CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;28 of 28 results for author: <span class="mathjax">Stammer, P</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Stammer%2C+P">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Stammer, P"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Stammer%2C+P&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Stammer, P"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09484">arXiv:2412.09484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.09484">pdf</a>, <a href="https://arxiv.org/format/2412.09484">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> A Deterministic Dynamical Low-rank Approach for Charged Particle Transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Pia Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Burlacu%2C+T">Tiberiu Burlacu</a>, <a href="/search/physics?searchtype=author&amp;query=Wahl%2C+N">Niklas Wahl</a>, <a href="/search/physics?searchtype=author&amp;query=Lathouwers%2C+D">Danny Lathouwers</a>, <a href="/search/physics?searchtype=author&amp;query=Kusch%2C+J">Jonas Kusch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09484v2-abstract-short" style="display: inline;"> Deterministically solving charged particle transport problems at a sufficient spatial and angular resolution is often prohibitively expensive, especially due to their highly forward peaked scattering. We propose a model order reduction approach which evolves the solution on a low-rank manifold in time, making computations feasible at much higher resolutions and reducing the overall run-time and me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09484v2-abstract-full').style.display = 'inline'; document.getElementById('2412.09484v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09484v2-abstract-full" style="display: none;"> Deterministically solving charged particle transport problems at a sufficient spatial and angular resolution is often prohibitively expensive, especially due to their highly forward peaked scattering. We propose a model order reduction approach which evolves the solution on a low-rank manifold in time, making computations feasible at much higher resolutions and reducing the overall run-time and memory footprint. For this, we use a hybrid dynamical low-rank approach based on a collided-uncollided split, i.e., the transport equation is split through a collision source method. Uncollided particles are described using a ray tracer, facilitating the inclusion of boundary conditions and straggling, whereas collided particles are represented using a moment method combined with the dynamical low-rank approximation. Here the energy is treated as a pseudo-time and a rank adaptive integrator is chosen to dynamically adapt the rank in energy. We can reproduce the results of a full-rank reference code at a much lower rank and thus computational cost and memory usage. The solution further achieves comparable accuracy with respect to TOPAS MC as previous deterministic approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09484v2-abstract-full').style.display = 'none'; document.getElementById('2412.09484v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to be published in proceedings of M&amp;C 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11042">arXiv:2411.11042</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11042">pdf</a>, <a href="https://arxiv.org/format/2411.11042">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Non-classicality induces recombination in high-harmonic generation with circularly polarized fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">M. Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11042v2-abstract-short" style="display: inline;"> High-harmonic generation (HHG) is a nonlinear process in which a strong driving field interacts with a material, resulting in the frequency up-conversion of the driver into its high-order harmonics. This process is highly sensitive to the field&#39;s polarization: circular polarization, for instance, inhibits HHG. In this work, we demonstrate that the use of non-classical structured light enables HHG&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11042v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11042v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11042v2-abstract-full" style="display: none;"> High-harmonic generation (HHG) is a nonlinear process in which a strong driving field interacts with a material, resulting in the frequency up-conversion of the driver into its high-order harmonics. This process is highly sensitive to the field&#39;s polarization: circular polarization, for instance, inhibits HHG. In this work, we demonstrate that the use of non-classical structured light enables HHG in this otherwise prohibitive configuration for classical drivers. In particular, we consider circularly polarized light with non-classical fluctuations, introduced via squeezing along one polarization direction, and show that these non-classical features prompt the HHG process, with the spectral properties of the emitted harmonics depending on the type of squeezing applied. We examine the electron dynamics during HHG, revealing that non-classical fluctuations act as an effective force that guides the electron trajectories toward recombination. This approach opens new pathways for integrating quantum optics in HHG, providing novel means of controlling the light-matter interaction dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11042v2-abstract-full').style.display = 'none'; document.getElementById('2411.11042v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages (9 main text + 19 Supplementary Material), 14 figures (5 main text + 9 Supplementary Material). Comments are welcome. In v2 we have slightly modified the abstract and corrected some typos in the Supplementary Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17452">arXiv:2410.17452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17452">pdf</a>, <a href="https://arxiv.org/format/2410.17452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Generation of non-classical and entangled light states using intense laser-matter interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Tsatrafyllis%2C+N">N. Tsatrafyllis</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">P. Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17452v1-abstract-short" style="display: inline;"> Non-classical and entangled light states are of fundamental interest in quantum mechanics and they are a powerful tool for the emergence of new quantum technologies. The development of methods that can lead to the generation of such light states is therefore of high importance. Recently, we have demonstrated that intense laser-matter interactions can serve towards this direction. Specifically, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17452v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17452v1-abstract-full" style="display: none;"> Non-classical and entangled light states are of fundamental interest in quantum mechanics and they are a powerful tool for the emergence of new quantum technologies. The development of methods that can lead to the generation of such light states is therefore of high importance. Recently, we have demonstrated that intense laser-matter interactions can serve towards this direction. Specifically, we have shown how the use of fully quantized approaches in intense laser-matter interactions and the process of high harmonic generation, can lead to the generation high photon-number non-classical (optical Schr枚dinger&#39;s &#34;cat&#34; or squeezed) and entangled states from the far-infrared (IR) to the extreme-ultraviolet (XUV). Here, after a brief introduction on the fundamentals, we summarize the operation principles of these approaches and we discuss the future directions of non-classical light engineering using strong laser fields, and the potential applications in ultrafast and quantum information science. Our findings open the way to a novel quantum nonlinear spectroscopy method, based on the interplay between the quantum properties of light with that of quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17452v1-abstract-full').style.display = 'none'; document.getElementById('2410.17452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited Topical Review submitted to J. Phys. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07577">arXiv:2408.07577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07577">pdf</a>, <a href="https://arxiv.org/format/2408.07577">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.063118">10.1103/PhysRevA.110.063118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Squeezed states of light after high-harmonic generation in excited atomic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Crispin%2C+H+B">H. B. Crispin</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Kr%C3%BCger%2C+M">M. Kr眉ger</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">P. Tzallas</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">M. F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07577v2-abstract-short" style="display: inline;"> High-harmonic generation (HHG) has recently emerged as a promising method for generating non-classical states of light with frequencies spanning from the infrared up to the extreme ultraviolet regime. In this work, we theoretically investigate the generation of squeezed states of light through HHG processes in atomic systems that had been initially driven to their first excited state. Our study re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07577v2-abstract-full').style.display = 'inline'; document.getElementById('2408.07577v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07577v2-abstract-full" style="display: none;"> High-harmonic generation (HHG) has recently emerged as a promising method for generating non-classical states of light with frequencies spanning from the infrared up to the extreme ultraviolet regime. In this work, we theoretically investigate the generation of squeezed states of light through HHG processes in atomic systems that had been initially driven to their first excited state. Our study reveals significant single-mode squeezing in both the driving field and low-order harmonic modes. Additionally, we characterize two-mode squeezing features in the generated states, both between fundamental and harmonic modes, and among the harmonic modes themselves. Using these correlations, we demonstrate the generation of optical Schr枚dinger kitten states through heralding measurements, specifically via photon subtraction in one of the modes influenced by two-mode squeezing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07577v2-abstract-full').style.display = 'none'; document.getElementById('2408.07577v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages (10 main text + 7 appendix), 6 figures (4 main text + 2 appendix). Comments are welcome. In v2 we have modified the text accordingly to the comments received by the anonymous reviewers of Physical Review A. We have also updated the references that have been already published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 110, 063118 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17949">arXiv:2405.17949</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17949">pdf</a>, <a href="https://arxiv.org/format/2405.17949">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond spectroscopy using vacuum-ultraviolet pulses emitted from laser-driven semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nayak%2C+A">A. Nayak</a>, <a href="/search/physics?searchtype=author&amp;query=Rajak%2C+D">D. Rajak</a>, <a href="/search/physics?searchtype=author&amp;query=Farkas%2C+B">B. Farkas</a>, <a href="/search/physics?searchtype=author&amp;query=Granados%2C+C">C. Granados</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Varju%2C+K">K. Varju</a>, <a href="/search/physics?searchtype=author&amp;query=Mairesse%2C+Y">Y. Mairesse</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">P. Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17949v1-abstract-short" style="display: inline;"> Strongly laser-driven semiconductor crystals offer substantial advantages for the study of many-body physics and ultrafast optoelectronics via the high harmonic generation process. While this phenomenon has been employed to investigate the dynamics of solids in the presence of strong laser fields, its potential to be utilized as an attosecond light source has remained unexploited. Here, we demonst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17949v1-abstract-full').style.display = 'inline'; document.getElementById('2405.17949v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17949v1-abstract-full" style="display: none;"> Strongly laser-driven semiconductor crystals offer substantial advantages for the study of many-body physics and ultrafast optoelectronics via the high harmonic generation process. While this phenomenon has been employed to investigate the dynamics of solids in the presence of strong laser fields, its potential to be utilized as an attosecond light source has remained unexploited. Here, we demonstrate that the high harmonics generated through the interaction of mid--infrared pulses with a ZnO crystal leads to the production of attosecond pulses, that can be used to trace the ultrafast ionization dynamics of alkali metals. In a cross--correlation approach, we photoionize Cesium atoms with the vacuum-ultraviolet (VUV) high-harmonics in the presence of a mid-infrared laser field. We observe strong oscillations of the photoelectron yield originating from the instantaneous polarization of the atoms by the laser field. The phase of the oscillations encodes the attosecond synchronization of the ionizing high-harmonics and is used for attosecond pulse metrology. This light source opens a new spectral window for attosecond spectroscopy, paving the way for studies of systems with low ionization potentials including neutral atoms, molecules and solids. Additionally, our results highlight the significance of the source for generating non--classical massively entangled light states in the visible--VUV spectral region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17949v1-abstract-full').style.display = 'none'; document.getElementById('2405.17949v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages (7 main text + 2 supplementary material), 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05482">arXiv:2403.05482</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05482">pdf</a>, <a href="https://arxiv.org/format/2403.05482">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42254-024-00769-2">10.1038/s42254-024-00769-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum phenomena in attosecond science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cruz-Rodriguez%2C+L">Lidice Cruz-Rodriguez</a>, <a href="/search/physics?searchtype=author&amp;query=Dey%2C+D">Diptesh Dey</a>, <a href="/search/physics?searchtype=author&amp;query=Freibert%2C+A">Antonia Freibert</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05482v1-abstract-short" style="display: inline;"> Attosecond science has opened up new frontiers in our understanding of processes happening on the intrinsic timescale of electrons. The ability to manipulate and observe phenomena at the attosecond level has yielded groundbreaking insights into processes such as electron dynamics and the behavior of matter under extreme conditions. This interdisciplinary field bridges various research areas such a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05482v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05482v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05482v1-abstract-full" style="display: none;"> Attosecond science has opened up new frontiers in our understanding of processes happening on the intrinsic timescale of electrons. The ability to manipulate and observe phenomena at the attosecond level has yielded groundbreaking insights into processes such as electron dynamics and the behavior of matter under extreme conditions. This interdisciplinary field bridges various research areas such as quantum optics, quantum chemistry and quantum information science facilitating a cohesive understanding. However, despite many emerging successful applications, the discussion about intrinsic quantum effects has mainly been ignored. In this Perspective, we explore the latest advancements in quantum phenomena within attosecond science, encompassing both experimental and theoretical progress. Specifically, in the context of high-harmonic generation and above-threshold ionization, we focus on discerning genuinely quantum observations and distinguishing them from classical phenomena. Additionally, we illuminate the often overlooked yet significant role of entanglement in attosecond processes, elucidating its influence on experimental outcomes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05482v1-abstract-full').style.display = 'none'; document.getElementById('2403.05482v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages (with 3 figures and 2 tables), Comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Reviews Physics 6, 691-704 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15030">arXiv:2310.15030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15030">pdf</a>, <a href="https://arxiv.org/format/2310.15030">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.143603">10.1103/PhysRevLett.132.143603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entanglement and squeezing of the optical field modes in high harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Arg%C3%BCello-Luengo%2C+J">Javier Arg眉ello-Luengo</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15030v1-abstract-short" style="display: inline;"> Squeezing of optical fields, used as a powerful resource for many applications, and the radiation properties in the process of high harmonic generation have thus far been considered separately. In this Letter, we want to clarify that the joint quantum state of all the optical field modes in the process of high harmonic generation is in general entangled and squeezed. We show that this is already t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15030v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15030v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15030v1-abstract-full" style="display: none;"> Squeezing of optical fields, used as a powerful resource for many applications, and the radiation properties in the process of high harmonic generation have thus far been considered separately. In this Letter, we want to clarify that the joint quantum state of all the optical field modes in the process of high harmonic generation is in general entangled and squeezed. We show that this is already the case in the simplest scenario of driving uncorrelated atoms by a classical laser light field. The previous observation of product coherent states after the high harmonic generation process is a consequence of the assumption that the ground state depletion can be neglected, which is related to vanishing dipole moment correlations. Furthermore, we analyze how the resulting quadrature squeezing in the fundamental laser mode after the interaction can be controlled and explicitly show that all field modes are entangled. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15030v1-abstract-full').style.display = 'none'; document.getElementById('2310.15030v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages (2 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 143603 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14435">arXiv:2309.14435</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.14435">pdf</a>, <a href="https://arxiv.org/format/2309.14435">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nonclassical states of light after high-harmonic generation in semiconductors: a Bloch-based perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14435v2-abstract-short" style="display: inline;"> High-harmonic generation has emerged as a pivotal process in strong-field physics, yielding extreme ultraviolet radiation and attosecond pulses with a wide range of applications. Furthermore, its emergent connection with the field of quantum optics has revealed its potential for generating non-classical states of light. Here, we investigate the process of high-harmonic generation in semiconductors&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14435v2-abstract-full').style.display = 'inline'; document.getElementById('2309.14435v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14435v2-abstract-full" style="display: none;"> High-harmonic generation has emerged as a pivotal process in strong-field physics, yielding extreme ultraviolet radiation and attosecond pulses with a wide range of applications. Furthermore, its emergent connection with the field of quantum optics has revealed its potential for generating non-classical states of light. Here, we investigate the process of high-harmonic generation in semiconductors under a quantum optical perspective while using a Bloch-based solid-state description. Through the implementation of quantum operations based on the measurement of high-order harmonics, we demonstrate the generation of non-classical light states similar to those found when driving atomic systems. These states are characterized using diverse quantum optical observables and quantum information measures, showing the influence of electron dynamics on their properties. Additionally, we analyze the dependence of their features on solid characteristics such as the dephasing time and crystal orientation, while also assessing their sensitivity to changes in driving field strength. This study provides insights into HHG in semiconductors and its potential for generating non-classical light sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14435v2-abstract-full').style.display = 'none'; document.getElementById('2309.14435v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages (16 main text + 6 appendix), 7 figures (5 main text + 2 appendix)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109, 035203 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15087">arXiv:2308.15087</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.15087">pdf</a>, <a href="https://arxiv.org/format/2308.15087">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-024-02579-w">10.1038/s41567-024-02579-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the limitations of the semi-classical picture in high harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15087v3-abstract-short" style="display: inline;"> The recent progress in the quantum optical formulation of the process of high harmonic generation has reached a point where the successful semi-classical model shows its limitations. So far the light source which drives the process was considered to be provided by a laser, in agreement with the classical picture. However, quantum optics allows to consider light fields beyond the classical realm, s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15087v3-abstract-full').style.display = 'inline'; document.getElementById('2308.15087v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15087v3-abstract-full" style="display: none;"> The recent progress in the quantum optical formulation of the process of high harmonic generation has reached a point where the successful semi-classical model shows its limitations. So far the light source which drives the process was considered to be provided by a laser, in agreement with the classical picture. However, quantum optics allows to consider light fields beyond the classical realm, such as bright squeezed vacuum of photon number states. Both field states have vanishing mean electric field amplitudes, but can still lead to the generation of high harmonic radiation for sufficiently high intensities. This poses new questions about the range of validity of the semi-classical picture, and allows to extend the domain of questions which could possibly be asked. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15087v3-abstract-full').style.display = 'none'; document.getElementById('2308.15087v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, slightly extended version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 20, 1040-1042 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10223">arXiv:2308.10223</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10223">pdf</a>, <a href="https://arxiv.org/format/2308.10223">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.5.010328">10.1103/PRXQuantum.5.010328 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analog simulation of high harmonic generation in atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Arg%C3%BCello-Luengo%2C+J">Javier Arg眉ello-Luengo</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Weld%2C+D+M">David M. Weld</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10223v2-abstract-short" style="display: inline;"> The demanding experimental access to the ultrafast dynamics of materials challenges our understanding of their electronic response to applied strong laser fields. For this purpose, trapped ultracold atoms with highly controllable potentials have become an enabling tool to describe phenomena in a scenario where some effects are more easily accessible and twelve orders of magnitude slower. In this w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10223v2-abstract-full').style.display = 'inline'; document.getElementById('2308.10223v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10223v2-abstract-full" style="display: none;"> The demanding experimental access to the ultrafast dynamics of materials challenges our understanding of their electronic response to applied strong laser fields. For this purpose, trapped ultracold atoms with highly controllable potentials have become an enabling tool to describe phenomena in a scenario where some effects are more easily accessible and twelve orders of magnitude slower. In this work, we introduce a mapping between the parameters of attoscience platform and atomic cloud simulators, and propose an experimental protocol to access the emission spectrum of high harmonic generation, a regime that has so far been elusive to cold atom simulation. As we illustrate, the benchmark offered by these simulators can provide new insights on the conversion efficiency of extended and short nuclear potentials, as well as the response to applied elliptical polarized fields or ultrashort few-cycle pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10223v2-abstract-full').style.display = 'none'; document.getElementById('2308.10223v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted version of the manuscript</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 5, 010328 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12381">arXiv:2307.12381</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12381">pdf</a>, <a href="https://arxiv.org/format/2307.12381">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Quantum optical analysis of high-order harmonic generation in H$_2^+$ molecular ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">P. Tzallas</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">M. F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12381v1-abstract-short" style="display: inline;"> We present a comprehensive theoretical investigation of high-order harmonic generation in H$_2^+$ molecular ions within a quantum optical framework. Our study focuses on characterizing various quantum optical and quantum information measures, highlighting the versatility of HHG in two-center molecules towards quantum technology applications. We demonstrate the emergence of entanglement between ele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12381v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12381v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12381v1-abstract-full" style="display: none;"> We present a comprehensive theoretical investigation of high-order harmonic generation in H$_2^+$ molecular ions within a quantum optical framework. Our study focuses on characterizing various quantum optical and quantum information measures, highlighting the versatility of HHG in two-center molecules towards quantum technology applications. We demonstrate the emergence of entanglement between electron and light states after the laser-matter interaction. We also identify the possibility of obtaining non-classical states of light in targeted frequency modes by conditioning on specific electronic quantum states, which turn out to be crucial in the generation of highly non-classical entangled states between distinct sets of harmonic modes. Our findings open up avenues for studying strong-laser field-driven interactions in molecular systems, and suggest their applicability to quantum technology applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12381v1-abstract-full').style.display = 'none'; document.getElementById('2307.12381v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages (14 main text + 7 appendix), 9 figures (8 main text + 1 appendix)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.14480">arXiv:2306.14480</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.14480">pdf</a>, <a href="https://arxiv.org/format/2306.14480">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.134.013601">10.1103/PhysRevLett.134.013601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear optics using intense optical coherent state superpositions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.14480v2-abstract-short" style="display: inline;"> Superpositions of coherent light states, are vital for quantum technologies. However, restrictions in existing state preparation and characterization schemes, in combination with decoherence effects, prevent their intensity enhancement and implementation in nonlinear optics. Here, by developing a decoherence--free approach, we generate intense femtosecond--duration infrared coherent state superpos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14480v2-abstract-full').style.display = 'inline'; document.getElementById('2306.14480v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.14480v2-abstract-full" style="display: none;"> Superpositions of coherent light states, are vital for quantum technologies. However, restrictions in existing state preparation and characterization schemes, in combination with decoherence effects, prevent their intensity enhancement and implementation in nonlinear optics. Here, by developing a decoherence--free approach, we generate intense femtosecond--duration infrared coherent state superpositions (CSS) with a mean photon number orders of magnitude higher than the existing CSS sources. We utilize them in nonlinear optics to drive the second harmonic generation process in an optical crystal. We experimentally and theoretically show that the non--classical nature of the intense infrared CSS is imprinted in the second-order autocorrelation traces. Additionally, theoretical analysis shows that the quantum features of the infrared CSS are also present in the generated second harmonic. The findings introduce the optical CSS into the realm of nonlinear quantum optics, opening up new paths in quantum information science and quantum light engineering by creating non-classical light states in various spectral regions via non-linear up-conversion processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14480v2-abstract-full').style.display = 'none'; document.getElementById('2306.14480v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In v2 we have modified the text accordingly to the comments obtained from the reviewers of Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 134, 013601 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04692">arXiv:2302.04692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.04692">pdf</a>, <a href="https://arxiv.org/format/2302.04692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/acea31">10.1088/1361-6633/acea31 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong laser physics, non-classical light states and quantum information science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+U">Utso Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04692v1-abstract-short" style="display: inline;"> Strong laser physics is a research direction that relies on the use of high-power lasers and has led to fascinating achievements ranging from relativistic particle acceleration to attosecond science. On the other hand, quantum optics has been built on the use of low photon number sources and has opened the way for groundbreaking discoveries in quantum technology, advancing investigations ranging f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04692v1-abstract-full').style.display = 'inline'; document.getElementById('2302.04692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04692v1-abstract-full" style="display: none;"> Strong laser physics is a research direction that relies on the use of high-power lasers and has led to fascinating achievements ranging from relativistic particle acceleration to attosecond science. On the other hand, quantum optics has been built on the use of low photon number sources and has opened the way for groundbreaking discoveries in quantum technology, advancing investigations ranging from fundamental tests of quantum theory to quantum information processing. Despite the tremendous progress, until recently these directions have remained disconnected. This is because, the majority of the interactions in the strong-field limit have been successfully described by semi-classical approximations treating the electromagnetic field classically, as there was no need to include the quantum properties of the field to explain the observations. The link between strong laser physics, quantum optics, and quantum information science has been developed in the recent past. Studies based on fully quantized and conditioning approaches have shown that intense laser--matter interactions can be used for the generation of controllable entangled and non-classical light states. This achievement opens the way for a vast number of investigations stemming from the symbiosis of strong laser physics, quantum optics, and quantum information science. Here, after an introduction to the fundamentals of these research directions, we report on the recent progress in the fully quantized description of intense laser--matter interaction and the methods that have been developed for the generation of non-classical light states and entangled states. Also, we discuss the future directions of non-classical light engineering using strong laser fields, and the potential applications in ultrafast and quantum information science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04692v1-abstract-full').style.display = 'none'; document.getElementById('2302.04692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">60 pages, 20 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00033">arXiv:2211.00033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.00033">pdf</a>, <a href="https://arxiv.org/format/2211.00033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Entanglement and non-classical states of light in a strong-laser driven solid-state system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00033v2-abstract-short" style="display: inline;"> The development of sources delivering non-classical states of light is one of the main needs for applications of optical quantum information science. Here, we demonstrate the generation of non-classical states of light using strong-laser fields driving a solid-state system, by using the process of high-order harmonic generation, where an electron tunnels out of the parent site and, later on, recom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00033v2-abstract-full').style.display = 'inline'; document.getElementById('2211.00033v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00033v2-abstract-full" style="display: none;"> The development of sources delivering non-classical states of light is one of the main needs for applications of optical quantum information science. Here, we demonstrate the generation of non-classical states of light using strong-laser fields driving a solid-state system, by using the process of high-order harmonic generation, where an electron tunnels out of the parent site and, later on, recombines on it emitting high-order harmonic radiation, at the expense of affecting the driving laser field. Since in solid-state systems the recombination of the electron can be delocalized along the material, the final state of the electron determines how the electromagnetic field gets affected because of the laser-matter interaction, leading to the generation of entanglement between the electron and the field. These features can be enhanced by applying conditioning operations, i.e., quantum operations based on the measurement of high-harmonic radiation. We study non-classical features present in the final quantum optical state, and characterize the amount of entanglement between the light and the electrons in the solid. The work sets the foundation for the development of compact solid-state-based non-classical light sources using strong-field physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00033v2-abstract-full').style.display = 'none'; document.getElementById('2211.00033v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We present a different formulation to that of the previous version, more in line with the approach followed in our previous works. 12 pages (8 main text + 4 Methods), 4 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14769">arXiv:2208.14769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.14769">pdf</a>, <a href="https://arxiv.org/format/2208.14769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond Physics and Quantum Information Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Baldelli%2C+N">N. Baldelli</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+U">U. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Biegert%2C+J">J. Biegert</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Elu%2C+U">U. Elu</a>, <a href="/search/physics?searchtype=author&amp;query=Grass%2C+T">T. Grass</a>, <a href="/search/physics?searchtype=author&amp;query=Grochowski%2C+P+T">P. T. Grochowski</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A">A. Johnson</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Ord%C3%B3%C3%B1ez%2C+A">A. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Tyulnev%2C+I">I. Tyulnev</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">P. Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14769v1-abstract-short" style="display: inline;"> In this article, we will discuss a possibility of a symbiosis for attophysics (AP) and quantum information (QI) and quantum technologies (QT). We will argue that within few years AP will reach Technology Readiness Level (RTL) 4-5 in QT, and will thus become a legitimate platform for QI and QT. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14769v1-abstract-full" style="display: none;"> In this article, we will discuss a possibility of a symbiosis for attophysics (AP) and quantum information (QI) and quantum technologies (QT). We will argue that within few years AP will reach Technology Readiness Level (RTL) 4-5 in QT, and will thus become a legitimate platform for QI and QT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14769v1-abstract-full').style.display = 'none'; document.getElementById('2208.14769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures, ATTO VIII Conference Proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05245">arXiv:2208.05245</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05245">pdf</a>, <a href="https://arxiv.org/format/2208.05245">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.106.063705">10.1103/PhysRevA.106.063705 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light-matter entanglement after above-threshold ionization processes in atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05245v2-abstract-short" style="display: inline;"> Light-matter entanglement plays a fundamental role in many applications of quantum information science. Thus, finding processes where it can be observed is an important task. Here, we address this matter by theoretically investigating the entanglement between light and electrons generated in above-threshold ionization (ATI) process. The study is based on the back-action of the ATI process on the q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05245v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05245v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05245v2-abstract-full" style="display: none;"> Light-matter entanglement plays a fundamental role in many applications of quantum information science. Thus, finding processes where it can be observed is an important task. Here, we address this matter by theoretically investigating the entanglement between light and electrons generated in above-threshold ionization (ATI) process. The study is based on the back-action of the ATI process on the quantum optical state of the system, and its dependence on the kinetic energy and direction of the emitted photoelectrons. Taking into account the dynamics of the process, we demonstrate the creation of hybrid entangled states. The amount of entanglement has been studied in terms of the entropy of entanglement. Additionally, we use the Wigner function of the driving field mode to motivate the entanglement characterization when considering electrons propagating in opposite directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05245v2-abstract-full').style.display = 'none'; document.getElementById('2208.05245v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages (13 main text + 7 supplementary material), 8 figures (6 main text + 2 supplementary material). Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08417">arXiv:2205.08417</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.08417">pdf</a>, <a href="https://arxiv.org/format/2205.08417">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Software">cs.MS</span> </div> </div> <p class="title is-5 mathjax"> KiT-RT: An extendable framework for radiative transfer and therapy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kusch%2C+J">Jonas Kusch</a>, <a href="/search/physics?searchtype=author&amp;query=Schotth%C3%B6fer%2C+S">Steffen Schotth枚fer</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Pia Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Wolters%2C+J">Jannick Wolters</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+T">Tianbai Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08417v1-abstract-short" style="display: inline;"> In this paper we present KiT-RT (Kinetic Transport Solver for Radiation Therapy), an open-source C++ based framework for solving kinetic equations in radiation therapy applications. The aim of this code framework is to provide a collection of classical deterministic solvers for unstructured meshes that allow for easy extendability. Therefore, KiT-RT is a convenient base to test new numerical metho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08417v1-abstract-full').style.display = 'inline'; document.getElementById('2205.08417v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08417v1-abstract-full" style="display: none;"> In this paper we present KiT-RT (Kinetic Transport Solver for Radiation Therapy), an open-source C++ based framework for solving kinetic equations in radiation therapy applications. The aim of this code framework is to provide a collection of classical deterministic solvers for unstructured meshes that allow for easy extendability. Therefore, KiT-RT is a convenient base to test new numerical methods in various applications and compare them against conventional solvers. The implementation includes spherical-harmonics, minimal entropy, neural minimal entropy and discrete ordinates methods. Solution characteristics and efficiency are presented through several test cases ranging from radiation transport to electron radiation therapy. Due to the variety of included numerical methods and easy extendability, the presented open source code is attractive for both developers, who want a basis to build their own numerical solvers and users or application engineers, who want to gain experimental insights without directly interfering with the codebase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08417v1-abstract-full').style.display = 'none'; document.getElementById('2205.08417v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 15 figures, journal submission</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 65M08 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> G.4; J.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.04839">arXiv:2203.04839</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.04839">pdf</a>, <a href="https://arxiv.org/format/2203.04839">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.101.033405">10.1103/PhysRevA.101.033405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of ac-Stark-shifted resonances in intense two-color circularly polarized laser fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Patchkovskii%2C+S">Serguei Patchkovskii</a>, <a href="/search/physics?searchtype=author&amp;query=Morales%2C+F">Felipe Morales</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.04839v1-abstract-short" style="display: inline;"> We report on the appearance of a structure at low energies in the photo-electron momentum distribution of the hydrogen atom exposed to two-color counter-rotating bi-circular laser fields. These structures, which arise due to AC-Stark shifted resonances, break the three-fold symmetry, typical for the $蠅-2蠅$ bi-circular fields. We discuss the physical origin of this structure in terms of partial-wav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04839v1-abstract-full').style.display = 'inline'; document.getElementById('2203.04839v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.04839v1-abstract-full" style="display: none;"> We report on the appearance of a structure at low energies in the photo-electron momentum distribution of the hydrogen atom exposed to two-color counter-rotating bi-circular laser fields. These structures, which arise due to AC-Stark shifted resonances, break the three-fold symmetry, typical for the $蠅-2蠅$ bi-circular fields. We discuss the physical origin of this structure in terms of partial-wave interference between direct ionization channels and a resonant pathway, that passes through the AC-Stark shifted state and show how the underlying Rydberg state population depend on the field strength and pulse duration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04839v1-abstract-full').style.display = 'none'; document.getElementById('2203.04839v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 101 (3), 033405 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.04354">arXiv:2203.04354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.04354">pdf</a>, <a href="https://arxiv.org/format/2203.04354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.106.L050402">10.1103/PhysRevA.106.L050402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theory of entanglement and measurement in high harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.04354v3-abstract-short" style="display: inline;"> Quantum information science and intense laser matter interaction are two apparently unrelated fields. Here, we introduce the notion of quantum information theory to intense laser driven processes by providing the quantum mechanical description of measurement protocols for high harmonic generation in atoms. This allows to conceive new protocols for quantum state engineering of light. We explicitly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04354v3-abstract-full').style.display = 'inline'; document.getElementById('2203.04354v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.04354v3-abstract-full" style="display: none;"> Quantum information science and intense laser matter interaction are two apparently unrelated fields. Here, we introduce the notion of quantum information theory to intense laser driven processes by providing the quantum mechanical description of measurement protocols for high harmonic generation in atoms. This allows to conceive new protocols for quantum state engineering of light. We explicitly evaluate conditioning experiments on individual optical field modes, and provide the corresponding quantum operation for coherent states. The associated positive operator-valued measures are obtained, and give rise to the quantum theory of measurement for the generation of high dimensional entangled states, and coherent state superposition with controllable non-classical features on the attosecond timescale. This establish the use of intense laser driven processes as a novel quantum technology platform for quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04354v3-abstract-full').style.display = 'none'; document.getElementById('2203.04354v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 106, L050402 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.02379">arXiv:2202.02379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.02379">pdf</a>, <a href="https://arxiv.org/format/2202.02379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcp.2022.111725">10.1016/j.jcp.2022.111725 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multivariate error modeling and uncertainty quantification using importance (re-)weighting for Monte Carlo simulations in particle transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Pia Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Burigo%2C+L">Lucas Burigo</a>, <a href="/search/physics?searchtype=author&amp;query=J%C3%A4kel%2C+O">Oliver J盲kel</a>, <a href="/search/physics?searchtype=author&amp;query=Frank%2C+M">Martin Frank</a>, <a href="/search/physics?searchtype=author&amp;query=Wahl%2C+N">Niklas Wahl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.02379v2-abstract-short" style="display: inline;"> Fast and accurate predictions of uncertainties in the computed dose are crucial for the determination of robust treatment plans in radiation therapy. This requires the solution of particle transport problems with uncertain parameters or initial conditions. Monte Carlo methods are often used to solve transport problems especially for applications which require high accuracy. In these cases, common&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02379v2-abstract-full').style.display = 'inline'; document.getElementById('2202.02379v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.02379v2-abstract-full" style="display: none;"> Fast and accurate predictions of uncertainties in the computed dose are crucial for the determination of robust treatment plans in radiation therapy. This requires the solution of particle transport problems with uncertain parameters or initial conditions. Monte Carlo methods are often used to solve transport problems especially for applications which require high accuracy. In these cases, common non-intrusive solution strategies that involve repeated simulations of the problem at different points in the parameter space quickly become infeasible due to their long run-times. Intrusive methods however limit the usability in combination with proprietary simulation engines. In our previous paper [51], we demonstrated the application of a new non-intrusive uncertainty quantification approach for Monte Carlo simulations in proton dose calculations with normally distributed errors on realistic patient data. In this paper, we introduce a generalized formulation and focus on a more in-depth theoretical analysis of this method concerning bias, error and convergence of the estimates. The multivariate input model of the proposed approach further supports almost arbitrary error correlation models. We demonstrate how this framework can be used to model and efficiently quantify complex auto-correlated and time-dependent errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02379v2-abstract-full').style.display = 'none'; document.getElementById('2202.02379v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 10 figures, [v2]: corrected title of figure 9</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01032">arXiv:2110.01032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.01032">pdf</a>, <a href="https://arxiv.org/format/2110.01032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.033714">10.1103/PhysRevA.105.033714 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong laser fields and their power to generate controllable high-photon-number coherent-state superpositions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01032v3-abstract-short" style="display: inline;"> Recently, intensely driven laser-matter interactions have been used to connect the fields of strong laser field physics with quantum optics by generating non-classical states of light. Here, we make a further key step and show the potential of strong laser fields for generating controllable high-photon-number coherent-state superpositions. This has been achieved by using two of the most prominent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01032v3-abstract-full').style.display = 'inline'; document.getElementById('2110.01032v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01032v3-abstract-full" style="display: none;"> Recently, intensely driven laser-matter interactions have been used to connect the fields of strong laser field physics with quantum optics by generating non-classical states of light. Here, we make a further key step and show the potential of strong laser fields for generating controllable high-photon-number coherent-state superpositions. This has been achieved by using two of the most prominent strong-laser induced processes: high-harmonic generation and above-threshold ionization. We show how the obtained coherent-state superpositions change from an optical Schr枚dinger &#34;cat&#34; state to a &#34;kitten&#34; state by changing the atomic density in the laser-atom interaction region, and we demonstrate the generation of a 9-photon shifted optical &#34;cat&#34; state which, to our knowledge, is the highest photon number optical &#34;cat&#34; state experimentally reported. Our findings anticipate the development of new methods that naturally lead to the creation of high-photon-number controllable coherent-state superpositions, advancing investigations in quantum technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01032v3-abstract-full').style.display = 'none'; document.getElementById('2110.01032v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version submitted to Physical Review A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 105, 033714 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12887">arXiv:2107.12887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.12887">pdf</a>, <a href="https://arxiv.org/format/2107.12887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.123603">10.1103/PhysRevLett.128.123603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High photon number entangled states and coherent state superposition from the extreme-ultraviolet to the far infrared </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12887v3-abstract-short" style="display: inline;"> We present a theoretical demonstration on the generation of entangled coherent states and of coherent state superpositions, with photon numbers and frequencies orders of magnitude higher than those provided by the current technology. This is achieved by utilizing a quantum mechanical multimode description of the single- and two-color intense laser field driven process of high harmonic generation i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12887v3-abstract-full').style.display = 'inline'; document.getElementById('2107.12887v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12887v3-abstract-full" style="display: none;"> We present a theoretical demonstration on the generation of entangled coherent states and of coherent state superpositions, with photon numbers and frequencies orders of magnitude higher than those provided by the current technology. This is achieved by utilizing a quantum mechanical multimode description of the single- and two-color intense laser field driven process of high harmonic generation in atoms. It is found that all field modes involved in the high harmonic generation process are entangled, and upon performing a quantum operation, leads to the generation of high photon number optical cat states spanning from the far infrared to the extreme-ultraviolet spectral region. This provides direct insights into the quantum mechanical properties of the optical field in intense laser matter interaction. Finally, these states can be considered as a new resource for fundamental tests of quantum theory, quantum information processing or sensing with non-classical states of light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12887v3-abstract-full').style.display = 'none'; document.getElementById('2107.12887v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages (3 figures) + 4 pages supplement (2 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 123603 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.12811">arXiv:2107.12811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.12811">pdf</a>, <a href="https://arxiv.org/format/2107.12811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> New schemes for creating large optical Schrodinger cat states using strong laser fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.12811v1-abstract-short" style="display: inline;"> Recently, using conditioning approaches on the high-harmonic generation process induced by intense laser-atom interactions, we have developed a new method for the generation of optical Schr枚dinger cat states (M. Lewenstein et al., arXiv:2008.10221 (2020)). These quantum optical states have been proven to be very manageable as, by modifying the conditions under which harmonics are generated, one ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12811v1-abstract-full').style.display = 'inline'; document.getElementById('2107.12811v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.12811v1-abstract-full" style="display: none;"> Recently, using conditioning approaches on the high-harmonic generation process induced by intense laser-atom interactions, we have developed a new method for the generation of optical Schr枚dinger cat states (M. Lewenstein et al., arXiv:2008.10221 (2020)). These quantum optical states have been proven to be very manageable as, by modifying the conditions under which harmonics are generated, one can interplay between $\textit{kitten}$ and $\textit{genuine cat}$ states. Here, we demonstrate that this method can also be used for the development of new schemes towards the creation of optical Schr枚dinger cat states, consisting of the superposition of three distinct coherent states. Apart from the interest these kind of states have on their own, we additionally propose a scheme for using them towards the generation of large cat states involving the sum of two different coherent states. The quantum properties of the obtained superpositions aim to significantly increase the applicability of optical Schr枚dinger cat states for quantum technology and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.12811v1-abstract-full').style.display = 'none'; document.getElementById('2107.12811v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages (12 main text + 1 appendix), 8 figures. This paper has been submitted to the JCEL Special Issue on Wigner Functions in Computational Electronics and Photonics. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.11885">arXiv:2106.11885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.11885">pdf</a>, <a href="https://arxiv.org/format/2106.11885">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6560/ac287f">10.1088/1361-6560/ac287f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient uncertainty quantification for Monte Carlo dose calculations using importance (re-)weighting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Pia Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Burigo%2C+L">Lucas Burigo</a>, <a href="/search/physics?searchtype=author&amp;query=J%C3%A4kel%2C+O">Oliver J盲kel</a>, <a href="/search/physics?searchtype=author&amp;query=Frank%2C+M">Martin Frank</a>, <a href="/search/physics?searchtype=author&amp;query=Wahl%2C+N">Niklas Wahl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.11885v1-abstract-short" style="display: inline;"> The high precision and conformity of intensity-modulated particle therapy (IMPT) comes at the cost of susceptibility to treatment uncertainties in particle range and patient set-up. Dose uncertainty quantification and mitigation, which is usually based on sampled error scenarios, however becomes challenging when computing the dose with computationally expensive but accurate Monte Carlo (MC) simula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11885v1-abstract-full').style.display = 'inline'; document.getElementById('2106.11885v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.11885v1-abstract-full" style="display: none;"> The high precision and conformity of intensity-modulated particle therapy (IMPT) comes at the cost of susceptibility to treatment uncertainties in particle range and patient set-up. Dose uncertainty quantification and mitigation, which is usually based on sampled error scenarios, however becomes challenging when computing the dose with computationally expensive but accurate Monte Carlo (MC) simulations. This paper introduces an importance (re-)weighting method in MC history scoring to concurrently construct estimates for error scenarios, the expected dose and its variance from a single set of MC simulated particle histories. The approach relies on a multivariate Gaussian input and uncertainty model, which assigns probabilities to the initial phase space sample, enabling the use of different correlation models. Exploring and adapting bivariate emittance parametrizations for the beam shape, accuracy can be traded between that of the uncertainty or the nominal dose estimate. The method was implemented using the MC code TOPAS and tested for proton IMPT plan delivery in comparison to a reference scenario estimate. We achieve accurate results for set-up uncertainties ($纬_{3mm/3\%} \geq 99.99\%$) and expectedly lower but still sufficient agreement for range uncertainties, which are approximated with uncertainty over the energy distribution ($纬_{3 mm/3\%} \geq 99.50\%$ ($E[\boldsymbol{d}]$), $纬_{3mm/3\%} \geq 91.69\%$ ($蟽(\boldsymbol{d})$) ). Initial experiments on a water phantom, a prostate and a liver case show that the re-weighting approach lowers the CPU time by more than an order of magnitude. Further, we show that uncertainty induced by interplay and other dynamic influences may be approximated using suitable error correlation models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11885v1-abstract-full').style.display = 'none'; document.getElementById('2106.11885v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 8 figures, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00372">arXiv:2106.00372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.00372">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/photonics8060192">10.3390/photonics8060192 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-Optical Spectrometry in Relativistic Laser-Plasma Interactions Using the High-Harmonic Generation Process: A Proposal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Lopez-Martens%2C+R">Rodrigo Lopez-Martens</a>, <a href="/search/physics?searchtype=author&amp;query=Haessler%2C+S">Stefan Haessler</a>, <a href="/search/physics?searchtype=author&amp;query=Liontos%2C+I">Ioannis Liontos</a>, <a href="/search/physics?searchtype=author&amp;query=Kahaly%2C+S">Subhendu Kahaly</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00372v1-abstract-short" style="display: inline;"> Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser-matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00372v1-abstract-full').style.display = 'inline'; document.getElementById('2106.00372v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00372v1-abstract-full" style="display: none;"> Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser-matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving laser field towards the generation of a strong laser-field interaction product, such as high-order harmonics. In this case, the harmonic spectrum is reflected in the photon number distribution of the infrared (IR) driving field after its interaction with the high harmonic generation medium. The method was implemented in non-relativistic interactions using high harmonics produced by the interaction of strong laser pulses with atoms and semiconductors. Very recently, it was used for the generation of non-classical light states in intense laser-atom interaction, building the basis for studies of quantum electrodynamics in strong laser-field physics and the development of a new class of non-classical light sources for applications in quantum technology. Here, after a brief introduction of the QS method, we will discuss how the QS can be applied in relativistic laser-plasma interactions and become the driving factor for initiating investigations on relativistic quantum electrodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00372v1-abstract-full').style.display = 'none'; document.getElementById('2106.00372v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Photonics 8 no. 6, 192 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.10221">arXiv:2008.10221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.10221">pdf</a>, <a href="https://arxiv.org/format/2008.10221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-021-01317-w">10.1038/s41567-021-01317-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of optical Schr枚dinger cat states in intense laser-matter interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.10221v4-abstract-short" style="display: inline;"> The physics of intense laser-matter interactions is described by treating the light pulses classically, anticipating no need to access optical measurements beyond the classical limit. However, the quantum nature of the electromagnetic fields is always present. Here, we demonstrate that intense laser-atom interactions may lead to the generation of highly non-classical light states. This was achieve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10221v4-abstract-full').style.display = 'inline'; document.getElementById('2008.10221v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.10221v4-abstract-full" style="display: none;"> The physics of intense laser-matter interactions is described by treating the light pulses classically, anticipating no need to access optical measurements beyond the classical limit. However, the quantum nature of the electromagnetic fields is always present. Here, we demonstrate that intense laser-atom interactions may lead to the generation of highly non-classical light states. This was achieved by using the process of high-harmonic generation in atoms, in which the photons of a driving laser pulse of infrared frequency are up-converted into photons of higher frequencies in the extreme ultraviolet spectral range. The quantum state of the fundamental mode after the interaction, when conditioned on the high-harmonic generation, is a so-called Schr枚dinger cat state, which corresponds to a superposition of two distinct coherent states: the initial state of the laser and the coherent state reduced in amplitude that results from the interaction with atoms. The results open the path for investigations towards the control of the non-classical states, exploiting conditioning approaches on physical processes relevant to high-harmonic generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10221v4-abstract-full').style.display = 'none'; document.getElementById('2008.10221v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We dedicate this work to the memory of Roy J. Glauber, the inventor of coherent states</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. 17, 1104-1108 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.03541">arXiv:1905.03541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.03541">pdf</a>, <a href="https://arxiv.org/format/1905.03541">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5093959">10.1063/1.5093959 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomic-resolution imaging of carbonyl sulfide by laser-induced electron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Karamatskos%2C+E+T">Evangelos T. Karamatskos</a>, <a href="/search/physics?searchtype=author&amp;query=Goldsztejn%2C+G">Gildas Goldsztejn</a>, <a href="/search/physics?searchtype=author&amp;query=Raabe%2C+S">Sebastian Raabe</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Mullins%2C+T">Terry Mullins</a>, <a href="/search/physics?searchtype=author&amp;query=Trabattoni%2C+A">Andrea Trabattoni</a>, <a href="/search/physics?searchtype=author&amp;query=Johansen%2C+R+R">Rasmus R. Johansen</a>, <a href="/search/physics?searchtype=author&amp;query=Stapelfeldt%2C+H">Henrik Stapelfeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Trippel%2C+S">Sebastian Trippel</a>, <a href="/search/physics?searchtype=author&amp;query=Vrakking%2C+M+J+J">Marc J. J. Vrakking</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BCpper%2C+J">Jochen K眉pper</a>, <a href="/search/physics?searchtype=author&amp;query=Rouz%C3%A9e%2C+A">Arnaud Rouz茅e</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.03541v1-abstract-short" style="display: inline;"> Measurements on the strong-field ionization of carbonyl sulfide molecules by short, intense, 2~\um wavelength laser pulses are presented from experiments where angle-resolved photoelectron distributions were recorded with a high-energy velocity map imaging spectrometer, designed to reach a maximum kinetic energy of 500~eV. The laser-field-free elastic-scattering cross section of carbonyl sulfide w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03541v1-abstract-full').style.display = 'inline'; document.getElementById('1905.03541v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.03541v1-abstract-full" style="display: none;"> Measurements on the strong-field ionization of carbonyl sulfide molecules by short, intense, 2~\um wavelength laser pulses are presented from experiments where angle-resolved photoelectron distributions were recorded with a high-energy velocity map imaging spectrometer, designed to reach a maximum kinetic energy of 500~eV. The laser-field-free elastic-scattering cross section of carbonyl sulfide was extracted from the measurements and is found in good agreement with previous experiments, performed using conventional electron diffraction. By comparing our measurements to the results of calculations, based on the quantitative rescattering theory (QRS), the bond lengths and molecular geometry were extracted from the experimental differential cross sections to a precision better than $\pm5$~pm and in agreement with the known values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03541v1-abstract-full').style.display = 'none'; document.getElementById('1905.03541v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 150, 244301 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.01034">arXiv:1807.01034</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.01034">pdf</a>, <a href="https://arxiv.org/format/1807.01034">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-11122-y">10.1038/s41467-019-11122-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Molecular movie of ultrafast coherent rotational dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Karamatskos%2C+E+T">Evangelos T. Karamatskos</a>, <a href="/search/physics?searchtype=author&amp;query=Raabe%2C+S">Sebastian Raabe</a>, <a href="/search/physics?searchtype=author&amp;query=Mullins%2C+T">Terry Mullins</a>, <a href="/search/physics?searchtype=author&amp;query=Trabattoni%2C+A">Andrea Trabattoni</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Goldsztejn%2C+G">Gildas Goldsztejn</a>, <a href="/search/physics?searchtype=author&amp;query=Johansen%2C+R+R">Rasmus R. Johansen</a>, <a href="/search/physics?searchtype=author&amp;query=D%C5%82ugo%C5%82%C4%99cki%2C+K">Karol D艂ugo艂臋cki</a>, <a href="/search/physics?searchtype=author&amp;query=Stapelfeldt%2C+H">Henrik Stapelfeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Vrakking%2C+M+J+J">Marc. J. J. Vrakking</a>, <a href="/search/physics?searchtype=author&amp;query=Trippel%2C+S">Sebastian Trippel</a>, <a href="/search/physics?searchtype=author&amp;query=Rouz%C3%A9e%2C+A">Arnaud Rouz茅e</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%BCpper%2C+J">Jochen K眉pper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.01034v2-abstract-short" style="display: inline;"> Recording molecular movies on ultrafast timescales has been a longstanding goal for unravelling detailed information about molecular dynamics. We present the direct experimental recording of very-high-resolution and -fidelity molecular movies over more than one-and-a-half periods of the laser-induced rotational dynamics of carbonylsulfide (OCS) molecules. Utilising the combination of single-quantu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.01034v2-abstract-full').style.display = 'inline'; document.getElementById('1807.01034v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.01034v2-abstract-full" style="display: none;"> Recording molecular movies on ultrafast timescales has been a longstanding goal for unravelling detailed information about molecular dynamics. We present the direct experimental recording of very-high-resolution and -fidelity molecular movies over more than one-and-a-half periods of the laser-induced rotational dynamics of carbonylsulfide (OCS) molecules. Utilising the combination of single-quantum-state selection and an optimised two-pulse sequence to create a tailored rotational wavepacket, an unprecedented degree of field-free alignment, $\langle \cos^{2}{胃_{2D}}\rangle=0.96$ ($\langle \cos^{2}胃\rangle=0.94$) was achieved, exceeding the theoretical limit for single-pulse alignment. The very rich experimentally observed quantum dynamics is fully recovered by the angular probability distribution obtained from solutions of the time-dependent Schr枚dinger equation with parameters refined against the experiment. The populations and phases of rotational states in the retrieved time-dependent three-dimensional wavepacket rationalised the observed very high degree of alignment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.01034v2-abstract-full').style.display = 'none'; document.getElementById('1807.01034v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 10, 3364 (2019) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10