CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 738 results for author: <span class="mathjax">Lee, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Lee%2C+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lee, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lee%2C+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lee, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Lee%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Lee%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lee%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lee%2C+K&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lee%2C+K&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lee%2C+K&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03106">arXiv:2501.03106</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.03106">pdf</a>, <a href="https://arxiv.org/format/2501.03106">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Cavity quantum electrodynamics of photonic temporal crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bae%2C+J">Junhyeon Bae</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyungmin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+B">Bumki Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K+W">Kun Woo Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03106v1-abstract-short" style="display: inline;"> Photonic temporal crystals host a variety of intriguing phenomena, from wave amplification and mixing to exotic band structures, all stemming from the time-periodic modulation of optical properties. While these features have been well described classically, their quantum manifestation has remained elusive. Here, we introduce a quantum electrodynamical model of PTCs that reveals a deeper connection&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03106v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03106v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03106v1-abstract-full" style="display: none;"> Photonic temporal crystals host a variety of intriguing phenomena, from wave amplification and mixing to exotic band structures, all stemming from the time-periodic modulation of optical properties. While these features have been well described classically, their quantum manifestation has remained elusive. Here, we introduce a quantum electrodynamical model of PTCs that reveals a deeper connection between classical and quantum pictures: the classical momentum gap arises from a localization-delocalization quantum phase transition in a Floquet-photonic synthetic lattice. Leveraging an effective Hamiltonian perspective, we pinpoint the critical momenta and highlight how classical exponential field growth manifests itself as wave-packet acceleration in the quantum synthetic space. Remarkably, when a two-level atom is embedded in such a cavity, its Rabi oscillations undergo irreversible decay to a half-and-half mixed state-a previously unobserved phenomenon driven by photonic delocalization within the momentum gap, even with just a single frequency mode. Our findings establish photonic temporal crystals as versatile platforms for studying nonequilibrium quantum photonics and suggest new avenues for controlling light matter interactions through time domain engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03106v1-abstract-full').style.display = 'none'; document.getElementById('2501.03106v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02768">arXiv:2501.02768</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.02768">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergence of Giant Magnetic Chirality during Dimensionality Crossover of Magnetic Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D">Dae-Yun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nam%2C+Y">Yun-Seok Nam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Younghak Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kyoung-Whan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Go%2C+G">Gyungchoon Go</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Seong-Hyub Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moon%2C+J">Joon Moon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Jun-Young Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+A">Ah-Yeon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Seung-Young Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+B">Byoung-Chul Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyung-Jin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hyunsoo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D">Duck-Ho Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choe%2C+S">Sug-Bong Choe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02768v1-abstract-short" style="display: inline;"> Chirality, an intrinsic preference for a specific handedness, is a fundamental characteristic observed in nature. In magnetism, magnetic chirality arises from the anti-symmetric Dzyaloshinskii-Moriya interaction in competition with the symmetric Heisenberg exchange interaction. Traditionally, the anti-symmetric interaction has been considered minor relative to the symmetric interaction. In this st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02768v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02768v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02768v1-abstract-full" style="display: none;"> Chirality, an intrinsic preference for a specific handedness, is a fundamental characteristic observed in nature. In magnetism, magnetic chirality arises from the anti-symmetric Dzyaloshinskii-Moriya interaction in competition with the symmetric Heisenberg exchange interaction. Traditionally, the anti-symmetric interaction has been considered minor relative to the symmetric interaction. In this study, we demonstrate an observation of giant magnetic chirality during the dimensionality crossover of magnetic materials from three-dimensional to two-dimensional. The ratio between the anti-symmetric and symmetric interactions exhibits a reversal in their dominance over this crossover, overturning the traditional consideration. This observation is validated theoretically using a non-local interaction model and tight-binding calculation with distinct pairing schemes for each exchange interaction throughout the crossover. Additional experiments investigating the asphericity of orbital moments corroborate the robustness of our findings. Our findings highlight the critical role of dimensionality in shaping magnetic chirality and offer strategies for engineering chiral magnet states with unprecedented strength, desired for the design of spintronic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02768v1-abstract-full').style.display = 'none'; document.getElementById('2501.02768v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02525">arXiv:2501.02525</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.02525">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Time-reversal symmetry breaking fractional quantum spin Hall insulator in moir茅 MoTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+K">Kaifei Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Y">Yichen Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">Bowen Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kihong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+Z">Zhengchao Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Y">Yihang Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+J">Jie Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mak%2C+K+F">Kin Fai Mak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02525v1-abstract-short" style="display: inline;"> Twisted bilayer transition metal dichalcogenide semiconductors, which support flat Chern bands with enhanced interaction effects, realize a platform for fractional Chern insulators and fractional quantum spin Hall (FQSH) insulators. A recent experiment has reported the emergence of a FQSH insulator protected by spin-Sz conservation at a moir茅 lattice filling factor 谓=3 in 2.1-degree twisted bilaye&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02525v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02525v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02525v1-abstract-full" style="display: none;"> Twisted bilayer transition metal dichalcogenide semiconductors, which support flat Chern bands with enhanced interaction effects, realize a platform for fractional Chern insulators and fractional quantum spin Hall (FQSH) insulators. A recent experiment has reported the emergence of a FQSH insulator protected by spin-Sz conservation at a moir茅 lattice filling factor 谓=3 in 2.1-degree twisted bilayer MoTe2. Theoretical studies have proposed both time-reversal symmetric and asymmetric ground states as possible candidates for the observed FQSH insulator, but the nature of the state remains unexplored. Here we report the observation of spontaneous time-reversal symmetry breaking at generic fillings in 2.1-degree twisted bilayer MoTe2 from 谓&lt;1 all the way to 谓&gt;6 except at 谓=2, 4, and 6. Although zero Hall response is observed at 谓=3 for magnetic fields higher than 20 mT, a finite anomalous Hall response accompanied by a magnetic hysteresis is observed at lower magnetic fields, demonstrating spontaneous time-reversal symmetry breaking. Our work shows the tendency towards ferromagnetism by doping the first three pairs of conjugate Chern bands in the material; it also sheds light on the nature of the FQSH insulator at 谓=3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02525v1-abstract-full').style.display = 'none'; document.getElementById('2501.02525v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In Supplemental Figure 4, we contrast a 2.6-degree device with a 2.1-degree device</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.21110">arXiv:2412.21110</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.21110">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Epitaxial Sr-doped nickelate perovskite thin films and Ruddlesden-Popper phases grown by magnetron sputtering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C">Changhwan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+M+Y">Min Young Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khim%2C+Y+G">Yeong Gwang Khim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+J">Kyeong Jun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y+J">Young Jun Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+S+H">Seo Hyoung Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.21110v1-abstract-short" style="display: inline;"> Sr-doped nickelate, Nd1-xSrxNiO3 (NSNO), perovskite thin films and Ruddlesden-Popper (RP) phases are actively investigated because of their physical properties, such as the metal-insulator transition and superconductivity. However, achieving epitaxial growth of NSNO perovskite and RP phase films in a sputtering system is challenging compared to pulsed laser deposition and molecular beam epitaxy, d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.21110v1-abstract-full').style.display = 'inline'; document.getElementById('2412.21110v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.21110v1-abstract-full" style="display: none;"> Sr-doped nickelate, Nd1-xSrxNiO3 (NSNO), perovskite thin films and Ruddlesden-Popper (RP) phases are actively investigated because of their physical properties, such as the metal-insulator transition and superconductivity. However, achieving epitaxial growth of NSNO perovskite and RP phase films in a sputtering system is challenging compared to pulsed laser deposition and molecular beam epitaxy, due to the difficulty in stabilizing nickel oxidation states and minimizing structural defects. Here, we used an off-axis radio frequency (RF) magnetron sputtering to fabricate epitaxial NSNO perovskite and RP phase thin films on SrTiO3 (001) substrates, systematically controlling the growth temperatures. We investigated the thermal stability of the perovskite phase and the structural and electronic characteristics of the RP phase films. These findings provide valuable insights into the synthesis of nickelate RP phase films using RF magnetron sputtering, paving the way for scalable thin films fabrication technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.21110v1-abstract-full').style.display = 'none'; document.getElementById('2412.21110v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03777">arXiv:2412.03777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.03777">pdf</a>, <a href="https://arxiv.org/format/2412.03777">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Signatures of Floquet Engineering in the proximal Kitaev Quantum Spin Liquid H$_3$LiIr$_2$O$_6$ by tr-RIXS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jungho Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+T">Tae-Kyu Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercer%2C+E">Edward Mercer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+L+T">Liam T. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Jaeku Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sang-Youn Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+D">Dogeun Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+S+H">Seo Hyoung Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Said%2C+A">Ayman Said</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chun%2C+S+H">Sae Hwan Chun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+J">Kyeong Jun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S+W">Sang Wook Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+H">Hyunjeong Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+H">Hyeonhui Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C">Chanhyeon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+K">Kwang-Yong Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bahrami%2C+F">Faranak Bahrami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F">Fazel Tafti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claassen%2C+M">Martin Claassen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+la+Torre%2C+A">Alberto de la Torre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03777v1-abstract-short" style="display: inline;"> We present the first circularly polarized Floquet engineering time-resolved Resonant Inelastic X-ray Scattering (tr-RIXS) experiment in H$_3$LiIr$_2$O$_6$, an iridium-based Kitaev system. Our calculations and experimental results are consistent with the modification of the low energy magnetic excitations in H$_3$LiIr$_2$O$_6$ only during illumination by the laser pulse, consistent with the Floquet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03777v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03777v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03777v1-abstract-full" style="display: none;"> We present the first circularly polarized Floquet engineering time-resolved Resonant Inelastic X-ray Scattering (tr-RIXS) experiment in H$_3$LiIr$_2$O$_6$, an iridium-based Kitaev system. Our calculations and experimental results are consistent with the modification of the low energy magnetic excitations in H$_3$LiIr$_2$O$_6$ only during illumination by the laser pulse, consistent with the Floquet engineering of the exchange interactions. However, the penetration length mismatch between the X-ray probe and laser pump and the intrinsic complexity of Kitaev magnets prevented us from unequivocally extracting towards which ground H$_3$LiIr$_2$O$_6$ was driven. We outline possible solutions to these challenges for Floquet stabilization and observation of the Kitaev Quantum Spin Liquid limit by RIXS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03777v1-abstract-full').style.display = 'none'; document.getElementById('2412.03777v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02067">arXiv:2412.02067</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.02067">pdf</a>, <a href="https://arxiv.org/format/2412.02067">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Transverse magnetic focusing in two-dimensional hole gases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+K">Yik K. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+J+S">Jackson S. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Culcer%2C+D">Dimitrie Culcer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sushkov%2C+O+P">Oleg P. Sushkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamilton%2C+A+R">Alexander R. Hamilton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cole%2C+J+H">Jared H. Cole</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02067v1-abstract-short" style="display: inline;"> Two-dimensional hole gases (2DHGs) have strong intrinsic spin-orbit coupling and could be used to build spin filters by utilising transverse magnetic focusing (TMF). However, with an increase in the spin degree of freedom, holes demonstrate significantly different behaviour to electrons in TMF experiments, making it difficult to interpret the results of these experiments. In this paper, we numeric&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02067v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02067v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02067v1-abstract-full" style="display: none;"> Two-dimensional hole gases (2DHGs) have strong intrinsic spin-orbit coupling and could be used to build spin filters by utilising transverse magnetic focusing (TMF). However, with an increase in the spin degree of freedom, holes demonstrate significantly different behaviour to electrons in TMF experiments, making it difficult to interpret the results of these experiments. In this paper, we numerically model TMF in a 2DHG within a GaAs/Al$_{\mathrm{x}}$Ga$_{\mathrm{1-x}}$As heterostructure. Our band structure calculations show that the heavy $(\langle J_{z} \rangle = \pm\frac{3}{2})$ and light $(\langle J_{z} \rangle = \pm\frac{1}{2})$ hole states in the valence band mix at finite $k$, and the heavy hole subbands which are spin-split due to the Rashba effect are not spin-polarised. This lack of spin polarisation casts doubt on the viability of spin filtering using TMF in 2DHGs within conventional GaAs/Al$_{\mathrm{x}}$Ga$_{\mathrm{1-x}}$As heterostructures. We then calculate transport properties of the 2DHG with spin projection and offer a new perspective on interpreting and designing TMF experiments in 2DHGs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02067v1-abstract-full').style.display = 'none'; document.getElementById('2412.02067v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11191">arXiv:2411.11191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11191">pdf</a>, <a href="https://arxiv.org/format/2411.11191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Accelerating Quantum Emitter Characterization with Latent Neural Ordinary Differential Equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Proppe%2C+A+H">Andrew H. Proppe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+L+K">Kin Long Kelvin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+W">Weiwei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krajewska%2C+C+J">Chantalle J. Krajewska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tye%2C+O">Oliver Tye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bawendi%2C+M+G">Moungi G. Bawendi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11191v1-abstract-short" style="display: inline;"> Deep neural network models can be used to learn complex dynamics from data and reconstruct sparse or noisy signals, thereby accelerating and augmenting experimental measurements. Evaluating the quantum optical properties of solid-state single-photon emitters is a time-consuming task that typically requires interferometric photon correlation experiments, such as Photon correlation Fourier spectrosc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11191v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11191v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11191v1-abstract-full" style="display: none;"> Deep neural network models can be used to learn complex dynamics from data and reconstruct sparse or noisy signals, thereby accelerating and augmenting experimental measurements. Evaluating the quantum optical properties of solid-state single-photon emitters is a time-consuming task that typically requires interferometric photon correlation experiments, such as Photon correlation Fourier spectroscopy (PCFS) which measures time-resolved single emitter lineshapes. Here, we demonstrate a latent neural ordinary differential equation model that can forecast a complete and noise-free PCFS experiment from a small subset of noisy correlation functions. By encoding measured photon correlations into an initial value problem, the NODE can be propagated to an arbitrary number of interferometer delay times. We demonstrate this with 10 noisy photon correlation functions that are used to extrapolate an entire de-noised interferograms of up to 200 stage positions, enabling up to a 20-fold speedup in experimental acquisition time from $\sim$3 hours to 10 minutes. Our work presents a new approach to greatly accelerate the experimental characterization of novel quantum emitter materials using deep learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11191v1-abstract-full').style.display = 'none'; document.getElementById('2411.11191v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04367">arXiv:2411.04367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04367">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Skyrmion Emergence via Domain Wall Anchoring through Vertical Bloch Line </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+S">Suyeong Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+D">Dae-Han Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+H">Hee-Sung Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Ganghwi Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">Myeonghwan Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Im%2C+M">Mi-Young Im</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+Y">Younggun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Ki-Suk Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04367v1-abstract-short" style="display: inline;"> Skyrmions, topologically stable magnetic solitons characterized by whirling magnetization in nanoscale magnetic elements, show promise information carriers in spintronics and spin-based quantum computing due to their unique properties: small size, stability, and controllability. In this study, we introduce a novel method of skyrmion generation through domain wall deformation dynamics. Our analytic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04367v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04367v1-abstract-full" style="display: none;"> Skyrmions, topologically stable magnetic solitons characterized by whirling magnetization in nanoscale magnetic elements, show promise information carriers in spintronics and spin-based quantum computing due to their unique properties: small size, stability, and controllability. In this study, we introduce a novel method of skyrmion generation through domain wall deformation dynamics. Our analytical and micromagnetic simulations demonstrate that domain wall motion exceeding the Walker threshold induces topological deformation of magnetic domain walls exhibiting Dzyaloshinskii-Moriya interaction. This deformation process catalyzes the emergence of skyrmions from magnetic domain wall structure distortion, specifically through the Anchoring of domain walls due to the vertical Bloch line. We elucidate the underlying mechanism of skyrmion generation, correlating it with topological transitions accompanied by burst energy dissipation through spin-wave radiation. Notably, we present robust skyrmion generation conditions through a comprehensive classification of domain wall distortion, including vertical Bloch line generation and annihilation in magnetic domain wall dynamics within a DMI system. These findings provide noble insights into topological behaviors of spin structures and offer a potential pathway for efficient, controlled skyrmion creation in the next-generation spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04367v1-abstract-full').style.display = 'none'; document.getElementById('2411.04367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01727">arXiv:2411.01727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01727">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Atomic-scale 3D structural dynamics and functional degradation of Pt alloy nanocatalysts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+C">Chaehwa Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Juhyeok Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+H">Hyesung Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">SangJae Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">KwangHo Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ophus%2C+C">Colin Ophus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ercius%2C+P">Peter Ercius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+E">EunAe Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yongsoo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01727v1-abstract-short" style="display: inline;"> Pt-based electrocatalysts are the primary choice for fuel cells due to their superior oxygen reduction reaction (ORR) activity. To enhance ORR performance and durability, extensive studies have investigated transition metal alloying, doping, and shape control to optimize the three key governing factors for ORR: geometry, local chemistry, and strain of their surface and subsurface. However, systema&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01727v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01727v1-abstract-full" style="display: none;"> Pt-based electrocatalysts are the primary choice for fuel cells due to their superior oxygen reduction reaction (ORR) activity. To enhance ORR performance and durability, extensive studies have investigated transition metal alloying, doping, and shape control to optimize the three key governing factors for ORR: geometry, local chemistry, and strain of their surface and subsurface. However, systematic optimization remains incomplete, as it requires an atomic-scale understanding of these factors and their dynamics over potential cycling, as well as their relationship to ORR activity. Here, we implement neural network-assisted atomic electron tomography to measure the 3D atomic structural dynamics and their effects on the functional degradation of PtNi alloy catalysts. Our results reveal that PtNi catalysts undergo shape changes, surface alloying, and strain relaxation during cycling, which can be effectively mitigated by Ga doping. By combining geometry, local chemistry, and strain analysis, we calculated the changes in ORR activity over thousands of cycles and observed that Ga doping leads to higher initial activity and greater stability. These findings offer a pathway to understanding 3D atomic structural dynamics and their relation to ORR activity during cycling, paving the way for the systematic design of durable, high-efficiency nanocatalysts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01727v1-abstract-full').style.display = 'none'; document.getElementById('2411.01727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 4 main figures, 15 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08131">arXiv:2410.08131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08131">pdf</a>, <a href="https://arxiv.org/format/2410.08131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Deconstructing equivariant representations in molecular systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+L+K">Kin Long Kelvin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Galkin%2C+M">Mikhail Galkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miret%2C+S">Santiago Miret</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08131v1-abstract-short" style="display: inline;"> Recent equivariant models have shown significant progress in not just chemical property prediction, but as surrogates for dynamical simulations of molecules and materials. Many of the top performing models in this category are built within the framework of tensor products, which preserves equivariance by restricting interactions and transformations to those that are allowed by symmetry selection r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08131v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08131v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08131v1-abstract-full" style="display: none;"> Recent equivariant models have shown significant progress in not just chemical property prediction, but as surrogates for dynamical simulations of molecules and materials. Many of the top performing models in this category are built within the framework of tensor products, which preserves equivariance by restricting interactions and transformations to those that are allowed by symmetry selection rules. Despite being a core part of the modeling process, there has not yet been much attention into understanding what information persists in these equivariant representations, and their general behavior outside of benchmark metrics. In this work, we report on a set of experiments using a simple equivariant graph convolution model on the QM9 dataset, focusing on correlating quantitative performance with the resulting molecular graph embeddings. Our key finding is that, for a scalar prediction task, many of the irreducible representations are simply ignored during training -- specifically those pertaining to vector ($l=1$) and tensor quantities ($l=2$) -- an issue that does not necessarily make itself evident in the test metric. We empirically show that removing some unused orders of spherical harmonics improves model performance, correlating with improved latent space structure. We provide a number of recommendations for future experiments to try and improve efficiency and utilization of equivariant features based on these observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08131v1-abstract-full').style.display = 'none'; document.getElementById('2410.08131v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in the Findings track at the AI4Mat workshop, NeurIPS 2024 Vancouver, BC</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06557">arXiv:2410.06557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06557">pdf</a>, <a href="https://arxiv.org/format/2410.06557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Observation of disorder-free localization and efficient disorder averaging on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T">Tyler Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lensky%2C+Y">Yuri Lensky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a> , et al. (195 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06557v1-abstract-short" style="display: inline;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06557v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06557v1-abstract-full" style="display: none;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without disorder in quantum many-body dynamics in one and two dimensions: perturbations do not diffuse even though both the generator of evolution and the initial states are fully translationally invariant. The disorder strength as well as its density can be readily tuned using the initial state. Furthermore, we demonstrate the versatility of our platform by measuring Renyi entropies. Our method could also be extended to higher moments of the physical observables and disorder learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'none'; document.getElementById('2410.06557v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01937">arXiv:2410.01937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01937">pdf</a>, <a href="https://arxiv.org/format/2410.01937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Magnetically Tuned Metal-Insulator Transition in LaAlO$_3$/SrTiO$_3$ Nanowire Arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ramachandran%2C+R">Ranjani Ramachandran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anand%2C+S">Shashank Anand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eom%2C+K">Kitae Eom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyoungjun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D">Dengyu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+M">Muqing Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+S">Sayanwita Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nethwewala%2C+A">Aditi Nethwewala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eom%2C+C">Chang-Beom Eom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carlson%2C+E">Erica Carlson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Irvin%2C+P">Patrick Irvin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+J">Jeremy Levy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01937v2-abstract-short" style="display: inline;"> A wide family of two dimensional (2D) systems, including stripe-phase superconductors, sliding Luttinger liquids, and anisotropic 2D materials, can be modeled by an array of coupled one-dimensional (1D) electron channels or nanowire arrays. Here we report experiments in arrays of conducting nanowires with gate and field tunable interwire coupling, that are programmed at the LaAlO$_3$/SrTiO$_3$ int&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01937v2-abstract-full').style.display = 'inline'; document.getElementById('2410.01937v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01937v2-abstract-full" style="display: none;"> A wide family of two dimensional (2D) systems, including stripe-phase superconductors, sliding Luttinger liquids, and anisotropic 2D materials, can be modeled by an array of coupled one-dimensional (1D) electron channels or nanowire arrays. Here we report experiments in arrays of conducting nanowires with gate and field tunable interwire coupling, that are programmed at the LaAlO$_3$/SrTiO$_3$ interface. We find a magnetically-tuned metal-to-insulator transition in which the transverse resistance of the nanowire array increases by up to four orders of magnitude. To explain this behavior, we develop a minimal model of a coupled two-wire system which agrees well with observed phenomena. These nanowire arrays can serve as a model systems to understand the origin of exotic behavior in correlated materials via analog quantum simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01937v2-abstract-full').style.display = 'none'; document.getElementById('2410.01937v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01936">arXiv:2410.01936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01936">pdf</a>, <a href="https://arxiv.org/format/2410.01936">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Electric and Magnetic Field-dependent Tunneling between Coupled Nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Anand%2C+S">Shashank Anand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramachandran%2C+R">Ranjani Ramachandran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eom%2C+K">Kitae Eom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyoungjun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D">Dengyu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+M">Muqing Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+S">Sayanwita Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nethwewala%2C+A">Aditi Nethwewala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eom%2C+C">Chang-Beom Eom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carlson%2C+E">Erica Carlson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Irvin%2C+P">Patrick Irvin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Levy%2C+J">Jeremy Levy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01936v1-abstract-short" style="display: inline;"> Coupled quasi-one-dimensional (quasi-1D) electron systems host rich emergent physics that cannot be accounted for by understanding isolated 1D electron systems alone. Open questions remain about how transport in these arrays can be manipulated by the application of external electric and magnetic fields. In this theoretical study, we consider a pair of coupled nanowires with non-interacting electro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01936v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01936v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01936v1-abstract-full" style="display: none;"> Coupled quasi-one-dimensional (quasi-1D) electron systems host rich emergent physics that cannot be accounted for by understanding isolated 1D electron systems alone. Open questions remain about how transport in these arrays can be manipulated by the application of external electric and magnetic fields. In this theoretical study, we consider a pair of coupled nanowires with non-interacting electrons. We find that a metal-insulator transition is induced by an out-of-plane magnetic field and a transverse potential bias on an array of such coupled wires. We demonstrate the existence of distinct conductance features and highlight the crucial role played by the field dependence of the interwire potential barrier on transport properties. These predictions agree well with transport experiments performed on coupled nanowires sketched on an LaAlO3/SrTiO3 interface. Since our model makes minimal assumptions, we expect our predictions to hold for a wide class of coupled 1D systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01936v1-abstract-full').style.display = 'none'; document.getElementById('2410.01936v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20462">arXiv:2409.20462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20462">pdf</a>, <a href="https://arxiv.org/format/2409.20462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Nonreciprocal Local-Resonance Induced Complex Band Hybridization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yau%2C+W+T">Wang Tat Yau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+F">Kai Fung Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+R+P+H">Raymond P. H. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+W+C">Wai Chun Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jensen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+1+C+T">1 C. T. Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fung%2C+K+H">Kin Hung Fung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20462v1-abstract-short" style="display: inline;"> We study the complex band hybridization induced by nonreciprocal local resonances in photonic crystals. Composed of trimer unit cells, a two-dimensional (2D) magnetophotonic crystal with an analytically obtainable solution is considered. We find that nonreciprocal spectral gap may appear without nonreciprocal transmission and that the imaginary parts of the complex wavevectors&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20462v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20462v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20462v1-abstract-full" style="display: none;"> We study the complex band hybridization induced by nonreciprocal local resonances in photonic crystals. Composed of trimer unit cells, a two-dimensional (2D) magnetophotonic crystal with an analytically obtainable solution is considered. We find that nonreciprocal spectral gap may appear without nonreciprocal transmission and that the imaginary parts of the complex wavevectors $\text{Im}(\mathbf{k})$ may blow up at resonance to give extreme nonreciprocal transmission. We further show that, for a subwavelegnth lattice, the isolation ratio for the nonreciprocal transmission is determined solely by $\text{Im}(\mathbf{k})$ instead of the extensively studied real part $\text{Re}(\mathbf{k})$. Our finding contradicts the common belief that &#34;spectral nonreciprocity [$蠅(\mathbf{k})\neq蠅(-\mathbf{k})$] always implies nonreciprocal transmission&#34;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20462v1-abstract-full').style.display = 'none'; document.getElementById('2409.20462v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17813">arXiv:2409.17813</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17813">pdf</a>, <a href="https://arxiv.org/format/2409.17813">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Spin-Dependent Signatures of Majorana Vortex Fusion within Planar Josephson Junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ganesh%2C+K">Krishnan Ganesh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D+K+K">Derek K. K. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pachos%2C+J+K">Jiannis K. Pachos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17813v1-abstract-short" style="display: inline;"> We investigate the magnetic characteristics and tunnelling signatures of a planar Josephson junction with Rashba spin-orbit coupling during the fusion of two Majorana vortices. By employing the topological phase diagram and conducting tight-binding simulations of the proposed device, we demonstrate that this fusion process induces a parity-dependent magnetic moment aligned with the junction axis.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17813v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17813v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17813v1-abstract-full" style="display: none;"> We investigate the magnetic characteristics and tunnelling signatures of a planar Josephson junction with Rashba spin-orbit coupling during the fusion of two Majorana vortices. By employing the topological phase diagram and conducting tight-binding simulations of the proposed device, we demonstrate that this fusion process induces a parity-dependent magnetic moment aligned with the junction axis. We further propose a method to probe the spin properties of the fusing Majorana zero modes through spin-resolved Andreev conductance measurements at the junction endpoints. To support our findings, we derive a low-energy effective Hamiltonian that provides a detailed microscopic description of the numerically observed phenomena. Our analysis enables the detection of Majorana fusion outcome from accessible spin current measurements, thus paving the way for future experimental verification and potential applications in topological quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17813v1-abstract-full').style.display = 'none'; document.getElementById('2409.17813v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17398">arXiv:2409.17398</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17398">pdf</a>, <a href="https://arxiv.org/format/2409.17398">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of spin squeezing with contact interactions in one- and three-dimensional easy-plane magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+K">Yoo Kyung Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Block%2C+M">Maxwell Block</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hanzhen Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedoseev%2C+V">Vitaly Fedoseev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crowley%2C+P+J+D">Philip J. D. Crowley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N+Y">Norman Y. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ketterle%2C+W">Wolfgang Ketterle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17398v1-abstract-short" style="display: inline;"> Entanglement in a many-particle system can enable measurement sensitivities beyond that achievable by only classical correlations. For an ensemble of spins, all-to-all interactions are known to reshape the quantum projection noise, leading to a form of entanglement known as spin squeezing. Here, we demonstrate spin squeezing with strictly short-range contact interactions. In particular, working wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17398v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17398v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17398v1-abstract-full" style="display: none;"> Entanglement in a many-particle system can enable measurement sensitivities beyond that achievable by only classical correlations. For an ensemble of spins, all-to-all interactions are known to reshape the quantum projection noise, leading to a form of entanglement known as spin squeezing. Here, we demonstrate spin squeezing with strictly short-range contact interactions. In particular, working with ultracold lithium atoms in optical lattices, we utilize superexchange interactions to realize a nearest-neighbor anisotropic Heisenberg model. We investigate the resulting quench dynamics from an initial product state in both one and three dimensions. In 1D, we observe $1.9^{+0.7}_{-0.5}$ dB of spin squeezing in quantitative agreement with theory. However, in 3D, we observe a maximum of $2.0^{+0.7}_{-0.7}$ dB of squeezing, over an order of magnitude smaller than that expected. We demonstrate that this discrepancy arises from the presence of a finite density of holes; both the motion of the holes as well as direct coupling between spin and density qualitatively alter the spin dynamics. Our observations point to the importance of understanding the complex interplay between motional and spin degrees of freedom in quantum simulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17398v1-abstract-full').style.display = 'none'; document.getElementById('2409.17398v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17142">arXiv:2409.17142</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17142">pdf</a>, <a href="https://arxiv.org/format/2409.17142">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jobst%2C+B">Bernhard Jobst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eassa%2C+N">Norhan Eassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Will%2C+M">Melissa Will</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Browne%2C+D+A">David A. Browne</a> , et al. (167 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17142v1-abstract-short" style="display: inline;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17142v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17142v1-abstract-full" style="display: none;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'none'; document.getElementById('2409.17142v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04744">arXiv:2408.04744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04744">pdf</a>, <a href="https://arxiv.org/format/2408.04744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Noise-augmented Chaotic Ising Machines for Combinatorial Optimization and Sampling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyle Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chowdhury%2C+S">Shuvro Chowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Camsari%2C+K+Y">Kerem Y. Camsari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04744v2-abstract-short" style="display: inline;"> Ising machines, hardware accelerators for combinatorial optimization and probabilistic sampling problems, have gained significant interest recently. A key element is stochasticity, which enables a wide exploration of configurations, thereby helping avoid local minima. Here, we refine the previously proposed concept of coupled chaotic bits (c-bits) that operate without explicit stochasticity. We sh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04744v2-abstract-full').style.display = 'inline'; document.getElementById('2408.04744v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04744v2-abstract-full" style="display: none;"> Ising machines, hardware accelerators for combinatorial optimization and probabilistic sampling problems, have gained significant interest recently. A key element is stochasticity, which enables a wide exploration of configurations, thereby helping avoid local minima. Here, we refine the previously proposed concept of coupled chaotic bits (c-bits) that operate without explicit stochasticity. We show that augmenting chaotic bits with stochasticity enhances performance in combinatorial optimization, achieving algorithmic scaling comparable to probabilistic bits (p-bits). We first demonstrate that c-bits follow the quantum Boltzmann law in a 1D transverse field Ising model. We then show that c-bits exhibit critical dynamics similar to stochastic p-bits in 2D Ising and 3D spin glass models, with promising potential to solve challenging optimization problems. Finally, we propose a noise-augmented version of coupled c-bits via the adaptive parallel tempering algorithm (APT). Our noise-augmented c-bit algorithm outperforms fully deterministic c-bits running versions of the simulated annealing algorithm. Other analog Ising machines with coupled oscillators could draw inspiration from the proposed algorithm. Running replicas at constant temperature eliminates the need for global modulation of coupling strengths. Mixing stochasticity with deterministic c-bits creates a powerful hybrid computing scheme that can bring benefits in scaled, asynchronous, and massively parallel hardware implementations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04744v2-abstract-full').style.display = 'none'; document.getElementById('2408.04744v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02093">arXiv:2408.02093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02093">pdf</a>, <a href="https://arxiv.org/format/2408.02093">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Floquet engineering of topological phase transitions in quantum spin Hall $伪$-$T_{3}$ system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+W">Kok Wai Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calderon%2C+M+J+A">Mateo Jalen Andrew Calderon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xiang-Long Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C+H">Ching Hua Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ang%2C+Y+S">Yee Sin Ang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+P">Pei-Hao Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02093v3-abstract-short" style="display: inline;"> Floquet engineering of topological phase transitions driven by a high-frequency time-periodic field is a promising approach to realizing new topological phases of matter distinct from static states. Here, we theoretically investigate Floquet engineering topological phase transitions in the quantum spin Hall $伪$-$T_{3}$ system driven by an off-resonant circularly polarized light. In addition to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02093v3-abstract-full').style.display = 'inline'; document.getElementById('2408.02093v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02093v3-abstract-full" style="display: none;"> Floquet engineering of topological phase transitions driven by a high-frequency time-periodic field is a promising approach to realizing new topological phases of matter distinct from static states. Here, we theoretically investigate Floquet engineering topological phase transitions in the quantum spin Hall $伪$-$T_{3}$ system driven by an off-resonant circularly polarized light. In addition to the quantum spin (anomalous) Hall insulator phase with multiple helical (chiral) edge states, spin-polarized topological metallic phases are observed, where the bulk topological band gap of one spin sub-band overlaps with the other gapless spin sub-band. Moreover, with a staggered potential, the topological invariants of the system depend on whether the middle band is occupied because of the breaking of symmetry with respect to the center of energy-momentum plane. Our work highlights the significance of Floquet engineering in realizing new topological phases in $伪$-$T_{3}$ lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02093v3-abstract-full').style.display = 'none'; document.getElementById('2408.02093v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.21093">arXiv:2407.21093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.21093">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Exciton Fission Enhanced Silicon Solar Cell </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nagaya%2C+N">Narumi Nagaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kangmin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perkinson%2C+C+F">Collin F. Perkinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+A">Aaron Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Youri Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+X">Xinjue Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sujin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weisburn%2C+L+P">Leah P. Weisburn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baikie%2C+T+K">Tomi K. Baikie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bawendi%2C+M+G">Moungi G. Bawendi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Voorhis%2C+T">Troy Van Voorhis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tisdale%2C+W+A">William A. Tisdale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kahn%2C+A">Antoine Kahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+K">Kwanyong Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldo%2C+M+A">Marc A. Baldo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.21093v1-abstract-short" style="display: inline;"> While silicon solar cells dominate global photovoltaic energy production, their continued improvement is hindered by the single junction limit. One potential solution is to use molecular singlet exciton fission to generate two electrons from each absorbed high-energy photon. We demonstrate that the long-standing challenge of coupling molecular excited states to silicon solar cells can be overcome&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21093v1-abstract-full').style.display = 'inline'; document.getElementById('2407.21093v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.21093v1-abstract-full" style="display: none;"> While silicon solar cells dominate global photovoltaic energy production, their continued improvement is hindered by the single junction limit. One potential solution is to use molecular singlet exciton fission to generate two electrons from each absorbed high-energy photon. We demonstrate that the long-standing challenge of coupling molecular excited states to silicon solar cells can be overcome using sequential charge transfer. Combining zinc phthalocyanine, aluminum oxide, and a shallow junction crystalline silicon microwire solar cell, the peak charge generation efficiency per photon absorbed in tetracene is (138 +- 6)%, comfortably surpassing the quantum efficiency limit for conventional silicon solar cells and establishing a new, scalable approach to low cost, high efficiency photovoltaics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21093v1-abstract-full').style.display = 'none'; document.getElementById('2407.21093v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14682">arXiv:2407.14682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.14682">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electronically Amplified Electron-Phonon Interaction and Metal-Insulator Transition in Perovskite Nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Y">Yong Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhatta%2C+R">Regan Bhatta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonzalez%2C+M">Martin Gonzalez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiarui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Ruohan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14682v1-abstract-short" style="display: inline;"> The relative role of electron-electron and electron-lattice interactions in driving the metal-insulator transition in perovskite nickelates opens a rare window into the non-trivial interplay of the two important degrees of freedom in solids. The most promising solution is to extract the electronic and lattice contributions during the phase transition by performing high-resolution spectroscopy meas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14682v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14682v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14682v1-abstract-full" style="display: none;"> The relative role of electron-electron and electron-lattice interactions in driving the metal-insulator transition in perovskite nickelates opens a rare window into the non-trivial interplay of the two important degrees of freedom in solids. The most promising solution is to extract the electronic and lattice contributions during the phase transition by performing high-resolution spectroscopy measurements. Here, we present a three-dimensional electronic structure study of Nd1-xSrxNiO3 (x = 0 and 0.175) thin films with unprecedented accuracy, in which the low energy fermiology has a quantitative agreement with model simulations and first-principles calculations. Two characteristic phonons, the octahedral rotational and breathing modes, are illustrated to be coupled with the electron dynamics in the metallic phase, showing a kink structure along the band dispersion, as well as a hump feature in the energy spectrum. Entering the insulating state, the electron-phonon interaction is amplified by strong electron correlations, transforming the mobile large polarons at high temperatures to localized small polarons in the ground state. Moreover, the analysis of quasiparticle residue enables us to establish a transport-spectroscopy correspondence in Nd1-xSrxNiO3 thin films. Our findings demonstrate the essential role of electron-lattice interaction enhanced by the electronic correlation to stabilize the insulating phase in the perovskite nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14682v1-abstract-full').style.display = 'none'; document.getElementById('2407.14682v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 4 + 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05479">arXiv:2406.05479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05479">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> The Interplay Between Forces, Particle Rearrangements, and Macroscopic Stress Fluctuations in Sheared 2D Granular Media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kwangmin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hurley%2C+R+C">Ryan C. Hurley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05479v2-abstract-short" style="display: inline;"> Recent studies have established correlations between non-affine motion and macroscopic stress fluctuations in sheared granular media. However, a comprehensive examination of the relationship between non-affine motion, macroscopic stress fluctuations, and inter-particle forces remains lacking. We investigated this interplay in 2D granular media subjected to plane shear. We found that particle rearr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05479v2-abstract-full').style.display = 'inline'; document.getElementById('2406.05479v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05479v2-abstract-full" style="display: none;"> Recent studies have established correlations between non-affine motion and macroscopic stress fluctuations in sheared granular media. However, a comprehensive examination of the relationship between non-affine motion, macroscopic stress fluctuations, and inter-particle forces remains lacking. We investigated this interplay in 2D granular media subjected to plane shear. We found that particle rearrangements originated from regions featuring the greatest instantaneous reduction of inter-particle forces. This &#34;greatest reduction&#34; (GR) region coincided with the location in which the maximal non-affine motion, as quantified by D2min, first coalesced into a single connected region. The magnitude of the maximal non-affine motion correlated strongly with the magnitude of the macroscopic stress fluctuation. Furthermore, this correlation increased when particles in a larger neighborhood of the point of maximal non-affine motion were included in the calculation, suggesting that plastic events are best thought of not as point-like events but regional events. Our results held for various sliding coefficients and a variety of sample sizes. Our findings suggest that elastoplastic models should consider plastic events as regional rather than point-like. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05479v2-abstract-full').style.display = 'none'; document.getElementById('2406.05479v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03705">arXiv:2406.03705</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.03705">pdf</a>, <a href="https://arxiv.org/format/2406.03705">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Coherent control of a triangular exchange-only spin qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Acuna%2C+E">Edwin Acuna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broz%2C+J+D">Joseph D. Broz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shyamsundar%2C+K">Kaushal Shyamsundar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mei%2C+A+B">Antonio B. Mei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feeney%2C+C+P">Colin P. Feeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smetanka%2C+V">Valerie Smetanka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davis%2C+T">Tiffany Davis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kangmu Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+M+D">Maxwell D. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boyd%2C+B">Brydon Boyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suh%2C+J">June Suh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ha%2C+W+D">Wonill D. Ha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jennings%2C+C">Cameron Jennings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+A+S">Andrew S. Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez%2C+D+S">Daniel S. Sanchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reed%2C+M+D">Matthew D. Reed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petta%2C+J+R">Jason R. Petta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03705v1-abstract-short" style="display: inline;"> We demonstrate coherent control of a three-electron exchange-only spin qubit with the quantum dots arranged in a close-packed triangular geometry. The device is tuned to confine one electron in each quantum dot, as evidenced by pairwise charge stability diagrams. Time-domain control of the exchange coupling is demonstrated and qubit performance is characterized using blind randomized benchmarking,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03705v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03705v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03705v1-abstract-full" style="display: none;"> We demonstrate coherent control of a three-electron exchange-only spin qubit with the quantum dots arranged in a close-packed triangular geometry. The device is tuned to confine one electron in each quantum dot, as evidenced by pairwise charge stability diagrams. Time-domain control of the exchange coupling is demonstrated and qubit performance is characterized using blind randomized benchmarking, with an average single-qubit gate fidelity F = 99.84%. The compact triangular device geometry can be readily scaled to larger two-dimensional quantum dot arrays with high connectivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03705v1-abstract-full').style.display = 'none'; document.getElementById('2406.03705v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17385">arXiv:2405.17385</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17385">pdf</a>, <a href="https://arxiv.org/format/2405.17385">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Thermalization and Criticality on an Analog-Digital Quantum Simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Motruk%2C+J">Johannes Motruk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szasz%2C+A">Aaron Szasz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gross%2C+J+A">Jonathan A. Gross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuckert%2C+A">Alexander Schuckert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yaxing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forati%2C+E">Ebrahim Forati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+D">Dario Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kobrin%2C+B">Bryce Kobrin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Paolo%2C+A">Agustin Di Paolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klots%2C+A+R">Andrey R. Klots</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I">Ilya Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurilovich%2C+V+D">Vladislav D. Kurilovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petukhov%2C+A">Andre Petukhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ioffe%2C+L+B">Lev B. Ioffe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elben%2C+A">Andreas Elben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rath%2C+A">Aniket Rath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vitale%2C+V">Vittorio Vitale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vermersch%2C+B">Benoit Vermersch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beni%2C+L+A">Laleh Aghababaie Beni</a> , et al. (202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17385v2-abstract-short" style="display: inline;"> Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17385v2-abstract-full').style.display = 'inline'; document.getElementById('2405.17385v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17385v2-abstract-full" style="display: none;"> Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. Emulating a two-dimensional (2D) XY quantum magnet, we leverage a wide range of measurement techniques to study quantum states after ramps from an antiferromagnetic initial state. We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions attributed to the interplay between quantum and classical coarsening of the correlated domains. This interpretation is corroborated by injecting variable energy density into the initial state, which enables studying the effects of the eigenstate thermalization hypothesis (ETH) in targeted parts of the eigenspectrum. Finally, we digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization. These results establish the efficacy of superconducting analog-digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17385v2-abstract-full').style.display = 'none'; document.getElementById('2405.17385v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15898">arXiv:2405.15898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15898">pdf</a>, <a href="https://arxiv.org/format/2405.15898">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Thermodynamics of Sodium-Lead Alloys for Negative Electrodes from First-Principles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D+K+J">Damien K. J. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Z">Zeyu Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gautam%2C+G+S">Gopalakrishnan Sai Gautam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canepa%2C+P">Pieremanuele Canepa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15898v1-abstract-short" style="display: inline;"> Metals, such as tin, antimony, and lead (Pb) have garnered renewed attention for their potential use as alloyant-negative electrode materials in sodium (Na)-ion batteries (NIBs). Despite Pb&#39;s toxicity and its high molecular weight, lead is one of the most commonly recycled metals, positioning Pb as a promising candidate for a cost-effective, high-capacity anode material. Understanding the miscibil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15898v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15898v1-abstract-full" style="display: none;"> Metals, such as tin, antimony, and lead (Pb) have garnered renewed attention for their potential use as alloyant-negative electrode materials in sodium (Na)-ion batteries (NIBs). Despite Pb&#39;s toxicity and its high molecular weight, lead is one of the most commonly recycled metals, positioning Pb as a promising candidate for a cost-effective, high-capacity anode material. Understanding the miscibility of Na into Pb is crucial for the development of high-energy density negative electrode materials for NIBs. Using a first-principles multiscale approach, we analyze the thermodynamic properties and estimate the Na-alloying voltage of the Na-Pb system by constructing the compositional phase diagram. In the Pb-Na system, we elucidate the phase boundaries of important phases, such as Pb-rich face-centered cubic and $尾$-NaPb$_3$, thereby improving our understanding of the phase diagram of the Na-Pb alloy. Due to the strong ordering tendencies of the Na-Pb intermetallics (such as NaPb, Na$_5$Pb$_2$, and Na$_{15}$Pb$_4$), we do not observe any solid-solution behavior at intermediate and high Na concentrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15898v1-abstract-full').style.display = 'none'; document.getElementById('2405.15898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11159">arXiv:2405.11159</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11159">pdf</a>, <a href="https://arxiv.org/format/2405.11159">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> An active metasurface enhanced with moir茅 ferroelectricity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D+S">Dong Seob Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+C">Chengxin Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dominguez%2C+R+C">Roy C. Dominguez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhida Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abudayyeh%2C+H">Hamza Abudayyeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyoungpyo Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayorga-Luna%2C+R">Rigo Mayorga-Luna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hyunsue Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shih%2C+C">Chih-Kang Shih</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miyahara%2C+Y">Yoichi Miyahara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Wang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaoqin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11159v2-abstract-short" style="display: inline;"> Semiconductor moir茅 systems, characterized by their periodic spatial light emission, unveil a new paradigm of active metasurfaces. Here, we show that ferroelectric moir茅 domains formed in a twisted hexagonal boron nitride (t-hBN) substrate can modulate light emission from an adjacent semiconductor MoSe$_2$ monolayer, enhancing its functionality as an active metasurface. The electrostatic potential&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11159v2-abstract-full').style.display = 'inline'; document.getElementById('2405.11159v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11159v2-abstract-full" style="display: none;"> Semiconductor moir茅 systems, characterized by their periodic spatial light emission, unveil a new paradigm of active metasurfaces. Here, we show that ferroelectric moir茅 domains formed in a twisted hexagonal boron nitride (t-hBN) substrate can modulate light emission from an adjacent semiconductor MoSe$_2$ monolayer, enhancing its functionality as an active metasurface. The electrostatic potential at the surface of the t-hBN substrate provides a simple way to confine excitons in the MoSe$_2$ monolayer. The excitons confined within the domains and at the domain walls are spectrally separated due to a pronounced Stark shift. Moreover, the patterned light emission can be dynamically controlled by electrically gating the ferroelectric domains, introducing a novel functionality beyond conventional semiconductor moir茅 systems. Our findings chart an exciting pathway for integrating nanometer-scale moir茅 ferroelectric domains with various optically active functional layers, paving the way for advanced nanophotonic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11159v2-abstract-full').style.display = 'none'; document.getElementById('2405.11159v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12490">arXiv:2404.12490</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.12490">pdf</a>, <a href="https://arxiv.org/format/2404.12490">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tuning exciton emission via ferroelectric polarization at a heterogeneous interface between a monolayer transition metal dichalcogenide and a perovskite oxide membrane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaehong Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crust%2C+K+J">Kevin J. Crust</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lizhong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kihong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jialun Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=So%2C+J">Jae-Pil So</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mak%2C+K+F">Kin Fai Mak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+J">Jie Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuchs%2C+G+D">Gregory D. Fuchs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12490v1-abstract-short" style="display: inline;"> We demonstrate the integration of a thin BaTiO$_3$ (BTO) membrane with monolayer MoSe$_2$ in a dual gate device that enables in-situ manipulation of the BTO ferroelectric polarization with a voltage pulse. While two-dimensional (2D) transition metal dichalcogenides (TMDs) offer remarkable adaptability, their hybrid integration with other families of functional materials beyond the realm of 2D mate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12490v1-abstract-full').style.display = 'inline'; document.getElementById('2404.12490v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12490v1-abstract-full" style="display: none;"> We demonstrate the integration of a thin BaTiO$_3$ (BTO) membrane with monolayer MoSe$_2$ in a dual gate device that enables in-situ manipulation of the BTO ferroelectric polarization with a voltage pulse. While two-dimensional (2D) transition metal dichalcogenides (TMDs) offer remarkable adaptability, their hybrid integration with other families of functional materials beyond the realm of 2D materials has been challenging. Released functional oxide membranes offer a solution for 2D/3D integration via stacking. 2D TMD excitons can serve as a local probe of the ferroelectric polarization in BTO at a heterogeneous interface. Using photoluminescence (PL) of MoSe$_2$ excitons to optically readout the doping level, we find that the relative population of charge carriers in MoSe$_2$ depends sensitively on the ferroelectric polarization. This finding points to a promising avenue for future-generations versatile sensing devices with high sensitivity, fast read-out, and diverse applicability for advanced signal processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12490v1-abstract-full').style.display = 'none'; document.getElementById('2404.12490v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages with supplementary information in manuscript format</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00238">arXiv:2404.00238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00238">pdf</a>, <a href="https://arxiv.org/format/2404.00238">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Flattening a trapped atomic gas using a programmable optical potential in a feedback loop </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Sol Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuhwan Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jongmin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+Y">Y. Shin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00238v1-abstract-short" style="display: inline;"> We present a method for producing a flat, large-area Fermi gas of $^6$Li with a uniform area density. The method uses a programmable optical potential within a feedback loop to flatten the in-plane trapping potential for atoms. The optical potential is generated using a laser beam, whose intensity profile is adjusted by a spatial light modulator and optimized through measurements of the density di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00238v1-abstract-full').style.display = 'inline'; document.getElementById('2404.00238v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00238v1-abstract-full" style="display: none;"> We present a method for producing a flat, large-area Fermi gas of $^6$Li with a uniform area density. The method uses a programmable optical potential within a feedback loop to flatten the in-plane trapping potential for atoms. The optical potential is generated using a laser beam, whose intensity profile is adjusted by a spatial light modulator and optimized through measurements of the density distribution of the sample. The resulting planar sample exhibits a uniform area density within a region of about 480 $渭$m in diameter and the standard deviation of the trap bottom potential is estimated to be $\approx k_B \times$ 6.1 nK, which is less than 20$\%$ of the transverse confinement energy. We discuss a dimensional crossover toward 2D regime by reducing the number of atoms in the planar trap, including the effect of the spatial variation of the transverse trapping frequency in the large-area sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00238v1-abstract-full').style.display = 'none'; document.getElementById('2404.00238v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13782">arXiv:2403.13782</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.13782">pdf</a>, <a href="https://arxiv.org/format/2403.13782">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Surfactant-Driven Dynamic Changes in Rheology of Activated Carbon Slurry Electrodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+M">Mohan Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">KangJin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wirth%2C+C+L">Christopher L. Wirth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13782v1-abstract-short" style="display: inline;"> Slurry electrodes are an effective means to improve flow battery performance by reducing electrode fouling and increasing the active surface area necessary for electrochemical reactions. It is critical to understand how the slurry formulation impacts its rheological profile and ultimately battery performance. We study the linear and nonlinear rheology of activated carbon (AC) based slurry electrod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13782v1-abstract-full').style.display = 'inline'; document.getElementById('2403.13782v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13782v1-abstract-full" style="display: none;"> Slurry electrodes are an effective means to improve flow battery performance by reducing electrode fouling and increasing the active surface area necessary for electrochemical reactions. It is critical to understand how the slurry formulation impacts its rheological profile and ultimately battery performance. We study the linear and nonlinear rheology of activated carbon (AC) based slurry electrode used in an all-iron flow battery in the presence of a nonionic surfactant (Triton X-100). Our results show the slurry mimics a colloidal gel with elasticity remaining constant despite increasing surfactant concentration until $伪$(=C$_{surf.}$/C$_{AC}$) &lt; 0.65. However, at $伪\ge$ 0.65, the slurry abruptly transitions to a fluid with no measurable yield stress. This critical surfactant concentration at which the rheological profile undergoes a dynamic change matches the concentration found previously for gel collapse of this system. Moreover, this transition is accompanied by a complete loss of electrical conductivity. These data show that site specific adsorption of surfactant molecules often used in slurry formulation have a significant and dramatic impact on flow behavior, which should be considered when formulating a slurry electrode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13782v1-abstract-full').style.display = 'none'; document.getElementById('2403.13782v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13727">arXiv:2403.13727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.13727">pdf</a>, <a href="https://arxiv.org/format/2403.13727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Elastic properties and thermodynamic anomalies of supersolids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rakic%2C+M">Milan Rakic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+A+F">Andrew F. Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D+K+K">Derek K. K. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13727v2-abstract-short" style="display: inline;"> We study a supersolid in the context of a Gross-Pitaevskii theory with a non-local effective potential. We employ a homogenisation technique which allows us to calculate the elastic moduli, supersolid fraction and other state variables of the system. Our methodology is verified against numerical simulations of elastic deformations. We can also verify that the long-wavelength Goldstone modes that e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13727v2-abstract-full').style.display = 'inline'; document.getElementById('2403.13727v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13727v2-abstract-full" style="display: none;"> We study a supersolid in the context of a Gross-Pitaevskii theory with a non-local effective potential. We employ a homogenisation technique which allows us to calculate the elastic moduli, supersolid fraction and other state variables of the system. Our methodology is verified against numerical simulations of elastic deformations. We can also verify that the long-wavelength Goldstone modes that emerge from this technique agree with Bogoliubov theory. We find a thermodynamic anomaly that the supersolid does not obey the thermodynamic relation $\partial P / \partial V \bigr|_N = - n \, \partial P / \partial N \bigr|_V$, which we claim is a feature unique to supersolids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13727v2-abstract-full').style.display = 'none'; document.getElementById('2403.13727v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05383">arXiv:2403.05383</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.05383">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Thermal cycling induced evolution and colossal exchange bias in MnPS3/Fe3GeTe2 van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Balan%2C+A+P">Aravind Puthirath Balan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+A">Aditya Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reiser%2C+P">Patrick Reiser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vas%2C+J">Joseph Vas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denneulin%2C+T">Thibaud Denneulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+D">Khoa Dang Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saunderson%2C+T+G">Tom G Saunderson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tschudin%2C+M">M盲rta Tschudin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pellet-Mary%2C+C">Clement Pellet-Mary</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dutta%2C+D">Debarghya Dutta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrader%2C+C">Carolin Schrader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scholz%2C+T">Tanja Scholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geuchies%2C+J">Jaco Geuchies</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+S">Shuai Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonanni%2C+A">Alberta Bonanni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lotsch%2C+B+V">Bettina V. Lotsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nowak%2C+U">Ulrich Nowak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jakob%2C+G">Gerhard Jakob</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gayles%2C+J">Jacob Gayles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovacs%2C+A">Andras Kovacs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dunin-Borkowski%2C+R+E">Rafal E. Dunin-Borkowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maletinsky%2C+P">Patrick Maletinsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05383v1-abstract-short" style="display: inline;"> The exchange bias phenomenon, inherent in exchange-coupled ferromagnetic and antiferromagnetic systems, has intrigued researchers for decades. Van der Waals materials, with their layered structure, provide an optimal platform for probing such physical phenomena. However, achieving a facile and effective means to manipulate exchange bias in pristine van der Waals heterostructures remains challengin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05383v1-abstract-full').style.display = 'inline'; document.getElementById('2403.05383v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05383v1-abstract-full" style="display: none;"> The exchange bias phenomenon, inherent in exchange-coupled ferromagnetic and antiferromagnetic systems, has intrigued researchers for decades. Van der Waals materials, with their layered structure, provide an optimal platform for probing such physical phenomena. However, achieving a facile and effective means to manipulate exchange bias in pristine van der Waals heterostructures remains challenging. In this study, we investigate the origin of exchange bias in MnPS3/Fe3GeTe2 van der Waals heterostructures. Our work demonstrates a method to modulate unidirectional exchange anisotropy, achieving an unprecedented nearly 1000% variation through simple thermal cycling. Despite the compensated interfacial spin configuration of MnPS3, magneto-transport measurements reveal a huge 170 mT exchange bias at 5 K, the largest observed in pristine van der Waals antiferromagnet-ferromagnet interfaces. This substantial magnitude of the exchange bias is linked to an anomalous weak ferromagnetic ordering in MnPS3 below 40 K. On the other hand, the tunability of exchange bias during thermal cycling is ascribed to the modified arrangement of interfacial atoms and changes in the vdW gap during field cooling. Our findings highlight a robust and easily adjustable exchange bias in van der Waals antiferromagnetic/ferromagnetic heterostructures, presenting a straightforward approach to enhance other interface related spintronic phenomena for practical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05383v1-abstract-full').style.display = 'none'; document.getElementById('2403.05383v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01415">arXiv:2403.01415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01415">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Phonon-pair-driven Ferroelectricity Causes Costless Domain-walls and Bulk-boundary Duality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H">Hyun-Jae Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Go%2C+K">Kyoung-June Go</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+P">Pawan Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C+H">Chang Hoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Yungyeom Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyoungjun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shimizu%2C+T">Takao Shimizu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chae%2C+S+C">Seung Chul Chae</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+H">Hosub Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">Minseong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Waghmare%2C+U">Umesh Waghmare</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S">Si-Young Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+H">Jun Hee Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01415v1-abstract-short" style="display: inline;"> Ferroelectric domain walls, recognized as distinct from the bulk in terms of symmetry, structure, and electronic properties, host exotic phenomena including conductive walls, ferroelectric vortices, novel topologies, and negative capacitance. Contrary to conventional understanding, our study reveals that the structure of domain walls in HfO2 closely resembles its bulk. First, our first-principles&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01415v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01415v1-abstract-full" style="display: none;"> Ferroelectric domain walls, recognized as distinct from the bulk in terms of symmetry, structure, and electronic properties, host exotic phenomena including conductive walls, ferroelectric vortices, novel topologies, and negative capacitance. Contrary to conventional understanding, our study reveals that the structure of domain walls in HfO2 closely resembles its bulk. First, our first-principles simulations unveil that the robust ferroelectricity is supported by bosonic pairing of all the anionic phonons in bulk HfO2. Strikingly, the paired phonons strongly bond with each other and successfully reach the center of the domain wall without losing their integrity and produce bulk-like domain walls. We then confirmed preservation of the bulk phonon displacements and consequently full revival of the bulk structure at domain walls via aberration-corrected STEM. The newly found duality between the bulk and the domain wall sheds light on previously enigmatic properties such as zero-energy domain walls, perfect Ising-type polar ordering, and exceptionally robust ferroelectricity at the sub-nm scales. The phonon-pairing discovered here is robust against physical boundaries such as domain walls and enables zero momentum and zero-energy cost local ferroelectric switching. This phenomenon demonstrated in Si-compatible ferroelectrics provides a novel technological platform where data storage on domain walls is as feasible as that within the domains, thereby expanding the potential for high-density data storage and advanced ferroelectric applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01415v1-abstract-full').style.display = 'none'; document.getElementById('2403.01415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14559">arXiv:2402.14559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.14559">pdf</a>, <a href="https://arxiv.org/format/2402.14559">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.024802">10.1103/PhysRevMaterials.8.024802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scanning SQUID study of ferromagnetism and superconductivity in infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+R+A">Ruby A. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iguchi%2C+Y">Yusuke Iguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">Berit H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">Lena F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moler%2C+K+A">Kathryn A. Moler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14559v1-abstract-short" style="display: inline;"> Infinite-layer nickelates $R_{1-x}$Sr$_{x}$NiO$_{2}$ ($R$ = La, Pr, Nd) are a class of superconductors with structural similarities to cuprates. Although long-range antiferromagnetic order has not been observed for these materials, magnetic effects such as antiferromagnetic spin fluctuations and spin-glass behavior have been reported. Different experiments have drawn different conclusions about wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14559v1-abstract-full').style.display = 'inline'; document.getElementById('2402.14559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14559v1-abstract-full" style="display: none;"> Infinite-layer nickelates $R_{1-x}$Sr$_{x}$NiO$_{2}$ ($R$ = La, Pr, Nd) are a class of superconductors with structural similarities to cuprates. Although long-range antiferromagnetic order has not been observed for these materials, magnetic effects such as antiferromagnetic spin fluctuations and spin-glass behavior have been reported. Different experiments have drawn different conclusions about whether the pairing symmetry is $s$- or $d$ wave. In this paper, we applied a scanning superconducting quantum interference device (SQUID) to probe the magnetic behavior of film samples of three infinite-layer nickelates (La$_{0.85}$Sr$_{0.15}$NiO$_2$, Pr$_{0.8}$Sr$_{0.2}$NiO$_2$, and Nd$_{0.775}$Sr$_{0.225}$NiO$_2$) grown on SrTiO$_3$ (STO), each with a nominal thickness of 20 unit cells. In all three films, we observed a ferromagnetic background. We also measured the magnetic susceptibility above the superconducting critical temperature in Pr$_{0.8}$Sr$_{0.2}$NiO$_2$ and La$_{0.85}$Sr$_{0.15}$NiO$_2$ and identified a non-Curie-Weiss dynamic susceptibility. Both magnetic features are likely due to NiO$_x$ nanoparticles. Additionally, we investigated superconductivity in Pr$_{0.8}$Sr$_{0.2}$NiO$_2$ and Nd$_{0.775}$Sr$_{0.225}$NiO$_2$, which exhibited inhomogeneous diamagnetic screening. The superfluid density inferred from the diamagnetic susceptibility in relatively homogeneous regions shows $T$-linear behavior in both samples. Finally, we observed superconducting vortices in Nd$_{0.775}$Sr$_{0.225}$NiO$_2$. We determined a Pearl length of 330 $\upmu$m for Nd$_{0.775}$Sr$_{0.225}$NiO$_2$ at 300 mK both from the strength of the diamagnetism and from the size and shape of the vortices. These results highlight the importance of considering NiO$_x$ particles when interpreting experimental results for these films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14559v1-abstract-full').style.display = 'none'; document.getElementById('2402.14559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.05104">arXiv:2402.05104</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.05104">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Millimeter-scale freestanding superconducting infinite-layer nickelate membranes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+X">Xin Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Yijun Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhatt%2C+L">Lopa Bhatt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">Berit H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harvey%2C+S+P">Shannon P. Harvey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muller%2C+D+A">David A. Muller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">Lena F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Wei-Sheng Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raghu%2C+S">Srinivas Raghu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.05104v1-abstract-short" style="display: inline;"> Progress in the study of infinite-layer nickelates has always been highly linked to materials advances. In particular, the recent development of superconductivity via hole-doping was predicated on the controlled synthesis of Ni in a very high oxidation state, and subsequent topotactic reduction to a very low oxidation state, currently limited to epitaxial thin films. Here we demonstrate a process&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05104v1-abstract-full').style.display = 'inline'; document.getElementById('2402.05104v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.05104v1-abstract-full" style="display: none;"> Progress in the study of infinite-layer nickelates has always been highly linked to materials advances. In particular, the recent development of superconductivity via hole-doping was predicated on the controlled synthesis of Ni in a very high oxidation state, and subsequent topotactic reduction to a very low oxidation state, currently limited to epitaxial thin films. Here we demonstrate a process to combine these steps with a heterostructure which includes an epitaxial soluble buffer layer, enabling the release of freestanding membranes of (Nd,Sr)NiO2 encapsulated in SrTiO3, which serves as a protective layer. The membranes have comparable structural and electronic properties to that of optimized thin films, and range in lateral dimensions from millimeters to ~100 micron fragments, depending on the degree of strain released with respect to the initial substrate. The changes in the superconducting transition temperature associated with membrane release are quite similar to those reported for substrate and pressure variations, suggestive of a common underlying mechanism. These membranes structures should provide a versatile platform for a range of experimental studies and devices free from substrate constraints. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05104v1-abstract-full').style.display = 'none'; document.getElementById('2402.05104v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.10593">arXiv:2401.10593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.10593">pdf</a>, <a href="https://arxiv.org/format/2401.10593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmbbm.2023.105743">10.1016/j.jmbbm.2023.105743 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards predicting shear-banding instabilities in lipid monolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Carotenuto%2C+A+R">A. R. Carotenuto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaffney%2C+A">A. Gaffney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+Y+C">K. Y. C. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pocivavsek%2C+L">L. Pocivavsek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fraldi%2C+M">M. Fraldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deseri%2C+L">L. Deseri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.10593v1-abstract-short" style="display: inline;"> Langmuir monolayers are advantageous systems used to investigate how lipid membranes get involved in the physiology of many living structures, such as collapse phenomena in alveolar structures. Much work focuses on characterizing the pressure-bearing capacity of Langmuir films, expressed in the form of isotherm curves. These show that monolayers experience different phases during compression with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10593v1-abstract-full').style.display = 'inline'; document.getElementById('2401.10593v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.10593v1-abstract-full" style="display: none;"> Langmuir monolayers are advantageous systems used to investigate how lipid membranes get involved in the physiology of many living structures, such as collapse phenomena in alveolar structures. Much work focuses on characterizing the pressure-bearing capacity of Langmuir films, expressed in the form of isotherm curves. These show that monolayers experience different phases during compression with an according evolution of their mechanical response, incurring into instability events when a critical stress threshold is overcome. Although well-known state equations, which establish an inverse relationship between surface pressure and area change, are able to describe monolayer behavior during liquid expanded phase, the modelling of their nonlinear behavior in the subsequent condensed region is still an open issue. In this regard, efforts are addressed to explain out-of-plane collapse by modeling buckling and wrinkling mainly resorting to linearly elastic plate theory. However, some experiments on Langmuir monolayers also show in-plane instability phenomena leading to the formation of the so-called shear bands and, to date, no theoretical description of the onset of shear banding bifurcation in monolayers has been yet provided. For this reason, by adopting a macroscopic description, we here study material stability of the monolayers and exploit an incremental approach to find the conditions that kindle shear bands. By starting from the widely assumed hypothesis that monolayers behave elastically in the solid-like region, a hyperfoam hyperelastic potential is introduced as a new constitutive strategy to trace back the nonlinear response of monolayer response during densification. In this way, the obtained mechanical properties together with the adopted strain energy are successfully employed to reproduce the onset of shear banding exhibited by some lipid systems under different conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10593v1-abstract-full').style.display = 'none'; document.getElementById('2401.10593v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J Mech Behav Biomed Mater, 141, 105743 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09549">arXiv:2401.09549</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.09549">pdf</a>, <a href="https://arxiv.org/format/2401.09549">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Interferometric Single-Shot Parity Measurement in an InAs-Al Hybrid Device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aghaee%2C+M">Morteza Aghaee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramirez%2C+A+A">Alejandro Alcaraz Ramirez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alam%2C+Z">Zulfi Alam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ali%2C+R">Rizwan Ali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrzejczuk%2C+M">Mariusz Andrzejczuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antipov%2C+A">Andrey Antipov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astafev%2C+M">Mikhail Astafev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barzegar%2C+A">Amin Barzegar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+B">Bela Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Becker%2C+J">Jonathan Becker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhaskar%2C+U+K">Umesh Kumar Bhaskar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bocharov%2C+A">Alex Bocharov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boddapati%2C+S">Srini Boddapati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bohn%2C+D">David Bohn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bommer%2C+J">Jouri Bommer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourdet%2C+L">Leo Bourdet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bousquet%2C+A">Arnaud Bousquet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boutin%2C+S">Samuel Boutin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casparis%2C+L">Lucas Casparis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chapman%2C+B+J">Benjamin James Chapman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatoor%2C+S">Sohail Chatoor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+A+W">Anna Wulff Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chua%2C+C">Cassandra Chua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Codd%2C+P">Patrick Codd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cole%2C+W">William Cole</a> , et al. (137 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09549v4-abstract-short" style="display: inline;"> The fusion of non-Abelian anyons or topological defects is a fundamental operation in measurement-only topological quantum computation. In topological superconductors, this operation amounts to a determination of the shared fermion parity of Majorana zero modes. As a step towards this, we implement a single-shot interferometric measurement of fermion parity in indium arsenide-aluminum heterostruct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09549v4-abstract-full').style.display = 'inline'; document.getElementById('2401.09549v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09549v4-abstract-full" style="display: none;"> The fusion of non-Abelian anyons or topological defects is a fundamental operation in measurement-only topological quantum computation. In topological superconductors, this operation amounts to a determination of the shared fermion parity of Majorana zero modes. As a step towards this, we implement a single-shot interferometric measurement of fermion parity in indium arsenide-aluminum heterostructures with a gate-defined nanowire. The interferometer is formed by tunnel-coupling the proximitized nanowire to quantum dots. The nanowire causes a state-dependent shift of these quantum dots&#39; quantum capacitance of up to 1 fF. Our quantum capacitance measurements show flux h/2e-periodic bimodality with a signal-to-noise ratio of 1 in 3.7 $渭$s at optimal flux values. From the time traces of the quantum capacitance measurements, we extract a dwell time in the two associated states that is longer than 1 ms at in-plane magnetic fields of approximately 2 T. These results are consistent with a measurement of the fermion parity encoded in a pair of Majorana zero modes that are separated by approximately 3 $渭$m and subjected to a low rate of poisoning by non-equilibrium quasiparticles. The large capacitance shift and long poisoning time enable a parity measurement error probability of 1%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09549v4-abstract-full').style.display = 'none'; document.getElementById('2401.09549v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Added data on a second measurement of device A and a measurement of device B, expanded discussion of a trivial scenario. Refs added, author list updated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16444">arXiv:2312.16444</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16444">pdf</a>, <a href="https://arxiv.org/format/2312.16444">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Universal orbital and magnetic structures in infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">K. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">B. H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">J. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Y. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">B. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jost%2C+D">D. Jost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E">E. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">L. F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16444v1-abstract-short" style="display: inline;"> We conducted a comparative study of the rare-earth infinite-layer nickelates films, RNiO2 (R = La, Pr, and Nd) using resonant inelastic X-ray scattering (RIXS). We found that the gross features of the orbital configurations are essentially the same, with minor variations in the detailed hybridization. For low-energy excitations, we unambiguously confirm the presence of damped magnetic excitations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16444v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16444v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16444v1-abstract-full" style="display: none;"> We conducted a comparative study of the rare-earth infinite-layer nickelates films, RNiO2 (R = La, Pr, and Nd) using resonant inelastic X-ray scattering (RIXS). We found that the gross features of the orbital configurations are essentially the same, with minor variations in the detailed hybridization. For low-energy excitations, we unambiguously confirm the presence of damped magnetic excitations in all three compounds. By fitting to a linear spin-wave theory, comparable spin exchange coupling strengths and damping coefficients are extracted, indicating a universal magnetic structure in the infinite-layer nickelates. Interestingly, while signatures of a charge order are observed in LaNiO2 in the quasi-elastic region of the RIXS spectrum, it is absent in NdNiO2 and PrNiO2. This prompts further investigation into the universality and the origins of charge order within the infinite-layer inickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16444v1-abstract-full').style.display = 'none'; document.getElementById('2312.16444v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures. Accepted by Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07832">arXiv:2312.07832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07832">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Denoising diffusion-based synthetic generation of three-dimensional (3D) anisotropic microstructures from two-dimensional (2D) micrographs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kang-Hyun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yun%2C+G+J">Gun Jin Yun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07832v1-abstract-short" style="display: inline;"> Integrated computational materials engineering (ICME) has significantly enhanced the systemic analysis of the relationship between microstructure and material properties, paving the way for the development of high-performance materials. However, analyzing microstructure-sensitive material behavior remains challenging due to the scarcity of three-dimensional (3D) microstructure datasets. Moreover,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07832v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07832v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07832v1-abstract-full" style="display: none;"> Integrated computational materials engineering (ICME) has significantly enhanced the systemic analysis of the relationship between microstructure and material properties, paving the way for the development of high-performance materials. However, analyzing microstructure-sensitive material behavior remains challenging due to the scarcity of three-dimensional (3D) microstructure datasets. Moreover, this challenge is amplified if the microstructure is anisotropic, as this results in anisotropic material properties as well. In this paper, we present a framework for reconstruction of anisotropic microstructures solely based on two-dimensional (2D) micrographs using conditional diffusion-based generative models (DGMs). The proposed framework involves spatial connection of multiple 2D conditional DGMs, each trained to generate 2D microstructure samples for three different orthogonal planes. The connected multiple reverse diffusion processes then enable effective modeling of a Markov chain for transforming noise into a 3D microstructure sample. Furthermore, a modified harmonized sampling is employed to enhance the sample quality while preserving the spatial connection between the slices of anisotropic microstructure samples in 3D space. To validate the proposed framework, the 2D-to-3D reconstructed anisotropic microstructure samples are evaluated in terms of both the spatial correlation function and the physical material behavior. The results demonstrate that the framework is capable of reproducing not only the statistical distribution of material phases but also the material properties in 3D space. This highlights the potential application of the proposed 2D-to-3D reconstruction framework in establishing microstructure-property linkages, which could aid high-throughput material design for future studies <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07832v1-abstract-full').style.display = 'none'; document.getElementById('2312.07832v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00642">arXiv:2312.00642</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.00642">pdf</a>, <a href="https://arxiv.org/format/2312.00642">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Interplay between Haldane and modified Haldane models in $伪$-$T_{3}$ lattice: Band structures, phase diagrams and edge states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+W">Kok Wai Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+P">Pei-Hao Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ang%2C+Y+S">Yee Sin Ang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00642v2-abstract-short" style="display: inline;"> We study the topological properties of the Haldane and modified Haldane models in $伪$-$T_{3}$ lattice. The band structures and phase diagrams of the system are investigated. Individually, each model undergoes a distinct phase transition: (i) the Haldane-only model experiences a topological phase transition from the Chern insulator ($\mathcal{C} = 1$) phase to the higher Chern insulator (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00642v2-abstract-full').style.display = 'inline'; document.getElementById('2312.00642v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00642v2-abstract-full" style="display: none;"> We study the topological properties of the Haldane and modified Haldane models in $伪$-$T_{3}$ lattice. The band structures and phase diagrams of the system are investigated. Individually, each model undergoes a distinct phase transition: (i) the Haldane-only model experiences a topological phase transition from the Chern insulator ($\mathcal{C} = 1$) phase to the higher Chern insulator ($\mathcal{C} = 2$) phase; while (ii) the modified-Haldane-only model experiences a phase transition from the topological metal ($\mathcal{C} = 2$) phase to the higher Chern insulator ($\mathcal{C} = 2$) phase and we show that $\mathcal{C}$ is insufficient to characterize this system because $\mathcal{C}$ remains unchanged before and after the phase transition. By plotting the Chern number and $\mathcal{C}$ phase diagram, we show that in the presence of both Haldane and modified Haldane models in the $伪$-$T_{3}$ lattice, the interplay between the two models manifests three distinct topological phases, namely the $\mathcal{C} = 1$ Chern insulator (CI) phase, $\mathcal{C} = 2$ higher Chern insulator (HCI) phase and $\mathcal{C} = 2$ topological metal (TM) phase. These results are further supported by the $伪$-$T_{3}$ zigzag edge states calculations. Our work elucidates the rich phase evolution of Haldane and modified Haldane models as $伪$ varies continuously from $0$ to $1$ in an $伪$-$T_3$ model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00642v2-abstract-full').style.display = 'none'; document.getElementById('2312.00642v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01670">arXiv:2311.01670</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01670">pdf</a>, <a href="https://arxiv.org/format/2311.01670">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6668/ad22ff">10.1088/1361-6668/ad22ff <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-loss Millimeter-wave Resonators with an Improved Coupling Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Anferov%2C+A">Alexander Anferov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harvey%2C+S+P">Shannon P. Harvey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+F">Fanghui Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kan-Heng Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simon%2C+J">Jonathan Simon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuster%2C+D+I">David I. Schuster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01670v3-abstract-short" style="display: inline;"> Millimeter-wave superconducting resonators are a useful tool for studying quantum device coherence in a new frequency domain. However, improving resonators is difficult without a robust and reliable method for coupling millimeter-wave signals to 2D structures. We develop and characterize a tapered transition structure coupling a rectangular waveguide to a planar slotline waveguide with better than&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01670v3-abstract-full').style.display = 'inline'; document.getElementById('2311.01670v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01670v3-abstract-full" style="display: none;"> Millimeter-wave superconducting resonators are a useful tool for studying quantum device coherence in a new frequency domain. However, improving resonators is difficult without a robust and reliable method for coupling millimeter-wave signals to 2D structures. We develop and characterize a tapered transition structure coupling a rectangular waveguide to a planar slotline waveguide with better than 0.5 dB efficiency over 14 GHz, and use it to measure ground-shielded resonators in the W band (75 - 110 GHz). Having decoupled the resonators from radiative losses, we consistently achieve single-photon quality factors above $10^5$, with a two-level-system loss limit above $10^6$, and verify the effectiveness of oxide removal treatments to reduce loss. These values are 4-5 times higher than those previously reported in the W band, and much closer to typical planar microwave resonators. The improved losses demonstrated by these on-chip millimeter-wave devices shed new light on quantum decoherence in a different frequency regime, offer increased selectivity for high-frequency detectors, and enables new possibilities for hybrid quantum experiments integrating millimeter-wave frequencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01670v3-abstract-full').style.display = 'none'; document.getElementById('2311.01670v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures and appendices (3 pages, 2 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.00362">arXiv:2311.00362</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.00362">pdf</a>, <a href="https://arxiv.org/ps/2311.00362">ps</a>, <a href="https://arxiv.org/format/2311.00362">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Orbital Pumping Incorporating Both Orbital Angular Momentum and Position </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+S">Seungyun Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ko%2C+H">Hye-Won Ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+J+H">Jung Hyun Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H">Hyun-Woo Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyung-Jin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kyoung-Whan Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.00362v2-abstract-short" style="display: inline;"> We develop a theory of adiabatic orbital pumping, highlighting qualitative differences from spin pumping. An oscillating magnetic field pumps not only orbital angular momentum current but also orbital angular position current. The latter, which has no spin counterpart, underscores the incompleteness of existing orbital torque theories. Importantly, both types of orbital currents can be detected as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00362v2-abstract-full').style.display = 'inline'; document.getElementById('2311.00362v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.00362v2-abstract-full" style="display: none;"> We develop a theory of adiabatic orbital pumping, highlighting qualitative differences from spin pumping. An oscillating magnetic field pumps not only orbital angular momentum current but also orbital angular position current. The latter, which has no spin counterpart, underscores the incompleteness of existing orbital torque theories. Importantly, both types of orbital currents can be detected as transverse electric voltages, which contain considerable second harmonic components unlike in spin pumping. Moreover, orbital currents can be pumped by lattice dynamics that carry phonon angular momentum, implying that orbital currents can, in turn, induce phonon angular momentum. Our work open up new possibilities for generating orbital currents and provides a broader understanding of the interplay between spin, orbital, and phonon dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00362v2-abstract-full').style.display = 'none'; document.getElementById('2311.00362v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures. The title has been changed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16312">arXiv:2310.16312</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16312">pdf</a>, <a href="https://arxiv.org/format/2310.16312">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Measurement of small photon numbers in circuit QED resonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Opremcak%2C+A">Alex Opremcak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nersisyan%2C+A">Ani Nersisyan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kenny Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Korotkov%2C+A+N">Alexander N. Korotkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16312v1-abstract-short" style="display: inline;"> Off-resonant interaction of fluctuating photons in a resonator with a qubit increases the qubit dephasing rate. We use this effect to measure a small average number of intracavity photons that are coherently or thermally driven. For spectral resolution, we do this by subjecting the qubit to a Carr-Purcell-Meiboom-Gill (CPMG) sequence and record the qubit dephasing rate for various periods between&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16312v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16312v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16312v1-abstract-full" style="display: none;"> Off-resonant interaction of fluctuating photons in a resonator with a qubit increases the qubit dephasing rate. We use this effect to measure a small average number of intracavity photons that are coherently or thermally driven. For spectral resolution, we do this by subjecting the qubit to a Carr-Purcell-Meiboom-Gill (CPMG) sequence and record the qubit dephasing rate for various periods between qubit $蟺$-pulses. The recorded data is then analyzed with formulas for the photon-induced dephasing rate that we have derived for the non-Gaussian noise regime with an arbitrary ratio $2蠂/魏$, where $2蠂$ is the qubit frequency shift due to a single photon and $魏$ is the resonator decay rate. We show that the presented CPMG dephasing rate formulas agree well with experimental results and demonstrate measurement of thermal and coherent photon populations at the level of a few $10^{-4}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16312v1-abstract-full').style.display = 'none'; document.getElementById('2310.16312v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 main pages, 3 main figures + supplemental material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14207">arXiv:2310.14207</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14207">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cap.2022.11.014">10.1016/j.cap.2022.11.014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomic arrangement of van der Waals heterostructures using X-ray scattering and crystal truncation rod analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+R">Ryung Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+B+K">Byoung Ki Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+J">Kyeong Jun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H+J">Hyuk Jin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H+H">Hyun Hwi Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhee%2C+T+G">Tae Gyu Rhee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khim%2C+Y+G">Yeong Gwang Khim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y+J">Young Jun Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+S+H">Seo Hyoung Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14207v1-abstract-short" style="display: inline;"> Vanadium diselenide (VSe2) has intriguing physical properties such as unexpected ferromagnetism at the two-dimensional limit. However, the experimental results for room temperature ferromagnetism are still controversial and depend on the detailed crystal structure and stoichiometry. Here we introduce crystal truncation rod (CTR) analysis to investigate the atomic arrangement of bilayer VSe2 and bi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14207v1-abstract-full').style.display = 'inline'; document.getElementById('2310.14207v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14207v1-abstract-full" style="display: none;"> Vanadium diselenide (VSe2) has intriguing physical properties such as unexpected ferromagnetism at the two-dimensional limit. However, the experimental results for room temperature ferromagnetism are still controversial and depend on the detailed crystal structure and stoichiometry. Here we introduce crystal truncation rod (CTR) analysis to investigate the atomic arrangement of bilayer VSe2 and bilayer graphene (BLG) hetero-structures grown on a 6H-SiC(0001) substrate. Using non-destructive CTR analysis, we were able to obtain electron density profiles and detailed crystal structure of the VSe2/BLG heterostructures. Specifically, the out-of-plane lattice parameters of each VSe2 layer were modulated by the interface compared to that of the bulk VSe2 1T phase. The atomic arrangement of the VSe2/BLG heterostructure provides deeper understanding and insight for elucidating the magnetic properties of the van der Waals heterostructure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14207v1-abstract-full').style.display = 'none'; document.getElementById('2310.14207v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Current Applied Physics 46, 70 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07864">arXiv:2310.07864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07864">pdf</a>, <a href="https://arxiv.org/format/2310.07864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3624062.3626081">10.1145/3624062.3626081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards Foundation Models for Materials Science: The Open MatSci ML Toolkit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+L+K">Kin Long Kelvin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonzales%2C+C">Carmelo Gonzales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spellings%2C+M">Matthew Spellings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Galkin%2C+M">Mikhail Galkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miret%2C+S">Santiago Miret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nalini Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07864v1-abstract-short" style="display: inline;"> Artificial intelligence and machine learning have shown great promise in their ability to accelerate novel materials discovery. As researchers and domain scientists seek to unify and consolidate chemical knowledge, the case for models with potential to generalize across different tasks within materials science - so-called &#34;foundation models&#34; - grows with ambitions. This manuscript reviews our rece&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07864v1-abstract-full').style.display = 'inline'; document.getElementById('2310.07864v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07864v1-abstract-full" style="display: none;"> Artificial intelligence and machine learning have shown great promise in their ability to accelerate novel materials discovery. As researchers and domain scientists seek to unify and consolidate chemical knowledge, the case for models with potential to generalize across different tasks within materials science - so-called &#34;foundation models&#34; - grows with ambitions. This manuscript reviews our recent progress with development of Open MatSci ML Toolkit, and details experiments that lay the groundwork for foundation model research and development with our framework. First, we describe and characterize a new pretraining task that uses synthetic data generated from symmetry operations, and reveal complex training dynamics at large scales. Using the pretrained model, we discuss a number of use cases relevant to foundation model development: semantic architecture of datasets, and fine-tuning for property prediction and classification. Our key results show that for simple applications, pretraining appears to provide worse modeling performance than training models from random initialization. However, for more complex instances, such as when a model is required to learn across multiple datasets and types of targets simultaneously, the inductive bias from pretraining provides significantly better performance. This insight will hopefully inform subsequent efforts into creating foundation models for materials science applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07864v1-abstract-full').style.display = 'none'; document.getElementById('2310.07864v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures, 1 table. Accepted paper/presentation at the AI4Science workshop at Super Computing &#39;23</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05437">arXiv:2310.05437</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.05437">pdf</a>, <a href="https://arxiv.org/format/2310.05437">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Observation of universal Kibble-Zurek scaling in an atomic Fermi superfluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuhwan Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Sol Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">Taehoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+Y">Yong-il Shin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05437v1-abstract-short" style="display: inline;"> Half a century ago, T. Kibble proposed a scenario for topological defect formation from symmetry breaking during the expansion of the early Universe. W. Zurek later crystallized the concept to superfluid helium, predicting a power-law relation between the number of quantum vortices and the rate at which the system passes through the lambda transition. Here, we report the observation of Kibble-Zure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05437v1-abstract-full').style.display = 'inline'; document.getElementById('2310.05437v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05437v1-abstract-full" style="display: none;"> Half a century ago, T. Kibble proposed a scenario for topological defect formation from symmetry breaking during the expansion of the early Universe. W. Zurek later crystallized the concept to superfluid helium, predicting a power-law relation between the number of quantum vortices and the rate at which the system passes through the lambda transition. Here, we report the observation of Kibble-Zurek scaling in a homogeneous, strongly interacting Fermi gas undergoing a superfluid phase transition. We investigate the superfluid transition using two distinct control parameters: temperature and interaction strength. The microscopic physics of condensate formation is markedly different for the two quench parameters, signaled by their two orders of magnitude difference in the condensate formation timescale. However, regardless of the thermodynamic direction in which the system passes through a phase transition, the Kibble-Zurek exponent is identically observed to be about 0.68 and shows good agreement with theoretical predictions that describe superfluid phase transitions. This work demonstrates the gedanken experiment Zurek proposed for liquid helium that shares the same universality class with strongly interacting Fermi gases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05437v1-abstract-full').style.display = 'none'; document.getElementById('2310.05437v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05127">arXiv:2310.05127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.05127">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c03333">10.1021/acs.nanolett.3c03333 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulsed-mode metalorganic vapor-phase epitaxy of GaN on graphene-coated c-sapphire for freestanding GaN thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Seokje Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbas%2C+M+S">Muhammad S. Abbas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoo%2C+D">Dongha Yoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Keundong Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabunmi%2C+T+G">Tobiloba G. Fabunmi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+E">Eunsu Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H+I">Han Ik Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+I">Imhwan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+D">Daniel Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sangmin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jusang Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+K">Ki-Tae Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C">Changgu Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Miyoung Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+S">Yun Seog Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C+S">Celesta S. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+G">Gyu-Chul Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05127v2-abstract-short" style="display: inline;"> We report the growth of high-quality GaN epitaxial thin films on graphene-coated c-sapphire substrates using pulsed-mode metalorganic vapor-phase epitaxy, together with the fabrication of freestanding GaN films by simple mechanical exfoliation for transferable light-emitting diodes (LEDs). High-quality GaN films grown on the graphene-coated sapphire substrates were easily lifted off using thermal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05127v2-abstract-full').style.display = 'inline'; document.getElementById('2310.05127v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05127v2-abstract-full" style="display: none;"> We report the growth of high-quality GaN epitaxial thin films on graphene-coated c-sapphire substrates using pulsed-mode metalorganic vapor-phase epitaxy, together with the fabrication of freestanding GaN films by simple mechanical exfoliation for transferable light-emitting diodes (LEDs). High-quality GaN films grown on the graphene-coated sapphire substrates were easily lifted off using thermal release tape and transferred onto foreign substrates. Furthermore, we revealed that the pulsed operation of ammonia flow during GaN growth was a critical factor for the fabrication of high-quality freestanding GaN films. These films, exhibiting excellent single crystallinity, were utilized to fabricate transferable GaN LEDs by heteroepitaxially growing InxGa1-xN/GaN multiple quantum wells and a p-GaN layer on the GaN films, showing their potential application in advanced optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05127v2-abstract-full').style.display = 'none'; document.getElementById('2310.05127v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document is the unedited Author&#39;s version of a Submitted Work that was subsequently accepted for publication in Nano Letters, copyright 2023 American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.nanolett.3c03333</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04763">arXiv:2310.04763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.04763">pdf</a>, <a href="https://arxiv.org/format/2310.04763">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Orbital diffusion, polarization and swapping in centrosymmetric metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ning%2C+X">Xiaobai Ning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pezo%2C+A">A. Pezo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kyoung-Whan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyung-Jin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manchon%2C+A">Aurelien Manchon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04763v3-abstract-short" style="display: inline;"> We propose a general theory of charge, spin, and orbital diffusion based on Keldysh formalism. Our findings indicate that the diffusivity of orbital angular momentum in metals is much lower than that of spin or charge due to the strong orbital intermixing in crystals. Furthermore, our theory introduces the concept of spin-orbit polarization by which a pure orbital (spin) current induces a longitud&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04763v3-abstract-full').style.display = 'inline'; document.getElementById('2310.04763v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04763v3-abstract-full" style="display: none;"> We propose a general theory of charge, spin, and orbital diffusion based on Keldysh formalism. Our findings indicate that the diffusivity of orbital angular momentum in metals is much lower than that of spin or charge due to the strong orbital intermixing in crystals. Furthermore, our theory introduces the concept of spin-orbit polarization by which a pure orbital (spin) current induces a longitudinal spin (orbital) current, a process as efficient as spin polarization in ferromagnets. Finally, we find that orbital currents undergo momentum swapping, even in the absence of spin-orbit coupling. This theory establishes several key parameters for orbital transport of direct importance to experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04763v3-abstract-full').style.display = 'none'; document.getElementById('2310.04763v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Includes Supplemental Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02589">arXiv:2310.02589</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.02589">pdf</a>, <a href="https://arxiv.org/format/2310.02589">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Evidence for highly damped Higgs mode in infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+B">Bing Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+D">Di Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mootz%2C+M">Martin Mootz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chuankun Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+L">Liang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+1+Z">1 Zhuoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perakis%2C+I+E">Ilias E. Perakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jigang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02589v1-abstract-short" style="display: inline;"> The dynamics of Higgs mode in superconductors, manifested as coherent oscillations of the superconducting order parameter amplitude, provides vital insights into the nature of the superconducting gap structure and symmetry. Here we utilize two-dimensional terahertz coherent spectroscopy to investigate Higgs dynamics of a newly discovered infinite-layer nickelate superconductor. While we observe di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02589v1-abstract-full').style.display = 'inline'; document.getElementById('2310.02589v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02589v1-abstract-full" style="display: none;"> The dynamics of Higgs mode in superconductors, manifested as coherent oscillations of the superconducting order parameter amplitude, provides vital insights into the nature of the superconducting gap structure and symmetry. Here we utilize two-dimensional terahertz coherent spectroscopy to investigate Higgs dynamics of a newly discovered infinite-layer nickelate superconductor. While we observe distinct nonlinear terahertz responses from the superconducting state, well-defined long-lived Higgs modes, as commonly observed in $s$-wave superconductors, are entirely absent in the nickelate film. Instead, we find the coherent nonlinear terahertz response is dominated by the quasiparticle excitations. These observations strongly indicate that the Higgs mode in infinite-layer nickelates is heavily damped by the quasiparticle excitations at arbitrarily low energies, which is a characteristic of $d$-wave pairing symmetry. Additionally, by examining the temperature dependence of the nonlinear terahertz response, we discover short-range superconducting fluctuations in the vicinity of $T_\mathrm{c}$. Our findings provide proof of a new $d$-wave system and establish a foundation for investigating the unconventional superconductivity in nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02589v1-abstract-full').style.display = 'none'; document.getElementById('2310.02589v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02586">arXiv:2310.02586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.02586">pdf</a>, <a href="https://arxiv.org/format/2310.02586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-023-01766-z">10.1038/s41563-023-01766-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy electrodynamics of infinite-layer nickelates: evidence for d-wave superconductivity in the dirty limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+B">Bing Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+D">Di Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+L">Liang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhuoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mootz%2C+M">Martin Mootz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perakis%2C+I+E">Ilias E. Perakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jigang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02586v1-abstract-short" style="display: inline;"> The discovery of superconductivity in infinite-layer nickelates establishes a new category of unconventional superconductors that share structural and electronic similarities with cuprates. Despite exciting advances, such as the establishment of a cuprate-like phase diagram and the observation of charge order and short-range antiferromagnetic fluctuation, the key issues of superconducting pairing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02586v1-abstract-full').style.display = 'inline'; document.getElementById('2310.02586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02586v1-abstract-full" style="display: none;"> The discovery of superconductivity in infinite-layer nickelates establishes a new category of unconventional superconductors that share structural and electronic similarities with cuprates. Despite exciting advances, such as the establishment of a cuprate-like phase diagram and the observation of charge order and short-range antiferromagnetic fluctuation, the key issues of superconducting pairing symmetry, gap amplitude, and superconducting fluctuation remain elusive. In this work, we utilize static and ultrafast terahertz spectroscopy to address these outstanding problems. We demonstrate that the equilibrium terahertz conductivity and nonequilibrium terahertz responses of an optimally Sr-doped nickelate film ($T_c$ = 17 K) are in line with the electrodynamics of $d$-wave superconductivity in the dirty limit. The gap-to-$T_c$ ratio 2$螖/k_\mathrm{B}T_\mathrm{c}$ is extracted to be 3.4, indicating the superconductivity falls in the weak-coupling regime. In addition, we observed significant superconducting fluctuation near $T_\mathrm{c}$, while it does not extend into the deep normal state as optimally hole-doped cuprates. Our result highlights a new $d$-wave system which closely resembles the electron-doped cuprates, expanding the family of unconventional superconductivity in oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02586v1-abstract-full').style.display = 'none'; document.getElementById('2310.02586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05934">arXiv:2309.05934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05934">pdf</a>, <a href="https://arxiv.org/format/2309.05934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+L+K">Kin Long Kelvin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonzales%2C+C">Carmelo Gonzales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nassar%2C+M">Marcel Nassar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spellings%2C+M">Matthew Spellings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Galkin%2C+M">Mikhail Galkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miret%2C+S">Santiago Miret</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05934v1-abstract-short" style="display: inline;"> We propose MatSci ML, a novel benchmark for modeling MATerials SCIence using Machine Learning (MatSci ML) methods focused on solid-state materials with periodic crystal structures. Applying machine learning methods to solid-state materials is a nascent field with substantial fragmentation largely driven by the great variety of datasets used to develop machine learning models. This fragmentation ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05934v1-abstract-full').style.display = 'inline'; document.getElementById('2309.05934v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05934v1-abstract-full" style="display: none;"> We propose MatSci ML, a novel benchmark for modeling MATerials SCIence using Machine Learning (MatSci ML) methods focused on solid-state materials with periodic crystal structures. Applying machine learning methods to solid-state materials is a nascent field with substantial fragmentation largely driven by the great variety of datasets used to develop machine learning models. This fragmentation makes comparing the performance and generalizability of different methods difficult, thereby hindering overall research progress in the field. Building on top of open-source datasets, including large-scale datasets like the OpenCatalyst, OQMD, NOMAD, the Carolina Materials Database, and Materials Project, the MatSci ML benchmark provides a diverse set of materials systems and properties data for model training and evaluation, including simulated energies, atomic forces, material bandgaps, as well as classification data for crystal symmetries via space groups. The diversity of properties in MatSci ML makes the implementation and evaluation of multi-task learning algorithms for solid-state materials possible, while the diversity of datasets facilitates the development of new, more generalized algorithms and methods across multiple datasets. In the multi-dataset learning setting, MatSci ML enables researchers to combine observations from multiple datasets to perform joint prediction of common properties, such as energy and forces. Using MatSci ML, we evaluate the performance of different graph neural networks and equivariant point cloud networks on several benchmark tasks spanning single task, multitask, and multi-data learning scenarios. Our open-source code is available at https://github.com/IntelLabs/matsciml. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05934v1-abstract-full').style.display = 'none'; document.getElementById('2309.05934v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Lee%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Lee%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lee%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lee%2C+K&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lee%2C+K&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lee%2C+K&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10