CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 149 results for author: <span class="mathjax">Strocov, V N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Strocov%2C+V+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Strocov, V N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Strocov%2C+V+N&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Strocov, V N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Strocov%2C+V+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Strocov%2C+V+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Strocov%2C+V+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Strocov%2C+V+N&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13898">arXiv:2411.13898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13898">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Discovery of an Antiferromagnetic Topological Nodal-line Kondo Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D+F">D. F. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y+F">Y. F. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H+Y">H. Y. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+Y">J. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+T+P">T. P. Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+Y+Y">Y. Y. Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y+H">Y. H. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+D">D. Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+M+H">M. H. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J+J">J. J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+H">Q. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+F+Q">F. Q. Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiagarajan%2C+B">B. Thiagarajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+C">C. Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">M. Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D+H">D. H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">N. B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louat%2C+A">A. Louat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">C. Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+D">D. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+T+-">T. -L. Lee</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13898v1-abstract-short" style="display: inline;"> The symbiosis of strong interactions, flat bands, topology and symmetry has led to the discovery of exotic phases of matter, including fractional Chern insulators, correlated moir茅 topological superconductors, and Dirac and Weyl semimetals. Correlated metals, such as those present in Kondo lattices, rely on the screening of local moments by a sea of non-magnetic conduction electrons. Here, we repo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13898v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13898v1-abstract-full" style="display: none;"> The symbiosis of strong interactions, flat bands, topology and symmetry has led to the discovery of exotic phases of matter, including fractional Chern insulators, correlated moir茅 topological superconductors, and Dirac and Weyl semimetals. Correlated metals, such as those present in Kondo lattices, rely on the screening of local moments by a sea of non-magnetic conduction electrons. Here, we report on a unique topological Kondo lattice compound, CeCo2P2, where the Kondo effect - whose existence under the magnetic Co phase is protected by PT symmetry - coexists with antiferromagnetic order emerging from the flat bands associated with the Co atoms. Remarkably, this is the only known Kondo lattice compound where magnetic order occurs in non-heavy electrons, and puzzlingly, at a temperature significantly higher than that of the Kondo effect. Furthermore, at low temperatures, the emergence of the Kondo effect, in conjunction with a glide-mirror-z symmetry, results in a nodal line protected by bulk topology near the Fermi energy. These unusual properties, arising from the interplay between itinerant and correlated electrons from different constituent elements, lead to novel quantum phases beyond the celebrated topological Kondo insulators and Weyl Kondo semimetals. CeCo2P2 thus provides an ideal platform for investigating narrow bands, topology, magnetism, and the Kondo effect in strongly correlated electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13898v1-abstract-full').style.display = 'none'; document.getElementById('2411.13898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16199">arXiv:2410.16199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16199">pdf</a>, <a href="https://arxiv.org/format/2410.16199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Momentum-Resolved Fingerprint of Mottness in Layer-Dimerized Nb$_3$Br$_8$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Date%2C+M">Mihir Date</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petocchi%2C+F">Francesco Petocchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yen%2C+Y">Yun Yen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krieger%2C+J+A">Jonas A. Krieger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pal%2C+B">Banabir Pal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasse%2C+V">Vicky Hasse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McFarlane%2C+E+C">Emily C. McFarlane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6rner%2C+C">Chris K枚rner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+J">Jiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuanfeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kostanovski%2C+I">Ilya Kostanovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ali%2C+M+N">Mazhar N. Ali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+S">Sailong Ju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">Nicholas C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sentef%2C+M+A">Michael A. Sentef</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woltersdorf%2C+G">Georg Woltersdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BCler%2C+M">Michael Sch眉ler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Werner%2C+P">Philipp Werner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">Stuart S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">Niels B. M. Schr枚ter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16199v1-abstract-short" style="display: inline;"> In a well-ordered crystalline solid, insulating behaviour can arise from two mechanisms: electrons can either scatter off a periodic potential, thus forming band gaps that can lead to a band insulator, or they localize due to strong interactions, resulting in a Mott insulator. For an even number of electrons per unit cell, either band- or Mott-insulators can theoretically occur. However, unambiguo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16199v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16199v1-abstract-full" style="display: none;"> In a well-ordered crystalline solid, insulating behaviour can arise from two mechanisms: electrons can either scatter off a periodic potential, thus forming band gaps that can lead to a band insulator, or they localize due to strong interactions, resulting in a Mott insulator. For an even number of electrons per unit cell, either band- or Mott-insulators can theoretically occur. However, unambiguously identifying an unconventional Mott-insulator with an even number of electrons experimentally has remained a longstanding challenge due to the lack of a momentum-resolved fingerprint. This challenge has recently become pressing for the layer dimerized van der Waals compound Nb$_3$Br$_8$, which exhibits a puzzling magnetic field-free diode effect when used as a weak link in Josephson junctions, but has previously been considered to be a band-insulator. In this work, we present a unique momentum-resolved signature of a Mott-insulating phase in the spectral function of Nb$_3$Br$_8$: the top of the highest occupied band along the out-of-plane dimerization direction $k_z$ has a momentum space separation of $螖k_z=2蟺/d$, whereas the valence band maximum of a band insulator would be separated by less than $螖k_z=蟺/d$, where $d$ is the average spacing between the layers. As the strong electron correlations inherent in Mott insulators can lead to unconventional superconductivity, identifying Nb$_3$Br$_8$ as an unconventional Mott-insulator is crucial for understanding its apparent time-reversal symmetry breaking Josephson diode effect. Moreover, the momentum-resolved signature employed here could be used to detect quantum phase transition between band- and Mott-insulating phases in van der Waals heterostructures, where interlayer interactions and correlations can be easily tuned to drive such transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16199v1-abstract-full').style.display = 'none'; document.getElementById('2410.16199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11825">arXiv:2409.11825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.11825">pdf</a>, <a href="https://arxiv.org/ps/2409.11825">ps</a>, <a href="https://arxiv.org/format/2409.11825">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hartl%2C+A">Anna Hartl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Constantinou%2C+P">Procopios Constantinou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roddatis%2C+V">Vladimir Roddatis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alarab%2C+F">Fatima Alarab</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+A+M">Arnold M. M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vockenhuber%2C+C">Christof Vockenhuber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pergolesi%2C+D">Daniele Pergolesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+T+L+V+N">Thomas Lippert Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shepelin%2C+N+A">Nick A. Shepelin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11825v1-abstract-short" style="display: inline;"> The conversion of solar energy into chemical energy, stored in the form of hydrogen, bears enormous potential as a sustainable fuel for powering emerging technologies. Photoactive oxynitrides are promising materials for splitting water into molecular oxygen and hydrogen. However, one of the issues limiting widespread commercial use of oxynitrides is the degradation during operation. While recent s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11825v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11825v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11825v1-abstract-full" style="display: none;"> The conversion of solar energy into chemical energy, stored in the form of hydrogen, bears enormous potential as a sustainable fuel for powering emerging technologies. Photoactive oxynitrides are promising materials for splitting water into molecular oxygen and hydrogen. However, one of the issues limiting widespread commercial use of oxynitrides is the degradation during operation. While recent studies have shown the loss of nitrogen, its relation to the reduced efficiency has not been directly and systematically addressed with experiments. In this study, we demonstrate the impact of the anionic stoichiometry of BaTaO$_x$N$_y$ on its electronic structure and functional properties. Through experimental ion scattering, electron microscopy, and photoelectron spectroscopy investigations, we determine the anionic composition ranging from the bulk towards the surface of BaTaO$_x$N$_y$ thin films. This further serves as input for band structure computations modeling the substitutional disorder of the anion sites. Combining our experimental and computational approaches, we reveal the depth-dependent elemental composition of oxynitride films, resulting in downward band bending and the loss of semiconducting character towards the surface. Extending beyond idealized systems, we demonstrate the relation between the electronic properties of real oxynitride photoanodes and their performance, providing guidelines for engineering highly efficient photoelectrodes and photocatalysts for clean hydrogen production. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11825v1-abstract-full').style.display = 'none'; document.getElementById('2409.11825v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13720">arXiv:2405.13720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.13720">pdf</a>, <a href="https://arxiv.org/format/2405.13720">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin-orbital excitations encoding the magnetic phase transition in the van der Waals antiferromagnet FePS$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elnaggar%2C+H">Hebatalla Elnaggar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asmara%2C+T+C">Teguh Citra Asmara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">Eugenio Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Domaine%2C+G">Gabriele Domaine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Testa%2C+L">Luc Testa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Favre%2C+V">Virgile Favre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Luca%2C+M">Mario Di Luca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+M">Mitali Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wildes%2C+A+R">Andrew R. Wildes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Groot%2C+F+M+F">Frank M. F. de Groot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronnow%2C+H+M">Henrik M. Ronnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13720v1-abstract-short" style="display: inline;"> In the rich phases of van der Waals (vdW) materials featuring intertwined electronic order and collective phenomena, characterizing elementary dynamics that entail the low-energy Hamiltonian and electronic degrees of freedom is of paramount importance. Here we performed resonant inelastic X-ray scattering (RIXS) to elaborate the spin-orbital ground and excited states of the vdW antiferromagnetic i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13720v1-abstract-full').style.display = 'inline'; document.getElementById('2405.13720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13720v1-abstract-full" style="display: none;"> In the rich phases of van der Waals (vdW) materials featuring intertwined electronic order and collective phenomena, characterizing elementary dynamics that entail the low-energy Hamiltonian and electronic degrees of freedom is of paramount importance. Here we performed resonant inelastic X-ray scattering (RIXS) to elaborate the spin-orbital ground and excited states of the vdW antiferromagnetic insulator FePS$_{3}$, as well as their relation to magnetism. We observed the spectral enhancement of spin-orbital multiplet transitions about $\sim$ 100 and $\sim$ 220 meV, as well as quasielastic response, when entering the zig-zag antiferromagnetic phase, where the spectral changes develop an order-parameter-like evolution with temperature. By comparing with ligand field theory calculations, we discovered the essential role of trigonal lattice distortion and negative metal-ligand charge-transfer to account for these emergent excitations. Such spectral profiles are further examined upon confinement by mechanical exfoliation. We reveal their spectral robustness down to the few atomic layer limit, in accordance with the persistent antiferromagnetic state previously reported in optical measurements. Our study demonstrates the versatile RIXS capability that resolves magneto-crystalline anisotropy and charge-transfer energetics. These provide the crucial insight to understand how the spontaneous magnetic symmetry-breaking stabilizes in the quasi-two-dimensional limit for the vdW magnet FePS$_{3}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13720v1-abstract-full').style.display = 'none'; document.getElementById('2405.13720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01445">arXiv:2405.01445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01445">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Depth-resolved profile of the interfacial ferromagnetism in $CaMnO_{3}/CaRuO_{3}$ superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Paudel%2C+J+R">J. R. Paudel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tehrani%2C+A+M">A. Mansouri Tehrani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terilli%2C+M">M. Terilli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kareev%2C+M">M. Kareev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grassi%2C+J">J. Grassi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sah%2C+R+K">R. K. Sah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">L. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klewe%2C+C">C. Klewe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shafer%2C+P">P. Shafer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakhalian%2C+J">J. Chakhalian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spaldin%2C+N+A">N. A. Spaldin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gray%2C+A+X">A. X. Gray</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01445v1-abstract-short" style="display: inline;"> Emergent magnetic phenomena at interfaces represent a frontier in materials science, pivotal for advancing technologies in spintronics and magnetic storage. In this letter, we utilize a suite of advanced X-ray spectroscopic and scattering techniques to investigate emergent interfacial ferromagnetism in oxide superlattices comprised of antiferromagnetic CaMnO3 and paramagnetic CaRuO3. Our findings&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01445v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01445v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01445v1-abstract-full" style="display: none;"> Emergent magnetic phenomena at interfaces represent a frontier in materials science, pivotal for advancing technologies in spintronics and magnetic storage. In this letter, we utilize a suite of advanced X-ray spectroscopic and scattering techniques to investigate emergent interfacial ferromagnetism in oxide superlattices comprised of antiferromagnetic CaMnO3 and paramagnetic CaRuO3. Our findings challenge prior theoretical models by demonstrating that the ferromagnetism extends beyond the interfacial layer into multiple unit cells of CaMnO3 and exhibits an asymmetric profile. Complementary density functional calculations reveal that the interfacial ferromagnetism is driven by the double exchange mechanism, facilitated by charge transfer from Ru to Mn ions. Additionally, defect chemistry, particularly the presence of oxygen vacancies, likely plays a crucial role in modifying the magnetic moments at the interface, leading to the observed asymmetry between the top and bottom CaMnO3 interfacial magnetic layers. Our findings underscore the potential of manipulating interfacial ferromagnetism through point defect engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01445v1-abstract-full').style.display = 'none'; document.getElementById('2405.01445v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04097">arXiv:2403.04097</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04097">pdf</a>, <a href="https://arxiv.org/format/2403.04097">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00632-8">10.1038/s41535-024-00632-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flat-band hybridization between $f$ and $d$ states near the Fermi energy of SmCoIn$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tam%2C+D+W">David W. Tam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colonna%2C+N">Nicola Colonna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alarab%2C+F">Fatima Alarab</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gawryluk%2C+D+J">Dariusz Jakub Gawryluk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kenzelmann%2C+M">Michel Kenzelmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04097v1-abstract-short" style="display: inline;"> We present high-quality angle-resolved photoemission (ARPES) and density functional theory calculations (DFT+U) of SmCoIn$_5$. We find broad agreement with previously published studies of LaCoIn$_5$ and CeCoIn$_5$, confirming that the Sm $4f$ electrons are mostly localized. Nevertheless, our model is consistent with an additional delocalized Sm component, stemming from hybridization between the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04097v1-abstract-full').style.display = 'inline'; document.getElementById('2403.04097v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04097v1-abstract-full" style="display: none;"> We present high-quality angle-resolved photoemission (ARPES) and density functional theory calculations (DFT+U) of SmCoIn$_5$. We find broad agreement with previously published studies of LaCoIn$_5$ and CeCoIn$_5$, confirming that the Sm $4f$ electrons are mostly localized. Nevertheless, our model is consistent with an additional delocalized Sm component, stemming from hybridization between the $4f$ electrons and the metallic bands at &#34;hot spot&#34; positions in the Brillouin zone. The dominant hot spot, called $纬_Z$, is similar to a source of delocalized $f$ states found in previous experimental and theoretical studies of CeCoIn$_5$. In this work, we identify and focus on the role of the Co $d$ states in exploring the relationship between heavy quasiparticles and the magnetic interactions in SmCoIn$_5$, which lead to a magnetically ordered ground state from within an intermediate valence scenario. Specifically, we find a globally flat band consisting of Co $d$ states near $E=-0.7$ eV, indicating the possibility of enhanced electronic and magnetic interactions in the &#34;115&#34; family of materials through localization in the Co layer, and we discuss a possible origin in geometric frustration. We also show that the delocalized Sm $4f$ states can hybridize directly with the Co $3d_{xz}$/$3d_{yz}$ orbitals, which occurs in our model at the Brillouin zone boundary point $R$ in a band that is locally flat and touches the Fermi level from above. Our work identifies microscopic ingredients for additional magnetic interactions in the &#34;115&#34; materials beyond the RKKY mechanism, and strongly suggests that the Co $d$ bands are an important ingredient in the formation of both magnetic and superconducting ground states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04097v1-abstract-full').style.display = 'none'; document.getElementById('2403.04097v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03324">arXiv:2403.03324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03324">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Observation of Chiral Surface State in Superconducting NbGe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+M">Mengyu Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roychowdhury%2C+S">Subhajit Roychowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03324v2-abstract-short" style="display: inline;"> The interplay between topology and superconductivity in quantum materials harbors rich physics ripe for discovery. In this study, we investigate the topological properties and superconductivity of the nonsymmorphic chiral superconductor NbGe$_2$ using high-resolution angle-resolved pho-toemission spectroscopy (ARPES), transport measurements, and ab initio calculations. The ARPES data revealed exot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03324v2-abstract-full').style.display = 'inline'; document.getElementById('2403.03324v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03324v2-abstract-full" style="display: none;"> The interplay between topology and superconductivity in quantum materials harbors rich physics ripe for discovery. In this study, we investigate the topological properties and superconductivity of the nonsymmorphic chiral superconductor NbGe$_2$ using high-resolution angle-resolved pho-toemission spectroscopy (ARPES), transport measurements, and ab initio calculations. The ARPES data revealed exotic chiral surface states on the (100) surface originating from the inherent chiral crystal structure. Supporting calculations indicate that NbGe$_2$ likely hosts elusive Weyl fermions in its bulk electronic structure. Furthermore, we uncovered the signatures of van Hove singularities that can enhance many-body interactions. Additionally, transport measurements demonstrated that NbGe$_2$ exhibits superconductivity below 2K. Overall, our comprehensive results provide the first concrete evidence that NbGe$_2$ is a promising platform for investigating the interplay between non-trivial band topology, possible Weyl fermions, van Hove singularities, and superconductivity in chiral quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03324v2-abstract-full').style.display = 'none'; document.getElementById('2403.03324v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12749">arXiv:2312.12749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.12749">pdf</a>, <a href="https://arxiv.org/format/2312.12749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Nematic charge-density-wave correlations in FeSe$_{1-x}$S$_{x}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R">Ruixian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+Z">Zhen Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asmara%2C+T+C">Teguh C. Asmara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xingye Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12749v2-abstract-short" style="display: inline;"> The occurrence of charge-density-wave (CDW) order is a common thread in the phase diagram of cuprate high-transition-temperature ($T_c$) superconductors. In iron-based superconductors (FeSCs), nematic order and fluctuations play a decisive role in driving other emergent orders. CDW order has been observed by scanning tunneling microscopy for various FeSCs such as FeSe thin films, uniaxially strain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12749v2-abstract-full').style.display = 'inline'; document.getElementById('2312.12749v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12749v2-abstract-full" style="display: none;"> The occurrence of charge-density-wave (CDW) order is a common thread in the phase diagram of cuprate high-transition-temperature ($T_c$) superconductors. In iron-based superconductors (FeSCs), nematic order and fluctuations play a decisive role in driving other emergent orders. CDW order has been observed by scanning tunneling microscopy for various FeSCs such as FeSe thin films, uniaxially strained LiFeAs, and tetragonal FeSe$_{0.81}$S$_{0.19}$. However, it remains elusive if the CDW in these materials is a bulk phenomenon as well as if and how it intertwines with the electronic nematicity. Using energy-resolved resonant X-ray scattering at the Fe-L$_3$ edge, we report the discovery of a local-strain-induced incommensurate isotropic CDW order in FeSe$_{0.82}$S$_{0.18}$. A highly anisotropic CDW response under uniaxial strain unambiguously manifests that the CDW is directly coupled to the nematicity. Transforming part of Fe$^{2+}$ to Fe$^{3+}$ on the surface of FeSe$_{1-x}$S$_{x}$ reveals that the same isotropic CDW can be induced, enhanced, and stabilized in the whole nematic regime measured ($x=0-0.19$). As Fe$^{3+}$ can create local lattice distortions on the surface, the CDW could arise from the interaction between the local strain around Fe$^{3+}$ and the nematic electron correlations. Our experimental observation of a local-strain-induced CDW gives vital information for understanding the interplay between electron correlations and the electronic nematicity in FeSCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12749v2-abstract-full').style.display = 'none'; document.getElementById('2312.12749v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09798">arXiv:2312.09798</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.09798">pdf</a>, <a href="https://arxiv.org/format/2312.09798">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tunable 2D Electron- and 2D Hole States Observed at Fe/SrTiO$_3$ Interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCring%2C+P+M">Pia M. D眉ring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenberger%2C+P">Paul Rosenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumgarten%2C+L">Lutz Baumgarten</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alarab%2C+F">Fatima Alarab</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lechermann%2C+F">Frank Lechermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+M">Martina M眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09798v1-abstract-short" style="display: inline;"> Oxide electronics provide the key concepts and materials for enhancing silicon-based semiconductor technologies with novel functionalities. However, a basic but key property of semiconductor devices still needs to be unveiled in its oxidic counterparts: the ability to set or even switch between two types of carriers - either negatively (n) charged electrons or positively (p) charged holes. Here, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09798v1-abstract-full').style.display = 'inline'; document.getElementById('2312.09798v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09798v1-abstract-full" style="display: none;"> Oxide electronics provide the key concepts and materials for enhancing silicon-based semiconductor technologies with novel functionalities. However, a basic but key property of semiconductor devices still needs to be unveiled in its oxidic counterparts: the ability to set or even switch between two types of carriers - either negatively (n) charged electrons or positively (p) charged holes. Here, we provide direct evidence for individually emerging n- or p-type 2D band dispersions in STO-based heterostructures using resonant photoelectron spectroscopy. The key to tuning the carrier character is the oxidation state of an adjacent Fe-based interface layer: For Fe and FeO, hole bands emerge in the empty band gap region of STO due to hybridization of Ti and Fe-derived states across the interface, while for Fe$_3$O$_4$ overlayers, an 2D electron system is formed. Unexpected oxygen vacancy characteristics arise for the hole-type interfaces, which as of yet had been exclusively assigned to the emergence of 2DESs. In general, this finding opens up the possibility to straightforwardly switch the type of conductivity at STO interfaces by the oxidation state of a redox overlayer. This will extend the spectrum of phenomena in oxide electronics, including the realization of combined n/p-type all-oxide transistors or logic gates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09798v1-abstract-full').style.display = 'none'; document.getElementById('2312.09798v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Advanced Materials (accepted)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13217">arXiv:2311.13217</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.13217">pdf</a>, <a href="https://arxiv.org/format/2311.13217">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Controllable orbital angular momentum monopoles in chiral topological semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yen%2C+Y">Yun Yen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krieger%2C+J+A">Jonas A. Krieger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+M">Mengyu Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manna%2C+K">Kaustuv Manna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McFarlane%2C+E+C">Emily C. McFarlane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borrmann%2C+H">Horst Borrmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stolz%2C+S">Samuel Stolz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Widmer%2C+R">Roland Widmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gr%C3%B6ning%2C+O">Oliver Gr枚ning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">Stuart S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BCler%2C+M">Michael Sch眉ler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">Niels B. M. Schr枚ter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13217v1-abstract-short" style="display: inline;"> The emerging field of orbitronics aims at generating and controlling currents of electronic orbital angular momentum (OAM) for information processing. Structurally chiral topological crystals could be particularly suitable orbitronic materials because they have been predicted to host topological band degeneracies in reciprocal space that are monopoles of OAM. Around such a monopole, the OAM is loc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13217v1-abstract-full').style.display = 'inline'; document.getElementById('2311.13217v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13217v1-abstract-full" style="display: none;"> The emerging field of orbitronics aims at generating and controlling currents of electronic orbital angular momentum (OAM) for information processing. Structurally chiral topological crystals could be particularly suitable orbitronic materials because they have been predicted to host topological band degeneracies in reciprocal space that are monopoles of OAM. Around such a monopole, the OAM is locked isotopically parallel or antiparallel to the direction of the electron&#39;s momentum, which could be used to generate large and controllable OAM currents. However, OAM monopoles have not yet been directly observed in chiral crystals, and no handle to control their polarity has been discovered. Here, we use circular dichroism in angle-resolved photoelectron spectroscopy (CD-ARPES) to image OAM monopoles in the chiral topological semimetals PtGa and PdGa. Moreover, we also demonstrate that the polarity of the monopole can be controlled via the structural handedness of the host crystal by imaging OAM monopoles and anti-monopoles in the two enantiomers of PdGa, respectively. For most photon energies used in our study, we observe a sign change in the CD-ARPES spectrum when comparing positive and negative momenta along the light direction near the topological degeneracy. This is consistent with the conventional view that CD-ARPES measures the projection of the OAM monopole along the photon momentum. For some photon energies, however, this sign change disappears, which can be understood from our numerical simulations as the interference of polar atomic OAM contributions, consistent with the presence of OAM monopoles. Our results highlight the potential of chiral crystals for orbitronic device applications, and our methodology could enable the discovery of even more complicated nodal OAM textures that could be exploited for orbitronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13217v1-abstract-full').style.display = 'none'; document.getElementById('2311.13217v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17280">arXiv:2310.17280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.17280">pdf</a>, <a href="https://arxiv.org/format/2310.17280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-46476-5">10.1038/s41467-024-46476-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of altermagnetic band splitting in CrSb thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Reimers%2C+S">Sonka Reimers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Odenbreit%2C+L">Lukas Odenbreit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smejkal%2C+L">Libor Smejkal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Constantinou%2C+P">Procopios Constantinou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hellenes%2C+A+B">Anna Birk Hellenes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ubiergo%2C+R+J">Rodrigo Jaeschke Ubiergo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campos%2C+W+H">Warlley H. Campos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bharadwaj%2C+V+K">Venkata K. Bharadwaj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakraborty%2C+A">Atasi Chakraborty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denneulin%2C+T">Thiboud Denneulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+W">Wen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dunin-Borkowski%2C+R+E">Rafal E. Dunin-Borkowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S">Suvadip Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinova%2C+J">Jairo Sinova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jourdan%2C+M">Martin Jourdan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17280v2-abstract-short" style="display: inline;"> Altermagnetism represents an emergent collinear magnetic phase with compensated order and an unconventional alternating even-parity wave spin order in the non-relativistic band structure. We investigate directly this unconventional band splitting near the Fermi energy through spinintegrated soft X-ray angular resolved photoemission spectroscopy. The experimentally obtained angle-dependent photoemi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17280v2-abstract-full').style.display = 'inline'; document.getElementById('2310.17280v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17280v2-abstract-full" style="display: none;"> Altermagnetism represents an emergent collinear magnetic phase with compensated order and an unconventional alternating even-parity wave spin order in the non-relativistic band structure. We investigate directly this unconventional band splitting near the Fermi energy through spinintegrated soft X-ray angular resolved photoemission spectroscopy. The experimentally obtained angle-dependent photoemission intensity, acquired from epitaxial thin films of the predicted altermagnet CrSb, demonstrates robust agreement with the corresponding band structure calculations. In particular, we observe the distinctive splitting of an electronic band on a low-symmetry path in the Brilliouin zone that connects two points featuring symmetry-induced degeneracy. The measured large magnitude of the spin splitting of approximately 0.6 eV and the position of the band just below the Fermi energy underscores the signifcance of altermagnets for spintronics based on robust broken time reversal symmetry responses arising from exchange energy scales, akin to ferromagnets, while remaining insensitive to external magnetic fields and possessing THz dynamics, akin to antiferromagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17280v2-abstract-full').style.display = 'none'; document.getElementById('2310.17280v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures (including supplementary information)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 2116 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12669">arXiv:2310.12669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12669">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nature of the metallic and in-gap states in Ni-doped SrTiO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Alarab%2C+F">Fatima Alarab</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hricovini%2C+K">Karol Hricovini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leikert%2C+B">Berengar Leikert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richter%2C+C">Christine Richter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sing%2C+M">Michael Sing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claessen%2C+R">Ralph Claessen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12669v1-abstract-short" style="display: inline;"> Epitaxial thin films of SrTiO$_3$(100) doped with 6% and 12% Ni are studied with resonant angle-resolved photoelectron spectroscopy (ARPES) at the Ti and Ni L2,3-edges. We find that the Ni doping shifts the valence band (VB) of pristine SrTiO$_3$ towards the Fermi level (p-doping) and reduces its band gap. This is accompanied by an upward energy shift of the Ti t2g-derived mobile electron system (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12669v1-abstract-full').style.display = 'inline'; document.getElementById('2310.12669v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12669v1-abstract-full" style="display: none;"> Epitaxial thin films of SrTiO$_3$(100) doped with 6% and 12% Ni are studied with resonant angle-resolved photoelectron spectroscopy (ARPES) at the Ti and Ni L2,3-edges. We find that the Ni doping shifts the valence band (VB) of pristine SrTiO$_3$ towards the Fermi level (p-doping) and reduces its band gap. This is accompanied by an upward energy shift of the Ti t2g-derived mobile electron system (MES). Thereby, the in-plane dxy-derived bands reduce the embedded electron density, as evidenced by progressive reduction of their Fermi momentum with the Ni concentration, and the out-of-plane dxz/yz-derived bands depopulate, making the MES purely two-dimensional. Furthermore, the Ti and Ni L2,3-edge resonant photoemission is used to identify the Ni 3d impurity state in the vicinity of the valence-band maximum, and decipher the full spectrum of the VO-induced in-gap states originating from the Ni atoms, Ti atoms, and from their hybridized orbitals. Our experimental information about the dependence of the valence bands, MES and in-gap states in Ni-doped SrTiO$_3$ may help development of this material towards its device applications associated with the reduced optical band gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12669v1-abstract-full').style.display = 'none'; document.getElementById('2310.12669v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12423">arXiv:2310.12423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12423">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Identification of electronic dimensionality reduction in semiconductor quantum well structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Takeda%2C+T">Takahito Takeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takase%2C+K">Kengo Takase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+M">Masaaki Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kobayashi%2C+M">Masaki Kobayashi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12423v2-abstract-short" style="display: inline;"> Two-dimensional (2D) systems, such as high-temperature superconductors, surface states of topological insulators, and layered materials, have been intensively studied using vacuum-ultraviolet (VUV) angle-resolved photoemission spectroscopy (ARPES). In semiconductor films (heterostructures), quantum well (QW) states arise due to electron/hole accumulations at the surface (interface). The quantized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12423v2-abstract-full').style.display = 'inline'; document.getElementById('2310.12423v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12423v2-abstract-full" style="display: none;"> Two-dimensional (2D) systems, such as high-temperature superconductors, surface states of topological insulators, and layered materials, have been intensively studied using vacuum-ultraviolet (VUV) angle-resolved photoemission spectroscopy (ARPES). In semiconductor films (heterostructures), quantum well (QW) states arise due to electron/hole accumulations at the surface (interface). The quantized states due to quantum confinement can be observed by VUV-ARPES, while the periodic intensity modulations along the surface normal (kz) direction of these quantized states are also observable by varying incident photon energy, resembling three-dimensional (3D) band dispersion. We have conducted soft X-ray (SX) ARPES measurements on thick and ultrathin III-V semiconductor InSb(001) films to investigate the electronic dimensionality reduction in semiconductor QWs. In addition to the dissipation of the kz dispersion, the SX-ARPES observations demonstrate the changes of the symmetry and periodicity of the Brillouin zone in the ultrathin film as 2D QW compared with these of the 3D bulk one, indicating the electronic dimensionality reduction of the 3D bulk band dispersion caused by the quantum confinement. The results provide a critical diagnosis using SX-ARPES for the dimensionality reduction in semiconductor QW structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12423v2-abstract-full').style.display = 'none'; document.getElementById('2310.12423v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.11317">arXiv:2310.11317</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.11317">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> k-dependent proximity-induced modulation of spin-orbit interaction in MoSe2 interfaced with amorphous Pb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Alarab%2C+F">Fatima Alarab</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Constantinou%2C+P">Procopios Constantinou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nafday%2C+D">Dhani Nafday</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.11317v1-abstract-short" style="display: inline;"> The ability to modulate the spin-orbit (SO) interaction is crucial for engineering a wide range of spintronics-based quantum devices, extending from state-of-the-art data storage to materials for quantum computing. The use of proximity-induced effects for this purpose may become the mainstream approach, whereas their experimental verification using angle-resolved photoelectron spectroscopy (ARPES)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11317v1-abstract-full').style.display = 'inline'; document.getElementById('2310.11317v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.11317v1-abstract-full" style="display: none;"> The ability to modulate the spin-orbit (SO) interaction is crucial for engineering a wide range of spintronics-based quantum devices, extending from state-of-the-art data storage to materials for quantum computing. The use of proximity-induced effects for this purpose may become the mainstream approach, whereas their experimental verification using angle-resolved photoelectron spectroscopy (ARPES) has so far been elusive. Here, using the advantages of soft-X-ray ARPES on its probing depth and intrinsic resolution in three-dimensional momentum k, we identify a distinct modulation of the SO interaction in a van der Waals semiconductor (MoSe2) proximitized to a high-Z metal (Pb), and measure its variation through the k-space. The strong SO field from Pb boosts the SO splitting by up to 30% at the H-point of the bulk Brillouin zone, the spin-orbit hotspot of MoSe2. Tunability of the splitting via the Pb thickness allows its tailoring to particular applications in emerging quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11317v1-abstract-full').style.display = 'none'; document.getElementById('2310.11317v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.17413">arXiv:2309.17413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.17413">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/advs.202302101">10.1002/advs.202302101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Momentum-space imaging of ultra-thin electron liquids in delta-doped silicon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Constantinou%2C+P">Procopios Constantinou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stock%2C+T+J+Z">Taylor J. Z. Stock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crane%2C+E">Eleanor Crane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6lker%2C+A">Alexander K枚lker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Loon%2C+M">Marcel van Loon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Juerong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fearn%2C+S">Sarah Fearn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bornemann%2C+H">Henric Bornemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%27Anna%2C+N">Nicol貌 D&#39;Anna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fisher%2C+A+J">Andrew J. Fisher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aeppli%2C+G">Gabriel Aeppli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Curson%2C+N+J">Neil J. Curson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schofield%2C+S+R">Steven R. Schofield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.17413v1-abstract-short" style="display: inline;"> Two-dimensional dopant layers ($未$-layers) in semiconductors provide the high-mobility electron liquids (2DELs) needed for nanoscale quantum-electronic devices. Key parameters such as carrier densities, effective masses, and confinement thicknesses for 2DELs have traditionally been extracted from quantum magnetotransport. In principle, the parameters are immediately readable from the one-electron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.17413v1-abstract-full').style.display = 'inline'; document.getElementById('2309.17413v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.17413v1-abstract-full" style="display: none;"> Two-dimensional dopant layers ($未$-layers) in semiconductors provide the high-mobility electron liquids (2DELs) needed for nanoscale quantum-electronic devices. Key parameters such as carrier densities, effective masses, and confinement thicknesses for 2DELs have traditionally been extracted from quantum magnetotransport. In principle, the parameters are immediately readable from the one-electron spectral function that can be measured by angle-resolved photoemission spectroscopy (ARPES). Here, buried 2DEL $未$-layers in silicon are measured with soft X-ray (SX) ARPES to obtain detailed information about their filled conduction bands and extract device-relevant properties. This study takes advantage of the larger probing depth and photon energy range of SX-ARPES relative to vacuum ultraviolet (VUV) ARPES to accurately measure the $未$-layer electronic confinement. The measurements are made on ambient-exposed samples and yield extremely thin ($\approx 1$ $nm$) and dense ($\approx$ $10^{14}$ $cm^2$) 2DELs. Critically, this method is used to show that $未$-layers of arsenic exhibit better electronic confinement than $未$-layers of phosphorus fabricated under identical conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.17413v1-abstract-full').style.display = 'none'; document.getElementById('2309.17413v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Advanced Science as a Research Article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03707">arXiv:2308.03707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.03707">pdf</a>, <a href="https://arxiv.org/format/2308.03707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Static disorder in soft X-ray angle-resolved photoemission spectroscopy: theory and application to ion-bombarded InAs(110) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Della+Valle%2C+E">Enrico Della Valle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Constantinou%2C+P">Procopios Constantinou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aeppli%2C+G">Gabriel Aeppli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03707v1-abstract-short" style="display: inline;"> Angle-resolved photoemission spectroscopy (ARPES) is one of the most ubiquitous characterization techniques utilized in the field of condensed matter physics. The resulting spectral intensity consists of a coherent and incoherent part, whose relative contribution is governed by atomic disorder, where thermal contribution is expressed in terms of the Debye-Waller factor (DWF). In this work, we pres&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03707v1-abstract-full').style.display = 'inline'; document.getElementById('2308.03707v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03707v1-abstract-full" style="display: none;"> Angle-resolved photoemission spectroscopy (ARPES) is one of the most ubiquitous characterization techniques utilized in the field of condensed matter physics. The resulting spectral intensity consists of a coherent and incoherent part, whose relative contribution is governed by atomic disorder, where thermal contribution is expressed in terms of the Debye-Waller factor (DWF). In this work, we present a soft-X-ray study on the sputter-induced disorder of InAs(110) surface. We define a new quantity, referred to as the coherence factor FC, which is the analogue of the DWF, extended to static disorder. We show that FC alone can be used to quantify the depletion of coherent intensity with increasing disorder, and, in combination with the DWF, allows considerations of thermal and static disorder effects on the same footing. Our study also unveils an intriguing finding: as disorder increases, the ARPES intensity of quantum well states originating from the conduction band depletes more rapidly compared to the valence bands. This difference can be attributed to the predominance of quasi-elastic defect scattering and the difference in phase space available for such scattering for conduction-band (CB) and valence-band (VB) initial states. Specifically, the absence of empty states well below the Fermi energy (EF) hinders the quasi-elastic scattering of the VB states, while their abundance in vicinity of EF enhances the scattering rate of the CB states. Additionally, we observe no noticeable increase in broadening of the VB dispersions as the sputter-induced disorder increases. This observation aligns with the notion that valence initial states are less likely to experience the quasi-elastic defect scattering, which would shorten their lifetime, and with the random uncorrelated nature of the defects introduced by the ion sputtering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03707v1-abstract-full').style.display = 'none'; document.getElementById('2308.03707v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13534">arXiv:2307.13534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13534">pdf</a>, <a href="https://arxiv.org/format/2307.13534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01339-1">10.1038/s42005-023-01339-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge fluctuations in the intermediate-valence ground state of SmCoIn$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tam%2C+D+W">David W. Tam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colonna%2C+N">Nicola Colonna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Neeraj Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piamonteze%2C+C">Cinthia Piamonteze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alarab%2C+F">Fatima Alarab</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fennell%2C+T">Tom Fennell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gawryluk%2C+D+J">Dariusz Jakub Gawryluk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+Y">Y. Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kenzelmann%2C+M">Michel Kenzelmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13534v1-abstract-short" style="display: inline;"> The microscopic mechanism of heavy band formation, relevant for unconventional superconductivity in CeCoIn$_5$ and other Ce-based heavy fermion materials, depends strongly on the efficiency with which $f$ electrons are delocalized from the rare earth sites and participate in a Kondo lattice. Replacing Ce$^{3+}$ ($4f^1$, $J=5/2$) with Sm$^{3+}$ ($4f^5$, $J=5/2$), we show that a combination of cryst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13534v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13534v1-abstract-full" style="display: none;"> The microscopic mechanism of heavy band formation, relevant for unconventional superconductivity in CeCoIn$_5$ and other Ce-based heavy fermion materials, depends strongly on the efficiency with which $f$ electrons are delocalized from the rare earth sites and participate in a Kondo lattice. Replacing Ce$^{3+}$ ($4f^1$, $J=5/2$) with Sm$^{3+}$ ($4f^5$, $J=5/2$), we show that a combination of crystal field and on-site Coulomb repulsion causes SmCoIn$_5$ to exhibit a $螕_7$ ground state similar to CeCoIn$_5$ with multiple $f$ electrons. Remarkably, we also find that with this ground state, SmCoIn$_5$ exhibits a temperature-induced valence crossover consistent with a Kondo scenario, leading to increased delocalization of $f$ holes below a temperature scale set by the crystal field, $T_v$ $\approx$ 60 K. Our result provides evidence that in the case of many $f$ electrons, the crystal field remains the most important tuning knob in controlling the efficiency of delocalization near a heavy fermion quantum critical point, and additionally clarifies that charge fluctuations play a general role in the ground state of &#34;115&#34; materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13534v1-abstract-full').style.display = 'none'; document.getElementById('2307.13534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08181">arXiv:2307.08181</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.08181">pdf</a>, <a href="https://arxiv.org/format/2307.08181">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.016501">10.1103/PhysRevLett.132.016501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nematic spin correlations pervading the phase diagram of FeSe$_{1-x}$S$_{x}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R">Ruixian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+Z">Zhen Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asmara%2C+T+C">Teguh C. Asmara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+Q">Qimiao Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xingye Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08181v1-abstract-short" style="display: inline;"> We use resonant inelastic X-ray scattering (RIXS) at the Fe-L$_3$ edge to study the spin excitations of uniaxial-strained and unstrained FeSe$_{1-x}$S$_{x}$ ($0\leq x\leq0.21$) samples. The measurements on unstrained samples reveal dispersive spin excitations in all doping levels, which show only minor doping dependence in energy dispersion, lifetime, and intensity, indicating that high-energy spi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08181v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08181v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08181v1-abstract-full" style="display: none;"> We use resonant inelastic X-ray scattering (RIXS) at the Fe-L$_3$ edge to study the spin excitations of uniaxial-strained and unstrained FeSe$_{1-x}$S$_{x}$ ($0\leq x\leq0.21$) samples. The measurements on unstrained samples reveal dispersive spin excitations in all doping levels, which show only minor doping dependence in energy dispersion, lifetime, and intensity, indicating that high-energy spin excitations are only marginally affected by sulfur doping. RIXS measurements on uniaxial-strained samples reveal that the high-energy spin-excitation anisotropy observed previously in FeSe is also present in the doping range $0&lt; x\leq0.21$ of FeSe$_{1-x}$S$_{x}$. The spin-excitation anisotropy persists to a high temperature up to $T&gt;200$ K in $x=0.18$ and reaches a maximum around the nematic quantum critical doping ($x_c\approx0.17$). Since the spin-excitation anisotropy directly reflects the existence of nematic spin correlations, our results indicate that high-energy nematic spin correlations pervade the regime of nematicity in the phase diagram and are enhanced by the nematic quantum criticality. These results emphasize the essential role of spin fluctuations in driving electronic nematicity and open the door for uniaxial strain tuning of spin excitations in quantum materials hosting strong magnetoelastic coupling and electronic nematicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08181v1-abstract-full').style.display = 'none'; document.getElementById('2307.08181v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, supplemental materials uploaded</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 132, 016501 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06688">arXiv:2304.06688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06688">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Direct experimental evidence of tunable charge transfer at the $LaNiO_{3}/CaMnO_{3}$ ferromagnetic interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Paudel%2C+J+R">J. R. Paudel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terilli%2C+M">M. Terilli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T+-">T. -C. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grassi%2C+J+D">J. D. Grassi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Derrico%2C+A+M">A. M. Derrico</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sah%2C+R+K">R. K. Sah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kareev%2C+M">M. Kareev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klewe%2C+C">C. Klewe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shafer%2C+P">P. Shafer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gloskovskii%2C+A">A. Gloskovskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlueter%2C+C">C. Schlueter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakhalian%2C+J">J. Chakhalian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gray%2C+A+X">A. X. Gray</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06688v1-abstract-short" style="display: inline;"> Interfacial charge transfer in oxide heterostructures gives rise to a rich variety of electronic and magnetic phenomena. Designing heterostructures where one of the thin-film components exhibits a metal-insulator transition opens a promising avenue for controlling such phenomena both statically and dynamically. In this letter, we utilize a combination of depth-resolved soft X-ray standing-wave and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06688v1-abstract-full').style.display = 'inline'; document.getElementById('2304.06688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06688v1-abstract-full" style="display: none;"> Interfacial charge transfer in oxide heterostructures gives rise to a rich variety of electronic and magnetic phenomena. Designing heterostructures where one of the thin-film components exhibits a metal-insulator transition opens a promising avenue for controlling such phenomena both statically and dynamically. In this letter, we utilize a combination of depth-resolved soft X-ray standing-wave and hard X-ray photoelectron spectroscopies in conjunction with polarization-dependent X-ray absorption spectroscopy to investigate the effects of the metal-insulator transition in $LaNiO_{3}$ on the electronic and magnetic states at the $LaNiO_{3}/CaMnO_{3}$ interface. We report on a direct observation of the reduced effective valence state of the interfacial Mn cations in the metallic superlattice with an above-critical $LaNiO_{3}$ thickness (6 u.c.) due to the leakage of itinerant Ni 3d $e_{g}$ electrons into the interfacial $CaMnO_{3}$ layer. Conversely, in an insulating superlattice with a below-critical $LaNiO_{3}$ thickness of 2 u.c., a homogeneous effective valence state of Mn is observed throughout the $CaMnO_{3}$ layers due to the blockage of charge transfer across the interface. The ability to switch and tune interfacial charge transfer enables precise control of the emergent ferromagnetic state at the $LaNiO_{3}/CaMnO_{3}$ interface and, thus, has far-reaching consequences on the future strategies for the design of next-generation spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06688v1-abstract-full').style.display = 'none'; document.getElementById('2304.06688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01457">arXiv:2302.01457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.01457">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53152-1">10.1038/s41467-024-53152-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin waves and orbital contribution to ferromagnetism in a topological metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asmara%2C+T+C">Teguh Citra Asmara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Junbo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yimin Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T">Tianlun Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Galdino%2C+C+W">Carlos William Galdino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhijia Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kummer%2C+K">Kurt Kummer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+Y">Y. Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aeppli%2C+G">Gabriel Aeppli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01457v2-abstract-short" style="display: inline;"> Special arrangements of atoms with more than one atom per unit cell, including honeycomb or kagome (woven bamboo mat) lattices, can host propagating excitations with non-trivial topology as defined by their evolution along closed paths in momentum space. Excitations on such lattices can also be momentum-independent, meaning that they are localized notwithstanding strong hopping of the underlying d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01457v2-abstract-full').style.display = 'inline'; document.getElementById('2302.01457v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01457v2-abstract-full" style="display: none;"> Special arrangements of atoms with more than one atom per unit cell, including honeycomb or kagome (woven bamboo mat) lattices, can host propagating excitations with non-trivial topology as defined by their evolution along closed paths in momentum space. Excitations on such lattices can also be momentum-independent, meaning that they are localized notwithstanding strong hopping of the underlying disturbances between neighbouring sites. The associated flat bands are interesting because the interactions between the heavy quasiparticles inhabiting them will become much more important than for strong dispersion, resulting in novel quantum solid and liquid states. Different stackings of two-dimensional lattices, for example twisted graphene bilayers, provide routes to further engineer topology and many-body effects. Here, we report the discovery, using circularly polarized x-rays for the unambiguous isolation of magnetic signals, of a nearly flat spin wave band and large (compared to elemental iron) orbital moment for the metallic ferromagnet Fe3Sn2, built from compact AB-stacked kagome bilayers and which has a topologically non-trivial electronic band structure controllable by modest external magnetic fields. As a function of out-of-plane momentum, the nearly flat optical mode and the global rotation symmetry-restoring acoustic mode are out of phase, consistent with a bilayer exchange coupling that is larger than the already large in-plane couplings. The defining units of this topological metal are therefore a triangular lattice of octahedral iron clusters rather than weakly coupled kagome planes. The spin waves are strongly damped when compared to elemental iron, opening the topic of interactions of topological bosons (spin waves) and fermions (electrons) with the very specific target of explaining boson lifetimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01457v2-abstract-full').style.display = 'none'; document.getElementById('2302.01457v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 8905 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.02879">arXiv:2301.02879</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.02879">pdf</a>, <a href="https://arxiv.org/format/2301.02879">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.3c00323">10.1021/acsami.3c00323 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Principles Assessment of CdTe as a Tunnel Barrier at the $\mathbf伪$-Sn/InSb Interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jardine%2C+M+J+A">Malcolm J. A. Jardine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dardzinski%2C+D">Derek Dardzinski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+M">Maituo Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Purkayastha%2C+A">Amrita Purkayastha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+A+-">A. -H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y">Yu-Hao Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+A">Aaron Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hocevar%2C+M">Mo茂ra Hocevar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frolov%2C+S+M">Sergey M. Frolov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marom%2C+N">Noa Marom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.02879v1-abstract-short" style="display: inline;"> Majorana zero modes, with prospective applications in topological quantum computing, are expected to arise in superconductor/semiconductor interfaces, such as $尾$-Sn and InSb. However, proximity to the superconductor may also adversely affect the semiconductor&#39;s local properties. A tunnel barrier inserted at the interface could resolve this issue. We assess the wide band gap semiconductor, CdTe, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02879v1-abstract-full').style.display = 'inline'; document.getElementById('2301.02879v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.02879v1-abstract-full" style="display: none;"> Majorana zero modes, with prospective applications in topological quantum computing, are expected to arise in superconductor/semiconductor interfaces, such as $尾$-Sn and InSb. However, proximity to the superconductor may also adversely affect the semiconductor&#39;s local properties. A tunnel barrier inserted at the interface could resolve this issue. We assess the wide band gap semiconductor, CdTe, as a candidate material to mediate the coupling at the lattice-matched interface between $伪$-Sn and InSb. To this end, we use density functional theory (DFT) with Hubbard U corrections, whose values are machine-learned via Bayesian optimization (BO) [npj Computational Materials 6, 180 (2020)]. The results of DFT+U(BO) are validated against angle resolved photoemission spectroscopy (ARPES) experiments for $伪$-Sn and CdTe. For CdTe, the z-unfolding method [Advanced Quantum Technologies, 5, 2100033 (2022)] is used to resolve the contributions of different $k_z$ values to the ARPES. We then study the band offsets and the penetration depth of metal-induced gap states (MIGS) in bilayer interfaces of InSb/$伪$-Sn, InSb/CdTe, and CdTe/$伪$-Sn, as well as in tri-layer interfaces of InSb/CdTe/$伪$-Sn with increasing thickness of CdTe. We find that 16 atomic layers (3.5 nm) of CdTe can serve as a tunnel barrier, effectively shielding the InSb from MIGS from the $伪$-Sn. This may guide the choice of dimensions of the CdTe barrier to mediate the coupling in semiconductor-superconductor devices in future Majorana zero modes experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02879v1-abstract-full').style.display = 'none'; document.getElementById('2301.02879v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Appl. Mater. Interfaces 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00033">arXiv:2301.00033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.00033">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Are high-energy photoemission final states free-electron-like? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lev%2C+L+L">L. L. Lev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alarab%2C+F">F. Alarab</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Constantinou%2C+P">P. Constantinou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stock%2C+T+J+Z">T. J. Z. Stock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicola%C3%AF%2C+L">L. Nicola茂</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%C4%8Den%C3%A1%C5%A1ek%2C+J">J. O膷en谩拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%C3%A1r%2C+J">J. Min谩r</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00033v1-abstract-short" style="display: inline;"> Three-dimensional (3D) electronic band structure is fundamental for understanding a vast diversity of physical phenomena in solid-state systems, including topological phases, interlayer interactions in van der Waals materials, dimensionality-driven phase transitions, etc. Interpretation of ARPES data in terms of 3D electron dispersions is commonly based on the free-electron approximation for the p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00033v1-abstract-full').style.display = 'inline'; document.getElementById('2301.00033v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00033v1-abstract-full" style="display: none;"> Three-dimensional (3D) electronic band structure is fundamental for understanding a vast diversity of physical phenomena in solid-state systems, including topological phases, interlayer interactions in van der Waals materials, dimensionality-driven phase transitions, etc. Interpretation of ARPES data in terms of 3D electron dispersions is commonly based on the free-electron approximation for the photoemission final states. Our soft-X-ray ARPES data on Ag metal reveals, however, that even at high excitation energies the final states can be a way more complex, incorporating several Bloch waves with different out-of-plane momenta. Such multiband final states manifest themselves as a complex structure and excessive broadening of the spectral peaks from 3D electron states. We analyse the origins of this phenomenon, and trace it to other materials such as Si and GaN. Our findings are essential for accurate determination of the 3D band structure over a wide range of materials and excitation energies in the ARPES experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00033v1-abstract-full').style.display = 'none'; document.getElementById('2301.00033v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08221">arXiv:2210.08221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.08221">pdf</a>, <a href="https://arxiv.org/format/2210.08221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-47976-0">10.1038/s41467-024-47976-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parallel spin-momentum locking in a chiral topological semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krieger%2C+J+A">Jonas A. Krieger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stolz%2C+S">Samuel Stolz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">Inigo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manna%2C+K">Kaustuv Manna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McFarlane%2C+E+C">Emily C. McFarlane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Date%2C+M">Mihir Date</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guedes%2C+E+B">Eduardo B. Guedes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dil%2C+J+H">J. Hugo Dil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borrmann%2C+H">Horst Borrmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+M">Mao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caputo%2C+M">Marco Caputo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pal%2C+B">Banabir Pal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzola%2C+F">Federico Mazzola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujii%2C+J">Jun Fujii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vobornik%2C+I">Ivana Vobornik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">Stuart S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bradlyn%2C+B">Barry Bradlyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08221v1-abstract-short" style="display: inline;"> Spin-momentum locking in solids describes a directional relationship between the electron&#39;s spin angular momentum and its linear momentum over the entire Fermi surface. While orthogonal spin-momentum locking, such as Rashba spin-orbit coupling, has been studied for decades and inspired a vast number of applications, its natural counterpart, the purely parallel spin-momentum locking, has remained e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08221v1-abstract-full').style.display = 'inline'; document.getElementById('2210.08221v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08221v1-abstract-full" style="display: none;"> Spin-momentum locking in solids describes a directional relationship between the electron&#39;s spin angular momentum and its linear momentum over the entire Fermi surface. While orthogonal spin-momentum locking, such as Rashba spin-orbit coupling, has been studied for decades and inspired a vast number of applications, its natural counterpart, the purely parallel spin-momentum locking, has remained elusive in experiments. Recently, chiral topological semimetals that host single- and multifold band crossings have been predicted to realize such parallel locking. Here, we use spin- and angle-resolved photoelectron spectroscopy to probe spin-momentum locking of a multifold fermion in the chiral topological semimetal PtGa via the spin-texture of its topological Fermi-arc surface states. We find that the electron spin of the Fermi-arcs points orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion, which is consistent with parallel spin-momentum locking of the latter. We anticipate that our discovery of parallel spin-momentum locking of multifold fermions will lead to the integration of chiral topological semimetals in novel spintronic devices, and the search for spin-dependent superconducting and magnetic instabilities in these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08221v1-abstract-full').style.display = 'none'; document.getElementById('2210.08221v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 3720 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.03051">arXiv:2206.03051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.03051">pdf</a>, <a href="https://arxiv.org/format/2206.03051">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.044414">10.1103/PhysRevMaterials.7.044414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hydrogen-impurity induced unconventional magnetism in semiconducting molybdenum ditelluride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krieger%2C+J+A">Jonas A. Krieger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tay%2C+D">Daniel Tay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rusinov%2C+I+P">Igor P. Rusinov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barua%2C+S">Sourabh Barua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+P+K">Pabitra K. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Korosec%2C+L">Lukas Korosec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokscha%2C+T">Thomas Prokscha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">Niels B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+T">Tian Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shiroka%2C+T">Toni Shiroka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suter%2C+A">Andreas Suter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chulkov%2C+E+V">Evgueni V. Chulkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salman%2C+Z">Zaher Salman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.03051v1-abstract-short" style="display: inline;"> Layered transition-metal dichalcogenides are proposed as building blocks for van der Waals (vdW) heterostructures due to their graphene-like two dimensional structure. For this purpose, a magnetic semiconductor could represent an invaluable component for various spintronics and topotronics devices. Here, we combine different local magnetic probe spectroscopies with angle-resolved photoemission and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03051v1-abstract-full').style.display = 'inline'; document.getElementById('2206.03051v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.03051v1-abstract-full" style="display: none;"> Layered transition-metal dichalcogenides are proposed as building blocks for van der Waals (vdW) heterostructures due to their graphene-like two dimensional structure. For this purpose, a magnetic semiconductor could represent an invaluable component for various spintronics and topotronics devices. Here, we combine different local magnetic probe spectroscopies with angle-resolved photoemission and density-functional theory calculations to show that 2H-MoTe2 is on the verge of becoming magnetic. Our results present clear evidence that the magnetism can be &#34;switched on&#34; by a hydrogen-like impurity. We also show that this magnetic state survives up to the free surface region, demonstrating the material&#39;s potential applicability as a magnetic component for thin-film heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03051v1-abstract-full').style.display = 'none'; document.getElementById('2206.03051v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 13 figures, including supplementary</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 7, 044414 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.08749">arXiv:2204.08749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.08749">pdf</a>, <a href="https://arxiv.org/format/2204.08749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-022-00528-5">10.1038/s41535-022-00528-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unravelling the Nature of Spin Excitations Disentangled from Charge Contributions in a Doped Cuprate Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrapidis%2C+C+E">Cli貌 Efthimia Agrapidis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asmara%2C+T+C">Teguh Citra Asmara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">Eugenio Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giannini%2C+E">Enrico Giannini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nishimoto%2C+S">Satoshi Nishimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wohlfeld%2C+K">Krzysztof Wohlfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.08749v2-abstract-short" style="display: inline;"> The nature of the spin excitations in superconducting cuprates is a key question toward a unified understanding of the cuprate physics from long-range antiferromagnetism to superconductivity. The intense spin excitations up to the over-doped regime revealed by resonant inelastic X-ray scattering bring new insights as well as questions like how to understand their persistence or their relation to t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08749v2-abstract-full').style.display = 'inline'; document.getElementById('2204.08749v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.08749v2-abstract-full" style="display: none;"> The nature of the spin excitations in superconducting cuprates is a key question toward a unified understanding of the cuprate physics from long-range antiferromagnetism to superconductivity. The intense spin excitations up to the over-doped regime revealed by resonant inelastic X-ray scattering bring new insights as well as questions like how to understand their persistence or their relation to the collective excitations in ordered magnets (magnons). Here, we study the evolution of the spin excitations upon hole-doping the superconducting cuprate Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ by disentangling the spin from the charge excitations in the experimental cross section. We compare our experimental results against density matrix renormalization group calculations for a $t$-$J$-like model on a square lattice. Our results unambiguously confirm the persistence of the spin excitations, which are closely connected to the persistence of short-range magnetic correlations up to high doping. This suggests that the spin excitations in hole-doped cuprates are related to magnons -- albeit short-ranged. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08749v2-abstract-full').style.display = 'none'; document.getElementById('2204.08749v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 7, 123 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07599">arXiv:2203.07599</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07599">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.115118">10.1103/PhysRevB.105.115118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant Chern number of a Weyl nodal surface without upper limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Junzhang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+-">S. -N. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J+P">J. P. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q+-">Q. -S. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ekahana%2C+S+A">S. A. Ekahana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naamneh%2C+M">M. Naamneh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">M. Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+S+-">S. -Y. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">T. Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">H. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">K. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manna%2C+K">K. Manna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazyev%2C+O+V">O. V. Yazyev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y+-">Y. -M. Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07599v1-abstract-short" style="display: inline;"> Weyl nodes can be classified into zero-dimensional (0D) Weyl points (WPs), 1D Weyl nodal lines (WNL) and 2D Weyl nodal surfaces (WNS), which possess finite Chern numbers. Up to date, the largest Chern number of WPs identified in Weyl semimetals is 4, which is thought to be a maximal value for linearly crossing points in solids. On the other hand, whether the Chern numbers of nonzero-dimensional li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07599v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07599v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07599v1-abstract-full" style="display: none;"> Weyl nodes can be classified into zero-dimensional (0D) Weyl points (WPs), 1D Weyl nodal lines (WNL) and 2D Weyl nodal surfaces (WNS), which possess finite Chern numbers. Up to date, the largest Chern number of WPs identified in Weyl semimetals is 4, which is thought to be a maximal value for linearly crossing points in solids. On the other hand, whether the Chern numbers of nonzero-dimensional linear crossing Weyl nodal objects have one upper limit is still an open question. In this work, combining angle-resolved photoemission spectroscopy with density functional theory calculations, we show that the chiral crystal AlPt hosts a cube-shaped charged Weyl nodal surface which is formed by the linear crossings of two singly-degenerate bands. Different to conventional Weyl nodes, the cube-shaped nodal surface in AlPt is enforced by nonsymmorphic chiral symmetries and time reversal symmetry rather than accidental band crossings, and it possesses a giant Chern number |C| = 26. Moreover, our results and analysis prove that there is no upper limit for the Chern numbers of such kind 2D Weyl nodal object. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07599v1-abstract-full').style.display = 'none'; document.getElementById('2203.07599v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 105, 115118 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.00908">arXiv:2203.00908</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.00908">pdf</a>, <a href="https://arxiv.org/format/2203.00908">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.245145">10.1103/PhysRevB.105.245145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the interlayer coupling in 2$H$-NbS$_2$ via soft x-ray angle-resolved photoemission spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">D. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakamura%2C+H">H. Nakamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%BCster%2C+K">K. K眉ster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wedig%2C+U">U. Wedig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">N. B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Starke%2C+U">U. Starke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.00908v2-abstract-short" style="display: inline;"> In the large family of two-dimensional (2D) layered materials including graphene, its honeycomb analogs, and transition-metal dichalcogenides, the interlayer coupling plays a rather intriguing role. On the one hand, the weak van der Waals interaction that holds the layers together endows these compounds with quasi-2D properties, which might imply small interlayer effects on the electronically acti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00908v2-abstract-full').style.display = 'inline'; document.getElementById('2203.00908v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.00908v2-abstract-full" style="display: none;"> In the large family of two-dimensional (2D) layered materials including graphene, its honeycomb analogs, and transition-metal dichalcogenides, the interlayer coupling plays a rather intriguing role. On the one hand, the weak van der Waals interaction that holds the layers together endows these compounds with quasi-2D properties, which might imply small interlayer effects on the electronically active bands. On the other hand, the oft-witnessed differences in electronic, optical, and magnetic behaviors of monolayers, bilayers, and multilayers of the same compound must have as their microscopic origin the detailed interlayer hopping parameters. Given the few experimental reports that have attempted to explicitly extract these parameters, we employ soft-x-ray angle-resolved photoemission spectroscopy (SX-ARPES) to probe the interlayer coupling in superconducting 2$H$-NbS$_2$. We visualize the S 3$p_z$ bands that disperse with respect to the out-of-plane momentum and introduce a simple tight-binding model to extract the interlayer hopping parameters. From first-principles calculations, we clarify how atomic distances and the proper accounting for screening via hybrid functionals influence these bands. The knowledge of interlayer hopping parameters is particularly pertinent in NbS$_2$, where recent experiments have uncovered fingerprints of finite-momentum superconductivity in the bulk material and heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00908v2-abstract-full').style.display = 'none'; document.getElementById('2203.00908v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures + SM</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 245145 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.00675">arXiv:2203.00675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.00675">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.L121107">10.1103/PhysRevB.105.L121107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Visualizing the out-of-plane electronic dispersions in an intercalated transition metal dichalcogenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LaBollita%2C+H">Harrison LaBollita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhandari%2C+H">Hari Bhandari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md. Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuxiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liskevich%2C+M">Maksim Liskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Usanov%2C+D+A">Dmitry A. Usanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dang%2C+Y">Yanliu Dang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davydov%2C+A+V">Albert V. Davydov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghimire%2C+N+J">Nirmal J. Ghimire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Botana%2C+A+S">Antia S. Botana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.00675v1-abstract-short" style="display: inline;"> Layered transition metal dichalcogenides have rich phase diagram and they feature two dimensionality on numerous physical properties. Co1/3NbS2 is one of the newest members of this family where Co atoms are intercalated into the Van der Waals gaps between NbS2 layers. We study the three-dimensional electronic band structure of Co1/3NbS2 using both surface and bulk sensitive angle-resolved photoemi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00675v1-abstract-full').style.display = 'inline'; document.getElementById('2203.00675v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.00675v1-abstract-full" style="display: none;"> Layered transition metal dichalcogenides have rich phase diagram and they feature two dimensionality on numerous physical properties. Co1/3NbS2 is one of the newest members of this family where Co atoms are intercalated into the Van der Waals gaps between NbS2 layers. We study the three-dimensional electronic band structure of Co1/3NbS2 using both surface and bulk sensitive angle-resolved photoemission spectroscopy. We show that the electronic bands do not fit into the rigid-band-shift picture after the Co intercalation. Instead, Co1/3NbS2 displays a different orbital character near the Fermi level compared to the pristine NbS2 compound and has a clear band dispersion in kz direction despite its layered structure. Our photoemission study demonstrates the out-of-plane electronic correlations introduced by the Co intercalation, thus offering a new perspective on this compound. Finally, we propose how Fermi level tuning could lead to exotic phases such as spin density wave instability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00675v1-abstract-full').style.display = 'none'; document.getElementById('2203.00675v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05894">arXiv:2201.05894</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.05894">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-27843-y">10.1038/s41467-021-27843-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron-momentum dependence of electron-phonon coupling underlies dramatic phonon renormalization in YNi$_2$B$_2$C </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kurzhals%2C+P">Philipp Kurzhals</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kremer%2C+G">Geoffroy Kremer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaouen%2C+T">Thomas Jaouen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicholson%2C+C+W">Christopher W. Nicholson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heid%2C+R">Rolf Heid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagel%2C+P">Peter Nagel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castellan%2C+J">John-Paul Castellan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivanov%2C+A">Alexandre Ivanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muntwiler%2C+M">Matthias Muntwiler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rumo%2C+M">Maxime Rumo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salzmann%2C+B">Bjoern Salzmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reznik%2C+D">Dmitry Reznik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monney%2C+C">Claude Monney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+F">Frank Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05894v1-abstract-short" style="display: inline;"> Electron-phonon coupling, i.e., the scattering of lattice vibrations by electrons and vice versa, is ubiquitous in solids and can lead to emergent ground states such as superconductivity and charge-density wave order. Strong coupling of phonons to electrons near the Fermi surface, which reduces the phonon lifetimes and broadens the phonon peaks in scattering experiments, is often associated with F&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05894v1-abstract-full').style.display = 'inline'; document.getElementById('2201.05894v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05894v1-abstract-full" style="display: none;"> Electron-phonon coupling, i.e., the scattering of lattice vibrations by electrons and vice versa, is ubiquitous in solids and can lead to emergent ground states such as superconductivity and charge-density wave order. Strong coupling of phonons to electrons near the Fermi surface, which reduces the phonon lifetimes and broadens the phonon peaks in scattering experiments, is often associated with Fermi surface nesting. Here, we show that strong phonon broadening can occur in the absence of both Fermi surface nesting and lattice anharmonicity, if electron-phonon coupling is strongly enhanced for specific values of electron-momentum, k. We use inelastic neutron scattering, soft x-ray angle-resolved photoemission spectroscopy measurements and ab-initio lattice dynamical and electronic band structure calculations to demonstrate this scenario in the highly anisotropic tetragonal electron-phonon superconductor YNi$_2$B$_2$C. This new scenario likely applies to a wide range of compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05894v1-abstract-full').style.display = 'none'; document.getElementById('2201.05894v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 13, 228 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05027">arXiv:2201.05027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.05027">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-022-00502-1">10.1038/s41535-022-00502-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crossover of the high-energy spin fluctuations from collective triplons to localized magnetic excitations in doped Sr14-xCaxCu24O41 cuprate ladders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Y. Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomas%2C+J">J. Thomas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">W. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">E. Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puphal%2C+P">P. Puphal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bag%2C+R">R. Bag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+G">G. Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asmara%2C+T+C">T. C. Asmara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+S">S. Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+U">U. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nocera%2C+A">A. Nocera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">S. Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05027v1-abstract-short" style="display: inline;"> We studied the magnetic excitations in the quasi-one-dimensional (q-1D) ladder subsystem of Sr_(14-x) Ca_x Cu_24 O_41(SCCO) using Cu L_3-edge resonant inelastic X-ray scattering (RIXS). By comparing momentum-resolved RIXS spectra with (x=12.2) and without (x=0) high Ca content, we track the evolution of the magnetic excitations from collective two-triplon (2T) excitations (x=0) to weakly-dispersiv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05027v1-abstract-full').style.display = 'inline'; document.getElementById('2201.05027v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05027v1-abstract-full" style="display: none;"> We studied the magnetic excitations in the quasi-one-dimensional (q-1D) ladder subsystem of Sr_(14-x) Ca_x Cu_24 O_41(SCCO) using Cu L_3-edge resonant inelastic X-ray scattering (RIXS). By comparing momentum-resolved RIXS spectra with (x=12.2) and without (x=0) high Ca content, we track the evolution of the magnetic excitations from collective two-triplon (2T) excitations (x=0) to weakly-dispersive gapped modes at an energy of 280 meV (x=12.2). Density matrix renormalization group (DMRG) calculations of the RIXS response in the doped ladders suggest that the flat magnetic dispersion and damped excitation profile observed at x=12.2 originates from enhanced hole localization. This interpretation is supported by polarization-dependent RIXS measurements, where we disentangle the spin-conserving 螖S=0 scattering from the predominant 螖S=1 spin-flip signal in the RIXS spectra. The results show that the low-energy weight in the 螖S=0 channel is depleted when Sr is replaced by Ca, consistent with a reduced carrier mobility. Our results demonstrate that off-ladder impurities can affect both the low-energy magnetic excitations and superconducting correlations in the CuO_4 plaquettes. Finally, our study characterizes the magnetic and charge fluctuations in the phase from which superconductivity emerges in SCCO at elevated pressures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05027v1-abstract-full').style.display = 'none'; document.getElementById('2201.05027v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 7, 92 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.14722">arXiv:2112.14722</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.14722">pdf</a>, <a href="https://arxiv.org/format/2112.14722">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04512-8">10.1038/s41586-022-04512-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> What&#39;s knot to like? Observation of a linked loop quantum state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hugelmeyer%2C+C">Cole Hugelmeyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manna%2C+K">Kaustuv Manna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">Niels B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chikina%2C+A">Alla Chikina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+C">Craig Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiagarajan%2C+B">Balasubramanian Thiagarajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leandersson%2C+M">Mats Leandersson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adell%2C+J">Johan Adell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shin-Ming Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.14722v2-abstract-short" style="display: inline;"> Quantum phases can be classified by topological invariants, which take on discrete values capturing global information about the quantum state. Over the past decades, these invariants have come to play a central role in describing matter, providing the foundation for understanding superfluids, magnets, the quantum Hall effect, topological insulators, Weyl semimetals and other phenomena. Here we re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14722v2-abstract-full').style.display = 'inline'; document.getElementById('2112.14722v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.14722v2-abstract-full" style="display: none;"> Quantum phases can be classified by topological invariants, which take on discrete values capturing global information about the quantum state. Over the past decades, these invariants have come to play a central role in describing matter, providing the foundation for understanding superfluids, magnets, the quantum Hall effect, topological insulators, Weyl semimetals and other phenomena. Here we report a remarkable linking number (knot theory) invariant associated with loops of electronic band crossings in a mirror-symmetric ferromagnet. Using state-of-the-art spectroscopic methods, we directly observe three intertwined degeneracy loops in the material&#39;s bulk Brillouin zone three-torus, $\mathbb{T}^3$. We find that each loop links each other loop twice. Through systematic spectroscopic investigation of this linked loop quantum state, we explicitly draw its link diagram and conclude, in analogy with knot theory, that it exhibits linking number $(2,2,2)$, providing a direct determination of the invariant structure from the experimental data. On the surface of our samples, we further predict and observe Seifert boundary states protected by the bulk linked loops, suggestive of a remarkable Seifert bulk-boundary correspondence. Our observation of a quantum loop link motivates the application of knot theory to the exploration of exotic properties of quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14722v2-abstract-full').style.display = 'none'; document.getElementById('2112.14722v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">See popular summary at https://research.princeton.edu/news/electrons-crystal-exhibit-linked-and-knotted-quantum-twists</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 604, 647-652 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06138">arXiv:2109.06138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.06138">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital selective switching of ferromagnetism in an oxide quasi two-dimensional electron gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Di+Capua%2C+R">R. Di Capua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verma%2C+M">M. Verma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">M. Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piamonteze%2C+C">C. Piamonteze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guedes%2C+E+B">E. B. Guedes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N">N. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%27Antuono%2C+M">M. D&#39;Antuono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Luca%2C+G+M">G. M. De Luca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Gennaro%2C+E">E. Di Gennaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stornaiuolo%2C+D">D. Stornaiuolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Preziosi%2C+D">D. Preziosi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jouault%2C+B">B. Jouault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granozio%2C+F+M">F. Miletto Granozio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sambri%2C+A">A. Sambri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pentcheva%2C+R">R. Pentcheva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">G. Ghiringhelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salluzzo%2C+M">M. Salluzzo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06138v1-abstract-short" style="display: inline;"> Multi-orbital physics in quasi-two-dimensional electron gases (q2DEGs) triggers unique phenomena not observed in bulk materials, such as unconventional superconductivity and magnetism. Here, we investigate the mechanism of orbital selective switching of the spin-polarization in the oxide q2DEG formed at the (001) interface between the LaAlO$_{3}$, EuTiO$_{3}$ and SrTiO$_{3}$ band insulators. By us&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06138v1-abstract-full').style.display = 'inline'; document.getElementById('2109.06138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06138v1-abstract-full" style="display: none;"> Multi-orbital physics in quasi-two-dimensional electron gases (q2DEGs) triggers unique phenomena not observed in bulk materials, such as unconventional superconductivity and magnetism. Here, we investigate the mechanism of orbital selective switching of the spin-polarization in the oxide q2DEG formed at the (001) interface between the LaAlO$_{3}$, EuTiO$_{3}$ and SrTiO$_{3}$ band insulators. By using density functional theory calculations, transport, magnetic and x-ray spectroscopy measurements, we find that the filling of titanium-bands with 3d$_{xz,yz}$ orbital character in the EuTiO3 layer and at the interface with SrTiO$_{3}$ induces an antiferromagnetic to ferromagnetic switching of the exchange interaction between Eu-4f$^{7}$ magnetic moments. The results explain the observation of the carrier density dependent ferromagnetic correlations and anomalous Hall effect in this q2DEG, and demonstrate how combined theoretical and experimental approaches can lead to a deeper understanding of novel electronic phases and serve as a guide for the materials design for advanced electronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06138v1-abstract-full').style.display = 'none'; document.getElementById('2109.06138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.13957">arXiv:2108.13957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.13957">pdf</a>, <a href="https://arxiv.org/format/2108.13957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Helicoid-arc van Hove singularities in topological chiral crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez%2C+D+S">Daniel S. Sanchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yiyuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xitong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manna%2C+K">Kaustuv Manna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borrmann%2C+H">Horst Borrmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chikina%2C+A">Alla Chikina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J">Jonathan Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.13957v1-abstract-short" style="display: inline;"> Van Hove singularity are electronic instabilities that lead to many fascinating interactions, such as superconductivity and charge-density waves. And despite much interest, the nexus of emergent correlation effects from van Hove singularities and topological states of matter remains little explored in experiments. By utilizing synchrotron-based angle-resolved photoemission spectroscopy and Density&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13957v1-abstract-full').style.display = 'inline'; document.getElementById('2108.13957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.13957v1-abstract-full" style="display: none;"> Van Hove singularity are electronic instabilities that lead to many fascinating interactions, such as superconductivity and charge-density waves. And despite much interest, the nexus of emergent correlation effects from van Hove singularities and topological states of matter remains little explored in experiments. By utilizing synchrotron-based angle-resolved photoemission spectroscopy and Density Functional Theory, here we provide the first discovery of the helicoid quantum nature of topological Fermi arcs inducing van Hove singularities. In particular, in topological chiral conductors RhSi and CoSi we directly observed multiple types of inter- and intra-helicoid-arc mediated singularities, which includes the type-I and type-II van Hove singularity. We further demonstrate that the energy of the helicoid-arc singularities are easily tuned by chemical engineering. Taken together, our work provides a promising route to engineering new electronic instabilities in topological quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13957v1-abstract-full').style.display = 'none'; document.getElementById('2108.13957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.11332">arXiv:2106.11332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.11332">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of pressure-induced Weyl state and superconductivity in a chirality-neutral Weyl semimetal candidate SrSi2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+M+-">M. -Y. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noky%2C+J">J. Noky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+Q+-">Q. -G. Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manna%2C+K">K. Manna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">N. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">C. Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medvedev%2C+S">S. Medvedev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.11332v2-abstract-short" style="display: inline;"> Quasi-particle excitations in solids described by the Weyl equation have attracted significant attention in recent years. Thus far, a wide range of solids that have been experimentally realized as Weyl semimetals (WSMs) lack either mirror or inversion symmetry. For the first time, in the absence of both mirror and inversion symmetry, SrSi2 has been predicted as a robust WSM by recent theoretical w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11332v2-abstract-full').style.display = 'inline'; document.getElementById('2106.11332v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.11332v2-abstract-full" style="display: none;"> Quasi-particle excitations in solids described by the Weyl equation have attracted significant attention in recent years. Thus far, a wide range of solids that have been experimentally realized as Weyl semimetals (WSMs) lack either mirror or inversion symmetry. For the first time, in the absence of both mirror and inversion symmetry, SrSi2 has been predicted as a robust WSM by recent theoretical works. Herein, supported by first-principles calculations, we present systematic angle-resolved photoemission studies of undoped SrSi2 and Ca-doped SrSi2 single crystals. Our results show no evidence of the predicted Weyl fermions at the kz = 0 plane or the Fermi arcs on the (001) surface. With external pressure, the electronic band structure evolved and induced Weyl fermions in this compound, as revealed by first-principle calculations combined with electrical transport property measurements. Moreover, a superconducting transition was observed at pressures above 20 GPa. Our investigations indicate that the SrSi2 system is a good platform for studying topological transitions and correlations with superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11332v2-abstract-full').style.display = 'none'; document.getElementById('2106.11332v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.11329">arXiv:2106.11329</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.11329">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L041113">10.1103/PhysRevB.106.L041113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-dimensional quasi-quantized Hall insulator phase in SrSi2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Manna%2C+K">Kaustuv Manna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chattopadhyay%2C+S">Sumanta Chattopadhyay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noky%2C+J">Jonathan Noky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+M">Mengyu Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Joonbum Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%B6rster%2C+T">Tobias F枚rster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uhlarz%2C+M">Marc Uhlarz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakraborty%2C+T">Tirthankar Chakraborty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schwarze%2C+B+V">B. Valentin Schwarze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hornung%2C+J">Jacob Hornung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borrmann%2C+H">Horst Borrmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wosnitza%2C+J">Jochen Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gooth%2C+J">Johannes Gooth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.11329v1-abstract-short" style="display: inline;"> In insulators, the longitudinal resistivity becomes infinitely large at zero temperature. For classic insulators, the Hall conductivity becomes zero at the same time. However, there are special systems, such as two-dimensional quantum Hall isolators, in which a more complex scenario is observed at high magnetic fields. Here, we report experimental evidence for a quasi-quantized Hall insulator in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11329v1-abstract-full').style.display = 'inline'; document.getElementById('2106.11329v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.11329v1-abstract-full" style="display: none;"> In insulators, the longitudinal resistivity becomes infinitely large at zero temperature. For classic insulators, the Hall conductivity becomes zero at the same time. However, there are special systems, such as two-dimensional quantum Hall isolators, in which a more complex scenario is observed at high magnetic fields. Here, we report experimental evidence for a quasi-quantized Hall insulator in the quantum limit of the three-dimensional semimetal SrSi2. Our measurements reveal a magnetic field-range, in which the longitudinal resistivity diverges with decreasing temperature, while the Hall conductivity approaches a quasi-quantized value that is given only by the conductance quantum and the Fermi wave vector in the field-direction. The quasi-quantized Hall insulator appears in a magnetic-field induced insulating ground state of three-dimensional materials and is deeply rooted in quantum Hall physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11329v1-abstract-full').style.display = 'none'; document.getElementById('2106.11329v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages including SI, 3 main figures and 6 SI figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, L041113 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.07331">arXiv:2104.07331</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.07331">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.165107">10.1103/PhysRevB.103.165107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inherited Weak Topological Insulator Signatures in Topological Hourglass Semimetal Nb3XTe6 (X = Si, Ge) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Q">Q. Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+T+Y">T. Y. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">S. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">M. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Z. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C+L">C. L. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">C. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S+K">S. K. Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">W. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z+H">Z. H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y+B">Y. B. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lev%2C+L+L">L. L. Lev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">J. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Z+Q">Z. Q. Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J+F">J. F. Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S+A">Shengyuan A. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">N. Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.07331v1-abstract-short" style="display: inline;"> Using spin-resolved and angle-resolved photoemission spectroscopy and first-principles calculations, we have identified bulk band inversion and spin polarized surface state evolved from a weak topological insulator (TI) phase in van der Waals materials Nb3XTe6 (X = Si, Ge). The fingerprints of weak TI homologically emerge with hourglass fermions, as multi nodal chains composed by the same pair of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07331v1-abstract-full').style.display = 'inline'; document.getElementById('2104.07331v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.07331v1-abstract-full" style="display: none;"> Using spin-resolved and angle-resolved photoemission spectroscopy and first-principles calculations, we have identified bulk band inversion and spin polarized surface state evolved from a weak topological insulator (TI) phase in van der Waals materials Nb3XTe6 (X = Si, Ge). The fingerprints of weak TI homologically emerge with hourglass fermions, as multi nodal chains composed by the same pair of valence and conduction bands gapped by spin orbit coupling. The novel topological state, with a pair of valence and conduction bands encoding both weak TI and hourglass semimetal nature, is essential and guaranteed by nonsymmorphic symmetry. It is distinct from TIs studied previously based on band inversions without symmetry protections. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07331v1-abstract-full').style.display = 'none'; document.getElementById('2104.07331v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 165107 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.03557">arXiv:2104.03557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.03557">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-021-00350-5">10.1038/s41535-021-00350-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the interplay between lattice dynamics and short-range magnetic correlations in CuGeO3 with femtosecond RIXS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">E. Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicholson%2C+C+W">C. W. Nicholson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">S. Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Y. Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rumo%2C+M">M. Rumo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coslovich%2C+G">G. Coslovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zohar%2C+S">S. Zohar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+M+F">M. F. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saint-Martin%2C+R">R. Saint-Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Revcolevschi%2C+A">A. Revcolevschi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemper%2C+A">A. Kemper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W">W. Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovski%2C+G+L">G. L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monney%2C+C">C. Monney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.03557v1-abstract-short" style="display: inline;"> Investigations of magnetically ordered phases on the femtosecond timescale have provided significant insights into the influence of charge and lattice degrees of freedom on the magnetic sub-system. However, short-range magnetic correlations occurring in the absence of long-range order, for example in spin-frustrated systems, are inaccessible to many ultrafast techniques. Here, we show how time-res&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.03557v1-abstract-full').style.display = 'inline'; document.getElementById('2104.03557v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.03557v1-abstract-full" style="display: none;"> Investigations of magnetically ordered phases on the femtosecond timescale have provided significant insights into the influence of charge and lattice degrees of freedom on the magnetic sub-system. However, short-range magnetic correlations occurring in the absence of long-range order, for example in spin-frustrated systems, are inaccessible to many ultrafast techniques. Here, we show how time-resolved resonant inelastic X-ray scattering (trRIXS) is capable of probing such short-ranged magnetic dynamics in a charge-transfer insulator through the detection of a Zhang-Rice singlet exciton. Utilizing trRIXS measurements at the O K-edge, and in combination with model calculations, we probe the short-range spin-correlations in the frustrated spin chain material CuGeO3 following photo-excitation, revealing a strong coupling between the local lattice and spin sub-systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.03557v1-abstract-full').style.display = 'none'; document.getElementById('2104.03557v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials (2021) 6:51 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.00498">arXiv:2104.00498</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.00498">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.0c07609">10.1021/acsnano.0c07609 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band-Order Anomaly at the 纬-Al2O3/SrTiO3 Interface Drives the Electron-Mobility Boost </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chikina%2C+A">Alla Chikina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+D+V">Dennis V. Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisov%2C+V">Vladislav Borisov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Husanu%2C+M">Marius-Adrian Husanu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yunzhong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">Milan Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagaosa%2C+N">Naoto Nagaosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishchenko%2C+A+S">Andrey S. Mishchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pryds%2C+N">Nini Pryds</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.00498v1-abstract-short" style="display: inline;"> Rich functionalities of transition-metal oxides and their interfaces bear an enormous technological potential. Its realization in practical devices requires, however, a significant improvement of yet relatively low electron mobility in oxide materials. Recently, a mobility boost of about two orders of magnitude has been demonstrated at the spinel/perovskite 纬-Al2O3/SrTiO3 interface compared to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00498v1-abstract-full').style.display = 'inline'; document.getElementById('2104.00498v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.00498v1-abstract-full" style="display: none;"> Rich functionalities of transition-metal oxides and their interfaces bear an enormous technological potential. Its realization in practical devices requires, however, a significant improvement of yet relatively low electron mobility in oxide materials. Recently, a mobility boost of about two orders of magnitude has been demonstrated at the spinel/perovskite 纬-Al2O3/SrTiO3 interface compared to the paradigm perovskite/perovskite LaAlO3/SrTiO3. We explore the fundamental physics behind this phenomenon from direct measurements of the momentum-resolved electronic structure of this interface using resonant soft-X-ray angle-resolved photoemission. We find an anomaly in orbital ordering of the mobile electrons in 纬-Al2O3/SrTiO3 which depopulates electron states in the top STO layer. This rearrangement of the mobile electron system pushes the electron density away from the interface that reduces its overlap with the interfacial defects and weakens the electron-phonon interaction, both effects contributing to the mobility boost. A crystal-field analysis shows that the band order alters owing to the symmetry breaking between the spinel 纬-Al2O3 and perovskite SrTiO3. The band-order engineering exploiting the fundamental symmetry properties emerges as another route to boost the performance of oxide devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00498v1-abstract-full').style.display = 'none'; document.getElementById('2104.00498v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07021">arXiv:2103.07021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.07021">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abi5833">10.1126/sciadv.abi5833 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Momentum-resolved electronic band structure and offsets in an epitaxial NbN/GaN superconductor/semiconductor heterojunction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T">Tianlun Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wright%2C+J">John Wright</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalsa%2C+G">Guru Khalsa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C+S">Celesta S. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matveyev%2C+Y">Yury Matveyev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D">Donglai Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muller%2C+D">David Muller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+G">Grace Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jena%2C+D">Debdeep Jena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07021v1-abstract-short" style="display: inline;"> The electronic structure of heterointerfaces play a pivotal role in their device functionality. Recently, highly crystalline ultrathin films of superconducting NbN have been integrated by molecular beam epitaxy with the semiconducting GaN. We use soft X-ray angle-resolved photoelectron spectroscopy to directly measure the momentum-resolved electronic band structures for both NbN and GaN constituen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07021v1-abstract-full').style.display = 'inline'; document.getElementById('2103.07021v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07021v1-abstract-full" style="display: none;"> The electronic structure of heterointerfaces play a pivotal role in their device functionality. Recently, highly crystalline ultrathin films of superconducting NbN have been integrated by molecular beam epitaxy with the semiconducting GaN. We use soft X-ray angle-resolved photoelectron spectroscopy to directly measure the momentum-resolved electronic band structures for both NbN and GaN constituents of this Schottky heterointerface, and determine their momentum-dependent interfacial band offset as well as the band-bending profile into GaN. We find, in particular, that the Fermi states in NbN are aligned against the band gap in GaN, which excludes any significant electronic cross-talk of the superconducting states in NbN through the interface to GaN. We support the experimental findings with first-principles calculations for bulk NbN and GaN. The Schottky barrier height obtained from photoemission is corroborated by electronic transport and optical measurements. The momentum-resolved understanding of electronic properties elucidated by the combined materials advances and experimental methods in our work opens up new possibilities in systems where interfacial states play a defining role. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07021v1-abstract-full').style.display = 'none'; document.getElementById('2103.07021v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.02178">arXiv:2102.02178</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.02178">pdf</a>, <a href="https://arxiv.org/format/2102.02178">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.075114">10.1103/PhysRevB.105.075114 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge ordering in Ir dimers in the ground state of Ba$_5$AlIr$_2$O$_{11}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Katukuri%2C+V+M">Vamshi M. Katukuri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xingye Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McNally%2C+D+E">D. E. McNally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantz%2C+M">Marcus Dantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Upton%2C+M+H">M. H. Upton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Terzic%2C+J">J. Terzic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">G. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazyev%2C+O+V">Oleg V. Yazyev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.02178v1-abstract-short" style="display: inline;"> It has been well established experimentally that the interplay of electronic correlations and spin-orbit interactions in Ir$^{4+}$ and Ir$^{5+}$ oxides results in insulating J$_{\rm eff}$=1/2 and J$_{\rm eff}$=0 ground states, respectively. However, in compounds where the structural dimerization of iridum ions is favourable, the direct Ir $d$--$d$ hybridisation can be significant and takes a key r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02178v1-abstract-full').style.display = 'inline'; document.getElementById('2102.02178v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.02178v1-abstract-full" style="display: none;"> It has been well established experimentally that the interplay of electronic correlations and spin-orbit interactions in Ir$^{4+}$ and Ir$^{5+}$ oxides results in insulating J$_{\rm eff}$=1/2 and J$_{\rm eff}$=0 ground states, respectively. However, in compounds where the structural dimerization of iridum ions is favourable, the direct Ir $d$--$d$ hybridisation can be significant and takes a key role. Here, we investigate the effects of direct Ir $d$--$d$ hybridisation in comparison with electronic correlations and spin-orbit coupling in Ba$_5$AlIr$_2$O$_{11}$, a compound with Ir dimers. Using a combination of $ab$ $initio$ many-body wave function quantum chemistry calculations and resonant inelastic X-ray scattering (RIXS) experiments, we elucidate the electronic structure of Ba$_5$AlIr$_2$O$_{11}$. We find excellent agreement between the calculated and the measured spin-orbit excitations. Contrary to the expectations, the analysis of the many-body wave function shows that the two Ir (Ir$^{4+}$ and Ir$^{5+}$) ions in the Ir$_2$O$_9$ dimer unit in this compound preserve their local J$_{\rm eff}$ character close to 1/2 and 0, respectively. The local point group symmetry at each of the Ir sites assumes an important role, significantly limiting the direct $d$--$d$ hybridisation. Our results emphasize that minute details in the local crystal field (CF) environment can lead to dramatic differences in electronic states in iridates and 5$d$ oxides in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02178v1-abstract-full').style.display = 'none'; document.getElementById('2102.02178v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages with 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14935">arXiv:2012.14935</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.14935">pdf</a>, <a href="https://arxiv.org/format/2012.14935">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Electronic structure of InAs and InSb surfaces: density functional theory and angle-resolved photoemission spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuyang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">Niels B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuwalow%2C+S">Sergej Schuwalow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rajpalk%2C+M">Mohana Rajpalk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohtani%2C+K">Keita Ohtani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=KrogstrupGeorg%2C+P">Peter KrogstrupGeorg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winkler%2C+W">W. Winkler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gukelberger%2C+J">Jan Gukelberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gresch%2C+D">Dominik Gresch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aeppli%2C+G">Gabriel Aeppli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lutchyn%2C+R+M">Roman M. Lutchyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marom%2C+N">Noa Marom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14935v1-abstract-short" style="display: inline;"> The electronic structure of surfaces plays a key role in the properties of quantum devices. However, surfaces are also the most challenging to simulate and engineer. Here, we study the electronic structure of InAs(001), InAs(111), and InSb(110) surfaces using a combination of density functional theory (DFT) and angle-resolved photoemission spectroscopy (ARPES). We were able to perform large-scale&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14935v1-abstract-full').style.display = 'inline'; document.getElementById('2012.14935v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14935v1-abstract-full" style="display: none;"> The electronic structure of surfaces plays a key role in the properties of quantum devices. However, surfaces are also the most challenging to simulate and engineer. Here, we study the electronic structure of InAs(001), InAs(111), and InSb(110) surfaces using a combination of density functional theory (DFT) and angle-resolved photoemission spectroscopy (ARPES). We were able to perform large-scale first principles simulations and capture effects of different surface reconstructions by using DFT calculations with a machine-learned Hubbard U correction [npj Comput. Mater. 6, 180 (2020)]. To facilitate direct comparison with ARPES results, we implemented a &#34;bulk unfolding&#34; scheme by projecting the calculated band structure of a supercell surface slab model onto the bulk primitive cell. For all three surfaces, we find a good agreement between DFT calculations and ARPES. For InAs(001), the simulations clarify the effect of the surface reconstruction. Different reconstructions are found to produce distinctive surface states. For InAs(111) and InSb(110), the simulations help elucidate the effect of oxidation. Owing to larger charge transfer from As to O than from Sb to O, oxidation of InAs(111) leads to significant band bending and produces an electron pocket, whereas oxidation of InSb(110) does not. Our combined theoretical and experimental results may inform the design of quantum devices based on InAs and InSb semiconductors, e.g., topological qubits utilizing the Majorana zero modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14935v1-abstract-full').style.display = 'none'; document.getElementById('2012.14935v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.01221">arXiv:2012.01221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.01221">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Strain-induced anion ordering in perovskite oxyfluoride films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jiayi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+Y">Yongjin Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paudel%2C+J+R">Jay R. Paudel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grassi%2C+J+D">Joseph D. Grassi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sah%2C+R+K">Raj K. Sah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Weibing Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karapetrova%2C+E">Evguenia Karapetrova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaidan%2C+A">Abdulhadi Zaidan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klewe%2C+C">Christoph Klewe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shafer%2C+P">Padraic Shafer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gray%2C+A+X">Alexander X. Gray</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rondinelli%2C+J+M">James M. Rondinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=May%2C+S+J">Steven J. May</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.01221v1-abstract-short" style="display: inline;"> Anionic ordering is a promising route to engineer physical properties in functional heteroanionic materials. A central challenge in the study of anion-ordered compounds lies in developing robust synthetic strategies to control anion occupation and in understanding the resultant implications for electronic structure. Here, we show that epitaxial strain induces preferential occupation of F and O on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01221v1-abstract-full').style.display = 'inline'; document.getElementById('2012.01221v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.01221v1-abstract-full" style="display: none;"> Anionic ordering is a promising route to engineer physical properties in functional heteroanionic materials. A central challenge in the study of anion-ordered compounds lies in developing robust synthetic strategies to control anion occupation and in understanding the resultant implications for electronic structure. Here, we show that epitaxial strain induces preferential occupation of F and O on the anion sites in perovskite oxyfluoride SrMnO2.5-dFg films grown on different substrates. Under compressive strain, F tends to take the apical-like sites, which was revealed by F and O K-edge linearly polarized x-ray absorption spectroscopy and density functional theory calculations, resulting in an enhanced c-axis expansion. Under tensile strain, F tends to take the equatorial-like sites, enabling the longer Mn-F bonds to lie within the plane. The anion ordered oxyfluoride films exhibit a significant orbital polarization of the 3d electrons, distinct F-site dependence to their valence band density of states, and an enhanced resistivity when F occupies the apical-like anion site compared to the equatorial-like site. By demonstrating a general strategy for inducing anion-site order in oxyfluoride perovskites, this work lays the foundation for future materials design and synthesis efforts that leverage this greater degree of atomic control to realize new polar or quasi-two-dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01221v1-abstract-full').style.display = 'none'; document.getElementById('2012.01221v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.05683">arXiv:2011.05683</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.05683">pdf</a>, <a href="https://arxiv.org/ps/2011.05683">ps</a>, <a href="https://arxiv.org/format/2011.05683">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-34254-0">10.1038/s41467-022-34254-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Colossal band renormalization and stoner ferromagnetism induced by electron-antiferromagnetic-magnon coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T+L">T. L. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+R">R. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+2+M">2 M. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W+T">W. T. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y+H">Y. H. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+C+H+P">C. H. P. Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Q. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+X">X. Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">T. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+X+Y">X. Y. Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+J+K">J. K. Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G+H">G. H. Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dudin%2C+P">P. Dudin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J+D">J. D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H+C">H. C. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D+L">D. L. Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.05683v1-abstract-short" style="display: inline;"> The interactions between electrons and antiferromagnetic magnons (AFMMs) are important for a large class of correlated materials. For example, they are the most plausible pairing glues in high-temperature superconductors, such as cuprates and iron pnictides. However, unlike electron-phonon interactions (EPIs), clear-cut observations regarding how electron-AFMM interactions (EAIs) affect the band s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05683v1-abstract-full').style.display = 'inline'; document.getElementById('2011.05683v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.05683v1-abstract-full" style="display: none;"> The interactions between electrons and antiferromagnetic magnons (AFMMs) are important for a large class of correlated materials. For example, they are the most plausible pairing glues in high-temperature superconductors, such as cuprates and iron pnictides. However, unlike electron-phonon interactions (EPIs), clear-cut observations regarding how electron-AFMM interactions (EAIs) affect the band structure are still lacking. Consequently, critical information on the EAIs, such as its strength and doping dependence, remains elusive. Here we directly observe that EAIs induces a kink structure in the band dispersion in Ba$_{1-x}$K$_x$Mn$_2$As$_2$, and subsequently unveil several key characteristics of EAIs. We found that the coupling constant of EAIs can be as large as 6, and it shows huge doping dependence and temperature dependence, all in stark contrast to the behaviors of EPI and beyond our current understanding of EAIs. Such a colossal renormalization of electronic bands by EAIs drives the system to the Stoner criteria, giving the intriguing ferromagnetic state in Ba$_{1-x}$K$_x$Mn$_2$As$_2$. Our results expand the current knowledge of EAIs, which may facilitate the further understanding of many correlated materials where EAIs play a critical role, such as high-temperature superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05683v1-abstract-full').style.display = 'none'; document.getElementById('2011.05683v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 13, 6560 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.04509">arXiv:2011.04509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.04509">pdf</a>, <a href="https://arxiv.org/format/2011.04509">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.031013">10.1103/PhysRevX.11.031013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Description of resonant inelastic x-ray scattering in correlated metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gilmore%2C+K">Keith Gilmore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kas%2C+J+J">Joshua J. Kas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dantz%2C+M">Marcus Dantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kasahara%2C+S">Shigeru Kasahara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+Y">Yuji Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+T">Tanmoy Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shibauchi%2C+T">Takasada Shibauchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.04509v1-abstract-short" style="display: inline;"> To fully capitalize on the potential and versatility of resonant inelastic x-ray scattering (RIXS), it is essential to develop the capability to interpret different RIXS contributions through calculations, including the dependence on momentum transfer, from first-principles for correlated materials. Toward that objective, we present new methodology for calculating the full RIXS response of a corre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04509v1-abstract-full').style.display = 'inline'; document.getElementById('2011.04509v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.04509v1-abstract-full" style="display: none;"> To fully capitalize on the potential and versatility of resonant inelastic x-ray scattering (RIXS), it is essential to develop the capability to interpret different RIXS contributions through calculations, including the dependence on momentum transfer, from first-principles for correlated materials. Toward that objective, we present new methodology for calculating the full RIXS response of a correlated metal in an unbiased fashion. Through comparison of measurements and calculations that tune the incident photon energy over a wide portion of the Fe L$_3$ absorption resonance of the example material BaFe$_2$As$_2$, we show that the RIXS response in BaFe$_2$As$_2$ is dominated by the direct channel contribution, including the Raman-like response below threshold, which we explain as a consequence of the finite core-hole lifetime broadening. Calculations are initially performed within the first-principles Bethe-Salpeter framework, which we then significantly improve by convolution with an effective spectral function for the intermediate-state excitation. We construct this spectral function, also from first-principles, by employing the cumulant expansion of the Green&#39;s function and performing a real-time time dependent density functional theory calculation of the response of the electronic system to the perturbation of the intermediate-state excitation. Importantly, this allows us to evaluate the indirect RIXS response from first-principles, accounting for the full periodicity of the crystal structure and with dependence on the momentum transfer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04509v1-abstract-full').style.display = 'none'; document.getElementById('2011.04509v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, submitted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 11, 031013 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.12262">arXiv:2009.12262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.12262">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2012043117">10.1073/pnas.2012043117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-engineering of the charge and spin-orbital interactions in Sr2IrO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">Eugenio Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=P%C3%A4rschke%2C+E+M">Ekaterina M. P盲rschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Upton%2C+M+H">Mary H. Upton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efimenko%2C+A">Anna Efimenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rolfs%2C+K">Katharina Rolfs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McNally%2C+D+E">Daniel E. McNally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maurel%2C+L">Laura Maurel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naamneh%2C+M">Muntaser Naamneh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caputo%2C+M">Marco Caputo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiming Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casa%2C+D">Diego Casa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+C+W">Christof W. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wohlfeld%2C+K">Krzysztof Wohlfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">Milan Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.12262v1-abstract-short" style="display: inline;"> In the high spin-orbit coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir-O bond geometry in Sr2IrO4 and perform momentum-dependent Resonant Inelastic X-ray Scattering (RIXS) at the metal and a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12262v1-abstract-full').style.display = 'inline'; document.getElementById('2009.12262v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.12262v1-abstract-full" style="display: none;"> In the high spin-orbit coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir-O bond geometry in Sr2IrO4 and perform momentum-dependent Resonant Inelastic X-ray Scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven crossover from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron-hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information towards the control of the ground state of complex oxides in the presence of high spin-orbit coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12262v1-abstract-full').style.display = 'none'; document.getElementById('2009.12262v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Proceedings of the National Academy of Sciences, September 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.06285">arXiv:2009.06285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.06285">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.115111">10.1103/PhysRevB.103.115111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Minority-Spin Impurity Band in n-Type (In,Fe)As: A Materials Perspective for Ferromagnetic Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kobayashi%2C+M">Masaki Kobayashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anh%2C+L+D">Le Duc Anh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minar%2C+J">Jan Minar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+W">Walayat Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borek%2C+S">Stephan Borek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hai%2C+P+N">Pham Nam Hai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harada%2C+Y">Yoshihisa Harada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oshima%2C+M">Masaharu Oshima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujimori%2C+A">Atsushi Fujimori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+M">Masaaki Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.06285v1-abstract-short" style="display: inline;"> Fully understanding the properties of n-type ferromagnetic semiconductors (FMSs), complementary to the mainstream p-type ones, is a challenging goal in semiconductor spintronics because ferromagnetism in n-type FMSs is theoretically non-trivial. Soft-x-ray angle-resolved photoemission spectroscopy (SX-ARPES) is a powerful approach to examine the mechanism of carrier-induced ferromagnetism in FMSs.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06285v1-abstract-full').style.display = 'inline'; document.getElementById('2009.06285v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.06285v1-abstract-full" style="display: none;"> Fully understanding the properties of n-type ferromagnetic semiconductors (FMSs), complementary to the mainstream p-type ones, is a challenging goal in semiconductor spintronics because ferromagnetism in n-type FMSs is theoretically non-trivial. Soft-x-ray angle-resolved photoemission spectroscopy (SX-ARPES) is a powerful approach to examine the mechanism of carrier-induced ferromagnetism in FMSs. Here our SX-ARPES study on the prototypical n-type FMS (In,Fe)As reveals the entire band structure including the Fe-3d impurity bands (IBs) and the host InAs ones, and provides direct evidence for electron occupation of the InAs-derived conduction band (CB). A minority-spin Fe-3d IB is found to be located just below the conduction-band minimum (CBM). The IB is formed by the hybridization of the unoccupied Fe-3d states with the occupied CBM of InAs in a spin-dependent way, resulting in the large spin polarization of CB. The band structure with the IB is varied with band filling, which cannot be explained by the rigid-band picture, suggesting a unified picture for realization of carrier-induced ferromagnetism in FMS materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06285v1-abstract-full').style.display = 'none'; document.getElementById('2009.06285v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 115111 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.00873">arXiv:2009.00873</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.00873">pdf</a>, <a href="https://arxiv.org/ps/2009.00873">ps</a>, <a href="https://arxiv.org/format/2009.00873">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.033342">10.1103/PhysRevResearch.2.033342 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signature of band inversion in the antiferromagnetic phase of axion insulator candidate EuIn2As2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sato%2C+T">Takafumi Sato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takane%2C+D">Daichi Takane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Souma%2C+S">Seigo Souma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+C">Chaoxi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakayama%2C+K">Kosuke Nakayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawakami%2C+T">Tappei Kawakami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kubota%2C+Y">Yuya Kubota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arab%2C+A">Arian Arab</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takahashi%2C+T">Takashi Takahashi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.00873v1-abstract-short" style="display: inline;"> We have performed angle-resolved photoemission spectroscopy on EuIn2As2 which is predicted to be an axion insulator in the antiferromagnetic state. By utilizing soft-x-ray and vacuum-ultraviolet photons, we revealed a three-dimensional hole pocket centered at the Gamma point of bulk Brillouin zone together with a heavily hole-doped surface state in the paramagnetic phase. Upon entering the antifer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.00873v1-abstract-full').style.display = 'inline'; document.getElementById('2009.00873v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.00873v1-abstract-full" style="display: none;"> We have performed angle-resolved photoemission spectroscopy on EuIn2As2 which is predicted to be an axion insulator in the antiferromagnetic state. By utilizing soft-x-ray and vacuum-ultraviolet photons, we revealed a three-dimensional hole pocket centered at the Gamma point of bulk Brillouin zone together with a heavily hole-doped surface state in the paramagnetic phase. Upon entering the antiferromagnetic phase, the band structure exhibits a marked reconstruction characterized by the emergence of a &#34;M&#34;-shaped bulk band near the Fermi level. The qualitative agreement with first-principles band-structure calculations suggests the occurrence of bulk-band inversion at the Gamma point in the antiferromagnetic phase. We suggest that EuIn2As2 provides a good opportunity to study the exotic quantum phases associated with possible axion-insulator phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.00873v1-abstract-full').style.display = 'none'; document.getElementById('2009.00873v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 033342 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.02053">arXiv:2008.02053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.02053">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> hv2-concept breaks the photon-count limit of RIXS instrumentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Kejin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuyama%2C+S">Satoshi Matsuyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.02053v1-abstract-short" style="display: inline;"> Upon progressive refinement of energy resolution, the conventional RIXS instrumentation reaches the limit where the bandwidth of incident photons becomes insufficient to deliver an acceptable photon-count rate. We show that the RIXS spectra as a function of energy loss are essentially invariant to their integration over incident energies within the core-hole lifetime. This fact permits the RIXS in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.02053v1-abstract-full').style.display = 'inline'; document.getElementById('2008.02053v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.02053v1-abstract-full" style="display: none;"> Upon progressive refinement of energy resolution, the conventional RIXS instrumentation reaches the limit where the bandwidth of incident photons becomes insufficient to deliver an acceptable photon-count rate. We show that the RIXS spectra as a function of energy loss are essentially invariant to their integration over incident energies within the core-hole lifetime. This fact permits the RIXS instrumentation based on the hv2-concept to utilize incident synchrotron radiation over the whole core-hole lifetime window without any compromise on the energy-loss resolution, thereby breaking the photon-count limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.02053v1-abstract-full').style.display = 'none'; document.getElementById('2008.02053v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in J. Synchr. Radiation (2020)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.01557">arXiv:2006.01557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.01557">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Weyl-fermions, Fermi-arcs, and minority-spin carriers in ferromagnetic CoS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">Niels B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klemenz%2C+S">Sebastian Klemenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirby%2C+R+J">Robert J. Kirby</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krieger%2C+J+A">Jonas A. Krieger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+D">Ding Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T">Tianlun Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stolz%2C+S">Samuel Stolz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dudin%2C+P">Pavel Dudin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnyder%2C+A">Andreas Schnyder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergara%2C+A">Aitor Bergara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Juan%2C+F">Fernando de Juan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.01557v1-abstract-short" style="display: inline;"> The pyrite compound CoS2 has been intensively studied in the past due to its itinerant ferromagnetism and potential for half-metallicity, which make it a promising material for spintronic applications. However, its electronic structure remains only poorly understood. Here we use complementary bulk- and surface-sensitive angle-resolved photoelectron spectroscopy and ab-initio calculations to provid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01557v1-abstract-full').style.display = 'inline'; document.getElementById('2006.01557v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.01557v1-abstract-full" style="display: none;"> The pyrite compound CoS2 has been intensively studied in the past due to its itinerant ferromagnetism and potential for half-metallicity, which make it a promising material for spintronic applications. However, its electronic structure remains only poorly understood. Here we use complementary bulk- and surface-sensitive angle-resolved photoelectron spectroscopy and ab-initio calculations to provide a complete picture of its band structure. We discover Weyl-cones at the Fermi-level, which presents CoS2 in a new light as a rare member of the recently discovered class of magnetic topological metals. We directly observe the topological Fermi-arc surface states that link the Weyl-nodes, which will influence the performance of CoS2 as a spin-injector by modifying its spin-polarization at interfaces. Additionally, we are for the first time able to directly observe a minority-spin bulk electron pocket in the corner of the Brillouin zone, which proves that CoS2 cannot be a true half-metal. Beyond settling the longstanding debate about half-metallicity in CoS2, our results provide a prime example of how the topology of magnetic materials can affect their use in spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01557v1-abstract-full').style.display = 'none'; document.getElementById('2006.01557v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.02953">arXiv:2004.02953</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.02953">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-020-0330-6">10.1038/s42005-020-0330-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron-polaron dichotomy of charge carriers in perovskite oxides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Husanu%2C+M">Marius-Adrian Husanu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vistoli%2C+L">Lorenzo Vistoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Verdi%2C+C">Carla Verdi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sander%2C+A">Anke Sander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia%2C+V">Vincent Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rault%2C+J">Julien Rault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bisti%2C+F">Federico Bisti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lev%2C+L+L">Leonid L. Lev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giustino%2C+F">Feliciano Giustino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishchenko%2C+A+S">Andrey S. Mishchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bibes%2C+M">Manuel Bibes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.02953v2-abstract-short" style="display: inline;"> Many transition metal oxides (TMOs) are Mott insulators due to strong Coulomb repulsion between electrons, and exhibit metal-insulator transitions (MITs) whose mechanisms are not always fully understood. Unlike most TMOs, minute doping in CaMnO3 induces a metallic state without any structural transformations. This material is thus an ideal platform to explore band formation through the MIT. Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02953v2-abstract-full').style.display = 'inline'; document.getElementById('2004.02953v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.02953v2-abstract-full" style="display: none;"> Many transition metal oxides (TMOs) are Mott insulators due to strong Coulomb repulsion between electrons, and exhibit metal-insulator transitions (MITs) whose mechanisms are not always fully understood. Unlike most TMOs, minute doping in CaMnO3 induces a metallic state without any structural transformations. This material is thus an ideal platform to explore band formation through the MIT. Here, we use angle-resolved photoemission spectroscopy to visualize how electrons delocalize and couple to phonons in CaMnO3. We show the development of a Fermi surface where mobile electrons coexist with heavier carriers, strongly coupled polarons. The latter originate from a boost of the electron-phonon interaction (EPI). This finding brings to light the role that the EPI can play in MITs even caused by purely electronic mechanisms. Our discovery of the EPI-induced dichotomy of the charge carriers explains the transport response of Ce-doped CaMnO3 and suggests strategies to engineer quantum matter from TMOs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02953v2-abstract-full').style.display = 'none'; document.getElementById('2004.02953v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted manuscript to Communications Physics 3, 62 (2020)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics 3, 62 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Strocov%2C+V+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Strocov%2C+V+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Strocov%2C+V+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Strocov%2C+V+N&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10