier frequency $蠅_0$. Given the fact that these ultrashort pulses, also known as transients, have a temporal width comprising only few cycles of the carrier wave, corresponding to a spectral bandwidth $螖蠅$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.10526v2-abstract-full').style.display = 'inline'; document.getElementById('2101.10526v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.10526v2-abstract-full" style="display: none;"> We introduce an alternative definition of the main frequency of an ultrashort laser pulse, the principal frequency $蠅_P$. This parameter is complementary to the most accepted and widely used carrier frequency $蠅_0$. Given the fact that these ultrashort pulses, also known as transients, have a temporal width comprising only few cycles of the carrier wave, corresponding to a spectral bandwidth $螖蠅$ covering several octaves, $蠅_P$ describes, in a more precise way, the dynamics driven by these sources. We present examples where, for instance, $蠅_P$ is able to correctly predict the high-order harmonic cutoff independently of the carrier envelope phase. This is confirmed by solving the time-dependent Schr枚dinger equation in reduced dimensions, supplemented with the time-analysis of the quantum spectra, where it is possible to observe how the sub-cycle electron dynamics is better described using $蠅_P$. The concept of $蠅_P$, however, can be applied to a large variety of scenarios, not only within the strong field physics domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.10526v2-abstract-full').style.display = 'none'; document.getElementById('2101.10526v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, accepted in PRA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, 053124 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08355">arXiv:2010.08355</a> <span> [<a href="https://arxiv.org/pdf/2010.08355">pdf</a>, <a href="https://arxiv.org/format/2010.08355">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D0FD00105H">10.1039/D0FD00105H <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manipulating Twisted Electrons in Strong-Field Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+G+S+J">G. S. J. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+Y">Y. Kang</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A+C">A. C. Brown</a>, <a href="/search/physics?searchtype=author&query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&query=Faria%2C+C+F+d+M">C. Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08355v1-abstract-short" style="display: inline;"> We investigate the discrete orbital angular momentum (OAM) of photoelectrons freed in strongfield ionization. We use these `twisted' electrons to provide an alternative interpretation on existing experimental work of vortex interferences caused by strong field ionization mediated by two counterrotating circularly polarized pulses separated by a delay. Using the strong field approximation, we deriv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08355v1-abstract-full').style.display = 'inline'; document.getElementById('2010.08355v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08355v1-abstract-full" style="display: none;"> We investigate the discrete orbital angular momentum (OAM) of photoelectrons freed in strongfield ionization. We use these `twisted' electrons to provide an alternative interpretation on existing experimental work of vortex interferences caused by strong field ionization mediated by two counterrotating circularly polarized pulses separated by a delay. Using the strong field approximation, we derive an interference condition for the vortices. In computations for a neon target we find very good agreement of the vortex condition with photoelectron momentum distributions computed with the strong field approximation, as well as with the time-dependent methods Qprop and R-Matrix. For each of these approaches we examine the OAM of the photoelectrons, finding a small number of vortex states localized in separate energy regions. We demonstrate that the vortices arise from the interference of pairs of twisted electron states. The OAM of each twisted electron state can be directly related to the number of arms of the spiral in that region. We gain further understanding by recreating the vortices with pairs of twisted electrons and use this to determine a semiclassical relation for the OAM. A discussion is included on measuring the OAM in strong field ionization directly or by employing specific laser pulse schemes as well as utilizing the OAM in time-resolved imaging of photo-induced dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08355v1-abstract-full').style.display = 'none'; document.getElementById('2010.08355v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, publication prepared for the the strong field theme of the Faraday Discussions conference: Time-resolved imaging of photo-induced dynamics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Faraday Discussions 228, 394 (2021) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Lewenstein%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Lewenstein%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Lewenstein%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Lewenstein%2C+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>