CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 65 results for author: <span class="mathjax">Watson, M D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Watson%2C+M+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Watson, M D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Watson%2C+M+D&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Watson, M D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Watson%2C+M+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Watson%2C+M+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Watson%2C+M+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16199">arXiv:2410.16199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16199">pdf</a>, <a href="https://arxiv.org/format/2410.16199">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Momentum-Resolved Fingerprint of Mottness in Layer-Dimerized Nb$_3$Br$_8$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Date%2C+M">Mihir Date</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petocchi%2C+F">Francesco Petocchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yen%2C+Y">Yun Yen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krieger%2C+J+A">Jonas A. Krieger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pal%2C+B">Banabir Pal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasse%2C+V">Vicky Hasse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McFarlane%2C+E+C">Emily C. McFarlane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6rner%2C+C">Chris K枚rner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoon%2C+J">Jiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuanfeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kostanovski%2C+I">Ilya Kostanovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ali%2C+M+N">Mazhar N. Ali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+S">Sailong Ju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">Nicholas C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sentef%2C+M+A">Michael A. Sentef</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woltersdorf%2C+G">Georg Woltersdorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BCler%2C+M">Michael Sch眉ler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Werner%2C+P">Philipp Werner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">Stuart S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">Niels B. M. Schr枚ter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16199v1-abstract-short" style="display: inline;"> In a well-ordered crystalline solid, insulating behaviour can arise from two mechanisms: electrons can either scatter off a periodic potential, thus forming band gaps that can lead to a band insulator, or they localize due to strong interactions, resulting in a Mott insulator. For an even number of electrons per unit cell, either band- or Mott-insulators can theoretically occur. However, unambiguo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16199v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16199v1-abstract-full" style="display: none;"> In a well-ordered crystalline solid, insulating behaviour can arise from two mechanisms: electrons can either scatter off a periodic potential, thus forming band gaps that can lead to a band insulator, or they localize due to strong interactions, resulting in a Mott insulator. For an even number of electrons per unit cell, either band- or Mott-insulators can theoretically occur. However, unambiguously identifying an unconventional Mott-insulator with an even number of electrons experimentally has remained a longstanding challenge due to the lack of a momentum-resolved fingerprint. This challenge has recently become pressing for the layer dimerized van der Waals compound Nb$_3$Br$_8$, which exhibits a puzzling magnetic field-free diode effect when used as a weak link in Josephson junctions, but has previously been considered to be a band-insulator. In this work, we present a unique momentum-resolved signature of a Mott-insulating phase in the spectral function of Nb$_3$Br$_8$: the top of the highest occupied band along the out-of-plane dimerization direction $k_z$ has a momentum space separation of $螖k_z=2蟺/d$, whereas the valence band maximum of a band insulator would be separated by less than $螖k_z=蟺/d$, where $d$ is the average spacing between the layers. As the strong electron correlations inherent in Mott insulators can lead to unconventional superconductivity, identifying Nb$_3$Br$_8$ as an unconventional Mott-insulator is crucial for understanding its apparent time-reversal symmetry breaking Josephson diode effect. Moreover, the momentum-resolved signature employed here could be used to detect quantum phase transition between band- and Mott-insulating phases in van der Waals heterostructures, where interlayer interactions and correlations can be easily tuned to drive such transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16199v1-abstract-full').style.display = 'none'; document.getElementById('2410.16199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09317">arXiv:2407.09317</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09317">pdf</a>, <a href="https://arxiv.org/format/2407.09317">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Bonding states underpinning structural transitions in IrTe$_2$ observed with micro-ARPES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nicholson%2C+C+W">C. W. Nicholson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pulkkinen%2C+A">A. Pulkkinen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rumo%2C+M">M. Rumo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kremer%2C+G">G. Kremer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+K+Y">K. Y. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Rohr%2C+F+O">F. O. von Rohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">C. Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monney%2C+C">C. Monney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09317v1-abstract-short" style="display: inline;"> Competing interactions in low-dimensional materials can produce nearly degenerate electronic and structural phases. We investigate the staircase of structural phase transitions in layered IrTe$_2$ for which a number of potential transition mechanisms have been postulated. The spatial coexistence of multiple phases on the micron scale has prevented a detailed analysis of the electronic structure. B&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09317v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09317v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09317v1-abstract-full" style="display: none;"> Competing interactions in low-dimensional materials can produce nearly degenerate electronic and structural phases. We investigate the staircase of structural phase transitions in layered IrTe$_2$ for which a number of potential transition mechanisms have been postulated. The spatial coexistence of multiple phases on the micron scale has prevented a detailed analysis of the electronic structure. By exploiting micro-ARPES obtained with synchrotron radiation we extract the electronic structure of the multiple structural phases in IrTe$_2$ in order to address the mechanism underlying the phase transitions. We find direct evidence of lowered energy states that appear in the low-temperature phases, states previously predicted by \textit{ab initio} calculations and extended here. Our results validate a proposed scenario of bonding and anti-bonding states as the driver of the phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09317v1-abstract-full').style.display = 'none'; document.getElementById('2407.09317v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">None</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05535">arXiv:2407.05535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.05535">pdf</a>, <a href="https://arxiv.org/format/2407.05535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Emergence of a Fermi-surface in the current-driven Hidden state of 1T-TaS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nitzav%2C+Y">Yuval Nitzav</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gofman%2C+R">Roni Gofman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mangel%2C+I">Ilay Mangel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dishi%2C+A">Abigail Dishi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ragoler%2C+N">Nitzan Ragoler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=P.%2C+S+K">Sajilesh K. P.</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarach%2C+Y">Yaron Jarach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louat%2C+A">Alex Louat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feldman%2C+I">Irena Feldman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kanigel%2C+A">Amit Kanigel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05535v1-abstract-short" style="display: inline;"> We investigate the nature of the metallic metastable state in 1T-TaS2. Using microARPES, we measure the spatially-dependent modifications of the electronic structure of the sample following a short current pulse. We observe that, in some regions of the sample, a Fermi surface emerges, while other regions remain gapped. A detailed study of the band structure in these different regions suggests that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05535v1-abstract-full').style.display = 'inline'; document.getElementById('2407.05535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05535v1-abstract-full" style="display: none;"> We investigate the nature of the metallic metastable state in 1T-TaS2. Using microARPES, we measure the spatially-dependent modifications of the electronic structure of the sample following a short current pulse. We observe that, in some regions of the sample, a Fermi surface emerges, while other regions remain gapped. A detailed study of the band structure in these different regions suggests that the metallic parts are in a state similar to the nearly commensurate charge density wave (NC-CDW) state, where the gaps are suppressed and a band crosses the Fermi level. Furthermore, we find that the metallic and insulating regions of the sample exhibit different dispersions normal to the planes. This observation is consistent with a scenario in which the current pulse breaks the star-of-David dimers present in the commensurate charge density wave (C-CDW) state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05535v1-abstract-full').style.display = 'none'; document.getElementById('2407.05535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02999">arXiv:2407.02999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02999">pdf</a>, <a href="https://arxiv.org/format/2407.02999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.016401">10.1103/PhysRevLett.133.016401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermi Surface Nesting Driving the RKKY Interaction in the Centrosymmetric Skyrmion Magnet Gd2PdSi3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Y">Yuyang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arai%2C+Y">Yosuke Arai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuroda%2C+K">Kenta Kuroda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ochi%2C+M">Masayuki Ochi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+N">Natsumi Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yuxuan Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aoki%2C+Y">Yuji Aoki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+T+D">Tatsuma D. Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kondo%2C+T">Takeshi Kondo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02999v1-abstract-short" style="display: inline;"> The magnetic skyrmions generated in a centrosymmetric crystal were recently first discovered in Gd2PdSi3. In light of this, we observe the electronic structure by angle-resolved photoemission spectroscopy (ARPES) and unveil its direct relationship with the magnetism in this compound. The Fermi surface and band dispersions are demonstrated to have a good agreement with the density functional theory&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02999v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02999v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02999v1-abstract-full" style="display: none;"> The magnetic skyrmions generated in a centrosymmetric crystal were recently first discovered in Gd2PdSi3. In light of this, we observe the electronic structure by angle-resolved photoemission spectroscopy (ARPES) and unveil its direct relationship with the magnetism in this compound. The Fermi surface and band dispersions are demonstrated to have a good agreement with the density functional theory (DFT) calculations carried out with careful consideration of the crystal superstructure. Most importantly, we find that the three-dimensional Fermi surface has extended nesting which matches well the q-vector of the magnetic order detected by recent scattering measurements. The consistency we find among ARPES, DFT, and the scattering measurements suggests the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction involving itinerant electrons to be the formation mechanism of skyrmions in Gd2PdSi3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02999v1-abstract-full').style.display = 'none'; document.getElementById('2407.02999v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 016401 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19793">arXiv:2406.19793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19793">pdf</a>, <a href="https://arxiv.org/format/2406.19793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Novel electronic structures from anomalous stackings in NbS$_2$ and MoS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Date%2C+M">Mihir Date</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louat%2C+A">Alex Louat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">Niels B. M. Schr枚ter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19793v1-abstract-short" style="display: inline;"> We show that in some transition metal dichalcogenides, minority regions of the cleaved sample surfaces show - unexpectedly and anomalously - a finite number of 2D electronic states instead of the expected 3D valence bands. In the case of NbS\textsubscript{2}, in addition to the typical spectrum associated with bulk 2Ha stacking, we also find minority regions with electronic structures consistent w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19793v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19793v1-abstract-full" style="display: none;"> We show that in some transition metal dichalcogenides, minority regions of the cleaved sample surfaces show - unexpectedly and anomalously - a finite number of 2D electronic states instead of the expected 3D valence bands. In the case of NbS\textsubscript{2}, in addition to the typical spectrum associated with bulk 2Ha stacking, we also find minority regions with electronic structures consistent with few-layers of 3R stacking. In MoS\textsubscript{2} we find areas of both bulk 2Hc and 3R stackings, and regions exhibiting finite-layer quantisation of both types. We further find evidence for a more exotic 4Ha stacking of MoS\textsubscript{2}, in which the valence band maximum is quasi-2D. The results highlight how variation of the interlayer stacking of van der Waals materials beyond the commonly-reported bulk polytypes can yield novel electronic structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19793v1-abstract-full').style.display = 'none'; document.getElementById('2406.19793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08025">arXiv:2406.08025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08025">pdf</a>, <a href="https://arxiv.org/format/2406.08025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.4c07805">10.1021/acsnano.4c07805 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Holstein polarons, Rashba-like spin splitting and Ising superconductivity in electron-doped MoSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+S+W">Sung Won Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukherjee%2C+S">Saumya Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evtushinsky%2C+D+V">Daniil V. Evtushinsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martino%2C+E">Edoardo Martino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berger%2C+H">Helmut Berger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08025v2-abstract-short" style="display: inline;"> Interaction between electrons and phonons in solids is a key effect defining physical properties of materials such as electrical and thermal conductivity. In transitional metal dichalcogenides (TMDCs) the electron-phonon coupling results in the creation of polarons, quasiparticles that manifest themselves as discrete features in the electronic spectral function. In this study, we report the format&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08025v2-abstract-full').style.display = 'inline'; document.getElementById('2406.08025v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08025v2-abstract-full" style="display: none;"> Interaction between electrons and phonons in solids is a key effect defining physical properties of materials such as electrical and thermal conductivity. In transitional metal dichalcogenides (TMDCs) the electron-phonon coupling results in the creation of polarons, quasiparticles that manifest themselves as discrete features in the electronic spectral function. In this study, we report the formation of polarons at the alkali dosed MoSe2 surface, where Rashba-like spin splitting of the conduction band states is caused by an inversion-symmetry breaking electric field. In addition, we observe the crossover from phonon-like to plasmon-like polaronic spectral features at MoSe2 surface with increasing doping. Our findings support the concept of electron-phonon coupling mediated superconductivity in electron-doped layered TMDC materials, observed using ionic liquid gating technology. Furthermore, the discovered spin-splitting at the Fermi level could offer crucial experimental validation for theoretical models of Ising-type superconductivity in these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08025v2-abstract-full').style.display = 'none'; document.getElementById('2406.08025v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano 18, 33359 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10867">arXiv:2403.10867</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.10867">pdf</a>, <a href="https://arxiv.org/format/2403.10867">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41699-024-00492-7">10.1038/s41699-024-00492-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant exchange splitting in the electronic structure of A-type 2D antiferromagnet CrSBr </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+S">Swagata Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nunn%2C+J+E">James E. Nunn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nagireddy%2C+L">Laxman Nagireddy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pashov%2C+D">Dimitar Pashov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B6sner%2C+M">Malte R枚sner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Schilfgaarde%2C+M">Mark van Schilfgaarde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+N+R">Neil R. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10867v2-abstract-short" style="display: inline;"> We present the evolution of the electronic structure of CrSBr from its antiferromagnetic ground state to the paramagnetic phase above T_N=132 K, in both experiment and theory. Low temperature angle-resolved photoemission spectroscopy (ARPES) results are obtained using a novel method to overcome sample charging issues, revealing quasi-2D valence bands in the ground state. The results are very well&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10867v2-abstract-full').style.display = 'inline'; document.getElementById('2403.10867v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10867v2-abstract-full" style="display: none;"> We present the evolution of the electronic structure of CrSBr from its antiferromagnetic ground state to the paramagnetic phase above T_N=132 K, in both experiment and theory. Low temperature angle-resolved photoemission spectroscopy (ARPES) results are obtained using a novel method to overcome sample charging issues, revealing quasi-2D valence bands in the ground state. The results are very well reproduced by our QSG糯 calculations, which further identify certain bands at the X points to be exchange-split pairs of states with mainly Br and S character. By tracing band positions as a function of temperature, we show the splitting disappears above T_N. The energy splitting is interpreted as an effective exchange splitting in individual layers in which the Cr moments all align, within the so-called A-type antiferromagnetic arrangement. Our results lay firm foundations for the interpretation of the many other intriguing physical and optical properties of CrSBr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10867v2-abstract-full').style.display = 'none'; document.getElementById('2403.10867v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published open access at https://doi.org/10.1038/s41699-024-00492-7 including supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj 2D Materials and Applications 8, 54 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.16089">arXiv:2402.16089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.16089">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53737-w">10.1038/s41467-024-53737-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Uniaxial strain tuning of charge modulation and singularity in a kagome superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C">Chun Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Consiglio%2C+A">Armando Consiglio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forslund%2C+O+K">Ola Kenji Forslund</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuspert%2C+J">Julia Kuspert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denner%2C+M+M">M. Michael Denner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louat%2C+A">Alex Louat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carbone%2C+D">Dina Carbone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leandersson%2C+M">Mats Leandersson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+C">Craig Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balasubramanian%2C+T">Thiagarajan Balasubramanian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Sante%2C+D">Domenico Di Sante</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sangiovanni%2C+G">Giorgio Sangiovanni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Johan Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.16089v2-abstract-short" style="display: inline;"> Tunable quantum materials hold great potential for applications. Of special interest are materials in which small lattice strain induces giant electronic responses. The kagome compounds AV3Sb5 (A = K, Rb, Cs) provide a testbed for such singular electronic states. In this study, through angle-resolved photoemission spectroscopy, we provide comprehensive spectroscopic measurements of the giant respo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16089v2-abstract-full').style.display = 'inline'; document.getElementById('2402.16089v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.16089v2-abstract-full" style="display: none;"> Tunable quantum materials hold great potential for applications. Of special interest are materials in which small lattice strain induces giant electronic responses. The kagome compounds AV3Sb5 (A = K, Rb, Cs) provide a testbed for such singular electronic states. In this study, through angle-resolved photoemission spectroscopy, we provide comprehensive spectroscopic measurements of the giant responses induced by compressive and tensile strains on the charge-density-wave (CDW) order parameter and high-order van Hove singularity (HO-VHS) in CsV3Sb5. We observe a tripling of the CDW gap magnitudes with ~1% strain, accompanied by the changes of both energy and mass of the saddle-point fermions. Our results reveal an anticorrelation between the unconventional CDW order parameter and the mass of a HO-VHS, and highlight the role of the latter in the superconducting pairing. The giant electronic responses uncover a rich strain tunability of the versatile kagome system in studying quantum interplays under lattice perturbations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16089v2-abstract-full').style.display = 'none'; document.getElementById('2402.16089v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 10466 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.10769">arXiv:2401.10769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.10769">pdf</a>, <a href="https://arxiv.org/format/2401.10769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01481-w">10.1038/s42005-023-01481-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resurgence of superconductivity and the role of $d_{xy}$ hole band in FeSe$_{1-x}$Te$_x$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Morfoot%2C+A+B">Archie B. Morfoot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haghighirad%2C+A+A">Amir A. Haghighirad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+S+J">Shiv J. Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bultinck%2C+N">Nick Bultinck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+A+I">Amalia I. Coldea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.10769v1-abstract-short" style="display: inline;"> Iron-chalcogenide superconductors display rich phenomena caused by orbital-dependent band shifts and electronic correlations. Additionally, they are potential candidates for topological superconductivity due to the band inversion between the Fe $d$ bands and the chalcogen $p_z$ band. Here we present a detailed study of the electronic structure of the nematic superconductors FeSe$_{1-x}$Te$_x$ (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10769v1-abstract-full').style.display = 'inline'; document.getElementById('2401.10769v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.10769v1-abstract-full" style="display: none;"> Iron-chalcogenide superconductors display rich phenomena caused by orbital-dependent band shifts and electronic correlations. Additionally, they are potential candidates for topological superconductivity due to the band inversion between the Fe $d$ bands and the chalcogen $p_z$ band. Here we present a detailed study of the electronic structure of the nematic superconductors FeSe$_{1-x}$Te$_x$ ($0&lt;x&lt;0.4$) using angle-resolved photoemission spectroscopy to understand the role of orbital-dependent band shifts, electronic correlations and the chalcogen band. We assess the changes in the effective masses using a three-band low energy model, and the band renormalization via comparison with DFT band structure calculations. The effective masses decrease for all three-hole bands inside the nematic phase followed by a strong increase for the band with $d_{xy}$ orbital character. Interestingly, this nearly-flat $d_{xy}$ band becomes more correlated as it shifts towards the Fermi level with increasing Te concentrations and as the second superconducting dome emerges. Our findings suggests that the $d_{xy}$ hole band, which is very sensitive to the chalcogen height, could be involved in promoting an additional pairing channel and increasing the density of states to stabilize the second superconducting dome in FeSe$_{1-x}$Te$_x$. This simultaneous shift of the $d_{xy}$ hole band and enhanced superconductivity is in contrast with FeSe$_{1-x}$S$_x$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10769v1-abstract-full').style.display = 'none'; document.getElementById('2401.10769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics 6, 362 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12240">arXiv:2312.12240</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.12240">pdf</a>, <a href="https://arxiv.org/format/2312.12240">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> The pseudochiral Fermi surface of $伪$-RuI$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Louat%2C+A">Alex Louat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+D">Danrui Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">Robert J. Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12240v1-abstract-short" style="display: inline;"> In continuation of research into RuCl$_3$ and RuBr$_3$ as potential quantum spin liquids, a phase with unique magnetic order characterised by long-range quantum entanglement and fractionalised excitations, the compound RuI$_3$ has been recently synthesised. Here, we show RuI$_3$ is a moderately correlated metal with two bands crossing the Fermi level, implying the absence of any quantum spin liqui&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12240v1-abstract-full').style.display = 'inline'; document.getElementById('2312.12240v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12240v1-abstract-full" style="display: none;"> In continuation of research into RuCl$_3$ and RuBr$_3$ as potential quantum spin liquids, a phase with unique magnetic order characterised by long-range quantum entanglement and fractionalised excitations, the compound RuI$_3$ has been recently synthesised. Here, we show RuI$_3$ is a moderately correlated metal with two bands crossing the Fermi level, implying the absence of any quantum spin liquids phase. We find that the Fermi surface as measured or calculated for a 2D ($k_\text{x},k_\text{y}$) slice at any $k_\text{z}$ lacks mirror symmetry, i.e. is pseudochiral. We link this phenomenon to the ABC stacking in the R$\bar{3}$ space group of $伪$-RuI$_3$, which is achiral but lacks any mirror or glide symmetries. We further provide a formal framework for understanding when such a pseudochiral electronic structure may be observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12240v1-abstract-full').style.display = 'none'; document.getElementById('2312.12240v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00440">arXiv:2312.00440</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.00440">pdf</a>, <a href="https://arxiv.org/format/2312.00440">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Charge doping into spin minority states mediates doubling of $T_\mathrm{C}$ in ferromagnetic CrGeTe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Trzaska%2C+L">Liam Trzaska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+L">Lei Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markovi%C4%87%2C+I">Igor Markovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morales%2C+E+A">Edgar Abarca Morales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antonelli%2C+T">Tommaso Antonelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Picozzi%2C+S">Silvia Picozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">Phil D. C. King</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00440v1-abstract-short" style="display: inline;"> The recent discovery of the persistence of long-range magnetic order when van der Waals layered magnets are thinned towards the monolayer limit has provided a tunable platform for the engineering of novel magnetic structures and devices. Here, we study the evolution of the electronic structure of CrGeTe$_3$ as a function of electron doping in the surface layer. From angle-resolved photoemission sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00440v1-abstract-full').style.display = 'inline'; document.getElementById('2312.00440v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00440v1-abstract-full" style="display: none;"> The recent discovery of the persistence of long-range magnetic order when van der Waals layered magnets are thinned towards the monolayer limit has provided a tunable platform for the engineering of novel magnetic structures and devices. Here, we study the evolution of the electronic structure of CrGeTe$_3$ as a function of electron doping in the surface layer. From angle-resolved photoemission spectroscopy, we observe spectroscopic fingerprints that this electron doping drives a marked increase in $T_\mathrm{C}$, reaching values more than double that of the undoped material, in agreement with recent studies using electrostatic gating. Together with density functional theory calculations and Monte Carlo simulations, we show that, surprisingly, the increased $T_\mathrm{C}$ is mediated by the population of spin-minority Cr $t_{2g}$ states, forming a half-metallic 2D electron gas at the surface. We show how this promotes a novel variant of double exchange, and unlocks a significant influence of the Ge -- which was previously thought to be electronically inert in this system -- in mediating Cr-Cr exchange. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00440v1-abstract-full').style.display = 'none'; document.getElementById('2312.00440v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages including supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17139">arXiv:2311.17139</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.17139">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-52007-z">10.1038/s41467-024-52007-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Avoided metallicity in a hole-doped Mott insulator on a triangular lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yim%2C+C+M">Chi Ming Yim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siemann%2C+G">Gesa-R. Siemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stavri%C4%87%2C+S">Srdjan Stavri膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khim%2C+S">Seunghyun Khim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benedi%C4%8Di%C4%8D%2C+I">Izidor Benedi膷i膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murgatroyd%2C+P+A+E">Philip A. E. Murgatroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Antonelli%2C+T">Tommaso Antonelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mackenzie%2C+A+P">Andrew P. Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Picozzi%2C+S">Silvia Picozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">Phil D. C. King</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahl%2C+P">Peter Wahl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17139v2-abstract-short" style="display: inline;"> Doping of a Mott insulator gives rise to a wide variety of exotic emergent states, from high-temperature superconductivity to charge, spin, and orbital orders. The physics underpinning their evolution is, however, poorly understood. A major challenge is the chemical complexity associated with traditional routes to doping. Here, we study the Mott insulating CrO$_2$ layer of the delafossite PdCrO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17139v2-abstract-full').style.display = 'inline'; document.getElementById('2311.17139v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17139v2-abstract-full" style="display: none;"> Doping of a Mott insulator gives rise to a wide variety of exotic emergent states, from high-temperature superconductivity to charge, spin, and orbital orders. The physics underpinning their evolution is, however, poorly understood. A major challenge is the chemical complexity associated with traditional routes to doping. Here, we study the Mott insulating CrO$_2$ layer of the delafossite PdCrO$_2$, where an intrinsic polar catastrophe provides a clean route to doping of the surface. From scanning tunnelling microscopy and angle-resolved photoemission, we find that the surface stays insulating accompanied by a short-range ordered state. From density functional theory, we demonstrate how the formation of charge disproportionation results in an insulating ground state of the surface that is disparate from the hidden Mott insulator in the bulk. We demonstrate that voltage pulses induce local modifications to this state which relax over tens of minutes, pointing to a glassy nature of the charge order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17139v2-abstract-full').style.display = 'none'; document.getElementById('2311.17139v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published paper and supplementary, 28 pages in total, 4 figures in the main text and 15 in the supplementary</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 8098 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08015">arXiv:2311.08015</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08015">pdf</a>, <a href="https://arxiv.org/format/2311.08015">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Lattice fluctuations, not excitonic correlations, mediated electronic localization in TiSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Larsen%2C+R+E">Ross E. Larsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pashov%2C+D">Dimitar Pashov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+S">Swagata Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Schilfgaarde%2C+M">Mark van Schilfgaarde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08015v2-abstract-short" style="display: inline;"> TiSe$_2$ is thought to be an insulator with a bandgap of ~0.1eV. It has attracted a much interest because, among of a rich array of unique properties, many have thought TiSe$_2$ is a rare realisation of an excitonic insulator. Below 200 K, TiSe$_2$ undergoes a transition from a high-symmetry ({P-3m1}) phase to a low-symmetry ({P-3c1}) phase. Here we establish that TiSe$_2$ is indeed an insulator i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08015v2-abstract-full').style.display = 'inline'; document.getElementById('2311.08015v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08015v2-abstract-full" style="display: none;"> TiSe$_2$ is thought to be an insulator with a bandgap of ~0.1eV. It has attracted a much interest because, among of a rich array of unique properties, many have thought TiSe$_2$ is a rare realisation of an excitonic insulator. Below 200 K, TiSe$_2$ undergoes a transition from a high-symmetry ({P-3m1}) phase to a low-symmetry ({P-3c1}) phase. Here we establish that TiSe$_2$ is indeed an insulator in both {P-3m1} and {P-3c1} phases. However, the insulating state is driven not by excitonic effects but by symmetry-breaking of the {P-3m1} phase. In the CDW phase the symmetry breaking is static. At high temperature, thermally driven instantaneous deviations from {P-3m1} break the symmetry on the characteristic time scale of a phonon. Even while the time-averaged \emph{lattice} structure assumes {P-3m1} symmetry, the time-averaged \emph{energy band} structure is closer to the CDW phase -- a rare instance of a metal-insulator transition induced by dynamical symmetry breaking. We establish these conclusions from a high-fidelity, self-consistent form of many body perturbation theory, in combination with molecular dynamics simulations to capture the effects of thermal disorder. The many-body theory includes explicitly ladder diagrams in the polarizability, which incorporates excitonic effects in an \emph{ab initio} manner. The excitonic modification to the potential is slight, ruling out the possibility that TiSe$_2$ is an excitonic insulator. Charge self-consistency is essential distinguish the metallic from insulating state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08015v2-abstract-full').style.display = 'none'; document.getElementById('2311.08015v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04188">arXiv:2311.04188</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.04188">pdf</a>, <a href="https://arxiv.org/format/2311.04188">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.184507">10.1103/PhysRevB.108.184507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-band description of the upper critical field of bulk FeSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bristow%2C+M">M. Bristow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gower%2C+A">A. Gower</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prentice%2C+J+C+A">J. C. A. Prentice</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zajicek%2C+Z">Z. Zajicek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blundell%2C+S+J">S. J. Blundell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haghighirad%2C+A+A">A. A. Haghighirad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCollam%2C+A">A. McCollam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+A+I">A. I. Coldea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04188v1-abstract-short" style="display: inline;"> The upper critical field of multi-band superconductors can be an essential quantity to unravel the nature of superconducting pairing and its interplay with the electronic structure. Here we experimentally map out the complete upper critical field phase diagram of FeSe for different magnetic field orientations at temperatures down to 0.3 K using both resistivity and torque measurements. The tempera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04188v1-abstract-full').style.display = 'inline'; document.getElementById('2311.04188v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04188v1-abstract-full" style="display: none;"> The upper critical field of multi-band superconductors can be an essential quantity to unravel the nature of superconducting pairing and its interplay with the electronic structure. Here we experimentally map out the complete upper critical field phase diagram of FeSe for different magnetic field orientations at temperatures down to 0.3 K using both resistivity and torque measurements. The temperature dependence of the upper critical field reflects that of a multi-band superconductor and requires a two-band description in the clean limit with band coupling parameters favouring interband over intraband interactions. Despite the relatively small Maki parameter in FeSe of $伪\sim 1.6$, the multi-band description of the upper critical field is consistent with the stabilization of a FFLO state below $T/T_{\rm c}\sim 0.3$. We find that the anomalous behaviour of the upper critical field is linked to a departure from the single-band picture, and FeSe provides a clear example where multi-band effects and the strong anisotropy of the superconducting gap need to be taken into account. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04188v1-abstract-full').style.display = 'none'; document.getElementById('2311.04188v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures (manuscript and the supplemental materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 184507 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.09589">arXiv:2308.09589</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.09589">pdf</a>, <a href="https://arxiv.org/format/2308.09589">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Observation of termination-dependent topological connectivity in a magnetic Weyl kagome-lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mazzola%2C+F">Federico Mazzola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enzner%2C+S">Stefan Enzner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eck%2C+P">Philipp Eck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bigi%2C+C">Chiara Bigi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jugovac%2C+M">Matteo Jugovac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cojocariu%2C+I">Iulia Cojocariu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feyer%2C+V">Vitaliy Feyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+Z">Zhixue Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pierantozzi%2C+G+M">Gian Marco Pierantozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Vita%2C+A">Alessandro De Vita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carrara%2C+P">Pietro Carrara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujii%2C+J">Jun Fujii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">Phil D. C. King</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vinai%2C+G">Giovanni Vinai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orgiani%2C+P">Pasquale Orgiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+G">Giorgio Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vobornik%2C+I">Ivana Vobornik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+T">Tai Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Sante%2C+D">Domenico Di Sante</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sangiovanni%2C+G">Giorgio Sangiovanni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panaccione%2C+G">Giancarlo Panaccione</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.09589v1-abstract-short" style="display: inline;"> Engineering surfaces and interfaces of materials promises great potential in the field of heterostructures and quantum matter designer, with the opportunity of driving new many-body phases that are absent in the bulk compounds. Here, we focus on the magnetic Weyl kagome system Co$_3$Sn$_2$S$_2$ and show how for different sample&#39;s terminations the Weyl-points connect also differently, still preserv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09589v1-abstract-full').style.display = 'inline'; document.getElementById('2308.09589v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.09589v1-abstract-full" style="display: none;"> Engineering surfaces and interfaces of materials promises great potential in the field of heterostructures and quantum matter designer, with the opportunity of driving new many-body phases that are absent in the bulk compounds. Here, we focus on the magnetic Weyl kagome system Co$_3$Sn$_2$S$_2$ and show how for different sample&#39;s terminations the Weyl-points connect also differently, still preserving the bulk-boundary correspondence. Scanning-tunnelling microscopy has suggested such a scenario indirectly. Here, we demonstrate this directly for the fermiology of Co$_3$Sn$_2$S$_2$, by linking it to the system real space surfaces distribution. By a combination of micro-ARPES and first-principles calculations, we measure the energy-momentum spectra and the Fermi surfaces of Co$_3$Sn$_2$S$_2$ for different surface terminations and show the existence of topological features directly depending on the top-layer electronic environment. Our work helps to define a route to control bulk-derived topological properties by means of surface electrostatic potentials, creating a realistic and reliable methodology to use Weyl kagome metals in responsive magnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09589v1-abstract-full').style.display = 'none'; document.getElementById('2308.09589v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02313">arXiv:2308.02313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.02313">pdf</a>, <a href="https://arxiv.org/format/2308.02313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.236502">10.1103/PhysRevLett.131.236502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The fate of quasiparticles at high-temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hunter%2C+A">A. Hunter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beck%2C+S">S. Beck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cappelli%2C+E">E. Cappelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Margot%2C+F">F. Margot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Straub%2C+M">M. Straub</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alexanian%2C+Y">Y. Alexanian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+G">G. Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">C. Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">N. C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">M. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovi%C4%87%2C+M">M. Radovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokolov%2C+D+A">D. A. Sokolov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mackenzie%2C+A+P">A. P. Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zingl%2C+M">M. Zingl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mravlje%2C+J">J. Mravlje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">A. Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumberger%2C+F">F. Baumberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tamai%2C+A">A. Tamai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02313v1-abstract-short" style="display: inline;"> We study the temperature evolution of quasiparticles in the correlated metal Sr$_2$RuO$_4$. Our angle resolved photoemission data show that quasiparticles persist up to temperatures above 200~K, far beyond the Fermi liquid regime. Extracting the quasiparticle self-energy we demonstrate that the quasiparticle residue $Z$ increases with increasing temperature. Quasiparticles eventually disappear on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02313v1-abstract-full').style.display = 'inline'; document.getElementById('2308.02313v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02313v1-abstract-full" style="display: none;"> We study the temperature evolution of quasiparticles in the correlated metal Sr$_2$RuO$_4$. Our angle resolved photoemission data show that quasiparticles persist up to temperatures above 200~K, far beyond the Fermi liquid regime. Extracting the quasiparticle self-energy we demonstrate that the quasiparticle residue $Z$ increases with increasing temperature. Quasiparticles eventually disappear on approaching the bad metal state of Sr$_2$RuO$_4$ not by losing weight but via excessive broadening from super-Planckian scattering. We further show that the Fermi surface of Sr$_2$RuO$_4$ - defined as the loci where the spectral function peaks - deflates with increasing temperature. These findings are in semi-quantitative agreement with dynamical mean field theory calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02313v1-abstract-full').style.display = 'none'; document.getElementById('2308.02313v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplemental Material available upon request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 236502 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.07684">arXiv:2307.07684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.07684">pdf</a>, <a href="https://arxiv.org/format/2307.07684">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39457-7">10.1038/s41467-023-39457-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unveiling phase diagram of the lightly doped high-Tc cuprate superconductors with disorder removed </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kurokawa%2C+K">Kifu Kurokawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isono%2C+S">Shunsuke Isono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kohama%2C+Y">Yoshimitsu Kohama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kunisada%2C+S">So Kunisada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakai%2C+S">Shiro Sakai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sekine%2C+R">Ryotaro Sekine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okubo%2C+M">Makoto Okubo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+S">Shik Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tohyama%2C+T">Takami Tohyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokiwa%2C+K">Kazuyasu Tokiwa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kondo%2C+T">Takeshi Kondo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.07684v1-abstract-short" style="display: inline;"> The currently established electronic phase diagram of cuprates is based on a study of single- and double-layered compounds. These CuO$_2$ planes, however, are directly contacted with dopant layers, thus inevitably disordered with an inhomogeneous electronic state. Here, we solve this issue by investigating a 6-layered Ba$_2$Ca$_5$Cu$_6$O$_{12}$(F,O)$_2$ with inner CuO$_2$ layers, which are clean w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07684v1-abstract-full').style.display = 'inline'; document.getElementById('2307.07684v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.07684v1-abstract-full" style="display: none;"> The currently established electronic phase diagram of cuprates is based on a study of single- and double-layered compounds. These CuO$_2$ planes, however, are directly contacted with dopant layers, thus inevitably disordered with an inhomogeneous electronic state. Here, we solve this issue by investigating a 6-layered Ba$_2$Ca$_5$Cu$_6$O$_{12}$(F,O)$_2$ with inner CuO$_2$ layers, which are clean with the extremely low disorder, by angle-resolved photoemission spectroscopy (ARPES) and quantum oscillation measurements. We find a tiny Fermi pocket with a doping level less than 1% to exhibit well-defined quasiparticle peaks which surprisingly lack the polaronic feature. This provides the first evidence that the slightest amount of carriers is enough to turn a Mott insulating state into a metallic state with long-lived quasiparticles. By tuning hole carriers, we also find an unexpected phase transition from the superconducting to metallic states at 4%. Our results are distinct from the nodal liquid state with polaronic features proposed as an anomaly of the heavily underdoped cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07684v1-abstract-full').style.display = 'none'; document.getElementById('2307.07684v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 4064 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01931">arXiv:2304.01931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01931">pdf</a>, <a href="https://arxiv.org/format/2304.01931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c01173">10.1021/acs.nanolett.3c01173 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ARPES signatures of few-layer twistronic graphenes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nunn%2C+J+E">J. E. Nunn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McEllistrim%2C+A">A. McEllistrim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weston%2C+A">A. Weston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Ruiz%2C+A">A. Garcia-Ruiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mucha-Kruczynski%2C+M">M. Mucha-Kruczynski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">C. Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorbachev%2C+R">R. Gorbachev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fal%27ko%2C+V+I">V. I. Fal&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+N+R">N. R. Wilson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01931v1-abstract-short" style="display: inline;"> Diverse emergent correlated electron phenomena have been observed in twisted graphene layers due to electronic interactions with the moir茅 superlattice potential. Many electronic structure predictions have been reported exploring this new field, but with few momentum-resolved electronic structure measurements to test them. Here we use angle-resolved photoemission spectroscopy (ARPES) to study the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01931v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01931v1-abstract-full" style="display: none;"> Diverse emergent correlated electron phenomena have been observed in twisted graphene layers due to electronic interactions with the moir茅 superlattice potential. Many electronic structure predictions have been reported exploring this new field, but with few momentum-resolved electronic structure measurements to test them. Here we use angle-resolved photoemission spectroscopy (ARPES) to study the twist-dependent ($1^\circ &lt; 胃&lt; 8^\circ$) electronic band structure of few-layer graphenes, including twisted bilayer, monolayer-on-bilayer, and double-bilayer graphene (tDBG). Direct comparison is made between experiment and theory, using a hybrid $\textbf{k}\cdot\textbf{p}$ model for interlayer coupling and implementing photon-energy-dependent phase shifts for photo-electrons from consecutive layers to simulate ARPES spectra. Quantitative agreement between experiment and theory is found across twist angles, stacking geometries, and back-gate voltages, validating the models and revealing displacement field induced gap openings in twisted graphenes. However, for tDBG at $胃=1.5\pm0.2^\circ$, close to the predicted magic-angle of $胃=1.3^\circ$, a flat band is found near the Fermi-level with measured bandwidth of $E_w = 31\pm5$ meV. Analysis of the gap between the flat band and the next valence band shows significant deviations between experiment ($螖_h=46\pm5$meV) and the theoretical model ($螖_h=5$meV), indicative of the importance of lattice relaxation in this regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01931v1-abstract-full').style.display = 'none'; document.getElementById('2304.01931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2023, 23, 11, 5201-5208 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00390">arXiv:2303.00390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.00390">pdf</a>, <a href="https://arxiv.org/format/2303.00390">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.096401">10.1103/PhysRevLett.130.096401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hierarchy of Lifshitz transitions in the surface electronic structure of Sr$_2$RuO$_4$ under uniaxial compression </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Morales%2C+E+A">Edgar Abarca Morales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siemann%2C+G">Gesa-R. Siemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zivanovic%2C+A">Andela Zivanovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murgatroyd%2C+P+A+E">Philip A. E. Murgatroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markovic%2C+I">Igor Markovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edwards%2C+B">Brendan Edwards</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hooley%2C+C+A">Chris A. Hooley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokolov%2C+D+A">Dmitry A. Sokolov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kikugawa%2C+N">Naoki Kikugawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hicks%2C+C+W">Clifford W. Hicks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mackenzie%2C+A+P">Andrew P. Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">Phil D. C. King</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00390v1-abstract-short" style="display: inline;"> We report the evolution of the electronic structure at the surface of the layered perovskite Sr$_2$RuO$_4$ under large in-plane uniaxial compression, leading to anisotropic $B_{1g}$ strains of ${\varepsilon_{xx}-\varepsilon_{yy}=-0.9\pm0.1\%}$. From angle-resolved photoemission, we show how this drives a sequence of Lifshitz transitions, reshaping the low-energy electronic structure and the rich s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00390v1-abstract-full').style.display = 'inline'; document.getElementById('2303.00390v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00390v1-abstract-full" style="display: none;"> We report the evolution of the electronic structure at the surface of the layered perovskite Sr$_2$RuO$_4$ under large in-plane uniaxial compression, leading to anisotropic $B_{1g}$ strains of ${\varepsilon_{xx}-\varepsilon_{yy}=-0.9\pm0.1\%}$. From angle-resolved photoemission, we show how this drives a sequence of Lifshitz transitions, reshaping the low-energy electronic structure and the rich spectrum of van Hove singularities that the surface layer of Sr$_2$RuO$_4$ hosts. From comparison to tight-binding modelling, we find that the strain is accommodated predominantly by bond-length changes rather than modifications of octahedral tilt and rotation angles. Our study sheds new light on the nature of structural distortions at oxide surfaces, and how targeted control of these can be used to tune density of states singularities to the Fermi level, in turn paving the way to the possible realisation of rich collective states at the Sr$_2$RuO$_4$ surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00390v1-abstract-full').style.display = 'none'; document.getElementById('2303.00390v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 096401 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01192">arXiv:2211.01192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.01192">pdf</a>, <a href="https://arxiv.org/format/2211.01192">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.046401">10.1103/PhysRevLett.131.046401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of flat $螕$ moir茅 bands in twisted bilayer WSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+G">Gianmarco Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Issing%2C+J">Julia Issing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rademaker%2C+L">Louk Rademaker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Margot%2C+F">Florian Margot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Jong%2C+T+A">Tobias A. de Jong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Molen%2C+S+J">Sense Jan van der Molen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teyssier%2C+J">J茅r茅mie Teyssier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dudin%2C+P">Pavel Dudin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Avila%2C+J">Jos茅 Avila</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edwards%2C+K+C">Kumara Cordero Edwards</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paruch%2C+P">Patrycja Paruch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ubrig%2C+N">Nicolas Ubrig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guti%C3%A9rrez-Lezama%2C+I">Ignacio Guti茅rrez-Lezama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morpurgo%2C+A">Alberto Morpurgo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tamai%2C+A">Anna Tamai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumberger%2C+F">Felix Baumberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01192v1-abstract-short" style="display: inline;"> The recent observation of correlated phases in transition metal dichalcogenide moir茅 systems at integer and fractional filling promises new insight into metal-insulator transitions and the unusual states of matter that can emerge near such transitions. Here, we combine real- and momentum-space mapping techniques to study moir茅 superlattice effects in 57.4$^{\circ}$ twisted WSe$_2$ (tWSe$_2$). Our&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01192v1-abstract-full').style.display = 'inline'; document.getElementById('2211.01192v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01192v1-abstract-full" style="display: none;"> The recent observation of correlated phases in transition metal dichalcogenide moir茅 systems at integer and fractional filling promises new insight into metal-insulator transitions and the unusual states of matter that can emerge near such transitions. Here, we combine real- and momentum-space mapping techniques to study moir茅 superlattice effects in 57.4$^{\circ}$ twisted WSe$_2$ (tWSe$_2$). Our data reveal a split-off flat band that derives from the monolayer $螕$ states. Using advanced data analysis, we directly quantify the moir茅 potential from our data. We further demonstrate that the global valence band maximum in tWSe$_2$ is close in energy to this flat band but derives from the monolayer K-states which show weaker superlattice effects. These results constrain theoretical models and open the perspective that $螕$-valley flat bands might be involved in the correlated physics of twisted WSe$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01192v1-abstract-full').style.display = 'none'; document.getElementById('2211.01192v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08221">arXiv:2210.08221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.08221">pdf</a>, <a href="https://arxiv.org/format/2210.08221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-47976-0">10.1038/s41467-024-47976-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parallel spin-momentum locking in a chiral topological semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krieger%2C+J+A">Jonas A. Krieger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stolz%2C+S">Samuel Stolz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">Inigo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manna%2C+K">Kaustuv Manna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McFarlane%2C+E+C">Emily C. McFarlane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Date%2C+M">Mihir Date</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guedes%2C+E+B">Eduardo B. Guedes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dil%2C+J+H">J. Hugo Dil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borrmann%2C+H">Horst Borrmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+M">Mao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caputo%2C+M">Marco Caputo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pal%2C+B">Banabir Pal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzola%2C+F">Federico Mazzola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujii%2C+J">Jun Fujii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vobornik%2C+I">Ivana Vobornik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">Stuart S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bradlyn%2C+B">Barry Bradlyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08221v1-abstract-short" style="display: inline;"> Spin-momentum locking in solids describes a directional relationship between the electron&#39;s spin angular momentum and its linear momentum over the entire Fermi surface. While orthogonal spin-momentum locking, such as Rashba spin-orbit coupling, has been studied for decades and inspired a vast number of applications, its natural counterpart, the purely parallel spin-momentum locking, has remained e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08221v1-abstract-full').style.display = 'inline'; document.getElementById('2210.08221v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08221v1-abstract-full" style="display: none;"> Spin-momentum locking in solids describes a directional relationship between the electron&#39;s spin angular momentum and its linear momentum over the entire Fermi surface. While orthogonal spin-momentum locking, such as Rashba spin-orbit coupling, has been studied for decades and inspired a vast number of applications, its natural counterpart, the purely parallel spin-momentum locking, has remained elusive in experiments. Recently, chiral topological semimetals that host single- and multifold band crossings have been predicted to realize such parallel locking. Here, we use spin- and angle-resolved photoelectron spectroscopy to probe spin-momentum locking of a multifold fermion in the chiral topological semimetal PtGa via the spin-texture of its topological Fermi-arc surface states. We find that the electron spin of the Fermi-arcs points orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion, which is consistent with parallel spin-momentum locking of the latter. We anticipate that our discovery of parallel spin-momentum locking of multifold fermions will lead to the integration of chiral topological semimetals in novel spintronic devices, and the search for spin-dependent superconducting and magnetic instabilities in these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08221v1-abstract-full').style.display = 'none'; document.getElementById('2210.08221v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 3720 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.00447">arXiv:2210.00447</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.00447">pdf</a>, <a href="https://arxiv.org/format/2210.00447">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39114-z">10.1038/s41467-023-39114-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral signatures of a unique charge density wave in Ta$_2$NiSe$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louat%2C+A">Alex Louat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S">Sungkyun Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+H">Young Hee Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neumann%2C+M">Michael Neumann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gideok Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.00447v2-abstract-short" style="display: inline;"> Charge Density Waves (CDW) are commonly associated with the presence of near-Fermi level states which are separated from others, or &#34;nested&#34;, by a wavector of $\mathbf{q}$. Here we use Angle-Resolved Photo Emission Spectroscopy (ARPES) on the CDW material Ta$_2$NiSe$_7$ and identify a total absence of any plausible nesting of states at the primary CDW wavevector $\mathbf{q}$. Nevertheless we obser&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.00447v2-abstract-full').style.display = 'inline'; document.getElementById('2210.00447v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.00447v2-abstract-full" style="display: none;"> Charge Density Waves (CDW) are commonly associated with the presence of near-Fermi level states which are separated from others, or &#34;nested&#34;, by a wavector of $\mathbf{q}$. Here we use Angle-Resolved Photo Emission Spectroscopy (ARPES) on the CDW material Ta$_2$NiSe$_7$ and identify a total absence of any plausible nesting of states at the primary CDW wavevector $\mathbf{q}$. Nevertheless we observe spectral intensity on replicas of the hole-like valence bands, shifted by a wavevector of $\mathbf{q}$, which appears with the CDW transition. In contrast, we find that there is a possible nesting at $\mathbf{2q}$, and associate the characters of these bands with the reported atomic modulations at $\mathbf{2q}$. Our comprehensive electronic structure perspective shows that the CDW-like transition of Ta$_2$NiSe$_7$ is unique, with the primary wavevector $\mathbf{q}$ being unrelated to any low-energy states, but suggests that the reported modulation at $\mathbf{2q}$, which would plausibly connect low-energy states, might be more important for the overall energetics of the problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.00447v2-abstract-full').style.display = 'none'; document.getElementById('2210.00447v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 14, 3388 (2023). </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05832">arXiv:2208.05832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05832">pdf</a>, <a href="https://arxiv.org/format/2208.05832">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac9d5e">10.1088/1367-2630/ac9d5e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong surface termination dependence of the electronic structure of polar superconductor LaFeAsO revealed by nano-ARPES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+S+W">Sung Won Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+L+C">Luke C. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evtushinsky%2C+D+V">Daniil V. Evtushinsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kappenberger%2C+R">Rhea Kappenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wurmehl%2C+S">Sabine Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05832v1-abstract-short" style="display: inline;"> The electronic structures of the iron-based superconductors have been intensively studied by using angleresolved photoemission spectroscopy (ARPES). A considerable amount of research has been focused on the LaFeAsO family, showing the highest transition temperatures, where previous ARPES studies have found much larger Fermi surfaces than bulk theoretical calculations would predict. The discrepancy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05832v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05832v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05832v1-abstract-full" style="display: none;"> The electronic structures of the iron-based superconductors have been intensively studied by using angleresolved photoemission spectroscopy (ARPES). A considerable amount of research has been focused on the LaFeAsO family, showing the highest transition temperatures, where previous ARPES studies have found much larger Fermi surfaces than bulk theoretical calculations would predict. The discrepancy has been attributed to the presence of termination-dependent surface states. Here, using photoemission spectroscopy with a sub-micron focused beam spot (nano-ARPES) we have successfully measured the electronic structures of both the LaO and FeAs terminations in LaFeAsO. Our data reveal very different band dispersions and core-level spectra for different surface terminations, showing that previous macro-focus ARPES measurements were incomplete. Our results give direct evidence for the surface-driven electronic structure reconstruction in LaFeAsO, including formation of the termination-dependent surface states at the Fermi level. This new experimental technique, which we have shown to be very powerful when applied to this prototypical compound, can now be used to study various materials with different surface terminations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05832v1-abstract-full').style.display = 'none'; document.getElementById('2208.05832v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 24 113018 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15560">arXiv:2203.15560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.15560">pdf</a>, <a href="https://arxiv.org/format/2203.15560">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-022-00508-9">10.1038/s41535-022-00508-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital-selective Band Hybridisation at the Charge Density Wave Transition in Monolayer TiTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Antonelli%2C+T">T. Antonelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahim%2C+W">W. Rahim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rajan%2C+A">A. Rajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+O+J">O. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Danilenko%2C+A">A. Danilenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Underwood%2C+K">K. Underwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markovic%2C+I">I. Markovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abarca-Morales%2C+E">E. Abarca-Morales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kavanagh%2C+S+R">S. R. Kavanagh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fevre%2C+P">P. Fevre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertran%2C+F">F. Bertran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossnagel%2C+K">K. Rossnagel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scanlon%2C+D+O">D. O. Scanlon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">P. D. C. King</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15560v1-abstract-short" style="display: inline;"> An anomalous $(2\times2)$ charge density wave (CDW) phase emerges in monolayer 1T-TiTe$_2$ which is absent for the bulk compound, and whose origin is still poorly understood. Here, we investigate the electronic band structure evolution across the CDW transition using temperature-dependent angle-resolved photoemission spectroscopy. Our study reveals an orbital-selective band hybridisation between t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15560v1-abstract-full').style.display = 'inline'; document.getElementById('2203.15560v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15560v1-abstract-full" style="display: none;"> An anomalous $(2\times2)$ charge density wave (CDW) phase emerges in monolayer 1T-TiTe$_2$ which is absent for the bulk compound, and whose origin is still poorly understood. Here, we investigate the electronic band structure evolution across the CDW transition using temperature-dependent angle-resolved photoemission spectroscopy. Our study reveals an orbital-selective band hybridisation between the backfolded conduction and valence bands occurring at the CDW phase transition, which in turn leads to a significant electronic energy gain, underpinning the CDW transition. For the bulk compound, we show how this energy gain is almost completely suppressed due to the three-dimensionality of the electronic band structure, including via a $k_z$-dependent band inversion which switches the orbital character of the valence states. Our study thus sheds new light on how control of the electronic dimensionalilty can be used to trigger the emergence of new collective states in 2D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15560v1-abstract-full').style.display = 'none'; document.getElementById('2203.15560v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 7, 98 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.11702">arXiv:2201.11702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.11702">pdf</a>, <a href="https://arxiv.org/format/2201.11702">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> FeSe and the missing electron pocket problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+L+C">Luke C. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eschrig%2C+M">Matthias Eschrig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.11702v1-abstract-short" style="display: inline;"> The nature and origin of electronic nematicity remains a significant challenge in our understanding of the iron-based superconductors. This is particularly evident in the iron chalcogenide, FeSe, where it is currently unclear how the experimentally determined Fermi surface near the M point evolves from having two electron pockets in the tetragonal state to exhibiting just a single electron pocket&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11702v1-abstract-full').style.display = 'inline'; document.getElementById('2201.11702v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.11702v1-abstract-full" style="display: none;"> The nature and origin of electronic nematicity remains a significant challenge in our understanding of the iron-based superconductors. This is particularly evident in the iron chalcogenide, FeSe, where it is currently unclear how the experimentally determined Fermi surface near the M point evolves from having two electron pockets in the tetragonal state to exhibiting just a single electron pocket in the nematic state. This has posed a major theoretical challenge, which has become known as the missing electron pocket problem of FeSe, and is of central importance if we wish to uncover the secrets behind nematicity and superconductivity in the wider iron-based superconductors. Here, we review the recent experimental work uncovering this nematic Fermi surface of FeSe from both ARPES and STM measurements, as well as current theoretical attempts to explain this missing electron pocket of FeSe, with a particular focus on the emerging importance of incorporating the $d_{xy}$ orbital into theoretical descriptions of the nematic state. Furthermore, we will discuss the consequence this missing electron pocket has on the theoretical understanding of superconductivity in this system and present several remaining open questions and avenues for future research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11702v1-abstract-full').style.display = 'none'; document.getElementById('2201.11702v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.09282">arXiv:2103.09282</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.09282">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-27082-1">10.1038/s41467-021-27082-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tomographic mapping of the hidden dimension in quasi-particle interference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Marques%2C+C+A">C. A. Marques</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bahramy%2C+M+S">M. S. Bahramy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trainer%2C+C">C. Trainer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markovi%C4%87%2C+I">I. Markovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzola%2C+F">F. Mazzola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rajan%2C+A">A. Rajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raub%2C+T+D">T. D. Raub</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">P. D. C. King</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahl%2C+P">P. Wahl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.09282v2-abstract-short" style="display: inline;"> Quasiparticle interference (QPI) imaging is well established to study the low-energy electronic structure in strongly correlated electron materials with unrivalled energy resolution. Yet, being a surface-sensitive technique, the interpretation of QPI only works well for anisotropic materials, where the dispersion in the direction perpendicular to the surface can be neglected and the quasiparticle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09282v2-abstract-full').style.display = 'inline'; document.getElementById('2103.09282v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.09282v2-abstract-full" style="display: none;"> Quasiparticle interference (QPI) imaging is well established to study the low-energy electronic structure in strongly correlated electron materials with unrivalled energy resolution. Yet, being a surface-sensitive technique, the interpretation of QPI only works well for anisotropic materials, where the dispersion in the direction perpendicular to the surface can be neglected and the quasiparticle interference is dominated by a quasi-2D electronic structure. Here, we explore QPI imaging of galena, a material with an electronic structure that does not exhibit pronounced anisotropy. We find that the quasiparticle interference signal is dominated by scattering vectors which are parallel to the surface plane however originate from bias-dependent cuts of the 3D electronic structure. We develop a formalism for the theoretical description of the QPI signal and demonstrate how this quasiparticle tomography can be used to obtain information about the 3D electronic structure and orbital character of the bands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09282v2-abstract-full').style.display = 'none'; document.getElementById('2103.09282v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">replaced by published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 12, 6739 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12595">arXiv:2012.12595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.12595">pdf</a>, <a href="https://arxiv.org/format/2012.12595">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.155105">10.1103/PhysRevB.103.155105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermiology and electron-phonon coupling in the 2H and 3R polytypes of NbS$\boldsymbol{_2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Youbi%2C+Z+E">Zakariae El Youbi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+S+W">Sung Won Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richter%2C+C">Christine Richter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hricovini%2C+K">Karol Hricovini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12595v2-abstract-short" style="display: inline;"> We investigate the electronic structure of the 2H and 3R polytypes of NbS$_2$. The Fermi surfaces measured by angle-resolved photoemission spectroscopy show a remarkable difference in size, reflecting a significantly increased band filling in 3R-Nb$_{1+x}$S$_2$ compared to 2H-NbS$_2$, which we attribute to the presence of additional interstitial Nb which act as electron donors. Thus we find that t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12595v2-abstract-full').style.display = 'inline'; document.getElementById('2012.12595v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12595v2-abstract-full" style="display: none;"> We investigate the electronic structure of the 2H and 3R polytypes of NbS$_2$. The Fermi surfaces measured by angle-resolved photoemission spectroscopy show a remarkable difference in size, reflecting a significantly increased band filling in 3R-Nb$_{1+x}$S$_2$ compared to 2H-NbS$_2$, which we attribute to the presence of additional interstitial Nb which act as electron donors. Thus we find that the stoichiometry, rather than the stacking arrangement, is the most important factor in the difference in electronic and physical properties of the two phases. Our high resolution data on the 2H phase shows kinks in the spectral function that are fingerprints of the electron-phonon coupling. However, the strength of the coupling is found to be much larger for the the sections of bands with Nb 4$d_{x^2-y^2,xy}$ character than for the Nb 4$d_{3z^2-r^2}$. Our results provide an experimental framework for interpreting the two-gap superconductivity and &#34;latent&#34; charge density wave in 2H-NbS$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12595v2-abstract-full').style.display = 'none'; document.getElementById('2012.12595v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 155105 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.04660">arXiv:2004.04660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.04660">pdf</a>, <a href="https://arxiv.org/format/2004.04660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.235128">10.1103/PhysRevB.101.235128 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing the single electron pocket of FeSe in a single orthorhombic domain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+L+C">Luke C. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haghighirad%2C+A+A">Amir A. Haghighirad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evtushinsky%2C+D+V">Daniil V. Evtushinsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.04660v1-abstract-short" style="display: inline;"> We measure the electronic structure of FeSe from within individual orthorhombic domains. Enabled by an angle-resolved photoemission spectroscopy beamline with a highly focused beamspot (nano-ARPES), we identify clear stripe-like orthorhombic domains in FeSe with a length scale of approximately 1-5~$渭$m. Our photoemission measurements of the Fermi surface and band structure within individual domain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.04660v1-abstract-full').style.display = 'inline'; document.getElementById('2004.04660v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.04660v1-abstract-full" style="display: none;"> We measure the electronic structure of FeSe from within individual orthorhombic domains. Enabled by an angle-resolved photoemission spectroscopy beamline with a highly focused beamspot (nano-ARPES), we identify clear stripe-like orthorhombic domains in FeSe with a length scale of approximately 1-5~$渭$m. Our photoemission measurements of the Fermi surface and band structure within individual domains reveal a single electron pocket at the Brillouin zone corner. This result provides clear evidence for a one-electron pocket electronic structure of FeSe, observed without the application of uniaxial strain, and calls for further theoretical insight into this unusual Fermi surface topology. Our results also showcase the potential of nano-ARPES for the study of correlated materials with local domain structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.04660v1-abstract-full').style.display = 'none'; document.getElementById('2004.04660v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 235128 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.02826">arXiv:2004.02826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.02826">pdf</a>, <a href="https://arxiv.org/format/2004.02826">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.235431">10.1103/PhysRevB.101.235431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bulk and surface electronic states in the dosed semimetallic HfTe$\boldsymbol{_2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Youbi%2C+Z+E">Zakariae El Youbi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+S+W">Sung Won Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukherjee%2C+S">Saumya Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fanciulli%2C+M">Mauro Fanciulli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schusser%2C+J">Jakub Schusser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heckmann%2C+O">Olivier Heckmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richter%2C+C">Christine Richter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hricovini%2C+K">Karol Hricovini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.02826v2-abstract-short" style="display: inline;"> The dosing of layered materials with alkali metals has become a commonly used strategy in ARPES experiments. However, precisely what occurs under such conditions, both structurally and electronically, has remained a matter of debate. Here we perform a systematic study of 1T-HfTe$_2$, a prototypical semimetal of the transition metal dichalcogenide family. By utilizing photon energy-dependent angle-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02826v2-abstract-full').style.display = 'inline'; document.getElementById('2004.02826v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.02826v2-abstract-full" style="display: none;"> The dosing of layered materials with alkali metals has become a commonly used strategy in ARPES experiments. However, precisely what occurs under such conditions, both structurally and electronically, has remained a matter of debate. Here we perform a systematic study of 1T-HfTe$_2$, a prototypical semimetal of the transition metal dichalcogenide family. By utilizing photon energy-dependent angle-resolved photoemission spectroscopy (ARPES), we have investigated the electronic structure of this material as a function of Potassium (K) deposition. From the k$_z$ maps, we observe the appearance of 2D dispersive bands after electron dosing, with an increasing sharpness of the bands, consistent with the wavefunction confinement at the topmost layer. In our highest-dosing cases, a monolayer-like electronic structure emerges, presumably as a result of intercalation of the alkali metal. Here, by bringing the topmost valence band below $E_F$, we can directly measure a band overlap of $\sim$ 0.2 eV. However, 3D bulk-like states still contribute to the spectra even after considerable dosing. Our work provides a reference point for the increasingly popular studies of the alkali metal dosing of semimetals using ARPES. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02826v2-abstract-full').style.display = 'none'; document.getElementById('2004.02826v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.09499">arXiv:2001.09499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.09499">pdf</a>, <a href="https://arxiv.org/format/2001.09499">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.2003671117">10.1073/pnas.2003671117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronically driven spin-reorientation transition of the correlated polar metal Ca$_3$Ru$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Markovi%C4%87%2C+I">I. Markovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+O+J">O. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzola%2C+F">F. Mazzola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morales%2C+E+A">E. Abarca Morales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hooley%2C+C+A">C. A. Hooley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosner%2C+H">H. Rosner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+C+M">C. M. Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balasubramanian%2C+T">T. Balasubramanian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukherjee%2C+S">S. Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kikugawa%2C+N">N. Kikugawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokolov%2C+D+A">D. A. Sokolov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mackenzie%2C+A+P">A. P. Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">P. D. C. King</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.09499v1-abstract-short" style="display: inline;"> Polar distortions in solids give rise to the well-known functionality of switchable macroscopic polarisation in ferroelectrics and, when combined with strong spin-orbit coupling, can mediate giant spin splittings of electronic states. While typically found in insulators, ferroelectric-like distortions can remain robust against increasing itineracy, giving rise to so-called &#34;polar metals&#34;. Here, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09499v1-abstract-full').style.display = 'inline'; document.getElementById('2001.09499v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.09499v1-abstract-full" style="display: none;"> Polar distortions in solids give rise to the well-known functionality of switchable macroscopic polarisation in ferroelectrics and, when combined with strong spin-orbit coupling, can mediate giant spin splittings of electronic states. While typically found in insulators, ferroelectric-like distortions can remain robust against increasing itineracy, giving rise to so-called &#34;polar metals&#34;. Here, we investigate the temperature-dependent electronic structure of Ca$_3$Ru$_2$O$_7$, a correlated oxide metal in which octahedral tilts and rotations combine to mediate pronounced polar distortions. Our angle-resolved photoemission measurements reveal the destruction of a large hole-like Fermi surface upon cooling through a coupled structural and spin-reorientation transition at 48 K, accompanied by a sudden onset of quasiparticle coherence. We demonstrate how these result from band hybridisation mediated by a hidden Rashba-type spin-orbit coupling. This is enabled by the bulk structural distortions and unlocked when the spin reorients perpendicular to the local symmetry-breaking potential at the Ru sites. We argue that the electronic energy gain associated with the band hybridisation is actually the key driver for the phase transition, reflecting a delicate interplay between spin-orbit coupling and strong electronic correlations, and revealing a new route to control magnetic ordering in solids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09499v1-abstract-full').style.display = 'none'; document.getElementById('2001.09499v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contains 6+5 pages, including supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.11314">arXiv:1912.11314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.11314">pdf</a>, <a href="https://arxiv.org/format/1912.11314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.205125">10.1103/PhysRevB.101.205125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of the energy gain underpinning ferromagnetic superexchange in the electronic structure of CrGeTe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markovi%C4%87%2C+I">Igor Markovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzola%2C+F">Federico Mazzola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rajan%2C+A">Akhil Rajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morales%2C+E+A">Edgar A. Morales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burn%2C+D+M">David M. Burn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hesjedal%2C+T">Thorsten Hesjedal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Laan%2C+G">Gerrit van der Laan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukherjee%2C+S">Saumya Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bigi%2C+C">Chiara Bigi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vobornik%2C+I">Ivana Vobornik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">Philip D. C. King</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.11314v1-abstract-short" style="display: inline;"> We investigate the temperature-dependent electronic structure of the van der Waals ferromagnet, CrGeTe$_3$. Using angle-resolved photoemission spectroscopy, we identify atomic- and orbital-specific band shifts upon cooling through ${T_\mathrm{C}}$. From these, together with x-ray absorption spectroscopy and x-ray magnetic circular dichroism measurements, we identify the states created by a covalen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11314v1-abstract-full').style.display = 'inline'; document.getElementById('1912.11314v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.11314v1-abstract-full" style="display: none;"> We investigate the temperature-dependent electronic structure of the van der Waals ferromagnet, CrGeTe$_3$. Using angle-resolved photoemission spectroscopy, we identify atomic- and orbital-specific band shifts upon cooling through ${T_\mathrm{C}}$. From these, together with x-ray absorption spectroscopy and x-ray magnetic circular dichroism measurements, we identify the states created by a covalent bond between the Te ${5p}$ and the Cr ${e_g}$ orbitals as the primary driver of the ferromagnetic ordering in this system, while it is the Cr ${t_{2g}}$ states that carry the majority of the spin moment. The ${t_{2g}}$ states furthermore exhibit a marked bandwidth increase and a remarkable lifetime enhancement upon entering the ordered phase, pointing to a delicate interplay between localized and itinerant states in this family of layered ferromagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11314v1-abstract-full').style.display = 'none'; document.getElementById('1912.11314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 205125 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.08535">arXiv:1912.08535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.08535">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-020-69926-8">10.1038/s41598-020-69926-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermi-crossing Type-II Dirac fermions and topological surface states in NiTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mukherjee%2C+S">Saumya Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+S+W">Sung Won Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+S+F">Sophie F. Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Chunqiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+D">Dong Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaofeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+P+K">Pabitra K. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chapon%2C+L+C">Laurent C. Chapon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neaton%2C+J+B">Jeffrey B. Neaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.08535v1-abstract-short" style="display: inline;"> Transition-metal dichalcogenides (TMDs) offer an ideal platform to experimentally realize Dirac fermions. However, typically these exotic quasiparticles are located far away from the Fermi level, limiting the contribution of Dirac-like carriers to the transport properties. Here we show that NiTe2 hosts both bulk Type-II Dirac points and topological surface states. The underlying mechanism is share&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08535v1-abstract-full').style.display = 'inline'; document.getElementById('1912.08535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.08535v1-abstract-full" style="display: none;"> Transition-metal dichalcogenides (TMDs) offer an ideal platform to experimentally realize Dirac fermions. However, typically these exotic quasiparticles are located far away from the Fermi level, limiting the contribution of Dirac-like carriers to the transport properties. Here we show that NiTe2 hosts both bulk Type-II Dirac points and topological surface states. The underlying mechanism is shared with other TMDs and based on the generic topological character of the Te p-orbital manifold. However, unique to NiTe2, a significant contribution of Ni d orbital states shifts the energy of the Type-II Dirac point close to the Fermi level. In addition, one of the topological surface states intersects the Fermi energy and exhibits a remarkably large spin splitting of 120 meV. Our results establish NiTe2 as an exciting candidate for next-generation spintronics devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.08535v1-abstract-full').style.display = 'none'; document.getElementById('1912.08535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.06625">arXiv:1912.06625</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.06625">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ab890a">10.1088/1367-2630/ab890a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure and superconductivity of the non-centrosymmetric Sn$_4$As$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Marques%2C+C+A">C. A. Marques</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neat%2C+M+J">M. J. Neat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yim%2C+C+M">C. M. Yim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+L+C">L. C. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heil%2C+C">C. Heil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pervakov%2C+K+S">K. S. Pervakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vlasenko%2C+V+A">V. A. Vlasenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pudalov%2C+V+M">V. M. Pudalov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muratov%2C+A+V">A. V. Muratov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wahl%2C+P">P. Wahl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.06625v2-abstract-short" style="display: inline;"> In a superconductor that lacks inversion symmetry, the spatial part of the Cooper pair wave function has a reduced symmetry, allowing for the mixing of spin-singlet and spin-triplet Cooper pairing channels and thus providing a pathway to a non-trivial superconducting state. Materials with a non-centrosymmetric crystal structure and with strong spin-orbit coupling are a platform to realize these po&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06625v2-abstract-full').style.display = 'inline'; document.getElementById('1912.06625v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.06625v2-abstract-full" style="display: none;"> In a superconductor that lacks inversion symmetry, the spatial part of the Cooper pair wave function has a reduced symmetry, allowing for the mixing of spin-singlet and spin-triplet Cooper pairing channels and thus providing a pathway to a non-trivial superconducting state. Materials with a non-centrosymmetric crystal structure and with strong spin-orbit coupling are a platform to realize these possibilities. Here, we report the synthesis and characterisation of high quality crystals of Sn$_4$As$_3$, with non-centrosymmetric unit cell ($R3m$). We have characterised the normal and superconducting state using a range of methods. Angle-resolved photoemission spectroscopy shows a multiband Fermi surface and the presence of two surface states, confirmed by Density-functional theory calculations. Specific heat measurements reveal a superconducting critical temperature of $T_c\sim 1.14$ K and an upper critical magnetic field of $H_c\gtrsim 7$ mT, which are both confirmed by ultra-low temperature scanning tunneling microscopy and spectroscopy. Scanning tunneling spectroscopy shows a fully formed superconducting gap, consistent with conventional $s$-wave superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06625v2-abstract-full').style.display = 'none'; document.getElementById('1912.06625v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 22 (2020) 063049 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01591">arXiv:1912.01591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.01591">pdf</a>, <a href="https://arxiv.org/format/1912.01591">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.013236">10.1103/PhysRevResearch.2.013236 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band hybridisation at the semimetal-semiconductor transition of Ta$_2$NiSe$_5$ enabled by mirror-symmetry breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markovi%C4%87%2C+I">Igor Markovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morales%2C+E+A">Edgar Abarca Morales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%A8vre%2C+P+L">Patrick Le F猫vre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Merz%2C+M">Michael Merz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haghighirad%2C+A+A">Amir A. Haghighirad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">Philip D. C. King</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01591v2-abstract-short" style="display: inline;"> We present a combined study from angle-resolved photoemission and density-functional theory calculations of the temperature-dependent electronic structure in the excitonic insulator candidate Ta$_2$NiSe$_5$. Our experimental measurements unambiguously establish the normal state as a semimetal with a significant band overlap of $&gt;$100~meV. Our temperature-dependent measurements indicate how these l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01591v2-abstract-full').style.display = 'inline'; document.getElementById('1912.01591v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01591v2-abstract-full" style="display: none;"> We present a combined study from angle-resolved photoemission and density-functional theory calculations of the temperature-dependent electronic structure in the excitonic insulator candidate Ta$_2$NiSe$_5$. Our experimental measurements unambiguously establish the normal state as a semimetal with a significant band overlap of $&gt;$100~meV. Our temperature-dependent measurements indicate how these low-energy states hybridise when cooling through the well-known 327~K phase transition in this system. From our calculations and polarisation-dependent photoemission measurements, we demonstrate the importance of a loss of mirror symmetry in enabling the band hybridisation, driven by a shear-like structural distortion which reduces the crystal symmetry from orthorhombic to monoclinic. Our results thus point to the key role of the lattice distortion in enabling the phase transition of Ta$_2$NiSe$_5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01591v2-abstract-full').style.display = 'none'; document.getElementById('1912.01591v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 013236 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.08631">arXiv:1911.08631</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.08631">pdf</a>, <a href="https://arxiv.org/format/1911.08631">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-13464-z">10.1038/s41467-019-13464-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weyl-like points from band inversions of spin-polarised surface states in NbGeSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Markovi%C4%87%2C+I">I. Markovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hooley%2C+C+A">C. A. Hooley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+O+J">O. J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzola%2C+F">F. Mazzola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riley%2C+J+M">J. M. Riley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Volckaert%2C+K">K. Volckaert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Underwood%2C+K">K. Underwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dyer%2C+M+S">M. S. Dyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murgatroyd%2C+P+A+E">P. A. E. Murgatroyd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murphy%2C+K+J">K. J. Murphy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%A8vre%2C+P+L">P. Le F猫vre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertran%2C+F">F. Bertran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujii%2C+J">J. Fujii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vobornik%2C+I">I. Vobornik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">S. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okuda%2C+T">T. Okuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alaria%2C+J">J. Alaria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">P. D. C. King</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.08631v1-abstract-short" style="display: inline;"> Band inversions are key to stabilising a variety of novel electronic states in solids, from topological surface states in inverted bulk band gaps of topological insulators to the formation of symmetry-protected three-dimensional Dirac and Weyl points and nodal-line semimetals. Here, we create a band inversion not of bulk states, but rather between manifolds of surface states. We realise this by al&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.08631v1-abstract-full').style.display = 'inline'; document.getElementById('1911.08631v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.08631v1-abstract-full" style="display: none;"> Band inversions are key to stabilising a variety of novel electronic states in solids, from topological surface states in inverted bulk band gaps of topological insulators to the formation of symmetry-protected three-dimensional Dirac and Weyl points and nodal-line semimetals. Here, we create a band inversion not of bulk states, but rather between manifolds of surface states. We realise this by aliovalent substitution of Nb for Zr and Sb for S in the ZrSiS family of nonsymmorphic semimetals. Using angle-resolved photoemission and density-functional theory, we show how two pairs of surface states, known from ZrSiS, are driven to intersect each other in the vicinity of the Fermi level in NbGeSb, as well as to develop pronounced spin-orbit mediated spin splittings. We demonstrate how mirror symmetry leads to protected crossing points in the resulting spin-orbital entangled surface band structure, thereby stabilising surface state analogues of three-dimensional Weyl points. More generally, our observations suggest new opportunities for engineering topologically and symmetry-protected states via band inversions of surface states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.08631v1-abstract-full').style.display = 'none'; document.getElementById('1911.08631v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In press at Nature Communications. This is the originally submitted manuscript prior to changes during the review process. Contains 20+6 pages, including Supplementary Information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.01713">arXiv:1909.01713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.01713">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.035404">10.1103/PhysRevB.101.035404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proximity-induced ferromagnetism and chemical reactivity in few layers VSe2 heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vinai%2C+G">G. Vinai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bigi%2C+C">C. Bigi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rajan%2C+A">A. Rajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+T+-">T. -L. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzola%2C+F">F. Mazzola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Modesti%2C+S">S. Modesti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barua%2C+S">S. Barua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">P. D. C. King</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Torelli%2C+P">P. Torelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+G">G. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panaccione%2C+G">G. Panaccione</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.01713v1-abstract-short" style="display: inline;"> Among Transition-Metal Dichalcogenides, mono and few-layers thick VSe2 has gained much recent attention following claims of intrinsic room-temperature ferromagnetism in this system, which have nonetheless proved controversial. Here, we address the magnetic and chemical properties of Fe/VSe2 heterostructure by combining element sensitive absorption spectroscopy and photoemission spectroscopy. Our x&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01713v1-abstract-full').style.display = 'inline'; document.getElementById('1909.01713v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.01713v1-abstract-full" style="display: none;"> Among Transition-Metal Dichalcogenides, mono and few-layers thick VSe2 has gained much recent attention following claims of intrinsic room-temperature ferromagnetism in this system, which have nonetheless proved controversial. Here, we address the magnetic and chemical properties of Fe/VSe2 heterostructure by combining element sensitive absorption spectroscopy and photoemission spectroscopy. Our x-ray magnetic circular dichroism results confirm recent findings that both native mono/few-layer and bulk VSe2 do not show any signature of an intrinsic ferromagnetic ordering. Nonetheless, we find that ferromagnetism can be induced, even at room temperature, after coupling with a Fe thin film layer, with antiparallel alignment of the moment on the V with respect to Fe. We further consider the chemical reactivity at the Fe/VSe2 interface and its relation with interfacial magnetic coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.01713v1-abstract-full').style.display = 'none'; document.getElementById('1909.01713v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 035404 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.02150">arXiv:1906.02150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.02150">pdf</a>, <a href="https://arxiv.org/format/1906.02150">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.216404">10.1103/PhysRevLett.123.216404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $k_z$ selective scattering within Quasiparticle Interference measurements of FeSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+L+C">Luke C. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eschrig%2C+M">Matthias Eschrig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.02150v2-abstract-short" style="display: inline;"> Quasiparticle interference (QPI) provides a wealth of information relating to the electronic structure of a material. However, it is often assumed that this information is constrained to two-dimensional electronic states. Here, we show that this is not necessarily the case. For FeSe, a system dominated by surface defects, we show that it is actually all electronic states with negligible group velo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02150v2-abstract-full').style.display = 'inline'; document.getElementById('1906.02150v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.02150v2-abstract-full" style="display: none;"> Quasiparticle interference (QPI) provides a wealth of information relating to the electronic structure of a material. However, it is often assumed that this information is constrained to two-dimensional electronic states. Here, we show that this is not necessarily the case. For FeSe, a system dominated by surface defects, we show that it is actually all electronic states with negligible group velocity in the $z$ axis that are contained within the experimental data. By using a three-dimensional tight binding model of FeSe, fit to photoemission measurements, we directly reproduce the experimental QPI scattering dispersion, within a T-matrix formalism, by including both $k_z = 0$ and $k_z = 蟺$ electronic states. This result unifies both tunnelling and photoemission based experiments on FeSe and highlights the importance of $k_z$ within surface sensitive measurements of QPI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.02150v2-abstract-full').style.display = 'none'; document.getElementById('1906.02150v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 216404 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.00756">arXiv:1903.00756</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.00756">pdf</a>, <a href="https://arxiv.org/format/1903.00756">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.195142">10.1103/PhysRevB.99.195142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the origin of the anomalous peak in the resistivity of TiSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beales%2C+A+M">Adam M. Beales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">Philip D. C. King</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.00756v1-abstract-short" style="display: inline;"> Resistivity measurements of TiSe$_2$ typically show only a weak change in gradient at the charge density wave transition at $T_{CDW}\approx$ 200~K, but more prominently feature a broad peak at a lower $T_{peak}\sim$ 165~K, which has remained poorly understood despite decades of research on the material. Here we present quantitative simulations of the resistivity using a simplified parametrization&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00756v1-abstract-full').style.display = 'inline'; document.getElementById('1903.00756v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.00756v1-abstract-full" style="display: none;"> Resistivity measurements of TiSe$_2$ typically show only a weak change in gradient at the charge density wave transition at $T_{CDW}\approx$ 200~K, but more prominently feature a broad peak at a lower $T_{peak}\sim$ 165~K, which has remained poorly understood despite decades of research on the material. Here we present quantitative simulations of the resistivity using a simplified parametrization of the normal state band structure, based on recent photoemission data. Our simulations reproduce the overall profile of the resistivity of TiSe$_2$, including its prominent peak, without implementing the CDW at all. We find that the peak in resistivity corresponds to a crossover between a low temperature regime with electron-like carriers only, to a regime around room temperature where thermally activated and highly mobile hole-like carriers dominate the conductivity. Even when implementing substantial modifications to model the CDW below the transition temperature, we find that these thermal population effects still dominate the transport properties of TiSe$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.00756v1-abstract-full').style.display = 'none'; document.getElementById('1903.00756v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 195142 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.10266">arXiv:1902.10266</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.10266">pdf</a>, <a href="https://arxiv.org/format/1902.10266">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Probing the reconstructed Fermi surface of antiferromagnetic BaFe$_2$As$_2$ in one domain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dudin%2C+P">Pavel Dudin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+L+C">Luke C. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evtushinsky%2C+D+V">Daniil V. Evtushinsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iwasawa%2C+H">Hideaki Iwasawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wurmehl%2C+S">Sabine Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoesch%2C+M">Moritz Hoesch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.10266v1-abstract-short" style="display: inline;"> We revisit the electronic structure of BaFe$_2$As$_2$, the archetypal parent compound of the Fe-based superconductors, using angle-resolved photoemission spectroscopy (ARPES). Our high-resolution measurements of samples detwinned by the application of a mechanical strain reveal a highly anisotropic 3D Fermi surface in the low temperature magnetic phase. By comparison of the observed dispersions wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10266v1-abstract-full').style.display = 'inline'; document.getElementById('1902.10266v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.10266v1-abstract-full" style="display: none;"> We revisit the electronic structure of BaFe$_2$As$_2$, the archetypal parent compound of the Fe-based superconductors, using angle-resolved photoemission spectroscopy (ARPES). Our high-resolution measurements of samples detwinned by the application of a mechanical strain reveal a highly anisotropic 3D Fermi surface in the low temperature magnetic phase. By comparison of the observed dispersions with ab-initio calculations, we argue that overall it is magnetism, rather than orbital ordering, which is the dominant effect, reconstructing the electronic structure across the Fe 3d bandwidth. Finally, we measure band dispersions directly from within one domain without applying strain to the sample, by using the sub-micron focused beam spot of a nano-ARPES instrument. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10266v1-abstract-full').style.display = 'none'; document.getElementById('1902.10266v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.07141">arXiv:1808.07141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.07141">pdf</a>, <a href="https://arxiv.org/format/1808.07141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.076404">10.1103/PhysRevLett.122.076404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital- and $k_z$-selective hybridisation of Se 4p and Ti 3d states in the charge density wave phase of TiSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+O+J">Oliver J. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzola%2C+F">Federico Mazzola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markovi%C4%87%2C+I">Igor Markovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sunko%2C+V">Veronika Sunko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossnagel%2C+K">Kai Rossnagel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+P+D+C">Philip D. C. King</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.07141v2-abstract-short" style="display: inline;"> We revisit the enduring problem of the $2\times{}2\times{}2$ charge density wave (CDW) order in TiSe$_2$, utilising photon energy-dependent angle-resolved photoemission spectroscopy to probe the full three-dimensional high- and low-temperature electronic structure. Our measurements demonstrate how a mismatch of dimensionality between the 3D conduction bands and the quasi-2D valence bands in this s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07141v2-abstract-full').style.display = 'inline'; document.getElementById('1808.07141v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.07141v2-abstract-full" style="display: none;"> We revisit the enduring problem of the $2\times{}2\times{}2$ charge density wave (CDW) order in TiSe$_2$, utilising photon energy-dependent angle-resolved photoemission spectroscopy to probe the full three-dimensional high- and low-temperature electronic structure. Our measurements demonstrate how a mismatch of dimensionality between the 3D conduction bands and the quasi-2D valence bands in this system leads to a hybridisation that is strongly $k_z$-dependent. While such a momentum-selective coupling can provide the energy gain required to form the CDW, we show how additional &#34;passenger&#34; states remain, which couple only weakly to the CDW and thus dominate the low-energy physics in the ordered phase of TiSe$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07141v2-abstract-full').style.display = 'none'; document.getElementById('1808.07141v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 076404 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.08132">arXiv:1806.08132</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.08132">pdf</a>, <a href="https://arxiv.org/format/1806.08132">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5084618">10.1063/1.5084618 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Applications for ultimate spatial resolution in LASER based $渭$-ARPES: A FeSe case study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schwier%2C+E+F">E. F. Schwier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takita%2C+H">H. Takita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mansur%2C+W">W. Mansur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ino%2C+A">A. Ino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoesch%2C+M">M. Hoesch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haghighirad%2C+A+A">A. A. Haghighirad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shimada%2C+K">K. Shimada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.08132v1-abstract-short" style="display: inline;"> Combining Angle resolved photoelectron spectroscopy (ARPES) and a $渭$-focused Laser, we have performed scanning ARPES microscopy measurements of the domain population within the nematic phase of FeSe single crystals. We are able to demonstrate a variation of the domain population density on a scale of a few 10 $渭$m while constraining the upper limit of the single domain size to less than 5 $渭m$. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.08132v1-abstract-full').style.display = 'inline'; document.getElementById('1806.08132v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.08132v1-abstract-full" style="display: none;"> Combining Angle resolved photoelectron spectroscopy (ARPES) and a $渭$-focused Laser, we have performed scanning ARPES microscopy measurements of the domain population within the nematic phase of FeSe single crystals. We are able to demonstrate a variation of the domain population density on a scale of a few 10 $渭$m while constraining the upper limit of the single domain size to less than 5 $渭m$. This experiment serves as a demonstration of how combining the advantages of high resolution Laser ARPES and an ultimate control over the spatial dimension can improve investigations of materials by reducing the cross contamination of spectral features of different domains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.08132v1-abstract-full').style.display = 'none'; document.getElementById('1806.08132v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP Conference Proceedings 2054, 040017 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.01436">arXiv:1804.01436</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.01436">pdf</a>, <a href="https://arxiv.org/format/1804.01436">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.180503">10.1103/PhysRevB.98.180503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scaling of the superconducting gap with orbital character in FeSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+L+C">Luke C. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haghighirad%2C+A+A">Amir A. Haghighirad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evtushinsky%2C+D+V">Daniil V. Evtushinsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eschrig%2C+M">Matthias Eschrig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.01436v1-abstract-short" style="display: inline;"> We use high-resolution angle-resolved photoemission spectroscopy to map the three-dimensional momentum dependence of the superconducting gap in FeSe. We find that on both the hole and electron Fermi surfaces, the magnitude of the gap follows the distribution of $d_{yz}$ orbital weight. Furthermore, we theoretically determine the momentum dependence of the superconducting gap by solving the lineari&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.01436v1-abstract-full').style.display = 'inline'; document.getElementById('1804.01436v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.01436v1-abstract-full" style="display: none;"> We use high-resolution angle-resolved photoemission spectroscopy to map the three-dimensional momentum dependence of the superconducting gap in FeSe. We find that on both the hole and electron Fermi surfaces, the magnitude of the gap follows the distribution of $d_{yz}$ orbital weight. Furthermore, we theoretically determine the momentum dependence of the superconducting gap by solving the linearized gap equation using a tight binding model which quantitatively describes both the experimental band dispersions and orbital characters. By considering a Fermi surface only including one electron pocket, as observed spectroscopically, we obtain excellent agreement with the experimental gap structure. Our finding of a scaling between the superconducting gap and the $d_{yz}$ orbital weight supports the interpretation of superconductivity mediated by spin-fluctuations in FeSe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.01436v1-abstract-full').style.display = 'none'; document.getElementById('1804.01436v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 180503 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.03860">arXiv:1802.03860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.03860">pdf</a>, <a href="https://arxiv.org/format/1802.03860">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-0927-7">10.1038/s41586-019-0927-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of switchable weak topological insulator state in quasi-one-dimensional bismuth iodide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Noguchi%2C+R">R. Noguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takahashi%2C+T">T. Takahashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuroda%2C+K">K. Kuroda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ochi%2C+M">M. Ochi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shirasawa%2C+T">T. Shirasawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakano%2C+M">M. Sakano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bareille%2C+C">C. Bareille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakayama%2C+M">M. Nakayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaji%2C+K">K. Yaji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harasawa%2C+A">A. Harasawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iwasawa%2C+H">H. Iwasawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dudin%2C+P">P. Dudin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoesch%2C+M">M. Hoesch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+S">S. Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arita%2C+R">R. Arita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sasagawa%2C+T">T. Sasagawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kondo%2C+T">Takeshi Kondo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.03860v1-abstract-short" style="display: inline;"> The major breakthroughs in the understanding of topological materials over the past decade were all triggered by the discovery of the Z$_2$ topological insulator (TI). In three dimensions (3D), the TI is classified as either &#34;strong&#34; or &#34;weak&#34;, and experimental confirmations of the strong topological insulator (STI) rapidly followed the theoretical predictions. In contrast, the weak topological in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.03860v1-abstract-full').style.display = 'inline'; document.getElementById('1802.03860v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.03860v1-abstract-full" style="display: none;"> The major breakthroughs in the understanding of topological materials over the past decade were all triggered by the discovery of the Z$_2$ topological insulator (TI). In three dimensions (3D), the TI is classified as either &#34;strong&#34; or &#34;weak&#34;, and experimental confirmations of the strong topological insulator (STI) rapidly followed the theoretical predictions. In contrast, the weak topological insulator has so far eluded experimental verification, since the topological surface states emerge only on particular side surfaces which are typically undetectable in real 3D crystals. Here we provide experimental evidence for the WTI state in a bismuth iodide, $尾$-Bi4I4. Significantly, the crystal has naturally cleavable top and side planes both stacked via van-der-Waals forces, which have long been desirable for the experimental realization of the WTI state. As a definitive signature of it, we find quasi-1D Dirac TSS at the side-surface (100) while the top-surface (001) is topologically dark. Furthermore, a crystal transition from the $尾$- to $伪$-phase drives a topological phase transition from a nontrivial WTI to the trivial insulator around room temperature. This topological phase, viewed as quantum spin Hall (QSH) insulators stacked three-dimensionally, and excellent functionality with on/off switching will lay a foundation for new technology benefiting from highly directional spin-currents with large density protected against backscattering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.03860v1-abstract-full').style.display = 'none'; document.getElementById('1802.03860v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 566, 518-522 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.03379">arXiv:1712.03379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.03379">pdf</a>, <a href="https://arxiv.org/format/1712.03379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.017601">10.1103/PhysRevLett.122.017601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disorder quenching of the Charge Density Wave in ZrTe3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hoesch%2C+M">Moritz Hoesch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gannon%2C+L">Liam Gannon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shimada%2C+K">Kenya Shimada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parrett%2C+B">Benjamin Parrett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xiangde Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrovic%2C+C">Cedomir Petrovic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.03379v1-abstract-short" style="display: inline;"> The charge density wave (CDW) in ZrTe3 is quenched in samples with small amount of Te iso-electronically substituted by Se. Using angle-resolved photoemission spectroscopy we observe subtle changes in the electronic band dispersions and Fermi surfaces on Se substitution. The scattering rates are substantially increased, in particular for the large three-dimensional Fermi surface sheet. The quasi-o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03379v1-abstract-full').style.display = 'inline'; document.getElementById('1712.03379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.03379v1-abstract-full" style="display: none;"> The charge density wave (CDW) in ZrTe3 is quenched in samples with small amount of Te iso-electronically substituted by Se. Using angle-resolved photoemission spectroscopy we observe subtle changes in the electronic band dispersions and Fermi surfaces on Se substitution. The scattering rates are substantially increased, in particular for the large three-dimensional Fermi surface sheet. The quasi-one-dimensional band is unaffected by the substitution and still shows a gap at low temperature, which starts to open from room temperature. The detailed temperature dependence reveals that the long-range order is absent in the electronic states as in the periodic lattice distortion. The competition between superconductivity and CDW is thus linked to the suppression of long-range order of the CDW. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03379v1-abstract-full').style.display = 'none'; document.getElementById('1712.03379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages plus supplemental material (3 pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 017601 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.03717">arXiv:1710.03717</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.03717">pdf</a>, <a href="https://arxiv.org/format/1710.03717">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.035134">10.1103/PhysRevB.97.035134 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The three-dimensional electronic structure of the nematic and antiferromagnetic phases of NaFeAs from detwinned ARPES measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+L+C">Luke C. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parrett%2C+B">Benjamin Parrett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iwasawa%2C+H">Hideaki Iwasawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoesch%2C+M">Moritz Hoesch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morozov%2C+I">Igor Morozov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.03717v1-abstract-short" style="display: inline;"> We report a comprehensive ARPES study of NaFeAs, a prototypical parent compound of the Fe-based superconductors. By mechanically detwinning the samples, we show that in the nematic phase (below the structural transition at $T_s$ = 54 K but above the antiferromagnetic transition at $T_N$ = 43 K) spectral weight is detected on only the elliptical electron pocket along the longer $a_{orth}$ axis. Thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.03717v1-abstract-full').style.display = 'inline'; document.getElementById('1710.03717v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.03717v1-abstract-full" style="display: none;"> We report a comprehensive ARPES study of NaFeAs, a prototypical parent compound of the Fe-based superconductors. By mechanically detwinning the samples, we show that in the nematic phase (below the structural transition at $T_s$ = 54 K but above the antiferromagnetic transition at $T_N$ = 43 K) spectral weight is detected on only the elliptical electron pocket along the longer $a_{orth}$ axis. This dramatic anisotropy is likely to arise as a result of coupling to a fluctuating antiferromagnetic order in the nematic phase. In the long-range ordered antiferromagnetic state below $T_N$, this single electron pocket is backfolded and hybridises with the hole bands, leading to the reconstructed Fermi surface. By careful analysis of the $k_z$ variation, we show that the backfolding of spectral weight in the magnetic phase has a wavector of ($蟺$,0,$蟺$), with the $c$-axis component being in agreement with the magnetic ordering in NaFeAs observed by neutron scattering. Our results clarify the origin of the tiny Fermi surfaces of NaFeAs at low temperatures and highlight the importance of the three-dimensional aspects of the electronic and magnetic properties of Fe-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.03717v1-abstract-full').style.display = 'none'; document.getElementById('1710.03717v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 035134 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.06500">arXiv:1707.06500</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.06500">pdf</a>, <a href="https://arxiv.org/format/1707.06500">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.086402">10.1103/PhysRevLett.120.086402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental determination of the topological phase diagram in Cerium monopnictides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kuroda%2C+K">Kenta Kuroda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ochi%2C+M">M. Ochi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suzuki%2C+H+S">H. S. Suzuki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirayama%2C+M">M. Hirayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakayama%2C+M">M. Nakayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noguchi%2C+R">R. Noguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bareille%2C+C">C. Bareille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akebi%2C+S">S. Akebi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kunisada%2C+S">S. Kunisada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muro%2C+T">T. Muro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kitazawa%2C+H">H. Kitazawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haga%2C+Y">Y. Haga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoesch%2C+M">M. Hoesch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+S">S. Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arita%2C+R">R. Arita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kondo%2C+T">Takeshi Kondo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.06500v1-abstract-short" style="display: inline;"> We use bulk-sensitive soft X-ray angle-resolved photoemission spectroscopy and investigate bulk electronic structures of Ce monopnictides (CeX; X=P, As, Sb and Bi). By exploiting a paradigmatic study of the band structures as a function of their spin-orbit coupling (SOC), we draw the topological phase diagram of CeX and unambiguously reveal the topological phase transition from a trivial to a nont&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.06500v1-abstract-full').style.display = 'inline'; document.getElementById('1707.06500v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.06500v1-abstract-full" style="display: none;"> We use bulk-sensitive soft X-ray angle-resolved photoemission spectroscopy and investigate bulk electronic structures of Ce monopnictides (CeX; X=P, As, Sb and Bi). By exploiting a paradigmatic study of the band structures as a function of their spin-orbit coupling (SOC), we draw the topological phase diagram of CeX and unambiguously reveal the topological phase transition from a trivial to a nontrivial regime in going from CeP to CeBi induced by the band inversion. The underlying mechanism of the topological phase transition is elucidated in terms of SOC in concert with their semimetallic band structures. Our comprehensive observations provide a new insight into the band topology hidden in the bulk of solid states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.06500v1-abstract-full').style.display = 'none'; document.getElementById('1707.06500v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 086402 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.04447">arXiv:1707.04447</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.04447">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2053-1583/aa7963">10.1088/2053-1583/aa7963 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of Dirac-like bands in the monolayer limit of epitaxial Ge films on Au(111) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">Niels B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duffy%2C+L+B">Liam B. Duffy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoesch%2C+M">Moritz Hoesch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hesjedal%2C+T">Thorsten Hesjedal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.04447v1-abstract-short" style="display: inline;"> After the discovery of Dirac fermions in graphene, it has become a natural question to ask whether it is possible to realize Dirac fermions in other two-dimensional (2D) materials as well. In this work, we report the discovery of multiple Dirac-like electronic bands in ultrathin Ge films grown on Au(111) by angle-resolved photoelectron spectroscopy. By tuning the thickness of the films, we are abl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.04447v1-abstract-full').style.display = 'inline'; document.getElementById('1707.04447v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.04447v1-abstract-full" style="display: none;"> After the discovery of Dirac fermions in graphene, it has become a natural question to ask whether it is possible to realize Dirac fermions in other two-dimensional (2D) materials as well. In this work, we report the discovery of multiple Dirac-like electronic bands in ultrathin Ge films grown on Au(111) by angle-resolved photoelectron spectroscopy. By tuning the thickness of the films, we are able to observe the evolution of their electronic structure when passing through the monolayer limit. Our discovery may signify the synthesis of germanene, a 2D honeycomb structure made of Ge, which is a promising platform for exploring exotic topological phenomena and enabling potential applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.04447v1-abstract-full').style.display = 'none'; document.getElementById('1707.04447v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2D Materials 4, 031005, (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.00338">arXiv:1706.00338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.00338">pdf</a>, <a href="https://arxiv.org/format/1706.00338">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1146/annurev-conmatphys-033117-054137">10.1146/annurev-conmatphys-033117-054137 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The key ingredients of the electronic structure of FeSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+A+I">Amalia I. Coldea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.00338v1-abstract-short" style="display: inline;"> FeSe is a fascinating superconducting material at the frontier of research in condensed matter physics. Here we provide an overview on the current understanding of the electronic structure of FeSe, focusing in particular on its low energy electronic structure as determined from angular resolved photoemission spectroscopy, quantum oscillations and magnetotransport measurements of single crystal sam&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.00338v1-abstract-full').style.display = 'inline'; document.getElementById('1706.00338v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.00338v1-abstract-full" style="display: none;"> FeSe is a fascinating superconducting material at the frontier of research in condensed matter physics. Here we provide an overview on the current understanding of the electronic structure of FeSe, focusing in particular on its low energy electronic structure as determined from angular resolved photoemission spectroscopy, quantum oscillations and magnetotransport measurements of single crystal samples. We discuss the unique place of FeSe amongst iron-based superconductors, being a multi-band system exhibiting strong orbitally-dependent electronic correlations and unusually small Fermi surfaces, prone to different electronic instabilities. We pay particular attention to the evolution of the electronic structure which accompanies the tetragonal-orthorhombic structural distortion of the lattice around 90 K, which stabilizes a unique nematic electronic state. Finally, we discuss how the multi-band multi-orbital nematic electronic structure has an impact on the understanding of the superconductivity, and show that the tunability of the nematic state with chemical and physical pressure will help to disentangle the role of different competing interactions relevant for enhancing superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.00338v1-abstract-full').style.display = 'none'; document.getElementById('1706.00338v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 11 figures, to appear in Annual Review of Condensed Matter Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Annual Review of Condensed Matter Physics, Vol 9 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.11139">arXiv:1705.11139</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.11139">pdf</a>, <a href="https://arxiv.org/format/1705.11139">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.121103">10.1103/PhysRevB.96.121103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Suppression of electronic correlations by chemical pressure from FeSe to FeS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Reiss%2C+P">P. Reiss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">M. D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haghighirad%2C+A+A">A. A. Haghighirad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woodruff%2C+D+N">D. N. Woodruff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bruma%2C+M">M. Bruma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clarke%2C+S+J">S. J. Clarke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coldea%2C+A+I">A. I. Coldea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.11139v1-abstract-short" style="display: inline;"> Iron-based chalcogenides are complex superconducting systems in which orbitally-dependent electronic correlations play an important role. Here, using high-resolution angle-resolved photoemission spectroscopy, we investigate the effect of these electronic correlations outside the nematic phase in the tetragonal phase of superconducting FeSe1-xSx (x = 0; 0:18; 1). With increasing sulfur substitution&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.11139v1-abstract-full').style.display = 'inline'; document.getElementById('1705.11139v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.11139v1-abstract-full" style="display: none;"> Iron-based chalcogenides are complex superconducting systems in which orbitally-dependent electronic correlations play an important role. Here, using high-resolution angle-resolved photoemission spectroscopy, we investigate the effect of these electronic correlations outside the nematic phase in the tetragonal phase of superconducting FeSe1-xSx (x = 0; 0:18; 1). With increasing sulfur substitution, the Fermi velocities increase significantly and the band renormalizations are suppressed towards a factor of 1.5-2 for FeS. Furthermore, the chemical pressure leads to an increase in the size of the quasi-two dimensional Fermi surface, compared with that of FeSe, however, it remains smaller than the predicted one from first principle calculations for FeS. Our results show that the isoelectronic substitution is an effective way to tune electronic correlations in FeSe1-xSx, being weakened for FeS with a lower superconducting transition temperature. This suggests indirectly that electronic correlations could help to promote higher-Tc superconductivity in FeSe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.11139v1-abstract-full').style.display = 'none'; document.getElementById('1705.11139v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 121103 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.02286">arXiv:1705.02286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.02286">pdf</a>, <a href="https://arxiv.org/format/1705.02286">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aa8a04">10.1088/1367-2630/aa8a04 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic anisotropies revealed by detwinned ARPES measurements of FeSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haghighirad%2C+A+A">Amir A. Haghighirad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+L+C">Luke C. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoesch%2C+M">Moritz Hoesch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.02286v2-abstract-short" style="display: inline;"> We report high resolution ARPES measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80$\%$ detwinned. While the full structure of the electron pockets consisting of two crossed ellipses may be observed in the tetragonal phase at temperatures above 90~K&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.02286v2-abstract-full').style.display = 'inline'; document.getElementById('1705.02286v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.02286v2-abstract-full" style="display: none;"> We report high resolution ARPES measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80$\%$ detwinned. While the full structure of the electron pockets consisting of two crossed ellipses may be observed in the tetragonal phase at temperatures above 90~K, we find that remarkably, only one peanut-shaped electron pocket oriented along the longer $a$ axis contributes to the ARPES measurement at low temperatures in the nematic phase, with the expected pocket along $b$ being not observed. Thus the low temperature Fermi surface of FeSe as experimentally determined by ARPES consists of one elliptical hole pocket and one orthogonally-oriented peanut-shaped electron pocket. Our measurements clarify the long-standing controversies over the interpretation of ARPES measurements of FeSe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.02286v2-abstract-full').style.display = 'none'; document.getElementById('1705.02286v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 19 103021 (2017) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Watson%2C+M+D&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Watson%2C+M+D&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Watson%2C+M+D&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10