CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 450 results for author: <span class="mathjax">Sun, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Sun%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Sun, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Sun%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Sun, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Sun%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13229">arXiv:2502.13229</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.13229">pdf</a>, <a href="https://arxiv.org/format/2502.13229">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Asynchronous mass inversion enriched quantum anomalous Hall states in multilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xilin Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zi-Ting Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Law%2C+K+T">K. T. Law</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13229v1-abstract-short" style="display: inline;"> Recently, multilayer graphene systems have attracted significant attention due to the discovery of a variety of intriguing phases, particularly quantum anomalous Hall (QAH) states. In rhombohedral pentalayer graphene, both $C = -5$ and $C = -3$ QAH states have been observed. While the $C = -5$ QAH state is well understood, the origin of the $C = -3$ QAH state remains unclear. In this letter, we pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13229v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13229v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13229v1-abstract-full" style="display: none;"> Recently, multilayer graphene systems have attracted significant attention due to the discovery of a variety of intriguing phases, particularly quantum anomalous Hall (QAH) states. In rhombohedral pentalayer graphene, both $C = -5$ and $C = -3$ QAH states have been observed. While the $C = -5$ QAH state is well understood, the origin of the $C = -3$ QAH state remains unclear. In this letter, we propose that the $C = -3$ QAH state in rhombohedral pentalayer graphene (RPG) arises from an asynchronous mass inversion mechanism, driven by the interplay between trigonal warping and staggered layer order under an applied displacement field. Trigonal warping splits the low-energy bands into a central touching point and three &#34;leg&#34; Dirac cones. In the presence of staggered layer order, this splitting enables mass inversions driven by the displacement field to occur asynchronously at the central touching point and the &#34;leg&#34; Dirac cones, potentially leading to the formation of the $C = -3$ QAH state. Furthermore, this mechanism can also be applied to Bernal multilayer graphene systems, predicting the existence of additional QAH states beyond $C = \pm N, \pm 2N$ for $N$-layer graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13229v1-abstract-full').style.display = 'none'; document.getElementById('2502.13229v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10972">arXiv:2502.10972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.10972">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Density-dependent spin susceptibility and effective mass in monolayer MoSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+T">Tongtong Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zheng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yu Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10972v1-abstract-short" style="display: inline;"> Atomically thin MoSe2 is a promising platform for investigating quantum phenomena due to its large effective mass, high crystal quality, and strong spin-orbit coupling. In this work, we demonstrate a triple-gate device design with bismuth contacts, enabling reliable ohmic contact down to low electron densities, with a maximum Hall mobility of approximately 22,000 cm2/Vs. Low-temperature transport&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10972v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10972v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10972v1-abstract-full" style="display: none;"> Atomically thin MoSe2 is a promising platform for investigating quantum phenomena due to its large effective mass, high crystal quality, and strong spin-orbit coupling. In this work, we demonstrate a triple-gate device design with bismuth contacts, enabling reliable ohmic contact down to low electron densities, with a maximum Hall mobility of approximately 22,000 cm2/Vs. Low-temperature transport measurements illustrate metal-insulator transitions, and density-dependent quantum oscillation sequences. Enhanced spin susceptibility and density-dependent effective mass are observed, attributed to interaction effects and valley polarization. These findings establish monolayer MoSe2 as a versatile platform for further exploring interaction-driven quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10972v1-abstract-full').style.display = 'none'; document.getElementById('2502.10972v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02383">arXiv:2502.02383</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02383">pdf</a>, <a href="https://arxiv.org/format/2502.02383">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Electrical probe of spin-spiral order in quantum spin Hall/spin-spiral magnet van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nigmatulin%2C+F">Fedor Nigmatulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lado%2C+J+L">Jose L. Lado</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhipei Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02383v2-abstract-short" style="display: inline;"> Two-dimensional spin-spiral magnets provide promising building blocks for van der Waals heterostructures due to their tunable spin textures and potential for novel functionalities for quantum devices. However, due to its vanishing magnetization and two-dimensional nature, it is challenging to detect the existence of its noncollinear magnetization. Here, we show that a van der Waals junction based&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02383v2-abstract-full').style.display = 'inline'; document.getElementById('2502.02383v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02383v2-abstract-full" style="display: none;"> Two-dimensional spin-spiral magnets provide promising building blocks for van der Waals heterostructures due to their tunable spin textures and potential for novel functionalities for quantum devices. However, due to its vanishing magnetization and two-dimensional nature, it is challenging to detect the existence of its noncollinear magnetization. Here, we show that a van der Waals junction based on a spin-spiral magnet and a quantum spin Hall insulator enables obtaining signatures of noncollinear magnetization directly from electrical measurements. Our strategy exploits the sensitivity of helical states to local breaking of time-reversal symmetry, enabling the detection of local magnetic orders even in the absence of net magnetization. We show that the combination of spin-spiral order and nonmagnetic disorder gives rise to scattering in the helical channels that can be directly associated with the spiral exchange coupling and residual nonmagnetic disorder strength. Our results show how electrical transport measurement provides a method to detect spin-spiral magnets by leveraging helical states in van der Waals heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02383v2-abstract-full').style.display = 'none'; document.getElementById('2502.02383v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16995">arXiv:2501.16995</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.16995">pdf</a>, <a href="https://arxiv.org/format/2501.16995">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing quantum many-body dynamics using subsystem Loschmidt echos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Karch%2C+S">Simon Karch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bandyopadhyay%2C+S">Souvik Bandyopadhyay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zheng-Hang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Impertro%2C+A">Alexander Impertro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huh%2C+S">SeungJung Huh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodr%C3%ADguez%2C+I+P">Irene Prieto Rodr铆guez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wienand%2C+J+F">Julian F. Wienand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ketterle%2C+W">Wolfgang Ketterle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heyl%2C+M">Markus Heyl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polkovnikov%2C+A">Anatoli Polkovnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bloch%2C+I">Immanuel Bloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aidelsburger%2C+M">Monika Aidelsburger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16995v1-abstract-short" style="display: inline;"> The Loschmidt echo - the probability of a quantum many-body system to return to its initial state following a dynamical evolution - generally contains key information about a quantum system, relevant across various scientific fields including quantum chaos, quantum many-body physics, or high-energy physics. However, it is typically exponentially small in system size, posing an outstanding challeng&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16995v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16995v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16995v1-abstract-full" style="display: none;"> The Loschmidt echo - the probability of a quantum many-body system to return to its initial state following a dynamical evolution - generally contains key information about a quantum system, relevant across various scientific fields including quantum chaos, quantum many-body physics, or high-energy physics. However, it is typically exponentially small in system size, posing an outstanding challenge for experiments. Here, we experimentally investigate the subsystem Loschmidt echo, a quasi-local observable that captures key features of the Loschmidt echo while being readily accessible experimentally. Utilizing quantum gas microscopy, we study its short- and long-time dynamics. In the short-time regime, we observe a dynamical quantum phase transition arising from genuine higher-order correlations. In the long-time regime, the subsystem Loschmidt echo allows us to quantitatively determine the effective dimension and structure of the accessible Hilbert space in the thermodynamic limit. Performing these measurements in the ergodic regime and in the presence of emergent kinetic constraints, we provide direct experimental evidence for ergodicity breaking due to fragmentation of the Hilbert space. Our results establish the subsystem Loschmidt echo as a novel and powerful tool that allows paradigmatic studies of both non-equilibrium dynamics and equilibrium thermodynamics of quantum many-body systems, applicable to a broad range of quantum simulation and computing platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16995v1-abstract-full').style.display = 'none'; document.getElementById('2501.16995v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.11627">arXiv:2501.11627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.11627">pdf</a>, <a href="https://arxiv.org/format/2501.11627">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Andreev spin relaxation time in a shadow-evaporated InAs weak link </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Haoran Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bofill%2C+D+F">David F. Bofill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhenhai Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kanne%2C+T">Thomas Kanne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nyg%C3%A5rd%2C+J">Jesper Nyg氓rd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kjaergaard%2C+M">Morten Kjaergaard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fatemi%2C+V">Valla Fatemi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.11627v1-abstract-short" style="display: inline;"> Andreev spin qubits are a new qubit platform that merges superconductivity with semiconductor physics. The mechanisms dominating observed energy relaxation remain unidentified. We report here on three steps taken to address these questions in an InAs nanowire weak link. First, we designed a microwave readout circuit tuned to be directly sensitive to the spin-dependent inductance of the weak link s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11627v1-abstract-full').style.display = 'inline'; document.getElementById('2501.11627v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.11627v1-abstract-full" style="display: none;"> Andreev spin qubits are a new qubit platform that merges superconductivity with semiconductor physics. The mechanisms dominating observed energy relaxation remain unidentified. We report here on three steps taken to address these questions in an InAs nanowire weak link. First, we designed a microwave readout circuit tuned to be directly sensitive to the spin-dependent inductance of the weak link so that higher orbital states are not necessary for readout -- this resulted in larger windows in parameter space in which the spin state properties can be probed. Second, we implemented a successful gap-engineering strategy to mitigate quasiparticle poisoning. Third, the weak link was fabricated by \textit{in situ} shadow evaporation, which has been shown to improve atomic-scale disorder. We show how our design allows characterization of the spin stability and coherence over the full range of magnetic flux and gate voltage of an odd parity bias point. The spin relaxation and dephasing rates are comparable with the best devices previously reported, suggestive that surface atomic-scale disorder and QP poisoning are not linked to spin relaxation in InAs nanowires. Our design strategies are transferrable to novel materials platforms for Andreev qubits such as germanium and carbon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11627v1-abstract-full').style.display = 'none'; document.getElementById('2501.11627v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.10998">arXiv:2501.10998</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.10998">pdf</a>, <a href="https://arxiv.org/format/2501.10998">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Odd-parity topological superconductivity in kagome metal RbV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xilin Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zi-Ting Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+B">Ben-Chuan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Law%2C+K+T">K. T. Law</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.10998v1-abstract-short" style="display: inline;"> Kagome superconductors AV$_3$Sb$_5$ (A=K, Rb, Cs) have sparked considerable interest due to the presence of several intertwined symmetry-breaking phases within a single material. Recently, hysteresis and reentrant superconductivity were observed experimentally through magnetoresistance measurements in RbV$_{3}$Sb$_{5}$, providing strong evidence of a spontaneous time-reversal symmetry breaking sup&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10998v1-abstract-full').style.display = 'inline'; document.getElementById('2501.10998v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.10998v1-abstract-full" style="display: none;"> Kagome superconductors AV$_3$Sb$_5$ (A=K, Rb, Cs) have sparked considerable interest due to the presence of several intertwined symmetry-breaking phases within a single material. Recently, hysteresis and reentrant superconductivity were observed experimentally through magnetoresistance measurements in RbV$_{3}$Sb$_{5}$, providing strong evidence of a spontaneous time-reversal symmetry breaking superconducting state. The unconventional magnetic responses, combined with crystalline symmetry, impose strong constraints on the possible pairing symmetries of the superconducting state. In this work, we propose that RbV$_3$Sb$_5$ is an odd-parity superconductor characterized by spin-polarized Cooper pairs. The hysteresis in magnetoresistance and the reentrant superconductivity can both be explained by the formation and evolution of superconducting domains composed of non-unitary pairing. Considering the nodal properties of the kagome superconductor RbV$_{3}$Sb$_{5}$, it is topological and characterized by Majorana zero modes at its boundary, which can be detected through tunneling experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10998v1-abstract-full').style.display = 'none'; document.getElementById('2501.10998v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.10960">arXiv:2501.10960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.10960">pdf</a>, <a href="https://arxiv.org/format/2501.10960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Pseudo-Ising superconductivity induced by $p$-wave magnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zi-Ting Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xilin Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Ying-Ming Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+B+T">Benjamin T. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jin-Xin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Law%2C+K+T">K. T. Law</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.10960v1-abstract-short" style="display: inline;"> Unconventional magnetic orders usually interplay with superconductivity in intriguing ways. In this work, we propose that a conventional superconductor in proximity to a compensated $p$-wave magnet exhibits behaviors analogous to those of Ising superconductivity found in transition-metal dichalcogenides, which we refer to as pseudo-Ising superconductivity. The pseudo-Ising superconductivity is cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10960v1-abstract-full').style.display = 'inline'; document.getElementById('2501.10960v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.10960v1-abstract-full" style="display: none;"> Unconventional magnetic orders usually interplay with superconductivity in intriguing ways. In this work, we propose that a conventional superconductor in proximity to a compensated $p$-wave magnet exhibits behaviors analogous to those of Ising superconductivity found in transition-metal dichalcogenides, which we refer to as pseudo-Ising superconductivity. The pseudo-Ising superconductivity is characterized by several distinctive features: (i) it stays much more robust under strong $p$-wave magnetism than usual ferromagnetism or $d$-wave altermagnetism, thanks to the apparent time-reversal symmetry in $p$-wave spin splitting; (ii) in the low-temperature regime, a second-order superconducting phase transition occurs at a significantly enhanced in-plane upper critical magnetic field $B_{c2}$; (iii) the supercurrent-carrying state establishes non-vanishing out-of-plane spin magnetization, which is forbidden by symmetry in Rahsba and Ising superconductors. We further propose a spin-orbit-free scheme to realize Majorana zero modes by placing superconducting quantum wires on a $p$-wave magnet. Our work establishes a new form of unconventional superconductivity generated by $p$-wave magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10960v1-abstract-full').style.display = 'none'; document.getElementById('2501.10960v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07787">arXiv:2501.07787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.07787">pdf</a>, <a href="https://arxiv.org/format/2501.07787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> SymSETs and self-dualities under gauging non-invertible symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Da-Chuan Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhengdi Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zipei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07787v1-abstract-short" style="display: inline;"> The self-duality defects under discrete gauging in a categorical symmetry $\mathcal{C}$ can be classified by inequivalent ways of enriching the bulk SymTFT of $\mathcal{C}$ with $\mathbb{Z}_2$ 0-form symmetry. The resulting Symmetry Enriched Topological (SET) orders will be referred to as $\textit{SymSETs}$ and are parameterized by choices of $\mathbb{Z}_2$ symmetries, as well as symmetry fraction&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07787v1-abstract-full').style.display = 'inline'; document.getElementById('2501.07787v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07787v1-abstract-full" style="display: none;"> The self-duality defects under discrete gauging in a categorical symmetry $\mathcal{C}$ can be classified by inequivalent ways of enriching the bulk SymTFT of $\mathcal{C}$ with $\mathbb{Z}_2$ 0-form symmetry. The resulting Symmetry Enriched Topological (SET) orders will be referred to as $\textit{SymSETs}$ and are parameterized by choices of $\mathbb{Z}_2$ symmetries, as well as symmetry fractionalization classes and discrete torsions. In this work, we consider self-dualities under gauging $\textit{non-invertible}$ $0$-form symmetries in $2$-dim QFTs and explore their SymSETs. Unlike the simpler case of self-dualities under gauging finite Abelian groups, the SymSETs here generally admit multiple choices of fractionalization classes. We provide a direct construction of the SymSET from a given duality defect using its $\textit{relative center}$. Using the SymSET, we show explicitly that changing fractionalization classes can change fusion rules of the duality defect besides its $F$-symbols. We consider three concrete examples: the maximal gauging of $\operatorname{Rep} H_8$, the non-maximal gauging of the duality defect $\mathcal{N}$ in $\operatorname{Rep} H_8$ and $\operatorname{Rep} D_8$ respectively. The latter two cases each result in 6 fusion categories with two types of fusion rules related by changing fractionalization class. In particular, two self-dualities of $\operatorname{Rep} D_8$ related by changing the fractionalization class lead to $\operatorname{Rep} D_{16}$ and $\operatorname{Rep} SD_{16}$ respectively. Finally, we study the physical implications such as the spin selection rules and the SPT phases for the aforementioned categories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07787v1-abstract-full').style.display = 'none'; document.getElementById('2501.07787v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">119 pages, 5 figures, 5 Tables, multiple Mathematica ancillary files</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04688">arXiv:2501.04688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.04688">pdf</a>, <a href="https://arxiv.org/format/2501.04688">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Observation of topological prethermal strong zero modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S">Si Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Yihang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yiyang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Han Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jianan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanzhe Wang</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04688v1-abstract-short" style="display: inline;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04688v1-abstract-full" style="display: none;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of systems with a bulk energy gap and would not survive at finite temperatures due to mobile thermal excitations. Here, we report the observation of a distinct type of topological edge modes, which are protected by emergent symmetries and persist even up to infinite temperature, with an array of 100 programmable superconducting qubits. In particular, through digital quantum simulation of the dynamics of a one-dimensional disorder-free &#34;cluster&#34; Hamiltonian, we observe robust long-lived topological edge modes over up to 30 cycles at a wide range of temperatures. By monitoring the propagation of thermal excitations, we show that despite the free mobility of these excitations, their interactions with the edge modes are substantially suppressed in the dimerized regime due to an emergent U(1)$\times$U(1) symmetry, resulting in an unusually prolonged lifetime of the topological edge modes even at infinite temperature. In addition, we exploit these topological edge modes as logical qubits and prepare a logical Bell state, which exhibits persistent coherence in the dimerized and off-resonant regime, despite the system being disorder-free and far from its ground state. Our results establish a viable digital simulation approach to experimentally exploring a variety of finite-temperature topological phases and demonstrate a potential route to construct long-lived robust boundary qubits that survive to infinite temperature in disorder-free systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'none'; document.getElementById('2501.04688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14086">arXiv:2412.14086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.14086">pdf</a>, <a href="https://arxiv.org/format/2412.14086">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Sphere free energy of scalar field theories with cubic interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Giombi%2C+S">Simone Giombi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Himwich%2C+E">Elizabeth Himwich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katsevich%2C+A">Andrei Katsevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klebanov%2C+I">Igor Klebanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zimo Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14086v2-abstract-short" style="display: inline;"> The dimensional continuation approach to calculating the free energy of $d$-dimensional Euclidean CFT on the round sphere $S^d$ has been used to develop its $4-蔚$ expansion for a number of well-known non-supersymmetric theories, such as the $O(N)$ model. The resulting estimate of the sphere free energy $F$ in the 3D Ising model has turned out to be in good agreement with the numerical value obtain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14086v2-abstract-full').style.display = 'inline'; document.getElementById('2412.14086v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14086v2-abstract-full" style="display: none;"> The dimensional continuation approach to calculating the free energy of $d$-dimensional Euclidean CFT on the round sphere $S^d$ has been used to develop its $4-蔚$ expansion for a number of well-known non-supersymmetric theories, such as the $O(N)$ model. The resulting estimate of the sphere free energy $F$ in the 3D Ising model has turned out to be in good agreement with the numerical value obtained using the fuzzy sphere regularization. In this paper, we develop the $6-蔚$ expansions for CFTs on $S^d$ described by scalar field theory with cubic interactions and use their resummations to estimate the values of $F$. In particular, we study the theories with purely imaginary coupling constants, which describe non-unitary universality classes arising when certain conformal minimal models are continued above two dimensions. The Yang-Lee model $M(2,5)$ is described by a field theory with one scalar field, while the $D$-series $M(3,8)$ model is described by two scalar fields. We also study the $OSp(1|2)$ symmetric cubic theory of one commuting and two anti-commuting scalar fields, which appears to describe the critical behavior of random spanning forests. In the course of our work, we revisit the calculations of beta functions of marginal operators containing the curvature. We also use another method for approximating $F$, which relies on perturbation theory around the bilocal action near the long-range/short-range crossover. The numerical values it gives for $F$ tend to be in good agreement with other available methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14086v2-abstract-full').style.display = 'none'; document.getElementById('2412.14086v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages + appendices, 10 figures, v2: minor corrections</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11611">arXiv:2412.11611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.11611">pdf</a>, <a href="https://arxiv.org/format/2412.11611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Gatemon Qubit Revisited for Improved Reliability and Stability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feldstein-Bofill%2C+D">David Feldstein-Bofill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhenhai Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wied%2C+C">Casper Wied</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+S">Shikhar Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isakov%2C+B+D">Brian D. Isakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%B8jer%2C+S">Svend Kr酶jer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hastrup%2C+J">Jacob Hastrup</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gyenis%2C+A">Andr谩s Gyenis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kjaergaard%2C+M">Morten Kjaergaard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11611v1-abstract-short" style="display: inline;"> The development of quantum circuits based on hybrid superconductor-semiconductor Josephson junctions holds promise for exploring their mesoscopic physics and for building novel superconducting devices. The gate-tunable superconducting transmon qubit (gatemon) is the paradigmatic example of such a superconducting circuit. However, gatemons typically suffer from unstable and hysteretic qubit frequen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11611v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11611v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11611v1-abstract-full" style="display: none;"> The development of quantum circuits based on hybrid superconductor-semiconductor Josephson junctions holds promise for exploring their mesoscopic physics and for building novel superconducting devices. The gate-tunable superconducting transmon qubit (gatemon) is the paradigmatic example of such a superconducting circuit. However, gatemons typically suffer from unstable and hysteretic qubit frequencies with respect to the applied gate voltage and reduced coherence times. Here we develop methods for characterizing these challenges in gatemons and deploy these methods to compare the impact of shunt capacitor designs on gatemon performance. Our results indicate a strong frequency- and design-dependent behavior of the qubit stability, hysteresis, and dephasing times. Moreover, we achieve highly reliable tuning of the qubit frequency with 1 MHz precision over a range of several GHz, along with improved stability in grounded gatemons compared to gatemons with a floating capacitor design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11611v1-abstract-full').style.display = 'none'; document.getElementById('2412.11611v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NBI QDEV 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10838">arXiv:2412.10838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.10838">pdf</a>, <a href="https://arxiv.org/format/2412.10838">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning Models for Colloidal Nanocrystal Synthesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+K">Kai Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yingping Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+J">Jiaming Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+P">Peihan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+J">Jia Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+N">Naihua Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhimei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Y">Ying Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+H">Haizheng Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10838v1-abstract-short" style="display: inline;"> Colloidal synthesis of nanocrystals usually includes complex chemical reactions and multi-step crystallization processes. Despite the great success in the past 30 years, it remains challenging to clarify the correlations between synthetic parameters of chemical reaction and physical properties of nanocrystals. Here, we developed a deep learning-based nanocrystal synthesis model that correlates syn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10838v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10838v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10838v1-abstract-full" style="display: none;"> Colloidal synthesis of nanocrystals usually includes complex chemical reactions and multi-step crystallization processes. Despite the great success in the past 30 years, it remains challenging to clarify the correlations between synthetic parameters of chemical reaction and physical properties of nanocrystals. Here, we developed a deep learning-based nanocrystal synthesis model that correlates synthetic parameters with the final size and shape of target nanocrystals, using a dataset of 3500 recipes covering 348 distinct nanocrystal compositions. The size and shape labels were obtained from transmission electron microscope images using a segmentation model trained with a semi-supervised algorithm on a dataset comprising 1.2 million nanocrystals. By applying the reaction intermediate-based data augmentation method and elaborated descriptors, the synthesis model was able to predict nanocrystal&#39;s size with a mean absolute error of 1.39 nm, while reaching an 89% average accuracy for shape classification. The synthesis model shows knowledge transfer capabilities across different nanocrystals with inputs of new recipes. With that, the influence of chemicals on the final size of nanocrystals was further evaluated, revealing the importance order of nanocrystal composition, precursor or ligand, and solvent. Overall, the deep learning-based nanocrystal synthesis model offers a powerful tool to expedite the development of high-quality nanocrystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10838v1-abstract-full').style.display = 'none'; document.getElementById('2412.10838v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06941">arXiv:2412.06941</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.06941">pdf</a>, <a href="https://arxiv.org/format/2412.06941">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Light-Induced Electron Pairing in a Bilayer Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Q">Qiaochu Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaz%2C+D">Daniel Vaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramavath%2C+A">Anshul Ramavath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vargo%2C+B">Brandon Vargo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+J">Juntong Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beaumariage%2C+J">Jonathan Beaumariage</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zheng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Youngblood%2C+N">Nathan Youngblood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bondarev%2C+I+V">Igor V. Bondarev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Snoke%2C+D+W">David W. Snoke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06941v2-abstract-short" style="display: inline;"> Previous experimental and theoretical work has given evidence of the existence of doubly charged exciton states in strongly screened bilayers of transition metal dichalcogenide (TMD) layers. These complexes are important because they are performed electron pairs that can, in principle, undergo Bose-Einstein condensation (BEC), in which case they would also form a new type of superconductor, consis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06941v2-abstract-full').style.display = 'inline'; document.getElementById('2412.06941v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06941v2-abstract-full" style="display: none;"> Previous experimental and theoretical work has given evidence of the existence of doubly charged exciton states in strongly screened bilayers of transition metal dichalcogenide (TMD) layers. These complexes are important because they are performed electron pairs that can, in principle, undergo Bose-Einstein condensation (BEC), in which case they would also form a new type of superconductor, consisting of stable bosons with net charges. In this paper, we present key electrostatic and magnetic measurements that definitively confirm the existence of these charged bosons. These measurements include 1) continuous control of the doping density with both positive and negative carriers, showing the expected population dependencies on the free carrier density, and 2) measurement of the dependence on the magnetic field, showing that this new bound state is a spin triplet. These results imply that it is promising to look for BEC and superconductivity in this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06941v2-abstract-full').style.display = 'none'; document.getElementById('2412.06941v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06751">arXiv:2412.06751</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.06751">pdf</a>, <a href="https://arxiv.org/format/2412.06751">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54760-7">10.1038/s41467-024-54760-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manipulating the symmetry of photon-dressed electronic states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+C">Changhua Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BCler%2C+M">Michael Sch眉ler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+T">Teng Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Fei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+H">Haoyuan Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+T">Tianyun Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xuanxi Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+T">Tianshuang Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+X">Xiao Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hongyun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Pu Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhiyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+W">Wenhui Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shuyun Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06751v1-abstract-short" style="display: inline;"> Strong light-matter interaction provides opportunities for tailoring the physical properties of quantum materials on the ultrafast timescale by forming photon-dressed electronic states, i.e., Floquet-Bloch states. While the light field can in principle imprint its symmetry properties onto the photon-dressed electronic states, so far, how to experimentally detect and further engineer the symmetry o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06751v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06751v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06751v1-abstract-full" style="display: none;"> Strong light-matter interaction provides opportunities for tailoring the physical properties of quantum materials on the ultrafast timescale by forming photon-dressed electronic states, i.e., Floquet-Bloch states. While the light field can in principle imprint its symmetry properties onto the photon-dressed electronic states, so far, how to experimentally detect and further engineer the symmetry of photon-dressed electronic states remains elusive. Here by utilizing time- and angle-resolved photoemission spectroscopy (TrARPES) with polarization-dependent study, we directly visualize the parity symmetry of Floquet-Bloch states in black phosphorus. The photon-dressed sideband exhibits opposite photoemission intensity to the valence band at the $螕$ point,suggesting a switch of the parity induced by the light field. Moreover, a &#34;hot spot&#34; with strong intensity confined near $螕$ is observed, indicating a momentum-dependent modulation beyond the parity switch. Combining with theoretical calculations, we reveal the light-induced engineering of the wave function of the Floquet-Bloch states as a result of the hybridization between the conduction and valence bands with opposite parities, and show that the &#34;hot spot&#34; is intrinsically dictated by the symmetry properties of black phosphorus. Our work suggests TrARPES as a direct probe for the parity of the photon-dressed electronic states with energy- and momentum-resolved information, providing an example for engineering the wave function and symmetry of such photon-dressed electronic states via Floquet engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06751v1-abstract-full').style.display = 'none'; document.getElementById('2412.06751v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 10535 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06569">arXiv:2412.06569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.06569">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Dynamics of Non-superconducting Pairs in YBa2Cu3O7-未 Below Tc </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinzhong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xinhang Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Qingming Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yihong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhangqiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhiyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Ye Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06569v1-abstract-short" style="display: inline;"> Pairing states are essential for understanding the underlying mechanisms of high-temperature superconductivity. Here the non-superconducting state in an optimally doped YBa2Cu3O7-未 film was driven out of equilibrium by an optical pump with low fluence at a temperature well below the critical temperature (Tc), and its recovery dynamics were exclusively measured using transient terahertz spectroscop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06569v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06569v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06569v1-abstract-full" style="display: none;"> Pairing states are essential for understanding the underlying mechanisms of high-temperature superconductivity. Here the non-superconducting state in an optimally doped YBa2Cu3O7-未 film was driven out of equilibrium by an optical pump with low fluence at a temperature well below the critical temperature (Tc), and its recovery dynamics were exclusively measured using transient terahertz spectroscopy. The pump-fluence dependent experiments unveiled evidence of local pairs without superconductivity coexisting with the superconducting Cooper pairs. An energy gap opening induced by the local pairing with short-range coherence was invoked to rationalize the temperature-dependent recovery time of local pairs with a characteristic divergence at a temperature substantially below Tc. These local pairs displayed remarkable likeness to the short-range pair-density-wave state. Our finding shed light on understanding the dynamic interplay between the coexisting superconducting and non-superconducting pairs in cuprate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06569v1-abstract-full').style.display = 'none'; document.getElementById('2412.06569v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04702">arXiv:2412.04702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04702">pdf</a>, <a href="https://arxiv.org/format/2412.04702">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Infinite Grassmann time-evolving matrix product operators for non-equilibrium quantum impurity problems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhijie Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Ruofan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhenyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chu Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04702v1-abstract-short" style="display: inline;"> An emergent numerical approach to solve quantum impurity problems is to encode the impurity path integral as a matrix product state. For time-dependent problems, the cost of this approach generally scales with the evolution time. Here we consider a common non-equilibrium scenario where an impurity, initially in equilibrium with a thermal bath, is driven out of equilibrium by a time-dependent force&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04702v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04702v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04702v1-abstract-full" style="display: none;"> An emergent numerical approach to solve quantum impurity problems is to encode the impurity path integral as a matrix product state. For time-dependent problems, the cost of this approach generally scales with the evolution time. Here we consider a common non-equilibrium scenario where an impurity, initially in equilibrium with a thermal bath, is driven out of equilibrium by a time-dependent force term. Despite that there is no time-translational invariance in the problem, we show that we could still make full use of the infinite matrix product state technique, resulting in a method whose cost is essentially independent of the evolution time. We demonstrate the effectiveness of this method in the integrable case against exact diagonalization, and against existing calculations on the L-shaped Kadanoff-Baym contour in the general case. Our method could be a very competitive method for studying long-time non-equilibrium quantum dynamics, and be potentially used as an efficient impurity solver in the non-equilibrium dynamical mean field theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04702v1-abstract-full').style.display = 'none'; document.getElementById('2412.04702v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.01018">arXiv:2412.01018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.01018">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Vertical Emission of Blue Light from a Symmetry Breaking Plasmonic Nanocavity-Emitter System Supporting Bound States in the Continuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yongqi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiayi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiang Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+X">Xiumei Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yangzhe Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+N">Nan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhiguang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H">Haonan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Haoran Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenxin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+B">Bin Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yurui Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.01018v1-abstract-short" style="display: inline;"> The concept of photonic bound states in the continuum (BICs), introduced in structured metallic surface cavities, provides a crucial mechanism for designing plasmonic open-resonant cavities with high quality (high-Q) factors, making significant advances in plasmonic nanophotonics. However, the two major bottlenecks for plasmonic nanocavities: enhancing emission and big beam divergence for quantum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01018v1-abstract-full').style.display = 'inline'; document.getElementById('2412.01018v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.01018v1-abstract-full" style="display: none;"> The concept of photonic bound states in the continuum (BICs), introduced in structured metallic surface cavities, provides a crucial mechanism for designing plasmonic open-resonant cavities with high quality (high-Q) factors, making significant advances in plasmonic nanophotonics. However, the two major bottlenecks for plasmonic nanocavities: enhancing emission and big beam divergence for quantum emitters, due to the strong intrinsic Ohmic losses of metals. Here, we propose and realize a 蟽h symmetry-breaking plasmonic honeycomb nanocavities (PHC) that support quasi-BIC resonance modes with high-Q factors. Our anodic oxidation-engineered strategy breaks out-of-plane symmetry while preserving in-plane symmetry, enabling the PHC to exhibit collective plasmonic lattice resonances (PLR) couplings and achieve Q-factors exceeding 106. Experimentally, we couple perovskite quantum dots (PQDs) to the PHC, demonstrating effective tuning of their emission properties and beam quality in the blue spectral region, achieving a 32-fold emission enhancement by suppress Ohmic loss and the life time of quantum emitters, simultaneously realize vertical emission in the 2.556 - 2.638 eV region, with a far-field hexagonal beam shape and a full width at half maximum of 12.6 degree under optimal coupling conditions. Furthermore, we demonstrate topological band inversion characterized by Zak phase transitions by continuously tuning the system parameters, confirming that the PHC supports topologically non-trivial q-BIC due to PLR coupling. The PHC presents itself as a promising next-generation, high-brightness nanoscale light source matrix, which can be directly scaled up to cover a wide wavelength range from UV to IR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.01018v1-abstract-full').style.display = 'none'; document.getElementById('2412.01018v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 78-05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18045">arXiv:2411.18045</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18045">pdf</a>, <a href="https://arxiv.org/ps/2411.18045">ps</a>, <a href="https://arxiv.org/format/2411.18045">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.174448">10.1103/PhysRevB.110.174448 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural and magnetic characterization of CeTa$_7$O$_{19}$ and YbTa$_7$O$_{19}$ with two-dimensional pseudospin-1/2 triangular lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+F">Feihao Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+S">Songnan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolesnikov%2C+A+I">Alexander I. Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">Matthew B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jiale Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+D">Daye Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+C">Chenglin Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+B">Bingxian Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gui%2C+X">Xuejuan Gui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhongcen Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinchen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Juanjuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hongxia Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengxin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+P">Peng Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18045v1-abstract-short" style="display: inline;"> Triangular lattice antiferromagnets are prototypes for frustrated magnetism and may potentially realize novel quantum magnetic states such as a quantum spin liquid ground state. A recent work suggests NdTa$_7$O$_{19}$ with rare-earth triangular lattice is a quantum spin liquid candidate and highlights the large family of rare-earth heptatantalates as a framework for quantum magnetism investigation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18045v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18045v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18045v1-abstract-full" style="display: none;"> Triangular lattice antiferromagnets are prototypes for frustrated magnetism and may potentially realize novel quantum magnetic states such as a quantum spin liquid ground state. A recent work suggests NdTa$_7$O$_{19}$ with rare-earth triangular lattice is a quantum spin liquid candidate and highlights the large family of rare-earth heptatantalates as a framework for quantum magnetism investigation. In this paper, we report the structural and magnetic characterization of CeTa$_7$O$_{19}$ and YbTa$_7$O$_{19}$. Both compounds are isostructural to NdTa$_7$O$_{19}$ with no detectable structural disorder. For CeTa$_7$O$_{19}$, the crystal field energy levels and parameters are determined by inelastic neutron scattering measurements. Based on the crystal field result, the magnetic susceptibility data could be well fitted and explained, which reveals that CeTa$_7$O$_{19}$ is a highly anisotropic Ising triangular-lattice antiferromagnet ($g_z$/$g_{xy}$$\sim$3) with very weak exchange interaction (J$\sim$0.22~K). For YbTa$_7$O$_{19}$, millimeter sized single crystals could be grown. The anisotropic magnetization and electron spin resonance data show that YbTa$_7$O$_{19}$ has a contrasting in-plane magnetic anisotropy with $g_z$/$g_{xy}$$\sim$0.67 similar as that of YbMgGaO$_4$. The above results indicate that CeTa$_7$O$_{19}$ and YbTa$_7$O$_{19}$ with pseudospin-1/2 ground states might either be quantum spin liquid candidate materials or find applications in adiabatic demagnetization refrigeration due to the weak exchange interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18045v1-abstract-full').style.display = 'none'; document.getElementById('2411.18045v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110(2024)174448 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13651">arXiv:2411.13651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13651">pdf</a>, <a href="https://arxiv.org/format/2411.13651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Certain BCS wavefunctions are quantum many-body scars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pakrouski%2C+K">Kiryl Pakrouski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zimo Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13651v1-abstract-short" style="display: inline;"> We provide a method for constructing many-body scar states in fermionic lattice models that incorporate a given type of correlations with one of the states maximizing them over the full Hilbert space. Therefore this state may always be made the ground state by adding such correlations as a &#34;pairing potential&#34; $未H_0$ to any Hamiltonian $H=H_0+OT$ supporting group-invariant scars [arXiv:2007.00845].&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13651v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13651v1-abstract-full" style="display: none;"> We provide a method for constructing many-body scar states in fermionic lattice models that incorporate a given type of correlations with one of the states maximizing them over the full Hilbert space. Therefore this state may always be made the ground state by adding such correlations as a &#34;pairing potential&#34; $未H_0$ to any Hamiltonian $H=H_0+OT$ supporting group-invariant scars [arXiv:2007.00845]. In case of single-flavour spin-full fermions the ground state is a special case of the BCS wavefunction written in real space and invariant under any site index relabelling. For multi-orbital fermions this state also resembles BCS but includes higher order terms corresponding to &#34;pairing&#34; of more than two fermions. The broad class of eligible Hamiltonians $H$ is well documented [arXiv:2007.00845],[arXiv:2106.10300] and includes many conventional condensed matter interactions. The part of the Hamiltonian $(H_0+未H_0)$ that governs the exact dynamics of the scar subspace coincides with the BCS mean-field Hamiltonian. We therefore show that its BCS ground state and the excitations above it are many-body scars that are dynamically decoupled from the rest of the Hilbert space and thereby protected from thermalization. These states are insensitive to a variety of $OT$ Hamiltonian terms that among others include interactions and (spin-orbit) hoppings. Our results point out a connection between the fields of superconductivity and weak ergodicity breaking (many-body scars) and will hopefully encourage further investigations. They also provide the first practical protocol to initialize a fermionic system to a scar state in (a quantum simulator) experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13651v1-abstract-full').style.display = 'none'; document.getElementById('2411.13651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11359">arXiv:2411.11359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11359">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Thickness-dependent Topological Phases and Flat Bands in Rhombohedral Multilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+H+B">H. B. Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sui%2C+X">X. Sui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+H">S. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+M+Z">M. Z. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">H. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Q">Q. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Q. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+M">M. Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+F+Y">F. Y. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M+X">M. X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+P">J. P. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z+B">Z. B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z+J">Z. J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+L">Y. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K+H">K. H. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+K">Z. K. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11359v2-abstract-short" style="display: inline;"> Rhombohedral multilayer graphene has emerged as an extraordinary platform for investigating exotic quantum states, such as superconductivity and fractional quantum anomalous Hall effects, mainly due to the existence of topological surface flatbands. Despite extensive research efforts, a systematic spectroscopic investigation on the evolution of its electronic structure from thin layers to bulk rem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11359v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11359v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11359v2-abstract-full" style="display: none;"> Rhombohedral multilayer graphene has emerged as an extraordinary platform for investigating exotic quantum states, such as superconductivity and fractional quantum anomalous Hall effects, mainly due to the existence of topological surface flatbands. Despite extensive research efforts, a systematic spectroscopic investigation on the evolution of its electronic structure from thin layers to bulk remains elusive. Using state-of-the-art angle-resolved photoemission spectroscopy with submicron spatial resolution, we directly probe and trace the thickness evolution of the topological electronic structures of rhombohedral multilayer graphene. As the layer number increases, the gapped subbands transform into the 3D Dirac nodes that spirals in the momentum space; while the flatbands are constantly observed around Fermi level, and eventually evolve into the topological drumhead surface states. This unique thickness-dependent topological phase transition can be well captured by the 3D generalization of 1D Su-Schrieffer-Heeger chain in thin layers, to the topological Dirac nodal spiral semimetal in the bulk limit. Our findings establish a solid foundation for exploring the exotic quantum phases with nontrivial topology and correlation effects in rhombohedral multilayer graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11359v2-abstract-full').style.display = 'none'; document.getElementById('2411.11359v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, under review. A note added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00203">arXiv:2411.00203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00203">pdf</a>, <a href="https://arxiv.org/format/2411.00203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A Toffoli Gadget for Magnetic Tunnel Junctions Boltzmann Machines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dairong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wyporek%2C+A+C">Augustin Couton Wyporek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chailloleau%2C+P">Pierre Chailloleau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valli%2C+A+S+E">Ahmed Sidi El Valli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morone%2C+F">Flaviano Morone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangin%2C+S">Stephane Mangin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J+Z">Jonathan Z. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sels%2C+D">Dries Sels</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kent%2C+A+D">Andrew D. Kent</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00203v1-abstract-short" style="display: inline;"> Magnetic Tunnel Junctions (MTJs) are of great interest for non-conventional computing applications. The Toffoli gate is a universal reversible logic gate, enabling the construction of arbitrary boolean circuits. Here, we present a proof-of-concept construction of a gadget which encodes the Toffoli gate&#39;s truth table into the ground state of coupled uniaxial nanomagnets that could form the free lay&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00203v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00203v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00203v1-abstract-full" style="display: none;"> Magnetic Tunnel Junctions (MTJs) are of great interest for non-conventional computing applications. The Toffoli gate is a universal reversible logic gate, enabling the construction of arbitrary boolean circuits. Here, we present a proof-of-concept construction of a gadget which encodes the Toffoli gate&#39;s truth table into the ground state of coupled uniaxial nanomagnets that could form the free layers of perpendicularly magnetized MTJs. This construction has three input bits, three output bits, and one ancilla bit. We numerically simulate the seven macrospins evolving under the stochastic Landau-Lifshitz-Gilbert (s-LLG) equation. We investigate the effect of the anisotropy-to-exchange-coupling strength ratio $H_A/H_\text{ex}$ on the working of the gadget. We find that for $H_A/H_\text{ex} \lesssim 0.93$, the spins evolve to the Toffoli gate truth table configurations under LLG dynamics alone, while higher $H_A/H_\text{ex}$ ratios require thermal annealing due to suboptimal metastable states. Under our chosen annealing procedure, the s-LLG simulation with thermal annealing achieves a 100% success rate up to $H_A/H_\text{ex}\simeq3.0$. The feasibility of constructing MTJ-free-layer-based Toffoli gates highlights their potential in designing new types of MTJ-based circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00203v1-abstract-full').style.display = 'none'; document.getElementById('2411.00203v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22116">arXiv:2410.22116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22116">pdf</a>, <a href="https://arxiv.org/format/2410.22116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Optical signatures of dynamical excitonic condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Osterkorn%2C+A">Alexander Osterkorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murakami%2C+Y">Yuta Murakami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaneko%2C+T">Tatsuya Kaneko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhiyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Millis%2C+A+J">Andrew J. Millis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gole%C5%BE%2C+D">Denis Gole啪</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22116v1-abstract-short" style="display: inline;"> We theoretically study dynamical excitonic condensates occurring in bilayers with an imposed chemical potential difference and in photodoped semiconductors. We show that optical spectroscopy can experimentally identify phase-trapped and phase-delocalized dynamical regimes of condensation. In the weak-bias regime, the trapped dynamics of the order parameter&#39;s phase lead to an in-gap absorption line&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22116v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22116v1-abstract-full" style="display: none;"> We theoretically study dynamical excitonic condensates occurring in bilayers with an imposed chemical potential difference and in photodoped semiconductors. We show that optical spectroscopy can experimentally identify phase-trapped and phase-delocalized dynamical regimes of condensation. In the weak-bias regime, the trapped dynamics of the order parameter&#39;s phase lead to an in-gap absorption line at a frequency almost independent of the bias voltage, while for larger biases, the frequency of the spectral feature increases approximately linearly with bias. In both cases there is a pronounced second harmonic response. Close to the transition between the trapped and freely oscillating states, we find a strong response upon application of a weak electric probe field and compare the results to those found in a minimal model description for the dynamics of the order parameter&#39;s phase and analyze the limitations of the latter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22116v1-abstract-full').style.display = 'none'; document.getElementById('2410.22116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20447">arXiv:2410.20447</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20447">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Revealing Molecular Mechanism of Nonmonotonic Relationship between Antifreeze Activity and Chain Length in Polyprolines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wentao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Y">Yucong Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhaoru Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20447v1-abstract-short" style="display: inline;"> Ice recrystallization inhibition (IRI) activity of polymers generally increases with chain length. However, for polyproline (PPro), a highly potent cryoprotectant, the IRI activity varies nonmonotonically with the degree of polymerization (DP), i.e., DP=8 (P8) &gt; DP=15 (P15) &gt; DP=3 (P3). Herein, we employ molecular dynamics simulations to reveal the microscopic mechanism behind this nonmonotonic ef&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20447v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20447v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20447v1-abstract-full" style="display: none;"> Ice recrystallization inhibition (IRI) activity of polymers generally increases with chain length. However, for polyproline (PPro), a highly potent cryoprotectant, the IRI activity varies nonmonotonically with the degree of polymerization (DP), i.e., DP=8 (P8) &gt; DP=15 (P15) &gt; DP=3 (P3). Herein, we employ molecular dynamics simulations to reveal the microscopic mechanism behind this nonmonotonic effect in PPro. Our findings indicate that the population of the PPII helix structure, which increases with DP, is not the primary reason for this effect. Instead, both single-molecule conformation and multi-molecule aggregation play critical roles. At the single-molecule level, PPro exhibits two types of thermodynamically stable conformations:linear (L) and coil (C), with the latter demonstrating enhanced IRI potency due to its stronger hydrophobicity and ice-binding capability. Notably, P8 has a higher content of the C conformation compared to P15, accounting for its superior IRI activity. Aligning with the conventional understandings, P3&#39;s lowest activity stems from its excessively small volume/coverage area on the ice surface. At the multi-molecule level, P15 shows a significantly higher tendency to aggregate than P8, which limits the ability of PPro molecules to fully spread at the ice-water interface and reduces their effective coverage of the ice surface, thereby diminishing its effectiveness. And P15&#39;s aggregation becomes significantly pronounced at high concentrations, amplifying the nonmonotonic effect. This work provides an atomistic insight into the nonmonotonic relationship between IRI activity and DP in PPro, offering valuable insights for the rational design of novel biocompatible antifreeze polymers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20447v1-abstract-full').style.display = 'none'; document.getElementById('2410.20447v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17747">arXiv:2410.17747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17747">pdf</a>, <a href="https://arxiv.org/ps/2410.17747">ps</a>, <a href="https://arxiv.org/format/2410.17747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Transition from antiferromagnetism to altermagnetism: symmetry breaking theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+P">P. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+X+N">X. N. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y+Z">Y. Z. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+B+R">B. R. Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S+M">S. M. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+P">Pengbo Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L+Z">L. Z. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17747v2-abstract-short" style="display: inline;"> Altermagnetism, a recently proposed magnetic phase, is distinguished by the antiferromagnetic coupling of local magnetic moments and the breaking of time-reversal symmetry. Currently, the transition from conventional antiferromagnetism to altermagnetism is not well understood. In this letter, we introduce a comprehensive symmetry-breaking theory to elucidate this transition. Our approach involves&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17747v2-abstract-full').style.display = 'inline'; document.getElementById('2410.17747v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17747v2-abstract-full" style="display: none;"> Altermagnetism, a recently proposed magnetic phase, is distinguished by the antiferromagnetic coupling of local magnetic moments and the breaking of time-reversal symmetry. Currently, the transition from conventional antiferromagnetism to altermagnetism is not well understood. In this letter, we introduce a comprehensive symmetry-breaking theory to elucidate this transition. Our approach involves analyzing magnetic point groups and their subgroups to identify potential pathways for the phase transition from collinear antiferromagnetism to altermagnetism. According to our theory, breaking inversion symmetry is crucial for this transition. We discovered that applying an external electric field is a highly effective method to realize altermagnetic phase, as demonstrated by first-principles calculations on the two-dimensional antiferromagnetic material MoTe. Furthermore, we show that the electronic spin polarization and spin-dependent transport can be significantly modulated by the applied vertical electric field. Our study not only sheds light on the magnetic phase transition from antiferromagnetic to altermagnetic materials but also presents a practical approach to control the charge-spin conversion ratio using an vertical electric field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17747v2-abstract-full').style.display = 'none'; document.getElementById('2410.17747v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11714">arXiv:2410.11714</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11714">pdf</a>, <a href="https://arxiv.org/format/2410.11714">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Ginzburg-Landau description of a class of non-unitary minimal models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Katsevich%2C+A">Andrei Katsevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klebanov%2C+I+R">Igor R. Klebanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zimo Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11714v4-abstract-short" style="display: inline;"> It has been proposed that the Ginzburg-Landau description of the non-unitary conformal minimal model $M(3,8)$ is provided by the Euclidean theory of two real scalar fields with third-order interactions that have imaginary coefficients. The same lagrangian describes the non-unitary model $M(3,10)$, which is a product of two Yang-Lee theories $M(2,5)$, and the Renormalization Group flow from it to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11714v4-abstract-full').style.display = 'inline'; document.getElementById('2410.11714v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11714v4-abstract-full" style="display: none;"> It has been proposed that the Ginzburg-Landau description of the non-unitary conformal minimal model $M(3,8)$ is provided by the Euclidean theory of two real scalar fields with third-order interactions that have imaginary coefficients. The same lagrangian describes the non-unitary model $M(3,10)$, which is a product of two Yang-Lee theories $M(2,5)$, and the Renormalization Group flow from it to $M(3,8)$. This proposal has recently passed an important consistency check, due to Y. Nakayama and T. Tanaka, based on the anomaly matching for non-invertible topological lines. In this paper, we elaborate the earlier proposal and argue that the two-field theory describes the $D$ series modular invariants of both $M(3,8)$ and $M(3,10)$. We further propose the Ginzburg-Landau descriptions of the entire class of $D$ series minimal models $M(q, 3q-1)$ and $M(q, 3q+1)$, with odd integer $q$. They involve $PT$ symmetric theories of two scalar fields with interactions of order $q$ multiplied by imaginary coupling constants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11714v4-abstract-full').style.display = 'none'; document.getElementById('2410.11714v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 tables and 1 figure. v4: version to appear in JHEP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02993">arXiv:2410.02993</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02993">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Resolving and routing the magnetic polymorphs in 2D layered antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zeyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+C">Canyu Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+Z">Zhiyuan Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shuang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhanshan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+B">Bokai Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wei-Tao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhe Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yizheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+Q">Qixi Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jian Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shiwei Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02993v1-abstract-short" style="display: inline;"> Polymorphism, commonly denoting the variety of molecular or crystal structures, is a vital element in many natural science disciplines. In van der Waals layered antiferromagnets, a new type of magnetic polymorphism is allowed by having multiple layer-selective magnetic structures with the same total magnetization. However, resolving and manipulating such magnetic polymorphs remain a great challeng&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02993v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02993v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02993v1-abstract-full" style="display: none;"> Polymorphism, commonly denoting the variety of molecular or crystal structures, is a vital element in many natural science disciplines. In van der Waals layered antiferromagnets, a new type of magnetic polymorphism is allowed by having multiple layer-selective magnetic structures with the same total magnetization. However, resolving and manipulating such magnetic polymorphs remain a great challenge. Here we use the phase-resolved magnetic second-harmonic generation microscopy to elucidate such magnetic polymorphism in the 2D semiconducting layered antiferromagnet chromium sulfur bromide (CrSBr), and demonstrate how the magnetic polymorphs can be deterministically switched in an unprecedented layer-selective manner. With the nonlinear magneto-optical technique unveiling the magnetic symmetry information through the amplitude and phase of light, we could unambiguously resolve the polymorphic spin-flip transitions in CrSBr bilayers and tetralayers. Remarkably, the deterministic routing of polymorphic transitions originates from the breaking of energy degeneracy via a magnetic layer-sharing effect: the spin-flip transitions in a tetralayer are governed by the laterally extended bilayer, which acts as a control bit. We envision such controllable magnetic polymorphism to be ubiquitous for van der Waals layered antiferromagnets, and could lead to conceptually new design and construction of spintronic and opto-spintronic devices for probabilistic computation and neuromorphic engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02993v1-abstract-full').style.display = 'none'; document.getElementById('2410.02993v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18843">arXiv:2409.18843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18843">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Thermal Conductivity of Cubic Silicon Carbide Single Crystals Heavily Doped by Nitrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zifeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yunfan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+D">Da Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zixuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Runsheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+R">Ru Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhe Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18843v1-abstract-short" style="display: inline;"> High-purity cubic silicon carbide possesses the second-highest thermal conductivity among large-scale crystals, surpassed only by diamond, making it crucial for practical applications of thermal management. Recent theoretical studies predict that heavy doping reduces the thermal conductivity of 3C-SiC via phonon-defect and phonon-electron scattering. However, experimental evidence has been limited&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18843v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18843v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18843v1-abstract-full" style="display: none;"> High-purity cubic silicon carbide possesses the second-highest thermal conductivity among large-scale crystals, surpassed only by diamond, making it crucial for practical applications of thermal management. Recent theoretical studies predict that heavy doping reduces the thermal conductivity of 3C-SiC via phonon-defect and phonon-electron scattering. However, experimental evidence has been limited. In this work, we report the thermal conductivity of heavily nitrogen doped 3C SiC single crystals, grown using the top-seeded solution growth method, measured via time domain thermoreflectance. Our results show that a significant reduction (up to 30%) in thermal conductivity is observed with nitrogen doping concentrations around 1020 cm-3. A comparison with theoretical calculations indicates less intensive scatterings are observed in the measured thermal conductivity. We speculate that the electron-phonon scattering may have a smaller impact than previously anticipated or the distribution of defects are nonuniform which leads to less intensive scatterings. These findings shed light on understanding the doping effects on thermal transport in semiconductors and support further exploration of 3C SiC for thermal management in electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18843v1-abstract-full').style.display = 'none'; document.getElementById('2409.18843v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12501">arXiv:2409.12501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12501">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetostatic effect on spin dynamics properties in antiferromagnetic Van der Waals material CrSBr </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Hongyue Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+N">Nan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Haoran Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yongwei Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yunzhuo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+Z">Zhiyuan Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zeyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jia Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+Q">Qixi Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shiwei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+W">Weichao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yizheng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12501v1-abstract-short" style="display: inline;"> Van der Waals (vdW) antiferromagnets are exceptional platforms for exploring the spin dynamics of antiferromagnetic materials owing to their weak interlayer exchange coupling. In this study, we examined the antiferromagnetic resonance spectra of anisotropic Van der Waals antiferromagnet CrSBr. In addition to the ordinary resonance modes, we observed a dipolar spin wave mode when the microwave fiel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12501v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12501v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12501v1-abstract-full" style="display: none;"> Van der Waals (vdW) antiferromagnets are exceptional platforms for exploring the spin dynamics of antiferromagnetic materials owing to their weak interlayer exchange coupling. In this study, we examined the antiferromagnetic resonance spectra of anisotropic Van der Waals antiferromagnet CrSBr. In addition to the ordinary resonance modes, we observed a dipolar spin wave mode when the microwave field was oriented perpendicular to the in-plane easy axis of CrSBr. Furthermore, our results uncovered a pronounced dependency of various resonant modes on the orientation of the microwave field, which is pivotal for the accurate determination of exchange coupling constants. Numerical simulations have elucidated this orientation dependence of spin dynamics arises from the magnetostatic effect. This discovery underscores the previously underappreciated significance of dipolar interactions in shaping the dynamical properties of two-dimensional AFM materials, thereby enhancing our understanding of the intrinsic dynamic properties of vdW magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12501v1-abstract-full').style.display = 'none'; document.getElementById('2409.12501v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07413">arXiv:2409.07413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07413">pdf</a>, <a href="https://arxiv.org/format/2409.07413">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> SPRING: an effective and reliable framework for image reconstruction in single-particle Coherent Diffraction Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Colombo%2C+A">Alessandro Colombo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sauppe%2C+M">Mario Sauppe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haddad%2C+A+A">Andre Al Haddad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ayyer%2C+K">Kartik Ayyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babayan%2C+M">Morsal Babayan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boll%2C+R">Rebecca Boll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagar%2C+R">Ritika Dagar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dold%2C+S">Simon Dold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fennel%2C+T">Thomas Fennel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hecht%2C+L">Linos Hecht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knopp%2C+G">Gregor Knopp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolatzki%2C+K">Katharina Kolatzki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Langbehn%2C+B">Bruno Langbehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maia%2C+F">Filipe Maia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mall%2C+A">Abhishek Mall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazumder%2C+P">Parichita Mazumder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazza%2C+T">Tommaso Mazza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ovcharenko%2C+Y">Yevheniy Ovcharenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polat%2C+I+C">Ihsan Caner Polat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%A4fer-Zimmermann%2C+J+C">Julian C. Sch盲fer-Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnorr%2C+K">Kirsten Schnorr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schubert%2C+M+L">Marie Louise Schubert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sehati%2C+A">Arezu Sehati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sellberg%2C+J+A">Jonas A. Sellberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Senfftleben%2C+B">Bj枚rn Senfftleben</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07413v4-abstract-short" style="display: inline;"> Coherent Diffraction Imaging (CDI) is an experimental technique to gain images of isolated structures by recording the light scattered off the sample. In principle, the sample density can be recovered from the scattered light field through a straightforward Fourier Transform operation. However, only the amplitude of the field is recorded, while the phase is lost during the measurement process and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07413v4-abstract-full').style.display = 'inline'; document.getElementById('2409.07413v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07413v4-abstract-full" style="display: none;"> Coherent Diffraction Imaging (CDI) is an experimental technique to gain images of isolated structures by recording the light scattered off the sample. In principle, the sample density can be recovered from the scattered light field through a straightforward Fourier Transform operation. However, only the amplitude of the field is recorded, while the phase is lost during the measurement process and has to be retrieved by means of suitable, well-established, phase retrieval algorithms. In this work we present SPRING, an analysis framework tailored on X-ray Free Electron Laser (XFEL) diffraction data that implements the Memetic Phase Retrieval method to mitigate the shortcomings of conventional algorithms. We benchmark the approach on experimental data acquired in two experimental campaigns at SwissFEL and European XFEL. Imaging results on isolated nanostructures reveal unprecedented stability and resilience of the algorithm&#39;s behavior on the input parameters, as well as the capability of identifying the solution in conditions hardly treatable so far with conventional methods. A user-friendly implementation of SPRING is released as open-source software, aiming at being a reference tool for the coherent diffraction imaging community at XFEL and synchrotron facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07413v4-abstract-full').style.display = 'none'; document.getElementById('2409.07413v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 13 figures. Authors list updated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00548">arXiv:2408.00548</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00548">pdf</a>, <a href="https://arxiv.org/format/2408.00548">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Flat-band FFLO State from Quantum Geometric Discrepancy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zi-Ting Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Ruo-Peng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S+A">Shuai A. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jin-Xin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Law%2C+K+T">K. T. Law</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00548v2-abstract-short" style="display: inline;"> We propose a new scheme for the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) Cooper pairing states within ultraflat bands. Central to our approach is the concept of &#34;quantum geometric discrepancy&#34; (QGD), which characterizes the discrepancy in the quantum geometry of paired electrons, giving rise to the flat-band FFLO instability. Remarkably, we find that this instability is directly related to a new qu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00548v2-abstract-full').style.display = 'inline'; document.getElementById('2408.00548v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00548v2-abstract-full" style="display: none;"> We propose a new scheme for the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) Cooper pairing states within ultraflat bands. Central to our approach is the concept of &#34;quantum geometric discrepancy&#34; (QGD), which characterizes the discrepancy in the quantum geometry of paired electrons, giving rise to the flat-band FFLO instability. Remarkably, we find that this instability is directly related to a new quantum geometric quantity we term &#34;anomalous quantum distance&#34;, which formally captures QGD. To model both QGD and the anomalous quantum distance, we examine a flat-band electronic Hamiltonian with tunable spin-dependent quantum metrics. Utilizing the band-projection method, we analyze the QGD-induced FFLO instability from pair susceptibility near the superconducting critical temperature. Furthermore, we perform self-consistent mean-field calculations to obtain the phase diagram of the BCS-FFLO transition driven by QGD, which aligns well with our analytical results. We emphasize that QGD serves as a distinctive protocol for stabilizing the flat-band FFLO phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00548v2-abstract-full').style.display = 'none'; document.getElementById('2408.00548v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures plus supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00469">arXiv:2408.00469</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00469">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-50833-9">10.1038/s41467-024-50833-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of electron interaction with an unidentified bosonic mode in superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Peng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+S">Sen Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhicheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Huaxun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+S">Shiwu Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jiakang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Ziyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Zhicheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lexian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huai%2C+L">Linwei Huai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Junfeng He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+S">Shengtao Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Y">Yajun Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guanghan Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D">Dawei Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Juan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D">Donglai Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00469v1-abstract-short" style="display: inline;"> The kink structure in band dispersion usually refers to a certain electron-boson interaction, which is crucial in understanding the pairing in unconventional superconductors. Here we report the evidence of the observation of a kink structure in Fe-based superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ using angle-resolved photoemission spectroscopy. The kink shows an orbital selective and momentum depende&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00469v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00469v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00469v1-abstract-full" style="display: none;"> The kink structure in band dispersion usually refers to a certain electron-boson interaction, which is crucial in understanding the pairing in unconventional superconductors. Here we report the evidence of the observation of a kink structure in Fe-based superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ using angle-resolved photoemission spectroscopy. The kink shows an orbital selective and momentum dependent behavior, which is located at 15 meV below Fermi level along the Gamma-M direction at the band with dxz orbital character and vanishes when approaching the Gamma-X direction, correlated with a slight decrease of the superconducting gap. Most importantly, this kink structure disappears when the superconducting gap closes, indicating that the corresponding bosonic mode (9 meV) is closely related to superconductivity. However, the origin of this mode remains unidentified, since it cannot be related to phonons or the spin resonance mode (15 meV) observed by inelastic neutron scattering. The behavior of this mode is rather unique and challenges our present understanding of the superconducting paring mechanism of the bilayer FeAs-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00469v1-abstract-full').style.display = 'none'; document.getElementById('2408.00469v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15,2024,6433 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20606">arXiv:2407.20606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20606">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c02580">10.1021/acs.nanolett.4c02580 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for Two-dimensional Weyl Fermions in Air-Stable Monolayer PtTe$_{1.75}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Z">Zhihao Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Haijun Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+H">Haohao Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xuegao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhenyu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Q">Qiaoxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jisong Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ideta%2C+S">Shin-ichiro Ideta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shimada%2C+K">Kenya Shimada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jiawei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+P">Peng Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+S">Sheng Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+K">Kehui Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhijun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+B">Baojie Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20606v2-abstract-short" style="display: inline;"> The Weyl semimetals represent a distinct category of topological materials wherein the low-energy excitations appear as the long-sought Weyl fermions. Exotic transport and optical properties are expected because of the chiral anomaly and linear energy-momentum dispersion. While three-dimensional Weyl semimetals have been successfully realized, the quest for their two-dimensional (2D) counterparts&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20606v2-abstract-full').style.display = 'inline'; document.getElementById('2407.20606v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20606v2-abstract-full" style="display: none;"> The Weyl semimetals represent a distinct category of topological materials wherein the low-energy excitations appear as the long-sought Weyl fermions. Exotic transport and optical properties are expected because of the chiral anomaly and linear energy-momentum dispersion. While three-dimensional Weyl semimetals have been successfully realized, the quest for their two-dimensional (2D) counterparts is ongoing. Here, we report the realization of 2D Weyl fermions in monolayer PtTe$_{1.75}$, which has strong spin-orbit coupling and lacks inversion symmetry, by combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy, second harmonic generation, X-ray photoelectron spectroscopy measurements, and first-principles calculations. The giant Rashba splitting and band inversion lead to the emergence of three pairs of critical Weyl cones. Moreover, monolayer PtTe$_{1.75}$ exhibits excellent chemical stability in ambient conditions, which is critical for future device applications. The discovery of 2D Weyl fermions in monolayer PtTe$_{1.75}$ opens up new possibilities for designing and fabricating novel spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20606v2-abstract-full').style.display = 'none'; document.getElementById('2407.20606v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 24, 10237-10243 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18256">arXiv:2407.18256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18256">pdf</a>, <a href="https://arxiv.org/format/2407.18256">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Kibble-Zurek Behavior in the Boundary-obstructed Phase Transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+M">Menghua Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhoujian Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Fuxiang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18256v1-abstract-short" style="display: inline;"> We study the nonadiabatic dynamics of a two-dimensional higher-order topological insulator when the system is slowly quenched across the boundary-obstructed phase transition, which is characterized by edge band gap closing. We find that the number of excitations produced after the quench exhibits power-law scaling behaviors with the quench rate. Boundary conditions can drastically modify the sca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18256v1-abstract-full').style.display = 'inline'; document.getElementById('2407.18256v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18256v1-abstract-full" style="display: none;"> We study the nonadiabatic dynamics of a two-dimensional higher-order topological insulator when the system is slowly quenched across the boundary-obstructed phase transition, which is characterized by edge band gap closing. We find that the number of excitations produced after the quench exhibits power-law scaling behaviors with the quench rate. Boundary conditions can drastically modify the scaling behaviors: The scaling exponent is found to be $伪=1/2$ for hybridized and fully open boundary conditions, and $伪=2$ for periodic boundary condition. We argue that the exponent $伪=1/2$ cannot be explained by the Kibble-Zurek mechanism unless we adopt an effective dimension $d^{\rm eff}=1$ instead of the real dimension $d=2$. For comparison, we also investigate the slow quench dynamics across the bulk-obstructed phase transitions and a single multicritical point, which obeys the Kibble-Zurek mechanism with dimension $d=2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18256v1-abstract-full').style.display = 'none'; document.getElementById('2407.18256v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+10 pages, 3=7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14250">arXiv:2407.14250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.14250">pdf</a>, <a href="https://arxiv.org/format/2407.14250">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Fate of transient order parameter domain walls in ultrafast experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+L">Lingxian Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shindou%2C+R">Ryuichi Shindou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhiyuan Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14250v1-abstract-short" style="display: inline;"> In ultrafast experiments, an optical pump pulse often generates transient domain walls of the order parameter in materials with spontaneous symmetry breaking, due to either a finite penetration depth of the light on a three-dimensional (3D) material, or a finite spot size on a two-dimensional (2D) material. We clarify the decaying process of such a domain wall that is caused by fluctuations of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14250v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14250v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14250v1-abstract-full" style="display: none;"> In ultrafast experiments, an optical pump pulse often generates transient domain walls of the order parameter in materials with spontaneous symmetry breaking, due to either a finite penetration depth of the light on a three-dimensional (3D) material, or a finite spot size on a two-dimensional (2D) material. We clarify the decaying process of such a domain wall that is caused by fluctuations of the order parameters. We study a generic system with $U(1)$-symmetric order, and those with an additional weak $Z_2$ ($U(1)$-symmetry-breaking) term, representing the charge-density-wave (CDW) orders in recent experiments. The decay process comprises two non-trivial stages. During the first stage, exponentially growing thermal fluctuations convert the domain wall into an interface with randomly distributed topological defects. In the second stage, the topological defects undergo a coarsening dynamics within the interface. For a 2D interface in the 3D system, the coarsening dynamics leads to a diffusive growth of the correlation length. For a one-dimensional (1D) interface in the 2D system with the weak $Z_2$ term, the correlation-length growth shows a crossover from diffusive to sub-diffusive behavior. Our theory provides a fundamental physical picture for the dynamics of pump-induced domain walls in ultrafast experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14250v1-abstract-full').style.display = 'none'; document.getElementById('2407.14250v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4.1 pages, 3 figures with supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18028">arXiv:2406.18028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18028">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Plasmonic polarization sensing of electrostatic superlattice potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fonseca%2C+J">Jordan Fonseca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bennett%2C+D">Daniel Bennett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhiyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jing%2C+R">Ran Jing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Suheng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Leo He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+S+L">S. L. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+S+E">S. E. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ovchinnikov%2C+D">Dmitry Ovchinnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cobden%2C+D">David Cobden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarillo-Herrero%2C+P">Pablo. Jarillo-Herrero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fogler%2C+M+M">M. M. Fogler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+P">Philip Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaxiras%2C+E">Efthimios Kaxiras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basov%2C+D+N">D. N. Basov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18028v1-abstract-short" style="display: inline;"> Plasmon polaritons are formed by coupling light with delocalized electrons. The half-light and half-matter nature of plasmon polaritons endows them with unparalleled tunability via a range of parameters, such as dielectric environments and carrier density. Therefore, plasmon polaritons are expected to be tuned when in proximity to polar materials since the carrier density is tuned by an electrosta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18028v1-abstract-full').style.display = 'inline'; document.getElementById('2406.18028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18028v1-abstract-full" style="display: none;"> Plasmon polaritons are formed by coupling light with delocalized electrons. The half-light and half-matter nature of plasmon polaritons endows them with unparalleled tunability via a range of parameters, such as dielectric environments and carrier density. Therefore, plasmon polaritons are expected to be tuned when in proximity to polar materials since the carrier density is tuned by an electrostatic potential; conversely, the plasmon polariton response might enable the sensing of polarization. Here, we use infrared nano-imaging and nano-photocurrent measurements to investigate heterostructures composed of graphene and twisted hexagonal boron nitride (t-BN), with alternating polarization in a triangular network of moir茅 stacking domains. We observe that the carrier density and the corresponding plasmonic response of graphene are modulated by polar domains in t-BN. In addition, we demonstrate that the nanometer-wide domain walls of graphene moir茅s superlattices, created by the polar domains of t-BN, provide momenta to assist the plasmonic excitations. Furthermore, our studies establish that the plasmon of graphene could function as a delicate sensor for polarization textures. The evolution of polarization textures in t-BN under uniform electric fields is tomographically examined via plasmonic imaging. Strikingly, no noticeable polarization switching is observed under applied electric fields up to 0.23 V/nm, at variance with transport reports. Our nano-images unambiguously reveal that t-BN with triangular domains acts like a ferrielectric, rather than ferroelectric claimed by many previous studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18028v1-abstract-full').style.display = 'none'; document.getElementById('2406.18028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16771">arXiv:2406.16771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16771">pdf</a>, <a href="https://arxiv.org/format/2406.16771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41928-024-01219-8">10.1038/s41928-024-01219-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An antiferromagnetic diode effect in even-layered MnBi2Te4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shao-Wen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+B">Barun Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+J">Jian-Xiang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onishi%2C+Y">Yugo Onishi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">Chaowei Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%A9rub%C3%A9%2C+D">Damien B茅rub茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dinh%2C+T">Thao Dinh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Houchen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Seunghyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+T">Tianye Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lien%2C+S">Shang-Wei Lien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yacoby%2C+A">Amir Yacoby</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16771v2-abstract-short" style="display: inline;"> In a PN junction, the separation between positive and negative charges leads to diode transport. In the past few years, the intrinsic diode transport in noncentrosymmetric polar conductors has attracted great interest, because it suggests novel nonlinear applications and provides a symmetry-sensitive probe of Fermi surface. Recently, such studies have been extended to noncentrosymmetric supercondu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16771v2-abstract-full').style.display = 'inline'; document.getElementById('2406.16771v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16771v2-abstract-full" style="display: none;"> In a PN junction, the separation between positive and negative charges leads to diode transport. In the past few years, the intrinsic diode transport in noncentrosymmetric polar conductors has attracted great interest, because it suggests novel nonlinear applications and provides a symmetry-sensitive probe of Fermi surface. Recently, such studies have been extended to noncentrosymmetric superconductors, realizing the superconducting diode effect. Here, we show that, even in a centrosymmetric crystal without directional charge separation, the spins of an antiferromagnet (AFM) can generate a spatial directionality, leading to an AFM diode effect. We observe large second-harmonic transport in a nonlinear electronic device enabled by the compensated AFM state of even-layered MnBi2Te4. We also report a novel electrical sum-frequency generation (SFG), which has been rarely explored in contrast to the well-known optical SFG in wide-gap insulators. We demonstrate that the AFM enables an in-plane field-effect transistor and harvesting of wireless electromagnetic energy. The electrical SFG establishes a powerful method to study nonlinear electronics built by quantum materials. The AFM diode effect paves the way for potential device concepts including AFM logic circuits, self-powered AFM spintronics, and other applications that potentially bridge nonlinear electronics with AFM spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16771v2-abstract-full').style.display = 'none'; document.getElementById('2406.16771v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33+8 pages, 14+2 figures. arXiv admin note: text overlap with arXiv:2306.09575</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Electronics 7, 751-759 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16194">arXiv:2406.16194</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16194">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electrically tunable giant Nernst effect in two-dimensional van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pasquale%2C+G">Gabriele Pasquale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kis%2C+A">Andras Kis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16194v1-abstract-short" style="display: inline;"> The Nernst effect, a transverse thermoelectric phenomenon, has attracted significant attention for its potential in energy conversion, thermoelectrics, and spintronics. However, achieving high performance and versatility at low temperatures remains elusive. Here, we demonstrate a large and electrically tunable Nernst effect by combining graphene&#39;s electrical properties with indium selenide&#39;s semic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16194v1-abstract-full').style.display = 'inline'; document.getElementById('2406.16194v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16194v1-abstract-full" style="display: none;"> The Nernst effect, a transverse thermoelectric phenomenon, has attracted significant attention for its potential in energy conversion, thermoelectrics, and spintronics. However, achieving high performance and versatility at low temperatures remains elusive. Here, we demonstrate a large and electrically tunable Nernst effect by combining graphene&#39;s electrical properties with indium selenide&#39;s semiconducting nature in a field-effect geometry. Our results establish a novel platform for exploring and manipulating this thermoelectric effect, showcasing the first electrical tunability with an on/off ratio of 10^3. Moreover, photocurrent measurements reveal a stronger photo-Nernst signal in the Gr/InSe heterostructure compared to individual components. Remarkably, we observe a record-high Nernst coefficient of 66.4 渭V K^(-1) T^(-1) at ultra-low temperatures and low magnetic fields, paving the way toward applications in quantum information and low-temperature emergent phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16194v1-abstract-full').style.display = 'none'; document.getElementById('2406.16194v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12940">arXiv:2406.12940</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12940">pdf</a>, <a href="https://arxiv.org/ps/2406.12940">ps</a>, <a href="https://arxiv.org/format/2406.12940">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Measurement of exciton fraction of microcavity exciton-polaritons using transfer-matrix modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Beaumariage%2C+J">Jonathan Beaumariage</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zheng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alnatah%2C+H">Hassan Alnatah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Qi Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Myers%2C+D+M">David M. Myers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steger%2C+M">Mark Steger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=West%2C+K">Ken West</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldwin%2C+K">Kirk Baldwin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfeiffer%2C+L+N">Loren N. Pfeiffer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tam%2C+M+C+A">Man Chun Alan Tam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wailewski%2C+Z+R">Zbig R. Wailewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Snoke%2C+D+W">David W. Snoke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12940v1-abstract-short" style="display: inline;"> We present a careful calibration of the exciton fraction of polaritons in high-$Q$ ($\sim 300,000$), long-lifetime ($\sim 300$ ps), GaAs/AlGaAs microcavities.This is a crucial parameter for many-body theories which include the polariton-polariton interactions.It is much harder to establish this number in high-$Q$ structures compared to low-$Q$ structures, because the upper polariton is nearly invi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12940v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12940v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12940v1-abstract-full" style="display: none;"> We present a careful calibration of the exciton fraction of polaritons in high-$Q$ ($\sim 300,000$), long-lifetime ($\sim 300$ ps), GaAs/AlGaAs microcavities.This is a crucial parameter for many-body theories which include the polariton-polariton interactions.It is much harder to establish this number in high-$Q$ structures compared to low-$Q$ structures, because the upper polariton is nearly invisible in high-$Q$ cavities.We present a combination of photoluminescence, photoluminescence excitation, and reflectivity measurements to highly constrain the fit model, and compare the results of this model to the results from low-$Q$ structures.We present a fitted curve of exciton fraction as a function of the lower polariton energy for multiple samples which have been used in prior experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12940v1-abstract-full').style.display = 'none'; document.getElementById('2406.12940v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12250">arXiv:2406.12250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12250">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-49942-2">10.1038/s41467-024-49942-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of stacking engineered magnetic phase transitions within moir茅 supercells of twisted van der Waals magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Senlei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zeliang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McLaughlin%2C+N+J">Nathan J. McLaughlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharmin%2C+A">Afsana Sharmin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+N">Nishkarsh Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sung%2C+S+H">Suk Hyun Sung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+S">Shaohua Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hovden%2C+R">Robert Hovden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hua Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12250v1-abstract-short" style="display: inline;"> Twist engineering of magnetic van der Waals (vdW) moir茅 superlattices provides an attractive way to achieve precise nanoscale control over the spin degree of freedom on two-dimensional flatland. Despite the very recent demonstrations of moir茅 magnetism featuring exotic phases with noncollinear spin order in twisted vdW magnet chromium triiodide CrI3, the local magnetic interactions, spin dynamics,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12250v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12250v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12250v1-abstract-full" style="display: none;"> Twist engineering of magnetic van der Waals (vdW) moir茅 superlattices provides an attractive way to achieve precise nanoscale control over the spin degree of freedom on two-dimensional flatland. Despite the very recent demonstrations of moir茅 magnetism featuring exotic phases with noncollinear spin order in twisted vdW magnet chromium triiodide CrI3, the local magnetic interactions, spin dynamics, and magnetic phase transitions within and across individual moir茅 supercells remain elusive. Taking advantage of a scanning single-spin magnetometry platform, here we report observation of two distinct magnetic phase transitions with separate critical temperatures within a moir茅 supercell of small-angle twisted double trilayer CrI3. By measuring temperature dependent spin fluctuations at the coexisting ferromagnetic and antiferromagnetic regions in twisted CrI3, we explicitly show that the Curie temperature of the ferromagnetic state is higher than the N茅el temperature of the antiferromagnetic one by ~10 K. Our mean-field calculations attribute such a spatial and thermodynamic phase separation to the stacking order modulated interlayer exchange coupling at the twisted interface of the moir茅 superlattices. The presented results highlight twist engineering as a promising tuning knob to realize on-demand control of not only the nanoscale spin order of moir茅 quantum matter but also its dynamic magnetic responses, which may find relevant applications in developing transformative vdW electronic and magnetic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12250v1-abstract-full').style.display = 'none'; document.getElementById('2406.12250v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 5712 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12151">arXiv:2406.12151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12151">pdf</a>, <a href="https://arxiv.org/format/2406.12151">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Exploring $G$-ality defects in 2-dim QFTs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Da-Chuan Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhengdi Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zipei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12151v1-abstract-short" style="display: inline;"> The Tambara-Yamagami (TY) fusion category symmetry $\text{TY}(\mathbb{A},蠂,蔚)$ describes the enhanced non-invertible self-duality symmetry of a $2$-dim QFT under gauging a finite Abelian group $\mathbb{A}$. We generalize the enhanced non-invertible symmetries by considering twisted gauging which allows stacking $\mathbb{A}$-SPT before and after the gauging. Such non-invertible symmetries correspon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12151v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12151v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12151v1-abstract-full" style="display: none;"> The Tambara-Yamagami (TY) fusion category symmetry $\text{TY}(\mathbb{A},蠂,蔚)$ describes the enhanced non-invertible self-duality symmetry of a $2$-dim QFT under gauging a finite Abelian group $\mathbb{A}$. We generalize the enhanced non-invertible symmetries by considering twisted gauging which allows stacking $\mathbb{A}$-SPT before and after the gauging. Such non-invertible symmetries correspond to invertible anyon permutation symmetries of the $3$-dim SymTFT. Consider a finite group $G$ formed by (un)twisted gaugings of $\mathbb{A}$, a $2$-dim QFT invariant under topological manipulations in $G$ admits non-invertible $\textit{$G$-ality defects}$. We study the classification and the physical implication of the $G$-ality defects using SymTFT and the group-theoretical fusion categories, with three concrete examples. 1) Triality with $\mathbb{A} = \mathbb{Z}_N \times \mathbb{Z}_N$ where $N$ is coprime with $3$. The classification is acquired previously by Jordan and Larson where the data is similar to the $\text{TY}$ fusion categories, and we determine the anomaly of these fusion categories. 2) $p$-ality with $\mathbb{A} = \mathbb{Z}_p \times \mathbb{Z}_p$ where $p$ is an odd prime. We consider two such categories $\mathcal{P}_{\pm,m}$ which are distinguished by different choices of the symmetry fractionalization, a new data that does not appear in the TY classification, and show that they have distinct anomaly structures and spin selection rules. 3) $S_3$-ality with $\mathbb{A} = \mathbb{Z}_N \times \mathbb{Z}_N$. We study their classification explicitly for $N &lt; 20$ via SymTFT, and provide a group-theoretical construction for certain $N$. We find $N=5$ is the minimal $N$ to admit an $S_3$-ality and $N=11$ is the minimal $N$ to admit a group-theoretical $S_3$-ality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12151v1-abstract-full').style.display = 'none'; document.getElementById('2406.12151v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">82 pages, 4 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09687">arXiv:2406.09687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.09687">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Interplay between topology and correlations in the second moir茅 band of twisted bilayer MoTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+F">Fan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+X">Xumin Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+J">Jiayong Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yixin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Feng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zheng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+N">Ning Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peshcherenko%2C+N">Nikolai Peshcherenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiayi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+B">Bingbing Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+L">Li Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+D">Dong Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhiwen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S">Shengwei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingxin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09687v2-abstract-short" style="display: inline;"> Topological flat bands formed in two-dimensional lattice systems offer unique opportunity to study the fractional phases of matter in the absence of an external magnetic field. Celebrated examples include fractional quantum anomalous Hall (FQAH) effects and fractional topological insulators. Recently, FQAH effects have been experimentally realized in both the twisted bilayer MoTe2 (tMoTe2) system&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09687v2-abstract-full').style.display = 'inline'; document.getElementById('2406.09687v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09687v2-abstract-full" style="display: none;"> Topological flat bands formed in two-dimensional lattice systems offer unique opportunity to study the fractional phases of matter in the absence of an external magnetic field. Celebrated examples include fractional quantum anomalous Hall (FQAH) effects and fractional topological insulators. Recently, FQAH effects have been experimentally realized in both the twisted bilayer MoTe2 (tMoTe2) system and the rhombohedral stacked multilayer graphene/hBN moir茅 systems. To date, experimental studies mainly focus on the first moir茅 flat band, except a very recent work that studied novel transport properties in higher moir茅 bands of a 2.1掳 tMoTe2 device. Here, we present the systematical transport study of approximately 3掳 tMoTe2 devices, especially for the second moir茅 band. At 谓 = -2 and -4, time-reversal-symmetric single and double quantum spin Hall states formed, consistent with the previous observation in 2.1掳 tMoTe2 device. On the other hand, we observed ferromagnetism in the second moir茅 band, and a Chern insulator state driven by out-of-plane magnetic fields at 谓 = -3. At 谓 = -2.2 to -2.7, finite temperature resistivity minimum with 1/T scaling at low temperatures, and large out-of-plane negative magnetoresistance have been observed. Applying out-of-plane electric field can induce quantum phase transitions at both integer and fractional filling factors. Our studies pave the way for realizing tunable topological states and other unexpected magnetic phases beyond the first moir茅 flat band based on twisted MoTe2 platform. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09687v2-abstract-full').style.display = 'none'; document.getElementById('2406.09687v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05380">arXiv:2406.05380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05380">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00699-3">10.1038/s41535-024-00699-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of floating surface state in obstructed atomic insulator candidate NiP$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiang-Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+M">Ming-Yuan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Y">Yuanwen Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+M">Meng Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xiao-Ming Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Y">Yu-Jie Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Y">Yue Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+R">Rong-Hao Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamagami%2C+K">Kohei Yamagami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+S">Shengtao Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jia-Yu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+M">Mao Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D">Dawei Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05380v2-abstract-short" style="display: inline;"> Obstructed atomic insulator is recently proposed as an unconventional material, in which electric charge centers localized at sites away from the atoms. A half-filling surface state would emerge at specific interfaces cutting through these charge centers and avoid intersecting any atoms. In this article, we utilized angle-resolved photoemission spectroscopy and density functional theory calculatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05380v2-abstract-full').style.display = 'inline'; document.getElementById('2406.05380v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05380v2-abstract-full" style="display: none;"> Obstructed atomic insulator is recently proposed as an unconventional material, in which electric charge centers localized at sites away from the atoms. A half-filling surface state would emerge at specific interfaces cutting through these charge centers and avoid intersecting any atoms. In this article, we utilized angle-resolved photoemission spectroscopy and density functional theory calculations to study one of the obstructed atomic insulator candidates, NiP$_2$. A floating surface state with large effective mass that is isolated from all bulk states is resolved on the (100) cleavage plane, distinct from previously reported surface states in obstructed atomic insulators that are merged into bulk bands. Density functional theory calculation results elucidate that this floating surface state is originated from the obstructed Wannier charge centers, albeit underwent surface reconstruction that splits the half-filled obstructed surface state. Our findings not only shed lights on the spectroscopy study of obstructed atomic insulators and obstructed surface states, but also provide possible route for development of new catalysts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05380v2-abstract-full').style.display = 'none'; document.getElementById('2406.05380v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 9, 85 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18188">arXiv:2405.18188</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.18188">pdf</a>, <a href="https://arxiv.org/format/2405.18188">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Characterizing dynamical criticality of many-body localization transitions from the Fock-space perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zheng-Hang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong-Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+J">Jian Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+H">Heng Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heyl%2C+M">Markus Heyl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18188v1-abstract-short" style="display: inline;"> Characterizing the nature of many-body localization transitions (MBLTs) and their potential critical behaviors has remained a challenging problem. In this work, we study the dynamics of the displacement, quantifying the spread of the radial probability distribution in the Fock space, for systems with MBLTs, and perform a finite-size scaling analysis. We find that the scaling exponents satisfy theo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18188v1-abstract-full').style.display = 'inline'; document.getElementById('2405.18188v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18188v1-abstract-full" style="display: none;"> Characterizing the nature of many-body localization transitions (MBLTs) and their potential critical behaviors has remained a challenging problem. In this work, we study the dynamics of the displacement, quantifying the spread of the radial probability distribution in the Fock space, for systems with MBLTs, and perform a finite-size scaling analysis. We find that the scaling exponents satisfy theoretical bounds, and can identify universality classes. We show that reliable extrapolations to the thermodynamic limit for the MBLT induced by quasiperiodic fields is possible even for computationally accessible system sizes. Our work highlights that the displacement is a valuable tool for studying MBLTs, as relevant to ongoing experimental efforts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18188v1-abstract-full').style.display = 'none'; document.getElementById('2405.18188v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18150">arXiv:2405.18150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.18150">pdf</a>, <a href="https://arxiv.org/format/2405.18150">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c01704">10.1021/acs.nanolett.4c01704 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Momentum-resolved electronic structures and strong electronic correlations in graphene-like nitride superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bi%2C+J">Jiachang Bi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yu Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhanfeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Ziyun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Ruyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+X">Xiong Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Guoxin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Haigang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yuanhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+S">Shaozhu Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Yanwei Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18150v1-abstract-short" style="display: inline;"> Although transition-metal nitrides have been widely applied for several decades, experimental investigations of their high-resolution electronic band structures are rare due to the lack of high-quality single-crystalline samples. Here, we report on the first momentum-resolved electronic band structures of titanium nitride (TiN) films, a remarkable nitride superconductor. The measurements of crysta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18150v1-abstract-full').style.display = 'inline'; document.getElementById('2405.18150v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18150v1-abstract-full" style="display: none;"> Although transition-metal nitrides have been widely applied for several decades, experimental investigations of their high-resolution electronic band structures are rare due to the lack of high-quality single-crystalline samples. Here, we report on the first momentum-resolved electronic band structures of titanium nitride (TiN) films, a remarkable nitride superconductor. The measurements of crystal structures and electrical transport properties confirmed the high quality of these films. More importantly, with a combination of high-resolution angle-resolved photoelectron spectroscopy and the first-principles calculations, the extracted Coulomb interaction strength of TiN films can be as large as 8.5 eV, whereas resonant photoemission spectroscopy yields a value of 6.26 eV. These large values of Coulomb interaction strength indicate that superconducting TiN is a strongly correlated system. Our results uncover the unexpected electronic correlations in transition-metal nitrides, potentially providing a perspective not only to understand their emergent quantum states but also to develop their applications in quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18150v1-abstract-full').style.display = 'none'; document.getElementById('2405.18150v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14939">arXiv:2405.14939</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.14939">pdf</a>, <a href="https://arxiv.org/format/2405.14939">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.17.5.136">10.21468/SciPostPhys.17.5.136 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Realizing triality and $p$-ality by lattice twisted gauging in (1+1)d quantum spin systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Da-Chuan Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhengdi Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+Y">Yi-Zhuang You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14939v2-abstract-short" style="display: inline;"> In this paper, we study the twisted gauging on the (1+1)d lattice and construct various non-local mappings on the lattice operators. To be specific, we define the twisted Gauss law operator and implement the twisted gauging of the finite group on the lattice motivated by the orbifolding procedure in the conformal field theory, which involves the data of non-trivial element in the second cohomology&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14939v2-abstract-full').style.display = 'inline'; document.getElementById('2405.14939v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14939v2-abstract-full" style="display: none;"> In this paper, we study the twisted gauging on the (1+1)d lattice and construct various non-local mappings on the lattice operators. To be specific, we define the twisted Gauss law operator and implement the twisted gauging of the finite group on the lattice motivated by the orbifolding procedure in the conformal field theory, which involves the data of non-trivial element in the second cohomology group of the gauge group. We show the twisted gauging is equivalent to the two-step procedure of first applying the SPT entangler and then untwisted gauging. We use the twisted gauging to construct the triality (order 3) and $p$-ality (order $p$) mapping on the $\mathbb{Z}_p\times \mathbb{Z}_p$ symmetric Hamiltonians, where $p$ is a prime. Such novel non-local mappings generalize Kramers-Wannier duality and they preserve the locality of symmetric operators but map charged operators to non-local ones. We further construct quantum process to realize these non-local mappings and analyze the induced mappings on the phase diagrams. For theories that are invariant under these non-local mappings, they admit the corresponding non-invertible symmetries. The non-invertible symmetry will constrain the theory at the multicritical point between the gapped phases. We further give the condition when the non-invertible symmetry can have symmetric gapped phase with a unique ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14939v2-abstract-full').style.display = 'none'; document.getElementById('2405.14939v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 12 figures, 3 tables. v2 updates references and minor changes. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 17, 136 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12592">arXiv:2405.12592</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.12592">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Spin-polarized p-wave superconductivity in the kagome material RbV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shuo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xilin Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+J">Jing-Zhi Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+J">Jia-Peng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zi-Ting Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jia-Jie Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jingchao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jia-Ji Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian-Kun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xin-Jie Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Ze-Nan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+S">Shengbiao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+N">Ning Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiao-Song Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhensheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+X">Xuewen Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Law%2C+K+T">Kam Tuen Law</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+B">Ben-Chuan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D">Dapeng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12592v1-abstract-short" style="display: inline;"> The study of kagome materials has attracted much attention in the past few years due to the presence of many electron-electron interaction-driven phases in a single material.In this work, we report the discovery of intrinsic spin-polarized p-wave superconductivity in the thin-flake kagome material RbV$_3$Sb$_5$. Firstly, when an in-plane magnetic field is swept in opposite directions, we observe a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12592v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12592v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12592v1-abstract-full" style="display: none;"> The study of kagome materials has attracted much attention in the past few years due to the presence of many electron-electron interaction-driven phases in a single material.In this work, we report the discovery of intrinsic spin-polarized p-wave superconductivity in the thin-flake kagome material RbV$_3$Sb$_5$. Firstly, when an in-plane magnetic field is swept in opposite directions, we observe a unique form of hysteresis in magnetoresistance which is different from the hysteresis induced by extrinsic mechanisms such as flux-trapping or superheating and supercooling effects. The unconventional hysteresis indicates the emergence of an intrinsic time-reversal symmetry-breaking superconducting phase. Strikingly, at a fixed magnetic field, the finite-resistance state can be quenched to the zero-resistance state by applying a large current. Secondly, at temperatures around 400 mK, the re-entrance of superconductivity occurs during an in-plane field-sweeping process with a fixed sweeping direction. This kind of re-entrance is asymmetric about the zero field axis and observed in all field directions for a fixed current direction, which is different from the re-entrance observed in conventional superconductors. Moreover, the angle-dependent in-plane critical field measurements reveal a two-fold symmetry that deviates from the original, centrosymmetric D$_{6h}$ point group symmetry of the crystal. These findings put very strong constraints on the possible superconducting pairing symmetry of RbV$_3$Sb$_5$. We point out that the pairing symmetry, which is consistent with the crystal symmetry and all the observed novel properties, is a time-reversal symmetry-breaking, p-wave pairing with net spin polarization. Importantly, this p-wave pairing gives rise to a nodal topological superconducting state with Majorana flat bands on the sample edges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12592v1-abstract-full').style.display = 'none'; document.getElementById('2405.12592v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11485">arXiv:2405.11485</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11485">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-48636-z">10.1038/s41467-024-48636-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for Multiferroicity in Single-Layer CuCrSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhenyu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Yueqi Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhi%2C+A">Aomiao Zhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Zhicheng Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+K">Kang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+L">Lihong Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+X">Xuedong Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+P">Peng Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+K">Kehui Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+X">Xuezeng Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Changzheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+B">Baojie Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11485v1-abstract-short" style="display: inline;"> Multiferroic materials, which simultaneously exhibit ferroelectricity and magnetism, have attracted substantial attention due to their fascinating physical properties and potential technological applications. With the trends towards device miniaturization, there is an increasing demand for the persistence of multiferroicity in single-layer materials at elevated temperatures. Here, we report high-t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11485v1-abstract-full').style.display = 'inline'; document.getElementById('2405.11485v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11485v1-abstract-full" style="display: none;"> Multiferroic materials, which simultaneously exhibit ferroelectricity and magnetism, have attracted substantial attention due to their fascinating physical properties and potential technological applications. With the trends towards device miniaturization, there is an increasing demand for the persistence of multiferroicity in single-layer materials at elevated temperatures. Here, we report high-temperature multiferroicity in single-layer CuCrSe$_2$, which hosts room-temperature ferroelectricity and 120 K ferromagnetism. Notably, the ferromagnetic coupling in single-layer CuCrSe$_2$ is enhanced by the ferroelectricity-induced orbital shift of Cr atoms, which is distinct from both types I and II multiferroicity. These findings are supported by a combination of second-harmonic generation, piezo-response force microscopy, scanning transmission electron microscopy, magnetic, and Hall measurements. Our research provides not only an exemplary platform for delving into intrinsic magnetoelectric interactions at the single-layer limit but also sheds light on potential development of electronic and spintronic devices utilizing two-dimensional multiferroics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11485v1-abstract-full').style.display = 'none'; document.getElementById('2405.11485v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 4252 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15912">arXiv:2403.15912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15912">pdf</a>, <a href="https://arxiv.org/format/2403.15912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07211-8">10.1038/s41586-024-07211-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of the dual quantum spin Hall insulator by density-tuned correlations in a van der Waals monolayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jian Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+T+S">Thomas Siyuan Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+A">Anyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tiema Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zumeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhe Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strasser%2C+A">Alex Strasser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiangxu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geiwitz%2C+M">Michael Geiwitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shehabeldin%2C+M">Mohamed Shehabeldin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belosevich%2C+V">Vsevolod Belosevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zihan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yiping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+D+C">David C. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+L">Liang Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+X">Xiaofeng Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burch%2C+K+S">Kenneth S. Burch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+N">Ni Ni</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15912v1-abstract-short" style="display: inline;"> The convergence of topology and correlations represents a highly coveted realm in the pursuit of novel quantum states of matter. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order, not possible in quantum Hall and Chern insulator systems. However, the QSH&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15912v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15912v1-abstract-full" style="display: none;"> The convergence of topology and correlations represents a highly coveted realm in the pursuit of novel quantum states of matter. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order, not possible in quantum Hall and Chern insulator systems. However, the QSH insulator with quantized edge conductance remains rare, let alone that with significant correlations. In this work, we report a novel dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator that aligns with single-particle band structure calculations, manifesting enhanced nonlocal transport and quantized helical edge conductance. Interestingly, upon introducing electrons from charge neutrality, TaIrTe4 only shows metallic behavior in a small range of charge densities but quickly goes into a new insulating state, entirely unexpected based on TaIrTe4&#39;s single-particle band structure. This insulating state could arise from a strong electronic instability near the van Hove singularities (VHS), likely leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state, marked by the revival of nonlocal transport and quantized helical edge conduction. Our observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands via CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15912v1-abstract-full').style.display = 'none'; document.getElementById('2403.15912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 15 figures, submitted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09095">arXiv:2403.09095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09095">pdf</a>, <a href="https://arxiv.org/format/2403.09095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.6.010325">10.1103/PRXQuantum.6.010325 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring Hilbert-Space Fragmentation on a Superconducting Processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong-Yi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yun-Hao Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zheng-Hang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chi-Tong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zheng-An Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+K">Kui Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hao-Tian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+W">Wei-Guo Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziting Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jia-Chi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+C">Cheng-Lin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tian-Ming Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zheng-He Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Z">Zhen-Yu Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+X">Xiaohui Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+G">Guangming Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">Haifeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">Kaixuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Z">Zhongcheng Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+D">Dongning Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Kai Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+H">Heng Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09095v1-abstract-short" style="display: inline;"> Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity, such as many-body localization and quantum scars. Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization. This phenomenon is closely associated with Hilbert-space fragmentation, characterized by a s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09095v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09095v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09095v1-abstract-full" style="display: none;"> Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity, such as many-body localization and quantum scars. Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization. This phenomenon is closely associated with Hilbert-space fragmentation, characterized by a strong dependence of dynamics on initial conditions. Here, we experimentally explore initial-state dependent dynamics using a ladder-type superconducting processor with up to 24 qubits, which enables precise control of the qubit frequency and initial state preparation. In systems with linear potentials, we observe distinct non-equilibrium dynamics for initial states with the same quantum numbers and energy, but with varying domain wall numbers. This distinction becomes increasingly pronounced as the system size grows, in contrast with disordered interacting systems. Our results provide convincing experimental evidence of the fragmentation in Stark systems, enriching our understanding of the weak breakdown of ergodicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09095v1-abstract-full').style.display = 'none'; document.getElementById('2403.09095v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main text: 7 pages, 4 figures; supplementary: 13 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 6, 010325 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18833">arXiv:2402.18833</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18833">pdf</a>, <a href="https://arxiv.org/ps/2402.18833">ps</a>, <a href="https://arxiv.org/format/2402.18833">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.094004">10.1103/PhysRevMaterials.7.094004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Layer-dependent Raman spectroscopy of ultrathin Ta$_2$Pd$_3$Te$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhenyu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Z">Zhaopeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+D">Dayu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+P">Peng Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhijun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+K">Kehui Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+B">Baojie Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18833v1-abstract-short" style="display: inline;"> Two-dimensional topological insulators (2DTIs) or quantum spin Hall insulators are attracting increasing attention due to their potential applications in next-generation spintronic devices. Despite their promising prospects, realizable 2DTIs are still limited. Recently, Ta2Pd3Te5, a semiconducting van der Waals material, has shown spectroscopic evidence of quantum spin Hall states. However, achiev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18833v1-abstract-full').style.display = 'inline'; document.getElementById('2402.18833v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18833v1-abstract-full" style="display: none;"> Two-dimensional topological insulators (2DTIs) or quantum spin Hall insulators are attracting increasing attention due to their potential applications in next-generation spintronic devices. Despite their promising prospects, realizable 2DTIs are still limited. Recently, Ta2Pd3Te5, a semiconducting van der Waals material, has shown spectroscopic evidence of quantum spin Hall states. However, achieving controlled preparation of few- to monolayer samples, a crucial step in realizing quantum spin Hall devices, has not yet been achieved. In this work, we fabricated few- to monolayer Ta$_2$Pd$_3$Te$_5$ and performed systematic thickness- and temperature-dependent Raman spectroscopy measurements. Our results demonstrate that Raman spectra can provide valuable information to determine the thickness of Ta2Pd3Te5 thin flakes. Moreover, our angle-resolved polarized Raman (ARPR) spectroscopy measurements show that the intensities of the Raman peaks are strongly anisotropic due to the quasi-one-dimensional atomic structure, providing a straightforward method to determine its crystalline orientation. Our findings may stimulate further efforts to realize quantum devices based on few or monolayer Ta$_2$Pd$_3$Te$_5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18833v1-abstract-full').style.display = 'none'; document.getElementById('2402.18833v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 7, 094004 (2023) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Sun%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10