CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;33 of 33 results for author: <span class="mathjax">Maxwell, A S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Maxwell%2C+A+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Maxwell, A S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Maxwell%2C+A+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Maxwell, A S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01845">arXiv:2311.01845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01845">pdf</a>, <a href="https://arxiv.org/format/2311.01845">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Advanced momentum sampling and Maslov phases for a precise semiclassical model of strong-field ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Carlsen%2C+M+B">Mads Br酶ndum Carlsen</a>, <a href="/search/physics?searchtype=author&amp;query=Hansen%2C+E">Emil Hansen</a>, <a href="/search/physics?searchtype=author&amp;query=Madsen%2C+L+B">Lars Bojer Madsen</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew Stephen Maxwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01845v1-abstract-short" style="display: inline;"> Recollision processes are fundamental to strong-field physics and attoscience, thus models connecting recolliding trajectories to quantum amplitudes are a crucial part in furthering understanding of these processes. We report developments in the semiclassical path-integral-based Coulomb quantum-orbit strong-field approximation model for strong-field ionization by including an additional phase know&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01845v1-abstract-full').style.display = 'inline'; document.getElementById('2311.01845v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01845v1-abstract-full" style="display: none;"> Recollision processes are fundamental to strong-field physics and attoscience, thus models connecting recolliding trajectories to quantum amplitudes are a crucial part in furthering understanding of these processes. We report developments in the semiclassical path-integral-based Coulomb quantum-orbit strong-field approximation model for strong-field ionization by including an additional phase known as Maslov&#39;s phase and implementing a new solution strategy via Monte-Carlo-style sampling of the initial momenta. In doing so, we obtain exceptional agreement with solutions to the time-dependent Schr枚dinger equation for hydrogen, helium, and argon. We provide an in-depth analysis of the resulting photoelectron momentum distributions for these targets, facilitated by the quantum-orbits arising from the solutions to the saddle-point equations. The analysis yields a new class of rescattered trajectories that includes the well-known laser-driven long and short trajectories, along with novel Coulomb-driven rescattered trajectories. By virtue of the precision of the model, it opens the door to detailed investigations of a plethora of strong-field phenomena such as photoelectron holography, laser-induced electron diffraction and high-order above threshold ionization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01845v1-abstract-full').style.display = 'none'; document.getElementById('2311.01845v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15030">arXiv:2310.15030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15030">pdf</a>, <a href="https://arxiv.org/format/2310.15030">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.143603">10.1103/PhysRevLett.132.143603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entanglement and squeezing of the optical field modes in high harmonic generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Arg%C3%BCello-Luengo%2C+J">Javier Arg眉ello-Luengo</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15030v1-abstract-short" style="display: inline;"> Squeezing of optical fields, used as a powerful resource for many applications, and the radiation properties in the process of high harmonic generation have thus far been considered separately. In this Letter, we want to clarify that the joint quantum state of all the optical field modes in the process of high harmonic generation is in general entangled and squeezed. We show that this is already t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15030v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15030v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15030v1-abstract-full" style="display: none;"> Squeezing of optical fields, used as a powerful resource for many applications, and the radiation properties in the process of high harmonic generation have thus far been considered separately. In this Letter, we want to clarify that the joint quantum state of all the optical field modes in the process of high harmonic generation is in general entangled and squeezed. We show that this is already the case in the simplest scenario of driving uncorrelated atoms by a classical laser light field. The previous observation of product coherent states after the high harmonic generation process is a consequence of the assumption that the ground state depletion can be neglected, which is related to vanishing dipole moment correlations. Furthermore, we analyze how the resulting quadrature squeezing in the fundamental laser mode after the interaction can be controlled and explicitly show that all field modes are entangled. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15030v1-abstract-full').style.display = 'none'; document.getElementById('2310.15030v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages (2 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 143603 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14435">arXiv:2309.14435</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.14435">pdf</a>, <a href="https://arxiv.org/format/2309.14435">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nonclassical states of light after high-harmonic generation in semiconductors: a Bloch-based perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14435v2-abstract-short" style="display: inline;"> High-harmonic generation has emerged as a pivotal process in strong-field physics, yielding extreme ultraviolet radiation and attosecond pulses with a wide range of applications. Furthermore, its emergent connection with the field of quantum optics has revealed its potential for generating non-classical states of light. Here, we investigate the process of high-harmonic generation in semiconductors&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14435v2-abstract-full').style.display = 'inline'; document.getElementById('2309.14435v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14435v2-abstract-full" style="display: none;"> High-harmonic generation has emerged as a pivotal process in strong-field physics, yielding extreme ultraviolet radiation and attosecond pulses with a wide range of applications. Furthermore, its emergent connection with the field of quantum optics has revealed its potential for generating non-classical states of light. Here, we investigate the process of high-harmonic generation in semiconductors under a quantum optical perspective while using a Bloch-based solid-state description. Through the implementation of quantum operations based on the measurement of high-order harmonics, we demonstrate the generation of non-classical light states similar to those found when driving atomic systems. These states are characterized using diverse quantum optical observables and quantum information measures, showing the influence of electron dynamics on their properties. Additionally, we analyze the dependence of their features on solid characteristics such as the dephasing time and crystal orientation, while also assessing their sensitivity to changes in driving field strength. This study provides insights into HHG in semiconductors and its potential for generating non-classical light sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14435v2-abstract-full').style.display = 'none'; document.getElementById('2309.14435v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages (16 main text + 6 appendix), 7 figures (5 main text + 2 appendix)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109, 035203 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15374">arXiv:2308.15374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.15374">pdf</a>, <a href="https://arxiv.org/format/2308.15374">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Relativistic and Spin-Orbit Dynamics at Non-Relativistic Intensities in Strong-Field Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Madsen%2C+L+B">Lars Bojer Madsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15374v1-abstract-short" style="display: inline;"> Spin-orbit dynamics and relativistic corrections to the kinetic energy in strong-field dynamics, have long been ignored for near- and mid-IR fields with intensities $10^{13}$--$10^{14}$ W/cm$^2$, as the final photoelectron energies are considered too low for these effects to play a role. However, using a precise and flexible path-integral formalism, we include all correction terms from the fine-st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15374v1-abstract-full').style.display = 'inline'; document.getElementById('2308.15374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15374v1-abstract-full" style="display: none;"> Spin-orbit dynamics and relativistic corrections to the kinetic energy in strong-field dynamics, have long been ignored for near- and mid-IR fields with intensities $10^{13}$--$10^{14}$ W/cm$^2$, as the final photoelectron energies are considered too low for these effects to play a role. However, using a precise and flexible path-integral formalism, we include all correction terms from the fine-structure, Breit-Pauli Hamiltonian. This enables a treatment of spin, through coherent spin-states, which is the first model to use this approach in strong-field physics. We are able to show that the most energetically rescattered wavepackets, undergo huge momentum transfer and briefly reach relativistic velocities, which warrants relativistic kinetic energy corrections. We probe these effects and show that they yield notable differences for a $1600$ nm wavelength laser field on the dynamics and the photoelectron spectra. Furthermore, we find that the dynamical spin-orbit coupling is strongly overestimated if relativistic corrections to kinetic energy are not considered. Finally, we derive a new condition that demonstrates that relativistic effects begin to play a role at intensities orders of magnitude lower than expected. Our findings may have important implication for imaging processes such as laser-induced electron diffraction, which includes high-energy photoelectron recollisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15374v1-abstract-full').style.display = 'none'; document.getElementById('2308.15374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10223">arXiv:2308.10223</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10223">pdf</a>, <a href="https://arxiv.org/format/2308.10223">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.5.010328">10.1103/PRXQuantum.5.010328 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analog simulation of high harmonic generation in atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Arg%C3%BCello-Luengo%2C+J">Javier Arg眉ello-Luengo</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Weld%2C+D+M">David M. Weld</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10223v2-abstract-short" style="display: inline;"> The demanding experimental access to the ultrafast dynamics of materials challenges our understanding of their electronic response to applied strong laser fields. For this purpose, trapped ultracold atoms with highly controllable potentials have become an enabling tool to describe phenomena in a scenario where some effects are more easily accessible and twelve orders of magnitude slower. In this w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10223v2-abstract-full').style.display = 'inline'; document.getElementById('2308.10223v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10223v2-abstract-full" style="display: none;"> The demanding experimental access to the ultrafast dynamics of materials challenges our understanding of their electronic response to applied strong laser fields. For this purpose, trapped ultracold atoms with highly controllable potentials have become an enabling tool to describe phenomena in a scenario where some effects are more easily accessible and twelve orders of magnitude slower. In this work, we introduce a mapping between the parameters of attoscience platform and atomic cloud simulators, and propose an experimental protocol to access the emission spectrum of high harmonic generation, a regime that has so far been elusive to cold atom simulation. As we illustrate, the benchmark offered by these simulators can provide new insights on the conversion efficiency of extended and short nuclear potentials, as well as the response to applied elliptical polarized fields or ultrashort few-cycle pulses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10223v2-abstract-full').style.display = 'none'; document.getElementById('2308.10223v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted version of the manuscript</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 5, 010328 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12381">arXiv:2307.12381</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12381">pdf</a>, <a href="https://arxiv.org/format/2307.12381">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Quantum optical analysis of high-order harmonic generation in H$_2^+$ molecular ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">P. Tzallas</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">M. F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12381v1-abstract-short" style="display: inline;"> We present a comprehensive theoretical investigation of high-order harmonic generation in H$_2^+$ molecular ions within a quantum optical framework. Our study focuses on characterizing various quantum optical and quantum information measures, highlighting the versatility of HHG in two-center molecules towards quantum technology applications. We demonstrate the emergence of entanglement between ele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12381v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12381v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12381v1-abstract-full" style="display: none;"> We present a comprehensive theoretical investigation of high-order harmonic generation in H$_2^+$ molecular ions within a quantum optical framework. Our study focuses on characterizing various quantum optical and quantum information measures, highlighting the versatility of HHG in two-center molecules towards quantum technology applications. We demonstrate the emergence of entanglement between electron and light states after the laser-matter interaction. We also identify the possibility of obtaining non-classical states of light in targeted frequency modes by conditioning on specific electronic quantum states, which turn out to be crucial in the generation of highly non-classical entangled states between distinct sets of harmonic modes. Our findings open up avenues for studying strong-laser field-driven interactions in molecular systems, and suggest their applicability to quantum technology applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12381v1-abstract-full').style.display = 'none'; document.getElementById('2307.12381v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages (14 main text + 7 appendix), 9 figures (8 main text + 1 appendix)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.14501">arXiv:2305.14501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.14501">pdf</a>, <a href="https://arxiv.org/format/2305.14501">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Forward and hybrid path-integral methods in photoelectron holography: sub-barrier corrections, initial sampling and momentum mapping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rodriguez%2C+L+C">L. Cruz Rodriguez</a>, <a href="/search/physics?searchtype=author&amp;query=Rook%2C+T">T. Rook</a>, <a href="/search/physics?searchtype=author&amp;query=Augstein%2C+B+B">B. B. Augstein</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">C. Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.14501v2-abstract-short" style="display: inline;"> We construct two strong-field path integral methods with full Coulomb distortion, in which the quantum pathways are mimicked by interfering electron orbits: the rate-based CQSFA (R-CQSFA) and the hybrid forward-boundary CQSFA (H-CQSFA). The methods have the same starting point as the standard Coulomb quantum-orbit strong-field approximation (CQSFA), but their implementation does not require pre-kn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14501v2-abstract-full').style.display = 'inline'; document.getElementById('2305.14501v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.14501v2-abstract-full" style="display: none;"> We construct two strong-field path integral methods with full Coulomb distortion, in which the quantum pathways are mimicked by interfering electron orbits: the rate-based CQSFA (R-CQSFA) and the hybrid forward-boundary CQSFA (H-CQSFA). The methods have the same starting point as the standard Coulomb quantum-orbit strong-field approximation (CQSFA), but their implementation does not require pre-knowledge of the orbits&#39; dynamics. These methods are applied to ultrafast photoelectron holography. In the rate-based method, electron orbits are forward propagated and we derive a non-adiabatic ionization rate from the CQSFA, which includes sub-barrier Coulomb corrections and is used to weight the initial orbit ensemble. In the H-CQSFA, the initial ensemble provides initial guesses for a subsequent boundary problem and serves to include or exclude specific momentum regions, but the ionization probabilities associated with individual trajectories are computed from sub-barrier complex integrals. We perform comparisons with the standard CQSFA and \textit{ab-initio} methods, which show that the standard, purely boundary-type implementation of the CQSFA leaves out whole sets of trajectories. We show that the sub-barrier Coulomb corrections broaden the resulting photoelectron momentum distributions (PMDs) and improve the agreement of the R-CQSFA with the H-CQSFA and other approaches. We probe different initial sampling distributions, uniform and otherwise, and their influence on the PMDs. We find that initial biased sampling emphasizes rescattering ridges and interference patterns in high-energy ranges, while an initial uniform sampling guarantees accurate modeling of the holographic patterns near the ionization threshold or polarization axis. Our results are explained using the initial to final momentum mapping for different types of interfering trajectories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14501v2-abstract-full').style.display = 'none'; document.getElementById('2305.14501v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages revtex, 14 figures; in the revised version, some explanations have been extended and some figures have been modified</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.13940">arXiv:2303.13940</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.13940">pdf</a>, <a href="https://arxiv.org/format/2303.13940">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/acee19">10.1088/1367-2630/acee19 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtosecond pulse parameter estimation from photoelectron momenta using machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Szo%C5%82dra%2C+T">Tomasz Szo艂dra</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Werby%2C+N">Nicholas Werby</a>, <a href="/search/physics?searchtype=author&amp;query=Bucksbaum%2C+P+H">Philip H. Bucksbaum</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Zakrzewski%2C+J">Jakub Zakrzewski</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.13940v2-abstract-short" style="display: inline;"> Deep learning models have provided huge interpretation power for image-like data. Specifically, convolutional neural networks (CNNs) have demonstrated incredible acuity for tasks such as feature extraction or parameter estimation. Here we test CNNs on strong-field ionization photoelectron spectra, training on theoretical data sets to `invert&#39; experimental data. Pulse characterization is used as a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13940v2-abstract-full').style.display = 'inline'; document.getElementById('2303.13940v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.13940v2-abstract-full" style="display: none;"> Deep learning models have provided huge interpretation power for image-like data. Specifically, convolutional neural networks (CNNs) have demonstrated incredible acuity for tasks such as feature extraction or parameter estimation. Here we test CNNs on strong-field ionization photoelectron spectra, training on theoretical data sets to `invert&#39; experimental data. Pulse characterization is used as a `testing ground&#39;, specifically we retrieve the laser intensity, where `traditional&#39; measurements typically lead to 20% uncertainty. We report on crucial data augmentation techniques required to successfully train on theoretical data and return consistent results from experiments, including accounting for detector saturation. The same procedure can be repeated to apply CNNs in a range of scenarios for strong-field ionization. Using a predictive uncertainty estimation, reliable laser intensity uncertainties of a few percent can be extracted, which are consistently lower than those given by traditional techniques. Using interpretability methods can reveal parts of the distribution that are most sensitive to laser intensity, which can be directly associated with holographic interferences. The CNNs employed provide an accurate and convenient ways to extract parameters, and represent a novel interpretational tool for strong-field ionization spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13940v2-abstract-full').style.display = 'none'; document.getElementById('2303.13940v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 25, 083039 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04692">arXiv:2302.04692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.04692">pdf</a>, <a href="https://arxiv.org/format/2302.04692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/acea31">10.1088/1361-6633/acea31 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong laser physics, non-classical light states and quantum information science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+U">Utso Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04692v1-abstract-short" style="display: inline;"> Strong laser physics is a research direction that relies on the use of high-power lasers and has led to fascinating achievements ranging from relativistic particle acceleration to attosecond science. On the other hand, quantum optics has been built on the use of low photon number sources and has opened the way for groundbreaking discoveries in quantum technology, advancing investigations ranging f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04692v1-abstract-full').style.display = 'inline'; document.getElementById('2302.04692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04692v1-abstract-full" style="display: none;"> Strong laser physics is a research direction that relies on the use of high-power lasers and has led to fascinating achievements ranging from relativistic particle acceleration to attosecond science. On the other hand, quantum optics has been built on the use of low photon number sources and has opened the way for groundbreaking discoveries in quantum technology, advancing investigations ranging from fundamental tests of quantum theory to quantum information processing. Despite the tremendous progress, until recently these directions have remained disconnected. This is because, the majority of the interactions in the strong-field limit have been successfully described by semi-classical approximations treating the electromagnetic field classically, as there was no need to include the quantum properties of the field to explain the observations. The link between strong laser physics, quantum optics, and quantum information science has been developed in the recent past. Studies based on fully quantized and conditioning approaches have shown that intense laser--matter interactions can be used for the generation of controllable entangled and non-classical light states. This achievement opens the way for a vast number of investigations stemming from the symbiosis of strong laser physics, quantum optics, and quantum information science. Here, after an introduction to the fundamentals of these research directions, we report on the recent progress in the fully quantized description of intense laser--matter interaction and the methods that have been developed for the generation of non-classical light states and entangled states. Also, we discuss the future directions of non-classical light engineering using strong laser fields, and the potential applications in ultrafast and quantum information science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04692v1-abstract-full').style.display = 'none'; document.getElementById('2302.04692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">60 pages, 20 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00033">arXiv:2211.00033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.00033">pdf</a>, <a href="https://arxiv.org/format/2211.00033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Entanglement and non-classical states of light in a strong-laser driven solid-state system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Ord%C3%B3%C3%B1ez%2C+A+F">Andr茅s F. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00033v2-abstract-short" style="display: inline;"> The development of sources delivering non-classical states of light is one of the main needs for applications of optical quantum information science. Here, we demonstrate the generation of non-classical states of light using strong-laser fields driving a solid-state system, by using the process of high-order harmonic generation, where an electron tunnels out of the parent site and, later on, recom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00033v2-abstract-full').style.display = 'inline'; document.getElementById('2211.00033v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00033v2-abstract-full" style="display: none;"> The development of sources delivering non-classical states of light is one of the main needs for applications of optical quantum information science. Here, we demonstrate the generation of non-classical states of light using strong-laser fields driving a solid-state system, by using the process of high-order harmonic generation, where an electron tunnels out of the parent site and, later on, recombines on it emitting high-order harmonic radiation, at the expense of affecting the driving laser field. Since in solid-state systems the recombination of the electron can be delocalized along the material, the final state of the electron determines how the electromagnetic field gets affected because of the laser-matter interaction, leading to the generation of entanglement between the electron and the field. These features can be enhanced by applying conditioning operations, i.e., quantum operations based on the measurement of high-harmonic radiation. We study non-classical features present in the final quantum optical state, and characterize the amount of entanglement between the light and the electrons in the solid. The work sets the foundation for the development of compact solid-state-based non-classical light sources using strong-field physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00033v2-abstract-full').style.display = 'none'; document.getElementById('2211.00033v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We present a different formulation to that of the previous version, more in line with the approach followed in our previous works. 12 pages (8 main text + 4 Methods), 4 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14769">arXiv:2208.14769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.14769">pdf</a>, <a href="https://arxiv.org/format/2208.14769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond Physics and Quantum Information Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Baldelli%2C+N">N. Baldelli</a>, <a href="/search/physics?searchtype=author&amp;query=Bhattacharya%2C+U">U. Bhattacharya</a>, <a href="/search/physics?searchtype=author&amp;query=Biegert%2C+J">J. Biegert</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Elu%2C+U">U. Elu</a>, <a href="/search/physics?searchtype=author&amp;query=Grass%2C+T">T. Grass</a>, <a href="/search/physics?searchtype=author&amp;query=Grochowski%2C+P+T">P. T. Grochowski</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A">A. Johnson</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Th. Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Ord%C3%B3%C3%B1ez%2C+A">A. Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">J. Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">P. Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Tyulnev%2C+I">I. Tyulnev</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">P. Tzallas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14769v1-abstract-short" style="display: inline;"> In this article, we will discuss a possibility of a symbiosis for attophysics (AP) and quantum information (QI) and quantum technologies (QT). We will argue that within few years AP will reach Technology Readiness Level (RTL) 4-5 in QT, and will thus become a legitimate platform for QI and QT. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14769v1-abstract-full" style="display: none;"> In this article, we will discuss a possibility of a symbiosis for attophysics (AP) and quantum information (QI) and quantum technologies (QT). We will argue that within few years AP will reach Technology Readiness Level (RTL) 4-5 in QT, and will thus become a legitimate platform for QI and QT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14769v1-abstract-full').style.display = 'none'; document.getElementById('2208.14769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures, ATTO VIII Conference Proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05245">arXiv:2208.05245</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05245">pdf</a>, <a href="https://arxiv.org/format/2208.05245">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.106.063705">10.1103/PhysRevA.106.063705 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light-matter entanglement after above-threshold ionization processes in atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rivera-Dean%2C+J">Javier Rivera-Dean</a>, <a href="/search/physics?searchtype=author&amp;query=Stammer%2C+P">Philipp Stammer</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Lamprou%2C+T">Theocharis Lamprou</a>, <a href="/search/physics?searchtype=author&amp;query=Tzallas%2C+P">Paraskevas Tzallas</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05245v2-abstract-short" style="display: inline;"> Light-matter entanglement plays a fundamental role in many applications of quantum information science. Thus, finding processes where it can be observed is an important task. Here, we address this matter by theoretically investigating the entanglement between light and electrons generated in above-threshold ionization (ATI) process. The study is based on the back-action of the ATI process on the q&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05245v2-abstract-full').style.display = 'inline'; document.getElementById('2208.05245v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05245v2-abstract-full" style="display: none;"> Light-matter entanglement plays a fundamental role in many applications of quantum information science. Thus, finding processes where it can be observed is an important task. Here, we address this matter by theoretically investigating the entanglement between light and electrons generated in above-threshold ionization (ATI) process. The study is based on the back-action of the ATI process on the quantum optical state of the system, and its dependence on the kinetic energy and direction of the emitted photoelectrons. Taking into account the dynamics of the process, we demonstrate the creation of hybrid entangled states. The amount of entanglement has been studied in terms of the entropy of entanglement. Additionally, we use the Wigner function of the driving field mode to motivate the entanglement characterization when considering electrons propagating in opposite directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05245v2-abstract-full').style.display = 'none'; document.getElementById('2208.05245v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages (13 main text + 7 supplementary material), 8 figures (6 main text + 2 supplementary material). Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07464">arXiv:2207.07464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07464">pdf</a>, <a href="https://arxiv.org/format/2207.07464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Twisted quantum interference in photoelectron holography with elliptically polarized fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+G">G. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Hofmann%2C+C">C. Hofmann</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">C. Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07464v1-abstract-short" style="display: inline;"> We perform a systematic analysis of how ultrafast photoelectron holography is influenced by an elliptically polarized field, with emphasis on quantum interference effects. We find that the interplay of the external field and the binding potential leads to twisted holographic patterns for low ellipticities and recover well-known angular offsets for high ellipticities. Using the Coulomb quantum-orbi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07464v1-abstract-full').style.display = 'inline'; document.getElementById('2207.07464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07464v1-abstract-full" style="display: none;"> We perform a systematic analysis of how ultrafast photoelectron holography is influenced by an elliptically polarized field, with emphasis on quantum interference effects. We find that the interplay of the external field and the binding potential leads to twisted holographic patterns for low ellipticities and recover well-known angular offsets for high ellipticities. Using the Coulomb quantum-orbit strong-field approximation (CQSFA), we assess how the field ellipticity affects specific holographic patterns, such as the fan and the spider. The interplay of the external field and the binding potential leads to twisted holographic patterns in the fan, and to loss of contrast in the spider. This behavior can be traced back to interfering electron trajectories, and unequal changes in tunneling probability due to non-vanishing ellipticity. We also derive tunneling times analytically using the strong-field approximation (SFA), provide estimates for ellipticy ranges for which interference is expected to be prominent, and discuss how to construct continuous electron momentum distributions exploring the rotation symmetry around the origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07464v1-abstract-full').style.display = 'none'; document.getElementById('2207.07464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.07166">arXiv:2205.07166</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.07166">pdf</a>, <a href="https://arxiv.org/format/2205.07166">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Time Correlation Filtering Reveals Two-Path Electron Quantum Interference in Strong-Field Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Werby%2C+N">Nicholas Werby</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Forbes%2C+R">Ruaridh Forbes</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">Carla Figueira de Morisson Faria</a>, <a href="/search/physics?searchtype=author&amp;query=Bucksbaum%2C+P+H">Philip H. Bucksbaum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.07166v1-abstract-short" style="display: inline;"> Attosecond dynamics in strong-field tunnel ionization are encoded in intricate holographic patterns in the photoelectron momentum distributions (PMDs). These patterns show the interference between two or more superposed quantum electron trajectories, which are defined by their ionization times and subsequent evolution in the laser field. We determine the ionization time separation between interfer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.07166v1-abstract-full').style.display = 'inline'; document.getElementById('2205.07166v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.07166v1-abstract-full" style="display: none;"> Attosecond dynamics in strong-field tunnel ionization are encoded in intricate holographic patterns in the photoelectron momentum distributions (PMDs). These patterns show the interference between two or more superposed quantum electron trajectories, which are defined by their ionization times and subsequent evolution in the laser field. We determine the ionization time separation between interfering pairs of electron orbits by performing a differential Fourier analysis on the measured momentum spectrum. We identify electron holograms formed by trajectory pairs whose ionization times are separated by less than a single quarter cycle, between a quarter cycle and half cycle, between a half cycle and three fourths of a cycle, and a full cycle apart. We compare our experimental results to the predictions of the Coulomb quantum orbit strong-field approximation (CQSFA), with significant success. We also time-filter the CQSFA trajectory calculations to demonstrate the validity of the technique on spectra with known time correlations. As a general analysis technique, the filter can be applied to all energy- and angularly-resolved datasets to recover time correlations between interfering electron pathways, providing an important tool to analyze any strong-field ionization spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.07166v1-abstract-full').style.display = 'none'; document.getElementById('2205.07166v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, submitted to Physical Review X</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07289">arXiv:2202.07289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.07289">pdf</a>, <a href="https://arxiv.org/format/2202.07289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.233201">10.1103/PhysRevLett.129.233201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong-field chiral imaging with twisted photoelectrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Planas%2C+X+B">Xavier Barcons Planas</a>, <a href="/search/physics?searchtype=author&amp;query=Ord%C3%B3%C3%B1ez%2C+A">Andr茅s Ord贸帽ez</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew Stephen Maxwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07289v2-abstract-short" style="display: inline;"> Ultrafast imaging of molecular chirality is a key step towards the dream of imaging and interpreting electronic dynamics in complex and biologically relevant molecules. Here, we propose a new ultrafast chiral phenomenon exploiting recent advances in electron optics allowing access to the orbital angular momentum of free electrons. We show that strong-field ionization of a chiral target with a few-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07289v2-abstract-full').style.display = 'inline'; document.getElementById('2202.07289v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07289v2-abstract-full" style="display: none;"> Ultrafast imaging of molecular chirality is a key step towards the dream of imaging and interpreting electronic dynamics in complex and biologically relevant molecules. Here, we propose a new ultrafast chiral phenomenon exploiting recent advances in electron optics allowing access to the orbital angular momentum of free electrons. We show that strong-field ionization of a chiral target with a few-cycle linearly polarized 800 nm laser pulse yields photoelectron vortices, whose chirality reveals that of the target, and we discuss the mechanism underlying this phenomenon. Our work opens new perspectives in recollision-based chiral imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07289v2-abstract-full').style.display = 'none'; document.getElementById('2202.07289v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages main text, 2 figures, 8 equations</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 233201 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.10148">arXiv:2111.10148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.10148">pdf</a>, <a href="https://arxiv.org/format/2111.10148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-32128-z">10.1038/s41467-022-32128-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entanglement of Orbital Angular Momentum in Non-Sequential Double Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Madsen%2C+L+B">Lars Bojer Madsen</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.10148v1-abstract-short" style="display: inline;"> We demonstrate entanglement between the orbital angular momentum (OAM) of two photoelectrons ionized via the strongly correlated process of non-sequential double ionization (NSDI). Due to the quantization of OAM, this entanglement is easily quantified and has a simple physical interpretation in terms of conservation laws. We explore detection by an entanglement witness, decomposable into local mea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.10148v1-abstract-full').style.display = 'inline'; document.getElementById('2111.10148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.10148v1-abstract-full" style="display: none;"> We demonstrate entanglement between the orbital angular momentum (OAM) of two photoelectrons ionized via the strongly correlated process of non-sequential double ionization (NSDI). Due to the quantization of OAM, this entanglement is easily quantified and has a simple physical interpretation in terms of conservation laws. We explore detection by an entanglement witness, decomposable into local measurements, which strongly reduces the difficulty of experimental implementation. We compute the logarithmic negativity measure, which is directly applicable to mixed states, to demonstrate that the entanglement is robust to incoherent effects such as focal averaging. Using the strong-field approximation, we quantify the entanglement for a large range of targets and field parameters, isolating the best targets for experimentalists. The methodology presented here provides a general way to use OAM to quantify and, in principle, measure entanglement, that is well-suited to attosecond processes, can enhance our understanding and may be exploited in imaging processes or the generation of OAM-entangled electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.10148v1-abstract-full').style.display = 'none'; document.getElementById('2111.10148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05668">arXiv:2106.05668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.05668">pdf</a>, <a href="https://arxiv.org/format/2106.05668">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6455/ac2e4a">10.1088/1361-6455/ac2e4a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Polarization in Strong-Field Ionization of Excited Helium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bray%2C+A+C">A. C. Bray</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Kissin%2C+Y">Y. Kissin</a>, <a href="/search/physics?searchtype=author&amp;query=Ruberti%2C+M">M. Ruberti</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Averbukh%2C+V">V. Averbukh</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+D+M">C. Figueira De Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05668v2-abstract-short" style="display: inline;"> We analyze how bound-state excitation, electron exchange and the residual binding potential influence above-threshold ionization (ATI) in Helium prepared in an excited $p$ state, oriented parallel and perpendicular to a linearly polarized mid-IR field. Using ab initio B-spline Algebraic Diagrammatic Construction (ADC), and several one-electron methods with effective potentials, including the Schr枚&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05668v2-abstract-full').style.display = 'inline'; document.getElementById('2106.05668v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05668v2-abstract-full" style="display: none;"> We analyze how bound-state excitation, electron exchange and the residual binding potential influence above-threshold ionization (ATI) in Helium prepared in an excited $p$ state, oriented parallel and perpendicular to a linearly polarized mid-IR field. Using ab initio B-spline Algebraic Diagrammatic Construction (ADC), and several one-electron methods with effective potentials, including the Schr枚dinger solver Qprop, modified versions of the Strong-Field Approximation and the Coulomb-Quantum Orbit Strong-Field Approximation (CQSFA), we find that these specific physical mechanisms leave significant imprints in ATI spectra and photoelectron momentum distributions. Examples are changes of up to two orders of magnitude in the high-energy photoelectron region, and ramp-like structures that can be traced back to Coulomb-distorted trajectories. The present work also shows that electron exchange renders rescattering less effective, causing suppressions in the ATI plateau. Due to the long-range potential, the electron continuum dynamics are no longer confined to the polarization axis, in contrast to the predictions of traditional approaches. Thus, one may in principle probe excited-state configurations perpendicular to the driving-field polarization without the need for orthogonally polarized fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05668v2-abstract-full').style.display = 'none'; document.getElementById('2106.05668v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 8 figures. Fig. 5 has been compressed in order to meet the arXiV requirements. In the revised version, we have streamlined parts of the theory, modified some discussions and the conclusions, and added references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.12000">arXiv:2102.12000</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.12000">pdf</a>, <a href="https://arxiv.org/format/2102.12000">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.013109">10.1103/PhysRevA.104.013109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dissecting Sub-Cycle Interference in Photoelectron Holography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Werby%2C+N">Nicholas Werby</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Forbes%2C+R">Ruaridh Forbes</a>, <a href="/search/physics?searchtype=author&amp;query=Bucksbaum%2C+P+H">Philip H. Bucksbaum</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">Carla Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.12000v1-abstract-short" style="display: inline;"> Multipath holographic interference in strong-field quantum tunnel ionization is key to revealing sub-Angstrom attosecond dynamics for molecular movies. This critical sub-cycle motion is often obscured by longer time-scale effects such as ring-shaped patterns that appear in above-threshold ionization (ATI). In the present work, we overcome this problem by combining two novel techniques in theory an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12000v1-abstract-full').style.display = 'inline'; document.getElementById('2102.12000v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.12000v1-abstract-full" style="display: none;"> Multipath holographic interference in strong-field quantum tunnel ionization is key to revealing sub-Angstrom attosecond dynamics for molecular movies. This critical sub-cycle motion is often obscured by longer time-scale effects such as ring-shaped patterns that appear in above-threshold ionization (ATI). In the present work, we overcome this problem by combining two novel techniques in theory and experimental analysis: unit-cell averaging and time-filtering data and simulations. Together these suppress ATI rings and enable an unprecedented highly-detailed quantitative match between strong-field ionization experiments in argon and the Coulomb-quantum orbit strong-field approximation (CQSFA) theory. Velocity map images reveal fine modulations on the holographic spider-like interference fringes that form near the polarization axis. CQSFA theory traces this to the interference of three types of electron pathways. The level of agreement between experiment and theory allows sensitive determination of quantum phase differences and symmetries, providing an important tool for quantitative dynamical imaging in quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12000v1-abstract-full').style.display = 'none'; document.getElementById('2102.12000v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 Pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, 013109 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07453">arXiv:2102.07453</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.07453">pdf</a>, <a href="https://arxiv.org/format/2102.07453">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjd/s10053-021-00214-4">10.1140/epjd/s10053-021-00214-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conservation laws for Electron Vortices in Strong-Field Ionisation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kang%2C+Y">Yuxin Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M">Marcelo Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">Carla Figueira de Morisson Faria</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S Maxwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07453v2-abstract-short" style="display: inline;"> We investigate twisted electrons with a well defined orbital angular momentum, which have been ionised via a strong laser field. By formulating a new variant of the well-known strong field approximation, we are able to derive conservation laws for the angular momenta of twisted electrons in the cases of linear and circularly polarised fields. In the case of linear fields, we demonstrate that the o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07453v2-abstract-full').style.display = 'inline'; document.getElementById('2102.07453v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07453v2-abstract-full" style="display: none;"> We investigate twisted electrons with a well defined orbital angular momentum, which have been ionised via a strong laser field. By formulating a new variant of the well-known strong field approximation, we are able to derive conservation laws for the angular momenta of twisted electrons in the cases of linear and circularly polarised fields. In the case of linear fields, we demonstrate that the orbital angular momentum of the twisted electron is determined by the magnetic quantum number of the initial bound state. The condition for the circular field can be related to the famous ATI peaks, and provides a new interpretation for this fundamental feature of photoelectron spectra. We find the length of the circular pulse to be a vital factor in this selection rule and, employing an effective frequency, we show that the photoelectron OAM emission spectra is sensitive to the parity of the number of laser cycles. This work provides the basic theoretical framework with which to understand the OAM of a photoelectron undergoing strong field ionisation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07453v2-abstract-full').style.display = 'none'; document.getElementById('2102.07453v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures and 44 equations. Publication prepared for the EPJ D Topical Issue: Quantum Aspects of Attoscience</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. D (2021) 75: 199 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.10526">arXiv:2101.10526</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.10526">pdf</a>, <a href="https://arxiv.org/format/2101.10526">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.053124">10.1103/PhysRevA.103.053124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Principal frequency of an ultrashort laser pulse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Neyra%2C+E+G">Enrique G. Neyra</a>, <a href="/search/physics?searchtype=author&amp;query=Vaveliuk%2C+P">Pablo Vaveliuk</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.10526v2-abstract-short" style="display: inline;"> We introduce an alternative definition of the main frequency of an ultrashort laser pulse, the principal frequency $蠅_P$. This parameter is complementary to the most accepted and widely used carrier frequency $蠅_0$. Given the fact that these ultrashort pulses, also known as transients, have a temporal width comprising only few cycles of the carrier wave, corresponding to a spectral bandwidth $螖蠅$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.10526v2-abstract-full').style.display = 'inline'; document.getElementById('2101.10526v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.10526v2-abstract-full" style="display: none;"> We introduce an alternative definition of the main frequency of an ultrashort laser pulse, the principal frequency $蠅_P$. This parameter is complementary to the most accepted and widely used carrier frequency $蠅_0$. Given the fact that these ultrashort pulses, also known as transients, have a temporal width comprising only few cycles of the carrier wave, corresponding to a spectral bandwidth $螖蠅$ covering several octaves, $蠅_P$ describes, in a more precise way, the dynamics driven by these sources. We present examples where, for instance, $蠅_P$ is able to correctly predict the high-order harmonic cutoff independently of the carrier envelope phase. This is confirmed by solving the time-dependent Schr枚dinger equation in reduced dimensions, supplemented with the time-analysis of the quantum spectra, where it is possible to observe how the sub-cycle electron dynamics is better described using $蠅_P$. The concept of $蠅_P$, however, can be applied to a large variety of scenarios, not only within the strong field physics domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.10526v2-abstract-full').style.display = 'none'; document.getElementById('2101.10526v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, accepted in PRA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, 053124 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09335">arXiv:2101.09335</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.09335">pdf</a>, <a href="https://arxiv.org/format/2101.09335">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjd/s10053-021-00207-3">10.1140/epjd/s10053-021-00207-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dialogue on analytical and ab initio methods in attoscience </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+G+S+J">Gregory S. J. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Khokhlova%2C+M+A">Margarita A. Khokhlova</a>, <a href="/search/physics?searchtype=author&amp;query=Labeye%2C+M">Marie Labeye</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Ruberti%2C+M">Marco Ruberti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09335v3-abstract-short" style="display: inline;"> The perceived dichotomy between analytical and ab initio approaches to theory in attosecond science is often seen as a source of tension and misconceptions. This Topical Review compiles the discussions held during a round-table panel at the &#39;Quantum Battles in Attoscience&#39; CECAM virtual workshop, to explore the sources of tension and attempt to dispel them. We survey the main theoretical tools of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09335v3-abstract-full').style.display = 'inline'; document.getElementById('2101.09335v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09335v3-abstract-full" style="display: none;"> The perceived dichotomy between analytical and ab initio approaches to theory in attosecond science is often seen as a source of tension and misconceptions. This Topical Review compiles the discussions held during a round-table panel at the &#39;Quantum Battles in Attoscience&#39; CECAM virtual workshop, to explore the sources of tension and attempt to dispel them. We survey the main theoretical tools of attoscience -- covering both analytical and numerical methods -- and we examine common misconceptions, including the relationship between ab initio approaches and the broader numerical methods, as well as the role of numerical methods in &#39;analytical&#39; techniques. We also evaluate the relative advantages and disadvantages of analytical as well as numerical and ab initio methods, together with their role in scientific discovery, told through the case studies of two representative attosecond processes: non-sequential double ionisation and resonant high-harmonic generation. We present the discussion in the form of a dialogue between two hypothetical theoreticians, a numericist and an analytician, who introduce and challenge the broader opinions expressed in the attoscience community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09335v3-abstract-full').style.display = 'none'; document.getElementById('2101.09335v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the round-table panel discussion &#39;Quantum Battle 3 - Numerical vs Analytical Methods&#39; at the Quantum Battles in Attoscience online conference (https://www.quantumbattles.com/), the livestream for which can be found at https://www.youtube.com/watch?v=VJnFfHVDym4</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. D 75, 209 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08355">arXiv:2010.08355</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.08355">pdf</a>, <a href="https://arxiv.org/format/2010.08355">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D0FD00105H">10.1039/D0FD00105H <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manipulating Twisted Electrons in Strong-Field Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+G+S+J">G. S. J. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">M. F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">E. Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+Y">Y. Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A+C">A. C. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">M. Lewenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">C. Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08355v1-abstract-short" style="display: inline;"> We investigate the discrete orbital angular momentum (OAM) of photoelectrons freed in strongfield ionization. We use these `twisted&#39; electrons to provide an alternative interpretation on existing experimental work of vortex interferences caused by strong field ionization mediated by two counterrotating circularly polarized pulses separated by a delay. Using the strong field approximation, we deriv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08355v1-abstract-full').style.display = 'inline'; document.getElementById('2010.08355v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08355v1-abstract-full" style="display: none;"> We investigate the discrete orbital angular momentum (OAM) of photoelectrons freed in strongfield ionization. We use these `twisted&#39; electrons to provide an alternative interpretation on existing experimental work of vortex interferences caused by strong field ionization mediated by two counterrotating circularly polarized pulses separated by a delay. Using the strong field approximation, we derive an interference condition for the vortices. In computations for a neon target we find very good agreement of the vortex condition with photoelectron momentum distributions computed with the strong field approximation, as well as with the time-dependent methods Qprop and R-Matrix. For each of these approaches we examine the OAM of the photoelectrons, finding a small number of vortex states localized in separate energy regions. We demonstrate that the vortices arise from the interference of pairs of twisted electron states. The OAM of each twisted electron state can be directly related to the number of arms of the spiral in that region. We gain further understanding by recreating the vortices with pairs of twisted electrons and use this to determine a semiclassical relation for the OAM. A discussion is included on measuring the OAM in strong field ionization directly or by employing specific laser pulse schemes as well as utilizing the OAM in time-resolved imaging of photo-induced dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08355v1-abstract-full').style.display = 'none'; document.getElementById('2010.08355v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, publication prepared for the the strong field theme of the Faraday Discussions conference: Time-resolved imaging of photo-induced dynamics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Faraday Discussions 228, 394 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.10070">arXiv:2008.10070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.10070">pdf</a>, <a href="https://arxiv.org/format/2008.10070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.043519">10.1103/PhysRevA.103.043519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Estimation in Strong Fields: in situ ponderomotive sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Serafini%2C+A">A. Serafini</a>, <a href="/search/physics?searchtype=author&amp;query=Bose%2C+S">S. Bose</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">C. Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.10070v2-abstract-short" style="display: inline;"> We develop a new framework to optimize and understand uncertainty from in situ strong field measurements of laser field parameters. We present the first derivation of quantum and classical Fisher information for an electron undergoing strong-field ionization. This is used for parameter estimation and to characterize the uncertainty of the ponderomotive energy, directly proportional to laser intens&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10070v2-abstract-full').style.display = 'inline'; document.getElementById('2008.10070v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.10070v2-abstract-full" style="display: none;"> We develop a new framework to optimize and understand uncertainty from in situ strong field measurements of laser field parameters. We present the first derivation of quantum and classical Fisher information for an electron undergoing strong-field ionization. This is used for parameter estimation and to characterize the uncertainty of the ponderomotive energy, directly proportional to laser intensity. In particular, the quantum and classical Fisher information for the momentum basis displays quadratic scaling over time. This can be linked to above-threshold ionization interference rings for measurements in the momentum basis and to the `ponderomotive phase&#39; for the `ideal&#39; quantum measurements. Preferential scaling is found for increasing laser pulse length and intensity. We use this to demonstrate for in situ measurements of laser intensity, that high resolution momentum spectroscopy has the capacity to reduce the uncertainty by over $25$ times compared to measurements employing the ionization rate, while using the `ideal&#39; quantum measurement would reduce it by a further factor of $2.6$. A minimum uncertainty of the order $2.8 \times 10^{-3}~\%$ is theorized for this framework. Finally, we examine previous in situ measurements formulating a measurement that matches the experimental procedure and suggest how to improve this. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.10070v2-abstract-full').style.display = 'none'; document.getElementById('2008.10070v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures, 4 tables, 51 equations</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, 043519 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.02239">arXiv:2003.02239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.02239">pdf</a>, <a href="https://arxiv.org/format/2003.02239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.033111">10.1103/PhysRevA.102.033111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spiral-like Holographic Structures: Unwinding Interference Carpets of Coulomb-Distorted Orbits in Strong-Field Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+X">XuanYang Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+R">RenPing Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">XiaoJun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">Carla Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.02239v1-abstract-short" style="display: inline;"> We unambiguously identify, in experiment and theory, a previously overlooked holographic interference pattern in strong-field ionization, dubbed &#34;the spiral&#34;, stemming from two trajectories for which the binding potential and the laser field are equally critical. We show that, due to strong interaction with the core, these trajectories are optimal tools for probing the target \textbf{after} ioniza&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.02239v1-abstract-full').style.display = 'inline'; document.getElementById('2003.02239v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.02239v1-abstract-full" style="display: none;"> We unambiguously identify, in experiment and theory, a previously overlooked holographic interference pattern in strong-field ionization, dubbed &#34;the spiral&#34;, stemming from two trajectories for which the binding potential and the laser field are equally critical. We show that, due to strong interaction with the core, these trajectories are optimal tools for probing the target \textbf{after} ionization and for revealing obfuscated phases in the initial bound states. The spiral is shown to be responsible for interference carpets, formerly attributed to direct above-threshold ionization trajectories, and we show the carpet-interference condition is a general property due to the field symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.02239v1-abstract-full').style.display = 'none'; document.getElementById('2003.02239v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 033111 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.03860">arXiv:1908.03860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.03860">pdf</a>, <a href="https://arxiv.org/format/1908.03860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.013109">10.1103/PhysRevA.102.013109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Holographic detection of parity in atomic and molecular orbitals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kang%2C+H">HuiPeng Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Trabert%2C+D">Daniel Trabert</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+X">XuanYang Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Eckart%2C+S">Sebastian Eckart</a>, <a href="/search/physics?searchtype=author&amp;query=Kunitski%2C+M">Maksim Kunitski</a>, <a href="/search/physics?searchtype=author&amp;query=Schoffler%2C+M">Markus Schoffler</a>, <a href="/search/physics?searchtype=author&amp;query=Jahnke%2C+T">Till Jahnke</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+X">XueBin Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Dorner%2C+R">Reinhard Dorner</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">Carla Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.03860v2-abstract-short" style="display: inline;"> We introduce a novel and concise methodology to detect the parity of atomic and molecular orbitals based on photoelectron holography, which is more general than the existing schemes. It fully accounts for the Coulomb distortions of electron trajectories, does not require sculpted fields to retrieve phase information and, in principle, is applicable to a broad range of electron momenta. By comparat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03860v2-abstract-full').style.display = 'inline'; document.getElementById('1908.03860v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.03860v2-abstract-full" style="display: none;"> We introduce a novel and concise methodology to detect the parity of atomic and molecular orbitals based on photoelectron holography, which is more general than the existing schemes. It fully accounts for the Coulomb distortions of electron trajectories, does not require sculpted fields to retrieve phase information and, in principle, is applicable to a broad range of electron momenta. By comparatively measuring the differential photoelectron spectra from strong-field ionization of N$_{2}$ molecules and their companion atoms of Ar, some photoelectron holography patterns are found to be dephased for both targets. This is well reproduced by the full-dimensional time-dependent Schr枚dinger equation and the Coulomb quantum-orbit strong-field approximation (CQSFA) simulation. Using the CQSFA, we trace back our observations to different parities of the 3$p$ orbital of Ar and the highest-occupied molecular orbital of N$_{2}$ via interfering Coulomb-distorted quantum orbits carrying different initial phases. This method could in principle be used to extract bound-state phases from any holographic structure, with a wide range of potential applications in recollision physics and spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03860v2-abstract-full').style.display = 'none'; document.getElementById('1908.03860v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 013109 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.11781">arXiv:1906.11781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.11781">pdf</a>, <a href="https://arxiv.org/format/1906.11781">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/ab5c91">10.1088/1361-6633/ab5c91 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> It is all about phases: ultrafast holographic photoelectron imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">C. Figueira de Morisson Faria</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.11781v1-abstract-short" style="display: inline;"> Photoelectron holography constitutes a powerful tool for the ultrafast imaging of matter, as it combines high electron currents with subfemtosecond resolution, and gives information about transition amplitudes and phase shifts. Similarly to light holography, it uses the phase difference between the probe and the reference waves associated with qualitatively different ionization events for the reco&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11781v1-abstract-full').style.display = 'inline'; document.getElementById('1906.11781v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.11781v1-abstract-full" style="display: none;"> Photoelectron holography constitutes a powerful tool for the ultrafast imaging of matter, as it combines high electron currents with subfemtosecond resolution, and gives information about transition amplitudes and phase shifts. Similarly to light holography, it uses the phase difference between the probe and the reference waves associated with qualitatively different ionization events for the reconstruction of the target and for ascertaining any changes that may occur. These are major advantages over other attosecond imaging techniques, which require elaborate interferometric schemes in order to extract phase differences. For that reason, ultrafast photoelectron holography has experienced a huge growth in activity, which has led to a vast, but fragmented landscape. The present review is an organizational effort towards unifying this landscape. This includes a historic account in which a connection with laser-induced electron diffraction (LIED) is established, a summary of the main holographic structures encountered and their underlying physical mechanisms, a broad discussion of the theoretical methods employed, and of the key challenges and future possibilities. We delve deeper in our own work, and place a strong emphasis on quantum interference, and on the residual Coulomb potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11781v1-abstract-full').style.display = 'none'; document.getElementById('1906.11781v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Review article; 88 pages, 40 figures; the quality of some figures has been compromised in order to comply with the arxiv requirements</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.11447">arXiv:1812.11447</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.11447">pdf</a>, <a href="https://arxiv.org/format/1812.11447">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/ab2bb1">10.1088/1361-6633/ab2bb1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symphony on Strong Field Approximation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Amini%2C+K">Kasra Amini</a>, <a href="/search/physics?searchtype=author&amp;query=Biegert%2C+J">Jens Biegert</a>, <a href="/search/physics?searchtype=author&amp;query=Calegari%2C+F">Francesca Calegari</a>, <a href="/search/physics?searchtype=author&amp;query=Chac%C3%B3n%2C+A">Alexis Chac贸n</a>, <a href="/search/physics?searchtype=author&amp;query=Ciappina%2C+M+F">Marcelo F. Ciappina</a>, <a href="/search/physics?searchtype=author&amp;query=Dauphin%2C+A">Alexandre Dauphin</a>, <a href="/search/physics?searchtype=author&amp;query=Efimov%2C+D+K">Dmitry K. Efimov</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">Carla Figueira de Morisson Faria</a>, <a href="/search/physics?searchtype=author&amp;query=Giergiel%2C+K">Krzysztof Giergiel</a>, <a href="/search/physics?searchtype=author&amp;query=Gniewek%2C+P">Piotr Gniewek</a>, <a href="/search/physics?searchtype=author&amp;query=Landsman%2C+A+S">Alexandra S. Landsman</a>, <a href="/search/physics?searchtype=author&amp;query=Lesiuk%2C+M">Micha艂 Lesiuk</a>, <a href="/search/physics?searchtype=author&amp;query=Mandrysz%2C+M">Micha艂 Mandrysz</a>, <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">Andrew S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Moszy%C5%84ski%2C+R">Robert Moszy艅ski</a>, <a href="/search/physics?searchtype=author&amp;query=Ortmann%2C+L">Lisa Ortmann</a>, <a href="/search/physics?searchtype=author&amp;query=P%C3%A9rez-Hern%C3%A1ndez%2C+J+A">Jose Antonio P茅rez-Hern谩ndez</a>, <a href="/search/physics?searchtype=author&amp;query=Pic%C3%B3n%2C+A">Antonio Pic贸n</a>, <a href="/search/physics?searchtype=author&amp;query=Pisanty%2C+E">Emilio Pisanty</a>, <a href="/search/physics?searchtype=author&amp;query=Prauzner-Bechcicki%2C+J">Jakub Prauzner-Bechcicki</a>, <a href="/search/physics?searchtype=author&amp;query=Sacha%2C+K">Krzysztof Sacha</a>, <a href="/search/physics?searchtype=author&amp;query=Su%C3%A1rez%2C+N">Noslen Su谩rez</a>, <a href="/search/physics?searchtype=author&amp;query=Za%C3%AFr%2C+A">Amelle Za茂r</a>, <a href="/search/physics?searchtype=author&amp;query=Zakrzewski%2C+J">Jakub Zakrzewski</a>, <a href="/search/physics?searchtype=author&amp;query=Lewenstein%2C+M">Maciej Lewenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.11447v2-abstract-short" style="display: inline;"> This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagiello艅ski, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the &#34;simple man&#39;s models&#34; which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include High-Harmonic Generation, Above-Threshold Ionization, and Non-S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.11447v2-abstract-full').style.display = 'inline'; document.getElementById('1812.11447v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.11447v2-abstract-full" style="display: none;"> This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagiello艅ski, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the &#34;simple man&#39;s models&#34; which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include High-Harmonic Generation, Above-Threshold Ionization, and Non-Sequential Multielectron Ionization. &#34;Simple man&#39;s models&#34; provide, both an intuitive basis for understanding the numerical solutions of the time-dependent Schr枚dinger equation, and the motivation for the powerful analytic approximations generally known as the Strong Field Approximation (SFA). In this paper we first review the SFA in the form developed by us in the last 25 years. In this approach SFA is a method to solve the TDSE using a systematic perturbation theory in a part of the Hamiltonian describing continuum-continuum transitions in the presence of the laser field. In this review we focus on recent applications of SFA to HHG, ATI and NSMI from multi-electron atoms and from multi-atom. The main novel part of the presented theory concerns generalizations of SFA to: (i) time-dependent treatment of two-electron atoms, allowing for studies of an interplay between Electron Impact Ionization (EII) and Resonant Excitation with Subsequent Ionization (RESI); (ii) time-dependent treatment in the single active electron (SAE) approximation of &#34;large&#34; molecules and targets which are themselves undergoing dynamics during the HHG or ATI process. In particular, we formulate the general expressions for the case of arbitrary molecules, combining input from quantum chemistry and quantum dynamics. We formulate also theory of time-dependent separable molecular potentials to model analytically the dynamics of realistic electronic wave packets for molecules in strong laser fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.11447v2-abstract-full').style.display = 'none'; document.getElementById('1812.11447v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We dedicate this work to the memory of Bertrand Carr茅, who passed away in March 2018 at the age of 60. This Accepted Manuscript is available under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rep. Prog. Phys. 82, 116001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.00817">arXiv:1808.00817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.00817">pdf</a>, <a href="https://arxiv.org/format/1808.00817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.063423">10.1103/PhysRevA.98.063423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Treating Branch Cuts in Quantum Trajectory Models for Photoelectron Holography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Popruzhenko%2C+S+V">S. V. Popruzhenko</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">C. Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.00817v1-abstract-short" style="display: inline;"> Most implementations of Coulomb-distorted strong-field approaches that contain features such as tunneling and quantum interference use real trajectories in continuum propagation, while a fully consistent approach must use complex trajectories throughout. A key difficulty in the latter case are branch cuts that appear due to the specific form of the Coulomb potential. We present a method for treati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.00817v1-abstract-full').style.display = 'inline'; document.getElementById('1808.00817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.00817v1-abstract-full" style="display: none;"> Most implementations of Coulomb-distorted strong-field approaches that contain features such as tunneling and quantum interference use real trajectories in continuum propagation, while a fully consistent approach must use complex trajectories throughout. A key difficulty in the latter case are branch cuts that appear due to the specific form of the Coulomb potential. We present a method for treating branch cuts in quantum-trajectory models, which is subsequently applied to photoelectron holography. Our method is not numerically intensive, as it does not require finding the location of all branching points and branch cuts prior to its implementation, and is applicable to Coulomb-free and Coulomb-distorted trajectories. We show that the presence of branch cuts leads to discontinuities and caustics in the holographic fringes in above-threshold ionization (ATI) photoelectron angular distributions (PAD). These artefacts are removed applying our method, provided they appear far enough from the polarization axis. A comparison with the full solution of the time-dependent Schr枚dinger equation is also performed, and a discussion of the applicability range of the present approach is provided. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.00817v1-abstract-full').style.display = 'none'; document.getElementById('1808.00817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures. Some figure files have been reduced in order to comply with the arXiV requirements</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 063423 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.00789">arXiv:1802.00789</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.00789">pdf</a>, <a href="https://arxiv.org/ps/1802.00789">ps</a>, <a href="https://arxiv.org/format/1802.00789">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6455/aac164">10.1088/1361-6455/aac164 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coulomb-free and Coulomb-distorted recolliding quantum orbits in photoelectron holography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">C. Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.00789v1-abstract-short" style="display: inline;"> We perform a detailed analysis of the different types of orbits in the Coulomb Quantum Orbit Strong-field Approximation (CQSFA), ranging from direct to those undergoing hard collisions. We show that some of them exhibit clear counterparts in the standard formulations of the strong-field approximation for direct and rescattered above-threshold ionization, and show that the standard orbit classifica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.00789v1-abstract-full').style.display = 'inline'; document.getElementById('1802.00789v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.00789v1-abstract-full" style="display: none;"> We perform a detailed analysis of the different types of orbits in the Coulomb Quantum Orbit Strong-field Approximation (CQSFA), ranging from direct to those undergoing hard collisions. We show that some of them exhibit clear counterparts in the standard formulations of the strong-field approximation for direct and rescattered above-threshold ionization, and show that the standard orbit classification commonly used in Coulomb-corrected models is over-simplified. We identify several types of rescattered orbits, such as those responsible for the low-energy structures reported in the literature, and determine the momentum regions in which they occur. We also find formerly overlooked interference patterns caused by backscattered, Coulomb-corrected orbits and assess their effect on photoelectron angular distributions. These orbits improves the agreement of photoelectron angular distributions computed with the CQSFA with the outcome of ab-initio methods for high-energy phtotoelectrons perpendicular to the field-polarization axis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.00789v1-abstract-full').style.display = 'none'; document.getElementById('1802.00789v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.05973">arXiv:1709.05973</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.05973">pdf</a>, <a href="https://arxiv.org/ps/1709.05973">ps</a>, <a href="https://arxiv.org/format/1709.05973">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6455/aa9e81">10.1088/1361-6455/aa9e81 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analytic quantum-interference conditions in Coulomb corrected photoelectron holography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Al-Jawahiry%2C+A">A. Al-Jawahiry</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+X+Y">X. Y. Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">C. Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.05973v1-abstract-short" style="display: inline;"> We provide approximate analytic expressions for above-threshold ionization (ATI) transition probabilities and photoelectron angular distributions (PADs). These analytic expressions are more general than those existing in the literature and include the residual binding potential in the electron continuum propagation. They successfully reproduce the ATI side lobes and specific holographic structures&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.05973v1-abstract-full').style.display = 'inline'; document.getElementById('1709.05973v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.05973v1-abstract-full" style="display: none;"> We provide approximate analytic expressions for above-threshold ionization (ATI) transition probabilities and photoelectron angular distributions (PADs). These analytic expressions are more general than those existing in the literature and include the residual binding potential in the electron continuum propagation. They successfully reproduce the ATI side lobes and specific holographic structures such as the near-threshold fan-shaped pattern and the spider-like structure that extends up to relatively high photoelectron energies. We compare such expressions with the Coulomb quantum orbit strong-field approximation (CQSFA) and the full solution of the time-dependent Schr枚dinger equation for different driving-field frequencies and intensities, and provide an in-depth analysis of the physical mechanisms behind specific holographic structures. Our results shed additional light on what aspects of the CQSFA must be prioritized in order to obtain the key holographic features, and highlight the importance of forward scattered trajectories. Furthermore, we find that the holographic patterns change considerably for different field parameters, even if the Keldysh parameter is kept roughly the same. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.05973v1-abstract-full').style.display = 'none'; document.getElementById('1709.05973v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 10 figures. The figures have been simplified in order to comply with the arXiV size requirements</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.01518">arXiv:1705.01518</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.01518">pdf</a>, <a href="https://arxiv.org/format/1705.01518">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.96.023420">10.1103/PhysRevA.96.023420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coulomb-corrected quantum interference in above-threshold ionization: Working towards multi-trajectory electron holography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Al-Jawahiry%2C+A">A. Al-Jawahiry</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+T">T. Das</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">C. Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.01518v1-abstract-short" style="display: inline;"> Using the recently developed Coulomb Quantum Orbit Strong-Field Approximation (CQSFA), we perform a systematic analysis of several features encountered in above-threshold ionization (ATI) photoelectron angle-resolved distributions (PADs), such as side lobes, and intra- and intercycle interference patterns. The latter include not only the well-known intra-cycle rings and the near-threshold fan-shap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.01518v1-abstract-full').style.display = 'inline'; document.getElementById('1705.01518v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.01518v1-abstract-full" style="display: none;"> Using the recently developed Coulomb Quantum Orbit Strong-Field Approximation (CQSFA), we perform a systematic analysis of several features encountered in above-threshold ionization (ATI) photoelectron angle-resolved distributions (PADs), such as side lobes, and intra- and intercycle interference patterns. The latter include not only the well-known intra-cycle rings and the near-threshold fan-shaped structure, but also previously overlooked patterns. We provide a direct account of how the Coulomb potential distorts different types of interfering trajectories and changes the corresponding phase differences, and show that these patterns may be viewed as generalized holographic structures formed by up to three types of trajectories. We also derive analytical interference conditions and estimates valid in the presence or absence of the residual potential, and assess the range of validity of Coulomb-corrected interference conditions provided in the literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.01518v1-abstract-full').style.display = 'none'; document.getElementById('1705.01518v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures. Some figures have been compressed in order to comply with the arXiv requirements</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.06825">arXiv:1507.06825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.06825">pdf</a>, <a href="https://arxiv.org/ps/1507.06825">ps</a>, <a href="https://arxiv.org/format/1507.06825">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.143001">10.1103/PhysRevLett.116.143001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Controlling Below-Threshold Nonsequential Double Ionization via Quantum Interference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">C. Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.06825v1-abstract-short" style="display: inline;"> We show through simulation that quantum interference in non-sequential double ionization can be used to control the recollision with subsequent ionization (RESI) mechanism. This includes the shape, localization and symmetry of RESI electron-momentum distributions, which may be shifted from a correlated to an anti-correlated distribution or vice versa, far below the direct ionization threshold inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06825v1-abstract-full').style.display = 'inline'; document.getElementById('1507.06825v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.06825v1-abstract-full" style="display: none;"> We show through simulation that quantum interference in non-sequential double ionization can be used to control the recollision with subsequent ionization (RESI) mechanism. This includes the shape, localization and symmetry of RESI electron-momentum distributions, which may be shifted from a correlated to an anti-correlated distribution or vice versa, far below the direct ionization threshold intensity. As a testing ground, we reproduce recent experimental results by employing specific coherent superpositions of excitation channels. We examine two types of interference, from electron indistinguishability and intra-cycle events, and from different excitation channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06825v1-abstract-full').style.display = 'none'; document.getElementById('1507.06825v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 143001 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.06823">arXiv:1507.06823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.06823">pdf</a>, <a href="https://arxiv.org/ps/1507.06823">ps</a>, <a href="https://arxiv.org/format/1507.06823">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.92.023421">10.1103/PhysRevA.92.023421 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Interference in Time-Delayed Nonsequential Double Ionization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Maxwell%2C+A+S">A. S. Maxwell</a>, <a href="/search/physics?searchtype=author&amp;query=Faria%2C+C+F+d+M">C. Figueira de Morisson Faria</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.06823v1-abstract-short" style="display: inline;"> We perform a systematic analysis of quantum interference in nonsequential double ionization focusing on the recollision-excitation with subsequent ionization (RESI) mechanism, employing the strong-field approximation (SFA). We find that interference has a major influence on the shape, localization and symmetry of the correlated electron momentum distributions. In particular, the fourfold symmetry&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06823v1-abstract-full').style.display = 'inline'; document.getElementById('1507.06823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.06823v1-abstract-full" style="display: none;"> We perform a systematic analysis of quantum interference in nonsequential double ionization focusing on the recollision-excitation with subsequent ionization (RESI) mechanism, employing the strong-field approximation (SFA). We find that interference has a major influence on the shape, localization and symmetry of the correlated electron momentum distributions. In particular, the fourfold symmetry with regard to the parallel momentum components observed in previous SFA studies is broken. Two types of interference are observed and thoroughly analyzed, namely that caused by electron indistinguishability and intra-cycle events, and that stemming from different excitation channels. We find that interference is most prominent around the diagonal and anti-diagonal in the parallel-momentum plane and provide fully analytical expressions for most interference patterns encountered. We also show that this interference can be controlled by an appropriate choice of phase and excited-state geometry. This leads a to myriad of shapes for the RESI distributions including correlated, anti-correlated and ring-shaped. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.06823v1-abstract-full').style.display = 'none'; document.getElementById('1507.06823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10