CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;17 of 17 results for author: <span class="mathjax">Pamuk, B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Pamuk%2C+B">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Pamuk, B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Pamuk%2C+B&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Pamuk, B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07525">arXiv:2211.07525</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.07525">pdf</a>, <a href="https://arxiv.org/ps/2211.07525">ps</a>, <a href="https://arxiv.org/format/2211.07525">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01907-2">10.1038/s41567-022-01907-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic metal phase in an electron-doped rare-earth nickelate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Q">Qi Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doyle%2C+S">Spencer Doyle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+G+A">Grace A. Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baggari%2C+I+E">Ismail El Baggari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Segedin%2C+D+F">Dan Ferenc Segedin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carrizales%2C+D+C">Denisse Cordova Carrizales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nordlander%2C+J">Johanna Nordlander</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tzschaschel%2C+C">Christian Tzschaschel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ehrets%2C+J+R">James R. Ehrets</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+Z">Zubia Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=El-Sherif%2C+H">Hesham El-Sherif</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krishna%2C+J">Jyoti Krishna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hanson%2C+C">Chase Hanson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LaBollita%2C+H">Harrison LaBollita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Su-Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lanzara%2C+A">Alessandra Lanzara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=N%27Diaye%2C+A+T">Alpha T. N&#39;Diaye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heikes%2C+C+A">Colin A. Heikes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yaohua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paik%2C+H">Hanjong Paik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brooks%2C+C+M">Charles M. Brooks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Betul Pamuk</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07525v1-abstract-short" style="display: inline;"> Long viewed as passive elements, antiferromagnetic materials have emerged as promising candidates for spintronic devices due to their insensitivity to external fields and potential for high-speed switching. Recent work exploiting spin and orbital effects has identified ways to electrically control and probe the spins in metallic antiferromagnets, especially in noncollinear or noncentrosymmetric sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07525v1-abstract-full').style.display = 'inline'; document.getElementById('2211.07525v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07525v1-abstract-full" style="display: none;"> Long viewed as passive elements, antiferromagnetic materials have emerged as promising candidates for spintronic devices due to their insensitivity to external fields and potential for high-speed switching. Recent work exploiting spin and orbital effects has identified ways to electrically control and probe the spins in metallic antiferromagnets, especially in noncollinear or noncentrosymmetric spin structures. The rare earth nickelate NdNiO3 is known to be a noncollinear antiferromagnet where the onset of antiferromagnetic ordering is concomitant with a transition to an insulating state. Here, we find that for low electron doping, the magnetic order on the nickel site is preserved while electronically a new metallic phase is induced. We show that this metallic phase has a Fermi surface that is mostly gapped by an electronic reconstruction driven by the bond disproportionation. Furthermore, we demonstrate the ability to write to and read from the spin structure via a large zero-field planar Hall effect. Our results expand the already rich phase diagram of the rare-earth nickelates and may enable spintronics applications in this family of correlated oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07525v1-abstract-full').style.display = 'none'; document.getElementById('2211.07525v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13392">arXiv:2210.13392</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.13392">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Nanomolding of Metastable Mo$_{4}$P$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kiani%2C+M+T">Mehrdad T Kiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sam%2C+Q+P">Quynh P Sam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+G">Gangtae Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+H+J">Hyeuk Jin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hart%2C+J+L">James L. Hart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stauff%2C+J+R">J. R. Stauff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cha%2C+J+J">Judy J Cha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13392v1-abstract-short" style="display: inline;"> Reduced dimensionality leads to emergent phenomena in quantum materials and there is a need for accelerated materials discovery of nanoscale quantum materials in reduced dimensions. Thermomechanical nanomolding is a rapid synthesis method that produces high quality single-crystalline quantum nanowires with controlled dimensions over wafer-scale sizes. Herein, we apply nanomolding to fabricate nano&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13392v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13392v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13392v1-abstract-full" style="display: none;"> Reduced dimensionality leads to emergent phenomena in quantum materials and there is a need for accelerated materials discovery of nanoscale quantum materials in reduced dimensions. Thermomechanical nanomolding is a rapid synthesis method that produces high quality single-crystalline quantum nanowires with controlled dimensions over wafer-scale sizes. Herein, we apply nanomolding to fabricate nanowires from bulk feedstock of MoP, a triple-point topological metal with extremely high conductivity that is promising for low-resistance interconnects. Surprisingly, we obtained single-crystalline Mo$_{4}$P$_{3}$ nanowires, a metastable phase at room temperature in atmospheric pressure. We thus demonstrate nanomolding can create metastable phases inaccessible by other nanomaterial syntheses and can explore a previously inaccessible synthesis space at high temperatures and pressures. Furthermore, our results suggest that the current understanding of interfacial solid diffusion for nanomolding is incomplete, providing opportunities to explore solid-state diffusion at high-pressure and high-temperature regimes in confined dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13392v1-abstract-full').style.display = 'none'; document.getElementById('2210.13392v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02681">arXiv:2203.02681</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.02681">pdf</a>, <a href="https://arxiv.org/format/2203.02681">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.085150">10.1103/PhysRevB.105.085150 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure of higher-order Ruddlesden-Popper nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+M">Myung-Chul Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kapeghian%2C+J">Jesse Kapeghian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hanson%2C+C">Chase Hanson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Botana%2C+A+S">Antia S. Botana</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02681v1-abstract-short" style="display: inline;"> We analyze the electronic structure of the recently synthesized higher-order nickelate Ruddlesden-Popper phases La$_{n+1}$Ni$_n$O$_{3n+1}$ ($n=4-6$) using first-principles calculations. For all materials, our results show large holelike Fermi surfaces with $d_{x^2-y^2}$ character that closely resemble those of optimally hole-doped cuprates. For higher values of $n$, extra non-cuprate-like bands of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02681v1-abstract-full').style.display = 'inline'; document.getElementById('2203.02681v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02681v1-abstract-full" style="display: none;"> We analyze the electronic structure of the recently synthesized higher-order nickelate Ruddlesden-Popper phases La$_{n+1}$Ni$_n$O$_{3n+1}$ ($n=4-6$) using first-principles calculations. For all materials, our results show large holelike Fermi surfaces with $d_{x^2-y^2}$ character that closely resemble those of optimally hole-doped cuprates. For higher values of $n$, extra non-cuprate-like bands of $d_{z^2}$ orbital character appear. These aspects highlight that this Ruddlesden-Popper series can provide a means to modify the electronic ground states of nickelates by tuning their dimensionality. With their similarities and differences to the cuprates, this new family of materials can potentially shed light on the physics of copper-based oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02681v1-abstract-full').style.display = 'none'; document.getElementById('2203.02681v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 085150 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.13443">arXiv:2201.13443</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.13443">pdf</a>, <a href="https://arxiv.org/format/2201.13443">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Photocatalytic water oxidation on SrTiO$_3$ [001] surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+V">Vidushi Sharma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bein%2C+B">Benjamin Bein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+A">Amanda Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dreyer%2C+C+E">Cyrus E. Dreyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fern%C3%A1ndez-Serra%2C+M">Marivi Fern谩ndez-Serra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dawber%2C+M">Matthew Dawber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.13443v1-abstract-short" style="display: inline;"> SrTiO$_3$ is a highly efficient photocatalyst for the overall water splitting reaction under UV irradiation. However, an atomic-level understanding of the active surface sites responsible for the oxidation and reduction reactions is still lacking. Here we present a unified experimental and computational account of the photocatalytic activity at the SrO- and TiO$_2$- terminations of aqueous-solvate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.13443v1-abstract-full').style.display = 'inline'; document.getElementById('2201.13443v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.13443v1-abstract-full" style="display: none;"> SrTiO$_3$ is a highly efficient photocatalyst for the overall water splitting reaction under UV irradiation. However, an atomic-level understanding of the active surface sites responsible for the oxidation and reduction reactions is still lacking. Here we present a unified experimental and computational account of the photocatalytic activity at the SrO- and TiO$_2$- terminations of aqueous-solvated [001] SrTiO$_3$. Our experimental findings show that the overall water-splitting reaction proceeds on the SrTiO$_3$ surface only when the two terminations are simultaneously exposed to water. Our simulations explain this, showing that the photogenerated hole-driven oxidation primarily occurs at SrO surfaces in a sequence of four single hole transfer reactions, while the TiO$_2$ termination effects the crucial band alignment of the photocatalyst relative to the water oxidation potential. The present work elucidates the interdependence of the two chemical terminations of SrTiO$_3$ surfaces, and has consequent implications for maximizing sustainable solar-driven water splitting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.13443v1-abstract-full').style.display = 'none'; document.getElementById('2201.13443v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 + 6 pages, 6 + 8 figures, including Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-22-20654 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07021">arXiv:2103.07021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.07021">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abi5833">10.1126/sciadv.abi5833 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Momentum-resolved electronic band structure and offsets in an epitaxial NbN/GaN superconductor/semiconductor heterojunction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T">Tianlun Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wright%2C+J">John Wright</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khalsa%2C+G">Guru Khalsa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C+S">Celesta S. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matveyev%2C+Y">Yury Matveyev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D">Donglai Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muller%2C+D">David Muller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+G">Grace Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jena%2C+D">Debdeep Jena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07021v1-abstract-short" style="display: inline;"> The electronic structure of heterointerfaces play a pivotal role in their device functionality. Recently, highly crystalline ultrathin films of superconducting NbN have been integrated by molecular beam epitaxy with the semiconducting GaN. We use soft X-ray angle-resolved photoelectron spectroscopy to directly measure the momentum-resolved electronic band structures for both NbN and GaN constituen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07021v1-abstract-full').style.display = 'inline'; document.getElementById('2103.07021v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07021v1-abstract-full" style="display: none;"> The electronic structure of heterointerfaces play a pivotal role in their device functionality. Recently, highly crystalline ultrathin films of superconducting NbN have been integrated by molecular beam epitaxy with the semiconducting GaN. We use soft X-ray angle-resolved photoelectron spectroscopy to directly measure the momentum-resolved electronic band structures for both NbN and GaN constituents of this Schottky heterointerface, and determine their momentum-dependent interfacial band offset as well as the band-bending profile into GaN. We find, in particular, that the Fermi states in NbN are aligned against the band gap in GaN, which excludes any significant electronic cross-talk of the superconducting states in NbN through the interface to GaN. We support the experimental findings with first-principles calculations for bulk NbN and GaN. The Schottky barrier height obtained from photoemission is corroborated by electronic transport and optical measurements. The momentum-resolved understanding of electronic properties elucidated by the combined materials advances and experimental methods in our work opens up new possibilities in systems where interfacial states play a defining role. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07021v1-abstract-full').style.display = 'none'; document.getElementById('2103.07021v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.01154">arXiv:2102.01154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.01154">pdf</a>, <a href="https://arxiv.org/format/2102.01154">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D0EE02984J">10.1039/D0EE02984J <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimizing accuracy and efficacy in data-driven materials discovery for the solar production of hydrogen </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Yihuang Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campbell%2C+Q+T">Quinn T. Campbell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fanghanel%2C+J">Julian Fanghanel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Badding%2C+C+K">Catherine K. Badding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huaiyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirchner-Hall%2C+N+E">Nicole E. Kirchner-Hall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Theibault%2C+M+J">Monica J. Theibault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Timrov%2C+I">Iurii Timrov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mondschein%2C+J+S">Jared S. Mondschein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seth%2C+K">Kriti Seth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katz%2C+R">Rebecca Katz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Villarino%2C+A+M">Andres Molina Villarino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Penrod%2C+M+E">Megan E. Penrod</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+M+M">Mohammed M. Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rivera%2C+T">Tiffany Rivera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+N+C">Nathan C. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quintana%2C+X">Xavier Quintana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orbe%2C+P">Paul Orbe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fennie%2C+C+J">Craig J. Fennie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asem-Hiablie%2C+S">Senorpe Asem-Hiablie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Young%2C+J+L">James L. Young</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deutsch%2C+T+G">Todd G. Deutsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cococcioni%2C+M">Matteo Cococcioni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gopalan%2C+V">Venkatraman Gopalan</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.01154v1-abstract-short" style="display: inline;"> The production of hydrogen fuels, via water splitting, is of practical relevance for meeting global energy needs and mitigating the environmental consequences of fossil-fuel-based transportation. Water photoelectrolysis has been proposed as a viable approach for generating hydrogen, provided that stable and inexpensive photocatalysts with conversion efficiencies over 10% can be discovered, synthes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01154v1-abstract-full').style.display = 'inline'; document.getElementById('2102.01154v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.01154v1-abstract-full" style="display: none;"> The production of hydrogen fuels, via water splitting, is of practical relevance for meeting global energy needs and mitigating the environmental consequences of fossil-fuel-based transportation. Water photoelectrolysis has been proposed as a viable approach for generating hydrogen, provided that stable and inexpensive photocatalysts with conversion efficiencies over 10% can be discovered, synthesized at scale, and successfully deployed (Pinaud et al., Energy Environ. Sci., 2013, 6, 1983). While a number of first-principles studies have focused on the data-driven discovery of photocatalysts, in the absence of systematic experimental validation, the success rate of these predictions may be limited. We address this problem by developing a screening procedure with co-validation between experiment and theory to expedite the synthesis, characterization, and testing of the computationally predicted, most desirable materials. Starting with 70,150 compounds in the Materials Project database, the proposed protocol yielded 71 candidate photocatalysts, 11 of which were synthesized as single-phase materials. Experiments confirmed hydrogen generation and favorable band alignment for 6 of the 11 compounds, with the most promising ones belonging to the families of alkali and alkaline-earth indates and orthoplumbates. This study shows the accuracy of a nonempirical, Hubbard-corrected density-functional theory method to predict band gaps and band offsets at a fraction of the computational cost of hybrid functionals, and outlines an effective strategy to identify photocatalysts for solar hydrogen generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01154v1-abstract-full').style.display = 'none'; document.getElementById('2102.01154v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.06543">arXiv:2005.06543</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.06543">pdf</a>, <a href="https://arxiv.org/format/2005.06543">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-20252-7">10.1038/s41467-020-20252-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-stabilized superconductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ruf%2C+J+P">Jacob P. Ruf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paik%2C+H">Hanjong Paik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schreiber%2C+N+J">Nathaniel J. Schreiber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nair%2C+H+P">Hari P. Nair</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+L">Ludi Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawasaki%2C+J+K">Jason K. Kawasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+J+N">Jocienne N. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faeth%2C+B+D">Brendan D. Faeth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">Berit H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fennie%2C+C+J">Craig J. Fennie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">Lena F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">Darrell G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">Kyle M. Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.06543v1-abstract-short" style="display: inline;"> Superconductivity is among the most fascinating and well-studied quantum states of matter. Despite over 100 years of research, a detailed understanding of how features of the normal-state electronic structure determine superconducting properties has remained elusive. For instance, the ability to deterministically enhance the superconducting transition temperature by design, rather than by serendip&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.06543v1-abstract-full').style.display = 'inline'; document.getElementById('2005.06543v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.06543v1-abstract-full" style="display: none;"> Superconductivity is among the most fascinating and well-studied quantum states of matter. Despite over 100 years of research, a detailed understanding of how features of the normal-state electronic structure determine superconducting properties has remained elusive. For instance, the ability to deterministically enhance the superconducting transition temperature by design, rather than by serendipity, has been a long sought-after goal in condensed matter physics and materials science, but achieving this objective may require new tools, techniques and approaches. Here, we report the first instance of the transmutation of a normal metal into a superconductor through the application of epitaxial strain. We demonstrate that synthesizing RuO$_{2}$ thin films on (110)-oriented TiO$_{2}$ substrates enhances the density of states near the Fermi level, which stabilizes superconductivity under strain, and suggests that a promising strategy to create new transition-metal superconductors is to apply judiciously chosen anisotropic strains that redistribute carriers within the low-energy manifold of $d$ orbitals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.06543v1-abstract-full').style.display = 'none'; document.getElementById('2005.06543v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 20 figures (including supplemental information)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 12, 59 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.13431">arXiv:1912.13431</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.13431">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Realization of Epitaxial Thin Films of the Topological Crystalline Insulator Sr$_3$SnO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Y">Yanjun Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edgeton%2C+A">Anthony Edgeton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paik%2C+H">Hanjong Paik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faeth%2C+B">Brendan Faeth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parzyck%2C+C">Chris Parzyck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+S">Shun-Li Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zi-Kui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+K+M">Kyle M. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlom%2C+D+G">Darrell G. Schlom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eom%2C+C">Chang-Beom Eom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.13431v1-abstract-short" style="display: inline;"> Topological materials are derived from the interplay between symmetry and topology. Advances in topological band theories have led to the prediction that the antiperovskite oxide Sr$_3$SnO is a topological crystalline insulator, a new electronic phase of matter where the conductivity in its (001) crystallographic planes is protected by crystallographic point group symmetries. Realization of this m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.13431v1-abstract-full').style.display = 'inline'; document.getElementById('1912.13431v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.13431v1-abstract-full" style="display: none;"> Topological materials are derived from the interplay between symmetry and topology. Advances in topological band theories have led to the prediction that the antiperovskite oxide Sr$_3$SnO is a topological crystalline insulator, a new electronic phase of matter where the conductivity in its (001) crystallographic planes is protected by crystallographic point group symmetries. Realization of this material, however, is challenging. Guided by thermodynamic calculations we design and implement a deposition approach to achieve the adsorption-controlled growth of epitaxial Sr$_3$SnO single-crystal films by molecular-beam epitaxy (MBE). In-situ transport and angle-resolved photoemission spectroscopy measurements reveal the metallic and non-trivial topological nature of the as-grown samples. Compared with conventional MBE, the synthesis route used results in superior sample quality and is readily adapted to other topological systems with antiperovskite structures. The successful realization of thin films of topological crystalline insulators opens opportunities to manipulate topological states by tuning symmetries via epitaxial strain and heterostructuring. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.13431v1-abstract-full').style.display = 'none'; document.getElementById('1912.13431v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.09226">arXiv:1903.09226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.09226">pdf</a>, <a href="https://arxiv.org/format/1903.09226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Competition between exchange-driven dimerization and magnetism in diamond(111) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calandra%2C+M">Matteo Calandra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.09226v1-abstract-short" style="display: inline;"> Strong electron-electron interaction in ultraflat edge states can be responsible for correlated phases of matter, such as magnetism, charge density wave or superconductivity. Here we consider the diamond(111) surface that, after Pandey reconstruction, presents zig-zag carbon chains, generating a flat surface band. By performing full structural optimization with hybrid functionals and neglecting sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.09226v1-abstract-full').style.display = 'inline'; document.getElementById('1903.09226v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.09226v1-abstract-full" style="display: none;"> Strong electron-electron interaction in ultraflat edge states can be responsible for correlated phases of matter, such as magnetism, charge density wave or superconductivity. Here we consider the diamond(111) surface that, after Pandey reconstruction, presents zig-zag carbon chains, generating a flat surface band. By performing full structural optimization with hybrid functionals and neglecting spin polarization, we find that a substantial dimerization ($0.090$ 脜 / $0.076$ 脜 bond disproportionation in the PBE0/HSE06) occurs on the chains; a structural effect absent in calculations based on the LDA/GGA functionals. This dimerization is the primary mechanism for the opening of an insulating gap in the absence of spin polarization. The single-particle direct gap is $1.7$ eV ($1.0$ eV) in the PBE0 (HSE06), comparable with the experimental optical gap of $1.47$ eV, and on the larger(smaller) side of the estimated experimental single particle gap window of 1.57-1.87 eV, after inclusion of excitonic effects. However, by including spin polarization in the calculation, we find that the exchange interaction stabilizes a different ground state, undimerized, with no net magnetization and ferrimagnetic along the Pandey $蟺$-chains with magnetic moments as large as $0.2-0.3~渭_B$ in the PBE0. The direct single-particle band gap in the equal spin-channel is approximately $2.2$ eV ($1.5$ eV) with the PBE0 (HSE06) functional. Our work is relevant for systems with flat bands in general and wherever the interplay between structural, electronic and magnetic degrees of freedom is crucial, as in twisted bilayer graphene, IVB atoms on IVB(111) surfaces such as Pb/Si(111) or molecular crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.09226v1-abstract-full').style.display = 'none'; document.getElementById('1903.09226v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.02998">arXiv:1801.02998</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.02998">pdf</a>, <a href="https://arxiv.org/ps/1801.02998">ps</a>, <a href="https://arxiv.org/format/1801.02998">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Insights into the structure of liquid water from nuclear quantum effects on density and compressibility of ice polymorphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+P+B">P. B. Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fern%C3%A1ndez-Serra%2C+M">M-V Fern谩ndez-Serra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.02998v1-abstract-short" style="display: inline;"> Nuclear quantum effects lead to an anomalous shift of the volume of hexagonal ice; heavy ice has a larger volume than light ice. This anomaly in ice increases with temperature and persists in liquid water up to the boiling point. We study nuclear quantum effects on the density and compressibility of several ice-like structures and crystalline ice phases. By calculating the anisotropic contribution&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.02998v1-abstract-full').style.display = 'inline'; document.getElementById('1801.02998v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.02998v1-abstract-full" style="display: none;"> Nuclear quantum effects lead to an anomalous shift of the volume of hexagonal ice; heavy ice has a larger volume than light ice. This anomaly in ice increases with temperature and persists in liquid water up to the boiling point. We study nuclear quantum effects on the density and compressibility of several ice-like structures and crystalline ice phases. By calculating the anisotropic contributions to the stain tensor, we analyze how the compressibility changes along different directions in hexagonal ice, and find that hexagonal ice is softer along the x-y plane than the z-direction. Furthermore, by performing ab initio density functional theory calculations with a van der Waals functional and with the quasiharmonic approximation, we find an anomalous isotope effect in the bulk modulus of hexagonal ice: heavy ice has a smaller bulk modulus than light ice. In agreement with the experiments, we also obtain an anomalous isotope effect for clathrate hydrate structure I. For the rest of the ice polymorphs, the isotope effect is: i) anomalous for ice IX, Ih, Ic, clathrate, and low density liquid-like amorphous ice; ii) normal at T=0 K and becomes anomalous with increasing temperature for ice IX, II, high density liquid-like amorphous ices, and ice XV; iii) normal for ice VIII up to the melting point. There is a transition from an anomalous isotope effect to a normal isotope effect for both the volume and bulk modulus, as the density (compressibility) of the structures increases (decreases). This result can explain the anomalous isotope effect in liquid water: as the compressibility decreases from melting point to the compressibility minimum temperature, the difference between the volumes of the heavy and light water rapidly decreases, but the effect stays anomalous up to the boiling temperature as the hydrogen bond network is never completely broken by fully filling all the interstitial sites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.02998v1-abstract-full').style.display = 'none'; document.getElementById('1801.02998v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.00366">arXiv:1712.00366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.00366">pdf</a>, <a href="https://arxiv.org/ps/1712.00366">ps</a>, <a href="https://arxiv.org/format/1712.00366">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.7566/JPSJ.87.041013">10.7566/JPSJ.87.041013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exchange Enhancement of the Electron-Phonon Interaction: the Case of Weakly Doped Two-Dimensional Multivalley Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Betul Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zoccante%2C+P">Paolo Zoccante</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baima%2C+J">Jacopo Baima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mauri%2C+F">Francesco Mauri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calandra%2C+M">Matteo Calandra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.00366v1-abstract-short" style="display: inline;"> The effect of the exchange interaction on the vibrational properties and on the electron-phonon coupling were investigated in several recent works. In most of the case, exchange tends to enhance the electron-phonon interaction, although the motivations for such behaviour are not completely understood. Here we consider the class of weakly doped two-dimensional multivalley semiconductors and we demo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00366v1-abstract-full').style.display = 'inline'; document.getElementById('1712.00366v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.00366v1-abstract-full" style="display: none;"> The effect of the exchange interaction on the vibrational properties and on the electron-phonon coupling were investigated in several recent works. In most of the case, exchange tends to enhance the electron-phonon interaction, although the motivations for such behaviour are not completely understood. Here we consider the class of weakly doped two-dimensional multivalley semiconductors and we demonstrate that a more global picture emerges. In particular we show that in these systems, at low enough doping, even a moderate electron-electron interaction enhances the response to any perturbation inducing a valley polarization. If the valley polarization is due to the electron-phonon coupling, the electron-electron interaction results in an enhancement of the superconducting critical temperature. We demonstrate the applicability of the theory by performing random phase approximation and first principles calculations in transition metal chloronitrides. We find that exchange is responsible for the enhancement of the superconducting critical temperature in Li$_x$ZrNCl and that much larger T$_c$s could be obtained in intercalated HfNCl if the synthesis of cleaner samples could remove the Anderson insulating state competing with superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00366v1-abstract-full').style.display = 'none'; document.getElementById('1712.00366v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited contribution for a special issue of the Journa of the Physical Society of Japan</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03220">arXiv:1708.03220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.03220">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.245421">10.1103/PhysRevB.97.245421 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flat Electronic Bands in Long Sequences of Rhombohedral-stacked Multilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Henck%2C+H">Hugo Henck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Avila%2C+J">Jose Avila</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aziza%2C+Z+B">Zeineb Ben Aziza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pierucci%2C+D">Debora Pierucci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baima%2C+J">Jacopo Baima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaste%2C+J">Julien Chaste</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Utt%2C+D">Daniel Utt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bartos%2C+M">Miroslav Bartos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nogajewski%2C+K">Karol Nogajewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piot%2C+B+A">Benjamin A. Piot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlita%2C+M">Milan Orlita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Potemski%2C+M">Marek Potemski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calandra%2C+M">Matteo Calandra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asensio%2C+M+C">Maria C. Asensio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mauri%2C+F">Francesco Mauri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faugeras%2C+C">Cl茅ment Faugeras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ouerghi%2C+A">Abdelkarim Ouerghi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03220v2-abstract-short" style="display: inline;"> The crystallographic stacking order in multilayer graphene plays an important role in determining its electronic properties. It has been predicted that a rhombohedral (ABC) stacking displays a conducting surface state with flat electronic dispersion. In such a flat band, the role of electron-electron correlation is enhanced possibly resulting in high Tc superconductivity, charge density wave or ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03220v2-abstract-full').style.display = 'inline'; document.getElementById('1708.03220v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03220v2-abstract-full" style="display: none;"> The crystallographic stacking order in multilayer graphene plays an important role in determining its electronic properties. It has been predicted that a rhombohedral (ABC) stacking displays a conducting surface state with flat electronic dispersion. In such a flat band, the role of electron-electron correlation is enhanced possibly resulting in high Tc superconductivity, charge density wave or magnetic orders. Clean experimental band structure measurements of ABC stacked specimens are missing because the samples are usually too small in size. Here, we directly image the band structure of large multilayer graphene flake containing approximately 14 consecutive ABC layers. Angle-resolved photoemission spectroscopy experiments reveal the flat electronic bands near the K point extends by 0.13 脜-1 at the Fermi level at liquid nitrogen temperature. First-principle calculations identify the electronic ground state as an antiferromagnetic state with a band gap of about 40 meV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03220v2-abstract-full').style.display = 'none'; document.getElementById('1708.03220v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 245421 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.00854">arXiv:1706.00854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.00854">pdf</a>, <a href="https://arxiv.org/ps/1706.00854">ps</a>, <a href="https://arxiv.org/format/1706.00854">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.96.024518">10.1103/PhysRevB.96.024518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-$T_c$ superconductivity in weakly electron-doped HfNCl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mauri%2C+F">Francesco Mauri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calandra%2C+M">Matteo Calandra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.00854v2-abstract-short" style="display: inline;"> We investigate the magnetic and superconducting properties in electron-doped Li$_x$HfNCl. HfNCl is a band insulator that undergoes an insulator to superconductor transition upon doping at $x\approx0.13$. The persistence of the insulating state for $x&lt;0.13$ is due to an Anderson transition probably related to Li disorder. In the metallic and superconducting phase, Li$_x$HfNCl is a prototype two-dim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.00854v2-abstract-full').style.display = 'inline'; document.getElementById('1706.00854v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.00854v2-abstract-full" style="display: none;"> We investigate the magnetic and superconducting properties in electron-doped Li$_x$HfNCl. HfNCl is a band insulator that undergoes an insulator to superconductor transition upon doping at $x\approx0.13$. The persistence of the insulating state for $x&lt;0.13$ is due to an Anderson transition probably related to Li disorder. In the metallic and superconducting phase, Li$_x$HfNCl is a prototype two-dimensional two-valley electron gas with parabolic bands. By performing a model random phase approximation approach as well as first-principles range-separated Heyd-Scuseria-Ernzerhof (HSE06) calculations, we find that the spin susceptibility $蠂_s$ is strongly enhanced in the low doping regime by the electron-electron interaction. Furthermore, in the low doping limit, the exchange interaction renormalizes the intervalley electron-phonon coupling and results in a strong increase of the superconducting critical temperature for $x&lt;0.15$. On the contrary, for $x&gt;0.15$, $T_c$ is approximately constant, in agreement with experiments. At $x=0.055$ we found that $T_c$ can be as large as 40 K, suggesting that the synthesis of cleaner samples of Li$_x$HfNCl could remove the Anderson insulating state competing with superconductivity and generate a high-$T_c$ superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.00854v2-abstract-full').style.display = 'none'; document.getElementById('1706.00854v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 96, 024518 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.03445">arXiv:1610.03445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.03445">pdf</a>, <a href="https://arxiv.org/ps/1610.03445">ps</a>, <a href="https://arxiv.org/format/1610.03445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.075422">10.1103/PhysRevB.95.075422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic gap opening in rhombohedral-stacked multilayer graphene from first principles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baima%2C+J">Jacopo Baima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mauri%2C+F">Francesco Mauri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calandra%2C+M">Matteo Calandra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.03445v2-abstract-short" style="display: inline;"> We investigate the occurrence of magnetic and charge density wave instabilities in rhombohedral-stacked multilayer (three to eight layers) graphene by first principles calculations including exact exchange. Neglecting spin-polarization, an extremely flat surface band centered at the special point ${\bf K}$ of the Brillouin zone occurs at the Fermi level. Spin polarization opens a gap in the surfac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.03445v2-abstract-full').style.display = 'inline'; document.getElementById('1610.03445v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.03445v2-abstract-full" style="display: none;"> We investigate the occurrence of magnetic and charge density wave instabilities in rhombohedral-stacked multilayer (three to eight layers) graphene by first principles calculations including exact exchange. Neglecting spin-polarization, an extremely flat surface band centered at the special point ${\bf K}$ of the Brillouin zone occurs at the Fermi level. Spin polarization opens a gap in the surface state by stabilizing an antiferromagnetic state. The top and the bottom surface layers are weakly ferrimagnetic in-plane (net magnetization smaller than $10^{-3}渭_B$), and are antiferromagnetic coupled to each other. This coupling is propagated by the out-of-plane antiferromagnetic coupling between the nearest neighbors. The gap is very small in a spin-polarized generalized gradient approximation, while it is proportional to the amount of exact exchange in hybrid functionals. For trilayer rhombohedral graphene it is $38.6$ meV in PBE0, in agreement with the $42$ meV gap found in experiments. We study the temperature and doping dependence of the magnetic gap. At electron doping of $n \sim 7 \times 10^{11}$ cm$^{-2}$ the gap closes. Charge density wave instabilities with $\sqrt{3}\times\sqrt{3}$ periodicity do not occur. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.03445v2-abstract-full').style.display = 'none'; document.getElementById('1610.03445v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 075422 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.05076">arXiv:1602.05076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.05076">pdf</a>, <a href="https://arxiv.org/ps/1602.05076">ps</a>, <a href="https://arxiv.org/format/1602.05076">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.035101">10.1103/PhysRevB.94.035101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin susceptibility and electron-phonon coupling of two-dimensional materials by range-separated hybrid density functionals: Case study of Li$_x$ZrNCl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baima%2C+J">Jacopo Baima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dovesi%2C+R">Roberto Dovesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calandra%2C+M">Matteo Calandra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mauri%2C+F">Francesco Mauri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.05076v2-abstract-short" style="display: inline;"> We investigate the capability of density functional theory (DFT) to appropriately describe the spin susceptibility, $蠂_s$, and the intervalley electron-phonon coupling in Li$_x$ZrNCl. At low doping, Li$_x$ZrNCl behaves as a two-dimensional two-valley electron gas, with parabolic bands. In such a system, $蠂_s$ increases with decreasing doping because of the electron-electron interaction. We show th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.05076v2-abstract-full').style.display = 'inline'; document.getElementById('1602.05076v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.05076v2-abstract-full" style="display: none;"> We investigate the capability of density functional theory (DFT) to appropriately describe the spin susceptibility, $蠂_s$, and the intervalley electron-phonon coupling in Li$_x$ZrNCl. At low doping, Li$_x$ZrNCl behaves as a two-dimensional two-valley electron gas, with parabolic bands. In such a system, $蠂_s$ increases with decreasing doping because of the electron-electron interaction. We show that DFT with local functionals (LDA/GGA) is not capable of reproducing this behavior. The use of exact exchange in Hartree-Fock (HF) or in DFT hybrid functionals enhances $蠂_s$. HF, B3LYP, and PBE0 approaches overestimate $蠂_s$, whereas the range-separated HSE06 functional leads to results similar to those obtained in the random phase approximation (RPA) applied to a two-valley two-spin electron gas. Within HF, Li$_x$ZrNCl is even unstable towards a ferromagnetic state for $x&lt;0.16$. The intervalley phonons induce an imbalance in the valley occupation that can be viewed as the effect of a pseudomagnetic field. Thus, similarly to what happens for $蠂_s$, the electron-phonon coupling of intervalley phonons is enhanced by the electron-electron interaction. Only hybrid DFT functionals capture such an enhancement and the HSE06 functional reproduces the RPA results presented in M. Calandra {\it et al.} [Phys. Rev. Lett. {\bf 114}, 077001 (2015)]. These results imply that the description of the susceptibility and electron-phonon coupling with a range-separated hybrid functional would be important also in other two-dimensional weakly doped semiconductors, such as transition-metal dichalcogenides and graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.05076v2-abstract-full').style.display = 'none'; document.getElementById('1602.05076v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 035101 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.02009">arXiv:1506.02009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.02009">pdf</a>, <a href="https://arxiv.org/ps/1506.02009">ps</a>, <a href="https://arxiv.org/format/1506.02009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.134105">10.1103/PhysRevB.92.134105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic and Nuclear Quantum Effects on the Ice XI/Ice Ih Phase Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">Bet眉l Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+P+B">Philip B. Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fern%C3%A1ndez-Serra%2C+M+-">M. -V. Fern谩ndez-Serra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.02009v2-abstract-short" style="display: inline;"> We study the isotope effect on the temperature of the proton order/disorder phase transition between ice XI and ice Ih, using the quasiharmonic approximation combined with \textit{ab initio} density functional theory calculations. We show that this method is accurate enough to obtain a phase transition temperature difference between light ice (H$_2$O) and heavy ice (D$_2$O) of 6 K as compared to t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.02009v2-abstract-full').style.display = 'inline'; document.getElementById('1506.02009v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.02009v2-abstract-full" style="display: none;"> We study the isotope effect on the temperature of the proton order/disorder phase transition between ice XI and ice Ih, using the quasiharmonic approximation combined with \textit{ab initio} density functional theory calculations. We show that this method is accurate enough to obtain a phase transition temperature difference between light ice (H$_2$O) and heavy ice (D$_2$O) of 6 K as compared to the experimental value of 4 K. More importantly, we are able to explain the origin of the isotope effect on the much debated large temperature difference observed in the phase transition. The source of the difference is directly linked to the physics behind the anomalous isotope effect on the volume of hexagonal ice that was recently explained in [Phys. Rev. Lett. 108, 193003 (2012)]. These results indicate that the same physics might be behind the isotope effects in transition temperatures between other ice phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.02009v2-abstract-full').style.display = 'none'; document.getElementById('1506.02009v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 134105 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.4870">arXiv:1111.4870</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.4870">pdf</a>, <a href="https://arxiv.org/ps/1111.4870">ps</a>, <a href="https://arxiv.org/format/1111.4870">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.108.193003">10.1103/PhysRevLett.108.193003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous Nuclear Quantum Effects in Ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pamuk%2C+B">B. Pamuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soler%2C+J+M">J. M. Soler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramirez%2C+R">R. Ramirez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herrero%2C+C+P">C. P. Herrero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stephens%2C+P+W">P. W. Stephens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+P+B">P. B. Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandez-Serra%2C+M+V">M. V. Fernandez-Serra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.4870v3-abstract-short" style="display: inline;"> One striking anomaly of water ice has been largely neglected and never explained. Replacing hydrogen ($^1$H) by deuterium ($^2$H) causes ice to expand, whereas the &#34;normal&#34; isotope effect is volume contraction with increased mass. Furthermore, the anomaly increases with temperature $T$, even though a normal isotope shift should decrease with $T$ and vanish when $T$ is high enough to use classical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.4870v3-abstract-full').style.display = 'inline'; document.getElementById('1111.4870v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.4870v3-abstract-full" style="display: none;"> One striking anomaly of water ice has been largely neglected and never explained. Replacing hydrogen ($^1$H) by deuterium ($^2$H) causes ice to expand, whereas the &#34;normal&#34; isotope effect is volume contraction with increased mass. Furthermore, the anomaly increases with temperature $T$, even though a normal isotope shift should decrease with $T$ and vanish when $T$ is high enough to use classical nuclear motions. In this study, we show that these effects are very well described by {\it ab initio} density functional theory. Our theoretical modeling explains these anomalies, and allows us to predict and to experimentally confirm a counter effect, namely that replacement of $^{16}$O by $^{18}$O causes a normal lattice contraction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.4870v3-abstract-full').style.display = 'none'; document.getElementById('1111.4870v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10