CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 300 results for author: <span class="mathjax">Zhao, W</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Zhao%2C+W">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhao, W"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhao%2C+W&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhao, W"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09878">arXiv:2502.09878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.09878">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity and a van Hove singularity confined to the surface of a topological semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+R">Rajibul Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muhammad%2C+Z">Zahir Muhammad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krieger%2C+J+A">Jonas A. Krieger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perakis%2C+I+E">Ilias E. Perakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+F">Fei Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kargarian%2C+M">Mehdi Kargarian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09878v1-abstract-short" style="display: inline;"> The interplay between electronic topology and superconductivity is the subject of great current interest in condensed matter physics. For example, superconductivity induced on the surface of topological insulators is predicted to be triplet in nature, while the interplay between electronic correlations and topology may lead to unconventional superconductivity as in twisted bilayer graphene. Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09878v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09878v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09878v1-abstract-full" style="display: none;"> The interplay between electronic topology and superconductivity is the subject of great current interest in condensed matter physics. For example, superconductivity induced on the surface of topological insulators is predicted to be triplet in nature, while the interplay between electronic correlations and topology may lead to unconventional superconductivity as in twisted bilayer graphene. Here, we unveil an unconventional two-dimensional superconducting state in the recently discovered Dirac nodal line semimetal ZrAs2 which is exclusively confined to the top and bottom surfaces within the crystal&#39;s ab plane. As a remarkable consequence of this emergent state, we observe a Berezinskii-Kosterlitz-Thouless (BKT) transition, the hallmark of two-dimensional superconductivity. Notably, this is the first observation of a BKT transition on the surface of a three-dimensional system. Furthermore, employing angle-resolved photoemission spectroscopy and first-principles calculations, we find that these same surfaces also host a two-dimensional van Hove singularity near the Fermi energy. The proximity of van Hove singularity to the Fermi level leads to enhanced electronic correlations contributing to the stabilization of superconductivity at the surface of ZrAs2, a unique phenomenon among topological semimetals. The surface-confined nature of the van Hove singularity, and associated superconductivity, realized for the first time, opens new avenues to explore the interplay between low-dimensional quantum topology, correlations, and superconductivity in a bulk material without resorting to the superconducting proximity effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09878v1-abstract-full').style.display = 'none'; document.getElementById('2502.09878v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03972">arXiv:2502.03972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.03972">pdf</a>, <a href="https://arxiv.org/format/2502.03972">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Triple-Q state in magnetic breathing kagome lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Hangyu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dias%2C+M+d+S">Manuel dos Santos Dias</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+S">Shijian Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hanchen Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Youguang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lounis%2C+S">Samir Lounis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03972v1-abstract-short" style="display: inline;"> Magnetic frustration in two-dimensional spin lattices with triangular motifs underpins a series of exotic states, ranging from multi-Q configurations to disordered spin-glasses. The antiferromagnetic kagome lattice, characterized by its network of corner-sharing triangles, represents a paradigmatic frustrated system exhibiting macroscopic degeneracy. Expanding upon the kagomerization mechanism, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03972v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03972v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03972v1-abstract-full" style="display: none;"> Magnetic frustration in two-dimensional spin lattices with triangular motifs underpins a series of exotic states, ranging from multi-Q configurations to disordered spin-glasses. The antiferromagnetic kagome lattice, characterized by its network of corner-sharing triangles, represents a paradigmatic frustrated system exhibiting macroscopic degeneracy. Expanding upon the kagomerization mechanism, we focus on the magnetic breathing kagome lattice formed by a Mn monolayer deposited on a heavy metal substrate and capped with h-BN. The Mn kagome arrangement induces pronounced magnetic frustration, as evidenced by the nearly flat bands derived from spin spiral energy calculations. Including further-neighbor interactions reveals a spin spiral energy minimum along the $螕$-K line and an intriguing triple-Q state with nonzero topological charge, potentially leading to highly nonlinear Hall effects. Furthermore, the flat band properties can further give rise to an even more complex spin configuration, marked by several Q-pockets in the spin structure factor. These results present a fertile ground for advancing the study of multi-Q states and exploring emergent topological phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03972v1-abstract-full').style.display = 'none'; document.getElementById('2502.03972v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.19304">arXiv:2501.19304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.19304">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.7b18206">10.1021/acsami.7b18206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solid-state Synapse Based on Magnetoelectrically Coupled Memristor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+W">Weichuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yue-Wen Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Y">Yuewei Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+B">Bobo Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenbo Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+C">Chuangming Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+C">Chao Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+C">Chun-Gang Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaoguang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.19304v1-abstract-short" style="display: inline;"> Brain-inspired computing architectures attempt to emulate the computations performed in the neurons and the synapses in human brain. Memristors with continuously tunable resistances are ideal building blocks for artificial synapses. Through investigating the memristor behaviors in a La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 multiferroic tunnel junction, it was found that the ferroelectric domain dynami&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19304v1-abstract-full').style.display = 'inline'; document.getElementById('2501.19304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.19304v1-abstract-full" style="display: none;"> Brain-inspired computing architectures attempt to emulate the computations performed in the neurons and the synapses in human brain. Memristors with continuously tunable resistances are ideal building blocks for artificial synapses. Through investigating the memristor behaviors in a La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 multiferroic tunnel junction, it was found that the ferroelectric domain dynamics characteristics are influenced by the relative magnetization alignment of the electrodes, and the interfacial spin polarization is manipulated continuously by ferroelectric domain reversal, enriching our understanding of the magnetoelectric coupling fundamentally. This creates a functionality that not only the resistance of the memristor but also the synaptic plasticity form can be further manipulated, as demonstrated by the spike-timing-dependent plasticity investigations. Density functional theory calculations are carried out to describe the obtained magnetoelectric coupling, which is probably related to the Mn-Ti intermixing at the interfaces. The multiple and controllable plasticity characteristic in a single artificial synapse, to resemble the synaptic morphological alteration property in a biological synapse, will be conducive to the development of artificial intelligence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19304v1-abstract-full').style.display = 'none'; document.getElementById('2501.19304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures, 20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Applied Materials &amp; Interfaces 2018, 10, 6, 5649-5656 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15049">arXiv:2501.15049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.15049">pdf</a>, <a href="https://arxiv.org/format/2501.15049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Atomic collapse in gapped graphene: lattice and valley effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaotai Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wen-Sheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Y">Yuhua Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yue Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peeters%2C+F+M">Francois M. Peeters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15049v1-abstract-short" style="display: inline;"> We study the atomic collapse phenomenon in $K$ and $K&#39;$ valley of gapped graphene. Bound states induced by Coulomb impurity in the gap turn into atomic collapse resonances as the charge increases beyond the supercritical charge $Z_c$. $Z_c$ increases sublinear with the band gap $螖$. The atomic collapse resonances result in peaks in the LDOS at the same energies in $K$ and $K&#39;$ valley, but the stro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15049v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15049v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15049v1-abstract-full" style="display: none;"> We study the atomic collapse phenomenon in $K$ and $K&#39;$ valley of gapped graphene. Bound states induced by Coulomb impurity in the gap turn into atomic collapse resonances as the charge increases beyond the supercritical charge $Z_c$. $Z_c$ increases sublinear with the band gap $螖$. The atomic collapse resonances result in peaks in the LDOS at the same energies in $K$ and $K&#39;$ valley, but the strong (weak) LDOS peaks in $K$ valley are weak (strong) LDOS peaks in $K&#39;$ valley reminiscent of pseudospin polarization phenomenon. From a spatial LDOS analysis of the atomic collapse resonance states, we assign specific atomic orbitals to the atomic collapse resonances. Remarkably, the two $p$ atomic orbital atomic collapse states are no longer degenerate and splits into two having lobes in different directions in the graphene plane. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15049v1-abstract-full').style.display = 'none'; document.getElementById('2501.15049v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12141">arXiv:2501.12141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.12141">pdf</a>, <a href="https://arxiv.org/ps/2501.12141">ps</a>, <a href="https://arxiv.org/format/2501.12141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Orientation-dependent transport in junctions formed by $d$-wave altermagnets and $d$-wave superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenjun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fukaya%2C+Y">Yuri Fukaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burset%2C+P">Pablo Burset</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cayao%2C+J">Jorge Cayao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+Y">Yukio Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+B">Bo Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12141v2-abstract-short" style="display: inline;"> We investigate de Gennes-Saint-James states and Josephson effect in hybrid junctions based on $d$-wave altermagnet and $d$-wave superconductor. Even though these states are associated to long junctions, we find that the $d_{x^{2}-y^{2}}$-altermagnet in a normal metal/altermagnet/$d$-wave superconductor junction forms de Gennes-Saint-James states in a short junction due to an enhanced mismatch betw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12141v2-abstract-full').style.display = 'inline'; document.getElementById('2501.12141v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12141v2-abstract-full" style="display: none;"> We investigate de Gennes-Saint-James states and Josephson effect in hybrid junctions based on $d$-wave altermagnet and $d$-wave superconductor. Even though these states are associated to long junctions, we find that the $d_{x^{2}-y^{2}}$-altermagnet in a normal metal/altermagnet/$d$-wave superconductor junction forms de Gennes-Saint-James states in a short junction due to an enhanced mismatch between electron and hole wave vectors. As a result, the zero-bias conductance peak vanishes and pronounced resonance spikes emerge in the subgap conductance spectra. By contrast, the $d_{xy}$-altermagnet only features de Gennes-Saint-James states in the long junction. Moreover, the well-known features such as V-shape conductance for $d_{x^2-y^2}$ pairings and zero-biased conductance peak for $d_{xy}$ pairings are not affected by the strength of $d_{xy}$-altermagnetism in the short junction. We also study the Josephson current-phase relation $I(\varphi)$ of $d$-wave superconductor/altermagnet/$d$-wave superconductor hybrids, where $\varphi$ is the macroscopic phase difference between two $d$-wave superconductors. In symmetric junctions, we obtain anomalous current phase relation such as a $0$-$蟺$ transition by changing either the orientation or the magnitude of the altermagnetic order parameter and dominant higher Josephson harmonics. Interestingly, we find the first-order Josephson coupling in an asymmetric $d_{x^{2}-y^{2}}$-superconductor/altermagnet/$d_{xy}$-superconductor junction when the symmetry of altermagnetic order parameter is neither $d_{x^{2}-y^{2}}$- nor $d_{xy}$-wave. We present the symmetry analysis and conclude that the anomalous orientation-dependent current-phase relations are ascribed to the peculiar feature of the altermagnetic spin-splitting field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12141v2-abstract-full').style.display = 'none'; document.getElementById('2501.12141v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12068">arXiv:2501.12068</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.12068">pdf</a>, <a href="https://arxiv.org/format/2501.12068">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Exploring the Limits of Superconductivity in Metal-Stuffed B-C Clathrates via Ionic Lattice Anharmonicity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenbo Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Ying Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiaxiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+P">Peng Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iitaka%2C+T">Toshiaki Iitaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+X">Xin Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hefei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yue-Wen Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hanyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yu Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12068v1-abstract-short" style="display: inline;"> Metal-stuffed B-C compounds with sodalite clathrate structure have captured increasing attention due to their predicted exceptional superconductivity above liquid nitrogen temperature at ambient pressure. However, by neglecting the quantum lattice anharmonicity, the existing studies may result in an incomplete understanding of such a lightweight system. Here, using state-of-the-art *ab initio* met&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12068v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12068v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12068v1-abstract-full" style="display: none;"> Metal-stuffed B-C compounds with sodalite clathrate structure have captured increasing attention due to their predicted exceptional superconductivity above liquid nitrogen temperature at ambient pressure. However, by neglecting the quantum lattice anharmonicity, the existing studies may result in an incomplete understanding of such a lightweight system. Here, using state-of-the-art *ab initio* methods incorporating quantum effects and machine learning potentials, we revisit the properties of a series of $XY\text{B}_{6}\text{C}_{6}$ clathrates where $X$ and $Y$ are metals. Our findings show that ionic quantum and anharmonic effects can harden the $E_g$ and $E_u$ vibrational modes, enabling the dynamical stability of 15 materials previously considered unstable in the harmonic approximation, including materials with previously unreported $(XY)^{1+}$ state, which is demonstrated here to be crucial to reach high critical temperatures. Further calculations based on the isotropic Migdal-Eliashberg equation demonstrate that the $T_c$ values for $\text{KRbB}_{6}\text{C}_{6}$ and $\text{RbB}_{3}\text{C}_{3}$ among these stabilized compounds are 87 and 98 K at 0 and 15 GPa, respectively, both being higher than $T_c$ of 77 K of $\text{KPbB}_{6}\text{C}_{6}$ at the anharmonic level. These record-high $T_c$ values, surpassing liquid nitrogen temperatures, emphasize the importance of anharmonic effects in stabilizing B-C clathrates with large electron-phonon coupling strength and advancing the search for high-$T_c$ superconductivity at (near) ambient pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12068v1-abstract-full').style.display = 'none'; document.getElementById('2501.12068v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07293">arXiv:2501.07293</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.07293">pdf</a>, <a href="https://arxiv.org/format/2501.07293">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Feedback cooling of fermionic atoms in optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenhua Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Ling-Na Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petiziol%2C+F">Francesco Petiziol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eckardt%2C+A">Andr茅 Eckardt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07293v2-abstract-short" style="display: inline;"> We discuss the preparation of topological insulator states with fermionic ultracold atoms in optical lattices by means of measurement-based Markovian feedback control. The designed measurement and feedback operators induce an effective dissipative channel that stabilizes the desired insulator state, either in an exact way or approximately in the case where additional experimental constraints are a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07293v2-abstract-full').style.display = 'inline'; document.getElementById('2501.07293v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07293v2-abstract-full" style="display: none;"> We discuss the preparation of topological insulator states with fermionic ultracold atoms in optical lattices by means of measurement-based Markovian feedback control. The designed measurement and feedback operators induce an effective dissipative channel that stabilizes the desired insulator state, either in an exact way or approximately in the case where additional experimental constraints are assumed. Successful state preparation is demonstrated in one-dimensional insulators as well as for Haldane&#39;s Chern insulator, by calculating the fidelity between the target ground state and the steady state of the feedback-modified master equation. The fidelity is obtained via time evolution of the system with moderate sizes. For larger 2D systems, we compare the mean occupation of the single-particle eigenstates for the ground and steady state computed through mean-field kinetic equations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07293v2-abstract-full').style.display = 'none'; document.getElementById('2501.07293v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submission to SciPost</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07019">arXiv:2501.07019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.07019">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Large Anomalous Hall Effect in a Noncoplanar Magnetic Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+A">Anke Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jine Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yequan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhizhong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+X">Xinjuan Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Ruijie Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+W">Wenzhuo Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+W">Wenxuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhongqiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+F">Fengqi Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+X">Xuechao Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yongbing Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xuefeng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07019v2-abstract-short" style="display: inline;"> The anomalous Hall effect (AHE) occurs in magnetic systems and also unexpectedly in non-magnetic materials adjacent to magnetic insulators via the heterointerface interactions. However, the AHE in heterostructures induced by magnetic proximity effect remains quite weak, restricting their practical device applications. Here, we report a large intrinsic AHE with a resistivity of 114 n惟 cm at 5 K in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07019v2-abstract-full').style.display = 'inline'; document.getElementById('2501.07019v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07019v2-abstract-full" style="display: none;"> The anomalous Hall effect (AHE) occurs in magnetic systems and also unexpectedly in non-magnetic materials adjacent to magnetic insulators via the heterointerface interactions. However, the AHE in heterostructures induced by magnetic proximity effect remains quite weak, restricting their practical device applications. Here, we report a large intrinsic AHE with a resistivity of 114 n惟 cm at 5 K in noncoplanar magnetic heterostructures of Cr5Te6/Pt. This is the record-high AHE value among all the magnetic insulators/heavy metal heterostructures. A reversal of the AHE signal occurs due to the reconstruction of Berry curvature at the Fermi level, which is verified by the first-principles calculations. Topological spin textures at the interface are directly visualized via high-magnetic-field magnetic force microscopy, which accounts for the large AHE, as confirmed by the atomic simulations. These findings open a new avenue for exploring the large AHE in heterointerfaces and facilitate the potential applications in topological spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07019v2-abstract-full').style.display = 'none'; document.getElementById('2501.07019v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Funct. Mater. 35, 2422040 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13513">arXiv:2412.13513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.13513">pdf</a>, <a href="https://arxiv.org/format/2412.13513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Uncovering the Maximum Chirality in Dielectric Nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">WenKui Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">ShengYi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuang%2C+H">HanZhuo Kuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Hao Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qiu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+B">Bo-Wen Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13513v1-abstract-short" style="display: inline;"> Maximum structural chirality refers to the highest selectivity for circularly polarized light (CPL) in nanostructures, often manifested as maximum circular dichroism (CD), optical rotation (OR), and spin-orbit coupling (SOC). However, the underlying physical mechanisms that lead to maximum chirality remain unclear. In this work, we demonstrate that maximum chirality in dielectric nanostructures ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13513v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13513v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13513v1-abstract-full" style="display: none;"> Maximum structural chirality refers to the highest selectivity for circularly polarized light (CPL) in nanostructures, often manifested as maximum circular dichroism (CD), optical rotation (OR), and spin-orbit coupling (SOC). However, the underlying physical mechanisms that lead to maximum chirality remain unclear. In this work, we demonstrate that maximum chirality in dielectric nanostructures arises from the constructive and destructive interference of multipole moments with different CPL. By employing generalized multipole decomposition, we introduce a generalized chiral multipole mechanism that allows for direct numerical calculation of CD and establishes the conditions required to achieve maximum chirality. This approach provides a comprehensive framework for analyzing chirality and serves as a foundation for future investigations of chiral nanostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13513v1-abstract-full').style.display = 'none'; document.getElementById('2412.13513v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13457">arXiv:2412.13457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.13457">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.256601">10.1103/PhysRevLett.133.256601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mass Acquisition of Dirac Fermions in Bi4I4 by Spontaneous Symmetry Breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Ming Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenxuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+D">Dan Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhijian Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jingyuan Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaqi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yundan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jianxin Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+N">Ningyan Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">Wei Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jianfeng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Ying Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+W">Weichang Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lexian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+J">Jincheng Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Yi Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13457v1-abstract-short" style="display: inline;"> Massive Dirac fermions, which are essential for realizing novel topological phenomena, are expected to be generated from massless Dirac fermions by breaking the related symmetry, such as time-reversal symmetry (TRS) in topological insulators or crystal symmetry in topological crystalline insulators. Here, we report scanning tunneling microscopy and angle-resolved photoemission spectroscopy studies&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13457v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13457v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13457v1-abstract-full" style="display: none;"> Massive Dirac fermions, which are essential for realizing novel topological phenomena, are expected to be generated from massless Dirac fermions by breaking the related symmetry, such as time-reversal symmetry (TRS) in topological insulators or crystal symmetry in topological crystalline insulators. Here, we report scanning tunneling microscopy and angle-resolved photoemission spectroscopy studies of 伪-Bi4I4, which reveals the realization of massive Dirac fermions in the (100) surface states without breaking the TRS. Combined with first-principle calculations, our experimental results indicate that the spontaneous symmetry breaking engenders two nondegenerate edges states at the opposite sides of monolayer Bi4I4 after the structural phase transition, imparting mass to the Dirac fermions after taking the interlayer coupling into account. Our results not only demonstrate the formation of the massive Dirac fermions by spontaneous symmetry breaking, but also imply the potential for the engineering of Dirac fermions for device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13457v1-abstract-full').style.display = 'none'; document.getElementById('2412.13457v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 133, 256601 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08340">arXiv:2412.08340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.08340">pdf</a>, <a href="https://arxiv.org/format/2412.08340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Phenomenology of orbital torque, pumping and mixing conductance in metallic bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ning%2C+X">Xiaobai Ning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffr%C3%A8s%2C+H">Henri Jaffr猫s</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manchon%2C+A">Aur茅lien Manchon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08340v1-abstract-short" style="display: inline;"> The conversion between spin and orbital currents is at the origin of the orbital torque and its Onsager reciprocal, the orbital pumping. Here, we propose a phenomenological model to describe the orbital torque in magnetic bilayers composed of an orbital source (i.e., a light metal such as Ti, Ru, CuOx...) and a spin-orbit coupled magnet (i.e., typically Ni, (Co/Pt)$_n$, etc.). This approach accoun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08340v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08340v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08340v1-abstract-full" style="display: none;"> The conversion between spin and orbital currents is at the origin of the orbital torque and its Onsager reciprocal, the orbital pumping. Here, we propose a phenomenological model to describe the orbital torque in magnetic bilayers composed of an orbital source (i.e., a light metal such as Ti, Ru, CuOx...) and a spin-orbit coupled magnet (i.e., typically Ni, (Co/Pt)$_n$, etc.). This approach accounts for spin-to-orbit and orbit-to-spin conversion in the ferromagnet and at the interface. We show that the orbital torque arises from a compromise between orbital current injection from the orbital source to the ferromagnet and spin current backflow from the ferromagnet back to the orbital source. We also discuss the concept of orbital-mixing conductance and introduce the &#34;orbit-spin-&#34; and &#34;spin-orbit-mixing&#34; conductances that govern the orbital torque and orbital pumping, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08340v1-abstract-full').style.display = 'none'; document.getElementById('2412.08340v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11395">arXiv:2411.11395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11395">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tuneable large nonlinear charge transport driven by the quantum metric at room temperatures in TbMn6Sn6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weiyao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+K">Kaijian Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yufei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+M">Min Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Y">Yuefeng Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+K+D">Khoa Dang Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gayles%2C+J">Jacob Gayles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+F">Fang Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yong Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karel%2C+J">Julie Karel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11395v1-abstract-short" style="display: inline;"> Nonlinear electrodynamics in materials manifests as an electronic response that depends on second- or higher-order powers of the applied electromagnetic field. This response is highly dependent on the underlying crystal symmetries in the material and is typically smaller than the linear responses. Nonlinear responses are therefore usually employed to expose the symmetry breaking, geometric propert&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11395v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11395v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11395v1-abstract-full" style="display: none;"> Nonlinear electrodynamics in materials manifests as an electronic response that depends on second- or higher-order powers of the applied electromagnetic field. This response is highly dependent on the underlying crystal symmetries in the material and is typically smaller than the linear responses. Nonlinear responses are therefore usually employed to expose the symmetry breaking, geometric properties of the electronic band structure in materials. Naturally, a material system with a strong nonlinear response is also the key component in nonlinear devices. Here we report the strong room-temperature second-harmonic transport response in a quantum magnet,TbMn6Sn6, which is governed by the quantum metric and can be tuned with applied magnetic fields and temperature. We show that around room temperature, which is close to the spontaneous spin-reorientation transition, the magnetic configurations, and therefore the related symmetry breaking phases, are easily controlled. Our results pave the way from quantum materials to high performance tuneable nonlinear device applications at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11395v1-abstract-full').style.display = 'none'; document.getElementById('2411.11395v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07811">arXiv:2411.07811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07811">pdf</a>, <a href="https://arxiv.org/format/2411.07811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Rate- and temperature-dependent strain hardening in glassy polymers: Micromechanisms and constitutive modeling based on molecular dynamics simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wuyang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07811v1-abstract-short" style="display: inline;"> We perform molecular dynamics simulations under uniaxial tension to investigate the micromechanisms underlying strain hardening in glassy polymers. By decomposing the stress into virial components associated with pair, bond, and angle interactions, we identify the primary contributors to strain hardening as the stretching of polymer bonds. Interestingly, rather than the average bond stretch, we fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07811v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07811v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07811v1-abstract-full" style="display: none;"> We perform molecular dynamics simulations under uniaxial tension to investigate the micromechanisms underlying strain hardening in glassy polymers. By decomposing the stress into virial components associated with pair, bond, and angle interactions, we identify the primary contributors to strain hardening as the stretching of polymer bonds. Interestingly, rather than the average bond stretch, we find that the key contributions to stress response come from a subset of bonds at the upper tail of the stretch distribution. Our results demonstrate that the stress in the hardening region can be correlated with the average stretch of the most extended bonds in each polymer chain, independent of temperatures and strain rates. These bonds, which we denote as load-bearing bonds, allow us to define a local load-bearing deformation gradient in continuum mechanics that captures their contribution to the hardening stress tensor. Building on this insight, we incorporate the load-bearing mechanism into a constitutive framework with orientation-induced back stress, developing a model that accurately reproduces the stress response of the molecular systems over a wide range of temperatures and strain rates in their glassy state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07811v1-abstract-full').style.display = 'none'; document.getElementById('2411.07811v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19636">arXiv:2410.19636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19636">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Pomeranchuk instability of a topological crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muhammad%2C+Z">Zahir Muhammad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+R">Rajibul Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+F">Fei Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perakis%2C+I+E">Ilias E. Perakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kargarian%2C+M">Mehdi Kargarian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19636v1-abstract-short" style="display: inline;"> Nematic quantum fluids appear in strongly interacting systems and break the rotational symmetry of the crystallographic lattice. In metals, this is connected to a well-known instability of the Fermi liquid-the Pomeranchuk instability. Using scanning tunneling microscopy, we identified this instability in a highly unusual setting: on the surface of an elemental topological metal, arsenic. By direct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19636v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19636v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19636v1-abstract-full" style="display: none;"> Nematic quantum fluids appear in strongly interacting systems and break the rotational symmetry of the crystallographic lattice. In metals, this is connected to a well-known instability of the Fermi liquid-the Pomeranchuk instability. Using scanning tunneling microscopy, we identified this instability in a highly unusual setting: on the surface of an elemental topological metal, arsenic. By directly visualizing the Fermi surface of the surface state via scanning tunneling spectroscopy and photoemission spectroscopy, we find that the Fermi surface gets deformed and becomes elliptical at the energies where the nematic state is present. Known instances of nematic instability typically need van-Hove singularities or multi-orbital physics as drivers. In contrast, the surface states of arsenic are essentially indistinguishable from well-confined isotropic Rashba bands near the Fermi level, rendering our finding the first realization of Pomeranchuk instability of the topological surface state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19636v1-abstract-full').style.display = 'none'; document.getElementById('2410.19636v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14196">arXiv:2410.14196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14196">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c01542">10.1021/acs.nanolett.4c01542 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-Confined Tunable Ferromagnetism on the Surface of a van der Waals Antiferromagnet NaCrTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yidian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+X">Xian Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junjie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Runzhe Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenxuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K">Kaiyi Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jieyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Houke Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yiheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">Nicolas C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+S">Sailong Ju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">Ming Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiangang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaolong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lexian Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14196v1-abstract-short" style="display: inline;"> The surface of three-dimensional materials provides an ideal and versatile platform to explore quantum-confined physics. Here, we systematically investigate the electronic structure of Na-intercalated CrTe2, a van der Waals antiferromagnet, using angle-resolved photoemission spectroscopy and ab-initio calculations. The measured band structure deviates from the calculation of bulk NaCrTe2 but agree&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14196v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14196v1-abstract-full" style="display: none;"> The surface of three-dimensional materials provides an ideal and versatile platform to explore quantum-confined physics. Here, we systematically investigate the electronic structure of Na-intercalated CrTe2, a van der Waals antiferromagnet, using angle-resolved photoemission spectroscopy and ab-initio calculations. The measured band structure deviates from the calculation of bulk NaCrTe2 but agrees with that of ferromagnetic monolayer CrTe2. Consistently, we observe an unexpected exchange splitting of the band dispersions, persisting well above the N茅el temperature of bulk NaCrTe2. We argue that NaCrTe2 features a quantum-confined 2D ferromagnetic state in the topmost surface layer due to strong ferromagnetic correlation in the CrTe2 layer. Moreover, the exchange splitting and the critical temperature can be controlled by surface doping of alkali-metal atoms, suggesting a feasible tunability of the surface ferromagnetism. Our work not only presents a simple platform to explore tunable 2D ferromagnetism but also provides important insights into the quantum-confined low-dimensional magnetic states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14196v1-abstract-full').style.display = 'none'; document.getElementById('2410.14196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 24, 9832-9838 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13202">arXiv:2410.13202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13202">pdf</a>, <a href="https://arxiv.org/format/2410.13202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Anatomy of Thermally Interplayed Spin-Orbit Torque Driven Antiferromagnetic Switching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+W">Wenlong Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zanhong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yuzhang Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">Daoqian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+G">Guang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+A">Ao Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+S">Shiyang Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+K">Kaihua Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hongxi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+K">Kewen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13202v1-abstract-short" style="display: inline;"> Current-induced antiferromagnetic (AFM) switching remains critical in spintronics, yet the interplay between thermal effects and spin torques still lacks clear clarification. Here we experimentally investigate the thermally interplayed spin-orbit torque induced AFM switching in magnetic tunnel junctions via pulse-width dependent reversal and time-resolved measurements. By introducing the Langevin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13202v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13202v1-abstract-full" style="display: none;"> Current-induced antiferromagnetic (AFM) switching remains critical in spintronics, yet the interplay between thermal effects and spin torques still lacks clear clarification. Here we experimentally investigate the thermally interplayed spin-orbit torque induced AFM switching in magnetic tunnel junctions via pulse-width dependent reversal and time-resolved measurements. By introducing the Langevin random field into the AFM precession equation, we establish a novel AFM switching model that anatomically explains the experimental observations. Our findings elucidate the currentinduced AFM switching mechanism and offer significant promise for advancements in spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13202v1-abstract-full').style.display = 'none'; document.getElementById('2410.13202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17633">arXiv:2409.17633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17633">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Direct measurement of terahertz conductivity in a gated monolayer semiconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Su-Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Q">Qixin Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+R">Ruishi Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zuocheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abeysinghe%2C+D">Dishan Abeysinghe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uzundal%2C+C">Can Uzundal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+J">Jingxu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17633v1-abstract-short" style="display: inline;"> Two-dimensional semiconductors and their moir茅 superlattices have emerged as important platforms for investigating correlated electrons. However, many key properties of these systems, such as the frequency-dependent conductivity, remain experimentally inaccessible because of the mesoscopic sample size. Here we report a technique to directly measure the complex conductivity of electrostatically gat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17633v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17633v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17633v1-abstract-full" style="display: none;"> Two-dimensional semiconductors and their moir茅 superlattices have emerged as important platforms for investigating correlated electrons. However, many key properties of these systems, such as the frequency-dependent conductivity, remain experimentally inaccessible because of the mesoscopic sample size. Here we report a technique to directly measure the complex conductivity of electrostatically gated two-dimensional semiconductors in the terahertz frequency range. Applying this technique to a WSe2 monolayer encapsulated in hBN, we observe clear Drude-like response between 0.1 and 1 THz, in a density range challenging to access even in DC transport. Our work opens a new avenue for studying tunable van der Waals heterostructures using terahertz spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17633v1-abstract-full').style.display = 'none'; document.getElementById('2409.17633v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07221">arXiv:2409.07221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07221">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Sound Wave Manipulation Based on Valley Acoustic Interferometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jia-He Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+S">Shu-Guang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Y">Yong Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaojun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+Z">Zhi Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hua Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hang%2C+Z+H">Zhi Hong Hang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07221v1-abstract-short" style="display: inline;"> Topological acoustics provides new opportunities for materials with unprecedented functions. In this work, we report a design of topological valley acoustic interferometers by Y-shaped valley sonic crystals. By tight-bounding calculation and experimental demonstration, we successfully tune the acoustic energy partition rate by configuring the channel. An analytical theory proposed to explain the t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07221v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07221v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07221v1-abstract-full" style="display: none;"> Topological acoustics provides new opportunities for materials with unprecedented functions. In this work, we report a design of topological valley acoustic interferometers by Y-shaped valley sonic crystals. By tight-bounding calculation and experimental demonstration, we successfully tune the acoustic energy partition rate by configuring the channel. An analytical theory proposed to explain the transmission property matches well with experimental observations. An additional 蟺 Berry phase is verified to accumulate circling along the shape-independent topological valley acoustic interferometer, unique in the pseudospin half systems. Based on the spectral oscillation originating from the accumulated dynamic phase and 蟺 Berry phase, a simplified method to measure acoustic valley interface dispersion is explored, which overcomes the shortcomings of the traditional fast Fourier transform method and improves the measuring efficiency by simply analyzing the peaks and dips of the measured transmission spectrum. Moreover, an effective approach to tuning its transmissions, as well as the spectral line shapes proposed and realized by the local geometry design of the interferometer, exhibits strong tunability under an unchanged physical mechanism. Our work opens an avenue to design future acoustic devices with the function of sound wave manipulation based on the physical mechanism of interference and Berry phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07221v1-abstract-full').style.display = 'none'; document.getElementById('2409.07221v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04959">arXiv:2408.04959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04959">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Giant interfacial Dzyaloshinskii-Moriya Interaction in perovskite La_{0.7}Sr_{0.3}MnO_{3} films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">L. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+N">N. Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">L. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Z. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Y. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+D">D. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+D">D. Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">J. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">J. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W+g">W. g Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">W. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">H. Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04959v1-abstract-short" style="display: inline;"> The Dzyaloshinskii-Moriya interaction (DMI) plays a critical role in stabilizing topological spin textures, a key area of growing interest in oxide-based spintronics. While most of reported topological phenomena found in manganites are related to the bulk-like DMI, the understanding of interfacial DMI and its origin in oxide interfaces remain limited. Here we experimentally investigate the interfa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04959v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04959v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04959v1-abstract-full" style="display: none;"> The Dzyaloshinskii-Moriya interaction (DMI) plays a critical role in stabilizing topological spin textures, a key area of growing interest in oxide-based spintronics. While most of reported topological phenomena found in manganites are related to the bulk-like DMI, the understanding of interfacial DMI and its origin in oxide interfaces remain limited. Here we experimentally investigate the interfacial DMI of La_{0.7}Sr_{0.3}MnO_{3} (LSMO) films grown on various substrates by employing spin-wave propagation with drift velocities at room temperature. Our findings reveal a giant interfacial DMI coefficient (\mathit{D} _{s}) of 1.96 pJ/m in LSMO/NdGaO_{3}(110) system, exceeding previously reported values in oxides by one to two orders of magnitude. First-principles calculations further show that with the aid of 6\mathit{s} electrons, the 4\mathit{f} electrons from Nd play a key role in enhancing the spin-orbit coupling of the 3\mathit{d} electrons in Mn, ultimately leading to the observed giant interfacial DMI. This discovery of giant interfacial DMI through engineering the interface of oxides provides valuable insights for advancing functional chiral magnonics and spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04959v1-abstract-full').style.display = 'none'; document.getElementById('2408.04959v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19375">arXiv:2407.19375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.19375">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00711-w">10.1038/s41535-024-00711-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Phase Transition in Quasi-One-Dimensional Bismuth Iodide Bi4I4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W+X">W. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">M. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+X">X. Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y+D">Y. D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K+Y">K. Y. Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y+Q">Y. Q. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J+F">J. F. Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+K">Z. K. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y+G">Y. G. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+J+C">J. C. Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Y. Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+J">J. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+L">Y. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19375v1-abstract-short" style="display: inline;"> The exploration of topological quantum materials and topological phase transitions is at the forefront of modern condensed matter physics. Quasi-one-dimensional (quasi-1D) bismuth iodide Bi4I4 exhibits versatile topological phases of matter including weak topological insulator (WTI) and higher-order topological insulator (HOTI) phases with high tunability in response to external parameters. In thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19375v1-abstract-full').style.display = 'inline'; document.getElementById('2407.19375v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19375v1-abstract-full" style="display: none;"> The exploration of topological quantum materials and topological phase transitions is at the forefront of modern condensed matter physics. Quasi-one-dimensional (quasi-1D) bismuth iodide Bi4I4 exhibits versatile topological phases of matter including weak topological insulator (WTI) and higher-order topological insulator (HOTI) phases with high tunability in response to external parameters. In this work, performing laser-based angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES), we comprehensively investigate the fine electronic structure and topological phase transition of Bi4I4. Our examination of the low-temperature 伪-phase reveals the presence of an energy gap on the (100) surface, providing spectroscopic evidence for the HOTI phase. Conversely, the high-temperature 尾-Bi4I4 harbors a gapless Dirac fermion on the (100) surface alongside gapped states on the (001) surface, thereby establishing a WTI phase. By tracking the temperature evolution of the (100) surface states, we unveil a thermal hysteresis of the surface gap in line with the 伪-尾 structural phase transition. Our findings elucidate the topological properties of Bi4I4 and directly evidence a temperature-induced topological phase transition from WTI to HOTI, which paves the way to potential applications based on the room-temperature topological phase transition in the quasi-1D topological quantum material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19375v1-abstract-full').style.display = 'none'; document.getElementById('2407.19375v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 9, 103 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16023">arXiv:2407.16023</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16023">pdf</a>, <a href="https://arxiv.org/format/2407.16023">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Magnetochiral anisotropy on a quantum spin Hall edge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Youjian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quaresima%2C+G">Gary Quaresima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenjin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Runburg%2C+E">Elliott Runburg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cobden%2C+D">David Cobden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pesin%2C+D+A">D. A. Pesin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16023v1-abstract-short" style="display: inline;"> We develop a theory of nonlinear low-magnetic-field magnetotransport on a helical edge of a quantum spin Hall insulator due to the edge state coupling to bulk midgap states. We focus on the part of the nonlinear I-V characteristic that is odd in the applied magnetic field, and quadratic in the applied bias voltage. This part of the I-V characteristic corresponds to the resistance of the sample bei&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16023v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16023v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16023v1-abstract-full" style="display: none;"> We develop a theory of nonlinear low-magnetic-field magnetotransport on a helical edge of a quantum spin Hall insulator due to the edge state coupling to bulk midgap states. We focus on the part of the nonlinear I-V characteristic that is odd in the applied magnetic field, and quadratic in the applied bias voltage. This part of the I-V characteristic corresponds to the resistance of the sample being dependent on the relative orientation of the current and an external magnetic field, hence represents a type of edge magnetochiral anisotropy. We identify two mechanisms of the magnetochiral anisotropy. One is related to the Hubbard interaction on the midgap state, which leads to the dependence of the scattering characteristics on the current flowing on the edge, which results in bias-voltage-dependent resistance, or equivalently conductance, hence a nonlinear I-V. The other is related to the modification of the edge dispersion by a magnetic field, and requires nonlinearity in the edge dispersion. We compare the developed theory to the experiments on monolayer $\mathrm{WTe}_{2}$, and find good agreement with the developed theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16023v1-abstract-full').style.display = 'none'; document.getElementById('2407.16023v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 16 pages of supplemental material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10480">arXiv:2407.10480</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10480">pdf</a>, <a href="https://arxiv.org/format/2407.10480">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Spontaneous Motion of Liquid Droplets on Soft Gradient Surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weiwei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+W">Wenjie Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Chang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Q">Qin Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10480v2-abstract-short" style="display: inline;"> We report an experimental investigation of the spontaneous motion of liquid droplets on soft gels with a crosslinking gradient. By systematically adjusting the spatial difference in crosslinking density, we observed that millimeter-sized liquid droplets moved along the gradient of elastic modulus and even climbed tilted slopes against gravity. Unlike the wetting dynamics of micro-droplets, which a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10480v2-abstract-full').style.display = 'inline'; document.getElementById('2407.10480v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10480v2-abstract-full" style="display: none;"> We report an experimental investigation of the spontaneous motion of liquid droplets on soft gels with a crosslinking gradient. By systematically adjusting the spatial difference in crosslinking density, we observed that millimeter-sized liquid droplets moved along the gradient of elastic modulus and even climbed tilted slopes against gravity. Unlike the wetting dynamics of micro-droplets, which are governed by elastocapillary effects, we demonstrated that the observed spontaneous movements of millimeter-sized droplets were attributed to the surface energy difference resulting from the variation in crosslinking density. Using {\em in-situ} confocal microscopy imaging, we analyzed the viscoelastic dissipation induced by the moving wetting ridges near dynamic contact lines. Based on the relationship between the crosslinking density and surface energy of soft gels, our findings reveal a new method for controlling droplet dynamics at soft and dissipative interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10480v2-abstract-full').style.display = 'none'; document.getElementById('2407.10480v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07501">arXiv:2407.07501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07501">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/41/8/087402">10.1088/0256-307X/41/8/087402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic Correlation and Pseudogap-like Behavior of High-Temperature Superconductor La3Ni2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yidian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+X">Xian Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Yantao Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Mingxin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenxuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K">Kaiyi Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Runzhe Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhiwei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jinkui Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yanpeng Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Hanjie Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lexian Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07501v1-abstract-short" style="display: inline;"> High-temperature superconductivity (HTSC) remains one of the most challenging and fascinating mysteries in condensed matter physics. Recently, superconductivity with transition temperature exceeding liquid-nitrogen temperature is discovered in La3Ni2O7 at high pressure, which provides a new platform to explore the unconventional HTSC. In this work, using high-resolution angle-resolved photoemissio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07501v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07501v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07501v1-abstract-full" style="display: none;"> High-temperature superconductivity (HTSC) remains one of the most challenging and fascinating mysteries in condensed matter physics. Recently, superconductivity with transition temperature exceeding liquid-nitrogen temperature is discovered in La3Ni2O7 at high pressure, which provides a new platform to explore the unconventional HTSC. In this work, using high-resolution angle-resolved photoemission spectroscopy and ab-initio calculation, we systematically investigate the electronic structures of La3Ni2O7 at ambient pressure. Our experiments are in nice agreement with ab-initio calculations after considering an orbital-dependent band renormalization effect. The strong electron correlation effect pushes a flat band of d_(z^2 ) orbital component below the Fermi level (EF), which is predicted to locate right at EF under high pressure. Moreover, the d_(x^2-y^2 ) band shows a pseudogap-like behavior with suppressed spectral weight and diminished quasiparticle peak near EF. Our findings provide important insights into the electronic structure of La3Ni2O7, which will shed light on the understanding of the unconventional superconductivity in nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07501v1-abstract-full').style.display = 'none'; document.getElementById('2407.07501v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physical Letters 41, 087402 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15239">arXiv:2406.15239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.15239">pdf</a>, <a href="https://arxiv.org/format/2406.15239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Sublattice Dichotomy in Monolayer FeSe Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+C">Cui Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhipeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+X">Xiaotong Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Q">Qiyin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenxuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lexian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jin-Feng Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lili Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15239v1-abstract-short" style="display: inline;"> The pairing mechanism behind the monolayer FeSe is one essential question for iron-based superconductors. In this work, we show the sublattice degree of freedoms of monolayer FeSe plays a special role in its pairing properties, namely the sublattice dichotomy. The high-quality monolayer FeSe samples with atomic flat $1\times1$ topography on the SrTiO$_3$(001) substrates are grown by molecular beam&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15239v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15239v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15239v1-abstract-full" style="display: none;"> The pairing mechanism behind the monolayer FeSe is one essential question for iron-based superconductors. In this work, we show the sublattice degree of freedoms of monolayer FeSe plays a special role in its pairing properties, namely the sublattice dichotomy. The high-quality monolayer FeSe samples with atomic flat $1\times1$ topography on the SrTiO$_3$(001) substrates are grown by molecular beam epitaxy. By comparing the tunneling spectra at $伪$ and $尾$ Fe sublattices, we find the coherence peak of $伪$-Fe at the inner gap $+V_i$ is higher than $尾$-Fe while the coherence peak of $尾$-Fe at $-V_i$ is higher than $伪$-Fe with a similar amount. We also observed a reversed effect at the outer gap $\pm V_o$. We propose the $畏$-pairing mechanism between $k$ and $-k+Q$ is the key mechanism for this unconventional sublattice dichotomy effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15239v1-abstract-full').style.display = 'none'; document.getElementById('2406.15239v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09628">arXiv:2406.09628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.09628">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.085153">10.1103/PhysRevB.104.085153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Massive Dirac Fermions and Strong Shubnikov-de Haas Oscillations in Topological Insulator Sm,Fe:Bi2Se3 Single Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weiyao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trang%2C+C+X">Chi Xuan Trang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qile Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+Z">Zengji Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bake%2C+A">Abdulhakim Bake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+C">Cheng Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nancarrow%2C+M">Mitchell Nancarrow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edmonds%2C+M">Mark Edmonds</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cortie%2C+D">David Cortie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaolin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09628v1-abstract-short" style="display: inline;"> Topological insulators (TIs) are emergent materials with unique band structure, which allow the study of quantum effect in solids, as well as contribute to high performance quantum devices. To achieve the better performance of TI, here we present a co-doping strategy using synergistic rare-earth Sm and transition-metal Fe dopants in Bi2Se3 single crystals, which combine the advantages of both tran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09628v1-abstract-full').style.display = 'inline'; document.getElementById('2406.09628v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09628v1-abstract-full" style="display: none;"> Topological insulators (TIs) are emergent materials with unique band structure, which allow the study of quantum effect in solids, as well as contribute to high performance quantum devices. To achieve the better performance of TI, here we present a co-doping strategy using synergistic rare-earth Sm and transition-metal Fe dopants in Bi2Se3 single crystals, which combine the advantages of both transition metal doped TI (high ferromagnetic ordering temperature and observed QAHE), and rare-earth doped TI (large magnetic moments and significant spin orbit coupling). In the as-grown single crystals, clear evidences of ferromagnetic ordering were observed. The angle resolve photoemission spectroscopy indicate the ferromagnetism opens a 44 meV band gap at surface Dirac point. Moreover, the carrier mobility at 3 K is ~ 7400 cm2/Vs, and we thus observed an ultra-strong Shubnikov-de Haas oscillation in the longitudinal resistivity, as well as the Hall steps in transverse resistivity below 14 T. Our transport and angular resolved photoemission spectroscopy results suggest that the rare-earth and transition metal co-doping in Bi2Se3 system is a promising avenue implement the quantum anomalous Hall effect, as well as harnessing the massive Dirac fermion in electrical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09628v1-abstract-full').style.display = 'none'; document.getElementById('2406.09628v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 104, 085153 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07238">arXiv:2406.07238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07238">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Structures and Superconductivity of Hydrogen and Hydrides under Extreme Pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zihan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wendi Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+D">Defang Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+T">Tian Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07238v1-abstract-short" style="display: inline;"> Metallic hydrogen, existing in remarkably extreme environments, was predicted to exhibit long-sought room-temperature superconductivity. Although the superconductivity of metallic hydrogen has not been confirmed experimentally, superconductivity of hydrogen in hydrides was recently discovered with remarkably high critical temperature as theoretically predicted. In recent years, theoretical simulat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07238v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07238v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07238v1-abstract-full" style="display: none;"> Metallic hydrogen, existing in remarkably extreme environments, was predicted to exhibit long-sought room-temperature superconductivity. Although the superconductivity of metallic hydrogen has not been confirmed experimentally, superconductivity of hydrogen in hydrides was recently discovered with remarkably high critical temperature as theoretically predicted. In recent years, theoretical simulations have become a new paradigm for material science, especially exploration of material at extreme pressure. As the typical high-pressure material, metallic hydrogen has been providing a fertile playground for advanced simulations for long time. Simulations not only provide the substitute of experiments for hydrogen at high-pressure, but also encouraged the discovery of almost all the experimentally discovered superconducting hydrides with the record high superconducting transition temperature. This work reviews recent progress in hydrogen and hydrides under extreme pressure, focusing on phase diagram, structures and the long-sought goal of high-temperature superconductivity. In the end, we highlight structural features of hydrides for realization of hydrogen-driven superconducting hydrides near ambient pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07238v1-abstract-full').style.display = 'none'; document.getElementById('2406.07238v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03740">arXiv:2406.03740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.03740">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Correlated Electronic Structure and Incipient Flat Bands of the Kagome Superconductor CsCr3Sb5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yidian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+X">Xian Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Siqi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenxuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K">Kaiyi Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yinqi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Senyao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Houke Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jieyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yiheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yilin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guanghan Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lexian Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03740v1-abstract-short" style="display: inline;"> Kagome materials exhibit many novel phenomena emerging from the interplay between lattice geometry, electronic structure, and topology. A prime example is the vanadium-based kagome materials AV3Sb5 (A = K, Rb, and Cs) with superconductivity and unconventional charge-density wave (CDW). More interestingly, the substitution of vanadium by chromium further introduces magnetism and enhances the correl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03740v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03740v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03740v1-abstract-full" style="display: none;"> Kagome materials exhibit many novel phenomena emerging from the interplay between lattice geometry, electronic structure, and topology. A prime example is the vanadium-based kagome materials AV3Sb5 (A = K, Rb, and Cs) with superconductivity and unconventional charge-density wave (CDW). More interestingly, the substitution of vanadium by chromium further introduces magnetism and enhances the correlation effect in CsCr3Sb5 which likewise exhibits superconductivity under pressure and competing density-wave state. Here we systematically investigate the electronic structure of CsCr3Sb5 using high-resolution angle-resolved photoemission spectroscopy (APRES) and ab-initio calculations. Overall, the measured electronic structure agrees with the theoretical calculation. Remarkably, Cr 3d orbitals exhibit incoherent electronic states and contribute to incipient flat bands close to the Fermi level. The electronic structure shows a minor change across the magnetic transition at 55 K, suggesting a weak interplay between the local magnetic moment and itinerant electrons. Furthermore, we reveal a drastic enhancement of the electron scattering rate across the magnetic transition, which is relevant to the semiconducting-like transport property of the system at high temperatures. Our results suggest that CsCr3Sb5 is a strongly correlated Hund&#39;s metal with incipient flat bands near the Fermi level, which provides an electronic basis for understanding its novel properties in comparison to the non-magnetic and weakly correlated AV3Sb5. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03740v1-abstract-full').style.display = 'none'; document.getElementById('2406.03740v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19853">arXiv:2405.19853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.19853">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Correlated Electronic Structure and Density-Wave Gap in Trilayer Nickelate La4Ni3O10 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+X">X. Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y+D">Y. D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y+T">Y. T. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C+Y">C. Y. Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M+X">M. X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W+X">W. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K+Y">K. Y. Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R+Z">R. Z. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+K">Z. K. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+W">Z. W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J+K">J. K. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+L">Y. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y+P">Y. P. Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H+J">H. J. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19853v1-abstract-short" style="display: inline;"> The discovery of pressurized superconductivity at 80 K in La3Ni2O7 officially brings nickelates into the family of high-temperature superconductors, which gives rise to not only new insights but also mysteries in the strongly correlated superconductivity. More recently, the sibling compound La4Ni3O10 was also shown to be superconducting below about 25 K under pressure, further boosting the popular&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19853v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19853v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19853v1-abstract-full" style="display: none;"> The discovery of pressurized superconductivity at 80 K in La3Ni2O7 officially brings nickelates into the family of high-temperature superconductors, which gives rise to not only new insights but also mysteries in the strongly correlated superconductivity. More recently, the sibling compound La4Ni3O10 was also shown to be superconducting below about 25 K under pressure, further boosting the popularity of nickelates in the Ruddlesden-Popper phase. In this study, combining high-resolution angle-resolved photoemission spectroscopy and ab initio calculation, we systematically investigate the electronic structures of La4Ni3O10 at ambient pressure. We reveal a high resemblance of La4Ni3O10 with La3Ni2O7 in the orbital-dependent fermiology and electronic structure, suggesting a similar electronic correlation between the two compounds. The temperature-dependent measurements imply an orbital-dependent energy gap related to the density-wave transition in La4Ni3O10. By comparing the theoretical pressure-dependent electronic structure, clues about the superconducting high-pressure phase can be deduced from the ambient measurements, providing crucial information for deciphering the unconventional superconductivity in nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19853v1-abstract-full').style.display = 'none'; document.getElementById('2405.19853v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15126">arXiv:2405.15126</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15126">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Imaging topological polar structures in marginally twisted 2D semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vu%2C+T">Thi-Hai-Yen Vu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bennett%2C+D">Daniel Bennett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pallewella%2C+G+N">Gayani Nadeera Pallewella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uddin%2C+M+H">Md Hemayet Uddin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+K">Kaijian Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weiyao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S+H">Seng Huat Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Z">Zhiqiang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muir%2C+J+B">Jack B. Muir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+L">Linnan Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davis%2C+J+A">Jeffrey A. Davis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adam%2C+S">Shaffique Adam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+P">Pankaj Sharma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuhrer%2C+M+S">Michael S. Fuhrer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edmonds%2C+M+T">Mark T. Edmonds</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15126v1-abstract-short" style="display: inline;"> Moire superlattices formed in van der Waals heterostructures due to twisting, lattice mismatch and strain present an opportunity for creating novel metamaterials with unique properties not present in the individual layers themselves. Ferroelectricity for example, arises due to broken inversion symmetry in twisted and strained bilayers of 2D semiconductors with stacking domains of alternating out-o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15126v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15126v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15126v1-abstract-full" style="display: none;"> Moire superlattices formed in van der Waals heterostructures due to twisting, lattice mismatch and strain present an opportunity for creating novel metamaterials with unique properties not present in the individual layers themselves. Ferroelectricity for example, arises due to broken inversion symmetry in twisted and strained bilayers of 2D semiconductors with stacking domains of alternating out-of-plane polarization. However, understanding the individual contributions of twist and strain to the formation of topological polar nanostructures remains to be established and has proven to be experimentally challenging. Inversion symmetry breaking has been predicted to give rise to an in-plane component of polarization along the domain walls, leading to the formation of a network of topologically non-trivial merons (half-skyrmions) that are Bloch-type for twisted and Neel-type for strained systems. Here we utilise angle-resolved, high-resolution vector piezoresponse force microscopy (PFM) to spatially resolve polarization components and topological polar nanostructures in marginally twisted bilayer WSe2, and provide experimental proof for the existence of topologically non-trivial meron/antimeron structures. We observe both Bloch-type and Neel-type merons, allowing us to differentiate between moire superlattices formed due to twist or heterogeneous strain. This first demonstration of non-trivial real-space topology in a twisted van der Waals heterostructure opens pathways for exploring the connection between twist and topology in engineered nano-devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15126v1-abstract-full').style.display = 'none'; document.getElementById('2405.15126v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12575">arXiv:2405.12575</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.12575">pdf</a>, <a href="https://arxiv.org/format/2405.12575">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-025-56647-7">10.1038/s41467-025-56647-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-dimensional mapping of the altermagnetic spin splitting in CrSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+G">Guowei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhanghuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Sai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Weifan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+Z">Ze Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yifu Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+S">Saizheng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenxuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jana%2C+A">Anupam Jana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jiawen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+M">Mao Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y">Yu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+L">Lun-Hui Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lexian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujii%2C+J">Jun Fujii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vobornik%2C+I">Ivana Vobornik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">Ming Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+H">Huiqiu Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yongjun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuanfeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12575v3-abstract-short" style="display: inline;"> Altermagnetism, a kind of collinear magnetism that is characterized by a momentum-dependent band and spin splitting without net magnetization, has recently attracted considerable interest. Finding altermagnetic materials with large splitting near the Fermi level necessarily requires three-dimensional k-space mapping. While this is crucial for spintronic applications and emergent phenomena, it rema&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12575v3-abstract-full').style.display = 'inline'; document.getElementById('2405.12575v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12575v3-abstract-full" style="display: none;"> Altermagnetism, a kind of collinear magnetism that is characterized by a momentum-dependent band and spin splitting without net magnetization, has recently attracted considerable interest. Finding altermagnetic materials with large splitting near the Fermi level necessarily requires three-dimensional k-space mapping. While this is crucial for spintronic applications and emergent phenomena, it remains challenging. Here, using synchrotron-based angle-resolved photoemission spectroscopy (ARPES), spin-resolved ARPES and model calculations, we uncover a large altermagnetic splitting, up to ~1.0 eV, near the Fermi level in CrSb. We verify its bulk-type g-wave altermagnetism through systematic three-dimensional k-space mapping, which unambiguously reveals the altermagnetic symmetry and associated nodal planes. Spin-resolved ARPES measurements further verify the spin polarizations of the split bands near Fermi level. Tight-binding model analysis indicates that the large altermagnetic splitting arises from strong third-nearest-neighbor hopping mediated by Sb ions. The large band/spin splitting near Fermi level in metallic CrSb, together with its high TN (up to 705 K) and simple spin configuration, paves the way for exploring emergent phenomena and spintronic applications based on altermagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12575v3-abstract-full').style.display = 'none'; document.getElementById('2405.12575v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Communications (accepted). The manuscript contains 19 pages, 5 figures and 1 table. The supplementary information contains 15 pages, 13 figures and 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 16, 1442 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17298">arXiv:2403.17298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.17298">pdf</a>, <a href="https://arxiv.org/format/2403.17298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Utilizing (Al, Ga)2O3/Ga2O3 superlattices to measure cation vacancy diffusion and vacancy-concentration-dependent diffusion of Al, Sn, and Fe in \b{eta} -Ga2O3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rock%2C+N+D">Nathan D. Rock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haobo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisner%2C+B">Brian Eisner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levin%2C+A">Aviva Levin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhattacharyya%2C+A">Arkka Bhattacharyya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krishnamoorthy%2C+S">Sriram Krishnamoorthy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ranga%2C+P">Praneeth Ranga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+M+A">Michael A Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Larry Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+M+K">Ming Kit Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scarpulla%2C+M+A">Michael A. Scarpulla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17298v1-abstract-short" style="display: inline;"> Diffusion of native defects such as vacancies and their interactions with impurities are fundamental in semiconductor crystal growth, device processing, and long-term aging of equilibration and transient diffusion of vacancies are rarely investigated. We used aluminum-gallium oxide/gallium oxide superlattices (SLs) to detect and analyze transient diffusion of cation vacancies during annealing in O&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17298v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17298v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17298v1-abstract-full" style="display: none;"> Diffusion of native defects such as vacancies and their interactions with impurities are fundamental in semiconductor crystal growth, device processing, and long-term aging of equilibration and transient diffusion of vacancies are rarely investigated. We used aluminum-gallium oxide/gallium oxide superlattices (SLs) to detect and analyze transient diffusion of cation vacancies during annealing in O2 at 1000-1100 C. Using a novel finite difference scheme for the diffusion equation with time- and space-varying diffusion constant, we extract diffusion constants for Al, Fe, and cation vacancies under the given conditions, including the vacancy concentration dependence for Al. indicate that vacancies present in the substrate transiently diffuse through the SLs, interacting with Sn as it also diffuses. In the case of SLs grown on Sn-doped beta-gallium oxide substrates, gradients observed in the extent of Al diffusion indicate that vacancies present in the substrate transiently diffuse through the SLs, interacting with Sn as it also diffuses. In the case of SLs grown on (010) Fe-doped substrates, the Al diffusion is uniform through the SLs, indicating a depth-uniform concentration of vacancies. We find no evidence in either case for the introduction of gallium vacancies from the free surface at rates sufficient to affect Al diffusion down to ppm concentrations, which has important bearing on the validity of typically-made assumptions of vacancy equilibration. Additionally, we show that unintentional impurities in Sn-doped gallium oxide such as Fe, Ni, Mn, Cu, and Li also diffuse towards the surface and accumulate. Many of these likely have fast interstitial diffusion modes capable of destabilizing devices over time, thus highlighting the importance of controlling unintentional impurities in beta-gallium oxide wafers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17298v1-abstract-full').style.display = 'none'; document.getElementById('2403.17298v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, references a supplimental which will be submitted seperately</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12642">arXiv:2403.12642</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.12642">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Interlayer Dzyaloshinskii-Moriya interaction in synthetic ferrimagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fattouhi%2C+M">Mouad Fattouhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+T">Tianxun Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+C">Chen Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Jong%2C+M+C+H">Mark C. H. de Jong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Pingzhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xiaoyang Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Sanchez%2C+F">Felipe Garcia-Sanchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinez%2C+E">Eduardo Martinez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin%2C+S">St茅phane Mangin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koopmans%2C+B">Bert Koopmans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lavrijsen%2C+R">Reinoud Lavrijsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12642v1-abstract-short" style="display: inline;"> The antisymmetric interlayer exchange interaction, i.e., interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) has attracted significant interest since this long-range chiral spin interaction provides a new dimension for controlling spin textures and dynamics. However, the role of IL-DMI in the field induced and spin-orbit torque (SOT) induced switching of synthetic ferrimagnets (SFi) has not been&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12642v1-abstract-full').style.display = 'inline'; document.getElementById('2403.12642v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12642v1-abstract-full" style="display: none;"> The antisymmetric interlayer exchange interaction, i.e., interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) has attracted significant interest since this long-range chiral spin interaction provides a new dimension for controlling spin textures and dynamics. However, the role of IL-DMI in the field induced and spin-orbit torque (SOT) induced switching of synthetic ferrimagnets (SFi) has not been uncovered. Here, we exploit interlayer chiral exchange bias fields in SFi to address both the sign and magnitude of the IL-DMI. Depending on the degree of imbalance between the two magnetic moments of the SFi, the amount of asymmetry, addressed via loop shifts of the hysteresis loops under an in-plane field reveals a unidirectional and chiral nature of the IL-DMI. The devices are then tested with SOT switching experiments and the process is examined via both transient state and steady state detection. In addition to field-free SOT switching, we find that the combination of IL-DMI and SOT give rise to multi-resistance states, which provides a possible direction for the future design of neuromorphic computing devices based on SOT. This work is a step towards characterizing and understanding the IL-DMI for spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12642v1-abstract-full').style.display = 'none'; document.getElementById('2403.12642v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">no</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> no </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05012">arXiv:2403.05012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05012">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Dynamics of Bilayer and Trilayer Nickelate Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y+D">Y. D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y+T">Y. T. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L+Y">L. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+P">P. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">H. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C+Y">C. Y. Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M+X">M. X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">H. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+X">X. Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W+X">W. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K+Y">K. Y. Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J+K">J. K. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+M+-">M. -L. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+P+H">P. H. Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y+P">Y. P. Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H+J">H. J. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Luyi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05012v1-abstract-short" style="display: inline;"> In addition to the pressurized high-temperature superconductivity, bilayer and trilayer nickelate superconductors Lan+1NinO3n+1 (n = 2 and 3) exhibit many intriguing properties at ambient pressure, such as orbital-dependent electronic correlation, non-Fermi liquid behavior, and density-wave transitions. Here, using ultrafast reflectivity measurement, we observe a drastic difference between the ult&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05012v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05012v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05012v1-abstract-full" style="display: none;"> In addition to the pressurized high-temperature superconductivity, bilayer and trilayer nickelate superconductors Lan+1NinO3n+1 (n = 2 and 3) exhibit many intriguing properties at ambient pressure, such as orbital-dependent electronic correlation, non-Fermi liquid behavior, and density-wave transitions. Here, using ultrafast reflectivity measurement, we observe a drastic difference between the ultrafast dynamics of the bilayer and trilayer nickelates at ambient pressure. Firstly, we observe a coherent phonon mode in La4Ni3O10 involving the collective vibration of La, Ni, and O atoms, which is absent in La3Ni2O7. Secondly, the temperature-dependent relaxation time diverges near the density-wave transition temperature of La4Ni3O10, in drastic contrast to kink-like changes in La3Ni2O7. Moreover, we estimate the electron-phonon coupling constants to be 0.05~0.07 and 0.12~0.16 for La3Ni2O7 and La4Ni3O10, respectively, suggesting a relatively minor role of electron-phonon coupling in the electronic properties of Lan+1NinO3n+1. Our work not only sheds light on the relevant microscopic interaction but also establishes a foundation for further studying the interplay between superconductivity and density-wave transitions in nickelate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05012v1-abstract-full').style.display = 'none'; document.getElementById('2403.05012v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.19040">arXiv:2402.19040</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.19040">pdf</a>, <a href="https://arxiv.org/format/2402.19040">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0205909">10.1063/5.0205909 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure-induced optical anisotropy of HfS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Antoniazzi%2C+I">Igor Antoniazzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wo%C5%BAniak%2C+T">Tomasz Wo藕niak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pawbake%2C+A">Amit Pawbake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zawadzka%2C+N">Natalia Zawadzka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grzeszczyk%2C+M">Magdalena Grzeszczyk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muhammad%2C+Z">Zahir Muhammad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ib%C3%A1%C3%B1ez%2C+J">Jordi Ib谩帽ez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faugeras%2C+C">Clement Faugeras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Molas%2C+M+R">Maciej R. Molas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babi%C5%84ski%2C+A">Adam Babi艅ski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.19040v1-abstract-short" style="display: inline;"> The effect of pressure on Raman scattering (RS) in the bulk HfS$_2$ is investigated under hydrostatic and non-hydrostatic conditions. The RS lineshape does not change significantly in the hydrostatic regime, showing a systematic blueshift of the spectral features. In a non-hydrostatic environment, seven peaks emerge in the spectrum ($P$=7 GPa) dominating the lineshape up to $P$=10.5 GPa. The chang&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.19040v1-abstract-full').style.display = 'inline'; document.getElementById('2402.19040v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.19040v1-abstract-full" style="display: none;"> The effect of pressure on Raman scattering (RS) in the bulk HfS$_2$ is investigated under hydrostatic and non-hydrostatic conditions. The RS lineshape does not change significantly in the hydrostatic regime, showing a systematic blueshift of the spectral features. In a non-hydrostatic environment, seven peaks emerge in the spectrum ($P$=7 GPa) dominating the lineshape up to $P$=10.5 GPa. The change in the RS lineshape manifests a pressure-induced phase transition in HfS$_2$. The simultaneous observation of both low-pressure (LP) and high-pressure (HP) related RS peaks suggests the corresponding coexistence of two different phases over a large pressure range. We found that the HP-related phase is metastable, persisting during the decompression cycle down to $P$=1.2 GPa with the LP-related features finally recovering at even lower pressures. The angle-resolved polarized RS (ARPRS) performed under $P$=7.4 GPa revealed a strong in-plane anisotropy of both the LP-related A$_{1g}$ mode and the HP peaks. The anisotropy is related to the possible distortion of the structure induced by the non-hydrostatic component of the pressure. We describe the obtained results by the influence of the non-hydrostatic pressure on the observed phase transition. We interpret our results in terms of a distorted $Pnma$ phase as a possible HP induced structure of HfS$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.19040v1-abstract-full').style.display = 'none'; document.getElementById('2402.19040v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> J. Appl. Phys. 136, 035901 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09228">arXiv:2402.09228</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.09228">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Efficient Terahertz Generation from CoPt-based Terahertz Emitters via Orbital-to-Charge Conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yongshan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fert%2C+A">Albert Fert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaffres%2C+H">Henri-Yves Jaffres</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eimer%2C+S">Sylvain Eimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+T">Tianxiao Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaoqiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09228v1-abstract-short" style="display: inline;"> Orbitronics devices operate by manipulating orbitally-polarized currents. Recent studies have shown that these orbital currents can be excited by femtosecond laser pulses in ferromagnet as Ni and converted into ultrafast charge current via orbital-to-charge conversion. However, the terahertz emission from orbitronic terahertz emitter based on Ni is still much weaker than the typical spintronic ter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09228v1-abstract-full').style.display = 'inline'; document.getElementById('2402.09228v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09228v1-abstract-full" style="display: none;"> Orbitronics devices operate by manipulating orbitally-polarized currents. Recent studies have shown that these orbital currents can be excited by femtosecond laser pulses in ferromagnet as Ni and converted into ultrafast charge current via orbital-to-charge conversion. However, the terahertz emission from orbitronic terahertz emitter based on Ni is still much weaker than the typical spintronic terahertz emitter. Here, we report more efficient light-induced generation of orbital current from CoPt alloy and the orbitronic terahertz emission by CoPt/Cu/MgO shows terahertz radiation comparable to that of efficient spintronic terahertz emitters. By varying the concentration of CoPt alloy, the thickness of Cu, and the capping layer, we confirm that THz emission primarily originates from the orbital accumulation generated within CoPt, propagating through Cu and followed by the subsequent orbital-to-charge conversion from the inverse orbital Rashba-Edelstein effect at the Cu/MgO interface. This study provides strong evidence for the very efficient orbital current generation in CoPt alloy, paving the way to efficient orbital terahertz emitters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09228v1-abstract-full').style.display = 'none'; document.getElementById('2402.09228v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04279">arXiv:2402.04279</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04279">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Electrokinetic origin of swirling flow on nanoscale interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+S">Shuangshuang Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Yu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yueqiang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiaoqiang Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Ce Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zang%2C+D">Duyang Zang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jing%2C+G">Guangyin Jing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaige Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04279v1-abstract-short" style="display: inline;"> The zeta ($味$) potential is a pivotal metric for characterizing the electric field topology within an electric double layer - an important phenomenon on phase interface. It underpins critical processes in diverse realms such as chemistry, biomedical engineering, and micro/nanofluidics. Yet, local measurement of $味$ potential at the interface has historically presented challenges, leading researche&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04279v1-abstract-full').style.display = 'inline'; document.getElementById('2402.04279v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04279v1-abstract-full" style="display: none;"> The zeta ($味$) potential is a pivotal metric for characterizing the electric field topology within an electric double layer - an important phenomenon on phase interface. It underpins critical processes in diverse realms such as chemistry, biomedical engineering, and micro/nanofluidics. Yet, local measurement of $味$ potential at the interface has historically presented challenges, leading researchers to simplify a chemically homogenized surface with a uniform $味$ potential. In the current investigation, we present evidence that, within a microchannel, the spatial distribution of $味$ potential across a chemically homogeneous solid-liquid interface can become two-dimensional (2D) under an imposed flow regime, as disclosed by a state-of-art fluorescence photobleaching electrochemistry analyzer (FLEA) technique. The $味$ potential&#39; s propensity to become increasingly negative downstream, presents an approximately symmetric, V-shaped pattern in the spanwise orientation. Intriguingly, and of notable significance to chemistry and engineering, this 2D $味$ potential framework was found to electrokinetically induce swirling flows in tens of nanometers, aligning with the streamwise axis, bearing a remarkable resemblance to the well-documented hairpin vortices in turbulent boundary layers. Our findings gesture towards a novel perspective on the genesis of vortex structures in nanoscale. Additionally, the FLEA technique emerges as a potent tool for discerning $味$ potential at a local scale with high resolution, potentially accelerating the evolution and applications of novel surface material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04279v1-abstract-full').style.display = 'none'; document.getElementById('2402.04279v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04845">arXiv:2401.04845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04845">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07203-8">10.1038/s41586-024-07203-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of a hybrid topological quantum state in an elemental solid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schindler%2C+F">Frank Schindler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+R">Rajibul Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muhammad%2C+Z">Zahir Muhammad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+T">Tao Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yahyavi%2C+M">Mohammad Yahyavi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04845v1-abstract-short" style="display: inline;"> Topology and interactions are foundational concepts in the modern understanding of quantum matter. Their nexus yields three significant research directions: competition between distinct interactions, as in the multiple intertwined phases, interplay between interactions and topology that drives the phenomena in twisted layered materials and topological magnets, and the coalescence of multiple topol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04845v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04845v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04845v1-abstract-full" style="display: none;"> Topology and interactions are foundational concepts in the modern understanding of quantum matter. Their nexus yields three significant research directions: competition between distinct interactions, as in the multiple intertwined phases, interplay between interactions and topology that drives the phenomena in twisted layered materials and topological magnets, and the coalescence of multiple topological orders to generate distinct novel phases. The first two examples have grown into major areas of research, while the last example remains mostly untouched, mainly because of the lack of a material platform for experimental studies. Here, using tunneling microscopy, photoemission spectroscopy, and theoretical analysis, we unveil a &#34;hybrid&#34; and yet novel topological phase of matter in the simple elemental solid arsenic. Through a unique bulk-surface-edge correspondence, we uncover that arsenic features a conjoined strong and higher-order topology, stabilizing a hybrid topological phase. While momentum-space spectroscopy measurements show signs of topological surface states, real-space microscopy measurements unravel a unique geometry of topology-induced step edge conduction channels revealed on various forms of natural nanostructures on the surface. Using theoretical models, we show that the existence of gapless step edge states in arsenic relies on the simultaneous presence of both a nontrivial strong Z2 invariant and a nontrivial higher-order topological invariant, providing experimental evidence for hybrid topology and its realization in a single crystal. Our discovery highlights pathways to explore the interplay of different kinds of band topology and harness the associated topological conduction channels in future engineered quantum or nano-devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04845v1-abstract-full').style.display = 'none'; document.getElementById('2401.04845v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature (2024); in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 628, 527 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00516">arXiv:2401.00516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00516">pdf</a>, <a href="https://arxiv.org/format/2401.00516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Kagomerization of transition metal monolayers induced by two-dimensional hexagonal boron nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Hangyu Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dias%2C+M+d+S">Manuel dos Santos Dias</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Youguang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lounis%2C+S">Samir Lounis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00516v1-abstract-short" style="display: inline;"> The kagome lattice is an exciting solid state physics platform for the emergence of nontrivial quantum states driven by electronic correlations: topological effects, unconventional superconductivity, charge and spin density waves, and unusual magnetic states such as quantum spin liquids. While kagome lattices have been realized in complex multi-atomic bulk compounds, here we demonstrate from first&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00516v1-abstract-full').style.display = 'inline'; document.getElementById('2401.00516v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00516v1-abstract-full" style="display: none;"> The kagome lattice is an exciting solid state physics platform for the emergence of nontrivial quantum states driven by electronic correlations: topological effects, unconventional superconductivity, charge and spin density waves, and unusual magnetic states such as quantum spin liquids. While kagome lattices have been realized in complex multi-atomic bulk compounds, here we demonstrate from first-principles a process that we dub kagomerization, in which we fabricate a two-dimensional kagome lattice in monolayers of transition metals utilizing a hexagonal boron nitride (h-BN) overlayer. Surprisingly, h-BN induces a large rearrangement of the transition metal atoms supported on a fcc(111) heavy-metal surface. This reconstruction is found to be rather generic for this type of heterostructures and has a profound impact on the underlying magnetic properties, ultimately stabilizing various topological magnetic solitons such as skyrmions and bimerons. Our findings call for a reconsideration of h-BN as merely a passive capping layer, showing its potential for not only reconstructing the atomic structure of the underlying material, e.g. through the kagomerization of magnetic films, but also enabling electronic and magnetic phases that are highly sought for the next generation of device technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00516v1-abstract-full').style.display = 'none'; document.getElementById('2401.00516v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09493">arXiv:2312.09493</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.09493">pdf</a>, <a href="https://arxiv.org/format/2312.09493">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.033210">10.1103/PhysRevResearch.6.033210 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence and Growth Dynamics of Wetting-induced Phase Separation on Soft Solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+W">Wenjie Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weiwei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tiezheng Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Q">Qin Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09493v2-abstract-short" style="display: inline;"> Liquid droplets on soft solids, such as soft polymeric gels, can induce substantial surface deformations, leading to the formation of wetting ridges at contact points. While these contact ridges have been shown to govern the rich surface mechanics on compliant substrates, the inherently divergent characteristics of contact points and the multiphase nature of soft reticulated gels pose great challe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09493v2-abstract-full').style.display = 'inline'; document.getElementById('2312.09493v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09493v2-abstract-full" style="display: none;"> Liquid droplets on soft solids, such as soft polymeric gels, can induce substantial surface deformations, leading to the formation of wetting ridges at contact points. While these contact ridges have been shown to govern the rich surface mechanics on compliant substrates, the inherently divergent characteristics of contact points and the multiphase nature of soft reticulated gels pose great challenges for continuum mechanical theories in modeling soft wetting phenomena. In this study, we report in-situ experimental characterizations of the emergence and growth dynamics of the wetting-induced phase separation. The measurements demonstrate how the migration of free chains prevents the stress singularities at contact points. Based on the Onsager variational principle, we present a phenomenological model that effectively captures the extraction process of free chains, including a crossover from a short-term diffusive state to a long-term equilibrium state. By comparing model predictions with experimental results for varied crosslinking densities, we reveal how the intrinsic material parameters of soft gels dictate phase separation dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09493v2-abstract-full').style.display = 'none'; document.getElementById('2312.09493v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06054">arXiv:2312.06054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06054">pdf</a>, <a href="https://arxiv.org/format/2312.06054">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dzyaloshinskii-Moriya interaction from unquenched orbital angular momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Runze Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Go%2C+D">Dongwook Go</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bluegel%2C+S">Stefan Bluegel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mokrousov%2C+Y">Yuriy Mokrousov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06054v2-abstract-short" style="display: inline;"> Orbitronics is an emerging and fascinating field that explores the utilization of the orbital degree of freedom of electrons for information processing. An increasing number of orbital phenomena are being currently discovered, with spin-orbit coupling mediating the interplay between orbital and spin effects, thus providing a wealth of control mechanisms and device applications. In this context, th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06054v2-abstract-full').style.display = 'inline'; document.getElementById('2312.06054v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06054v2-abstract-full" style="display: none;"> Orbitronics is an emerging and fascinating field that explores the utilization of the orbital degree of freedom of electrons for information processing. An increasing number of orbital phenomena are being currently discovered, with spin-orbit coupling mediating the interplay between orbital and spin effects, thus providing a wealth of control mechanisms and device applications. In this context, the orbital analog of spin Dzyaloshinskii-Moriya interaction (DMI), i.e. orbital DMI, deserves to be explored in depth, since it is believed to be capable of inducing chiral orbital structures. Here, we unveil the main features and microscopic mechanisms of the orbital DMI in a two-dimensional square lattice using a tight-binding model of t2g orbitals in combination with the Berry phase theory. This approach allows us to investigate and transparently disentangle the role of inversion symmetry breaking, strength of orbital exchange interaction and spin-orbit coupling in shaping the properties of the orbital DMI. By scrutinizing the band-resolved contributions we are able to understand the microscopic mechanisms and guiding principles behind the orbital DMI and its anisotropy in two dimensional magnetic materials, and uncover a fundamental relation between the orbital DMI and its spin counterpart, which is currently explored very intensively. The insights gained from our work contribute to advancing our knowledge of orbitalrelated effects and their potential applications in spintronics, providing a path for future research in the field of chiral orbitronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06054v2-abstract-full').style.display = 'none'; document.getElementById('2312.06054v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04849">arXiv:2312.04849</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04849">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Low Resistance Ohmic Contact to P-type Monolayer WSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+J">Jingxu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zuocheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Haodong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagarajan%2C+V">Vikram Nagarajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Haleem Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanborn%2C+C">Collin Sanborn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+R">Ruishi Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Sudi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kahn%2C+S">Salman Kahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zettl%2C+A">Alex Zettl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crommie%2C+M">Michael Crommie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Analytis%2C+J">James Analytis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04849v1-abstract-short" style="display: inline;"> Advanced microelectronics in the future may require semiconducting channel materials beyond silicon. Two-dimensional (2D) semiconductors, characterized by their atomically thin thickness, hold immense promise for high-performance electronic devices at the nanometer scale with lower heat dissipation. One challenge for achieving high-performance 2D semiconductor field effect transistors (FET), espec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04849v1-abstract-full').style.display = 'inline'; document.getElementById('2312.04849v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04849v1-abstract-full" style="display: none;"> Advanced microelectronics in the future may require semiconducting channel materials beyond silicon. Two-dimensional (2D) semiconductors, characterized by their atomically thin thickness, hold immense promise for high-performance electronic devices at the nanometer scale with lower heat dissipation. One challenge for achieving high-performance 2D semiconductor field effect transistors (FET), especially for p-type materials, is the high electrical contact resistance present at the metal-semiconductor interface. In conventional bulk semiconductors, low resistance ohmic contact is realized through heavy substitutional doping with acceptor or donor impurities at the contact region. The strategy of substitutional doping, however, does not work for p-type 2D semiconductors such as monolayer tungsten diselenide (WSe$_2$).In this study, we developed highly efficient charge-transfer doping with WSe$_2$/$伪$-RuCl$_3$ heterostructures to achieve low-resistance ohmic contact for p-type WSe$_2$ transistors. We show that a hole doping as high as 3$\times$10$^{13}$ cm$^{-2}$ can be achieved in the WSe$_2/伪$-RuCl$_3$ heterostructure due to its type-III band alignment. It results in an Ohmic contact with resistance lower than 4 k Ohm $渭$m at the p-type monolayer WSe$_2$/metal junction. at room temperature. Using this low-resistance contact, we demonstrate high-performance p-type WSe$_2$ transistors with a saturation current of 35 $渭$A$\cdot$ $渭$m$^{-1}$ and an I$_{ON}$/I$_{OFF}$ ratio exceeding 10$^9$ It could enable future microelectronic devices based on 2D semiconductors and contribute to the extension of Moore&#39;s law. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04849v1-abstract-full').style.display = 'none'; document.getElementById('2312.04849v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04497">arXiv:2312.04497</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04497">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Automatic Calculation of the Transition Temperatures for two-dimensional Heisenberg type Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Haichang Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+T">Tai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhimei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robertson%2C+J">John Robertson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04497v1-abstract-short" style="display: inline;"> Theoretical prediction of the 2nd-order magnetic transition temperature (TM) used to be arduous. Here, we develop a first principle-based, fully automatic structure-to-TM method for two-dimensional (2D) magnets whose effective Hamiltonians follow the Heisenberg model. The Heisenberg exchanges, which can be calculated to an arbitrary shell, are transferred into the Monte Carlo calculation. Using Cr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04497v1-abstract-full').style.display = 'inline'; document.getElementById('2312.04497v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04497v1-abstract-full" style="display: none;"> Theoretical prediction of the 2nd-order magnetic transition temperature (TM) used to be arduous. Here, we develop a first principle-based, fully automatic structure-to-TM method for two-dimensional (2D) magnets whose effective Hamiltonians follow the Heisenberg model. The Heisenberg exchanges, which can be calculated to an arbitrary shell, are transferred into the Monte Carlo calculation. Using Cr-based magnets as the showcases, we show that our method is a powerful tool to study the 2D magnets in two aspects. First, considering long-range exchanges enables us to identify the spin frustration in the suspended CrTe2 monolayer, whereas the heterostructure calculations reveal that the ferromagnetism can be recovered if the monolayer CrTe2 is grown onto various 2D substrates. Second, we realize a high-throughput screening of novel magnets discovered by random structure searches. Six 2D Cr chalcogenides are selected to have high TM. Our work provides a new insight for the study of 2D magnets and helps accelerate the pace of magnetic materials data-mining. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04497v1-abstract-full').style.display = 'none'; document.getElementById('2312.04497v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18359">arXiv:2311.18359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18359">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Criteria to observe single-shot all-optical switching in Gd-based ferrimagnetic alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hohlfeld%2C+J">Julius Hohlfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+T+X">Tian Xun Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J+X">Jun Xiao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">Michel Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Compton-Stewart%2C+Y+L+G+J">Yann Le Guen Jude Compton-Stewart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malinowski%2C+G">Gregory Malinowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W+S">Wei Sheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin%2C+S">St茅phane Mangin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18359v1-abstract-short" style="display: inline;"> Single-shot all-optical helicity-independent switching (AO-HIS) induced by a femto-second laser pulse has been mainly reported in Gadolinium based rare earth-transition metal (RE-TM) alloys such as GdFeCo or GdCo, but the mechanism leading to magnetization switching is a hotly debated topic. Here, we elaborate on a large number of GdyRE1-x-yCox (RE = Dy, Tb, Ho) alloys to tune various magnetic par&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18359v1-abstract-full').style.display = 'inline'; document.getElementById('2311.18359v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18359v1-abstract-full" style="display: none;"> Single-shot all-optical helicity-independent switching (AO-HIS) induced by a femto-second laser pulse has been mainly reported in Gadolinium based rare earth-transition metal (RE-TM) alloys such as GdFeCo or GdCo, but the mechanism leading to magnetization switching is a hotly debated topic. Here, we elaborate on a large number of GdyRE1-x-yCox (RE = Dy, Tb, Ho) alloys to tune various magnetic parameters in order to define what the criteria are for observing AO-HIS in such systems. The state diagrams show that two laser fluences thresholds must be considered:the fluence which induces the single laser pulse switching (FSwitch) and the fluence at which the material breaks into a multi-domain state (FMulti). Those two fluences are shown to behave very differently as a function of the material properties and the laser pulse duration. Taking into account the parameters defining the conditions for which multi-domain states are created and considering only the angular momentum transfer from the Gd sublattice to the rest of the system explains in large our experimental results. The importance of the compensation in the ferrimagnetic alloys is also discussed. We believe the defined criteria will be an important tool for designing new ultra-fast spintronic devices based on all optical switching. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18359v1-abstract-full').style.display = 'none'; document.getElementById('2311.18359v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08064">arXiv:2311.08064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08064">pdf</a>, <a href="https://arxiv.org/format/2311.08064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Charged vacancy in graphene: interplay between Landau levels and atomic collapse resonances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wen-Sheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yue Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filho%2C+R+N+C">R. N. Costa Filho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peeters%2C+F+M">Francois M. Peeters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08064v1-abstract-short" style="display: inline;"> The interplay between a magnetic field and the Coulomb potential from a charged vacancy on the electron states in graphene is investigated within the tight-binding model. The Coulomb potential removes locally Landau level degeneracy, while the vacancy introduces a satellite level next to the normal Landau level. These satellite levels are found throughout the positive energy region, but in the neg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08064v1-abstract-full').style.display = 'inline'; document.getElementById('2311.08064v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08064v1-abstract-full" style="display: none;"> The interplay between a magnetic field and the Coulomb potential from a charged vacancy on the electron states in graphene is investigated within the tight-binding model. The Coulomb potential removes locally Landau level degeneracy, while the vacancy introduces a satellite level next to the normal Landau level. These satellite levels are found throughout the positive energy region, but in the negative energy region they turn into atomic collapse resonances. Crossings between Landau levels with different angular quantum number $m$ are found. Unlike the point impurity system in which an anticrossing occurs between Landau levels of the same $m$, in this work anticrossing is found between the normal Landau level and the vacancy induced level. The atomic collapse resonance hybridize with the Landau levels. The charge at which the lowest Landau level $m = -1, N = 1$ crosses increases $E = 0$ with enhancing magnetic field. Landau level scaling anomaly occurs when the charge is larger than the critical charge $尾\approx0.6$ and this critical charge is independent of the magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08064v1-abstract-full').style.display = 'none'; document.getElementById('2311.08064v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02893">arXiv:2311.02893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.02893">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-43882-z">10.1038/s41467-023-43882-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological electronic structure and spin texture of quasi-one-dimensional higher-order topological insulator Bi4Br4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W+X">W. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">M. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R+Z">R. Z. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+X">X. Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y+D">Y. D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K+Y">K. Y. Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">C. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+D">D. Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">H. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y+W">Y. W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L+X">L. X. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J+F">J. F. Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+K">Z. K. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y+G">Y. G. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+J+C">J. C. Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Y. Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J+J">J. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+L">Y. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02893v1-abstract-short" style="display: inline;"> The notion of topological insulators (TIs), characterized by an insulating bulk and conducting topological surface states, can be extended to higher-order topological insulators (HOTIs) hosting gapless modes localized at the boundaries of two or more dimensions lower than the insulating bulk1-5. In this work, by performing high-resolution angle-resolved photoemission spectroscopy (ARPES) measureme&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02893v1-abstract-full').style.display = 'inline'; document.getElementById('2311.02893v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02893v1-abstract-full" style="display: none;"> The notion of topological insulators (TIs), characterized by an insulating bulk and conducting topological surface states, can be extended to higher-order topological insulators (HOTIs) hosting gapless modes localized at the boundaries of two or more dimensions lower than the insulating bulk1-5. In this work, by performing high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements with submicron spatial and spin resolutions, we systematically investigate the electronic structure and spin texture of quasi-one-dimensional (1D) HOTI candidate Bi4Br4. In contrast to the bulk-state-dominant spectra on the (001) surface, we observe gapped surface states on the (100) surface, whose dispersion and spin-polarization agree well with our ab initio calculations. Moreover, we reveal in-gap states connecting the surface valence and conduction bands, which is an explicit signature of the existence of hinge states inside the (100) surface gap. Our findings provide compelling evidence for the HOTI phase of Bi4Br4. The identification of the higher-order topological phase will lay the promising prospect of applications based on 1D spin-momentum locked current in electronic and spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02893v1-abstract-full').style.display = 'none'; document.getElementById('2311.02893v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 14, 8089 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19002">arXiv:2310.19002</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.19002">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> High temperature superconductivity of quaternary hydrides XM3Be4H32 (X, M = Ca, Sr, Ba, Y, La, Ac, Th) under moderate pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wendi Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+D">Defang Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+D">Decheng An</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Q">Qiwen Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengtao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+T">Tiancheng Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huo%2C+Z">Zihao Huo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+J">Jianhui Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+T">Tian Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19002v2-abstract-short" style="display: inline;"> The compressed hydrogen-rich compounds have received extensive attention as promising candidates for room temperature superconductivity, however, the high pressure required to stabilize such materials hinders their wide practical application. In order to search for potential superconducting hydrides that are stable at low pressures, we have investigated the crystal structures and properties of qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19002v2-abstract-full').style.display = 'inline'; document.getElementById('2310.19002v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19002v2-abstract-full" style="display: none;"> The compressed hydrogen-rich compounds have received extensive attention as promising candidates for room temperature superconductivity, however, the high pressure required to stabilize such materials hinders their wide practical application. In order to search for potential superconducting hydrides that are stable at low pressures, we have investigated the crystal structures and properties of quaternary hydrides, XM3Be4H32 (X, M = Ca, Sr, Ba, Y, La, Ac, Th) based on the first-principles calculations. We identified nine dynamically stable compounds at moderate pressure of 20 GPa. Strikingly, their superconducting transition temperatures are much higher than that of liquid nitrogen, especially CaTh3Be4H32 (124 K at 5 GPa), ThLa3Be4H32(134 K at 10 GPa), LaAc3Be4H32 (135 K at 20 GPa) and AcLa3Be4H32 (153 K at 20 GPa) exhibit outstanding superconductivity at mild pressures. Metal atoms acting as pre-compressors donate abundant electrons to hydrogen, weakening the H-H covalent bond and thus facilitating the metallization of the hydrogen sublattice. At the same time, the appropriate combination of metal elements with different ionic radius and electronegativity can effectively tune the electronic structure near the Fermi level and improve the superconductivity. These findings fully reveal the great promise of hosting high-temperature superconductivity of quaternary hydrides at moderate pressures and will further promote related exploration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19002v2-abstract-full').style.display = 'none'; document.getElementById('2310.19002v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13945">arXiv:2310.13945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13945">pdf</a>, <a href="https://arxiv.org/ps/2310.13945">ps</a>, <a href="https://arxiv.org/format/2310.13945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Prediction of fully metallic 蟽-bonded boron framework induced high superconductivity above 100 K in thermodynamically stable Sr2B5 at 40 GPa </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenbo Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+L">Liang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wencheng Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+X">Xin Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hanyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yanming Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13945v1-abstract-short" style="display: inline;"> Metal borides have been considered as potential high-temperature superconductors since the discovery of record-holding 39 K superconductivity in bulk MgB2. In this work, we identified a superconducting yet thermodynamically stable F43m Sr2B5 at 40 GPa with a unique covalent sp3-hybridized boron framework through extensive first-principles structure searches. Remarkably, solving the anisotropic Mig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13945v1-abstract-full').style.display = 'inline'; document.getElementById('2310.13945v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13945v1-abstract-full" style="display: none;"> Metal borides have been considered as potential high-temperature superconductors since the discovery of record-holding 39 K superconductivity in bulk MgB2. In this work, we identified a superconducting yet thermodynamically stable F43m Sr2B5 at 40 GPa with a unique covalent sp3-hybridized boron framework through extensive first-principles structure searches. Remarkably, solving the anisotropic Migdal-Eliashberg equations resulted in a high superconducting critical temperature (Tc) around 100 K, exceeding the boiling point (77 K) of liquid nitrogen. Our in-depth analysis revealed that the high-temperature superconductivity mainly originates from the strong coupling between the metalized 蟽-bonded electronic bands and E phonon modes of boron atoms. Moreover, anharmonic phonon simulations suggest that F43m Sr2B5 might be recovered to ambient pressure. Our current findings provide a prototype structure with a full 蟽-bonded boron framework for the design of high-Tc superconducting borides that may expand to a broader variety of lightweight compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13945v1-abstract-full').style.display = 'none'; document.getElementById('2310.13945v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.06044">arXiv:2310.06044</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.06044">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Emergence of ferromagnetism at the onset of moir茅 Kondo breakdown </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenjin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">Bowen Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+Z">Zui Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Sunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kn%C3%BCppel%2C+P">Patrick Kn眉ppel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z">Zhongdong Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yichi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chowdhury%2C+D">Debanjan Chowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+J">Jie Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mak%2C+K+F">Kin Fai Mak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.06044v1-abstract-short" style="display: inline;"> The interaction of a lattice of localized magnetic moments with a sea of conduction electrons in Kondo lattice models induces rich quantum phases of matter, such as Fermi liquids with heavily renormalized electronic quasiparticles, quantum critical non-Fermi liquid metals and unconventional superconductors, among others. The recent demonstration of moir茅 Kondo lattices has opened the door to inves&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06044v1-abstract-full').style.display = 'inline'; document.getElementById('2310.06044v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.06044v1-abstract-full" style="display: none;"> The interaction of a lattice of localized magnetic moments with a sea of conduction electrons in Kondo lattice models induces rich quantum phases of matter, such as Fermi liquids with heavily renormalized electronic quasiparticles, quantum critical non-Fermi liquid metals and unconventional superconductors, among others. The recent demonstration of moir茅 Kondo lattices has opened the door to investigate the Kondo problem with continuously tunable parameters. Although a heavy Fermi liquid phase has been identified in moir茅 Kondo lattices, the magnetic phases and Kondo breakdown transitions remain unexplored. Here we report a density-tuned Kondo destruction in AB-stacked MoTe2/WSe2 moir茅 bilayers by combining magneto transport and optical studies. As the itinerant carrier density decreases, the Kondo temperature decreases. At a critical density, we observe a heavy Fermi liquid to insulator transition, and a nearly concomitant emergence of ferromagnetic order. The observation is consistent with the scenario of a ferromagnetic Anderson insulator and suppression of the Kondo screening effect. Our results pave the path for inducing other exotic quantum phase transitions in moir茅 Kondo lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06044v1-abstract-full').style.display = 'none'; document.getElementById('2310.06044v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04939">arXiv:2310.04939</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.04939">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07604-9">10.1038/s41586-024-07604-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Terahertz phonon engineering with van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+Y">Yoseob Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zheyu Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uzundal%2C+C">Can Uzundal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+R">Ruishi Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Sudi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Q">Qixin Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+W">Woochang Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naik%2C+M+H">Mit H. Naik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louie%2C+S+G">Steven G. Louie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crommie%2C+M+F">Michael F. Crommie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04939v2-abstract-short" style="display: inline;"> Phononic engineering at gigahertz (GHz) frequencies form the foundation of microwave acoustic filters, acousto-optic modulators, and quantum transducers. Terahertz (THz) phononic engineering could lead to acoustic filters and modulators at higher bandwidth and speed, as well as quantum circuits operating at higher temperatures. Despite its potential, methods for engineering THz phonons have been l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04939v2-abstract-full').style.display = 'inline'; document.getElementById('2310.04939v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04939v2-abstract-full" style="display: none;"> Phononic engineering at gigahertz (GHz) frequencies form the foundation of microwave acoustic filters, acousto-optic modulators, and quantum transducers. Terahertz (THz) phononic engineering could lead to acoustic filters and modulators at higher bandwidth and speed, as well as quantum circuits operating at higher temperatures. Despite its potential, methods for engineering THz phonons have been limited due to the challenges of achieving the required material control at sub-nanometer precision and efficient phonon coupling at THz frequencies. Here, we demonstrate efficient generation, detection, and manipulation of THz phonons through precise integration of atomically thin layers in van der Waals heterostructures. We employ few-layer graphene (FLG) as an ultrabroadband phonon transducer, converting femtosecond near-infrared pulses to acoustic phonon pulses with spectral content up to 3 THz. A monolayer WSe$_2$ is used as a sensor, where high-fidelity readout is enabled by the exciton-phonon coupling and strong light-matter interactions. Combining these capabilities in a single heterostructure and detecting responses to incident mechanical waves, we perform THz phononic spectroscopy. Using this platform, we demonstrate high-Q THz phononic cavities and show that a monolayer WSe$_2$ embedded in hexagonal boron nitride (hBN) can efficiently block the transmission of THz phonons. By comparing our measurements to a nanomechanical model, we obtain the force constants at the heterointerfaces. Our results could enable THz phononic metamaterials for ultrabroadband acoustic filters and modulators, and open novel routes for thermal engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04939v2-abstract-full').style.display = 'none'; document.getElementById('2310.04939v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 631, 771 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04763">arXiv:2310.04763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.04763">pdf</a>, <a href="https://arxiv.org/format/2310.04763">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Orbital diffusion, polarization and swapping in centrosymmetric metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ning%2C+X">Xiaobai Ning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pezo%2C+A">A. Pezo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kyoung-Whan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyung-Jin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manchon%2C+A">Aurelien Manchon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04763v3-abstract-short" style="display: inline;"> We propose a general theory of charge, spin, and orbital diffusion based on Keldysh formalism. Our findings indicate that the diffusivity of orbital angular momentum in metals is much lower than that of spin or charge due to the strong orbital intermixing in crystals. Furthermore, our theory introduces the concept of spin-orbit polarization by which a pure orbital (spin) current induces a longitud&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04763v3-abstract-full').style.display = 'inline'; document.getElementById('2310.04763v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04763v3-abstract-full" style="display: none;"> We propose a general theory of charge, spin, and orbital diffusion based on Keldysh formalism. Our findings indicate that the diffusivity of orbital angular momentum in metals is much lower than that of spin or charge due to the strong orbital intermixing in crystals. Furthermore, our theory introduces the concept of spin-orbit polarization by which a pure orbital (spin) current induces a longitudinal spin (orbital) current, a process as efficient as spin polarization in ferromagnets. Finally, we find that orbital currents undergo momentum swapping, even in the absence of spin-orbit coupling. This theory establishes several key parameters for orbital transport of direct importance to experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04763v3-abstract-full').style.display = 'none'; document.getElementById('2310.04763v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Includes Supplemental Materials</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhao%2C+W&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10