CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;26 of 26 results for author: <span class="mathjax">Osada, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Osada%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Osada, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Osada%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Osada, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14559">arXiv:2402.14559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.14559">pdf</a>, <a href="https://arxiv.org/format/2402.14559">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.024802">10.1103/PhysRevMaterials.8.024802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scanning SQUID study of ferromagnetism and superconductivity in infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+R+A">Ruby A. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iguchi%2C+Y">Yusuke Iguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">Berit H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">Lena F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moler%2C+K+A">Kathryn A. Moler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14559v1-abstract-short" style="display: inline;"> Infinite-layer nickelates $R_{1-x}$Sr$_{x}$NiO$_{2}$ ($R$ = La, Pr, Nd) are a class of superconductors with structural similarities to cuprates. Although long-range antiferromagnetic order has not been observed for these materials, magnetic effects such as antiferromagnetic spin fluctuations and spin-glass behavior have been reported. Different experiments have drawn different conclusions about wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14559v1-abstract-full').style.display = 'inline'; document.getElementById('2402.14559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14559v1-abstract-full" style="display: none;"> Infinite-layer nickelates $R_{1-x}$Sr$_{x}$NiO$_{2}$ ($R$ = La, Pr, Nd) are a class of superconductors with structural similarities to cuprates. Although long-range antiferromagnetic order has not been observed for these materials, magnetic effects such as antiferromagnetic spin fluctuations and spin-glass behavior have been reported. Different experiments have drawn different conclusions about whether the pairing symmetry is $s$- or $d$ wave. In this paper, we applied a scanning superconducting quantum interference device (SQUID) to probe the magnetic behavior of film samples of three infinite-layer nickelates (La$_{0.85}$Sr$_{0.15}$NiO$_2$, Pr$_{0.8}$Sr$_{0.2}$NiO$_2$, and Nd$_{0.775}$Sr$_{0.225}$NiO$_2$) grown on SrTiO$_3$ (STO), each with a nominal thickness of 20 unit cells. In all three films, we observed a ferromagnetic background. We also measured the magnetic susceptibility above the superconducting critical temperature in Pr$_{0.8}$Sr$_{0.2}$NiO$_2$ and La$_{0.85}$Sr$_{0.15}$NiO$_2$ and identified a non-Curie-Weiss dynamic susceptibility. Both magnetic features are likely due to NiO$_x$ nanoparticles. Additionally, we investigated superconductivity in Pr$_{0.8}$Sr$_{0.2}$NiO$_2$ and Nd$_{0.775}$Sr$_{0.225}$NiO$_2$, which exhibited inhomogeneous diamagnetic screening. The superfluid density inferred from the diamagnetic susceptibility in relatively homogeneous regions shows $T$-linear behavior in both samples. Finally, we observed superconducting vortices in Nd$_{0.775}$Sr$_{0.225}$NiO$_2$. We determined a Pearl length of 330 $\upmu$m for Nd$_{0.775}$Sr$_{0.225}$NiO$_2$ at 300 mK both from the strength of the diamagnetism and from the size and shape of the vortices. These results highlight the importance of considering NiO$_x$ particles when interpreting experimental results for these films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14559v1-abstract-full').style.display = 'none'; document.getElementById('2402.14559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16444">arXiv:2312.16444</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16444">pdf</a>, <a href="https://arxiv.org/format/2312.16444">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Universal orbital and magnetic structures in infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">K. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">B. H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">J. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Y. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">B. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jost%2C+D">D. Jost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E">E. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">L. F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16444v1-abstract-short" style="display: inline;"> We conducted a comparative study of the rare-earth infinite-layer nickelates films, RNiO2 (R = La, Pr, and Nd) using resonant inelastic X-ray scattering (RIXS). We found that the gross features of the orbital configurations are essentially the same, with minor variations in the detailed hybridization. For low-energy excitations, we unambiguously confirm the presence of damped magnetic excitations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16444v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16444v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16444v1-abstract-full" style="display: none;"> We conducted a comparative study of the rare-earth infinite-layer nickelates films, RNiO2 (R = La, Pr, and Nd) using resonant inelastic X-ray scattering (RIXS). We found that the gross features of the orbital configurations are essentially the same, with minor variations in the detailed hybridization. For low-energy excitations, we unambiguously confirm the presence of damped magnetic excitations in all three compounds. By fitting to a linear spin-wave theory, comparable spin exchange coupling strengths and damping coefficients are extracted, indicating a universal magnetic structure in the infinite-layer nickelates. Interestingly, while signatures of a charge order are observed in LaNiO2 in the quasi-elastic region of the RIXS spectrum, it is absent in NdNiO2 and PrNiO2. This prompts further investigation into the universality and the origins of charge order within the infinite-layer inickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16444v1-abstract-full').style.display = 'none'; document.getElementById('2312.16444v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures. Accepted by Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05094">arXiv:2303.05094</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05094">pdf</a>, <a href="https://arxiv.org/format/2303.05094">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.115411">10.1103/PhysRevB.107.115411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Coulomb blockade and Coulomb staircases in superconducting Pr0.8Sr0.2NiO2 films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui-Feng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yan-Ling Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xiaopeng Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Can-Li Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xu-Cun Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05094v1-abstract-short" style="display: inline;"> Motivated by the discovery of superconductivity in the infinite-layer nickelate family, we report an experimental endeavor to clean the surface of nickelate superconductor Pr0.8Sr0.2NiO2 films by Ar+ ion sputtering and subsequent annealing, and we study their electronic structures by cryogenic scanning tunneling microscopy and spectroscopy. The annealed surfaces are characterized by nano-sized clu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05094v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05094v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05094v1-abstract-full" style="display: none;"> Motivated by the discovery of superconductivity in the infinite-layer nickelate family, we report an experimental endeavor to clean the surface of nickelate superconductor Pr0.8Sr0.2NiO2 films by Ar+ ion sputtering and subsequent annealing, and we study their electronic structures by cryogenic scanning tunneling microscopy and spectroscopy. The annealed surfaces are characterized by nano-sized clusters and Coulomb staircases with periodicity inversely proportional to the projected area of the nanoclusters, consistent with a double-barrier tunneling junction model. Moreover, the dynamical Coulomb blockade effects are observed and result in well-defined energy gaps around the Fermi level, which correlate closely with the specific configuration of the junctions. These Coulomb blockade-related phenomena provide an alternative plausible cause of the observed gap structure that should be considered in the spectroscopic understanding of nickelate superconductors with the nano-clustered surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05094v1-abstract-full').style.display = 'none'; document.getElementById('2303.05094v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.15355">arXiv:2205.15355</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.15355">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Rare-Earth Control of the Superconducting Upper Critical Field in Infinite-Layer Nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T+C">Tiffany C. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+Y">Yu-Te Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duffy%2C+C">Caitlin Duffy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fowlie%2C+J">Jennifer Fowlie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beasley%2C+M+R">Malcolm R. Beasley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussey%2C+N+E">Nigel E. Hussey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.15355v1-abstract-short" style="display: inline;"> The consequences of varying the rare-earth element in the superconducting infinite-layer nickelates have been much debated. Here we show striking differences in the magnitude and anisotropy of the superconducting upper critical field across the La-, Pr-, and Nd-nickelates. These 5 distinctions originate from the 4f electron characteristics of the rare-earth ions in the lattice: they are absent for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15355v1-abstract-full').style.display = 'inline'; document.getElementById('2205.15355v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.15355v1-abstract-full" style="display: none;"> The consequences of varying the rare-earth element in the superconducting infinite-layer nickelates have been much debated. Here we show striking differences in the magnitude and anisotropy of the superconducting upper critical field across the La-, Pr-, and Nd-nickelates. These 5 distinctions originate from the 4f electron characteristics of the rare-earth ions in the lattice: they are absent for La3+, nonmagnetic for the Pr3+ singlet ground state, and magnetic for the Nd3+ Kramer&#39;s doublet. The unique polar and azimuthal angle-dependent magnetoresistance found in the Nd-nickelates can be understood to arise from the magnetic contribution of the Nd3+ 4f moments. In the absence of rare-earth effects, we find that the nickelates broadly violate the Pauli limit. Such robust and tunable superconductivity suggests potential in future high-field applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15355v1-abstract-full').style.display = 'none'; document.getElementById('2205.15355v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, 1 supplementary materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02580">arXiv:2203.02580</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.02580">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06129-x">10.1038/s41586-023-06129-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Character of the &#34;normal state&#34; of the nickelate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">Berit H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T+C">Tiffany C. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harvey%2C+S">Shannon Harvey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+W+J">Woo Jin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Yijun Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murthy%2C+C">Chaitanya Murthy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raghu%2C+S">Srinivas Raghu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">Lena F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02580v1-abstract-short" style="display: inline;"> The occurrence of superconductivity in proximity to various strongly correlated phases of matter has drawn extensive focus on their normal state properties, to develop an understanding of the state from which superconductivity emerges. The recent finding of superconductivity in layered nickelates raises similar interests. However, transport measurements of doped infinite-layer nickelate thin films&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02580v1-abstract-full').style.display = 'inline'; document.getElementById('2203.02580v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02580v1-abstract-full" style="display: none;"> The occurrence of superconductivity in proximity to various strongly correlated phases of matter has drawn extensive focus on their normal state properties, to develop an understanding of the state from which superconductivity emerges. The recent finding of superconductivity in layered nickelates raises similar interests. However, transport measurements of doped infinite-layer nickelate thin films have been hampered by materials limitations of these metastable compounds - in particular, a relatively high density of extended defects. Here, by moving to a substrate (LaAlO$_{3}$)$_{0.3}$(Sr$_{2}$TaAlO$_{6}$)$_{0.7}$ which better stabilizes the growth and reduction conditions, we can synthesize the doping series of Nd$_{1-x}$Sr$_{x}$NiO$_{2}$ essentially free from extended defects. This enables the first examination of the &#39;intrinsic&#39; temperature and doping dependent evolution of the transport properties. The normal state resistivity exhibits a low-temperature upturn in the underdoped regime, linear behavior near optimal doping, and quadratic temperature dependence for overdoping. This is strikingly similar to the copper oxides, despite key distinctions - namely the absence of an insulating parent compound, multiband electronic structure, and a Mott-Hubbard orbital alignment rather than the charge-transfer insulator of the copper oxides. These results suggest an underlying universality in the emergent electronic properties of both superconducting families. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02580v1-abstract-full').style.display = 'none'; document.getElementById('2203.02580v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.12971">arXiv:2201.12971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.12971">pdf</a>, <a href="https://arxiv.org/format/2201.12971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Evidence for nodal superconductivity in infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Harvey%2C+S+P">Shannon P. Harvey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fowlie%2C+J">Jennifer Fowlie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.12971v1-abstract-short" style="display: inline;"> Infinite-layer nickelates present a new family of potential unconventional superconductors. A key open question is the superconducting pairing symmetry. We present low-temperature measurements of the London penetration depth in optimally doped La_{0.8}Sr_{0.2}NiO_{2}, Pr_{0.8}Sr_{0.2}NiO_{2}, and Nd_{0.8}Sr_{0.2}NiO_{2}. For La and Pr-nickelates, the superfluid density shows a quadratic temperatur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12971v1-abstract-full').style.display = 'inline'; document.getElementById('2201.12971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.12971v1-abstract-full" style="display: none;"> Infinite-layer nickelates present a new family of potential unconventional superconductors. A key open question is the superconducting pairing symmetry. We present low-temperature measurements of the London penetration depth in optimally doped La_{0.8}Sr_{0.2}NiO_{2}, Pr_{0.8}Sr_{0.2}NiO_{2}, and Nd_{0.8}Sr_{0.2}NiO_{2}. For La and Pr-nickelates, the superfluid density shows a quadratic temperature dependence, indicating nodal superconductivity in the presence of disorder. Nd-nickelate exhibits complex low-temperature behavior, which we attribute to magnetic impurities. These results are consistent with d-wave pairing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12971v1-abstract-full').style.display = 'none'; document.getElementById('2201.12971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, 1 table, 1 supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.11943">arXiv:2201.11943</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.11943">pdf</a>, <a href="https://arxiv.org/format/2201.11943">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01684-y">10.1038/s41567-022-01684-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic magnetism in superconducting infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fowlie%2C+J">Jennifer Fowlie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hadjimichael%2C+M">Marios Hadjimichael</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martins%2C+M+M">Maria M. Martins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salman%2C+Z">Zaher Salman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokscha%2C+T">Thomas Prokscha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Triscone%2C+J">Jean-Marc Triscone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suter%2C+A">Andreas Suter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.11943v1-abstract-short" style="display: inline;"> The discovery of superconductivity in Nd$_{0.8}$Sr$_{0.2}$NiO$_2$ [1] introduced a new family of layered nickelate superconductors that has now been extended to include a range of Sr-doping [2, 3], Pr or La in place of Nd [4-6], and the 5-layer Nd$_6$Ni$_5$O$_{12}$ [7]. A number of studies indicate that electron correlations are strong in these materials [8-14], and hence a central question is whe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11943v1-abstract-full').style.display = 'inline'; document.getElementById('2201.11943v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.11943v1-abstract-full" style="display: none;"> The discovery of superconductivity in Nd$_{0.8}$Sr$_{0.2}$NiO$_2$ [1] introduced a new family of layered nickelate superconductors that has now been extended to include a range of Sr-doping [2, 3], Pr or La in place of Nd [4-6], and the 5-layer Nd$_6$Ni$_5$O$_{12}$ [7]. A number of studies indicate that electron correlations are strong in these materials [8-14], and hence a central question is whether or not magnetism is present as a consequence of these interactions. Here we report muon spin rotation/relaxation studies of a series of superconducting infinite-layer nickelates. In all cases we observe an intrinsic magnetic ground state, regardless of the rare earth ion or doping, arising from local moments on the nickel sublattice. The coexistence of magnetism - which is likely to be antiferromagnetic and short-range ordered - with superconductivity is reminiscent of some iron pnictides [15] and heavy fermion compounds [16], and qualitatively distinct from the doped cuprates [17]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11943v1-abstract-full').style.display = 'none'; document.getElementById('2201.11943v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. 18 1043-1047 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03613">arXiv:2201.03613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.03613">pdf</a>, <a href="https://arxiv.org/format/2201.03613">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-023-01510-7">10.1038/s41563-023-01510-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstructing the polar interface of infinite-layer nickelate thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">Berit H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geisler%2C+B">Benjamin Geisler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pentcheva%2C+R">Rossitza Pentcheva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">Lena F. Kourkoutis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03613v1-abstract-short" style="display: inline;"> Nickel-based superconductors provide a long-awaited experimental platform to explore possible cuprate-like superconductivity. Despite similar crystal structure and $d$ electron filling, these systems exhibit several differences. Nickelates are the most polar layered oxide superconductor, raising questions about the interface between substrate and thin film -- thus far the only sample geometry to s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03613v1-abstract-full').style.display = 'inline'; document.getElementById('2201.03613v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03613v1-abstract-full" style="display: none;"> Nickel-based superconductors provide a long-awaited experimental platform to explore possible cuprate-like superconductivity. Despite similar crystal structure and $d$ electron filling, these systems exhibit several differences. Nickelates are the most polar layered oxide superconductor, raising questions about the interface between substrate and thin film -- thus far the only sample geometry to successfully stabilize superconductivity. We conduct a detailed experimental and theoretical study of the prototypical interface between Nd$_{1-x}$Sr$_x$NiO$_2$ and SrTiO$_3$. Atomic-resolution electron energy loss spectroscopy in the scanning transmission electron microscope reveals the formation of a single intermediate Nd(Ti,Ni)O$_3$ layer. Density functional theory calculations with a Hubbard $U$ term show how the observed structure alleviates the strong polar discontinuity. We explore effects of oxygen occupancy, hole doping, and cation structure to disentangle the contributions of each for reducing interface charge density. Resolving the nontrivial interface structure will be instructive for future synthesis of nickelate films on other substrates and in vertical heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03613v1-abstract-full').style.display = 'none'; document.getElementById('2201.03613v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02484">arXiv:2112.02484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.02484">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01660-6">10.1038/s41567-022-01660-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Broken Translational Symmetry State in an Infinite-Layer Nickelate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">Matteo Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jost%2C+D">Daniel Jost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Haiyu Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y">Yi-De Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuo%2C+C">Cheng-Tai Kuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sang-Jun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jun-Sik Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Wei-Sheng Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02484v1-abstract-short" style="display: inline;"> A defining signature of strongly correlated electronic systems is the existence of competing phases with similar ground state energies, resulting in a rich phase diagram. While in the recently discovered nickelate superconductors, a high antiferromagnetic exchange energy has been reported, which implies the existence of strong electronic correlations, signatures of competing phases have not yet be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02484v1-abstract-full').style.display = 'inline'; document.getElementById('2112.02484v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02484v1-abstract-full" style="display: none;"> A defining signature of strongly correlated electronic systems is the existence of competing phases with similar ground state energies, resulting in a rich phase diagram. While in the recently discovered nickelate superconductors, a high antiferromagnetic exchange energy has been reported, which implies the existence of strong electronic correlations, signatures of competing phases have not yet been observed. Here, we uncover a charge order (CO) in infinite-layer nickelates La1-xSrxNiO2 using resonant x-ray scattering across the Ni L-edge. In the parent compound, the CO arranges along the Ni-O bond direction with an incommensurate wave vector (0.344+/-0.002, 0) r.l.u., distinct from the stripe order in other nickelates which propagates along a direction 45 degree to the Ni-O bond. The CO resonance profile indicates that CO originates from the Ni 3d states and induces a parasitic charge modulation of La electrons. Upon doping, the CO diminishes and the ordering wave vector shifts toward a commensurate value of 1/3 r.l.u., indicating that the CO likely arises from strong correlation effects and not from Fermi surface nesting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02484v1-abstract-full').style.display = 'none'; document.getElementById('2112.02484v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 18, 869 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.03963">arXiv:2106.03963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.03963">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.matt.2022.01.020">10.1016/j.matt.2022.01.020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure of superconducting nickelates probed by resonant photoemission spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhuoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E+M">Emily M. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Su-Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodolakis%2C+F">Fanny Rodolakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McChesney%2C+J+L">Jessica L. McChesney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.03963v2-abstract-short" style="display: inline;"> The discovery of infinite-layer nickelate superconductors has spurred enormous interest. While the Ni$^{1+}$ cations possess nominally the same 3$d^9$ configuration as Cu$^{2+}$ in cuprates, the electronic structure variances remain elusive. Here, we present a soft x-ray photoemission spectroscopy study on parent and doped infinite-layer Pr-nickelate thin films with a doped perovskite reference. B&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03963v2-abstract-full').style.display = 'inline'; document.getElementById('2106.03963v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.03963v2-abstract-full" style="display: none;"> The discovery of infinite-layer nickelate superconductors has spurred enormous interest. While the Ni$^{1+}$ cations possess nominally the same 3$d^9$ configuration as Cu$^{2+}$ in cuprates, the electronic structure variances remain elusive. Here, we present a soft x-ray photoemission spectroscopy study on parent and doped infinite-layer Pr-nickelate thin films with a doped perovskite reference. By identifying the Ni character with resonant photoemission and comparison to density functional theory + U (on-site Coulomb repulsion energy) calculations, we estimate U ~5 eV, smaller than the charge transfer energy $螖$ ~8 eV, confirming the Mott-Hubbard electronic structure in contrast to charge-transfer cuprates. Near the Fermi level ($E_F$), we observe a signature of occupied rare-earth states in the parent compound, which is consistent with a self-doping picture. Our results demonstrate a correlation between the superconducting transition temperature and the oxygen 2$p$ hybridization near $E_F$ when comparing hole-doped nickelates and cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03963v2-abstract-full').style.display = 'none'; document.getElementById('2106.03963v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Matter 5, 1-10 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13494">arXiv:2105.13494</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.13494">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202104083">10.1002/adma.202104083 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nickelate superconductivity without rare-earth magnetism: (La,Sr)NiO$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">Berit H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harvey%2C+S+P">Shannon P. Harvey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">Lena F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13494v1-abstract-short" style="display: inline;"> The observation of superconductivity in infinite layer nickelate (Nd,Sr)NiO$_{2}$ thin films has led to rapid theoretical and experimental investigations of these copper-oxide-analogue systems [1-15]. Superconductivity has also been found in (Pr,Sr)NiO$_{2}$ [16,17], but not previously in (La,Sr)NiO$_{2}$ [2], raising a fundamental question whether superconductivity is associated with the presence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13494v1-abstract-full').style.display = 'inline'; document.getElementById('2105.13494v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13494v1-abstract-full" style="display: none;"> The observation of superconductivity in infinite layer nickelate (Nd,Sr)NiO$_{2}$ thin films has led to rapid theoretical and experimental investigations of these copper-oxide-analogue systems [1-15]. Superconductivity has also been found in (Pr,Sr)NiO$_{2}$ [16,17], but not previously in (La,Sr)NiO$_{2}$ [2], raising a fundamental question whether superconductivity is associated with the presence of rare-earth moments [18,19]. Here we show that with significant materials optimization, substantial portions of the La$_{1-x}$Sr$_{x}$NiO$_{2}$ phase diagram can enter the regime of coherent low-temperature transport ($x$ = 0.14 - 0.20), with subsequent superconducting transitions and a maximum onset of ~ 9 K at $x$ = 0.20. Additionally, we observe the unexpected indication of a superconducting ground state in undoped LaNiO$_{2}$, which likely reflects the self-doped nature of the electronic structure. Combining the results of (La/Pr/Nd)$_{1-x}$Sr$_{x}$NiO$_{2}$ reveals a generalized superconducting dome, characterized by systematic shifts in the unit cell volume and in the relative electron-hole populations across the lanthanides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13494v1-abstract-full').style.display = 'none'; document.getElementById('2105.13494v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. 2104083 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.11300">arXiv:2105.11300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.11300">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abd7726">10.1126/science.abd7726 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic excitations in infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D+F">D. F. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">K. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">B. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E+M">E. M. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaanen%2C+J">J. Zaanen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.11300v1-abstract-short" style="display: inline;"> The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a new material class that mirrors the cuprate superconductors. Here, we report on magnetic excitations in these nickelates, measured using resonant inelastic x-ray scattering (RIXS) at the Ni L3-edge, to shed light on the material complexity and microscopic physics. Undoped NdNiO2 possesses a branch of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11300v1-abstract-full').style.display = 'inline'; document.getElementById('2105.11300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.11300v1-abstract-full" style="display: none;"> The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a new material class that mirrors the cuprate superconductors. Here, we report on magnetic excitations in these nickelates, measured using resonant inelastic x-ray scattering (RIXS) at the Ni L3-edge, to shed light on the material complexity and microscopic physics. Undoped NdNiO2 possesses a branch of dispersive excitations with a bandwidth of approximately 200 meV, reminiscent of strongly-coupled, antiferromagnetically aligned spins on a square lattice, despite a lack of evidence for long range magnetic order. The significant damping of these modes indicates the importance of coupling to rare-earth itinerant electrons. Upon doping, the spectral weight and energy decrease slightly, while the modes become overdamped. Our results highlight the role of Mottness in infinite-layer nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11300v1-abstract-full').style.display = 'none'; document.getElementById('2105.11300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the initially submitted version before revising for reviewers&#39; comments. The peer-reviewed version has been accepted at Science and will be published soon</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 373, 213-216 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.07783">arXiv:2105.07783</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.07783">pdf</a>, <a href="https://arxiv.org/format/2105.07783">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Insulator-to-Metal Crossover near the Edge of the Superconducting Dome in Nd$_{1-x}$Sr$_x$NiO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+Y">Yu-Te Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berben%2C+M">Maarten Berben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duffy%2C+C">Caitlin Duffy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ottenbros%2C+T">Thom Ottenbros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+W+J">Woo Jin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiedmann%2C+S">Steffen Wiedmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussey%2C+N+E">Nigel E. Hussey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.07783v2-abstract-short" style="display: inline;"> We report a systematic magnetotransport study of superconducting infinite-layer nickelate thin films Nd$_{1-x}$Sr$_x$NiO$_2$ with $0.15 \leq x \leq 0.225$. By suppressing superconductivity with out-of-plane magnetic fields up to 37.5 T, we find that the normal state resistivity of Nd$_{1-x}$Sr$_x$NiO$_2$ is characterized by a crossover from a metallic $T^2$-behavior to an insulating log(1/$T$)-beh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.07783v2-abstract-full').style.display = 'inline'; document.getElementById('2105.07783v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.07783v2-abstract-full" style="display: none;"> We report a systematic magnetotransport study of superconducting infinite-layer nickelate thin films Nd$_{1-x}$Sr$_x$NiO$_2$ with $0.15 \leq x \leq 0.225$. By suppressing superconductivity with out-of-plane magnetic fields up to 37.5 T, we find that the normal state resistivity of Nd$_{1-x}$Sr$_x$NiO$_2$ is characterized by a crossover from a metallic $T^2$-behavior to an insulating log(1/$T$)-behavior for all $x$ except $x = 0.225$, at which the resistivity is predominantly metallic. The log(1/$T$)-behavior is found to be robust against magnetic fields, inconsistent with scenarios involving localization or Kondo scattering, and points to an anomalous insulating state possibly driven by strong correlations. In the metallic state, we find no evidence for non-Fermi-liquid behavior arising from proximity to a putative quantum critical point located inside the superconducting dome. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.07783v2-abstract-full').style.display = 'none'; document.getElementById('2105.07783v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, L042015 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.06560">arXiv:2012.06560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.06560">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-01128-5">10.1038/s41567-020-01128-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isotropic Pauli-Limited Superconductivity in the Infinite Layer Nickelate Nd$_{0.775}$Sr$_{0.225}$NiO$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">Berit H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harvey%2C+S+P">Shannon P. Harvey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">Lena F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beasley%2C+M+R">Malcolm R. Beasley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.06560v1-abstract-short" style="display: inline;"> The recent observation of superconductivity in thin film infinite-layer nickelates$^{1-3}$ offers a different angle to investigate superconductivity in layered oxides$^{4}$. A wide range of candidate models have been proposed$^{5-10}$, emphasizing single- or multi-orbital electronic structure, Kondo or Hund&#39;s coupling, and analogies to cuprates. Clearly, further experimental characterization of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.06560v1-abstract-full').style.display = 'inline'; document.getElementById('2012.06560v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.06560v1-abstract-full" style="display: none;"> The recent observation of superconductivity in thin film infinite-layer nickelates$^{1-3}$ offers a different angle to investigate superconductivity in layered oxides$^{4}$. A wide range of candidate models have been proposed$^{5-10}$, emphasizing single- or multi-orbital electronic structure, Kondo or Hund&#39;s coupling, and analogies to cuprates. Clearly, further experimental characterization of the superconducting state is needed to develop a full understanding of the nickelates. Here we use magnetotransport measurements to probe the superconducting anisotropy in Nd$_{0.775}$Sr$_{0.225}$NiO$_{2}$. We find that the upper critical field is surprisingly isotropic at low temperatures despite the layered crystal structure. In a magnetic field the superconductivity is strongly Pauli-limited, such that the paramagnetic effect dominates over orbital de-pairing. Underlying this isotropic response is a substantial anisotropy in the superconducting coherence length, which is at least four times longer in-plane than out-of-plane. A prominent low-temperature upturn in the upper critical field indicates the presence of an unconventional ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.06560v1-abstract-full').style.display = 'none'; document.getElementById('2012.06560v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, 1 supplementary info</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.00595">arXiv:2011.00595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.00595">pdf</a>, <a href="https://arxiv.org/format/2011.00595">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.L220505">10.1103/PhysRevB.104.L220505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital and Spin Character of Doped Carriers in Infinite-Layer Nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">K. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">B. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y+-">Y. -D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.00595v1-abstract-short" style="display: inline;"> The recent discovery of superconductivity in Nd$_{1-x}$Sr$_{x}$NiO$_2$ has drawn significant attention in the field. A key open question regards the evolution of the electronic structure with respect to hole doping. Here, we exploit x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) to probe the doping dependent electronic structure of the NiO$_2$ planes. Upon dopin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00595v1-abstract-full').style.display = 'inline'; document.getElementById('2011.00595v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.00595v1-abstract-full" style="display: none;"> The recent discovery of superconductivity in Nd$_{1-x}$Sr$_{x}$NiO$_2$ has drawn significant attention in the field. A key open question regards the evolution of the electronic structure with respect to hole doping. Here, we exploit x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) to probe the doping dependent electronic structure of the NiO$_2$ planes. Upon doping, a higher energy feature in Ni $L_3$ edge XAS develops in addition to the main absorption peak. By comparing our data to atomic multiplet calculations including $D_{4h}$ crystal field, the doping induced feature is consistent with a $d^8$ spin singlet state, in which doped holes reside in the $d_{x^2-y^2}$ orbitals, similar to doped single band Hubbard models. This is further supported by orbital excitations observed in RIXS spectra, which soften upon doping, corroborating with Fermi level shift associated with increasing holes in the $d_{x^2-y^2}$ orbital. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00595v1-abstract-full').style.display = 'none'; document.getElementById('2011.00595v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. Supplemental material included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.16101">arXiv:2010.16101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.16101">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.121801">10.1103/PhysRevMaterials.4.121801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase Diagram of Infinite Layer Praseodymium Nickelate Pr$_{1-x}$Sr$_{x}$NiO$_2$ Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.16101v2-abstract-short" style="display: inline;"> We report the phase diagram of infinite layer Pr$_{1-x}$Sr$_{x}$NiO$_2$ thin films synthesized via topotactic reduction from the perovskite precursor phase using CaH$_2$. Based on the electrical transport properties, we find a doping-dependent superconducting dome extending between $x$ = 0.12 and 0.28, with a maximum superconducting transition temperature $T_{\rm{c}}$ of 14 K at $x$ = 0.18, bounde&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.16101v2-abstract-full').style.display = 'inline'; document.getElementById('2010.16101v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.16101v2-abstract-full" style="display: none;"> We report the phase diagram of infinite layer Pr$_{1-x}$Sr$_{x}$NiO$_2$ thin films synthesized via topotactic reduction from the perovskite precursor phase using CaH$_2$. Based on the electrical transport properties, we find a doping-dependent superconducting dome extending between $x$ = 0.12 and 0.28, with a maximum superconducting transition temperature $T_{\rm{c}}$ of 14 K at $x$ = 0.18, bounded by weakly insulating behavior on both sides. In contrast to the narrower dome observed in Nd$_{1-x}$Sr$_{x}$NiO$_2$, a local $T_{\rm{c}}$ suppression near $x$ = 0.2 was not observed for the Pr$_{1-x}$Sr$_{x}$NiO$_2$ system. Normal state Hall effect measurements indicate mixed carrier contributions of both electrons and holes, and show a sign change in the Hall coefficient as functions of temperature and $x$, quite similar to that in Nd$_{1-x}$Sr$_{x}$NiO$_2$. Also similar is the observation of a minimum in the normal state resistivity associated with the superconducting compositions. These findings indicate an infinite layer nickelate phase diagram that is relatively insensitive to the rare-earth element, but suggest that disorder arising from the variations of the ionic radii on the rare-earth site affects the superconducting dome. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.16101v2-abstract-full').style.display = 'none'; document.getElementById('2010.16101v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 121801 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.13369">arXiv:2006.13369</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.13369">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.0c01392">10.1021/acs.nanolett.0c01392 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A superconducting praseodymium nickelate with infinite layer structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">Berit H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+H">Hyeok Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakuma%2C+K">Keita Sakuma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miura%2C+M">Masashi Miura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">Lena F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.13369v1-abstract-short" style="display: inline;"> A variety of nickel oxide compounds have long been studied for their manifestation of various correlated electron phenomena. Recently, superconductivity was observed in nanoscale infinite layer nickelate thin films of Nd$_{0.8}$Sr$_{0.2}$NiO$_2$, epitaxially stabilized on SrTiO$_3$ substrates via topotactic reduction from the perovskite precursor phase. Here we present the synthesis and properties&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13369v1-abstract-full').style.display = 'inline'; document.getElementById('2006.13369v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.13369v1-abstract-full" style="display: none;"> A variety of nickel oxide compounds have long been studied for their manifestation of various correlated electron phenomena. Recently, superconductivity was observed in nanoscale infinite layer nickelate thin films of Nd$_{0.8}$Sr$_{0.2}$NiO$_2$, epitaxially stabilized on SrTiO$_3$ substrates via topotactic reduction from the perovskite precursor phase. Here we present the synthesis and properties of PrNiO$_2$ thin films on SrTiO$_3$. Upon doping in Pr$_{0.8}$Sr$_{0.2}$NiO$_2$, we observe superconductivity with a transition temperature of 7-12 K, and robust critical current density at 2 K of 334 kA/cm$^2$. These findings indicate that superconductivity in the infinite layer nickelates is relatively insensitive to the details of the rare earth 4$f$ configuration. Furthermore, they motivate the exploration of a broader family of compounds based on two-dimensional NiO$_2$ planes, which will enable systematic investigation of the superconducting and normal state properties and their underlying mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13369v1-abstract-full').style.display = 'none'; document.getElementById('2006.13369v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02847">arXiv:2005.02847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.02847">pdf</a>, <a href="https://arxiv.org/format/2005.02847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2007683118">10.1073/pnas.2007683118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doping evolution of the Mott-Hubbard landscape in infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">Berit H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">George A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">Lena F. Kourkoutis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02847v1-abstract-short" style="display: inline;"> The recent observation of superconductivity in Nd$_{0.8}$Sr$_{0.2}$NiO$_2$ has raised fundamental questions about the hierarchy of the underlying electronic structure. Calculations suggest that this system falls in the Mott-Hubbard regime, rather than the charge-transfer configuration of other nickel oxides and the superconducting cuprates. Here, we use state-of-the-art, locally-resolved electron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02847v1-abstract-full').style.display = 'inline'; document.getElementById('2005.02847v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02847v1-abstract-full" style="display: none;"> The recent observation of superconductivity in Nd$_{0.8}$Sr$_{0.2}$NiO$_2$ has raised fundamental questions about the hierarchy of the underlying electronic structure. Calculations suggest that this system falls in the Mott-Hubbard regime, rather than the charge-transfer configuration of other nickel oxides and the superconducting cuprates. Here, we use state-of-the-art, locally-resolved electron energy loss spectroscopy to directly probe the Mott-Hubbard character of Nd$_{1-x}$Sr$_x$NiO$_2$. Upon doping, we observe emergent hybridization reminiscent of the Zhang-Rice singlet via the oxygen-projected states, modification of the Nd 5$d$ states, and the systematic evolution of Ni 3$d$ hybridization and filling. These results clearly evidence the multiband nature of this system and the distinct electronic landscape for infinite-layer nickelates despite their formal similarity to the cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02847v1-abstract-full').style.display = 'none'; document.getElementById('2005.02847v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> e2007683118 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.08506">arXiv:2003.08506</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.08506">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.027001">10.1103/PhysRevLett.125.027001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconducting Dome in Nd$_{1-x}$Sr$_x$NiO$_2$ Infinite Layer Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harvey%2C+S+P">Shannon P. Harvey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">Berit H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">Lena F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.08506v2-abstract-short" style="display: inline;"> We report the phase diagram of Nd$_{1-x}$Sr$_x$NiO$_2$ infinite layer thin films grown on SrTiO$_3$. A superconducting dome spanning $0.125 &lt; x &lt; 0.25$ is found, remarkably similar to cuprates, albeit over a narrower doping window. However, while cuprate superconductivity is bounded by an insulator for underdoping and a metal for overdoping, here we observe weakly insulating behavior on either sid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08506v2-abstract-full').style.display = 'inline'; document.getElementById('2003.08506v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.08506v2-abstract-full" style="display: none;"> We report the phase diagram of Nd$_{1-x}$Sr$_x$NiO$_2$ infinite layer thin films grown on SrTiO$_3$. A superconducting dome spanning $0.125 &lt; x &lt; 0.25$ is found, remarkably similar to cuprates, albeit over a narrower doping window. However, while cuprate superconductivity is bounded by an insulator for underdoping and a metal for overdoping, here we observe weakly insulating behavior on either side of the dome. Furthermore, the normal state Hall coefficient is always small and proximate to a continuous zero crossing in doping and in temperature, in contrast to the $\sim 1/x$ dependence observed for cuprates. This suggests the presence of both electron- and hole-like bands, consistent with band structure calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08506v2-abstract-full').style.display = 'none'; document.getElementById('2003.08506v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages (including Supplemental Material), 7 figures (including 4 supplemental figure)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 027001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.07749">arXiv:2002.07749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.07749">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0005103">10.1063/5.0005103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Aspects of the Synthesis of Thin Film Superconducting Infinite-Layer Nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">Berit H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">Lena F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.07749v2-abstract-short" style="display: inline;"> The recent observation of superconductivity in Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ calls for further investigation and optimization of the synthesis of this metastable infinite-layer nickelate structure. Here, we present our current understanding of important aspects of the growth of the parent perovskite compound via pulsed laser deposition on SrTiO$_{3}$ (001) substrates, and the subsequent topotactic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07749v2-abstract-full').style.display = 'inline'; document.getElementById('2002.07749v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.07749v2-abstract-full" style="display: none;"> The recent observation of superconductivity in Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ calls for further investigation and optimization of the synthesis of this metastable infinite-layer nickelate structure. Here, we present our current understanding of important aspects of the growth of the parent perovskite compound via pulsed laser deposition on SrTiO$_{3}$ (001) substrates, and the subsequent topotactic reduction. We find that to achieve single-crystalline, single-phase superconducting Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$, it is essential that the precursor perovskite Nd$_{0.8}$Sr$_{0.2}$NiO$_{3}$ thin film is stabilized with high crystallinity and no impurity phases; in particular, a Ruddlesden-Popper-type secondary phase is often observed. We have further investigated the evolution of the soft-chemistry topotactic reduction conditions to realize full transformation to the infinite-layer structure with no film decomposition or formation of other phases. We find that capping the nickelate film with a subsequent SrTiO$_{3}$ layer provides an epitaxial template to the top region of the nickelate film, much like the substrate. Thus, for currently optimized growth conditions, we can stabilize superconducting single-phase Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ (001) epitaxial thin films up to ~ 10 nm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07749v2-abstract-full').style.display = 'none'; document.getElementById('2002.07749v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.02678">arXiv:1909.02678</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.02678">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-019-0585-z">10.1038/s41563-019-0585-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure of the parent compound of superconducting infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hepting%2C+M">M. Hepting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C+J">C. J. Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">E. Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Y. Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">X. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E">E. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hikita%2C+Y">Y. Hikita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y+-">Y. -D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K+J">K. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H+Y">H. Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D+J">D. J. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaanen%2C+J">J. Zaanen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.02678v1-abstract-short" style="display: inline;"> The search for oxide materials with physical properties similar to the cuprate high Tc superconductors, but based on alternative transition metals such as nickel, has grown and evolved over time. The recent discovery of superconductivity in doped infinite-layer nickelates RNiO2 (R = rare-earth element) further strengthens these efforts.With a crystal structure similar to the infinite-layer cuprate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02678v1-abstract-full').style.display = 'inline'; document.getElementById('1909.02678v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.02678v1-abstract-full" style="display: none;"> The search for oxide materials with physical properties similar to the cuprate high Tc superconductors, but based on alternative transition metals such as nickel, has grown and evolved over time. The recent discovery of superconductivity in doped infinite-layer nickelates RNiO2 (R = rare-earth element) further strengthens these efforts.With a crystal structure similar to the infinite-layer cuprates - transition metal oxide layers separated by a rare-earth spacer layer - formal valence counting suggests that these materials have monovalent Ni1+ cations with the same 3d electron count as Cu2+ in the cuprates. Here, we use x-ray spectroscopy in concert with density functional theory to show that the electronic structure of RNiO2 (R = La, Nd), while similar to the cuprates, includes significant distinctions. Unlike cuprates with insulating spacer layers between the CuO2 planes, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly-interacting three-dimensional 5d metallic state. This three-dimensional metallic state hybridizes with a quasi-two-dimensional, strongly correlated state with 3dx2-y2 symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare earth intermetallics, well-known for heavy Fermion behavior, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy Fermion compounds. This unique Kondo- or Anderson-lattice-like &#34;oxide-intermetallic&#34; replaces the Mott insulator as the reference state from which superconductivity emerges upon doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02678v1-abstract-full').style.display = 'none'; document.getElementById('1909.02678v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 19, 381 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.05436">arXiv:1906.05436</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.05436">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C9NR04612G">10.1039/C9NR04612G <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wafer-Scale and Deterministic Patterned Growth of Monolayer MoS2 via Vapor-Liquid-Solid Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shisheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yung-Chang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xu-Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Zehua Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jing Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakajima%2C+H">Hideaki Nakajima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okazaki%2C+T">Toshiya Okazaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minari%2C+T">Takeo Minari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakuma%2C+Y">Yoshiki Sakuma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsukagoshi%2C+K">Kazuhito Tsukagoshi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suenaga%2C+K">Kazu Suenaga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takaaki Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Minoru Osada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.05436v2-abstract-short" style="display: inline;"> Vapor transportation is the core process in growing transition-metal dichalcogenides (TMDCs) by chemical vapor deposition (CVD). One inevitable problem is the spatial inhomogeneity of the vapors. The non-stoichiometric supply of transition-metal precursors and chalcogen leads to poor control in products&#39; location, morphology, crystallinity, uniformity and batch to batch reproducibility. While vapo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05436v2-abstract-full').style.display = 'inline'; document.getElementById('1906.05436v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.05436v2-abstract-full" style="display: none;"> Vapor transportation is the core process in growing transition-metal dichalcogenides (TMDCs) by chemical vapor deposition (CVD). One inevitable problem is the spatial inhomogeneity of the vapors. The non-stoichiometric supply of transition-metal precursors and chalcogen leads to poor control in products&#39; location, morphology, crystallinity, uniformity and batch to batch reproducibility. While vapor-liquid-solid (VLS) growth involves molten precursors at the growth temperatures higher than their melting points. The liquid sodium molybdate can precipitate solid MoS2 monolayers when saturated with sulfur vapor. Taking advantage of the VLS growth, we achieved three kinds of important achievements: (a) 4-inch-wafer-scale uniform growth of MoS2 flakes on SiO2/Si substrates, (b) 2-inch-wafer-scale growth of continuous MoS2 film with a grain size exceeding 100 um on sapphire substrates, and (c) pattern (site-controlled) growth of MoS2 flakes and film. We clarified that the VLS growth thus pave the new way for the high-efficient, scalable synthesis of two-dimensional TMDC monolayers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05436v2-abstract-full').style.display = 'none'; document.getElementById('1906.05436v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanoscale 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.09043">arXiv:1801.09043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.09043">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-018-0055-z">10.1038/s41563-018-0055-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vapor-Liquid-Solid Growth of Monolayer MoS2 Nanoribbons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shisheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yung-Chang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jing Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhuo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Zehua Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Y">Youde Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+D">Dai-Ming Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junyong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+H">Hai Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+L">Leiqiang Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weijie Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhipei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takaaki Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Minoru Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Q">Qing-Hua Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wee%2C+A+T+S">Andrew Thye Shen Wee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+K+S+F">Kazu Suenaga Feng Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eda%2C+G">Goki Eda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.09043v2-abstract-short" style="display: inline;"> Chemical vapor deposition (CVD) of two-dimensional (2D) materials such as monolayer MoS2 typically involves the conversion of vapor-phase precursors to a solid product in a process that may be described as a vapor-solid-solid (VSS) mode. Here, we report the first demonstration of vapor-liquid-solid (VLS) growth of monolayer MoS2 yielding highly crystalline ribbon-shaped structures with a width of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09043v2-abstract-full').style.display = 'inline'; document.getElementById('1801.09043v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.09043v2-abstract-full" style="display: none;"> Chemical vapor deposition (CVD) of two-dimensional (2D) materials such as monolayer MoS2 typically involves the conversion of vapor-phase precursors to a solid product in a process that may be described as a vapor-solid-solid (VSS) mode. Here, we report the first demonstration of vapor-liquid-solid (VLS) growth of monolayer MoS2 yielding highly crystalline ribbon-shaped structures with a width of a few tens of nanometers to a few micrometers. The VLS growth mode is triggered by the reaction between molybdenum oxide and sodium chloride, which results in the formation of molten Na-Mo-O droplets. These droplets mediate the growth of MoS2 ribbons in the &#34;crawling mode&#34; when saturated with sulfur on a crystalline substrate. Our growth yields straight and kinked ribbons with a locally well-defined orientation, reflecting the regular horizontal motion of the liquid droplets during growth. Using atomic-resolution scanning transmission electron microscopy (STEM) and second harmonic generation (SHG) microscopy, we show that the ribbons are homoepitaxially on monolayer MoS2 surface with predominantly 2H- or 3R-type stacking. These findings pave the way to novel devices with structures of mixed dimensionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.09043v2-abstract-full').style.display = 'none'; document.getElementById('1801.09043v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.01701">arXiv:1705.01701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.01701">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/c7nr01305a">10.1039/c7nr01305a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Molecularly-thin anatase field-effect transistors fabricated through the solid state transformation of titania nanosheets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sekizaki%2C+S">S. Sekizaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagashio%2C+K">K. Nagashio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.01701v1-abstract-short" style="display: inline;"> We demonstrate the field-effect transistor (FET) operation of molecularly-thin anatase phase produced through solid state transformation from Ti0.87O2 nanosheets. Monolayer Ti0.87O2 nanosheet with a thickness of 0.7 nm is two-dimensional oxide insulators in which Ti vacancies are incorporated, rather than oxygen vacancies. Since the fabrication method, in general, largely affects the film quality,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.01701v1-abstract-full').style.display = 'inline'; document.getElementById('1705.01701v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.01701v1-abstract-full" style="display: none;"> We demonstrate the field-effect transistor (FET) operation of molecularly-thin anatase phase produced through solid state transformation from Ti0.87O2 nanosheets. Monolayer Ti0.87O2 nanosheet with a thickness of 0.7 nm is two-dimensional oxide insulators in which Ti vacancies are incorporated, rather than oxygen vacancies. Since the fabrication method, in general, largely affects the film quality, the anatase films derived from Ti0.87O2 nanosheet show interesting characteristics, such as no photocurrent peak at ~2 eV, which is related to oxygen vacancies, and a larger band gap of 3.8 eV. The 10-nm thick anatase FETs exhibit superior transport characteristics with a maximum mobility of ~1.3 cm2V-1s-1 and current on/off ratio of ~105 at room temperature. The molecularly-thin anatase FET may provide new functionalities, such as field-effect control of catalytic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.01701v1-abstract-full').style.display = 'none'; document.getElementById('1705.01701v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanoscale, 2017,9, 6471-6477 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.07831">arXiv:1609.07831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.07831">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Mechanical force involved multiple fields switching of both local ferroelectric and magnetic domain in a Bi5Ti3FeO15 thin film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+T">Tingting Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimura%2C+H">Hideo Kimura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhenxiang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Hongyang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Yoon-Hyun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Minoru Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsumoto%2C+T">Takao Matsumoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shibata%2C+N">Naoya Shibata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ikuhara%2C+Y">Yuichi Ikuhara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.07831v1-abstract-short" style="display: inline;"> Multiferroics have received intense attention due to their great application potential in multi-state information storage devices and new types of sensors. Coupling among ferroic orders such as ferroelectricity, (anti-)ferromagnetism, ferroelasticity, etc. will enable dynamic interaction between these ordering parameters. Direct visualization of such coupling behaviour in single phase multiferroic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.07831v1-abstract-full').style.display = 'inline'; document.getElementById('1609.07831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.07831v1-abstract-full" style="display: none;"> Multiferroics have received intense attention due to their great application potential in multi-state information storage devices and new types of sensors. Coupling among ferroic orders such as ferroelectricity, (anti-)ferromagnetism, ferroelasticity, etc. will enable dynamic interaction between these ordering parameters. Direct visualization of such coupling behaviour in single phase multiferroic materials is highly desirable for both applications and fundamental study. Manipulation of both ferroelectric and magnetic domains of Bi5Ti3FeO15 thin film using electric field and external mechanical force is reported, which confirms the magnetoelectric coupling in Bi5Ti3FeO15, indicates the electric and magnetic orders are coupled through ferroelasticity. Due to the anisotropic relaxation of ferroelastic strain, the back-switching of out-of-plane electric domains is not as obvious as in-plane. An inevitable destabilization of the coupling between elastic and magnetic ordering happens because of the elastic strain relaxation, which result in a subsequent decay of magnetic domain switching. Mechanical force applied on the surface of Bi5Ti3FeO15 film generates by an AFM tip will effectively drive a transition of the local ferroelastic strain state, reverse both the polarization and magnetization in a way similar to an electric field. Current work provides a framework for exploring cross-coupling among multiple orders and potential for developing novel nanoscale functional devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.07831v1-abstract-full').style.display = 'none'; document.getElementById('1609.07831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0510031">arXiv:cond-mat/0510031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0510031">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> New Misfit-Layered Cobalt Oxide (CaOH)1.14CoO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shizuya%2C+M">M. Shizuya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isobe%2C+M">M. Isobe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baba%2C+Y">Y. Baba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagai%2C+T">T. Nagai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kosuda%2C+K">K. Kosuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takenouchi%2C+S">S. Takenouchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsui%2C+Y">Y. Matsui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takayama-Muromachi%2C+E">E. Takayama-Muromachi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0510031v1-abstract-short" style="display: inline;"> We found a new cobalt oxide (CaOH)1.14CoO2 by utilizing the high-pressure technique. X-ray and electron diffraction studies revealed that the compound has layer structure which consists of CdI2-type CoO2 layers and rock-salt-type double CaOH atomic layers. The two subcells have incommensurate periodicity along the a-axis, resulting in modulated crystal structure due to the inter-subcell interact&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0510031v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0510031v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0510031v1-abstract-full" style="display: none;"> We found a new cobalt oxide (CaOH)1.14CoO2 by utilizing the high-pressure technique. X-ray and electron diffraction studies revealed that the compound has layer structure which consists of CdI2-type CoO2 layers and rock-salt-type double CaOH atomic layers. The two subcells have incommensurate periodicity along the a-axis, resulting in modulated crystal structure due to the inter-subcell interaction. The structural modulation affects carrier conduction through the potential randomness. We found that the two-dimensional (2-D) variable-range hopping (VRH) regime with hole conduction is dominant at low temperature for this compound, and that the conduction mechanism undergoes crossover from the 2-D VRH regime to thermal activation-energy type one with increasing temperature. Based on the experimental results of resistivity, thermoelectric power, magnetic susceptibility and specific heat measurements, we suggested a possible electronic-band structure model to explain these results. The cobalt t2g-derivative band crosses Fermi energy level near the band edge, yielding small finite density of localized states at the Fermi level in the band. The observed resistivity, Seebeck coefficient, large Pauli paramagnetic component in the magnetic susceptibility and comparatively small Sommerfeld constant in the specific heat are principally attributed to the holes in the t2g-derivative band. We estimated the Wilson ratio to be about 2.8, suggesting the strong electron correlation realized in this compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0510031v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0510031v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 12 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10