CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–11 of 11 results for author: <span class="mathjax">Fowlie, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Fowlie%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Fowlie, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Fowlie%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Fowlie, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.17450">arXiv:2408.17450</a> <span> [<a href="https://arxiv.org/pdf/2408.17450">pdf</a>, <a href="https://arxiv.org/format/2408.17450">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-51576-3">10.1038/s41467-024-51576-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signatures of polarized chiral spin disproportionation in rare earth nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jiarui Li</a>, <a href="/search/cond-mat?searchtype=author&query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/cond-mat?searchtype=author&query=Dom%C3%ADnguez%2C+C">Claribel Dom铆nguez</a>, <a href="/search/cond-mat?searchtype=author&query=Levitan%2C+A">Abraham Levitan</a>, <a href="/search/cond-mat?searchtype=author&query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&query=Catalano%2C+S">Sara Catalano</a>, <a href="/search/cond-mat?searchtype=author&query=Fowlie%2C+J">Jennifer Fowlie</a>, <a href="/search/cond-mat?searchtype=author&query=Sutarto%2C+R">Ronny Sutarto</a>, <a href="/search/cond-mat?searchtype=author&query=Rodolakis%2C+F">Fanny Rodolakis</a>, <a href="/search/cond-mat?searchtype=author&query=Korol%2C+L">Lucas Korol</a>, <a href="/search/cond-mat?searchtype=author&query=McChesney%2C+J+L">Jessica L. McChesney</a>, <a href="/search/cond-mat?searchtype=author&query=Freeland%2C+J+W">John W. Freeland</a>, <a href="/search/cond-mat?searchtype=author&query=Van+der+Marel%2C+D">Dirk Van der Marel</a>, <a href="/search/cond-mat?searchtype=author&query=Gibert%2C+M">Marta Gibert</a>, <a href="/search/cond-mat?searchtype=author&query=Comin%2C+R">Riccardo Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.17450v2-abstract-short" style="display: inline;"> In rare earth nickelates (RENiO$_3$), electron-lattice coupling drives a concurrent metal-to-insulator and bond disproportionation phase transition whose microscopic origin has long been the subject of active debate. Of several proposed mechanisms, here we test the hypothesis that pairs of self-doped ligand holes spatially condense to provide local spin moments that are antiferromagnetically coupl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17450v2-abstract-full').style.display = 'inline'; document.getElementById('2408.17450v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.17450v2-abstract-full" style="display: none;"> In rare earth nickelates (RENiO$_3$), electron-lattice coupling drives a concurrent metal-to-insulator and bond disproportionation phase transition whose microscopic origin has long been the subject of active debate. Of several proposed mechanisms, here we test the hypothesis that pairs of self-doped ligand holes spatially condense to provide local spin moments that are antiferromagnetically coupled to Ni spins. These singlet-like states provide a basis for long-range bond and spiral spin order. Using magnetic resonant X-ray scattering on NdNiO$_3$ thin films, we observe the chiral nature of the spin-disproportionated state, with spin spirals propagating along the crystallographic (101)$_\mathrm{ortho}$ direction. These spin spirals are found to preferentially couple to X-ray helicity, establishing the presence of a hitherto-unobserved macroscopic chirality. The presence of this chiral magnetic configuration suggests a potential multiferroic coupling between the noncollinear magnetic arrangement and improper ferroelectric behavior as observed in prior studies on NdNiO$_3$ (101)$_\mathrm{ortho}$ films and RENiO$_3$ single crystals. Experimentally constrained theoretical double-cluster calculations confirm the presence of an energetically stable spin-disproportionated state with Zhang-Rice singlet-like combinations of Ni and ligand moments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17450v2-abstract-full').style.display = 'none'; document.getElementById('2408.17450v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06606">arXiv:2307.06606</a> <span> [<a href="https://arxiv.org/pdf/2307.06606">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Mapping Orthorhombic Domains with Geometrical Phase Analysis in Rare-Earth Nickelate Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mundet%2C+B">Bernat Mundet</a>, <a href="/search/cond-mat?searchtype=author&query=Hadjimichael%2C+M">Marios Hadjimichael</a>, <a href="/search/cond-mat?searchtype=author&query=Fowlie%2C+J">Jennifer Fowlie</a>, <a href="/search/cond-mat?searchtype=author&query=Korosec%2C+L">Lukas Korosec</a>, <a href="/search/cond-mat?searchtype=author&query=Varbaro%2C+L">Lucia Varbaro</a>, <a href="/search/cond-mat?searchtype=author&query=Dominguez%2C+C">Claribel Dominguez</a>, <a href="/search/cond-mat?searchtype=author&query=Triscone%2C+J">Jean-Marc Triscone</a>, <a href="/search/cond-mat?searchtype=author&query=Alexander%2C+D+T+L">Duncan T. L. Alexander</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06606v1-abstract-short" style="display: inline;"> Most perovskite oxides belong to the Pbnm space group, composed by an anisotropic unit cell, A-site antipolar displacements and oxygen octahedral tilts. Mapping the orientation of the orthorhombic unit cell in epitaxial heterostructures that consist of at least one Pbnm compound is often required to understand and control the different degrees of coupling established at their coherent interfaces a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06606v1-abstract-full').style.display = 'inline'; document.getElementById('2307.06606v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06606v1-abstract-full" style="display: none;"> Most perovskite oxides belong to the Pbnm space group, composed by an anisotropic unit cell, A-site antipolar displacements and oxygen octahedral tilts. Mapping the orientation of the orthorhombic unit cell in epitaxial heterostructures that consist of at least one Pbnm compound is often required to understand and control the different degrees of coupling established at their coherent interfaces and, therefore, their resulting physical properties. However, retrieving this information from the strain maps generated with high-resolution scanning transmission electron microscopy can be challenging, because the three pseudocubic lattice parameters are very similar in these systems. Here, we present a novel methodology for mapping the crystallographic orientation in Pbnm systems. It makes use of the geometrical phase analysis algorithm, as applied to aberration-corrected scanning transition electron microscopy images, but in an unconventional way. The method is fast and robust, giving real-space maps of the lattice orientations in Pbnm systems, from both cross-sectional and plan-view geometries and across large fields of view. As an example, we apply our methodology to rare-earth nickelate heterostructures, in order to investigate how the crystallographic orientation of these films depends on various structural constraints that are imposed by the underlying single crystal substrates. We observe that the resulting domain distributions and associated defect landscapes mainly depend on a competition between the epitaxial compressive/tensile and shear strains, together with the matching of atomic displacements at the substrate/film interface. The results point towards strategies for controlling these characteristics by appropriate substrate choice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06606v1-abstract-full').style.display = 'none'; document.getElementById('2307.06606v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 5 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.06811">arXiv:2211.06811</a> <span> [<a href="https://arxiv.org/pdf/2211.06811">pdf</a>, <a href="https://arxiv.org/ps/2211.06811">ps</a>, <a href="https://arxiv.org/format/2211.06811">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coupling of Magnetic Phases at Nickelate Interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dom%C3%ADnguez%2C+C">C. Dom铆nguez</a>, <a href="/search/cond-mat?searchtype=author&query=Fowlie%2C+J">J. Fowlie</a>, <a href="/search/cond-mat?searchtype=author&query=Georgescu%2C+A+B">A. B. Georgescu</a>, <a href="/search/cond-mat?searchtype=author&query=Mundet%2C+B">B. Mundet</a>, <a href="/search/cond-mat?searchtype=author&query=Jaouen%2C+N">N. Jaouen</a>, <a href="/search/cond-mat?searchtype=author&query=Viret%2C+M">M. Viret</a>, <a href="/search/cond-mat?searchtype=author&query=Suter%2C+A">A. Suter</a>, <a href="/search/cond-mat?searchtype=author&query=Millis%2C+A+J">A. J. Millis</a>, <a href="/search/cond-mat?searchtype=author&query=Salman%2C+Z">Z. Salman</a>, <a href="/search/cond-mat?searchtype=author&query=Prokscha%2C+T">T. Prokscha</a>, <a href="/search/cond-mat?searchtype=author&query=Gibert%2C+M">M. Gibert</a>, <a href="/search/cond-mat?searchtype=author&query=Triscone%2C+J+-">J. -M. Triscone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.06811v1-abstract-short" style="display: inline;"> In this work we present a model system built out of artificially layered materials, allowing us to understand the interrelation of magnetic phases with that of the metallic-insulating phase at long length-scales, and enabling new strategies for the design and control of materials in devices. The artificial model system consists of superlattices made of SmNiO$_3$ and NdNiO$_3$ layers -- two members… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06811v1-abstract-full').style.display = 'inline'; document.getElementById('2211.06811v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.06811v1-abstract-full" style="display: none;"> In this work we present a model system built out of artificially layered materials, allowing us to understand the interrelation of magnetic phases with that of the metallic-insulating phase at long length-scales, and enabling new strategies for the design and control of materials in devices. The artificial model system consists of superlattices made of SmNiO$_3$ and NdNiO$_3$ layers -- two members of the fascinating rare earth nickelate family, having different metal-to-insulator and magnetic transition temperatures. By combining two complementary techniques -- resonant elastic x-ray scattering and muon spin relaxation -- we show how the magnetic order evolves, in this complex multicomponent system, as a function of temperature and superlattice periodicity. We demonstrate that the length scale of the coupling between the antiferromagnetic and paramagnetic phases is longer than that of the electronic metal-insulator phase transition -- despite being subsidiary to it. This can be explained via a Landau theory -- where the bulk magnetic energy plus a gradient cost between magnetic and non magnetic phases are considered. These results provide a clear understanding of the coupling of magnetic transitions in systems sharing identical order parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06811v1-abstract-full').style.display = 'none'; document.getElementById('2211.06811v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.15355">arXiv:2205.15355</a> <span> [<a href="https://arxiv.org/pdf/2205.15355">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Rare-Earth Control of the Superconducting Upper Critical Field in Infinite-Layer Nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+T+C">Tiffany C. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hsu%2C+Y">Yu-Te Hsu</a>, <a href="/search/cond-mat?searchtype=author&query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Duffy%2C+C">Caitlin Duffy</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Fowlie%2C+J">Jennifer Fowlie</a>, <a href="/search/cond-mat?searchtype=author&query=Beasley%2C+M+R">Malcolm R. Beasley</a>, <a href="/search/cond-mat?searchtype=author&query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&query=Hussey%2C+N+E">Nigel E. Hussey</a>, <a href="/search/cond-mat?searchtype=author&query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.15355v1-abstract-short" style="display: inline;"> The consequences of varying the rare-earth element in the superconducting infinite-layer nickelates have been much debated. Here we show striking differences in the magnitude and anisotropy of the superconducting upper critical field across the La-, Pr-, and Nd-nickelates. These 5 distinctions originate from the 4f electron characteristics of the rare-earth ions in the lattice: they are absent for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15355v1-abstract-full').style.display = 'inline'; document.getElementById('2205.15355v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.15355v1-abstract-full" style="display: none;"> The consequences of varying the rare-earth element in the superconducting infinite-layer nickelates have been much debated. Here we show striking differences in the magnitude and anisotropy of the superconducting upper critical field across the La-, Pr-, and Nd-nickelates. These 5 distinctions originate from the 4f electron characteristics of the rare-earth ions in the lattice: they are absent for La3+, nonmagnetic for the Pr3+ singlet ground state, and magnetic for the Nd3+ Kramer's doublet. The unique polar and azimuthal angle-dependent magnetoresistance found in the Nd-nickelates can be understood to arise from the magnetic contribution of the Nd3+ 4f moments. In the absence of rare-earth effects, we find that the nickelates broadly violate the Pauli limit. Such robust and tunable superconductivity suggests potential in future high-field applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15355v1-abstract-full').style.display = 'none'; document.getElementById('2205.15355v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, 1 supplementary materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.12971">arXiv:2201.12971</a> <span> [<a href="https://arxiv.org/pdf/2201.12971">pdf</a>, <a href="https://arxiv.org/format/2201.12971">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Evidence for nodal superconductivity in infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Harvey%2C+S+P">Shannon P. Harvey</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Fowlie%2C+J">Jennifer Fowlie</a>, <a href="/search/cond-mat?searchtype=author&query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.12971v1-abstract-short" style="display: inline;"> Infinite-layer nickelates present a new family of potential unconventional superconductors. A key open question is the superconducting pairing symmetry. We present low-temperature measurements of the London penetration depth in optimally doped La_{0.8}Sr_{0.2}NiO_{2}, Pr_{0.8}Sr_{0.2}NiO_{2}, and Nd_{0.8}Sr_{0.2}NiO_{2}. For La and Pr-nickelates, the superfluid density shows a quadratic temperatur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12971v1-abstract-full').style.display = 'inline'; document.getElementById('2201.12971v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.12971v1-abstract-full" style="display: none;"> Infinite-layer nickelates present a new family of potential unconventional superconductors. A key open question is the superconducting pairing symmetry. We present low-temperature measurements of the London penetration depth in optimally doped La_{0.8}Sr_{0.2}NiO_{2}, Pr_{0.8}Sr_{0.2}NiO_{2}, and Nd_{0.8}Sr_{0.2}NiO_{2}. For La and Pr-nickelates, the superfluid density shows a quadratic temperature dependence, indicating nodal superconductivity in the presence of disorder. Nd-nickelate exhibits complex low-temperature behavior, which we attribute to magnetic impurities. These results are consistent with d-wave pairing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12971v1-abstract-full').style.display = 'none'; document.getElementById('2201.12971v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, 1 table, 1 supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.11943">arXiv:2201.11943</a> <span> [<a href="https://arxiv.org/pdf/2201.11943">pdf</a>, <a href="https://arxiv.org/format/2201.11943">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01684-y">10.1038/s41567-022-01684-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic magnetism in superconducting infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fowlie%2C+J">Jennifer Fowlie</a>, <a href="/search/cond-mat?searchtype=author&query=Hadjimichael%2C+M">Marios Hadjimichael</a>, <a href="/search/cond-mat?searchtype=author&query=Martins%2C+M+M">Maria M. Martins</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Salman%2C+Z">Zaher Salman</a>, <a href="/search/cond-mat?searchtype=author&query=Prokscha%2C+T">Thomas Prokscha</a>, <a href="/search/cond-mat?searchtype=author&query=Triscone%2C+J">Jean-Marc Triscone</a>, <a href="/search/cond-mat?searchtype=author&query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&query=Suter%2C+A">Andreas Suter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.11943v1-abstract-short" style="display: inline;"> The discovery of superconductivity in Nd$_{0.8}$Sr$_{0.2}$NiO$_2$ [1] introduced a new family of layered nickelate superconductors that has now been extended to include a range of Sr-doping [2, 3], Pr or La in place of Nd [4-6], and the 5-layer Nd$_6$Ni$_5$O$_{12}$ [7]. A number of studies indicate that electron correlations are strong in these materials [8-14], and hence a central question is whe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11943v1-abstract-full').style.display = 'inline'; document.getElementById('2201.11943v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.11943v1-abstract-full" style="display: none;"> The discovery of superconductivity in Nd$_{0.8}$Sr$_{0.2}$NiO$_2$ [1] introduced a new family of layered nickelate superconductors that has now been extended to include a range of Sr-doping [2, 3], Pr or La in place of Nd [4-6], and the 5-layer Nd$_6$Ni$_5$O$_{12}$ [7]. A number of studies indicate that electron correlations are strong in these materials [8-14], and hence a central question is whether or not magnetism is present as a consequence of these interactions. Here we report muon spin rotation/relaxation studies of a series of superconducting infinite-layer nickelates. In all cases we observe an intrinsic magnetic ground state, regardless of the rare earth ion or doping, arising from local moments on the nickel sublattice. The coexistence of magnetism - which is likely to be antiferromagnetic and short-range ordered - with superconductivity is reminiscent of some iron pnictides [15] and heavy fermion compounds [16], and qualitatively distinct from the doped cuprates [17]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11943v1-abstract-full').style.display = 'none'; document.getElementById('2201.11943v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. 18 1043-1047 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08654">arXiv:2107.08654</a> <span> [<a href="https://arxiv.org/pdf/2107.08654">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Layered Metals as Polarized Transparent Conductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Putzke%2C+C">Carsten Putzke</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Plisson%2C+V">Vincent Plisson</a>, <a href="/search/cond-mat?searchtype=author&query=Kroner%2C+M">Martin Kroner</a>, <a href="/search/cond-mat?searchtype=author&query=Chervy%2C+T">Thibault Chervy</a>, <a href="/search/cond-mat?searchtype=author&query=Simoni%2C+M">Matteo Simoni</a>, <a href="/search/cond-mat?searchtype=author&query=Wevers%2C+P">Pim Wevers</a>, <a href="/search/cond-mat?searchtype=author&query=Bachmann%2C+M+D">Maja D. Bachmann</a>, <a href="/search/cond-mat?searchtype=author&query=Cooper%2C+J+R">John R. Cooper</a>, <a href="/search/cond-mat?searchtype=author&query=Carrington%2C+A">Antony Carrington</a>, <a href="/search/cond-mat?searchtype=author&query=Kikugawa%2C+N">Naoki Kikugawa</a>, <a href="/search/cond-mat?searchtype=author&query=Fowlie%2C+J">Jennifer Fowlie</a>, <a href="/search/cond-mat?searchtype=author&query=Gariglio%2C+S">Stefano Gariglio</a>, <a href="/search/cond-mat?searchtype=author&query=Mackenzie%2C+A+P">Andrew P. Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&query=Burch%2C+K+S">Kenneth S. Burch</a>, <a href="/search/cond-mat?searchtype=author&query=%C3%8Emamo%C4%9Flu%2C+A">Ata莽 脦mamo臒lu</a>, <a href="/search/cond-mat?searchtype=author&query=Moll%2C+P+J+W">Philip J. W. Moll</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08654v1-abstract-short" style="display: inline;"> The quest to improve transparent conductors balances two key goals: increasing electrical conductivity and increasing optical transparency. To improve both simultaneously is hindered by the physical limitation that good metals with high electrical conductivity have large carrier densities that push the plasma edge into the ultra-violet range. Transparent conductors are compromises between electric… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08654v1-abstract-full').style.display = 'inline'; document.getElementById('2107.08654v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08654v1-abstract-full" style="display: none;"> The quest to improve transparent conductors balances two key goals: increasing electrical conductivity and increasing optical transparency. To improve both simultaneously is hindered by the physical limitation that good metals with high electrical conductivity have large carrier densities that push the plasma edge into the ultra-violet range. Transparent conductors are compromises between electrical conductivity, requiring mobile electrons, and optical transparency based on immobile charges to avoid screening of visible light. Technological solutions reflect this trade-off, achieving the desired transparencies by reducing the conductor thickness or carrier density at the expense of a lower conductance. Here we demonstrate that highly anisotropic crystalline conductors offer an alternative solution, avoiding this compromise by separating the directions of conduction and transmission. Materials with a quasi-two-dimensional electronic structure have a plasma edge well below the range of visible light while maintaining excellent in-plane conductivity. We demonstrate that slabs of the layered oxides Sr$_2$RuO$_4$ and Tl$_2$Ba$_2$CuO$_{6+未}$ are optically transparent even at macroscopic thicknesses >2$渭$m for c-axis polarized light. Underlying this observation is the fabrication of out-of-plane slabs by focused ion beam milling. This work provides a glimpse into future technologies, such as highly polarized and addressable optical screens, that advancements in a-axis thin film growth will enable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08654v1-abstract-full').style.display = 'none'; document.getElementById('2107.08654v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14689">arXiv:2009.14689</a> <span> [<a href="https://arxiv.org/pdf/2009.14689">pdf</a>, <a href="https://arxiv.org/format/2009.14689">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.155148">10.1103/PhysRevB.102.155148 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical properties of LaNiO3 films tuned from compressive to tensile strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ardizzone%2C+I">I. Ardizzone</a>, <a href="/search/cond-mat?searchtype=author&query=Zingl%2C+M">M. Zingl</a>, <a href="/search/cond-mat?searchtype=author&query=Teyssier%2C+J">J. Teyssier</a>, <a href="/search/cond-mat?searchtype=author&query=Strand%2C+H+U+R">H. U. R. Strand</a>, <a href="/search/cond-mat?searchtype=author&query=Peil%2C+O">O. Peil</a>, <a href="/search/cond-mat?searchtype=author&query=Fowlie%2C+J">J. Fowlie</a>, <a href="/search/cond-mat?searchtype=author&query=Georgescu%2C+A+B">A. B. Georgescu</a>, <a href="/search/cond-mat?searchtype=author&query=Catalano%2C+S">S. Catalano</a>, <a href="/search/cond-mat?searchtype=author&query=Bachar%2C+N">N. Bachar</a>, <a href="/search/cond-mat?searchtype=author&query=Kuzmenko%2C+A+B">A. B. Kuzmenko</a>, <a href="/search/cond-mat?searchtype=author&query=Gibert%2C+M">M. Gibert</a>, <a href="/search/cond-mat?searchtype=author&query=Triscone%2C+J+-">J. -M. Triscone</a>, <a href="/search/cond-mat?searchtype=author&query=Georges%2C+A">A. Georges</a>, <a href="/search/cond-mat?searchtype=author&query=van+der+Marel%2C+D">D. van der Marel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14689v1-abstract-short" style="display: inline;"> Materials with strong electronic correlations host remarkable -- and technologically relevant -- phenomena such as magnetism, superconductivity and metal-insulator transitions. Harnessing and controlling these effects is a major challenge, on which key advances are being made through lattice and strain engineering in thin films and heterostructures, leveraging the complex interplay between electro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14689v1-abstract-full').style.display = 'inline'; document.getElementById('2009.14689v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14689v1-abstract-full" style="display: none;"> Materials with strong electronic correlations host remarkable -- and technologically relevant -- phenomena such as magnetism, superconductivity and metal-insulator transitions. Harnessing and controlling these effects is a major challenge, on which key advances are being made through lattice and strain engineering in thin films and heterostructures, leveraging the complex interplay between electronic and structural degrees of freedom. Here we show that the electronic structure of LaNiO3 can be tuned by means of lattice engineering. We use different substrates to induce compressive and tensile biaxial epitaxial strain in LaNiO3 thin films. Our measurements reveal systematic changes of the optical spectrum as a function of strain and, notably, an increase of the low-frequency free carrier weight as tensile strain is applied. Using density functional theory (DFT) calculations, we show that this apparently counter-intuitive effect is due to a change of orientation of the oxygen octahedra.The calculations also reveal drastic changes of the electronic structure under strain, associated with a Fermi surface Lifshitz transition. We provide an online applet to explore these effects. The experimental value of integrated spectral weight below 2 eV is significantly (up to a factor of 3) smaller than the DFT results, indicating a transfer of spectral weight from the infrared to energies above 2 eV. The suppression of the free carrier weight and the transfer of spectral weight to high energies together indicate a correlation-induced band narrowing and free carrier mass enhancement due to electronic correlations. Our findings provide a promising avenue for the tuning and control of quantum materials employing lattice engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14689v1-abstract-full').style.display = 'none'; document.getElementById('2009.14689v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 155148 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.06752">arXiv:2004.06752</a> <span> [<a href="https://arxiv.org/pdf/2004.06752">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.014311">10.1103/PhysRevB.102.014311 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing photo-induced rearrangements in the NdNiO$_{3}$ magnetic spiral with polarization-sensitive ultrafast resonant soft x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Beyerlein%2C+K+R">K. R. Beyerlein</a>, <a href="/search/cond-mat?searchtype=author&query=Disa%2C+A+S">A. S. Disa</a>, <a href="/search/cond-mat?searchtype=author&query=F%C3%B6rst%2C+M">M F枚rst</a>, <a href="/search/cond-mat?searchtype=author&query=Henstridge%2C+M">M. Henstridge</a>, <a href="/search/cond-mat?searchtype=author&query=Gebert%2C+T">T. Gebert</a>, <a href="/search/cond-mat?searchtype=author&query=Forrest%2C+T">T. Forrest</a>, <a href="/search/cond-mat?searchtype=author&query=Fitzpatrick%2C+A">A. Fitzpatrick</a>, <a href="/search/cond-mat?searchtype=author&query=Dominguez%2C+C">C. Dominguez</a>, <a href="/search/cond-mat?searchtype=author&query=Fowlie%2C+J">J. Fowlie</a>, <a href="/search/cond-mat?searchtype=author&query=Gibert%2C+M">M. Gibert</a>, <a href="/search/cond-mat?searchtype=author&query=Triscone%2C+J+-">J. -M. Triscone</a>, <a href="/search/cond-mat?searchtype=author&query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&query=Cavalleri%2C+A">A. Cavalleri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.06752v2-abstract-short" style="display: inline;"> We use resonant soft X-ray diffraction to track the photo-induced dynamics of the antiferromagnetic structure in a NdNiO$_{3}$ thin film. Femtosecond laser pulses with a photon energy of 0.61 eV, resonant with electron transfer between long-bond and short-bond nickel sites, are used to excite the material and drive an ultrafast insulator-metal transition. Polarization sensitive soft X-ray diffract… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.06752v2-abstract-full').style.display = 'inline'; document.getElementById('2004.06752v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.06752v2-abstract-full" style="display: none;"> We use resonant soft X-ray diffraction to track the photo-induced dynamics of the antiferromagnetic structure in a NdNiO$_{3}$ thin film. Femtosecond laser pulses with a photon energy of 0.61 eV, resonant with electron transfer between long-bond and short-bond nickel sites, are used to excite the material and drive an ultrafast insulator-metal transition. Polarization sensitive soft X-ray diffraction, resonant to the nickel L$_{3}$-edge, then probes the evolution of the underlying magnetic spiral as a function of time delay with 80 picosecond time resolution. By modelling the azimuthal dependence of the scattered intensity for different linear X-ray polarizations, we benchmark the changes of the local magnetic moments and the spin alignment. The measured changes are consistent with a reduction of the long-bond site magnetic moments and an alignment of the spins towards a more collinear structure at early time delays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.06752v2-abstract-full').style.display = 'none'; document.getElementById('2004.06752v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 014311 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.10555">arXiv:2002.10555</a> <span> [<a href="https://arxiv.org/pdf/2002.10555">pdf</a>, <a href="https://arxiv.org/format/2002.10555">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsmaterialslett.9b00540">10.1021/acsmaterialslett.9b00540 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coupling lattice instabilities across the interface in ultrathin oxide heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=van+Thiel%2C+T+C">T. C. van Thiel</a>, <a href="/search/cond-mat?searchtype=author&query=Fowlie%2C+J">J. Fowlie</a>, <a href="/search/cond-mat?searchtype=author&query=Autieri%2C+C">C. Autieri</a>, <a href="/search/cond-mat?searchtype=author&query=Manca%2C+N">N. Manca</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%A0i%C5%A1kins%2C+M">M. 艩i拧kins</a>, <a href="/search/cond-mat?searchtype=author&query=Afanasiev%2C+D">D. Afanasiev</a>, <a href="/search/cond-mat?searchtype=author&query=Gariglio%2C+S">S. Gariglio</a>, <a href="/search/cond-mat?searchtype=author&query=Caviglia%2C+A+D">A. D. Caviglia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.10555v1-abstract-short" style="display: inline;"> Oxide heterointerfaces constitute a rich platform for realizing novel functionalities in condensed matter. A key aspect is the strong link between structural and electronic properties, which can be modified by interfacing materials with distinct lattice symmetries. Here we determine the effect of the cubic-tetragonal distortion of $\text{SrTiO}_3$ on the electronic properties of thin films of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10555v1-abstract-full').style.display = 'inline'; document.getElementById('2002.10555v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.10555v1-abstract-full" style="display: none;"> Oxide heterointerfaces constitute a rich platform for realizing novel functionalities in condensed matter. A key aspect is the strong link between structural and electronic properties, which can be modified by interfacing materials with distinct lattice symmetries. Here we determine the effect of the cubic-tetragonal distortion of $\text{SrTiO}_3$ on the electronic properties of thin films of $\text{SrIrO}_3$, a topological crystalline metal hosting a delicate interplay between spin-orbit coupling and electronic correlations. We demonstrate that below the transition temperature at 105 K, $\text{SrIrO}_3$ orthorhombic domains couple directly to tetragonal domains in $\text{SrTiO}_3$. This forces the in-phase rotational axis to lie in-plane and creates a binary domain structure in the $\text{SrIrO}_3$ film. The close proximity to the metal-insulator transition in ultrathin $\text{SrIrO}_3$ causes the individual domains to have strongly anisotropic transport properties, driven by a reduction of bandwidth along the in-phase axis. The strong structure-property relationships in perovskites make these compounds particularly suitable for static and dynamic coupling at interfaces, providing a promising route towards realizing novel functionalities in oxide heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10555v1-abstract-full').style.display = 'none'; document.getElementById('2002.10555v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Materials Letters, 2, 398-394 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.06887">arXiv:1910.06887</a> <span> [<a href="https://arxiv.org/pdf/1910.06887">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-020-0757-x">10.1038/s41563-020-0757-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Length-scales of interfacial coupling between metal-insulator phases in oxides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dom%C3%ADnguez%2C+C">Claribel Dom铆nguez</a>, <a href="/search/cond-mat?searchtype=author&query=Georgescu%2C+A+B">Alexandru B. Georgescu</a>, <a href="/search/cond-mat?searchtype=author&query=Mundet%2C+B">Bernat Mundet</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yajun Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Fowlie%2C+J">Jennifer Fowlie</a>, <a href="/search/cond-mat?searchtype=author&query=Mercy%2C+A">Alain Mercy</a>, <a href="/search/cond-mat?searchtype=author&query=Catalano%2C+S">Sara Catalano</a>, <a href="/search/cond-mat?searchtype=author&query=Alexander%2C+D+T+L">Duncan T. L. Alexander</a>, <a href="/search/cond-mat?searchtype=author&query=Ghosez%2C+P">Philippe Ghosez</a>, <a href="/search/cond-mat?searchtype=author&query=Georges%2C+A">Antoine Georges</a>, <a href="/search/cond-mat?searchtype=author&query=Millis%2C+A+J">Andrew J. Millis</a>, <a href="/search/cond-mat?searchtype=author&query=Gibert%2C+M">Marta Gibert</a>, <a href="/search/cond-mat?searchtype=author&query=Triscone%2C+J">Jean-Marc Triscone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.06887v2-abstract-short" style="display: inline;"> Controlling phase transitions in transition metal oxides remains a central feature of both technological and fundamental scientific relevance. A well-known example is the metal-insulator transition which has been shown to be highly controllable while a less well understood aspect of this phenomenon is the length scale over which the phases can be established. To gain further insight into this issu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.06887v2-abstract-full').style.display = 'inline'; document.getElementById('1910.06887v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.06887v2-abstract-full" style="display: none;"> Controlling phase transitions in transition metal oxides remains a central feature of both technological and fundamental scientific relevance. A well-known example is the metal-insulator transition which has been shown to be highly controllable while a less well understood aspect of this phenomenon is the length scale over which the phases can be established. To gain further insight into this issue, we have atomically engineered an artificially phase separated system through fabricating epitaxial superlattices consisting of SmNiO$_{3}$ and NdNiO$_{3}$, two materials undergoing a metal-to-insulator transition at different temperatures. By combining advanced experimental techniques and theoretical modeling, we demonstrate that the length scale of the metal-insulator transition is controlled by the balance of the energy cost of the domain wall between a metal and insulator and the bulk energetics. Notably, we show that the length scale of this effect exceeds that of the physical coupling of structural motifs, introducing a new paradigm for interface-engineering properties that are not available in bulk <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.06887v2-abstract-full').style.display = 'none'; document.getElementById('1910.06887v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 6 figures, typos corrected</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>