CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–38 of 38 results for author: <span class="mathjax">Cervellino, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Cervellino%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Cervellino, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Cervellino%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Cervellino, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13534">arXiv:2307.13534</a> <span> [<a href="https://arxiv.org/pdf/2307.13534">pdf</a>, <a href="https://arxiv.org/format/2307.13534">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01339-1">10.1038/s42005-023-01339-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge fluctuations in the intermediate-valence ground state of SmCoIn$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tam%2C+D+W">David W. Tam</a>, <a href="/search/cond-mat?searchtype=author&query=Colonna%2C+N">Nicola Colonna</a>, <a href="/search/cond-mat?searchtype=author&query=Kumar%2C+N">Neeraj Kumar</a>, <a href="/search/cond-mat?searchtype=author&query=Piamonteze%2C+C">Cinthia Piamonteze</a>, <a href="/search/cond-mat?searchtype=author&query=Alarab%2C+F">Fatima Alarab</a>, <a href="/search/cond-mat?searchtype=author&query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">Tom Fennell</a>, <a href="/search/cond-mat?searchtype=author&query=Gawryluk%2C+D+J">Dariusz Jakub Gawryluk</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&query=Soh%2C+Y">Y. Soh</a>, <a href="/search/cond-mat?searchtype=author&query=Kenzelmann%2C+M">Michel Kenzelmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13534v1-abstract-short" style="display: inline;"> The microscopic mechanism of heavy band formation, relevant for unconventional superconductivity in CeCoIn$_5$ and other Ce-based heavy fermion materials, depends strongly on the efficiency with which $f$ electrons are delocalized from the rare earth sites and participate in a Kondo lattice. Replacing Ce$^{3+}$ ($4f^1$, $J=5/2$) with Sm$^{3+}$ ($4f^5$, $J=5/2$), we show that a combination of cryst… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13534v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13534v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13534v1-abstract-full" style="display: none;"> The microscopic mechanism of heavy band formation, relevant for unconventional superconductivity in CeCoIn$_5$ and other Ce-based heavy fermion materials, depends strongly on the efficiency with which $f$ electrons are delocalized from the rare earth sites and participate in a Kondo lattice. Replacing Ce$^{3+}$ ($4f^1$, $J=5/2$) with Sm$^{3+}$ ($4f^5$, $J=5/2$), we show that a combination of crystal field and on-site Coulomb repulsion causes SmCoIn$_5$ to exhibit a $螕_7$ ground state similar to CeCoIn$_5$ with multiple $f$ electrons. Remarkably, we also find that with this ground state, SmCoIn$_5$ exhibits a temperature-induced valence crossover consistent with a Kondo scenario, leading to increased delocalization of $f$ holes below a temperature scale set by the crystal field, $T_v$ $\approx$ 60 K. Our result provides evidence that in the case of many $f$ electrons, the crystal field remains the most important tuning knob in controlling the efficiency of delocalization near a heavy fermion quantum critical point, and additionally clarifies that charge fluctuations play a general role in the ground state of "115" materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13534v1-abstract-full').style.display = 'none'; document.getElementById('2307.13534v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.13017">arXiv:2305.13017</a> <span> [<a href="https://arxiv.org/pdf/2305.13017">pdf</a>, <a href="https://arxiv.org/format/2305.13017">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.074805">10.1103/PhysRevMaterials.7.074805 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural Phase Transition and Superconductivity in 2H-BaGaGe with Buckled Honeycomb Layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Walicka%2C+D+I">Dorota I. Walicka</a>, <a href="/search/cond-mat?searchtype=author&query=Lefevre%2C+R">Robin Lefevre</a>, <a href="/search/cond-mat?searchtype=author&query=Blacque%2C+O">Olivier Blacque</a>, <a href="/search/cond-mat?searchtype=author&query=Lopez-Paz%2C+S+A">Sara A. Lopez-Paz</a>, <a href="/search/cond-mat?searchtype=author&query=Rischau%2C+C+W">Carl W. Rischau</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Triana%2C+C+A">Carlos A. Triana</a>, <a href="/search/cond-mat?searchtype=author&query=von+Rohr%2C+F+O">Fabian O. von Rohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.13017v1-abstract-short" style="display: inline;"> We report on the structural and superconducting properties of the intermetallic compound BaGaGe. We find that this material undergoes a structural second-order phase transition from the distorted AlB$_2$-type structure (1H, $a$ = 4.3254(2) 脜, $c$ = 5.1078(3) 脜, P6/mmm) into the CaIn$_2$-type structure (2H, $a$ = 4.3087(3) 脜, $c$ = 10.2117(6) 脜, P6$_3$/mmc) at a transition temperature of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13017v1-abstract-full').style.display = 'inline'; document.getElementById('2305.13017v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.13017v1-abstract-full" style="display: none;"> We report on the structural and superconducting properties of the intermetallic compound BaGaGe. We find that this material undergoes a structural second-order phase transition from the distorted AlB$_2$-type structure (1H, $a$ = 4.3254(2) 脜, $c$ = 5.1078(3) 脜, P6/mmm) into the CaIn$_2$-type structure (2H, $a$ = 4.3087(3) 脜, $c$ = 10.2117(6) 脜, P6$_3$/mmc) at a transition temperature of $T_{\rm S}$ = 253 K. We find that the structural phase-transition corresponds to a coherent buckling of the honeycomb layers, which we can interpret as a disorder-to-order transition of the atoms located within this layer. We show that the 2H-BaGaGe phase becomes superconducting at a critical temperature of $T_{\rm c}$ = 2.1 K. The bulk nature of the superconductivity in 2H-BaGaGe is confirmed by means of specific heat measurements, where we determine a value of $螖C$/$纬T_{\rm c}$ = 1.59, which is close to the expected BCS value in the weak coupling limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13017v1-abstract-full').style.display = 'none'; document.getElementById('2305.13017v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.12782">arXiv:2204.12782</a> <span> [<a href="https://arxiv.org/pdf/2204.12782">pdf</a>, <a href="https://arxiv.org/format/2204.12782">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Diffraction from nanocrystal superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Frison%2C+R">Ruggero Frison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.12782v1-abstract-short" style="display: inline;"> Diffraction from a lattice of periodically spaced crystals is a topic of current interest because of the great development of self-organised superlattices (SL) of nanocrystals (NC). The self-organisation of NC into SL has theoretical interest, but especially a rich application prospect, as the coherent organisation has large effects on a wide range of material properties. Diffraction is a key meth… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.12782v1-abstract-full').style.display = 'inline'; document.getElementById('2204.12782v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.12782v1-abstract-full" style="display: none;"> Diffraction from a lattice of periodically spaced crystals is a topic of current interest because of the great development of self-organised superlattices (SL) of nanocrystals (NC). The self-organisation of NC into SL has theoretical interest, but especially a rich application prospect, as the coherent organisation has large effects on a wide range of material properties. Diffraction is a key method to understand the type and quality of SL ordering. Hereby the characteristic diffraction signature of a SL of NC - together with the characteristic types of disorder - are theoretically explored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.12782v1-abstract-full').style.display = 'none'; document.getElementById('2204.12782v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.11785">arXiv:2203.11785</a> <span> [<a href="https://arxiv.org/pdf/2203.11785">pdf</a>, <a href="https://arxiv.org/ps/2203.11785">ps</a>, <a href="https://arxiv.org/format/2203.11785">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-32290-4">10.1038/s41467-022-32290-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic Magnetic Crossover at the Origin of the Hidden-Order in van der Waals Antiferromagnet CrSBr </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=L%C3%B3pez-Paz%2C+S+A">Sara A. L贸pez-Paz</a>, <a href="/search/cond-mat?searchtype=author&query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushin%2C+V+Y">Vladimir Y. Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&query=Witteveen%2C+C">Catherine Witteveen</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Luetkens%2C+H">Hubertus Luetkens</a>, <a href="/search/cond-mat?searchtype=author&query=Casati%2C+N">Nicola Casati</a>, <a href="/search/cond-mat?searchtype=author&query=Morpurgo%2C+A+F">Alberto F. Morpurgo</a>, <a href="/search/cond-mat?searchtype=author&query=von+Rohr%2C+F+O">Fabian O. von Rohr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.11785v1-abstract-short" style="display: inline;"> The van der Waals material CrSBr stands out as a promising two-dimensional magnet. Especially, its high magnetic ordering temperature and versatile magneto-transport properties make CrSBr an important candidate for new devices in the emergent field of two-dimensional magnetic materials. To date, the magnetic and structural properties of CrSBr have not been fully elucidated. Here, we report on the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11785v1-abstract-full').style.display = 'inline'; document.getElementById('2203.11785v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.11785v1-abstract-full" style="display: none;"> The van der Waals material CrSBr stands out as a promising two-dimensional magnet. Especially, its high magnetic ordering temperature and versatile magneto-transport properties make CrSBr an important candidate for new devices in the emergent field of two-dimensional magnetic materials. To date, the magnetic and structural properties of CrSBr have not been fully elucidated. Here, we report on the detailed temperature-dependent magnetic and structural properties of this material, by comprehensively combining neutron scattering, muon spin relaxation spectroscopy, synchrotron X-ray diffraction, and magnetization measurements. We evidence that this material undergoes a transition to an A-type antiferromagnetic state below $T_{\rm N} \approx$ 140 K, with a pronounced two-dimensional character as deduced from the determined critical exponent of $尾\approx $ 0.18. In our analysis of the field-induced metamagnetic transition, we find that the ferromagnetic correlations within the monolayers persist clearly above the N茅el temperature in this material. Furthermore, we unravel the low-temperature (i.e. $T < T_{\rm N}$) magnetic hidden order within the long-range magnetically ordered state. We find that it is associated to a slowing down of the magnetic fluctuations, accompanied by a continuous reorientation of the internal magnetic field. These take place upon cooling below $T_s$ $\approx$ 100 K, until a spin freezing process occurs at $T$* $\approx$ 40 K. We argue this complex dynamic behavior to reflect a magnetic crossover driven by the in-plane uniaxial anisotropy, which is ultimately caused by the mixed-anion character of the material. Our findings indicate that the magnetic and structural properties of CrSBr widen its potential application as a component for spin-based electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.11785v1-abstract-full').style.display = 'none'; document.getElementById('2203.11785v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 4745 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.06904">arXiv:2107.06904</a> <span> [<a href="https://arxiv.org/pdf/2107.06904">pdf</a>, <a href="https://arxiv.org/format/2107.06904">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.064412">10.1103/PhysRevB.104.064412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic correlations in triangular antiferromagnet FeGa$_2$S$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guratinder%2C+K">K. Guratinder</a>, <a href="/search/cond-mat?searchtype=author&query=Schmidt%2C+M">M. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&query=Bewley%2C+R">R. Bewley</a>, <a href="/search/cond-mat?searchtype=author&query=W%C3%B6rle%2C+M">M. W枚rle</a>, <a href="/search/cond-mat?searchtype=author&query=Cabra%2C+D">D. Cabra</a>, <a href="/search/cond-mat?searchtype=author&query=Osorio%2C+S+A">S. A. Osorio</a>, <a href="/search/cond-mat?searchtype=author&query=Villalba%2C+M">M. Villalba</a>, <a href="/search/cond-mat?searchtype=author&query=Madsen%2C+A+K">A. K. Madsen</a>, <a href="/search/cond-mat?searchtype=author&query=Keller%2C+L">L. Keller</a>, <a href="/search/cond-mat?searchtype=author&query=Wildes%2C+A">A. Wildes</a>, <a href="/search/cond-mat?searchtype=author&query=Puphal%2C+P">P. Puphal</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=R%C3%BCegg%2C+C">Ch. R眉egg</a>, <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">O. Zaharko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.06904v1-abstract-short" style="display: inline;"> The crystal structure and magnetic correlations in triangular antiferromagnet FeGa$_2$S$_4$ are studied by x-ray diffraction, magnetic susceptibility, neutron diffraction and neutron inelastic scattering. We report significant mixing at the cation sites and disentangle magnetic properties dominated by major and minor magnetic sites. The magnetic short-range correlations at 0.77 脜$^{-1}$ correspond… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06904v1-abstract-full').style.display = 'inline'; document.getElementById('2107.06904v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.06904v1-abstract-full" style="display: none;"> The crystal structure and magnetic correlations in triangular antiferromagnet FeGa$_2$S$_4$ are studied by x-ray diffraction, magnetic susceptibility, neutron diffraction and neutron inelastic scattering. We report significant mixing at the cation sites and disentangle magnetic properties dominated by major and minor magnetic sites. The magnetic short-range correlations at 0.77 脜$^{-1}$ correspond to the major sites and being static at base temperature they evolve into dynamic correlations around 30 - 50 K. The minor sites contribute to the magnetic peak at 0.6 脜$^{-1}$, which vanishes at 5.5 K. Our analytical studies of triangular lattice models with bilinear and biquadratic terms provide the ratios between exchanges for the proposed ordering vectors. The modelling of the inelastic neutron spectrum within linear spin wave theory results in the set of exchange couplings $J_1=1.7$\,meV, $J_2=0.9$\,meV, $J_3=0.8$\,meV for the bilinear Heisenberg Hamiltonian. However, not all features of the excitation spectrum are explained with this model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06904v1-abstract-full').style.display = 'none'; document.getElementById('2107.06904v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.01099">arXiv:2102.01099</a> <span> [<a href="https://arxiv.org/pdf/2102.01099">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.094424">10.1103/PhysRevB.103.094424 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic order in the quasi-one-dimensional Ising system RbCoCl$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=H%C3%A4nni%2C+N+P">N. P. H盲nni</a>, <a href="/search/cond-mat?searchtype=author&query=Sheptyakov%2C+D">D. Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&query=Mena%2C+M">M. Mena</a>, <a href="/search/cond-mat?searchtype=author&query=Hirtenlechner%2C+E">E. Hirtenlechner</a>, <a href="/search/cond-mat?searchtype=author&query=Keller%2C+L">L. Keller</a>, <a href="/search/cond-mat?searchtype=author&query=Stuhr%2C+U">U. Stuhr</a>, <a href="/search/cond-mat?searchtype=author&query=Regnault%2C+L+-">L. -P. Regnault</a>, <a href="/search/cond-mat?searchtype=author&query=Medarde%2C+M">M. Medarde</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=R%C3%BCegg%2C+C">Ch. R眉egg</a>, <a href="/search/cond-mat?searchtype=author&query=Normand%2C+B">B. Normand</a>, <a href="/search/cond-mat?searchtype=author&query=Kr%C3%A4mer%2C+K+W">K. W. Kr盲mer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.01099v1-abstract-short" style="display: inline;"> The dynamical properties of free and bound domain-wall excitations in Ising-chain materials have recently become the focus of intense research interest. New materials and spectrometers have made it possible to control the environment of coupled Ising chains by both effective internal and applied external fields, which can be both longitudinal and transverse, and thus to demonstrate how the resulti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01099v1-abstract-full').style.display = 'inline'; document.getElementById('2102.01099v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.01099v1-abstract-full" style="display: none;"> The dynamical properties of free and bound domain-wall excitations in Ising-chain materials have recently become the focus of intense research interest. New materials and spectrometers have made it possible to control the environment of coupled Ising chains by both effective internal and applied external fields, which can be both longitudinal and transverse, and thus to demonstrate how the resulting magnetic phase transitions and the nature of the associated excited states obey fundamental symmetry properties. In RbCoCl$_3$, the weakly coupled Ising chains form a triangular lattice whose frustrated geometry and magnetic ordering transitions at low temperature open new possibilities for the Ising-chain environment. We have investigated the structure and magnetism in RbCoCl$_3$ by high-resolution x-ray diffraction and neutron scattering measurements on powder and single crystal samples between 1.5 K and 300 K. Upon cooling, the Co$^{2+}$ spins develop one-dimensional antiferromagnetic correlations along the chain axis ($c$-axis) below 90 K. Below the first N茅el temperature, $T_{N1}$ = 28 K, a partial 3D magnetic order sets in, with propagation vector ${\vec k}_1$ = (1/3,1/3,1), the moments aligned along the $c$-axis and every third chain uncorrelated from its neighbours. Only below a second magnetic phase transition at $T_{N2}$ = 13 K does the system achieve a fully ordered state, with two additional propagation vectors: ${\vec k}_2$ = (0,0,1) establishes a "honeycomb" $c$-axis order, in which 1/3 of the chains are subject to a strong effective mean field due to their neighbours whereas 2/3 experience no net field, while ${\vec k}_3$ = (1/2,0,1) governs a small, staggered in-plane ordered moment. We conclude that RbCoCl$_3$ is an excellent material to study the physics of Ising chains in a wide variety of temperature-controlled environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01099v1-abstract-full').style.display = 'none'; document.getElementById('2102.01099v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23+3 pages, 10+2 figures, 6+4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 094424 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.06075">arXiv:2101.06075</a> <span> [<a href="https://arxiv.org/pdf/2101.06075">pdf</a>, <a href="https://arxiv.org/format/2101.06075">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ac6923">10.1088/1361-648X/ac6923 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frustration, strain and phase co-existence in the mixed valent hexagonal iridate Ba$_{3}$NaIr$_{2}$O$_{9}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Garg%2C+C">Charu Garg</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Nair%2C+S">Sunil Nair</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.06075v1-abstract-short" style="display: inline;"> Using detailed synchrotron diffraction, magnetization, thermodynamic and transport measurements, we investigate the relationship between the mixed valence of Ir, lattice strain and the resultant structural and magnetic ground states in the geometrically frustrated triple perovskite iridate Ba$_{3}$NaIr$_{2}$O$_{9}$. We observe a complex interplay between lattice strain and structural phase co-exis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.06075v1-abstract-full').style.display = 'inline'; document.getElementById('2101.06075v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.06075v1-abstract-full" style="display: none;"> Using detailed synchrotron diffraction, magnetization, thermodynamic and transport measurements, we investigate the relationship between the mixed valence of Ir, lattice strain and the resultant structural and magnetic ground states in the geometrically frustrated triple perovskite iridate Ba$_{3}$NaIr$_{2}$O$_{9}$. We observe a complex interplay between lattice strain and structural phase co-existence, which is in sharp contrast to what is typically observed in this family of compounds. The low temperature magnetic ground state is characterized by the absence of long range order, and points towards the condensation of a cluster glass state from an extended regime of short range magnetic correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.06075v1-abstract-full').style.display = 'none'; document.getElementById('2101.06075v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05178">arXiv:2101.05178</a> <span> [<a href="https://arxiv.org/pdf/2101.05178">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.083604">10.1103/PhysRevMaterials.3.083604 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural disorder and magnetic correlations driven by oxygen doping in Nd2NiO4+d (d ~ 0.11) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Maity%2C+S+R">Sumit Ranjan Maity</a>, <a href="/search/cond-mat?searchtype=author&query=Ceretti%2C+M">Monica Ceretti</a>, <a href="/search/cond-mat?searchtype=author&query=Keller%2C+L">Lukas Keller</a>, <a href="/search/cond-mat?searchtype=author&query=Schefer%2C+J">J眉rg Schefer</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+T">Tian Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&query=Meven%2C+M">Martin Meven</a>, <a href="/search/cond-mat?searchtype=author&query=Sheptyakov%2C+D">Denis Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Paulus%2C+W">Werner Paulus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05178v1-abstract-short" style="display: inline;"> We investigated the influence of oxygen over-stoichiometry on apical oxygen disorder and magnetic correlations in Nd2NiO4+d (d~0.11) in the temperature range of 2-300 K by means of synchrotron x-ray powder diffraction, neutron single crystal and powder diffraction studies, combined with macroscopic magnetic measurements. In the investigated temperature range, the compound crystalizes in a tetragon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05178v1-abstract-full').style.display = 'inline'; document.getElementById('2101.05178v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05178v1-abstract-full" style="display: none;"> We investigated the influence of oxygen over-stoichiometry on apical oxygen disorder and magnetic correlations in Nd2NiO4+d (d~0.11) in the temperature range of 2-300 K by means of synchrotron x-ray powder diffraction, neutron single crystal and powder diffraction studies, combined with macroscopic magnetic measurements. In the investigated temperature range, the compound crystalizes in a tetragonal commensurate structure with the P42/ncm space group with excess oxygen atoms occupy the 4b (3/4 1/4 1/4) interstitial sites, coordinated by four apical oxygen atoms. Large and anisotropic thermal displacement parameters are found for equatorial and apical oxygen atoms, which are strongly reduced on an absolute scale compared to the Nd2NiO4.23 phase. Maximum Entropy analysis of the neutron single crystal diffraction data uncovered anharmonic contributions to the displacement parameters of the apical oxygen atoms, toward the nearest vacant 4b interstitial site, related to the phonon assisted oxygen diffusion mechanism. Macroscopic magnetization measurements and neutron powder diffraction studies reveal long-range antiferromagnetic ordering of the Ni-sublattice at TN ~ 53 K with a weak ferromagnetic component along the c-axis, while the long-range magnetic ordering of the Nd-sublattice occurs below 10 K. Temperature dependent neutron diffraction patterns show the appearance of a commensurate magnetic order at TN with the propagation vector k = (100) and the emergence of an additional incommensurate phase below 30 K, while both phases coexist at 2 K. The commensurate magnetic structure is best described by the P42/nc`m` Shubnikov space group. Refined magnetic moments of the Ni and Nd-sites at 2 K are 1.144(76) muB and 1.632(52) muB respectively. A possible origin of the incommensurate phase is discussed and a tentative magnetic phase diagram is proposed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05178v1-abstract-full').style.display = 'none'; document.getElementById('2101.05178v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review MATERIALS 3, 083604 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.03940">arXiv:2010.03940</a> <span> [<a href="https://arxiv.org/pdf/2010.03940">pdf</a>, <a href="https://arxiv.org/format/2010.03940">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.044405">10.1103/PhysRevMaterials.5.044405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase coexistence and negative thermal expansion in the triple perovskite iridate Ba$_{3}$CoIr$_{2}$O$_{9}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Garg%2C+C">Charu Garg</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Nair%2C+S">Sunil Nair</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.03940v1-abstract-short" style="display: inline;"> The anomalous thermal expansion in a layered 3$d$-5$d$ based triple perovskite iridate Ba$_{3}$CoIr$_{2}$O$_{9}$ is investigated using high resolution synchrotron diffraction. Below the magneto-structural transition at 107\,K, the onset of antiferromagnetic order is associated with a monoclinic distortion of the hexagonal structure. Deeper within the magnetically ordered state, a part of the monoc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03940v1-abstract-full').style.display = 'inline'; document.getElementById('2010.03940v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.03940v1-abstract-full" style="display: none;"> The anomalous thermal expansion in a layered 3$d$-5$d$ based triple perovskite iridate Ba$_{3}$CoIr$_{2}$O$_{9}$ is investigated using high resolution synchrotron diffraction. Below the magneto-structural transition at 107\,K, the onset of antiferromagnetic order is associated with a monoclinic distortion of the hexagonal structure. Deeper within the magnetically ordered state, a part of the monoclinic phase distorts even further, and both these structural phases co-exist down to the lowest measured temperatures. We observe negative thermal expansion in this phase co-existence regime, which appears to be intimately connected to the temperature driven relative fractions of these monoclinic phases. The significant NTE observed in this system could be driven by magnetic exchange striction, and is of relevance to a number of systems with pronounced spin orbit interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03940v1-abstract-full').style.display = 'none'; document.getElementById('2010.03940v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 044405 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13822">arXiv:2009.13822</a> <span> [<a href="https://arxiv.org/pdf/2009.13822">pdf</a>, <a href="https://arxiv.org/format/2009.13822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.014437">10.1103/PhysRevB.103.014437 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of the structural, magnetic and electronic properties of the triple perovskite Ba$_{3}$CoIr$_{2}$O$_{9}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Garg%2C+C">Charu Garg</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+D">Deepak Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Lonsky%2C+M">Martin Lonsky</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">Pascal Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%BCller%2C+J">Jens M眉ller</a>, <a href="/search/cond-mat?searchtype=author&query=Kabir%2C+M">Mukul Kabir</a>, <a href="/search/cond-mat?searchtype=author&query=Nair%2C+S">Sunil Nair</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13822v1-abstract-short" style="display: inline;"> We report a comprehensive investigation of the triple perovskite iridate Ba$_{3}$CoIr$_{2}$O$_{9}$. Stabilizing in the hexagonal $P6_{3}/mmc$ symmetry at room temperature, this system transforms to a monoclinic $C2/c$ symmetry at the magnetic phase transition. On further reduction in temperature, the system partially distorts to an even lower symmetry ($P2/c$), with both these structurally dispara… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13822v1-abstract-full').style.display = 'inline'; document.getElementById('2009.13822v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13822v1-abstract-full" style="display: none;"> We report a comprehensive investigation of the triple perovskite iridate Ba$_{3}$CoIr$_{2}$O$_{9}$. Stabilizing in the hexagonal $P6_{3}/mmc$ symmetry at room temperature, this system transforms to a monoclinic $C2/c$ symmetry at the magnetic phase transition. On further reduction in temperature, the system partially distorts to an even lower symmetry ($P2/c$), with both these structurally disparate phases coexisting down to the lowest measured temperatures. The magnetic structure as determined from neutron diffraction data indicates a weakly canted antiferromagnetic structure, which is also supported by first-principles calculations. Theory indicates that the Ir$^{5+}$ carries a finite magnetic moment, which is also consistent with the neutron data. This suggests that the putative $J=0$ state is avoided. Measurements of heat capacity, electrical resistance noise and dielectric susceptibility all point towards the stabilization of a highly correlated ground state in the Ba$_{3}$CoIr$_{2}$O$_{9}$ system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13822v1-abstract-full').style.display = 'none'; document.getElementById('2009.13822v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 014437 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.11202">arXiv:2002.11202</a> <span> [<a href="https://arxiv.org/pdf/2002.11202">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.cgd.9b01035">10.1021/acs.cgd.9b01035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tetragonal mixed system $Cs_2CuCl_{4-x}Br_x$ complemented by the tetragonal phase realisation of $Cs_2CuCl_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=van+Well%2C+N">Natalija van Well</a>, <a href="/search/cond-mat?searchtype=author&query=Eisele%2C+C">Claudio Eisele</a>, <a href="/search/cond-mat?searchtype=author&query=Ramakrishnan%2C+S">Sitaram Ramakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+T">Tian Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Medarde%2C+M">Marisa Medarde</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Skoulatos%2C+M">Markos Skoulatos</a>, <a href="/search/cond-mat?searchtype=author&query=Georgii%2C+R">Robert Georgii</a>, <a href="/search/cond-mat?searchtype=author&query=van+Smaalen%2C+S">Sander van Smaalen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.11202v1-abstract-short" style="display: inline;"> Realisation of the tetragonal phase of $Cs_2CuCl_4$ is possible using specific crystal growth conditions at a temperature below $281K$. This work deals with the comparison of the magnetic susceptibility and the magnetization of this new tetragonal compound with the magnetic behaviour of tetragonal $Cs_2CuCl_{2.9}Br_{1.1}$, $Cs_2CuCl_{2.5}Br_{1.5}$, $Cs_2CuCl_{2.2}Br_{1.8}$ and presents consistent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.11202v1-abstract-full').style.display = 'inline'; document.getElementById('2002.11202v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.11202v1-abstract-full" style="display: none;"> Realisation of the tetragonal phase of $Cs_2CuCl_4$ is possible using specific crystal growth conditions at a temperature below $281K$. This work deals with the comparison of the magnetic susceptibility and the magnetization of this new tetragonal compound with the magnetic behaviour of tetragonal $Cs_2CuCl_{2.9}Br_{1.1}$, $Cs_2CuCl_{2.5}Br_{1.5}$, $Cs_2CuCl_{2.2}Br_{1.8}$ and presents consistent results for such quasi $2-D$ antiferromagnets. Structural investigation at low temperature for $Cs_2CuCl_{2.2}Br_{1.8}$ shows no phase transition. The structure remains in the tetragonal symmetry $I4/mmm$. Furthermore, several magnetic reflections corresponding to the propagation vector $k = (0, 0, 0)$ are observed for this tetragonal compound through neutron diffraction experiments below the magnetic phase transition at $T_N = 11.3K$ confirming its antiferromagnetic nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.11202v1-abstract-full').style.display = 'none'; document.getElementById('2002.11202v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Cryst. Growth Des. 2019, 19, 6627-6635 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.08570">arXiv:1910.08570</a> <span> [<a href="https://arxiv.org/pdf/1910.08570">pdf</a>, <a href="https://arxiv.org/format/1910.08570">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.094442">10.1103/PhysRevB.100.094442 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic order and single-ion anisotropy in Tb$_3$Ga$_5$O$_{12}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wawrzy%C5%84czak%2C+R">R. Wawrzy艅czak</a>, <a href="/search/cond-mat?searchtype=author&query=Tomasello%2C+B">B. Tomasello</a>, <a href="/search/cond-mat?searchtype=author&query=Manuel%2C+P">P. Manuel</a>, <a href="/search/cond-mat?searchtype=author&query=Khalyavin%2C+D">D. Khalyavin</a>, <a href="/search/cond-mat?searchtype=author&query=Le%2C+M+D">M. D. Le</a>, <a href="/search/cond-mat?searchtype=author&query=Guidi%2C+T">T. Guidi</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Ziman%2C+T">T. Ziman</a>, <a href="/search/cond-mat?searchtype=author&query=Boehm%2C+M">M. Boehm</a>, <a href="/search/cond-mat?searchtype=author&query=Nilsen%2C+G+J">G. J. Nilsen</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">T. Fennell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.08570v1-abstract-short" style="display: inline;"> Terbium gallium garnet (TGG), Tb$_3$Ga$_5$O$_{12}$, is well known for its applications in laser optics, but also exhibits complex low-temperature magnetism that is not yet fully understood. Its low-temperature magnetic order is determined by means of time-of-flight neutron powder diffraction. It is found to be a multiaxial antiferromagnet with magnetic Tb$^{3+}$ ions forming six sublattices of mag… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08570v1-abstract-full').style.display = 'inline'; document.getElementById('1910.08570v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.08570v1-abstract-full" style="display: none;"> Terbium gallium garnet (TGG), Tb$_3$Ga$_5$O$_{12}$, is well known for its applications in laser optics, but also exhibits complex low-temperature magnetism that is not yet fully understood. Its low-temperature magnetic order is determined by means of time-of-flight neutron powder diffraction. It is found to be a multiaxial antiferromagnet with magnetic Tb$^{3+}$ ions forming six sublattices of magnetic moments aligned parallel and anti-parallel to the $\langle100\rangle$ crystallographic directions of the cubic unit cell. The structure displays strong easy-axis anisotropy with respect to a two-fold axis of symmetry in the local orthorhombic environment of the Tb$^{3+}$ sites. The crystal-field splitting within the single-ion ground-state manifold is investigated by inelastic neutron scattering on powder samples. A strong temperature dependence of the quasidoublet ground-state is observed and revised parameters of the crystal-field Hamiltonian are given. The results of bulk magnetic susceptibility and magnetisation measurements are in good agreement with values based on the crystal-field model down to 20~K, where the onset of magnetic correlations is observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08570v1-abstract-full').style.display = 'none'; document.getElementById('1910.08570v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 094442 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.09510">arXiv:1908.09510</a> <span> [<a href="https://arxiv.org/pdf/1908.09510">pdf</a>, <a href="https://arxiv.org/format/1908.09510">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.094420">10.1103/PhysRevB.100.094420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-phase competition in quantum $XY$ pyrochlore antiferromagnet CdYb$_{2}$Se$_{4}$: zero and applied magnetic field study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guratinder%2C+K">K. Guratinder</a>, <a href="/search/cond-mat?searchtype=author&query=Rau%2C+J+G">Jeffrey G. Rau</a>, <a href="/search/cond-mat?searchtype=author&query=Tsurkan%2C+V">V. Tsurkan</a>, <a href="/search/cond-mat?searchtype=author&query=Ritter%2C+C">C. Ritter</a>, <a href="/search/cond-mat?searchtype=author&query=Embs%2C+J">J. Embs</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">T. Fennell</a>, <a href="/search/cond-mat?searchtype=author&query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&query=Medarde%2C+M">M. Medarde</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+T">T. Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=R%C3%BCegg%2C+C">Ch. R眉egg</a>, <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">O. Zaharko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.09510v1-abstract-short" style="display: inline;"> We study magnetic behaviour of the Yb$^{3+}$ ions on a frustrated pyrochlore lattice in the spinel {\CYS}. The crystal-electric field parameters deduced from high-energy inelastic neutron scattering reveal well-isolated ytterbium ground state doublet with a weakly Ising character. Magnetic order studied by powder neutron diffraction evolves from the $XY$-type antiferromagnetic $螕_5$ state to a spl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09510v1-abstract-full').style.display = 'inline'; document.getElementById('1908.09510v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.09510v1-abstract-full" style="display: none;"> We study magnetic behaviour of the Yb$^{3+}$ ions on a frustrated pyrochlore lattice in the spinel {\CYS}. The crystal-electric field parameters deduced from high-energy inelastic neutron scattering reveal well-isolated ytterbium ground state doublet with a weakly Ising character. Magnetic order studied by powder neutron diffraction evolves from the $XY$-type antiferromagnetic $螕_5$ state to a splayed ice-like ferromagnet (both with k=0) in applied magnetic field with $B_c$=3 T. Low-energy inelastic neutron scattering identifies weakly dispersive magnetic bands around 0.72 meV starting at $\mid\bf{Q}\mid$ = 1.1 脜$^{-1}$~ at zero field, which diminish with field and vanish above 3 T. We explain the observed magnetic behaviour in framework of the nearest-neighbour anisotropic exchange model for effective $S=1/2$ Kramers doublets on the pyrochlore lattice. The estimated exchanges position the {\CYS} spinel close to the phase boundary between the $螕_5$ and splayed ferromagnet states, similar to the Yb-pyrochlores suggesting an important role of the competition between these phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09510v1-abstract-full').style.display = 'none'; document.getElementById('1908.09510v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 7 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 094420 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11696">arXiv:1810.11696</a> <span> [<a href="https://arxiv.org/pdf/1810.11696">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> In-situ liquid SAXS studies on the early stage of calcium carbonate formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mohammed%2C+A+S+A">Ahmed Shaban Abdelfadil Mohammed</a>, <a href="/search/cond-mat?searchtype=author&query=Carino%2C+A">Agnese Carino</a>, <a href="/search/cond-mat?searchtype=author&query=Testino%2C+A">Andrea Testino</a>, <a href="/search/cond-mat?searchtype=author&query=Andalibi%2C+M+R">Mohammad Reza Andalibi</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11696v2-abstract-short" style="display: inline;"> Calcium carbonate is a model system to investigate the mechanism of solid formation by precipitation from solutions, and it is often considered in the debated classical and non-classical nucleation mechanism. Despite the great scientific relevance of calcium carbonate in different areas of science, little is known about the early stage of its formation. We, therefore, designed contactless devices… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11696v2-abstract-full').style.display = 'inline'; document.getElementById('1810.11696v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11696v2-abstract-full" style="display: none;"> Calcium carbonate is a model system to investigate the mechanism of solid formation by precipitation from solutions, and it is often considered in the debated classical and non-classical nucleation mechanism. Despite the great scientific relevance of calcium carbonate in different areas of science, little is known about the early stage of its formation. We, therefore, designed contactless devices capable to provide informative investigations on the early stages of the precipitation pathway of calcium carbonate in supersaturated solutions using classical scattering methods such as Wide-Angle X-ray Scattering (WAXS) and Small-Angle X-ray Scattering (SAXS) techniques. In particular, SAXS was exploited for investigating the size of entities formed from supersaturated solutions before the critical conditions for amorphous calcium carbonate (ACC) nucleation are attained. The saturation level was controlled by mixing four diluted solutions (i.e., NaOH, CaCl2, NaHCO3, H2O) at constant T and pH. The scattering data were collected on a liquid jet generated about 75 sec after the mixing point. The data were modeled using parametric statistical models providing insight about the size distribution of denser matter in the liquid jet. Theoretical implications on the early stage of solid formation pathway are inferred. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11696v2-abstract-full').style.display = 'none'; document.getElementById('1810.11696v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.02246">arXiv:1810.02246</a> <span> [<a href="https://arxiv.org/pdf/1810.02246">pdf</a>, <a href="https://arxiv.org/format/1810.02246">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S1600576719001109">10.1107/S1600576719001109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A dilute gold nanoparticles suspension as SAXS standard for absolute scale using an extended Guinier approximation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mohammed%2C+A+S+A">Ahmed S. A. Mohammed</a>, <a href="/search/cond-mat?searchtype=author&query=Carino%2C+A">Agnese Carino</a>, <a href="/search/cond-mat?searchtype=author&query=Testino%2C+A">Andrea Testino</a>, <a href="/search/cond-mat?searchtype=author&query=Andalibi%2C+M+R">Mohamed Reza Andalibi</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.02246v1-abstract-short" style="display: inline;"> In this article, a practical procedure for absolute intensity calibration for SAXS studies on liquid microjets is established, using a gold nanoparticle suspension as standard so that the intercept at $Q=0$ of the SAXS scattering curve would provide a scaling reference. In order to get the most precise extrapolation at $Q=0$, we used an extension to the Guinier approximation, with a second-order t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02246v1-abstract-full').style.display = 'inline'; document.getElementById('1810.02246v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.02246v1-abstract-full" style="display: none;"> In this article, a practical procedure for absolute intensity calibration for SAXS studies on liquid microjets is established, using a gold nanoparticle suspension as standard so that the intercept at $Q=0$ of the SAXS scattering curve would provide a scaling reference. In order to get the most precise extrapolation at $Q=0$, we used an extension to the Guinier approximation, with a second-order term in the fit that adapts to a larger $Q$-range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02246v1-abstract-full').style.display = 'none'; document.getElementById('1810.02246v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 1 fig</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Crystallography, 2019, Volume 52, pages 344-350 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.01703">arXiv:1803.01703</a> <span> [<a href="https://arxiv.org/pdf/1803.01703">pdf</a>, <a href="https://arxiv.org/format/1803.01703">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.134430">10.1103/PhysRevB.97.134430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manifolds of magnetic ordered states and excitations in the almost Heisenberg pyrochlore antiferromagnet MgCr2O4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gao%2C+S">S. Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Guratinder%2C+K">K. Guratinder</a>, <a href="/search/cond-mat?searchtype=author&query=Tsurkan%2C+V">V. Tsurkan</a>, <a href="/search/cond-mat?searchtype=author&query=Loidl%2C+A">A. Loidl</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">M. Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">G. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Raymond%2C+S">S. Raymond</a>, <a href="/search/cond-mat?searchtype=author&query=Chapon%2C+L">L. Chapon</a>, <a href="/search/cond-mat?searchtype=author&query=Garlea%2C+V+O">V. O. Garlea</a>, <a href="/search/cond-mat?searchtype=author&query=Savici%2C+A+T">A. T. Savici</a>, <a href="/search/cond-mat?searchtype=author&query=Stuhr%2C+U">U. Stuhr</a>, <a href="/search/cond-mat?searchtype=author&query=White%2C+J+S">J. S. White</a>, <a href="/search/cond-mat?searchtype=author&query=Mansson%2C+M">M. Mansson</a>, <a href="/search/cond-mat?searchtype=author&query=Roessli%2C+B">B. Roessli</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Bombardi%2C+A">A. Bombardi</a>, <a href="/search/cond-mat?searchtype=author&query=Chernyshov%2C+D">D. Chernyshov</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">T. Fennell</a>, <a href="/search/cond-mat?searchtype=author&query=Ruegg%2C+C">Ch. Ruegg</a>, <a href="/search/cond-mat?searchtype=author&query=Haraldsen%2C+J+T">J. T. Haraldsen</a>, <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">O. Zaharko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.01703v1-abstract-short" style="display: inline;"> In spinels ACr2O4 (A=Mg, Zn) realisation of the classical pyrochlore Heisenberg antiferromagnet model is complicated by a strong spin-lattice coupling: the extensive degeneracy of the ground state is lifted by a magneto-structural transition at TN=12.5 K. We study the resulting low-temperature low-symmetry crystal structure by synchrotron x-ray diffraction. The consistent features of x-ray low-tem… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.01703v1-abstract-full').style.display = 'inline'; document.getElementById('1803.01703v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.01703v1-abstract-full" style="display: none;"> In spinels ACr2O4 (A=Mg, Zn) realisation of the classical pyrochlore Heisenberg antiferromagnet model is complicated by a strong spin-lattice coupling: the extensive degeneracy of the ground state is lifted by a magneto-structural transition at TN=12.5 K. We study the resulting low-temperature low-symmetry crystal structure by synchrotron x-ray diffraction. The consistent features of x-ray low-temperature patterns are explained by the tetragonal model of Ehrenberg et. al (Pow. Diff. 17, 230( 2002)), while other features depend on sample or cooling protocol. Complex partially ordered magnetic state is studied by neutron diffraction and spherical neutron polarimetry. Multiple magnetic domains of configuration arms of the propagation vectors k1=(1/2 1/2 0), k2=(1 0 1/2) appear. The ordered moment reaches 1.94(3) muB/Cr3+ for k1 and 2.08(3) muB/Cr3+ for k2, if equal amount of the k1 and k2 phases is assumed. The magnetic arrangements have the dominant components along the [110] and [1-10] diagonals and a smaller c-component. By inelastic neutron scattering we investigate the spin excitations, which comprise a mixture of dispersive spin waves propagating from the magnetic Bragg peaks and resonance modes centered at equal energy steps of 4.5 meV. We interpret these as acoustic and optical spin wave branches, but show that the neutron scattering cross sections of transitions within a unit of two corner-sharing tetrahedra match the observed intensity distribution of the resonances. The distinctive fingerprint of cluster-like excitations in the optical spin wave branches suggests that propagating excitations are localized by the complex crystal structure and magnetic orders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.01703v1-abstract-full').style.display = 'none'; document.getElementById('1803.01703v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.08714">arXiv:1610.08714</a> <span> [<a href="https://arxiv.org/pdf/1610.08714">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-017-00905-w">10.1038/s41467-017-00905-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coulomb spin liquid in anion-disordered pyrochlore Tb$_2$Hf$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sibille%2C+R">Romain Sibille</a>, <a href="/search/cond-mat?searchtype=author&query=Lhotel%2C+E">Elsa Lhotel</a>, <a href="/search/cond-mat?searchtype=author&query=Hatnean%2C+M+C">Monica Ciomaga Hatnean</a>, <a href="/search/cond-mat?searchtype=author&query=Nilsen%2C+G">G酶ran Nilsen</a>, <a href="/search/cond-mat?searchtype=author&query=Ehlers%2C+G">Georg Ehlers</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Ressouche%2C+E">Eric Ressouche</a>, <a href="/search/cond-mat?searchtype=author&query=Frontzek%2C+M">Matthias Frontzek</a>, <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">Oksana Zaharko</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushin%2C+V">Vladimir Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&query=Stuhr%2C+U">Uwe Stuhr</a>, <a href="/search/cond-mat?searchtype=author&query=Walker%2C+H+C">Helen C. Walker</a>, <a href="/search/cond-mat?searchtype=author&query=Adroja%2C+D">Devashibhai Adroja</a>, <a href="/search/cond-mat?searchtype=author&query=Luetkens%2C+H">Hubertus Luetkens</a>, <a href="/search/cond-mat?searchtype=author&query=Baines%2C+C">Chris Baines</a>, <a href="/search/cond-mat?searchtype=author&query=Amato%2C+A">Alex Amato</a>, <a href="/search/cond-mat?searchtype=author&query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">Tom Fennell</a>, <a href="/search/cond-mat?searchtype=author&query=Kenzelmann%2C+M">Michel Kenzelmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.08714v3-abstract-short" style="display: inline;"> The charge ordered structure of ions and vacancies characterizing rare-earth pyrochlore oxides serves as a model for the study of geometrically frustrated magnetism. The organization of magnetic ions into networks of corner-sharing tetrahedra gives rise to highly correlated magnetic phases with strong fluctuations, including spin liquids and spin ices. It is an open question how these ground state… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08714v3-abstract-full').style.display = 'inline'; document.getElementById('1610.08714v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.08714v3-abstract-full" style="display: none;"> The charge ordered structure of ions and vacancies characterizing rare-earth pyrochlore oxides serves as a model for the study of geometrically frustrated magnetism. The organization of magnetic ions into networks of corner-sharing tetrahedra gives rise to highly correlated magnetic phases with strong fluctuations, including spin liquids and spin ices. It is an open question how these ground states governed by local rules are affected by disorder. In the pyrochlore Tb$_2$Hf$_2$O$_7$, we demonstrate that the vicinity of the disordering transition towards a defective fluorite structure translates into a tunable density of anion Frenkel disorder while cations remain ordered. Quenched random crystal fields and disordered exchange interactions can therefore be introduced into otherwise perfect pyrochlore lattices of magnetic ions. We show that disorder can play a crucial role in preventing long-range magnetic order at low temperatures, and instead induces a strongly-fluctuating Coulomb spin liquid with defect-induced frozen magnetic degrees of freedom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08714v3-abstract-full').style.display = 'none'; document.getElementById('1610.08714v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures, + Supplementary Information (4 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.04160">arXiv:1604.04160</a> <span> [<a href="https://arxiv.org/pdf/1604.04160">pdf</a>, <a href="https://arxiv.org/format/1604.04160">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.214308">10.1103/PhysRevB.93.214308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First principles calculation and experimental investigation of lattice dynamics in the rare earth pyrochlores R2Ti2O7 (R=Tb, Dy, Ho) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ruminy%2C+M">M Ruminy</a>, <a href="/search/cond-mat?searchtype=author&query=Valdez%2C+M+N">M Nunez Valdez</a>, <a href="/search/cond-mat?searchtype=author&query=Wehinger%2C+B">B Wehinger</a>, <a href="/search/cond-mat?searchtype=author&query=Bosak%2C+A">A Bosak</a>, <a href="/search/cond-mat?searchtype=author&query=Adroja%2C+D+T">D T Adroja</a>, <a href="/search/cond-mat?searchtype=author&query=Stuhr%2C+U">U Stuhr</a>, <a href="/search/cond-mat?searchtype=author&query=Iida%2C+K">K Iida</a>, <a href="/search/cond-mat?searchtype=author&query=Kamazawa%2C+K">K Kamazawa</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushina%2C+E">E Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+D">D Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=Haas%2C+M+K">M K Haas</a>, <a href="/search/cond-mat?searchtype=author&query=Bovo%2C+L">L Bovo</a>, <a href="/search/cond-mat?searchtype=author&query=Sheptyakov%2C+D">D Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R J Cava</a>, <a href="/search/cond-mat?searchtype=author&query=Kenzelmann%2C+M">M Kenzelmann</a>, <a href="/search/cond-mat?searchtype=author&query=Spaldin%2C+N+A">N A Spaldin</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">T Fennell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.04160v2-abstract-short" style="display: inline;"> We present a model of the lattice dynamics of the rare earth titanate pyrochlores R2Ti2O7 (R=Tb, Dy, Ho), which are important materials in the study of frustrated magnetism. The phonon modes are obtained by density functional calculations, and these predictions are verified by comparison with scattering experiments. Single crystal inelastic neutron scattering is used to measure acoustic phonons al… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.04160v2-abstract-full').style.display = 'inline'; document.getElementById('1604.04160v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.04160v2-abstract-full" style="display: none;"> We present a model of the lattice dynamics of the rare earth titanate pyrochlores R2Ti2O7 (R=Tb, Dy, Ho), which are important materials in the study of frustrated magnetism. The phonon modes are obtained by density functional calculations, and these predictions are verified by comparison with scattering experiments. Single crystal inelastic neutron scattering is used to measure acoustic phonons along high symmetry directions for R=Tb, Ho; single crystal inelastic x-ray scattering is used to measure numerous optical modes throughout the Brillouin zone for R=Ho; and powder inelastic neutron scattering is used to estimate the phonon density of states for R=Tb, Dy, Ho. Good agreement between the calculations and all measurements is obtained, allowing confident assignment of the energies and symmetries of the phonons in these materials under ambient conditions. The knowledge of the phonon spectrum is important for understanding spin-lattice interactions, and can be expected to be transferred readily to other members of the series to guide the search for unconventional magnetic excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.04160v2-abstract-full').style.display = 'none'; document.getElementById('1604.04160v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93 214308 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.07537">arXiv:1603.07537</a> <span> [<a href="https://arxiv.org/pdf/1603.07537">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> The local structure of electrically stressed liquid water and implications for modelling of dielectric relaxation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wexler%2C+A+D">Adam D. Wexler</a>, <a href="/search/cond-mat?searchtype=author&query=Bitschnau%2C+B">Brigitte Bitschnau</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Casati%2C+N">Nicola Casati</a>, <a href="/search/cond-mat?searchtype=author&query=Soper%2C+A+K">Alan K. Soper</a>, <a href="/search/cond-mat?searchtype=author&query=Woisetschl%C3%A4ger%2C+J">Jakob Woisetschl盲ger</a>, <a href="/search/cond-mat?searchtype=author&query=Fuchs%2C+E+C">Elmar C. Fuchs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.07537v1-abstract-short" style="display: inline;"> In a floating water bridge the total radiation scattering of water stressed by a moderately strong electric field (1mV/nm) was compared to water without an applied electric field using X-ray and small angle neutron scattering. Structure refinement was carried out using the EPSR method and the TIP4P/2005 water model. These results did not reveal a significant difference in the local static structur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.07537v1-abstract-full').style.display = 'inline'; document.getElementById('1603.07537v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.07537v1-abstract-full" style="display: none;"> In a floating water bridge the total radiation scattering of water stressed by a moderately strong electric field (1mV/nm) was compared to water without an applied electric field using X-ray and small angle neutron scattering. Structure refinement was carried out using the EPSR method and the TIP4P/2005 water model. These results did not reveal a significant difference in the local static structure of water however analysis of the simulation indicated that the modeled local potential energy surface reveals a departure between electrically stressed and unstressed water. The observed differences show that the local environment is changed by the applied electric field although weak relative to the intermolecular coulombic field. When discussing the results we show that the current methods used to simulate the pair potentials are still insufficient to treat such non-equilibrium systems and further simulation techniques have to be developed to properly reconstruct the microscopic dielectric relaxation process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.07537v1-abstract-full').style.display = 'none'; document.getElementById('1603.07537v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.07572">arXiv:1510.07572</a> <span> [<a href="https://arxiv.org/pdf/1510.07572">pdf</a>, <a href="https://arxiv.org/format/1510.07572">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.144407">10.1103/PhysRevB.93.144407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sample independence of magnetoelastic excitations in the rare earth pyrochlore Tb2Ti2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ruminy%2C+M">M. Ruminy</a>, <a href="/search/cond-mat?searchtype=author&query=Bovo%2C+L">L. Bovo</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&query=Haas%2C+M+K">M. K. Haas</a>, <a href="/search/cond-mat?searchtype=author&query=Stuhr%2C+U">U. Stuhr</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a>, <a href="/search/cond-mat?searchtype=author&query=Kenzelmann%2C+M">M. Kenzelmann</a>, <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">T. Fennell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.07572v2-abstract-short" style="display: inline;"> Recent experimental results have emphasized two aspects of Tb2Ti2O7 which have not been taken into account in previous attempts to construct theories of Tb2Ti2O7: the role of small levels of structural disorder, which appears to control the formation of a long-range ordered state of as yet unknown nature; and the importance of strong coupling between spin and lattice degrees of freedom, which resu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.07572v2-abstract-full').style.display = 'inline'; document.getElementById('1510.07572v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.07572v2-abstract-full" style="display: none;"> Recent experimental results have emphasized two aspects of Tb2Ti2O7 which have not been taken into account in previous attempts to construct theories of Tb2Ti2O7: the role of small levels of structural disorder, which appears to control the formation of a long-range ordered state of as yet unknown nature; and the importance of strong coupling between spin and lattice degrees of freedom, which results in the hybridization of crystal field excitons and transverse acoustic phonons. In this work we examine the juncture of these two phenomena and show that samples with strongly contrasting behavior vis-a-vis the structural disorder (i.e. with and without the transition to the ordered state), develop identical magnetoelastic coupling. We also show that the comparison between single crystal and powder samples is more complicated than previously thought - the correlation between lattice parameter (as a measure of superstoichiometric Tb$^{3+}$) and the existence of a specific heat peak, as observed in powder samples, does not hold for single crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.07572v2-abstract-full').style.display = 'none'; document.getElementById('1510.07572v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures; resubmitted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 144407 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.08102">arXiv:1503.08102</a> <span> [<a href="https://arxiv.org/pdf/1503.08102">pdf</a>, <a href="https://arxiv.org/format/1503.08102">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.024101">10.1103/PhysRevB.92.024101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystal structure and phonon softening in Ca3Ir4Sn13 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mazzone%2C+D+G">D. G. Mazzone</a>, <a href="/search/cond-mat?searchtype=author&query=Gerber%2C+S">S. Gerber</a>, <a href="/search/cond-mat?searchtype=author&query=Gavilano%2C+J+L">J. L. Gavilano</a>, <a href="/search/cond-mat?searchtype=author&query=Sibille%2C+R">R. Sibille</a>, <a href="/search/cond-mat?searchtype=author&query=Medarde%2C+M">M. Medarde</a>, <a href="/search/cond-mat?searchtype=author&query=Delley%2C+B">B. Delley</a>, <a href="/search/cond-mat?searchtype=author&query=Ramakrishnan%2C+M">M. Ramakrishnan</a>, <a href="/search/cond-mat?searchtype=author&query=Neugebauer%2C+M">M. Neugebauer</a>, <a href="/search/cond-mat?searchtype=author&query=Regnault%2C+L+P">L. P. Regnault</a>, <a href="/search/cond-mat?searchtype=author&query=Chernyshov%2C+D">D. Chernyshov</a>, <a href="/search/cond-mat?searchtype=author&query=Piovano%2C+A">A. Piovano</a>, <a href="/search/cond-mat?searchtype=author&query=Fernandez-Diaz%2C+T+M">T. M. Fernandez-Diaz</a>, <a href="/search/cond-mat?searchtype=author&query=Keller%2C+L">L. Keller</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&query=Kenzelmann%2C+M">M. Kenzelmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.08102v2-abstract-short" style="display: inline;"> We investigated the crystal structure and lattice excitations of the ternary intermetallic stannide Ca3Ir4Sn13 using neutron and x-ray scattering techniques. For T > T* ~ 38 K the x-ray diffraction data can be satisfactorily refined using the space group Pm-3n. Below T* the crystal structure is modulated with a propagation vector of q = (1/2, 1/2, 0). This may arise from a merohedral twinning in w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08102v2-abstract-full').style.display = 'inline'; document.getElementById('1503.08102v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.08102v2-abstract-full" style="display: none;"> We investigated the crystal structure and lattice excitations of the ternary intermetallic stannide Ca3Ir4Sn13 using neutron and x-ray scattering techniques. For T > T* ~ 38 K the x-ray diffraction data can be satisfactorily refined using the space group Pm-3n. Below T* the crystal structure is modulated with a propagation vector of q = (1/2, 1/2, 0). This may arise from a merohedral twinning in which three tetragonal domains overlap to mimic a higher symmetry, or from a doubling of the cubic unit cell. Neutron diffraction and neutron spectroscopy results show that the structural transition at T* is of a second-order, and that it is well described by mean-field theory. Inelastic neutron scattering data point towards a displacive structural transition at T* arising from the softening of a low-energy phonon mode with an energy gap of Delta(120 K) = 1.05 meV. Using density functional theory the soft phonon mode is identified as a 'breathing' mode of the Sn12 icosahedra and is consistent with the thermal ellipsoids of the Sn2 atoms found by single crystal diffraction data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08102v2-abstract-full').style.display = 'none'; document.getElementById('1503.08102v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 024101 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.07081">arXiv:1503.07081</a> <span> [<a href="https://arxiv.org/pdf/1503.07081">pdf</a>, <a href="https://arxiv.org/format/1503.07081">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.161104">10.1103/PhysRevB.91.161104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Jahn-Teller versus quantum effects in the spin-orbital material LuVO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Skoulatos%2C+M">M. Skoulatos</a>, <a href="/search/cond-mat?searchtype=author&query=Toth%2C+S">S. Toth</a>, <a href="/search/cond-mat?searchtype=author&query=Roessli%2C+B">B. Roessli</a>, <a href="/search/cond-mat?searchtype=author&query=Enderle%2C+M">M. Enderle</a>, <a href="/search/cond-mat?searchtype=author&query=Habicht%2C+K">K. Habicht</a>, <a href="/search/cond-mat?searchtype=author&query=Sheptyakov%2C+D">D. Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Freeman%2C+P+G">P. G. Freeman</a>, <a href="/search/cond-mat?searchtype=author&query=Reehuis%2C+M">M. Reehuis</a>, <a href="/search/cond-mat?searchtype=author&query=Stunault%2C+A">A. Stunault</a>, <a href="/search/cond-mat?searchtype=author&query=McIntyre%2C+G+J">G. J. McIntyre</a>, <a href="/search/cond-mat?searchtype=author&query=Tung%2C+L+D">L. D. Tung</a>, <a href="/search/cond-mat?searchtype=author&query=Marjerrison%2C+C">C. Marjerrison</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&query=Brown%2C+P+J">P. J. Brown</a>, <a href="/search/cond-mat?searchtype=author&query=Khomskii%2C+D+I">D. I. Khomskii</a>, <a href="/search/cond-mat?searchtype=author&query=Rueegg%2C+C">Ch. Rueegg</a>, <a href="/search/cond-mat?searchtype=author&query=Kreyssig%2C+A">A. Kreyssig</a>, <a href="/search/cond-mat?searchtype=author&query=Goldman%2C+A+I">A. I. Goldman</a>, <a href="/search/cond-mat?searchtype=author&query=Goff%2C+J+P">J. P. Goff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.07081v2-abstract-short" style="display: inline;"> We report on combined neutron and resonant x-ray scattering results, identifying the nature of the spin-orbital ground state and magnetic excitations in LuVO3 as driven by the orbital parameter. In particular, we distinguish between models based on orbital Peierls dimerization, taken as a signature of quantum effects in orbitals, and Jahn-Teller distortions, in favor of the latter. In order to sol… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07081v2-abstract-full').style.display = 'inline'; document.getElementById('1503.07081v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.07081v2-abstract-full" style="display: none;"> We report on combined neutron and resonant x-ray scattering results, identifying the nature of the spin-orbital ground state and magnetic excitations in LuVO3 as driven by the orbital parameter. In particular, we distinguish between models based on orbital Peierls dimerization, taken as a signature of quantum effects in orbitals, and Jahn-Teller distortions, in favor of the latter. In order to solve this long-standing puzzle, polarized neutron beams were employed as a prerequisite in order to solve details of the magnetic structure, which allowed quantitative intensity-analysis of extended magnetic excitation data sets. The results of this detailed study enabled us to draw definite conclusions about classical vs quantum behavior of orbitals in this system and to discard the previous claims about quantum effects dominating the orbital physics of LuVO3 and similar systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07081v2-abstract-full').style.display = 'none'; document.getElementById('1503.07081v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Phys. Rev. B 91, 161104(R) (2015)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.0855">arXiv:1411.0855</a> <span> [<a href="https://arxiv.org/pdf/1411.0855">pdf</a>, <a href="https://arxiv.org/ps/1411.0855">ps</a>, <a href="https://arxiv.org/format/1411.0855">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/551/1/012021">10.1088/1742-6596/551/1/012021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low temperature crystal structure and local magnetometry for the geometrically frustrated pyrochlore Tb2Ti2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=de+Reotier%2C+P+D">P. Dalmas de Reotier</a>, <a href="/search/cond-mat?searchtype=author&query=Yaouanc%2C+A">A. Yaouanc</a>, <a href="/search/cond-mat?searchtype=author&query=Bertin%2C+A">A. Bertin</a>, <a href="/search/cond-mat?searchtype=author&query=Marin%2C+C">C. Marin</a>, <a href="/search/cond-mat?searchtype=author&query=Vanishri%2C+S">S. Vanishri</a>, <a href="/search/cond-mat?searchtype=author&query=Sheptyakov%2C+D">D. Sheptyakov</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Roessli%2C+B">B. Roessli</a>, <a href="/search/cond-mat?searchtype=author&query=Baines%2C+C">C. Baines</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.0855v1-abstract-short" style="display: inline;"> We report synchrotron radiation diffraction and muon spin rotation (muSR) measurements on the frustrated pyrochlore magnet Tb2Ti2O7. The powder diffraction study of a crushed crystal fragment does not reveal any structural change down to 4 K. The muSR measurements performed at 20 mK on a mosaic of single crystals with an external magnetic field applied along a three-fold axis are consistent with p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.0855v1-abstract-full').style.display = 'inline'; document.getElementById('1411.0855v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.0855v1-abstract-full" style="display: none;"> We report synchrotron radiation diffraction and muon spin rotation (muSR) measurements on the frustrated pyrochlore magnet Tb2Ti2O7. The powder diffraction study of a crushed crystal fragment does not reveal any structural change down to 4 K. The muSR measurements performed at 20 mK on a mosaic of single crystals with an external magnetic field applied along a three-fold axis are consistent with published a.c. magnetic-susceptibility measurements at 16 mK. While an inflection point could be present around an internal field intensity slightly above 0.3 T, the data barely support the presence of a magnetization plateau. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.0855v1-abstract-full').style.display = 'none'; document.getElementById('1411.0855v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in the proceedings of the 13th International Conference on Muon Spin Rotation, Relaxation and Resonance, Grindelwald, Switzerland, 1-6 June 2014</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Conf. Ser. 551, 012021 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.1222">arXiv:1410.1222</a> <span> [<a href="https://arxiv.org/pdf/1410.1222">pdf</a>, <a href="https://arxiv.org/ps/1410.1222">ps</a>, <a href="https://arxiv.org/format/1410.1222">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.134416">10.1103/PhysRevB.90.134416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonconventional magnetic order in frustrated diamond lattice antiferromagnet CoAl2O4 studied by neutron diffraction and classical Monte-Carlo simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">O. Zaharko</a>, <a href="/search/cond-mat?searchtype=author&query=T%C3%B3th%2C+S">S. T贸th</a>, <a href="/search/cond-mat?searchtype=author&query=Sendetskyi%2C+O">O. Sendetskyi</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Wolter-Giraud%2C+A">A. Wolter-Giraud</a>, <a href="/search/cond-mat?searchtype=author&query=Dey%2C+T">T. Dey</a>, <a href="/search/cond-mat?searchtype=author&query=Maljuk%2C+A">A. Maljuk</a>, <a href="/search/cond-mat?searchtype=author&query=Tsurkan%2C+V">V. Tsurkan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.1222v1-abstract-short" style="display: inline;"> CoAl2O4 spinel with magnetic Co2+ ions on the diamond A-lattice is known to be magnetically frustrated. We compare neutron single crystal diffraction patterns measured in zero and applied magnetic fields with the ones obtained from classical Monte-Carlo models. In simulations we test the influence of various parameters on diffraction patterns: the ratio of nearest-, J1, and next-nearest, J2, neigh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.1222v1-abstract-full').style.display = 'inline'; document.getElementById('1410.1222v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.1222v1-abstract-full" style="display: none;"> CoAl2O4 spinel with magnetic Co2+ ions on the diamond A-lattice is known to be magnetically frustrated. We compare neutron single crystal diffraction patterns measured in zero and applied magnetic fields with the ones obtained from classical Monte-Carlo models. In simulations we test the influence of various parameters on diffraction patterns: the ratio of nearest-, J1, and next-nearest, J2, neighbor interactions, magnetic field applied along the principal crystallographic directions, and random disorder on the A(Co2+)- and B(Al3+)- sites. We conclude that the models considered so far explain the broadening of magnetic Bragg peaks in zero magnetic field and their anisotropic response to applied magnetic field only partly. As bulk properties of our single crystal are isotropic, we suggest that its microstructure, specifically <111>-twin boundaries, could be a reason of the nonconventional magnetic order in CoAl2O4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.1222v1-abstract-full').style.display = 'none'; document.getElementById('1410.1222v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.5405">arXiv:1305.5405</a> <span> [<a href="https://arxiv.org/pdf/1305.5405">pdf</a>, <a href="https://arxiv.org/format/1305.5405">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.017203">10.1103/PhysRevLett.112.017203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetoelastic excitations in the pyrochlore spin liquid Tb$_2$Ti$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fennell%2C+T">T. Fennell</a>, <a href="/search/cond-mat?searchtype=author&query=Kenzelmann%2C+M">M. Kenzelmann</a>, <a href="/search/cond-mat?searchtype=author&query=Roessli%2C+B">B. Roessli</a>, <a href="/search/cond-mat?searchtype=author&query=Mutka%2C+H">H. Mutka</a>, <a href="/search/cond-mat?searchtype=author&query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&query=Ruminy%2C+M">M. Ruminy</a>, <a href="/search/cond-mat?searchtype=author&query=Stuhr%2C+U">U. Stuhr</a>, <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">O. Zaharko</a>, <a href="/search/cond-mat?searchtype=author&query=Bovo%2C+L">L. Bovo</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Haas%2C+M+K">M. K. Haas</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.5405v2-abstract-short" style="display: inline;"> At low temperatures, Tb$_2$Ti$_2$O$_7$ enters a spin liquid state, despite expectations of magnetic order and/or a structural distortion. Using neutron scattering, we have discovered that in this spin liquid state an excited crystal field level is coupled to a transverse acoustic phonon, forming a hybrid excitation. Magnetic and phononlike branches with identical dispersion relations can be identi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.5405v2-abstract-full').style.display = 'inline'; document.getElementById('1305.5405v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.5405v2-abstract-full" style="display: none;"> At low temperatures, Tb$_2$Ti$_2$O$_7$ enters a spin liquid state, despite expectations of magnetic order and/or a structural distortion. Using neutron scattering, we have discovered that in this spin liquid state an excited crystal field level is coupled to a transverse acoustic phonon, forming a hybrid excitation. Magnetic and phononlike branches with identical dispersion relations can be identified, and the hybridization vanishes in the paramagnetic state. We suggest that Tb$_2$Ti$_2$O$_7$ is aptly named a "magnetoelastic spin liquid" and that the hybridization of the excitations suppresses both magnetic ordering and the structural distortion. The spin liquid phase of Tb$_2$Ti$_2$O$_7$ can now be regarded as a Coulomb phase with propagating bosonic spin excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.5405v2-abstract-full').style.display = 'none'; document.getElementById('1305.5405v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, supplementary information included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 112, 017203 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.4303">arXiv:1204.4303</a> <span> [<a href="https://arxiv.org/pdf/1204.4303">pdf</a>, <a href="https://arxiv.org/format/1204.4303">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.104107">10.1103/PhysRevB.86.104107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cube-shape diffuse scattering and the ground state of $\mathrm{BaMg}_{1/3}\mathrm{Ta}_{2/3} \mathrm{O}_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Gvasaliya%2C+S+N">S. N. Gvasaliya</a>, <a href="/search/cond-mat?searchtype=author&query=Roessli%2C+B">B. Roessli</a>, <a href="/search/cond-mat?searchtype=author&query=Rotaru%2C+G+M">G. M. Rotaru</a>, <a href="/search/cond-mat?searchtype=author&query=Cowley%2C+R+A">R. A. Cowley</a>, <a href="/search/cond-mat?searchtype=author&query=Lushnikov%2C+S+G">S. G. Lushnikov</a>, <a href="/search/cond-mat?searchtype=author&query=Shaplygina%2C+T+A">T. A. Shaplygina</a>, <a href="/search/cond-mat?searchtype=author&query=Bossak%2C+A">A. Bossak</a>, <a href="/search/cond-mat?searchtype=author&query=Chernyshov%2C+D">D. Chernyshov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.4303v1-abstract-short" style="display: inline;"> A quite unusual diffuse scattering phenomenology was observed in the single-crystal X-ray diffraction pattern of cubic perovskite BMT ($\mathrm{BaMg}_{1/3}\mathrm{Ta}_{2/3}\mathrm{O}_3$). The intensity of the scattering is parametrized as a set of cube-like objects located at the centers of reciprocal space unit cells, resembling very broad and cubic-shaped (1/2,1/2,1/2)-satellites. BMT belongs to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.4303v1-abstract-full').style.display = 'inline'; document.getElementById('1204.4303v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.4303v1-abstract-full" style="display: none;"> A quite unusual diffuse scattering phenomenology was observed in the single-crystal X-ray diffraction pattern of cubic perovskite BMT ($\mathrm{BaMg}_{1/3}\mathrm{Ta}_{2/3}\mathrm{O}_3$). The intensity of the scattering is parametrized as a set of cube-like objects located at the centers of reciprocal space unit cells, resembling very broad and cubic-shaped (1/2,1/2,1/2)-satellites. BMT belongs to perovskites of formula AB$'_{1/3}$B$"_{2/3}$O$_{3}$ (A=Mg, B$'=$Ta, B$"=$Mg). The cubes of the intensity can be attributed to the partial correlations of the occupancies of the B site. The pair correlation function is the Fourier transform of the diffuse scattering intensity and the latter's idealized form yields the unusual property of a power-law correlation decay with distance. Up to now this is observed only in a few exotic instances of magnetic order or nematic crystals. Therefore it cannot be classified as a short-range order phenomenon, as in most situations originating diffuse scattering. A Monte-Carlo search in configuration space yielded solutions that reproduce faithfully the observed diffuse scattering. Analysis of the results in terms of the electrostatic energy and the entropy point to this phase of BMT as a metastable state, kinetically locked, which could be the equilibrium state just below the melting point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.4303v1-abstract-full').style.display = 'none'; document.getElementById('1204.4303v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1204.4273">arXiv:1204.4273</a> <span> [<a href="https://arxiv.org/pdf/1204.4273">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> The Structure and Low-Energy Phonons of the Nonferroelectric Mixed Perovskite: BaMg1/3Ta2/3O3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Gvasaliya%2C+S+N">S. N. Gvasaliya</a>, <a href="/search/cond-mat?searchtype=author&query=Roessli%2C+B">B. Roessli</a>, <a href="/search/cond-mat?searchtype=author&query=Rotaru%2C+G+M">G. M. Rotaru</a>, <a href="/search/cond-mat?searchtype=author&query=Cowley%2C+R+A">R. A. Cowley</a>, <a href="/search/cond-mat?searchtype=author&query=Lushnikov%2C+S+G">S. G. Lushnikov</a>, <a href="/search/cond-mat?searchtype=author&query=Shaplygina%2C+T+A">T. A. Shaplygina</a>, <a href="/search/cond-mat?searchtype=author&query=Bouchenoire%2C+L">L. Bouchenoire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1204.4273v1-abstract-short" style="display: inline;"> The structure of BaMg1/3Ta2/3O3 (BMT) has been studied using X-ray scattering. The phonons have been measured and the results are similar to those of other materials with the perovskite structure such as PbMg1/3Nb2/3O3 (PMN). The acoustic and lowest energy optic branches were measured but it was not possible to measure the branches of higher energy, possibly this is because they largely consist of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.4273v1-abstract-full').style.display = 'inline'; document.getElementById('1204.4273v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1204.4273v1-abstract-full" style="display: none;"> The structure of BaMg1/3Ta2/3O3 (BMT) has been studied using X-ray scattering. The phonons have been measured and the results are similar to those of other materials with the perovskite structure such as PbMg1/3Nb2/3O3 (PMN). The acoustic and lowest energy optic branches were measured but it was not possible to measure the branches of higher energy, possibly this is because they largely consist of oxygen motions. High-resolution inelastic measurements also showed that the diffuse scattering was strictly elastic and not directly related to the phonon spectra. A diffuse scattering was observed in BMT near the (H\pm1/2, K\pm1/2, L\pm1/2) points in the Brillouin zone and this had a characteristic cube shape. This arises from ordering of the B-site ions in BMT. Additional experiments revealed a diffuse scattering in BMT similar in shape to Bragg reflections at wave-vectors of the form (H\pm1/3, K\pm1/3, L\pm1/3). Such reflections were also observed by Lufaso [Chem. Matt. 16 (2004) 2148] from powders and suggest that this structure of BMT consists of 4 differently oriented domains of a trigonal structure and results from a different ordering of the B-site ions from that responsible for the scattering at the (H\pm1/2, K\pm1/2, L\pm1/2) points. The results lead us to suggest that for BMT single crystals the bulk has the properties of a cubic perovskite, whereas the surface may have quite different structure from that of the bulk. This difference resembles the behaviour of cubic relaxors like PMN and PMN doped by PbTiO3, where significant surface effects have been reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1204.4273v1-abstract-full').style.display = 'none'; document.getElementById('1204.4273v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1103.5799">arXiv:1103.5799</a> <span> [<a href="https://arxiv.org/pdf/1103.5799">pdf</a>, <a href="https://arxiv.org/ps/1103.5799">ps</a>, <a href="https://arxiv.org/format/1103.5799">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.094403">10.1103/PhysRevB.84.094403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin liquid in a single crystal of the frustrated diamond lattice antiferromagnet CoAl2O4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Christensen%2C+O+Z+N+B">O. Zaharko. N. B. Christensen</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Tsurkan%2C+V">V. Tsurkan</a>, <a href="/search/cond-mat?searchtype=author&query=Maljuk%2C+A">A. Maljuk</a>, <a href="/search/cond-mat?searchtype=author&query=Stuhr%2C+U">U. Stuhr</a>, <a href="/search/cond-mat?searchtype=author&query=Niedermayer%2C+C">C. Niedermayer</a>, <a href="/search/cond-mat?searchtype=author&query=Yokaichiya%2C+F">F. Yokaichiya</a>, <a href="/search/cond-mat?searchtype=author&query=Argyriou%2C+D+N">D. N. Argyriou</a>, <a href="/search/cond-mat?searchtype=author&query=Boehm%2C+M">M. Boehm</a>, <a href="/search/cond-mat?searchtype=author&query=Loidl%2C+A">A. Loidl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1103.5799v2-abstract-short" style="display: inline;"> We study spin liquid in the frustrated diamond lattice antiferromagnet CoAl2O4 by means of single crystal neutron scattering in zero and applied magnetic field. The magnetically ordered phase appearing below TN=8 K remains nonconventional down to 1.5 K. The magnetic Bragg peaks at the q=0 positions remain broad and their profiles have strong Lorentzian contribution. Additionally, they are connecte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.5799v2-abstract-full').style.display = 'inline'; document.getElementById('1103.5799v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1103.5799v2-abstract-full" style="display: none;"> We study spin liquid in the frustrated diamond lattice antiferromagnet CoAl2O4 by means of single crystal neutron scattering in zero and applied magnetic field. The magnetically ordered phase appearing below TN=8 K remains nonconventional down to 1.5 K. The magnetic Bragg peaks at the q=0 positions remain broad and their profiles have strong Lorentzian contribution. Additionally, they are connected by weak diffuse streaks along the <111> directions. These observations are explained within the spiral spin liquid model as short-range magnetic correlations of spirals populated at these finite temperatures, as the energy minimum around q=0 is flat and the energy of excited states with q=(111) is low. The agreement is only qualitative, leading us to suspect that microstructure effects are also important. Magnetic field significantly perturbs spin correlations. The 1.5 K static magnetic moment increases from 1.58 mB/Co at zero field to 2.08 mB/Co at 10 T, while the magnetic peaks, being still broad, acquire almost Gaussian profile. Spin excitations are rather conventional spin waves at zero field, resulting in the exchange parameters J1=0.92(1) meV, J2=0.101(2) meV and the anisotropy term D=-0.0089(2) meV for CoAl2O4. The application of a magnetic field leads to a pronounced broadening of the excitations at the zone center, which at 10 T appear gapless and nearly featureless. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.5799v2-abstract-full').style.display = 'none'; document.getElementById('1103.5799v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Review B 84,094403(2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0908.2920">arXiv:0908.2920</a> <span> [<a href="https://arxiv.org/pdf/0908.2920">pdf</a>, <a href="https://arxiv.org/format/0908.2920">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Diffuse scattering from the lead-based relaxor ferroelectric PbMg_1/3Ta_2/3O_3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Gvasaliya%2C+S+N">S. N. Gvasaliya</a>, <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">O. Zaharko</a>, <a href="/search/cond-mat?searchtype=author&query=Roessli%2C+B">B. Roessli</a>, <a href="/search/cond-mat?searchtype=author&query=Rotaru%2C+G+M">G. M. Rotaru</a>, <a href="/search/cond-mat?searchtype=author&query=Cowley%2C+R+A">R. A. Cowley</a>, <a href="/search/cond-mat?searchtype=author&query=Lushnikov%2C+S+G">S. G. Lushnikov</a>, <a href="/search/cond-mat?searchtype=author&query=Shaplygina%2C+T+A">T. A. Shaplygina</a>, <a href="/search/cond-mat?searchtype=author&query=Fernandez-Diaz%2C+M+-">M. -T. Fernandez-Diaz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0908.2920v2-abstract-short" style="display: inline;"> The relaxor ferroelectric PbMg_1/3Ta_2/3O_3 was studied by single-crystal neutron and synchrotron x-ray diffraction and its detailed atomic structure has been modeled in terms of static Pb-displacements that lead to the formation of polar nanoregions. Similar to the other members of the Pb-based relaxor family like PbMg_1/3Nb_2/3O_3 or PbZn_1/3Nb_2/3O_3 the diffuse scattering in the [H,0,0]/[0,K… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.2920v2-abstract-full').style.display = 'inline'; document.getElementById('0908.2920v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0908.2920v2-abstract-full" style="display: none;"> The relaxor ferroelectric PbMg_1/3Ta_2/3O_3 was studied by single-crystal neutron and synchrotron x-ray diffraction and its detailed atomic structure has been modeled in terms of static Pb-displacements that lead to the formation of polar nanoregions. Similar to the other members of the Pb-based relaxor family like PbMg_1/3Nb_2/3O_3 or PbZn_1/3Nb_2/3O_3 the diffuse scattering in the [H,0,0]/[0,K,0] scattering plane has a butterfly-shape around the (h,0,0) Bragg reflections and is transverse to the scattering vector for (h,h,0) peaks. In the [H,H,0]/[0,0,L] plane the diffuse scattering is elongated along the <1,1,2> directions and is transverse to the scattering vector for (h,h,h) reflections. We find that a model consisting of correlated Pb-displacements along the <1,1,1>-directions reproduces the main features of the diffuse scattering in PbMg_1/3Ta_2/3O_3 adequately when the correlation lengths between the Pb-ion displacement vectors are longest along the <1,1,1> and <1,-1,0> and shortest along <1,1,-2> directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.2920v2-abstract-full').style.display = 'none'; document.getElementById('0908.2920v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 3 figures, submitted to Phys. Rev. B. Version2: revised with minor corrections</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0908.2318">arXiv:0908.2318</a> <span> [<a href="https://arxiv.org/pdf/0908.2318">pdf</a>, <a href="https://arxiv.org/ps/0908.2318">ps</a>, <a href="https://arxiv.org/format/0908.2318">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.81.064416">10.1103/PhysRevB.81.064416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of magnetic states in frustrated diamond lattice antiferromagnetic Co(Al1-xCox)2O4 spinels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">O. Zaharko</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Tsurkan%2C+V">V. Tsurkan</a>, <a href="/search/cond-mat?searchtype=author&query=Christensen%2C+N+B">N. B. Christensen</a>, <a href="/search/cond-mat?searchtype=author&query=Loidl%2C+A">A. Loidl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0908.2318v2-abstract-short" style="display: inline;"> Using neutron powder diffraction and Monte-Carlo simulations we show that a spin-liquid regime emerges at $all compositions in the diamond-lattice antiferromagnets Co(Al1-xCox)2O4. This spin-liquid regime induced by frustration due to the second-neighbour exchange coupling J2, is gradually superseded by antiferromagnetic collinear long-range order (k=0) at low temperatures. Upon substitution of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.2318v2-abstract-full').style.display = 'inline'; document.getElementById('0908.2318v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0908.2318v2-abstract-full" style="display: none;"> Using neutron powder diffraction and Monte-Carlo simulations we show that a spin-liquid regime emerges at $all compositions in the diamond-lattice antiferromagnets Co(Al1-xCox)2O4. This spin-liquid regime induced by frustration due to the second-neighbour exchange coupling J2, is gradually superseded by antiferromagnetic collinear long-range order (k=0) at low temperatures. Upon substitution of Al3+ by Co3+ in the octahedral B-site the temperature range occupied by the spin-liquid regime narrows and TN increases. To explain the experimental observations we considered magnetic anisotropy D or third-neighbour exchange coupling J3 as degeneracy-breaking perturbations. We conclude that Co(Al1-xCox)2O4 is below the theoretical critical point J2/J1=1/8, and that magnetic anisotropy assists in selecting a collinear long-range ordered ground state, which becomes more stable with increasing x due to a higher efficiency of O-Co3+-O as an interaction path compared to O-Al3+-O. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0908.2318v2-abstract-full').style.display = 'none'; document.getElementById('0908.2318v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2009. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0907.4850">arXiv:0907.4850</a> <span> [<a href="https://arxiv.org/pdf/0907.4850">pdf</a>, <a href="https://arxiv.org/ps/0907.4850">ps</a>, <a href="https://arxiv.org/format/0907.4850">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.80.104431">10.1103/PhysRevB.80.104431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetoelastic coupling in triangular lattice antiferromagnet CuCrS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rasch%2C+J+C+E">Julia C. E. Rasch</a>, <a href="/search/cond-mat?searchtype=author&query=Boehm%2C+M">Martin Boehm</a>, <a href="/search/cond-mat?searchtype=author&query=Ritter%2C+C">Clemens Ritter</a>, <a href="/search/cond-mat?searchtype=author&query=Mutka%2C+H">Hannu Mutka</a>, <a href="/search/cond-mat?searchtype=author&query=Schefer%2C+J">J眉rg Schefer</a>, <a href="/search/cond-mat?searchtype=author&query=Keller%2C+L">Lukas Keller</a>, <a href="/search/cond-mat?searchtype=author&query=Abramova%2C+G+M">Galina M. Abramova</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=L%C3%B6ffler%2C+J+F">J枚rg F. L枚ffler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0907.4850v1-abstract-short" style="display: inline;"> CuCrS2 is a triangular lattice Heisenberg antiferromagnet with a rhombohedral crystal structure. We report on neutron and synchrotron powder diffraction results which reveal a monoclinic lattice distortion at the magnetic transition and verify a magnetoelastic coupling. CuCrS2 is therefore an interesting material to study the influence of magnetism on the relief of geometrical frustration. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0907.4850v1-abstract-full" style="display: none;"> CuCrS2 is a triangular lattice Heisenberg antiferromagnet with a rhombohedral crystal structure. We report on neutron and synchrotron powder diffraction results which reveal a monoclinic lattice distortion at the magnetic transition and verify a magnetoelastic coupling. CuCrS2 is therefore an interesting material to study the influence of magnetism on the relief of geometrical frustration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.4850v1-abstract-full').style.display = 'none'; document.getElementById('0907.4850v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 80, 104431 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0907.3429">arXiv:0907.3429</a> <span> [<a href="https://arxiv.org/pdf/0907.3429">pdf</a>, <a href="https://arxiv.org/ps/0907.3429">ps</a>, <a href="https://arxiv.org/format/0907.3429">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.80.140511">10.1103/PhysRevB.80.140511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence of incommensurate magnetism and superconductivity in Fe_{1+y}Se_xTe_{1-x} </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&query=Bendele%2C+M">M. Bendele</a>, <a href="/search/cond-mat?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/cond-mat?searchtype=author&query=Babkevich%2C+P">P. Babkevich</a>, <a href="/search/cond-mat?searchtype=author&query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Conder%2C+K">K. Conder</a>, <a href="/search/cond-mat?searchtype=author&query=Gvasaliya%2C+S+N">S. N. Gvasaliya</a>, <a href="/search/cond-mat?searchtype=author&query=Keller%2C+H">H. Keller</a>, <a href="/search/cond-mat?searchtype=author&query=Klauss%2C+H+-">H. -H. Klauss</a>, <a href="/search/cond-mat?searchtype=author&query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&query=Roessli%2C+B">B. Roessli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0907.3429v2-abstract-short" style="display: inline;"> We report an investigation into the superconducting and magnetic properties of Fe_{1+y}Se_{x}Te_{1-x} single crystals by magnetic susceptibility, muon spin rotation, and neutron diffraction. We find three regimes of behavior in the phase diagram for 0\leq x\leq 0.5: (i) commensurate magnetic order for x< 0.1, (ii) bulk superconductivity for $x\lesssim 0.1$, and (iii) a range \sim 0.25\leq x\leq… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.3429v2-abstract-full').style.display = 'inline'; document.getElementById('0907.3429v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0907.3429v2-abstract-full" style="display: none;"> We report an investigation into the superconducting and magnetic properties of Fe_{1+y}Se_{x}Te_{1-x} single crystals by magnetic susceptibility, muon spin rotation, and neutron diffraction. We find three regimes of behavior in the phase diagram for 0\leq x\leq 0.5: (i) commensurate magnetic order for x< 0.1, (ii) bulk superconductivity for $x\lesssim 0.1$, and (iii) a range \sim 0.25\leq x\leq 0.45 in which superconductivity coexists with static incommensurate magnetic order. The results are qualitatively consistent with a two-band mean-field model in which itinerant magnetism and extended s-wave superconductivity are competing order parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.3429v2-abstract-full').style.display = 'none'; document.getElementById('0907.3429v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 80, 140511(R) (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0808.1853">arXiv:0808.1853</a> <span> [<a href="https://arxiv.org/pdf/0808.1853">pdf</a>, <a href="https://arxiv.org/ps/0808.1853">ps</a>, <a href="https://arxiv.org/format/0808.1853">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.101.126102">10.1103/PhysRevLett.101.126102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unit cell of graphene on Ru(0001): a 25 x 25 supercell with 1250 carbon atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Martoccia%2C+D">D. Martoccia</a>, <a href="/search/cond-mat?searchtype=author&query=Willmott%2C+P+R">P. R. Willmott</a>, <a href="/search/cond-mat?searchtype=author&query=Brugger%2C+T">T. Brugger</a>, <a href="/search/cond-mat?searchtype=author&query=Bj%C3%B6rck%2C+M">M. Bj枚rck</a>, <a href="/search/cond-mat?searchtype=author&query=G%C3%BCnther%2C+S">S. G眉nther</a>, <a href="/search/cond-mat?searchtype=author&query=Schlep%C3%BCtz%2C+C+M">C. M. Schlep眉tz</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Pauli%2C+S+A">S. A. Pauli</a>, <a href="/search/cond-mat?searchtype=author&query=Patterson%2C+B+D">B. D. Patterson</a>, <a href="/search/cond-mat?searchtype=author&query=Marchini%2C+S">S. Marchini</a>, <a href="/search/cond-mat?searchtype=author&query=Wintterlin%2C+J">J. Wintterlin</a>, <a href="/search/cond-mat?searchtype=author&query=Moritz%2C+W">W. Moritz</a>, <a href="/search/cond-mat?searchtype=author&query=Greber%2C+T">T. Greber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0808.1853v1-abstract-short" style="display: inline;"> The structure of a single layer of graphene on Ru(0001) has been studied using surface x-ray diffraction. A surprising superstructure has been determined, whereby 25 x 25 graphene unit cells lie on 23 x 23 unit cells of Ru. Each supercell contains 2 x 2 crystallographically inequivalent subcells caused by corrugation. Strong intensity oscillations in the superstructure rods demonstrate that the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0808.1853v1-abstract-full').style.display = 'inline'; document.getElementById('0808.1853v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0808.1853v1-abstract-full" style="display: none;"> The structure of a single layer of graphene on Ru(0001) has been studied using surface x-ray diffraction. A surprising superstructure has been determined, whereby 25 x 25 graphene unit cells lie on 23 x 23 unit cells of Ru. Each supercell contains 2 x 2 crystallographically inequivalent subcells caused by corrugation. Strong intensity oscillations in the superstructure rods demonstrate that the Ru substrate is also significantly corrugated down to several monolayers, and that the bonding between graphene and Ru is strong and cannot be caused by van der Waals bonds. Charge transfer from the Ru substrate to the graphene expands and weakens the C-C bonds, which helps accommodate the in-plane tensile stress. The elucidation of this superstructure provides important information in the potential application of graphene as a template for nanocluster arrays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0808.1853v1-abstract-full').style.display = 'none'; document.getElementById('0808.1853v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, paper submitted to peer reviewed journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 101, 126102 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0803.0718">arXiv:0803.0718</a> <span> [<a href="https://arxiv.org/pdf/0803.0718">pdf</a>, <a href="https://arxiv.org/ps/0803.0718">ps</a>, <a href="https://arxiv.org/format/0803.0718">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.77.092403">10.1103/PhysRevB.77.092403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Short-range magnetic ordering process for the triangular lattice compound NiGa2S4: a positive muon spin rotation and relaxation study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yaouanc%2C+A">A. Yaouanc</a>, <a href="/search/cond-mat?searchtype=author&query=de+Reotier%2C+P+D">P. Dalmas de Reotier</a>, <a href="/search/cond-mat?searchtype=author&query=Chapuis%2C+Y">Y. Chapuis</a>, <a href="/search/cond-mat?searchtype=author&query=Marin%2C+C">C. Marin</a>, <a href="/search/cond-mat?searchtype=author&query=Lapertot%2C+G">G. Lapertot</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Amato%2C+A">A. Amato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0803.0718v2-abstract-short" style="display: inline;"> We report a study of the triangular lattice Heisenberg magnet NiGa2S4 by the positive muon spin rotation and relaxation technique. We unravel three temperature regimes: (i) below T_c = 9.2(2) K a spontaneous static magnetic field at the muon site is observed and the spin dynamics is appreciable: the time scale of the modes we probe is ~ 7 ns; (ii) an unconventional stretched exponential relaxati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0803.0718v2-abstract-full').style.display = 'inline'; document.getElementById('0803.0718v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0803.0718v2-abstract-full" style="display: none;"> We report a study of the triangular lattice Heisenberg magnet NiGa2S4 by the positive muon spin rotation and relaxation technique. We unravel three temperature regimes: (i) below T_c = 9.2(2) K a spontaneous static magnetic field at the muon site is observed and the spin dynamics is appreciable: the time scale of the modes we probe is ~ 7 ns; (ii) an unconventional stretched exponential relaxation function is found for T_c < T < T_{cross} where T_{cross} = 12.6 K, which is a signature of a multichannel relaxation for this temperature range; (iii) above T_{cross}, the relaxation is exponential as expected for a conventional compound. The transition at T_c is of the continuous type. It occurs at a temperature slightly smaller than the temperature at which the specific heat displays a maximum at low temperature. This is reminiscent of the behavior expected for the Berezinskii-Kosterlitz-Thouless transition. We argue that these results reflect the presence of topological defects above T_c. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0803.0718v2-abstract-full').style.display = 'none'; document.getElementById('0803.0718v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures. Corrected typo at the end of the abstract</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0603379">arXiv:cond-mat/0603379</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0603379">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0603379">ps</a>, <a href="https://arxiv.org/format/cond-mat/0603379">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.96.127202">10.1103/PhysRevLett.96.127202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics and magnetic order in magnetically frustrated Tb2Sn2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=de+Reotier%2C+P+D">P. Dalmas de Reotier</a>, <a href="/search/cond-mat?searchtype=author&query=Yaouanc%2C+A">A. Yaouanc</a>, <a href="/search/cond-mat?searchtype=author&query=Keller%2C+L">L. Keller</a>, <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Roessli%2C+B">B. Roessli</a>, <a href="/search/cond-mat?searchtype=author&query=Baines%2C+C">C. Baines</a>, <a href="/search/cond-mat?searchtype=author&query=Forget%2C+A">A. Forget</a>, <a href="/search/cond-mat?searchtype=author&query=Vaju%2C+C">C. Vaju</a>, <a href="/search/cond-mat?searchtype=author&query=Gubbens%2C+P+C+M">P. C. M. Gubbens</a>, <a href="/search/cond-mat?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/cond-mat?searchtype=author&query=King%2C+P+J+C">P. J. C. King</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0603379v1-abstract-short" style="display: inline;"> We report a study of the geometrically frustrated magnetic material Tb2Sn2O7 by the positive muon spin relaxation technique. No signature of a static magnetically ordered state is detected while neutron magnetic reflections are observed in agreement with a published report. This is explained by the dynamical nature of the ground state of Tb2Sn2O7: the Tb3+ magnetic moment characteristic fluctuat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0603379v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0603379v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0603379v1-abstract-full" style="display: none;"> We report a study of the geometrically frustrated magnetic material Tb2Sn2O7 by the positive muon spin relaxation technique. No signature of a static magnetically ordered state is detected while neutron magnetic reflections are observed in agreement with a published report. This is explained by the dynamical nature of the ground state of Tb2Sn2O7: the Tb3+ magnetic moment characteristic fluctuation time is ~ 10^{-10} s. The strong effect of the magnetic field on the muon spin-lattice relaxation rate at low fields indicates a large field-induced increase of the magnetic density of states of the collective excitations at low energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0603379v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0603379v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures. To appear in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 96, 127202 (2006) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0601576">arXiv:cond-mat/0601576</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0601576">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0601576">ps</a>, <a href="https://arxiv.org/format/cond-mat/0601576">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S0021889806026690">10.1107/S0021889806026690 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Folding a 2-D powder diffraction image into a 1-D scan: a new procedure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Giannini%2C+C">Cinzia Giannini</a>, <a href="/search/cond-mat?searchtype=author&query=Guagliardi%2C+A">Antonietta Guagliardi</a>, <a href="/search/cond-mat?searchtype=author&query=Ladisa%2C+M">Massimo Ladisa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0601576v1-abstract-short" style="display: inline;"> A new procedure aiming at folding a powder diffraction 2-D into a 1-D scan is presented. The technique consists of three steps: tracking the beam centre by means of a Simulated Annealing (SA) of the diffraction rings along the same axis, detector tilt and rotation determination by a Hankel Lanczos Singular Value Decomposition (HLSVD) and intensity integration by an adaptive binning algorithm. Th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0601576v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0601576v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0601576v1-abstract-full" style="display: none;"> A new procedure aiming at folding a powder diffraction 2-D into a 1-D scan is presented. The technique consists of three steps: tracking the beam centre by means of a Simulated Annealing (SA) of the diffraction rings along the same axis, detector tilt and rotation determination by a Hankel Lanczos Singular Value Decomposition (HLSVD) and intensity integration by an adaptive binning algorithm. The X-ray powder diffraction (XRPD) intensity profile of the standard NIST Si 640c sample is used to test the performances. Results show the robustness of the method and its capability of efficiently tagging the pixels in a 2-D readout system by matching the ideal geometry of the detector to the real beam-sample-detector frame. The whole technique turns out in a versatile and user-friendly tool for the $2\vartheta$ scanning of 2-D XRPD profiles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0601576v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0601576v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 1 table, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Appl. Cryst. (2006). 39, 745-748 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0502583">arXiv:cond-mat/0502583</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0502583">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0502583">ps</a>, <a href="https://arxiv.org/format/cond-mat/0502583">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.72.035412">10.1103/PhysRevB.72.035412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoparticle size distribution estimation by full-pattern powder diffraction analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Giannini%2C+C">C. Giannini</a>, <a href="/search/cond-mat?searchtype=author&query=Guagliardi%2C+A">A. Guagliardi</a>, <a href="/search/cond-mat?searchtype=author&query=Ladisa%2C+M">M. Ladisa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0502583v1-abstract-short" style="display: inline;"> The increasing scientific and technological interest in nanoparticles has raised the need for fast, efficient and precise characterization techniques. Powder diffraction is a very efficient experimental method, as it is straightforward and non-destructive. However, its use for extracting information regarding very small particles brings some common crystallographic approximations to and beyond t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0502583v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0502583v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0502583v1-abstract-full" style="display: none;"> The increasing scientific and technological interest in nanoparticles has raised the need for fast, efficient and precise characterization techniques. Powder diffraction is a very efficient experimental method, as it is straightforward and non-destructive. However, its use for extracting information regarding very small particles brings some common crystallographic approximations to and beyond their limits of validity. Powder pattern diffraction calculation methods are critically discussed, with special focus on spherical particles with log-normal distribution, with the target of determining size distribution parameters. A 20-nm CeO$_{2}$ sample is analyzed as example. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0502583v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0502583v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures; submitted to Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 72, 35412 (2005) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0502582">arXiv:cond-mat/0502582</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0502582">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0502582">ps</a>, <a href="https://arxiv.org/format/cond-mat/0502582">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1107/S0021889805017206">10.1107/S0021889805017206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disentangling instrumental broadening </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cervellino%2C+A">A. Cervellino</a>, <a href="/search/cond-mat?searchtype=author&query=Giannini%2C+C">C. Giannini</a>, <a href="/search/cond-mat?searchtype=author&query=Guagliardi%2C+A">A. Guagliardi</a>, <a href="/search/cond-mat?searchtype=author&query=Ladisa%2C+M">M. Ladisa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0502582v2-abstract-short" style="display: inline;"> A new procedure aiming at disentangling the instrumental profile broadening and the relevant X-ray powder diffraction (XRPD) profile shape is presented. The technique consists of three steps: denoising by means of wavelet transforms, background suppression by morphological functions and deblurring by a Lucy--Richardson damped deconvolution algorithm. Real XRPD intensity profiles of ceria samples… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0502582v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0502582v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0502582v2-abstract-full" style="display: none;"> A new procedure aiming at disentangling the instrumental profile broadening and the relevant X-ray powder diffraction (XRPD) profile shape is presented. The technique consists of three steps: denoising by means of wavelet transforms, background suppression by morphological functions and deblurring by a Lucy--Richardson damped deconvolution algorithm. Real XRPD intensity profiles of ceria samples are used to test the performances. Results show the robustness of the method and its capability of efficiently disentangling the instrumental broadening affecting the measurement of the intrinsic physical line profile. These features make the whole procedure an interesting and user-friendly tool for the pre-processing of XRPD data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0502582v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0502582v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2005; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 February, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 1 table, 1 figure; typos corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Appl. Cryst. (2005). 38, 685-687 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>