CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 150 results for author: <span class="mathjax">Min谩r, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Min%C3%A1r%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Min谩r, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Min%C3%A1r%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Min谩r, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Min%C3%A1r%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Min%C3%A1r%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Min%C3%A1r%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Min%C3%A1r%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Min%C3%A1r%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14244">arXiv:2411.14244</a> <span> [<a href="https://arxiv.org/pdf/2411.14244">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Emergence of a Bandgap in Nano-Scale Graphite: A Computational and Experimental Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chaiyachad%2C+S">Sujinda Chaiyachad</a>, <a href="/search/cond-mat?searchtype=author&query=Vo%2C+T">Trung-Phuc Vo</a>, <a href="/search/cond-mat?searchtype=author&query=Singsen%2C+S">Sirisak Singsen</a>, <a href="/search/cond-mat?searchtype=author&query=Eknapakul%2C+T">Tanachat Eknapakul</a>, <a href="/search/cond-mat?searchtype=author&query=Jindata%2C+W">Warakorn Jindata</a>, <a href="/search/cond-mat?searchtype=author&query=Jaisuk%2C+C">Chutchawan Jaisuk</a>, <a href="/search/cond-mat?searchtype=author&query=Fevre%2C+P+L">Patrick Le Fevre</a>, <a href="/search/cond-mat?searchtype=author&query=Bertran%2C+F">Francois Bertran</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Nakajima%2C+H">Hideki Nakajima</a>, <a href="/search/cond-mat?searchtype=author&query=Liewrian%2C+W">Watchara Liewrian</a>, <a href="/search/cond-mat?searchtype=author&query=Fongkaew%2C+I">Ittipon Fongkaew</a>, <a href="/search/cond-mat?searchtype=author&query=Minar%2C+J">Jan Minar</a>, <a href="/search/cond-mat?searchtype=author&query=Meevasana%2C+W">Worawat Meevasana</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14244v1-abstract-short" style="display: inline;"> Graphite, conventionally regarded as a gapless material, exhibits a bandgap of ~100 meV in nano-scale patterned highly oriented pyrolytic graphite (HOPG), as revealed by angle-resolved photoemission spectroscopy (ARPES). Our advanced first-principles calculations, incorporating photoemission matrix element effects, predict this bandgap with remarkable accuracy and attribute it to mechanical distor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14244v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14244v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14244v1-abstract-full" style="display: none;"> Graphite, conventionally regarded as a gapless material, exhibits a bandgap of ~100 meV in nano-scale patterned highly oriented pyrolytic graphite (HOPG), as revealed by angle-resolved photoemission spectroscopy (ARPES). Our advanced first-principles calculations, incorporating photoemission matrix element effects, predict this bandgap with remarkable accuracy and attribute it to mechanical distortions introduced during patterning. This work bridges theory and experiment, providing the direct evidence of a tunable bandgap in HOPG. Beyond its fundamental significance, this finding opens new possibilities for designing materials with tailored electronic properties, enabling advancements in terahertz devices and optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14244v1-abstract-full').style.display = 'none'; document.getElementById('2411.14244v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09669">arXiv:2411.09669</a> <span> [<a href="https://arxiv.org/pdf/2411.09669">pdf</a>, <a href="https://arxiv.org/format/2411.09669">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Layered Multiple Scattering Approach to Hard X-ray Photoelectron Diffraction: Theory and Application </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vo%2C+T">Trung-Phuc Vo</a>, <a href="/search/cond-mat?searchtype=author&query=Tkach%2C+O">Olena Tkach</a>, <a href="/search/cond-mat?searchtype=author&query=Tricot%2C+S">Sylvain Tricot</a>, <a href="/search/cond-mat?searchtype=author&query=Sebilleau%2C+D">Didier Sebilleau</a>, <a href="/search/cond-mat?searchtype=author&query=Braun%2C+J">Jurgen Braun</a>, <a href="/search/cond-mat?searchtype=author&query=Pulkkinen%2C+A">Aki Pulkkinen</a>, <a href="/search/cond-mat?searchtype=author&query=Winkelmann%2C+A">Aimo Winkelmann</a>, <a href="/search/cond-mat?searchtype=author&query=Fedchenko%2C+O">Olena Fedchenko</a>, <a href="/search/cond-mat?searchtype=author&query=Lytvynenko%2C+Y">Yaryna Lytvynenko</a>, <a href="/search/cond-mat?searchtype=author&query=Vasilyev%2C+D">Dmitry Vasilyev</a>, <a href="/search/cond-mat?searchtype=author&query=Elmers%2C+H">Hans-Joachim Elmers</a>, <a href="/search/cond-mat?searchtype=author&query=Schonhense%2C+G">Gerd Schonhense</a>, <a href="/search/cond-mat?searchtype=author&query=Minar%2C+J">Jan Minar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09669v1-abstract-short" style="display: inline;"> Photoelectron diffraction (PED) is a powerful and essential experimental technique for resolving the structure of surfaces with sub-angstrom resolution. In the high energy regime, researchers in angle-resolved photoemission spectroscopy (ARPES) observe modulating patterns attributed to X-ray-PED (XPD) effects. This is accompanied by other challenges such as low cross-sections, significant photon m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09669v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09669v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09669v1-abstract-full" style="display: none;"> Photoelectron diffraction (PED) is a powerful and essential experimental technique for resolving the structure of surfaces with sub-angstrom resolution. In the high energy regime, researchers in angle-resolved photoemission spectroscopy (ARPES) observe modulating patterns attributed to X-ray-PED (XPD) effects. This is accompanied by other challenges such as low cross-sections, significant photon momentum transfer, and non-negligible phonon scattering. Overall, XPD is not only an advantageous approach but also exhibits unexpected effects. To disentangle these diffraction influences, we present a PED implementation for the SPRKKR package that utilizes multiple scattering theory and a one-step model in the photoemission process. Unlike real-space implementations of the multiple scattering XPD formalism, we propose a k-space implementation based on the layer KKR method. The main advantage of this method is its ability to address a very broad kinetic energy range (20-8000 eV) without convergence problems related to angular momentum and cluster size. Furthermore, the so-called alloy analogy model can be used to simulate XPD at finite temperatures as well as XPD effects observed in soft and hard X-ray ARPES. For practical applications, we have calculated the circular dichroism in angular distributions (CDAD) associated with core-level photoemission of 2p from Si(100) and 3p from Ge(100). Photoelectrons are excited by hard X-rays (6000 eV) with right and left circularly polarized radiation (RCP and LCP, respectively). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09669v1-abstract-full').style.display = 'none'; document.getElementById('2411.09669v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10422">arXiv:2410.10422</a> <span> [<a href="https://arxiv.org/pdf/2410.10422">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Artical Functionalization of structural and electronic properties of multiferroic SrTiO3 thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jansa%2C+Z">Zden臎k Jansa</a>, <a href="/search/cond-mat?searchtype=author&query=Pru%C5%A1%C3%A1kov%C3%A1%2C+L">Lucie Pru拧谩kov谩</a>, <a href="/search/cond-mat?searchtype=author&query=Jansov%C3%A1%2C+%C5%A0">艩t臎p谩nka Jansov谩</a>, <a href="/search/cond-mat?searchtype=author&query=Calta%2C+P">Pavel Calta</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%A0utta%2C+P">Pavol 艩utta</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10422v1-abstract-short" style="display: inline;"> This study examines the application of transition metal-doped SrTiO3 in photovoltaic technologies, such as photocatalysis. The core objective is to evaluate how different dopants influence the structural and electronic characteristics of the well-known perovskite, SrTiO3 (STO). By incorporating dopants, particularly transition metals, the material's physical properties can be enhanced by addressin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10422v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10422v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10422v1-abstract-full" style="display: none;"> This study examines the application of transition metal-doped SrTiO3 in photovoltaic technologies, such as photocatalysis. The core objective is to evaluate how different dopants influence the structural and electronic characteristics of the well-known perovskite, SrTiO3 (STO). By incorporating dopants, particularly transition metals, the material's physical properties can be enhanced by addressing limitations such as the large gap in the valence band. This study aims to determine the impact of these metals on factors like crystallite size, internal stress levels, electron-hole pair distribution in the valence band, and the shift in the electromagnetic spectrum toward the visible range. The primary focus is on assessing nickel's (Ni) influence on these properties, with additional investigation into the effects of yttrium (Y) and iron (Fe). Several experimental methods were employed to analyze the structural and electronic properties of SrTiO3. The same procedures were applied consistently across all samples, with the sole exception being the high-temperature XRD experiments, as described in the text. The techniques used include magnetron pulse deposition for sample preparation, followed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). After conducting the experiments, the collected data were evaluated and used to guide subsequent steps. Finally, all data were consolidated and analyzed comprehensively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10422v1-abstract-full').style.display = 'none'; document.getElementById('2410.10422v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06147">arXiv:2410.06147</a> <span> [<a href="https://arxiv.org/pdf/2410.06147">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53722-3">10.1038/s41467-024-53722-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Persistent flat band splitting and strong selective band renormalization in a kagome magnet thin film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Z">Zheng Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Biswas%2C+A">Ananya Biswas</a>, <a href="/search/cond-mat?searchtype=author&query=Pulkkinen%2C+A">Aki Pulkkinen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yichen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+Y">Yaofeng Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+Z">Ziqin Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+F">Fang Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Allen%2C+K">Kevin Allen</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Han Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Q">Qirui Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Rajapitamahuni%2C+A">Anil Rajapitamahuni</a>, <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A">Asish Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Kono%2C+J">Junichiro Kono</a>, <a href="/search/cond-mat?searchtype=author&query=Morosan%2C+E">Emilia Morosan</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jian-Xin Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Si%2C+Q">Qimiao Si</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+M">Ming Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06147v1-abstract-short" style="display: inline;"> Magnetic kagome materials provide a fascinating playground for exploring the interplay of magnetism, correlation and topology. Many magnetic kagome systems have been reported including the binary FemXn (X=Sn, Ge; m:n = 3:1, 3:2, 1:1) family and the rare earth RMn6Sn6 (R = rare earth) family, where their kagome flat bands are calculated to be near the Fermi level in the paramagnetic phase. While pa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06147v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06147v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06147v1-abstract-full" style="display: none;"> Magnetic kagome materials provide a fascinating playground for exploring the interplay of magnetism, correlation and topology. Many magnetic kagome systems have been reported including the binary FemXn (X=Sn, Ge; m:n = 3:1, 3:2, 1:1) family and the rare earth RMn6Sn6 (R = rare earth) family, where their kagome flat bands are calculated to be near the Fermi level in the paramagnetic phase. While partially filling a kagome flat band is predicted to give rise to a Stoner-type ferromagnetism, experimental visualization of the magnetic splitting across the ordering temperature has not been reported for any of these systems due to the high ordering temperatures, hence leaving the nature of magnetism in kagome magnets an open question. Here, we probe the electronic structure with angle-resolved photoemission spectroscopy in a kagome magnet thin film FeSn synthesized using molecular beam epitaxy. We identify the exchange-split kagome flat bands, whose splitting persists above the magnetic ordering temperature, indicative of a local moment picture. Such local moments in the presence of the topological flat band are consistent with the compact molecular orbitals predicted in theory. We further observe a large spin-orbital selective band renormalization in the Fe d_xy+d_(x^2-y^2 ) spin majority channel reminiscent of the orbital selective correlation effects in the iron-based superconductors. Our discovery of the coexistence of local moments with topological flat bands in a kagome system echoes similar findings in magic-angle twisted bilayer graphene, and provides a basis for theoretical effort towards modeling correlation effects in magnetic flat band systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06147v1-abstract-full').style.display = 'none'; document.getElementById('2410.06147v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 9376 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11825">arXiv:2409.11825</a> <span> [<a href="https://arxiv.org/pdf/2409.11825">pdf</a>, <a href="https://arxiv.org/ps/2409.11825">ps</a>, <a href="https://arxiv.org/format/2409.11825">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hartl%2C+A">Anna Hartl</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Constantinou%2C+P">Procopios Constantinou</a>, <a href="/search/cond-mat?searchtype=author&query=Roddatis%2C+V">Vladimir Roddatis</a>, <a href="/search/cond-mat?searchtype=author&query=Alarab%2C+F">Fatima Alarab</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%BCller%2C+A+M">Arnold M. M眉ller</a>, <a href="/search/cond-mat?searchtype=author&query=Vockenhuber%2C+C">Christof Vockenhuber</a>, <a href="/search/cond-mat?searchtype=author&query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&query=Pergolesi%2C+D">Daniele Pergolesi</a>, <a href="/search/cond-mat?searchtype=author&query=Strocov%2C+T+L+V+N">Thomas Lippert Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&query=Shepelin%2C+N+A">Nick A. Shepelin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11825v1-abstract-short" style="display: inline;"> The conversion of solar energy into chemical energy, stored in the form of hydrogen, bears enormous potential as a sustainable fuel for powering emerging technologies. Photoactive oxynitrides are promising materials for splitting water into molecular oxygen and hydrogen. However, one of the issues limiting widespread commercial use of oxynitrides is the degradation during operation. While recent s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11825v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11825v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11825v1-abstract-full" style="display: none;"> The conversion of solar energy into chemical energy, stored in the form of hydrogen, bears enormous potential as a sustainable fuel for powering emerging technologies. Photoactive oxynitrides are promising materials for splitting water into molecular oxygen and hydrogen. However, one of the issues limiting widespread commercial use of oxynitrides is the degradation during operation. While recent studies have shown the loss of nitrogen, its relation to the reduced efficiency has not been directly and systematically addressed with experiments. In this study, we demonstrate the impact of the anionic stoichiometry of BaTaO$_x$N$_y$ on its electronic structure and functional properties. Through experimental ion scattering, electron microscopy, and photoelectron spectroscopy investigations, we determine the anionic composition ranging from the bulk towards the surface of BaTaO$_x$N$_y$ thin films. This further serves as input for band structure computations modeling the substitutional disorder of the anion sites. Combining our experimental and computational approaches, we reveal the depth-dependent elemental composition of oxynitride films, resulting in downward band bending and the loss of semiconducting character towards the surface. Extending beyond idealized systems, we demonstrate the relation between the electronic properties of real oxynitride photoanodes and their performance, providing guidelines for engineering highly efficient photoelectrodes and photocatalysts for clean hydrogen production. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11825v1-abstract-full').style.display = 'none'; document.getElementById('2409.11825v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09913">arXiv:2408.09913</a> <span> [<a href="https://arxiv.org/pdf/2408.09913">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Crystallite size and microstrain in the structure of SrTiO3 formed by magnetron deposition with and without O2 flow through the deposition chambre </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jansa%2C+Z">Zden臎k Jansa</a>, <a href="/search/cond-mat?searchtype=author&query=Jansov%C3%A1%2C+%C5%A0">艩t臎p谩nka Jansov谩</a>, <a href="/search/cond-mat?searchtype=author&query=Nedv%C4%9Bdov%C3%A1%2C+L">Lucie Nedv臎dov谩</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09913v1-abstract-short" style="display: inline;"> Transition metal oxides, which have a perovskite structure, have received much attention in recent decades. This is because of the very suitable properties that can be used in various industries. One of the fields where the properties of Perovskites can and have already been applied is in the power industry. Experimental studies of the last few years have reliably demonstrated that, using simple m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09913v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09913v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09913v1-abstract-full" style="display: none;"> Transition metal oxides, which have a perovskite structure, have received much attention in recent decades. This is because of the very suitable properties that can be used in various industries. One of the fields where the properties of Perovskites can and have already been applied is in the power industry. Experimental studies of the last few years have reliably demonstrated that, using simple modifications, perovskite oxides can be used in applications utilizing direct sunlight and photocatalytic applications. The original strontium titanate oxide SrTiO3 (abbreviated STO) is only able to use the UV component of incident radiation and is inactive in visible light, remaining transparent to visible light. The reason for this state is its wide band gap, which at room temperature has a value of 3.2 - 3.25 eV. Studies have shown that doping the structure of these oxides with transition metals (TM) can cause a shift in the valence and/or conduction band. This is because of the 3d dopant bands that create new energy levels in the mentioned band gap, effectively reducing it. One of the elements of the TM group is nickel. According to some studies, it is likely that the Ni ion occurs in the cubic structure of STO in the form of Ni2+ and substitutes the Ti4+ sites. In the case of using this dopant, the shift of the absorption edge of STO:Nix relative to NiO was found to be 1.1 eV. The present work investigates the differences in the structure of STO:Nix prepared by magnetron deposition method with different dopant amount settings. At the same time, the difference in structure was observed when prepared under vacuum with Ar working gas and when O2 was flowed through the deposition chamber. The premise of this experiment was to verify the formation of oxygen vacancies in the STO structure on which the photocatalytic phenomenon could occur. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09913v1-abstract-full').style.display = 'none'; document.getElementById('2408.09913v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures, 1 table Conference Struktura 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03768">arXiv:2407.03768</a> <span> [<a href="https://arxiv.org/pdf/2407.03768">pdf</a>, <a href="https://arxiv.org/ps/2407.03768">ps</a>, <a href="https://arxiv.org/format/2407.03768">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Two-dimensional to bulk crossover of the WSe$_2$ electronic band structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=F%C3%A8vre%2C+P+L">Patrick Le F猫vre</a>, <a href="/search/cond-mat?searchtype=author&query=Salazar%2C+R">Rapha毛l Salazar</a>, <a href="/search/cond-mat?searchtype=author&query=Jamet%2C+M">Matthieu Jamet</a>, <a href="/search/cond-mat?searchtype=author&query=Bertran%2C+F">Fran莽ois Bertran</a>, <a href="/search/cond-mat?searchtype=author&query=Bigi%2C+C">Chiara Bigi</a>, <a href="/search/cond-mat?searchtype=author&query=Ourghi%2C+A">Abdelkarim Ourghi</a>, <a href="/search/cond-mat?searchtype=author&query=Vergnaud%2C+C">C茅line Vergnaud</a>, <a href="/search/cond-mat?searchtype=author&query=Pulkkinen%2C+A">Aki Pulkkinen</a>, <a href="/search/cond-mat?searchtype=author&query=Minar%2C+J">Jan Minar</a>, <a href="/search/cond-mat?searchtype=author&query=Jaouen%2C+T">Thomas Jaouen</a>, <a href="/search/cond-mat?searchtype=author&query=Rault%2C+J">Julien Rault</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03768v1-abstract-short" style="display: inline;"> Transition Metal Dichalcogenides (TMD) are layered materials obtained by stacking two-dimensional sheets weakly bonded by van der Waals interactions. In bulk TMD, band dispersions are observed in the direction normal to the sheet plane (z-direction) due to the hybridization of out-of-plane orbitals but no kz-dispersion is expected at the single-layer limit. Using angle-resolved photoemission spect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03768v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03768v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03768v1-abstract-full" style="display: none;"> Transition Metal Dichalcogenides (TMD) are layered materials obtained by stacking two-dimensional sheets weakly bonded by van der Waals interactions. In bulk TMD, band dispersions are observed in the direction normal to the sheet plane (z-direction) due to the hybridization of out-of-plane orbitals but no kz-dispersion is expected at the single-layer limit. Using angle-resolved photoemission spectroscopy, we precisely address the two-dimensional to three-dimensional crossover of the electronic band structure of epitaxial WSe$_2$ thin films. Increasing number of discrete electronic states appears in given kz-ranges while increasing the number of layers. The continuous bulk dispersion is nearly retrieved for 6-sheet films. These results are reproduced by calculations going from a relatively simple tight-binding model to a sophisticated KKR-Green's function calculation. This two-dimensional system is hence used as a benchmark to compare different theoretical approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03768v1-abstract-full').style.display = 'none'; document.getElementById('2407.03768v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02617">arXiv:2407.02617</a> <span> [<a href="https://arxiv.org/pdf/2407.02617">pdf</a>, <a href="https://arxiv.org/format/2407.02617">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0226268">10.1063/5.0226268 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Open quantum dynamics with variational non-Gaussian states and the truncated Wigner approximation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bond%2C+L+J">Liam J. Bond</a>, <a href="/search/cond-mat?searchtype=author&query=Gerritsen%2C+B">Bas Gerritsen</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1%C5%99%2C+J">Ji艡铆 Min谩艡</a>, <a href="/search/cond-mat?searchtype=author&query=Young%2C+J+T">Jeremy T. Young</a>, <a href="/search/cond-mat?searchtype=author&query=Schachenmayer%2C+J">Johannes Schachenmayer</a>, <a href="/search/cond-mat?searchtype=author&query=Safavi-Naini%2C+A">Arghavan Safavi-Naini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02617v2-abstract-short" style="display: inline;"> We present a framework for simulating the open dynamics of spin-boson systems by combining variational non-Gaussian states with a quantum trajectories approach. We apply this method to a generic spin-boson Hamiltonian that has both Tavis-Cummings and Holstein type couplings, and which has broad applications to a variety of quantum simulation platforms, polaritonic physics, and quantum chemistry. A… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02617v2-abstract-full').style.display = 'inline'; document.getElementById('2407.02617v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02617v2-abstract-full" style="display: none;"> We present a framework for simulating the open dynamics of spin-boson systems by combining variational non-Gaussian states with a quantum trajectories approach. We apply this method to a generic spin-boson Hamiltonian that has both Tavis-Cummings and Holstein type couplings, and which has broad applications to a variety of quantum simulation platforms, polaritonic physics, and quantum chemistry. Additionally, we discuss how the recently developed truncated Wigner approximation for open quantum systems can be applied to the same Hamiltonian. We benchmark the performance of both methods and identify the regimes where each method is best suited to. Finally we discuss strategies to improve each technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02617v2-abstract-full').style.display = 'none'; document.getElementById('2407.02617v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21+3 pages, 12+2 figures. Final version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 161, 184113 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06897">arXiv:2404.06897</a> <span> [<a href="https://arxiv.org/pdf/2404.06897">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> The effects of V doping on the intrinsic properties of SmFe10Co2 alloys: a theoretical investigation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Benea%2C+D">Diana Benea</a>, <a href="/search/cond-mat?searchtype=author&query=Pop%2C+V">Viorel Pop</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">Jan Min谩r</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06897v1-abstract-short" style="display: inline;"> The present study focuses on the intrinsic properties of the SmFe10Co2-xVx (x = 0-2) alloys, which includes the SmFe10Co2 alloy, one of the most promising permanent magnets with the ThMn12 type of structure due to its large saturation magnetization (1.78 T), high Curie temperature (Tc = 859 K), and anisotropy field (12 T) experimentally obtained. Unfortunately, its low coercivity (<0.4 T) hinders… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06897v1-abstract-full').style.display = 'inline'; document.getElementById('2404.06897v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06897v1-abstract-full" style="display: none;"> The present study focuses on the intrinsic properties of the SmFe10Co2-xVx (x = 0-2) alloys, which includes the SmFe10Co2 alloy, one of the most promising permanent magnets with the ThMn12 type of structure due to its large saturation magnetization (1.78 T), high Curie temperature (Tc = 859 K), and anisotropy field (12 T) experimentally obtained. Unfortunately, its low coercivity (<0.4 T) hinders its use in permanent magnet applications. The effect of V-doping on magnetization, magnetocrystalline anisotropy energy, and Curie temperature is investigated by electronic band structure calculations. The spin-polarized fully relativistic Korringa-Kohn-Rostoker (SPR-KKR) band structure method, which employs the coherent potential approximation (CPA) to deal with substitutional disorder, has been used. The Hubbard-U correction to local spin density approximation (LSDA +U) was used to account for the large correlation effects due to the 4f electronic states of Sm. The computed magnetic moments and magnetocrystalline anisotropy energies were compared with existing experimental data to validate the theoretical approach's reliability. The exchange-coupling parameters from the Heisenberg model were used for obtaining the mean-field estimated Curie temperature. The magnetic anisotropy energy was separated into contributions from transition metals and Sm, and its relationships with the local environment, interatomic distances, and valence electron delocalization were analyzed. The suitability of the hypothetical SmFe10CoV alloy for permanent magnet manufacture was assessed using the calculated anisotropy field, magnetic hardness, and intrinsic magnetic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06897v1-abstract-full').style.display = 'none'; document.getElementById('2404.06897v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13345">arXiv:2402.13345</a> <span> [<a href="https://arxiv.org/pdf/2402.13345">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Identification of asbestos fibres from soil sediments in the Pilsen region of the Czech Republic and the impact of these minerals on the health of the local population </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jansov%C3%A1%2C+%C5%A0">艩t臎p谩nka Jansov谩</a>, <a href="/search/cond-mat?searchtype=author&query=Jansa%2C+Z">Zden臎k Jansa</a>, <a href="/search/cond-mat?searchtype=author&query=Nedv%C4%9Bdov%C3%A1%2C+L">Lucie Nedv臎dov谩</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13345v1-abstract-short" style="display: inline;"> Asbestos is the term for silicate minerals with a typical fibrous structure and crystallise as separable fibres that can be released into the environment as a result of natural processes and anthropogenic activities. There is a need to intensify geo-environmental monitoring of the occurrence of natural asbestos on a global scale. The study of this material is important to clarify the impact of asb… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13345v1-abstract-full').style.display = 'inline'; document.getElementById('2402.13345v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13345v1-abstract-full" style="display: none;"> Asbestos is the term for silicate minerals with a typical fibrous structure and crystallise as separable fibres that can be released into the environment as a result of natural processes and anthropogenic activities. There is a need to intensify geo-environmental monitoring of the occurrence of natural asbestos on a global scale. The study of this material is important to clarify the impact of asbestos on public health and to have an accurate knowledge of the requirements for asbestos replacement materials. At present, the technical as well as the ecological reasons for switching to these fibres are difficult, as asbestos replacement materials are subject to considerable technological and economic demands, as well as demands for their biological safety. The aim of this paper is to summarize the current knowledge regarding the vast issue of asbestos occurrence, to seek to establish an appropriate methodology for detecting the presence of asbestos in soil sediments, to identify the exact types of asbestos from a series of samples, to highlight its impact on public health, and to emphasize the need for deliberate mapping of the natural occurrence of asbestos and its inclusion in the laws and decrees of the Ministry of the Environment. Samples were analysed by electron microscopy and X-ray diffraction and compared with standards or available literature. The measurements demonstrated the presence of asbestos in the site sediments and identified specific types of asbestos. The conclusion of this work is the confirmation of the presence of asbestos in all samples, including its most dangerous types, which can cause very serious diseases. In this context, the mechanism of asbestos-related diseases will be further addressed, which is linked to the size and shape of the individual fibres, the chemical composition of the asbestos types and the links between their basic structural units. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13345v1-abstract-full').style.display = 'none'; document.getElementById('2402.13345v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09187">arXiv:2401.09187</a> <span> [<a href="https://arxiv.org/pdf/2401.09187">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202314076">10.1002/adma.202314076 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature Dependence of Relativistic Valence Band Splitting Induced by an Altermagnetic Phase Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hajlaoui%2C+M">M. Hajlaoui</a>, <a href="/search/cond-mat?searchtype=author&query=D%27Souza%2C+S+W">S. W. D'Souza</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%A0mejkal%2C+L">L. 艩mejkal</a>, <a href="/search/cond-mat?searchtype=author&query=Kriegner%2C+D">D. Kriegner</a>, <a href="/search/cond-mat?searchtype=author&query=Krizman%2C+G">G. Krizman</a>, <a href="/search/cond-mat?searchtype=author&query=Zakusylo%2C+T">T. Zakusylo</a>, <a href="/search/cond-mat?searchtype=author&query=Olszowska%2C+N">N. Olszowska</a>, <a href="/search/cond-mat?searchtype=author&query=Caha%2C+O">O. Caha</a>, <a href="/search/cond-mat?searchtype=author&query=Michali%C4%8Dka%2C+J">J. Michali膷ka</a>, <a href="/search/cond-mat?searchtype=author&query=Marmodoro%2C+A">A. Marmodoro</a>, <a href="/search/cond-mat?searchtype=author&query=V%C3%BDborn%C3%BD%2C+K">K. V媒born媒</a>, <a href="/search/cond-mat?searchtype=author&query=Ernst%2C+A">A. Ernst</a>, <a href="/search/cond-mat?searchtype=author&query=Cinchetti%2C+M">M. Cinchetti</a>, <a href="/search/cond-mat?searchtype=author&query=Minar%2C+J">J. Minar</a>, <a href="/search/cond-mat?searchtype=author&query=Jungwirth%2C+T">T. Jungwirth</a>, <a href="/search/cond-mat?searchtype=author&query=Springholz%2C+G">G. Springholz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09187v4-abstract-short" style="display: inline;"> Altermagnetic (AM) materials exhibit non-relativistic, momentum-dependent spin-split states, ushering in new opportunities for spin electronic devices. While the characteristics of spin-splitting have been documented within the framework of the non-relativistic spin group symmetry, there has been limited exploration of the inclusion of relativistic symmetry and its impact on the emergence of a nov… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09187v4-abstract-full').style.display = 'inline'; document.getElementById('2401.09187v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09187v4-abstract-full" style="display: none;"> Altermagnetic (AM) materials exhibit non-relativistic, momentum-dependent spin-split states, ushering in new opportunities for spin electronic devices. While the characteristics of spin-splitting have been documented within the framework of the non-relativistic spin group symmetry, there has been limited exploration of the inclusion of relativistic symmetry and its impact on the emergence of a novel spin-splitting in the band structure. This study delves into the intricate relativistic electronic structure of an AM material, alpha-MnTe. Employing temperature-dependent angle-resolved photoelectron spectroscopy across the AM phase transition, we elucidate the emergence of a relativistic valence band splitting concurrent with the establishment of magnetic order. This discovery is validated through disordered local moment calculations, modeling the influence of magnetic order on the electronic structure and confirming the magnetic origin of the observed splitting. The temperature-dependent splitting is ascribed to the advent of relativistic spin-splitting resulting from the strengthening of AM order in alpha-MnTe as the temperature decreases. This sheds light on a previously unexplored facet of this intriguing material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09187v4-abstract-full').style.display = 'none'; document.getElementById('2401.09187v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12669">arXiv:2310.12669</a> <span> [<a href="https://arxiv.org/pdf/2310.12669">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Nature of the metallic and in-gap states in Ni-doped SrTiO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Alarab%2C+F">Fatima Alarab</a>, <a href="/search/cond-mat?searchtype=author&query=Hricovini%2C+K">Karol Hricovini</a>, <a href="/search/cond-mat?searchtype=author&query=Leikert%2C+B">Berengar Leikert</a>, <a href="/search/cond-mat?searchtype=author&query=Richter%2C+C">Christine Richter</a>, <a href="/search/cond-mat?searchtype=author&query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&query=Sing%2C+M">Michael Sing</a>, <a href="/search/cond-mat?searchtype=author&query=Claessen%2C+R">Ralph Claessen</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Strocov%2C+V+N">Vladimir N. Strocov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12669v1-abstract-short" style="display: inline;"> Epitaxial thin films of SrTiO$_3$(100) doped with 6% and 12% Ni are studied with resonant angle-resolved photoelectron spectroscopy (ARPES) at the Ti and Ni L2,3-edges. We find that the Ni doping shifts the valence band (VB) of pristine SrTiO$_3$ towards the Fermi level (p-doping) and reduces its band gap. This is accompanied by an upward energy shift of the Ti t2g-derived mobile electron system (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12669v1-abstract-full').style.display = 'inline'; document.getElementById('2310.12669v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12669v1-abstract-full" style="display: none;"> Epitaxial thin films of SrTiO$_3$(100) doped with 6% and 12% Ni are studied with resonant angle-resolved photoelectron spectroscopy (ARPES) at the Ti and Ni L2,3-edges. We find that the Ni doping shifts the valence band (VB) of pristine SrTiO$_3$ towards the Fermi level (p-doping) and reduces its band gap. This is accompanied by an upward energy shift of the Ti t2g-derived mobile electron system (MES). Thereby, the in-plane dxy-derived bands reduce the embedded electron density, as evidenced by progressive reduction of their Fermi momentum with the Ni concentration, and the out-of-plane dxz/yz-derived bands depopulate, making the MES purely two-dimensional. Furthermore, the Ti and Ni L2,3-edge resonant photoemission is used to identify the Ni 3d impurity state in the vicinity of the valence-band maximum, and decipher the full spectrum of the VO-induced in-gap states originating from the Ni atoms, Ti atoms, and from their hybridized orbitals. Our experimental information about the dependence of the valence bands, MES and in-gap states in Ni-doped SrTiO$_3$ may help development of this material towards its device applications associated with the reduced optical band gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12669v1-abstract-full').style.display = 'none'; document.getElementById('2310.12669v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.11317">arXiv:2310.11317</a> <span> [<a href="https://arxiv.org/pdf/2310.11317">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> k-dependent proximity-induced modulation of spin-orbit interaction in MoSe2 interfaced with amorphous Pb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Alarab%2C+F">Fatima Alarab</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Constantinou%2C+P">Procopios Constantinou</a>, <a href="/search/cond-mat?searchtype=author&query=Nafday%2C+D">Dhani Nafday</a>, <a href="/search/cond-mat?searchtype=author&query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaoqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Strocov%2C+V+N">Vladimir N. Strocov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.11317v1-abstract-short" style="display: inline;"> The ability to modulate the spin-orbit (SO) interaction is crucial for engineering a wide range of spintronics-based quantum devices, extending from state-of-the-art data storage to materials for quantum computing. The use of proximity-induced effects for this purpose may become the mainstream approach, whereas their experimental verification using angle-resolved photoelectron spectroscopy (ARPES)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11317v1-abstract-full').style.display = 'inline'; document.getElementById('2310.11317v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.11317v1-abstract-full" style="display: none;"> The ability to modulate the spin-orbit (SO) interaction is crucial for engineering a wide range of spintronics-based quantum devices, extending from state-of-the-art data storage to materials for quantum computing. The use of proximity-induced effects for this purpose may become the mainstream approach, whereas their experimental verification using angle-resolved photoelectron spectroscopy (ARPES) has so far been elusive. Here, using the advantages of soft-X-ray ARPES on its probing depth and intrinsic resolution in three-dimensional momentum k, we identify a distinct modulation of the SO interaction in a van der Waals semiconductor (MoSe2) proximitized to a high-Z metal (Pb), and measure its variation through the k-space. The strong SO field from Pb boosts the SO splitting by up to 30% at the H-point of the bulk Brillouin zone, the spin-orbit hotspot of MoSe2. Tunability of the splitting via the Pb thickness allows its tailoring to particular applications in emerging quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11317v1-abstract-full').style.display = 'none'; document.getElementById('2310.11317v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.16558">arXiv:2308.16558</a> <span> [<a href="https://arxiv.org/pdf/2308.16558">pdf</a>, <a href="https://arxiv.org/format/2308.16558">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Persistence of structural distortion and bulk band Rashba splitting in SnTe above its ferroelectric critical temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chassot%2C+F">Fr茅d茅ric Chassot</a>, <a href="/search/cond-mat?searchtype=author&query=Pulkkinen%2C+A">Aki Pulkkinen</a>, <a href="/search/cond-mat?searchtype=author&query=Kremer%2C+G">Geoffroy Kremer</a>, <a href="/search/cond-mat?searchtype=author&query=Zakusylo%2C+T">Tetiana Zakusylo</a>, <a href="/search/cond-mat?searchtype=author&query=Krizman%2C+G">Gauthier Krizman</a>, <a href="/search/cond-mat?searchtype=author&query=Hajlaoui%2C+M">Mahdi Hajlaoui</a>, <a href="/search/cond-mat?searchtype=author&query=Dil%2C+J+H">J. Hugo Dil</a>, <a href="/search/cond-mat?searchtype=author&query=Krempask%C3%BD%2C+J">Juraj Krempask媒</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Springholz%2C+G">Gunther Springholz</a>, <a href="/search/cond-mat?searchtype=author&query=Monney%2C+C">Claude Monney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.16558v1-abstract-short" style="display: inline;"> The ferroelectric semiconductor $伪$-SnTe has been regarded as a topological crystalline insulator and the dispersion of its surface states has been intensively measured with angle-resolved photoemission spectroscopy (ARPES) over the last decade. However, much less attention has been given to the impact of the ferroelectric transition on its electronic structure, and in particular on its bulk state… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16558v1-abstract-full').style.display = 'inline'; document.getElementById('2308.16558v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.16558v1-abstract-full" style="display: none;"> The ferroelectric semiconductor $伪$-SnTe has been regarded as a topological crystalline insulator and the dispersion of its surface states has been intensively measured with angle-resolved photoemission spectroscopy (ARPES) over the last decade. However, much less attention has been given to the impact of the ferroelectric transition on its electronic structure, and in particular on its bulk states. Here, we investigate the low-energy electronic structure of $伪$-SnTe with ARPES and follow the evolution of the bulk-state Rashba splitting as a function of temperature, across its ferroelectric critical temperature of about $T_c\sim 110$ K. Unexpectedly, we observe a persistent band splitting up to room temperature, which is consistent with an order-disorder contribution to the phase transition that requires the presence of fluctuating local dipoles above $T_c$. We conclude that no topological surface state can occur at the (111) surface of SnTe, at odds with recent literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16558v1-abstract-full').style.display = 'none'; document.getElementById('2308.16558v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10681">arXiv:2308.10681</a> <span> [<a href="https://arxiv.org/pdf/2308.10681">pdf</a>, <a href="https://arxiv.org/format/2308.10681">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Altermagnetic lifting of Kramers spin degeneracy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Krempask%C3%BD%2C+J">J. Krempask媒</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%A0mejkal%2C+L">L. 艩mejkal</a>, <a href="/search/cond-mat?searchtype=author&query=D%27Souza%2C+S+W">S. W. D'Souza</a>, <a href="/search/cond-mat?searchtype=author&query=Hajlaoui%2C+M">M. Hajlaoui</a>, <a href="/search/cond-mat?searchtype=author&query=Springholz%2C+G">G. Springholz</a>, <a href="/search/cond-mat?searchtype=author&query=Uhl%C3%AD%C5%99ov%C3%A1%2C+K">K. Uhl铆艡ov谩</a>, <a href="/search/cond-mat?searchtype=author&query=Alarab%2C+F">F. Alarab</a>, <a href="/search/cond-mat?searchtype=author&query=Constantinou%2C+P+C">P. C. Constantinou</a>, <a href="/search/cond-mat?searchtype=author&query=Strokov%2C+V">V. Strokov</a>, <a href="/search/cond-mat?searchtype=author&query=Usanov%2C+D">D. Usanov</a>, <a href="/search/cond-mat?searchtype=author&query=Pudelko%2C+W+R">W. R. Pudelko</a>, <a href="/search/cond-mat?searchtype=author&query=Gonz%C3%A1lez-Hern%C3%A1ndez%2C+R">R. Gonz谩lez-Hern谩ndez</a>, <a href="/search/cond-mat?searchtype=author&query=Hellenes%2C+A+B">A. Birk Hellenes</a>, <a href="/search/cond-mat?searchtype=author&query=Jansa%2C+Z">Z. Jansa</a>, <a href="/search/cond-mat?searchtype=author&query=Reichlov%C3%A1%2C+H">H. Reichlov谩</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%A0ob%C3%A1%C5%88%2C+Z">Z. 艩ob谩艌</a>, <a href="/search/cond-mat?searchtype=author&query=Betancourt%2C+R+D+G">R. D. Gonzalez Betancourt</a>, <a href="/search/cond-mat?searchtype=author&query=Wadley%2C+P">P. Wadley</a>, <a href="/search/cond-mat?searchtype=author&query=Sinova%2C+J">J. Sinova</a>, <a href="/search/cond-mat?searchtype=author&query=Kriegner%2C+D">D. Kriegner</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J. Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Dil%2C+J+H">J. H. Dil</a>, <a href="/search/cond-mat?searchtype=author&query=Jungwirth%2C+T">T. Jungwirth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10681v1-abstract-short" style="display: inline;"> Lifted Kramers spin-degeneracy has been among the central topics of condensed-matter physics since the dawn of the band theory of solids. It underpins established practical applications as well as current frontier research, ranging from magnetic-memory technology to topological quantum matter. Traditionally, lifted Kramers spin-degeneracy has been considered to originate from two possible internal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10681v1-abstract-full').style.display = 'inline'; document.getElementById('2308.10681v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10681v1-abstract-full" style="display: none;"> Lifted Kramers spin-degeneracy has been among the central topics of condensed-matter physics since the dawn of the band theory of solids. It underpins established practical applications as well as current frontier research, ranging from magnetic-memory technology to topological quantum matter. Traditionally, lifted Kramers spin-degeneracy has been considered to originate from two possible internal symmetry-breaking mechanisms. The first one refers to time-reversal symmetry breaking by magnetization of ferromagnets, and tends to be strong due to the non-relativistic exchange-coupling origin. The second mechanism applies to crystals with broken inversion symmetry, and tends to be comparatively weaker as it originates from the relativistic spin-orbit coupling. A recent theory work based on spin-symmetry classification has identified an unconventional magnetic phase, dubbed altermagnetic, that allows for lifting the Kramers spin degeneracy without net magnetization and inversion-symmetry breaking. Here we provide the confirmation using photoemission spectroscopy and ab initio calculations. We identify two distinct unconventional mechanisms of lifted Kramers spin degeneracy generated by the altermagnetic phase of centrosymmetric MnTe with vanishing net magnetization. Our observation of the altermagnetic lifting of the Kramers spin degeneracy can have broad consequences in magnetism. It motivates exploration and exploitation of the unconventional nature of this magnetic phase in an extended family of materials, ranging from insulators and semiconductors to metals and superconductors, that have been either identified recently or perceived for many decades as conventional antiferromagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10681v1-abstract-full').style.display = 'none'; document.getElementById('2308.10681v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02372">arXiv:2308.02372</a> <span> [<a href="https://arxiv.org/pdf/2308.02372">pdf</a>, <a href="https://arxiv.org/format/2308.02372">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Strongly Anisotropic Spin and Orbital Rashba Effect at a Tellurium - Noble Metal Interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Geldiyev%2C+B">B. Geldiyev</a>, <a href="/search/cond-mat?searchtype=author&query=%C3%9Cnzelmann%2C+M">M. 脺nzelmann</a>, <a href="/search/cond-mat?searchtype=author&query=Eck%2C+P">P. Eck</a>, <a href="/search/cond-mat?searchtype=author&query=Ki%C3%9Flinger%2C+T">T. Ki脽linger</a>, <a href="/search/cond-mat?searchtype=author&query=Schusser%2C+J">J. Schusser</a>, <a href="/search/cond-mat?searchtype=author&query=Figgemeier%2C+T">T. Figgemeier</a>, <a href="/search/cond-mat?searchtype=author&query=Kagerer%2C+P">P. Kagerer</a>, <a href="/search/cond-mat?searchtype=author&query=Tezak%2C+N">N. Tezak</a>, <a href="/search/cond-mat?searchtype=author&query=Krivenkov%2C+M">M. Krivenkov</a>, <a href="/search/cond-mat?searchtype=author&query=Varykhalov%2C+A">A. Varykhalov</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A">A. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Nicola%C3%AF%2C+L">L. Nicola茂</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J. Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Miyamoto%2C+K">K. Miyamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Okuda%2C+T">T. Okuda</a>, <a href="/search/cond-mat?searchtype=author&query=Shimada%2C+K">K. Shimada</a>, <a href="/search/cond-mat?searchtype=author&query=Di+Sante%2C+D">D. Di Sante</a>, <a href="/search/cond-mat?searchtype=author&query=Sangiovanni%2C+G">G. Sangiovanni</a>, <a href="/search/cond-mat?searchtype=author&query=Hammer%2C+L">L. Hammer</a>, <a href="/search/cond-mat?searchtype=author&query=Schneider%2C+M+A">M. A. Schneider</a>, <a href="/search/cond-mat?searchtype=author&query=Bentmann%2C+H">H. Bentmann</a>, <a href="/search/cond-mat?searchtype=author&query=Reinert%2C+F">F. Reinert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02372v1-abstract-short" style="display: inline;"> We study the interplay of lattice, spin and orbital degrees of freedom in a two-dimensional model system: a flat square lattice of Te atoms on a Au(100) surface. The atomic structure of the Te monolayer is determined by scanning tunneling microscopy (STM) and quantitative low-energy electron diffraction (LEED-IV). Using spin- and angle-resolved photoelectron spectroscopy (ARPES) and density functi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02372v1-abstract-full').style.display = 'inline'; document.getElementById('2308.02372v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02372v1-abstract-full" style="display: none;"> We study the interplay of lattice, spin and orbital degrees of freedom in a two-dimensional model system: a flat square lattice of Te atoms on a Au(100) surface. The atomic structure of the Te monolayer is determined by scanning tunneling microscopy (STM) and quantitative low-energy electron diffraction (LEED-IV). Using spin- and angle-resolved photoelectron spectroscopy (ARPES) and density functional theory (DFT), we observe a Te-Au interface state with highly anisotropic Rashba-type spin-orbit splitting at the X point of the Brillouin zone. Based on a profound symmetry and tight-binding analysis, we show how in-plane square lattice symmetry and broken inversion symmetry at the Te-Au interface together enforce a remarkably anisotropic orbital Rashba effect which strongly modulates the spin splitting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02372v1-abstract-full').style.display = 'none'; document.getElementById('2308.02372v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.03610">arXiv:2306.03610</a> <span> [<a href="https://arxiv.org/pdf/2306.03610">pdf</a>, <a href="https://arxiv.org/format/2306.03610">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.066402">10.1103/PhysRevLett.131.066402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast Hidden Spin Polarization Dynamics of Bright and Dark Excitons in 2H-WSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fanciulli%2C+M">Mauro Fanciulli</a>, <a href="/search/cond-mat?searchtype=author&query=Bresteau%2C+D">David Bresteau</a>, <a href="/search/cond-mat?searchtype=author&query=Gaudin%2C+J">J茅rome Gaudin</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+S">Shuo Dong</a>, <a href="/search/cond-mat?searchtype=author&query=G%C3%A9neaux%2C+R">Romain G茅neaux</a>, <a href="/search/cond-mat?searchtype=author&query=Ruchon%2C+T">Thierry Ruchon</a>, <a href="/search/cond-mat?searchtype=author&query=Tcherbakoff%2C+O">Olivier Tcherbakoff</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Heckmann%2C+O">Olivier Heckmann</a>, <a href="/search/cond-mat?searchtype=author&query=Richter%2C+M+C">Maria Christine Richter</a>, <a href="/search/cond-mat?searchtype=author&query=Hricovini%2C+K">Karol Hricovini</a>, <a href="/search/cond-mat?searchtype=author&query=Beaulieu%2C+S">Samuel Beaulieu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.03610v2-abstract-short" style="display: inline;"> We performed spin-, time- and angle-resolved extreme ultraviolet photoemission spectroscopy (STARPES) of excitons prepared by photoexcitation of inversion-symmetric 2H-WSe$_2$ with circularly polarized light. The very short probing depth of XUV photoemission permits selective measurement of photoelectrons originating from the top-most WSe$_2$ layer, allowing for direct measurement of hidden spin p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03610v2-abstract-full').style.display = 'inline'; document.getElementById('2306.03610v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.03610v2-abstract-full" style="display: none;"> We performed spin-, time- and angle-resolved extreme ultraviolet photoemission spectroscopy (STARPES) of excitons prepared by photoexcitation of inversion-symmetric 2H-WSe$_2$ with circularly polarized light. The very short probing depth of XUV photoemission permits selective measurement of photoelectrons originating from the top-most WSe$_2$ layer, allowing for direct measurement of hidden spin polarization of bright and momentum-forbidden dark excitons. Our results reveal efficient chiroptical control of bright excitons' hidden spin polarization. Following optical photoexcitation, intervalley scattering between nonequivalent K-K' valleys leads to a decay of bright excitons' hidden spin polarization. Conversely, the ultrafast formation of momentum-forbidden dark excitons acts as a local spin polarization reservoir, which could be used for spin injection in van der Waals heterostructures involving multilayer transition metal dichalcogenides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03610v2-abstract-full').style.display = 'none'; document.getElementById('2306.03610v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 066402 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02170">arXiv:2306.02170</a> <span> [<a href="https://arxiv.org/pdf/2306.02170">pdf</a>, <a href="https://arxiv.org/format/2306.02170">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fedchenko%2C+O">O. Fedchenko</a>, <a href="/search/cond-mat?searchtype=author&query=Minar%2C+J">J. Minar</a>, <a href="/search/cond-mat?searchtype=author&query=Akashdeep%2C+A">A. Akashdeep</a>, <a href="/search/cond-mat?searchtype=author&query=D%27Souza%2C+S+W">S. W. D'Souza</a>, <a href="/search/cond-mat?searchtype=author&query=Vasilyev%2C+D">D. Vasilyev</a>, <a href="/search/cond-mat?searchtype=author&query=Tkach%2C+O">O. Tkach</a>, <a href="/search/cond-mat?searchtype=author&query=Odenbreit%2C+L">L. Odenbreit</a>, <a href="/search/cond-mat?searchtype=author&query=Nguyen%2C+Q+L">Q. L. Nguyen</a>, <a href="/search/cond-mat?searchtype=author&query=Kutnyakhov%2C+D">D. Kutnyakhov</a>, <a href="/search/cond-mat?searchtype=author&query=Wind%2C+N">N. Wind</a>, <a href="/search/cond-mat?searchtype=author&query=Wenthaus%2C+L">L. Wenthaus</a>, <a href="/search/cond-mat?searchtype=author&query=Scholz%2C+M">M. Scholz</a>, <a href="/search/cond-mat?searchtype=author&query=Rossnagel%2C+K">K. Rossnagel</a>, <a href="/search/cond-mat?searchtype=author&query=Hoesch%2C+M">M. Hoesch</a>, <a href="/search/cond-mat?searchtype=author&query=Aeschlimann%2C+M">M. Aeschlimann</a>, <a href="/search/cond-mat?searchtype=author&query=Stadtmueller%2C+B">B. Stadtmueller</a>, <a href="/search/cond-mat?searchtype=author&query=Klaeui%2C+M">M. Klaeui</a>, <a href="/search/cond-mat?searchtype=author&query=Schoenhense%2C+G">G. Schoenhense</a>, <a href="/search/cond-mat?searchtype=author&query=Jakob%2C+G">G. Jakob</a>, <a href="/search/cond-mat?searchtype=author&query=Jungwirth%2C+T">T. Jungwirth</a>, <a href="/search/cond-mat?searchtype=author&query=Smejkal%2C+L">L. Smejkal</a>, <a href="/search/cond-mat?searchtype=author&query=Sinova%2C+J">J. Sinova</a>, <a href="/search/cond-mat?searchtype=author&query=Elmers%2C+H+J">H. J. Elmers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02170v1-abstract-short" style="display: inline;"> Altermagnets are an emerging third elementary class of magnets. Unlike ferromagnets, their distinct crystal symmetries inhibit magnetization while, unlike antiferromagnets, they promote strong spin polarization in the band structure. The corresponding unconventional mechanism of timereversal symmetry breaking without magnetization in the electronic spectra has been regarded as a primary signature… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02170v1-abstract-full').style.display = 'inline'; document.getElementById('2306.02170v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02170v1-abstract-full" style="display: none;"> Altermagnets are an emerging third elementary class of magnets. Unlike ferromagnets, their distinct crystal symmetries inhibit magnetization while, unlike antiferromagnets, they promote strong spin polarization in the band structure. The corresponding unconventional mechanism of timereversal symmetry breaking without magnetization in the electronic spectra has been regarded as a primary signature of altermagnetism, but has not been experimentally visualized to date. We directly observe strong time-reversal symmetry breaking in the band structure of altermagnetic RuO$_2$ by detecting magnetic circular dichroism in angle-resolved photoemission spectra. Our experimental results, supported by ab initio calculations, establish the microscopic electronic-structure basis for a family of novel phenomena and functionalities in fields ranging from topological matter to spintronics, that are based on the unconventional time-reversal symmetry breaking in altermagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02170v1-abstract-full').style.display = 'none'; document.getElementById('2306.02170v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.01730">arXiv:2306.01730</a> <span> [<a href="https://arxiv.org/pdf/2306.01730">pdf</a>, <a href="https://arxiv.org/format/2306.01730">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.170401">10.1103/PhysRevLett.132.170401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast quantum state preparation and bath dynamics using non-Gaussian variational ansatz and quantum optimal control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bond%2C+L+J">Liam J. Bond</a>, <a href="/search/cond-mat?searchtype=author&query=Safavi-Naini%2C+A">Arghavan Safavi-Naini</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1%C5%99%2C+J">Ji艡铆 Min谩艡</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.01730v1-abstract-short" style="display: inline;"> We combine quantum optimal control with a variational ansatz based on non-Gaussian states for fast, non-adiabatic preparation of quantum many-body states. We demonstrate this on the example of the spin-boson model, and use a multi-polaron ansatz to prepare near-critical ground states. For one mode, we achieve a reduction in infidelity of up to $\approx 60$ ($\approx 20$) times compared to linear (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01730v1-abstract-full').style.display = 'inline'; document.getElementById('2306.01730v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.01730v1-abstract-full" style="display: none;"> We combine quantum optimal control with a variational ansatz based on non-Gaussian states for fast, non-adiabatic preparation of quantum many-body states. We demonstrate this on the example of the spin-boson model, and use a multi-polaron ansatz to prepare near-critical ground states. For one mode, we achieve a reduction in infidelity of up to $\approx 60$ ($\approx 20$) times compared to linear (optimised local adiabatic) ramps respectively; for many modes we achieve a reduction in infidelity of up to $\approx 5$ times compared to non-adiabatic linear ramps. Further, we show that the typical control quantity, the leakage from the variational manifold, provides only a loose bound on the state's fidelity. Instead, in analogy to the bond dimension of matrix product states, we suggest a controlled convergence criterion based on the number of polarons. Finally, motivated by the possibility of realizations in trapped ions, we study the dynamics of a system with bath properties going beyond the paradigm of (sub/super) Ohmic couplings. We apply the ansatz to the study of the out-of-time-order-correlator (OTOC) of the bath modes in a non-perturbative regime. The scrambling time is found to be a robust feature only weakly dependent on the details of the coupling between the bath and the spin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01730v1-abstract-full').style.display = 'none'; document.getElementById('2306.01730v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+7 pages, 3+6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 170401 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00033">arXiv:2301.00033</a> <span> [<a href="https://arxiv.org/pdf/2301.00033">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Are high-energy photoemission final states free-electron-like? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&query=Lev%2C+L+L">L. L. Lev</a>, <a href="/search/cond-mat?searchtype=author&query=Alarab%2C+F">F. Alarab</a>, <a href="/search/cond-mat?searchtype=author&query=Constantinou%2C+P">P. Constantinou</a>, <a href="/search/cond-mat?searchtype=author&query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&query=Stock%2C+T+J+Z">T. J. Z. Stock</a>, <a href="/search/cond-mat?searchtype=author&query=Nicola%C3%AF%2C+L">L. Nicola茂</a>, <a href="/search/cond-mat?searchtype=author&query=O%C4%8Den%C3%A1%C5%A1ek%2C+J">J. O膷en谩拧ek</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J. Min谩r</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00033v1-abstract-short" style="display: inline;"> Three-dimensional (3D) electronic band structure is fundamental for understanding a vast diversity of physical phenomena in solid-state systems, including topological phases, interlayer interactions in van der Waals materials, dimensionality-driven phase transitions, etc. Interpretation of ARPES data in terms of 3D electron dispersions is commonly based on the free-electron approximation for the p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00033v1-abstract-full').style.display = 'inline'; document.getElementById('2301.00033v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00033v1-abstract-full" style="display: none;"> Three-dimensional (3D) electronic band structure is fundamental for understanding a vast diversity of physical phenomena in solid-state systems, including topological phases, interlayer interactions in van der Waals materials, dimensionality-driven phase transitions, etc. Interpretation of ARPES data in terms of 3D electron dispersions is commonly based on the free-electron approximation for the photoemission final states. Our soft-X-ray ARPES data on Ag metal reveals, however, that even at high excitation energies the final states can be a way more complex, incorporating several Bloch waves with different out-of-plane momenta. Such multiband final states manifest themselves as a complex structure and excessive broadening of the spectral peaks from 3D electron states. We analyse the origins of this phenomenon, and trace it to other materials such as Si and GaN. Our findings are essential for accurate determination of the 3D band structure over a wide range of materials and excitation energies in the ARPES experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00033v1-abstract-full').style.display = 'none'; document.getElementById('2301.00033v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12262">arXiv:2212.12262</a> <span> [<a href="https://arxiv.org/pdf/2212.12262">pdf</a>, <a href="https://arxiv.org/format/2212.12262">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-41718-4">10.1038/s41467-023-41718-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collective topological spin dynamics in a correlated spin glass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Krempask%C3%BD%2C+J">Juraj Krempask媒</a>, <a href="/search/cond-mat?searchtype=author&query=Springholz%2C+G">Gunther Springholz</a>, <a href="/search/cond-mat?searchtype=author&query=D%27Souza%2C+S+W">Sunil Wilfred D'Souza</a>, <a href="/search/cond-mat?searchtype=author&query=Caha%2C+O">Ond艡ej Caha</a>, <a href="/search/cond-mat?searchtype=author&query=Gmitra%2C+M">Martin Gmitra</a>, <a href="/search/cond-mat?searchtype=author&query=Ney%2C+A">Andreas Ney</a>, <a href="/search/cond-mat?searchtype=author&query=Vaz%2C+C+A+F">Carlos Antonio Fernandez Vaz</a>, <a href="/search/cond-mat?searchtype=author&query=Piamonteze%2C+C">Cinthia Piamonteze</a>, <a href="/search/cond-mat?searchtype=author&query=Fanciulli%2C+M">Mauro Fanciulli</a>, <a href="/search/cond-mat?searchtype=author&query=Kriegner%2C+D">Dominik Kriegner</a>, <a href="/search/cond-mat?searchtype=author&query=Krieger%2C+J+A">Jonas A. Krieger</a>, <a href="/search/cond-mat?searchtype=author&query=Prokscha%2C+T">Thomas Prokscha</a>, <a href="/search/cond-mat?searchtype=author&query=Salman%2C+Z">Zaher Salman</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">Jan Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Dil%2C+J+H">J. Hugo Dil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12262v1-abstract-short" style="display: inline;"> The interplay between spin-orbit interaction (SOI) and magnetic order is currently one of the most active research fields in condensed matter physics and leading the search for materials with novel and tunable magnetic and spin properties. Here we report on a variety of unexpected and unique observations in thin multiferroic \Ge$_{1-x}$Mn$_x$Te films. The ferrimagnetic order in this ferroelectric… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12262v1-abstract-full').style.display = 'inline'; document.getElementById('2212.12262v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12262v1-abstract-full" style="display: none;"> The interplay between spin-orbit interaction (SOI) and magnetic order is currently one of the most active research fields in condensed matter physics and leading the search for materials with novel and tunable magnetic and spin properties. Here we report on a variety of unexpected and unique observations in thin multiferroic \Ge$_{1-x}$Mn$_x$Te films. The ferrimagnetic order in this ferroelectric semiconductor is found to reverse with current pulses six orders of magnitude lower as for typical spin-orbit torque systems. Upon a switching event, the magnetic order spreads coherently and collectively over macroscopic distances through a correlated spin-glass state. Lastly, we present a novel methodology to controllably harness this stochastic magnetization dynamics, allowing us to detect spatiotemporal nucleation of topological spin textures we term ``skyrmiverres''. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12262v1-abstract-full').style.display = 'none'; document.getElementById('2212.12262v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 10 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 6127 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.05962">arXiv:2212.05962</a> <span> [<a href="https://arxiv.org/pdf/2212.05962">pdf</a>, <a href="https://arxiv.org/format/2212.05962">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.15.3.106">10.21468/SciPostPhys.15.3.106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Holographic Quantum Scars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liska%2C+D">Diego Liska</a>, <a href="/search/cond-mat?searchtype=author&query=Gritsev%2C+V">Vladimir Gritsev</a>, <a href="/search/cond-mat?searchtype=author&query=Vleeshouwers%2C+W">Ward Vleeshouwers</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1%C5%99%2C+J">Ji艡铆 Min谩艡</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.05962v3-abstract-short" style="display: inline;"> We discuss a construction of quantum many-body scars in the context of holography. We consider two-dimensional conformal field theories and use their dynamical symmetries, naturally realized through the Virasoro algebra, to construct scarred states. By studying their Loschmidt amplitude, we evaluate the states' periodic properties. A geometrical interpretation allows us to compute the expectation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05962v3-abstract-full').style.display = 'inline'; document.getElementById('2212.05962v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.05962v3-abstract-full" style="display: none;"> We discuss a construction of quantum many-body scars in the context of holography. We consider two-dimensional conformal field theories and use their dynamical symmetries, naturally realized through the Virasoro algebra, to construct scarred states. By studying their Loschmidt amplitude, we evaluate the states' periodic properties. A geometrical interpretation allows us to compute the expectation value of the stress tensor and entanglement entropy of these scarred states. We show that their holographic dual is related by a diffeomorphism to empty AdS, even for energies above the black hole threshold. We also demonstrate that expectation values in the scarred states are generally non-thermal and that their entanglement entropy grows with the energy as $\log(E)$ in contrast to $\sqrt{E}$ for the typical (bulk) states. Furthermore, we identify fixed points on the CFT plane associated with divergent or vanishing entanglement entropy in the limit where the scarred states have infinite energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.05962v3-abstract-full').style.display = 'none'; document.getElementById('2212.05962v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages + References, 3 figures; The updated version contains new references, added footnotes 4, 11 and 13, and a new remark after the introduction</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 15, 106 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.17397">arXiv:2210.17397</a> <span> [<a href="https://arxiv.org/pdf/2210.17397">pdf</a>, <a href="https://arxiv.org/ps/2210.17397">ps</a>, <a href="https://arxiv.org/format/2210.17397">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/zaac.202200185">10.1002/zaac.202200185 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dependence of the electronic structure of $尾$-Si$_{6-z}$Al$_{z}$O$_{z}$N$_{8-z}$ on the (Al,O) concentration $z$ and on the temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Khan%2C+S+A">Saleem Ayaz Khan</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%A0ipr%2C+O">Ond艡ej 艩ipr</a>, <a href="/search/cond-mat?searchtype=author&query=Vack%C3%A1%C5%99%2C+J">Ji艡铆 Vack谩艡</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.17397v1-abstract-short" style="display: inline;"> SiAlON is a prominent example of systems suitable as hosts for creating materials for light-emitting diodes (LEDs). In this work, the electronic structure of a series of semiordered and disordered SiAlON systems is investigated by means of ab initio calculations, using the FLAPW and Green function KKR methods. Finite temperature effects are included by averaging over thermodynamic configurations w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17397v1-abstract-full').style.display = 'inline'; document.getElementById('2210.17397v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.17397v1-abstract-full" style="display: none;"> SiAlON is a prominent example of systems suitable as hosts for creating materials for light-emitting diodes (LEDs). In this work, the electronic structure of a series of semiordered and disordered SiAlON systems is investigated by means of ab initio calculations, using the FLAPW and Green function KKR methods. Finite temperature effects are included by averaging over thermodynamic configurations within the alloy analogy model. We found that the dependence of the electronic structure on the (Al,O) concentration $z$ is similar for semiordered and disordered structures. The electronic band gap decreases with increasing $z$ by about 1.5 eV when going from $z$=0 to $z$=2. States at the top of the valence band are mostly associated with N atoms whereas the states at the bottom of the conduction band are mostly derived from O~atoms. Increasing the temperature leads to a shift of the bottom of the conduction band to lower energies. The amount of this shift increases with increasing $z$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.17397v1-abstract-full').style.display = 'none'; document.getElementById('2210.17397v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2001.02150</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Z. anorg. allg. Chem., Vol. 648, e202200185 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10870">arXiv:2210.10870</a> <span> [<a href="https://arxiv.org/pdf/2210.10870">pdf</a>, <a href="https://arxiv.org/format/2210.10870">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.146401">10.1103/PhysRevLett.130.146401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometry-induced spin-filtering in photoemission maps from WTe$_2$ surface states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Heider%2C+T">Tristan Heider</a>, <a href="/search/cond-mat?searchtype=author&query=Bihlmayer%2C+G">Gustav Bihlmayer</a>, <a href="/search/cond-mat?searchtype=author&query=Schusser%2C+J">Jakub Schusser</a>, <a href="/search/cond-mat?searchtype=author&query=Reinert%2C+F">Friedrich Reinert</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">Jan Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Bl%C3%BCgel%2C+S">Stefan Bl眉gel</a>, <a href="/search/cond-mat?searchtype=author&query=Schneider%2C+C+M">Claus M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&query=Plucinski%2C+L">Lukasz Plucinski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10870v1-abstract-short" style="display: inline;"> We demonstrate that an important quantum material WTe$_2$ exhibits a new type of geometry-induced spin-filtering effect in photoemission, stemming from low symmetry that is responsible for its exotic transport properties. Through the laser-driven spin-polarized angle-resolved photoemission Fermi surface mapping, we showcase highly asymmetric spin textures of electrons photoemitted from the surface… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10870v1-abstract-full').style.display = 'inline'; document.getElementById('2210.10870v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10870v1-abstract-full" style="display: none;"> We demonstrate that an important quantum material WTe$_2$ exhibits a new type of geometry-induced spin-filtering effect in photoemission, stemming from low symmetry that is responsible for its exotic transport properties. Through the laser-driven spin-polarized angle-resolved photoemission Fermi surface mapping, we showcase highly asymmetric spin textures of electrons photoemitted from the surface states of WTe$_2$. Such asymmetries are not present in the initial state spin textures, which are bound by the time-reversal and crystal lattice mirror plane symmetries. The findings are reproduced qualitatively by theoretical modeling within the one-step model photoemission formalism. The effect could be understood within the free-electron final state model as an interference due to emission from different atomic sites. The observed effect is a manifestation of time-reversal symmetry breaking of the initial state in the photoemission process, and as such it cannot be eliminated, but only its magnitude influenced, by special experimental geometries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10870v1-abstract-full').style.display = 'none'; document.getElementById('2210.10870v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11630">arXiv:2204.11630</a> <span> [<a href="https://arxiv.org/pdf/2204.11630">pdf</a>, <a href="https://arxiv.org/format/2204.11630">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-33978-3">10.1038/s41467-022-33978-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-induced ultrafast modulation of Rashba coupling at room temperature in ferroelectric $伪$-GeTe(111) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kremer%2C+G">Geoffroy Kremer</a>, <a href="/search/cond-mat?searchtype=author&query=Maklar%2C+J">Julian Maklar</a>, <a href="/search/cond-mat?searchtype=author&query=Nicola%C3%AF%2C+L">Laurent Nicola茂</a>, <a href="/search/cond-mat?searchtype=author&query=Nicholson%2C+C+W">Christopher W. Nicholson</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+C">Changming Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Silva%2C+C">Caio Silva</a>, <a href="/search/cond-mat?searchtype=author&query=Werner%2C+P">Philipp Werner</a>, <a href="/search/cond-mat?searchtype=author&query=Dil%2C+J+H">J. Hugo Dil</a>, <a href="/search/cond-mat?searchtype=author&query=Krempask%C3%BD%2C+J">Juraj Krempask媒</a>, <a href="/search/cond-mat?searchtype=author&query=Springholz%2C+G">Gunther Springholz</a>, <a href="/search/cond-mat?searchtype=author&query=Ernstorfer%2C+R">Ralph Ernstorfer</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">Jan Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Rettig%2C+L">Laurenz Rettig</a>, <a href="/search/cond-mat?searchtype=author&query=Monney%2C+C">Claude Monney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11630v1-abstract-short" style="display: inline;"> Rashba materials have appeared as an ideal playground for spin-to-charge conversion in prototype spintronics devices. Among them, $伪$-GeTe(111) is a non-centrosymmetric ferroelectric (FE) semiconductor for which a strong spin-orbit interaction gives rise to giant Rashba coupling. Its room temperature ferroelectricity was recently demonstrated as a route towards a new type of highly energy-efficien… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11630v1-abstract-full').style.display = 'inline'; document.getElementById('2204.11630v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11630v1-abstract-full" style="display: none;"> Rashba materials have appeared as an ideal playground for spin-to-charge conversion in prototype spintronics devices. Among them, $伪$-GeTe(111) is a non-centrosymmetric ferroelectric (FE) semiconductor for which a strong spin-orbit interaction gives rise to giant Rashba coupling. Its room temperature ferroelectricity was recently demonstrated as a route towards a new type of highly energy-efficient non-volatile memory device based on switchable polarization. Currently based on the application of an electric field, the writing and reading processes could be outperformed by the use of femtosecond (fs) light pulses requiring exploration of the possible control of ferroelectricity on this timescale. Here, we probe the room temperature transient dynamics of the electronic band structure of $伪$-GeTe(111) using time and angle-resolved photoemission spectroscopy (tr-ARPES). Our experiments reveal an ultrafast modulation of the Rashba coupling mediated on the fs timescale by a surface photovoltage (SPV), namely an increase corresponding to a 13 % enhancement of the lattice distortion. This opens the route for the control of the FE polarization in $伪$-GeTe(111) and FE semiconducting materials in quantum heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11630v1-abstract-full').style.display = 'none'; document.getElementById('2204.11630v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.04525">arXiv:2202.04525</a> <span> [<a href="https://arxiv.org/pdf/2202.04525">pdf</a>, <a href="https://arxiv.org/format/2202.04525">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.174411">10.1103/PhysRevB.105.174411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric field control of magnons in magnetic thin films: ab initio predictions for 2D metallic heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Marmodoro%2C+A">Alberto Marmodoro</a>, <a href="/search/cond-mat?searchtype=author&query=Mankovsky%2C+S">Sergiy Mankovsky</a>, <a href="/search/cond-mat?searchtype=author&query=Ebert%2C+H">Hubert Ebert</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">Jan Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%A0ipr%2C+O">Ond艡ej 艩ipr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.04525v1-abstract-short" style="display: inline;"> We explore possibilities for control of magnons in two-dimensional heterostructures by an external electric field acting across a dielectric barrier. By performing ab-initio calculations for a Fe monolayer and a Fe bilayer, both suspended in vacuum and deposited on Cu(001), we demonstrate that external electric field can significantly modify magnon lifetimes and that these changes can be related t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04525v1-abstract-full').style.display = 'inline'; document.getElementById('2202.04525v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.04525v1-abstract-full" style="display: none;"> We explore possibilities for control of magnons in two-dimensional heterostructures by an external electric field acting across a dielectric barrier. By performing ab-initio calculations for a Fe monolayer and a Fe bilayer, both suspended in vacuum and deposited on Cu(001), we demonstrate that external electric field can significantly modify magnon lifetimes and that these changes can be related to field-induced changes in the layer-resolved Bloch spectral functions. For systems with more magnon dispersion branches, the gap between high- and low-energy eigenmodes varies with the external field. These effects are strongly influenced by the substrate. Considerable variability in how the magnon spectra are sensitive to the external electric field can be expected, depending on the substrate and on the thickness of the magnetic layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04525v1-abstract-full').style.display = 'none'; document.getElementById('2202.04525v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.03348">arXiv:2109.03348</a> <span> [<a href="https://arxiv.org/pdf/2109.03348">pdf</a>, <a href="https://arxiv.org/format/2109.03348">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.125204">10.1103/PhysRevB.105.125204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single crystal studies and electronic structure investigation of a room-temperature semiconductor NaMnAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Volny%2C+J">J. Volny</a>, <a href="/search/cond-mat?searchtype=author&query=Holy%2C+V">V. Holy</a>, <a href="/search/cond-mat?searchtype=author&query=Charvatova%2C+K">K. Charvatova</a>, <a href="/search/cond-mat?searchtype=author&query=Veis%2C+M">M. Veis</a>, <a href="/search/cond-mat?searchtype=author&query=Vondracek%2C+M">M. Vondracek</a>, <a href="/search/cond-mat?searchtype=author&query=Honolka%2C+J">J. Honolka</a>, <a href="/search/cond-mat?searchtype=author&query=Duverger-Nedellec%2C+E">E. Duverger-Nedellec</a>, <a href="/search/cond-mat?searchtype=author&query=Schusser%2C+J">J. Schusser</a>, <a href="/search/cond-mat?searchtype=author&query=D%27Souza%2C+S+W">S. W. D'Souza</a>, <a href="/search/cond-mat?searchtype=author&query=Minar%2C+J">J. Minar</a>, <a href="/search/cond-mat?searchtype=author&query=Pientka%2C+J+M">J. M. Pientka</a>, <a href="/search/cond-mat?searchtype=author&query=Marmodoro%2C+A">A. Marmodoro</a>, <a href="/search/cond-mat?searchtype=author&query=Vyborny%2C+K">K. Vyborny</a>, <a href="/search/cond-mat?searchtype=author&query=Uhlirova%2C+K">K. Uhlirova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.03348v1-abstract-short" style="display: inline;"> We report synthesis of single crystalline NaMnAs, confirm its antiferromagnetic order and characterise the sample by photoemission spectroscopy. The electronic structure was studied using optical transmittance, x-ray and ultraviolet spectroscopy and by theoretical modeling using local density approximation (LDA) extended to LDA+U when Heisenberg model parameters were determined. Optical transmitta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03348v1-abstract-full').style.display = 'inline'; document.getElementById('2109.03348v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.03348v1-abstract-full" style="display: none;"> We report synthesis of single crystalline NaMnAs, confirm its antiferromagnetic order and characterise the sample by photoemission spectroscopy. The electronic structure was studied using optical transmittance, x-ray and ultraviolet spectroscopy and by theoretical modeling using local density approximation (LDA) extended to LDA+U when Heisenberg model parameters were determined. Optical transmittance measurement have confirmed the theoretical predictions that NaMnAs is a semiconductor. Also the N茅el temperature was closer determined for the first time from temperature dependence of magnetization, in agreement with our Monte Carlo simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03348v1-abstract-full').style.display = 'none'; document.getElementById('2109.03348v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105 (2022) 125204 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.03855">arXiv:2108.03855</a> <span> [<a href="https://arxiv.org/pdf/2108.03855">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Understanding the roles of electronic effect in CO on Pt-Sn alloy surface via band structure measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jung%2C+J">Jongkeun Jung</a>, <a href="/search/cond-mat?searchtype=author&query=Nicolai%2C+S+K+L">Sungwoo Kang Laurent Nicolai</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+J">Jisook Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">Jan Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+I">Inkyung Song</a>, <a href="/search/cond-mat?searchtype=author&query=Kyung%2C+W">Wonshik Kyung</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+S">Soohyun Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+B">Beomseo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Denlinger%2C+J+D">Jonathan D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&query=Aires%2C+F+J+C+S">Francisco J. C. S. Aires</a>, <a href="/search/cond-mat?searchtype=author&query=Ehret%2C+E">Eric Ehret</a>, <a href="/search/cond-mat?searchtype=author&query=Ross%2C+P+N">Philip N. Ross</a>, <a href="/search/cond-mat?searchtype=author&query=Shim%2C+J">Jihoon Shim</a>, <a href="/search/cond-mat?searchtype=author&query=Nem%C5%A1%C3%A1k%2C+S">Slavomir Nem拧谩k</a>, <a href="/search/cond-mat?searchtype=author&query=Noh%2C+D">Doyoung Noh</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+S">Seungwu Han</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+C">Changyoung Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Mun%2C+B+S">Bongjin S. Mun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.03855v1-abstract-short" style="display: inline;"> Using angle-resolved photoemission spectroscopy, we show the direct evidence of charge transfer between adsorbed molecules and metal substrate, i.e. chemisorption of CO on Pt(111) and Pt-Sn/Pt(111) 2x2 surfaces. The observed band structure shows a unique signature of charge transfer as CO atoms are adsorbed,revealing the roles of specific orbital characters participating in the chemisorption proce… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.03855v1-abstract-full').style.display = 'inline'; document.getElementById('2108.03855v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.03855v1-abstract-full" style="display: none;"> Using angle-resolved photoemission spectroscopy, we show the direct evidence of charge transfer between adsorbed molecules and metal substrate, i.e. chemisorption of CO on Pt(111) and Pt-Sn/Pt(111) 2x2 surfaces. The observed band structure shows a unique signature of charge transfer as CO atoms are adsorbed,revealing the roles of specific orbital characters participating in the chemisorption process. As the coverage of CO increases, the degree of charge transfer between CO and Pt shows clear difference to that of Pt-Sn. With comparison to DFT calculation results, the observed distinct features in the band structure are interpreted as backdonation bonding states of Pt molecular orbital to the 2蟺 orbital of CO. Furthermore, the change in the surface charge concentration, measured from the Fermi surface area, shows Pt surface has a larger charge concentration change than Pt-Sn surface upon CO adsorption. The difference in the charge concentration change between Pt and Pt-Sn surfaces reflects the degree of electronic effects during CO adsorption on Pt-Sn. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.03855v1-abstract-full').style.display = 'none'; document.getElementById('2108.03855v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01556">arXiv:2108.01556</a> <span> [<a href="https://arxiv.org/pdf/2108.01556">pdf</a>, <a href="https://arxiv.org/format/2108.01556">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Highly superlinear photogalvanic effects in (Bi$_{0.3}$Sb$_{0.7}$)$_2$(Te$_{0.1}$Se$_{0.9}$)$_3$: Probing 3D topological insulator surface states at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Danilov%2C+S+N">Sergey N. Danilov</a>, <a href="/search/cond-mat?searchtype=author&query=Golub%2C+L+E">Leonid E. Golub</a>, <a href="/search/cond-mat?searchtype=author&query=Mayer%2C+T">Thomas Mayer</a>, <a href="/search/cond-mat?searchtype=author&query=Beer%2C+A">Andreas Beer</a>, <a href="/search/cond-mat?searchtype=author&query=Binder%2C+S">Stefan Binder</a>, <a href="/search/cond-mat?searchtype=author&query=M%C3%B6nch%2C+E">Erwin M枚nch</a>, <a href="/search/cond-mat?searchtype=author&query=Minar%2C+J">Jan Minar</a>, <a href="/search/cond-mat?searchtype=author&query=Kronseder%2C+M">Matthias Kronseder</a>, <a href="/search/cond-mat?searchtype=author&query=Back%2C+C+H">Christian. H. Back</a>, <a href="/search/cond-mat?searchtype=author&query=Bougeard%2C+D">Dominique Bougeard</a>, <a href="/search/cond-mat?searchtype=author&query=Ganichev%2C+S+D">Sergey D. Ganichev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01556v1-abstract-short" style="display: inline;"> We report on the observation of complex nonlinear intensity dependence of the circular and linear photogalvanic currents induced by infrared radiation in compensated (Bi$_{0.3}$Sb$_{0.7}$)$_2$(Te$_{0.1}$Se$_{0.9}$)$_3$ 3D topological insulators. The photocurrents are induced by direct optical transitions between topological surface and bulk states. We show that an increase of the radiation intensi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01556v1-abstract-full').style.display = 'inline'; document.getElementById('2108.01556v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01556v1-abstract-full" style="display: none;"> We report on the observation of complex nonlinear intensity dependence of the circular and linear photogalvanic currents induced by infrared radiation in compensated (Bi$_{0.3}$Sb$_{0.7}$)$_2$(Te$_{0.1}$Se$_{0.9}$)$_3$ 3D topological insulators. The photocurrents are induced by direct optical transitions between topological surface and bulk states. We show that an increase of the radiation intensity results first in a highly superlinear raise of the amplitude of both types of photocurrents, whereas at higher intensities the photocurrent saturates. Our analysis of the observed nonlinearities shows that the superlinear behavior of the photocurrents is caused by a heating of the electron gas, while the saturation is induced by a slow relaxation of the photoexcited carriers resulting in absorbance bleaching. The observed nonlinearities give access to the Fermi level position with respect to the Dirac point and the energy relaxation times of Dirac fermions providing an experimental room temperature probe for topological surface states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01556v1-abstract-full').style.display = 'none'; document.getElementById('2108.01556v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.07158">arXiv:2107.07158</a> <span> [<a href="https://arxiv.org/pdf/2107.07158">pdf</a>, <a href="https://arxiv.org/format/2107.07158">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unveiling the Orbital Texture of 1T-TiTe$_2$ using Intrinsic Linear Dichroism in Multidimensional Photoemission Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Beaulieu%2C+S">Samuel Beaulieu</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%BCler%2C+M">Michael Sch眉ler</a>, <a href="/search/cond-mat?searchtype=author&query=Schusser%2C+J">Jakub Schusser</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+S">Shuo Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Pincelli%2C+T">Tommaso Pincelli</a>, <a href="/search/cond-mat?searchtype=author&query=Maklar%2C+J">Julian Maklar</a>, <a href="/search/cond-mat?searchtype=author&query=Neef%2C+A">Alexander Neef</a>, <a href="/search/cond-mat?searchtype=author&query=Reinert%2C+F">Friedrich Reinert</a>, <a href="/search/cond-mat?searchtype=author&query=Wolf%2C+M">Martin Wolf</a>, <a href="/search/cond-mat?searchtype=author&query=Rettig%2C+L">Laurenz Rettig</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Ernstorfer%2C+R">Ralph Ernstorfer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.07158v1-abstract-short" style="display: inline;"> The momentum-dependent orbital character in crystalline solids, referred to as orbital texture, is of capital importance in the emergence of symmetry-broken collective phases such as charge density waves as well as superconducting and topological states of matter. By performing extreme ultraviolet multidimensional angle-resolved photoemission spectroscopy for two different crystal orientations lin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.07158v1-abstract-full').style.display = 'inline'; document.getElementById('2107.07158v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.07158v1-abstract-full" style="display: none;"> The momentum-dependent orbital character in crystalline solids, referred to as orbital texture, is of capital importance in the emergence of symmetry-broken collective phases such as charge density waves as well as superconducting and topological states of matter. By performing extreme ultraviolet multidimensional angle-resolved photoemission spectroscopy for two different crystal orientations linked to each other by mirror symmetry, we isolate and identify the role of orbital texture in photoemission from the transition metal dichalcogenide 1T-TiTe$_2$. By comparing our experimental results with theoretical calculations based on both a quantitative one-step model of photoemission and an intuitive tight-binding model, we unambiguously demonstrate the link between the momentum-dependent orbital orientation and the emergence of strong intrinsic linear dichroism in the photoelectron angular distributions. Our results represent an important step towards going beyond band structure (eigenvalues) mapping and learn about electronic wavefunction and orbital texture of solids by exploiting matrix element effects in photoemission spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.07158v1-abstract-full').style.display = 'none'; document.getElementById('2107.07158v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.11672">arXiv:2106.11672</a> <span> [<a href="https://arxiv.org/pdf/2106.11672">pdf</a>, <a href="https://arxiv.org/format/2106.11672">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22331/q-2022-04-13-687">10.22331/q-2022-04-13-687 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Weggemans%2C+J+R">Jordi R. Weggemans</a>, <a href="/search/cond-mat?searchtype=author&query=Urech%2C+A">Alexander Urech</a>, <a href="/search/cond-mat?searchtype=author&query=Rausch%2C+A">Alexander Rausch</a>, <a href="/search/cond-mat?searchtype=author&query=Spreeuw%2C+R">Robert Spreeuw</a>, <a href="/search/cond-mat?searchtype=author&query=Boucherie%2C+R">Richard Boucherie</a>, <a href="/search/cond-mat?searchtype=author&query=Schreck%2C+F">Florian Schreck</a>, <a href="/search/cond-mat?searchtype=author&query=Schoutens%2C+K">Kareljan Schoutens</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1%C5%99%2C+J">Ji艡铆 Min谩艡</a>, <a href="/search/cond-mat?searchtype=author&query=Speelman%2C+F">Florian Speelman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.11672v3-abstract-short" style="display: inline;"> We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits, which constitute a natural platform for such non-binary problems. Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering, including Hamiltonian formulation of the algorithm, analysis of its performance, identification of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11672v3-abstract-full').style.display = 'inline'; document.getElementById('2106.11672v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.11672v3-abstract-full" style="display: none;"> We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits, which constitute a natural platform for such non-binary problems. Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering, including Hamiltonian formulation of the algorithm, analysis of its performance, identification of a suitable level structure for ${}^{87}{\rm Sr}$ and specific gate design. We show the qudit implementation is superior to the qubit encoding as quantified by the gate count. For single layer QAOA, we also prove (conjecture) a lower bound of $0.6367$ ($0.6699$) for the approximation ratio on 3-regular graphs. Our numerical studies evaluate the algorithm's performance by considering complete and Erd艖s-R茅nyi graphs of up to 7 vertices and clusters. We find that in all cases the QAOA surpasses the Swamy bound $0.7666$ for the approximation ratio for QAOA depths $p \geq 2$. Finally, by analysing the effect of errors when solving complete graphs we find that their inclusion severely limits the algorithm's performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11672v3-abstract-full').style.display = 'none'; document.getElementById('2106.11672v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30+12 pages, 14 figures, accepted into Quantum</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum 6, 687 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.04359">arXiv:2105.04359</a> <span> [<a href="https://arxiv.org/pdf/2105.04359">pdf</a>, <a href="https://arxiv.org/format/2105.04359">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.11.3.059">10.21468/SciPostPhys.11.3.059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supersymmetry and multicriticality in a ladder of constrained fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chepiga%2C+N">Natalia Chepiga</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1%C5%99%2C+J">Ji艡铆 Min谩艡</a>, <a href="/search/cond-mat?searchtype=author&query=Schoutens%2C+K">Kareljan Schoutens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.04359v3-abstract-short" style="display: inline;"> Supersymmetric lattice models of constrained fermions are known to feature exotic phenomena such as superfrustration, with an extensive degeneracy of ground states, the nature of which is however generally unknown. Here we address this issue by considering a superfrustrated model, which we deform from the supersymetric point. By numerically studying its two-parameter phase diagram, we reveal a ric… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04359v3-abstract-full').style.display = 'inline'; document.getElementById('2105.04359v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.04359v3-abstract-full" style="display: none;"> Supersymmetric lattice models of constrained fermions are known to feature exotic phenomena such as superfrustration, with an extensive degeneracy of ground states, the nature of which is however generally unknown. Here we address this issue by considering a superfrustrated model, which we deform from the supersymetric point. By numerically studying its two-parameter phase diagram, we reveal a rich phenomenology. The vicinity of the supersymmetric point features period-4 and period-5 density waves which are connected by a floating phase (incommensurate Luttinger liquid) with smoothly varying density. The supersymmetric point emerges as a multicritical point between these three phases. Inside the period-4 phase we report a valence-bond solid type ground state that persists up to the supersymmetric point. Our numerical data for transitions out of density-wave phases are consistent with the Pokrovsky-Talapov universality class. Furthermore, our analysis unveiled a period-3 phase with a boundary determined by a competition between single and two-particle instabilities accompanied by a doubling of the wavevector of the density profiles along a line in the phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04359v3-abstract-full').style.display = 'none'; document.getElementById('2105.04359v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 11, 059 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.13389">arXiv:2102.13389</a> <span> [<a href="https://arxiv.org/pdf/2102.13389">pdf</a>, <a href="https://arxiv.org/format/2102.13389">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.124201">10.1103/PhysRevMaterials.5.124201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of chemical disorder in tuning the Weyl points in vanadium doped Co$_2$TiSn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chaudhary%2C+P">Payal Chaudhary</a>, <a href="/search/cond-mat?searchtype=author&query=Dubey%2C+K+K">Krishna Kant Dubey</a>, <a href="/search/cond-mat?searchtype=author&query=Shukla%2C+G+K">Gaurav K. Shukla</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+S">Sanjay Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Sadhukhan%2C+S">Surasree Sadhukhan</a>, <a href="/search/cond-mat?searchtype=author&query=Kanungo%2C+S">Sudipta Kanungo</a>, <a href="/search/cond-mat?searchtype=author&query=Jena%2C+A+K">Ajit K. Jena</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+S+-">S. -C Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Bhattacharjee%2C+S">S. Bhattacharjee</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">Jan Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=D%27Souza%2C+S+W">Sunil Wilfred D'Souza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.13389v2-abstract-short" style="display: inline;"> The lack of time-reversal symmetry and Weyl fermions give exotic transport properties to Co-based Heusler alloys. In the present study, we have investigated the role of chemical disorder on the variation of Weyl points in Co\textsubscript{2}Ti\textsubscript{1-x}V\textsubscript{x}Sn magnetic Weyl semimetal candidate. We employ the first principle approach to track the evolution of the nodal lines r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.13389v2-abstract-full').style.display = 'inline'; document.getElementById('2102.13389v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.13389v2-abstract-full" style="display: none;"> The lack of time-reversal symmetry and Weyl fermions give exotic transport properties to Co-based Heusler alloys. In the present study, we have investigated the role of chemical disorder on the variation of Weyl points in Co\textsubscript{2}Ti\textsubscript{1-x}V\textsubscript{x}Sn magnetic Weyl semimetal candidate. We employ the first principle approach to track the evolution of the nodal lines responsible for the appearance of Weyl node in Co$_2$TiSn as a function of V substitution in place of Ti. By increasing the V concentration in place of Ti, the nodal line moves toward Fermi level and remains at Fermi level around the middle composition. Further increase of the V content, leads shifting of nodal line away from Fermi level. Density of state calculation shows half-metallic behavior for the entire range of composition. The magnetic moment on each Co atom as a function of V concentration increases linearly up to x=0.4, and after that, it starts decreasing. We also investigated the evolution of the Weyl nodes and Fermi arcs with chemical doping. The first-principles calculations reveal that via replacing almost half of the Ti with V, the intrinsic anomalous Hall conductivity increased twice as compared to the undoped composition. Our results indicate that the composition close to the 50\% V doped Co$_2$TiSn, will be an ideal composition for the experimental investigation of Weyl physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.13389v2-abstract-full').style.display = 'none'; document.getElementById('2102.13389v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5 (2021) 124201 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.08656">arXiv:2102.08656</a> <span> [<a href="https://arxiv.org/pdf/2102.08656">pdf</a>, <a href="https://arxiv.org/format/2102.08656">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.013304">10.1103/PhysRevA.104.013304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> State selective cooling of $\mathrm{SU}(N)$ Fermi-gases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=M%C3%BCller%2C+A+M">Aaron Merlin M眉ller</a>, <a href="/search/cond-mat?searchtype=author&query=Lajk%C3%B3%2C+M">Mikl贸s Lajk贸</a>, <a href="/search/cond-mat?searchtype=author&query=Schreck%2C+F">Florian Schreck</a>, <a href="/search/cond-mat?searchtype=author&query=Mila%2C+F">Fr茅d茅ric Mila</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1%C5%99%2C+J">Ji艡铆 Min谩艡</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.08656v2-abstract-short" style="display: inline;"> We investigate a species selective cooling process of a trapped $\mathrm{SU}(N)$ Fermi gas using entropy redistribution during adiabatic loading of an optical lattice. Using high-temperature expansion of the Hubbard model, we show that when a subset $N_A < N$ of the single-atom levels experiences a stronger trapping potential in a certain region of space, the dimple, it leads to improvement in coo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.08656v2-abstract-full').style.display = 'inline'; document.getElementById('2102.08656v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.08656v2-abstract-full" style="display: none;"> We investigate a species selective cooling process of a trapped $\mathrm{SU}(N)$ Fermi gas using entropy redistribution during adiabatic loading of an optical lattice. Using high-temperature expansion of the Hubbard model, we show that when a subset $N_A < N$ of the single-atom levels experiences a stronger trapping potential in a certain region of space, the dimple, it leads to improvement in cooling as compared to a $\mathrm{SU}(N_A)$ Fermi gas only. We show that optimal performance is achieved when all atomic levels experience the same potential outside the dimple and we quantify the cooling for various $N_A$ by evaluating the dependence of the final entropy densities and temperatures as functions of the initial entropy. Furthermore, considering ${}^{87}{\rm Sr}$ and ${}^{173}{\rm Yb}$ for specificity, we provide a quantitative discussion of how the state selective trapping can be achieved with readily available experimental techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.08656v2-abstract-full').style.display = 'none'; document.getElementById('2102.08656v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8+3 pages, 4+1 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, 013304 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05761">arXiv:2101.05761</a> <span> [<a href="https://arxiv.org/pdf/2101.05761">pdf</a>, <a href="https://arxiv.org/format/2101.05761">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.125104">10.1103/PhysRevB.104.125104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photoemission signature of momentum-dependent hybridization in CeCoIn$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kurleto%2C+R">R. Kurleto</a>, <a href="/search/cond-mat?searchtype=author&query=Fidrysiak%2C+M">M. Fidrysiak</a>, <a href="/search/cond-mat?searchtype=author&query=Nicola%C3%AF%2C+L">L. Nicola茂</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J. Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Rosmus%2C+M">M. Rosmus</a>, <a href="/search/cond-mat?searchtype=author&query=Walczak%2C+%C5%81">艁. Walczak</a>, <a href="/search/cond-mat?searchtype=author&query=Tejeda%2C+A">A. Tejeda</a>, <a href="/search/cond-mat?searchtype=author&query=Rault%2C+J+E">J. E. Rault</a>, <a href="/search/cond-mat?searchtype=author&query=Bertran%2C+F">F. Bertran</a>, <a href="/search/cond-mat?searchtype=author&query=K%C4%85dzielawa%2C+A+P">A. P. K膮dzielawa</a>, <a href="/search/cond-mat?searchtype=author&query=Legut%2C+D">D. Legut</a>, <a href="/search/cond-mat?searchtype=author&query=Gnida%2C+D">D. Gnida</a>, <a href="/search/cond-mat?searchtype=author&query=Kaczorowski%2C+D">D. Kaczorowski</a>, <a href="/search/cond-mat?searchtype=author&query=Kissner%2C+K">K. Kissner</a>, <a href="/search/cond-mat?searchtype=author&query=Reinert%2C+F">F. Reinert</a>, <a href="/search/cond-mat?searchtype=author&query=Spa%C5%82ek%2C+J">J. Spa艂ek</a>, <a href="/search/cond-mat?searchtype=author&query=Starowicz%2C+P">P. Starowicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05761v2-abstract-short" style="display: inline;"> Hybridization between $f$ electrons and conduction bands ($c$-$f$ hybridization) is a driving force for many unusual phenomena. To provide insight into it, systematic studies of CeCoIn$_5$ heavy fermion superconductor have been performed by angle-resolved photoemission spectroscopy (ARPES) in a large angular range at temperature of $T=6$ K. The used photon energy of 122 eV corresponds to Ce $4d$-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05761v2-abstract-full').style.display = 'inline'; document.getElementById('2101.05761v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05761v2-abstract-full" style="display: none;"> Hybridization between $f$ electrons and conduction bands ($c$-$f$ hybridization) is a driving force for many unusual phenomena. To provide insight into it, systematic studies of CeCoIn$_5$ heavy fermion superconductor have been performed by angle-resolved photoemission spectroscopy (ARPES) in a large angular range at temperature of $T=6$ K. The used photon energy of 122 eV corresponds to Ce $4d$-$4f$ resonance. Calculations carried out with relativistic multiple scattering Korringa-Kohn-Rostoker method and one-step model of photoemission yielded realistic simulation of the ARPES spectra indicating that Ce-In surface termination prevails. Surface states, which have been identified in the calculations, contribute significantly to the spectra. Effects of the hybridization strongly depend on wave vector. They include a dispersion of heavy electrons and bands gaining $f$-electron character when approaching Fermi energy. We have also observed a considerable variation of $f$-electron spectral weight at $E_F$, which is normally determined by both matrix element effects and wave vector dependent $c$-$f$ hybridization. Fermi surface scans covering a few Brillouin zones revealed large matrix element effects. A symmetrization of experimental Fermi surface, which reduces matrix element contribution, yielded a specific variation of $4f$-electron enhanced spectral intensity at $E_F$ around $\bar螕$ and $\bar{M}$ points. Tight-binding approximation calculations for Ce-In plane provided the same universal distribution of $4f$-electron density for a range of values of the parameters used in the model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05761v2-abstract-full').style.display = 'none'; document.getElementById('2101.05761v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 125104 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.07993">arXiv:2012.07993</a> <span> [<a href="https://arxiv.org/pdf/2012.07993">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Hard x-ray standing-wave photoemission study of the interfaces in a BiFeO$_3$/La$_{0.7}$Sr$_{0.3}$MnO$_3$ superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Martins%2C+H+P">H. P. Martins</a>, <a href="/search/cond-mat?searchtype=author&query=Khan%2C+S+A">S. A. Khan</a>, <a href="/search/cond-mat?searchtype=author&query=Conti%2C+G">G. Conti</a>, <a href="/search/cond-mat?searchtype=author&query=Greer%2C+A+A">A. A. Greer</a>, <a href="/search/cond-mat?searchtype=author&query=Saw%2C+A+Y">A. Y. Saw</a>, <a href="/search/cond-mat?searchtype=author&query=Palsson%2C+G+K">G. K. Palsson</a>, <a href="/search/cond-mat?searchtype=author&query=Huijben%2C+M">M. Huijben</a>, <a href="/search/cond-mat?searchtype=author&query=Kobayashi%2C+K">K. Kobayashi</a>, <a href="/search/cond-mat?searchtype=author&query=Ueda%2C+S">S. Ueda</a>, <a href="/search/cond-mat?searchtype=author&query=Schneider%2C+C+M">C. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&query=Vishik%2C+I+M">I. M. Vishik</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J. Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Gray%2C+A+X">A. X. Gray</a>, <a href="/search/cond-mat?searchtype=author&query=Fadley%2C+C+S">C. S. Fadley</a>, <a href="/search/cond-mat?searchtype=author&query=Nem%C5%A1%C3%A1k%2C+S">S. Nem拧谩k</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.07993v1-abstract-short" style="display: inline;"> Hybrid multiferroics such as BiFeO$_3$ (BFO) and La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) heterostructures are highly interesting functional systems due to their complex electronic and magnetic properties. One of the key parameters influencing the emergent properties is the quality of interfaces, where varying interdiffusion lengths can give rise to different chemistry and distinctive electronic states.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07993v1-abstract-full').style.display = 'inline'; document.getElementById('2012.07993v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.07993v1-abstract-full" style="display: none;"> Hybrid multiferroics such as BiFeO$_3$ (BFO) and La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) heterostructures are highly interesting functional systems due to their complex electronic and magnetic properties. One of the key parameters influencing the emergent properties is the quality of interfaces, where varying interdiffusion lengths can give rise to different chemistry and distinctive electronic states. Here we report high-resolution depth resolved chemical and electronic investigation of BFO/LSMO superlattice using standing-wave hard X-ray photoemission spectroscopy in the first-order Bragg as well as near-total-reflection geometry. Our results show that the interfaces of BFO on top of LSMO are atomically abrupt, while the LSMO on top of BFO interfaces show an interdiffusion length of around 1.2 unit cells. The two interfaces also exhibit different chemical gradients, with the BFO/LSMO interface being Sr-terminated by a spectroscopically distinctive high binding energy component in Sr 2p core-level spectra, which is spatially contained within 1 unit cell from the interface. From the electronic point of view, unique valence band features were observed for bulk-BFO, bulk-LSMO and their interfaces. Our X-ray optical analysis revealed a unique electronic signature at the BFO/LSMO interface, which we attribute to the coupling between those respective layers. Valence band decomposition based on the Bragg-reflection standing-wave measurement also revealed the band alignment between BFO and LSMO layers. Our work demonstrates that standing-wave hard x-ray photoemission is a reliable non-destructive technique for probing depth-resolved electronic structure of buried layers and interfaces with sub-unit-cell resolution. Equivalent investigations can be successfully applied to a broad class of material such as perovskite complex oxides with emergent interfacial phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07993v1-abstract-full').style.display = 'none'; document.getElementById('2012.07993v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.07605">arXiv:2012.07605</a> <span> [<a href="https://arxiv.org/pdf/2012.07605">pdf</a>, <a href="https://arxiv.org/format/2012.07605">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04731-z">10.1038/s41586-022-04731-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Continuous Bose-Einstein condensation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+C">Chun-Chia Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Escudero%2C+R+G">Rodrigo Gonz谩lez Escudero</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1%C5%99%2C+J">Ji艡铆 Min谩艡</a>, <a href="/search/cond-mat?searchtype=author&query=Pasquiou%2C+B">Benjamin Pasquiou</a>, <a href="/search/cond-mat?searchtype=author&query=Bennetts%2C+S">Shayne Bennetts</a>, <a href="/search/cond-mat?searchtype=author&query=Schreck%2C+F">Florian Schreck</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.07605v2-abstract-short" style="display: inline;"> Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitious tests of Einstein's equivalence principle. The key to dramatically increasing the bandwidth and precision of such matter-wave sensors lies in susta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07605v2-abstract-full').style.display = 'inline'; document.getElementById('2012.07605v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.07605v2-abstract-full" style="display: none;"> Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitious tests of Einstein's equivalence principle. The key to dramatically increasing the bandwidth and precision of such matter-wave sensors lies in sustaining a coherent matter wave indefinitely. Here we demonstrate continuous Bose-Einstein condensation by creating a continuous-wave (CW) condensate of strontium atoms that lasts indefinitely. The coherent matter wave is sustained by amplification through Bose-stimulated gain of atoms from a thermal bath. By steadily replenishing this bath while achieving 1000x higher phase-space densities than previous works, we maintain the conditions for condensation. This advance overcomes a fundamental limitation of all atomic quantum gas experiments to date: the need to execute several cooling stages time-sequentially. Continuous matter-wave amplification will make possible CW atom lasers, atomic counterparts of CW optical lasers that have become ubiquitous in technology and society. The coherence of such atom lasers will no longer be fundamentally limited by the atom number in a BEC and can ultimately reach the standard quantum limit. Our development provides a new, hitherto missing piece of atom optics, enabling the construction of continuous coherent matter-wave devices. From infrasound gravitational wave detectors to optical clocks, the dramatic improvement in coherence, bandwidth and precision now within reach will be decisive in the creation of a new class of quantum sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07605v2-abstract-full').style.display = 'none'; document.getElementById('2012.07605v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 606, 683 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05310">arXiv:2012.05310</a> <span> [<a href="https://arxiv.org/pdf/2012.05310">pdf</a>, <a href="https://arxiv.org/format/2012.05310">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.L220301">10.1103/PhysRevB.103.L220301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disorder enhanced quantum many-body scars in Hilbert crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=van+Voorden%2C+B">Bart van Voorden</a>, <a href="/search/cond-mat?searchtype=author&query=Marcuzzi%2C+M">Matteo Marcuzzi</a>, <a href="/search/cond-mat?searchtype=author&query=Schoutens%2C+K">Kareljan Schoutens</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1%C5%99%2C+J">Ji艡铆 Min谩艡</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05310v1-abstract-short" style="display: inline;"> We consider a model arising in facilitated Rydberg chains with positional disorder which features a Hilbert space with the topology of a $d$-dimensional hypercube. This allows for a straightforward interpretation of the many-body dynamics in terms of a single particle one on the Hilbert space and provides an explicit link between the many-body and single particle scars. Exploiting this perspective… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05310v1-abstract-full').style.display = 'inline'; document.getElementById('2012.05310v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05310v1-abstract-full" style="display: none;"> We consider a model arising in facilitated Rydberg chains with positional disorder which features a Hilbert space with the topology of a $d$-dimensional hypercube. This allows for a straightforward interpretation of the many-body dynamics in terms of a single particle one on the Hilbert space and provides an explicit link between the many-body and single particle scars. Exploiting this perspective, we show that an integrability-breaking disorder enhances the scars followed by inhibition of the dynamics due to strong localization of the eigenstates in the large disorder limit. Next, mapping the model to the spin-1/2 XX Heisenberg chain offers a simple geometrical perspective on the recently proposed Onsager scars [PRL ${\bf 124}$, 180604 (2020)], which can be identified with the scars on the edge of the Hilbert space. This makes apparent the origin of their insensitivity to certain types of disorder perturbations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05310v1-abstract-full').style.display = 'none'; document.getElementById('2012.05310v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+10 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 220301 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.02863">arXiv:2012.02863</a> <span> [<a href="https://arxiv.org/pdf/2012.02863">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.055002">10.1103/PhysRevMaterials.5.055002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bulk Electronic Structure of Lanthanum Hexaboride (LaB6) by Hard X-ray Angle-Resolved Photoelectron Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rattanachata%2C+A">A. Rattanachata</a>, <a href="/search/cond-mat?searchtype=author&query=Nicola%C3%AF%2C+L">L. Nicola茂</a>, <a href="/search/cond-mat?searchtype=author&query=Martins%2C+H+P">H. P. Martins</a>, <a href="/search/cond-mat?searchtype=author&query=Conti%2C+G">G. Conti</a>, <a href="/search/cond-mat?searchtype=author&query=Verstraete%2C+M+J">M. J. Verstraete</a>, <a href="/search/cond-mat?searchtype=author&query=Gehlmann%2C+M">M. Gehlmann</a>, <a href="/search/cond-mat?searchtype=author&query=Ueda%2C+S">S. Ueda</a>, <a href="/search/cond-mat?searchtype=author&query=Kobayashi%2C+K">K. Kobayashi</a>, <a href="/search/cond-mat?searchtype=author&query=Vishik%2C+I">I. Vishik</a>, <a href="/search/cond-mat?searchtype=author&query=Schneider%2C+C+M">C. M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&query=Fadley%2C+C+S">C. S. Fadley</a>, <a href="/search/cond-mat?searchtype=author&query=Gray%2C+A+X">A. X. Gray</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J. Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Nem%C5%A1%C3%A1k%2C+S">S. Nem拧谩k</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.02863v2-abstract-short" style="display: inline;"> In the last decade rare-earth hexaborides have been investigated for their fundamental importance in condensed matter physics, and for their applications in advanced technological fields. Among these compounds, LaB$_6$ has a special place, being a traditional d-band metal without additional f- bands. In this paper we investigate the bulk electronic structure of LaB$_6$ using hard x-ray photoemissi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02863v2-abstract-full').style.display = 'inline'; document.getElementById('2012.02863v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.02863v2-abstract-full" style="display: none;"> In the last decade rare-earth hexaborides have been investigated for their fundamental importance in condensed matter physics, and for their applications in advanced technological fields. Among these compounds, LaB$_6$ has a special place, being a traditional d-band metal without additional f- bands. In this paper we investigate the bulk electronic structure of LaB$_6$ using hard x-ray photoemission spectroscopy, measuring both core-level and angle-resolved valence-band spectra. By comparing La 3d core level spectra to cluster model calculations, we identify well-screened peak residing at a lower binding energy compared to the main poorly-screened peak; the relative intensity between these peaks depends on how strong the hybridization is between La and B atoms. We show that the recoil effect, negligible in the soft x-ray regime, becomes prominent at higher kinetic energies for lighter elements, such as boron, but is still negligible for heavy elements, such as lanthanum. In addition, we report the bulk-like band structure of LaB$_6$ determined by hard x-ray angle-resolved photoemission spectroscopy (HARPES). We interpret HARPES experimental results by the free-electron final-state calculations and by the more precise one-step photoemission theory including matrix element and phonon excitation effects. In addition, we consider the nature and the magnitude of phonon excitations in HARPES experimental data measured at different temperatures and excitation energies. We demonstrate that one step theory of photoemission and HARPES experiments provide, at present, the only approach capable of probing true bulk-like electronic band structure of rare-earth hexaborides and strongly correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02863v2-abstract-full').style.display = 'none'; document.getElementById('2012.02863v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Total 26 pages, Total 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 055002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.02010">arXiv:2012.02010</a> <span> [<a href="https://arxiv.org/pdf/2012.02010">pdf</a>, <a href="https://arxiv.org/format/2012.02010">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.206403">10.1103/PhysRevLett.126.206403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Triple point fermions in ferroelectric GeTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Krempask%C3%BD%2C+J">Juraj Krempask媒</a>, <a href="/search/cond-mat?searchtype=author&query=Nicola%C3%AF%2C+L">Laurent Nicola茂</a>, <a href="/search/cond-mat?searchtype=author&query=Gmitra%2C+M">Martin Gmitra</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Houke Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Fanciulli%2C+M">Mauro Fanciulli</a>, <a href="/search/cond-mat?searchtype=author&query=Guedes%2C+E+B">Eduardo B. Guedes</a>, <a href="/search/cond-mat?searchtype=author&query=Caputo%2C+M">Marco Caputo</a>, <a href="/search/cond-mat?searchtype=author&query=Radovi%C4%87%2C+M">Milan Radovi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Volobuev%2C+V+V">V. V. Volobuev</a>, <a href="/search/cond-mat?searchtype=author&query=Caha%2C+O">Ondrej Caha</a>, <a href="/search/cond-mat?searchtype=author&query=Springholz%2C+G">Gunther Springholz</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">Jan Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Dil%2C+J+H">J. Hugo Dil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.02010v1-abstract-short" style="display: inline;"> Ferroelectric GeTe is unveiled to exhibit an intriguing multiple non-trivial topology of the electronic band structure due to the existence of triple-point and type-II Weyl fermions, which goes well beyond the giant Rashba spin splitting controlled by external fields as previously reported. Using spin- and angle-resolved photoemission spectroscopy combined with ab initio density functional theory,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02010v1-abstract-full').style.display = 'inline'; document.getElementById('2012.02010v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.02010v1-abstract-full" style="display: none;"> Ferroelectric GeTe is unveiled to exhibit an intriguing multiple non-trivial topology of the electronic band structure due to the existence of triple-point and type-II Weyl fermions, which goes well beyond the giant Rashba spin splitting controlled by external fields as previously reported. Using spin- and angle-resolved photoemission spectroscopy combined with ab initio density functional theory, the unique spin texture around the triple point caused by the crossing of one spin degenerate and two spin-split bands along the ferroelectric crystal axis is derived. This consistently reveals spin winding numbers that are coupled with time reversal symmetry and Lorentz invariance, which are found to be equal for both triple-point pairs in the Brillouin zone. The rich manifold of effects opens up promising perspectives for studying non-trivial phenomena and multi-component fermions in condensed matter systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.02010v1-abstract-full').style.display = 'none'; document.getElementById('2012.02010v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 206403 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.01729">arXiv:2012.01729</a> <span> [<a href="https://arxiv.org/pdf/2012.01729">pdf</a>, <a href="https://arxiv.org/format/2012.01729">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.174419">10.1103/PhysRevB.103.174419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-spiral state of a Mn monolayer on W(110) studied by soft x-ray absorption spectroscopy at variable temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Honolka%2C+J">J. Honolka</a>, <a href="/search/cond-mat?searchtype=author&query=Krotzky%2C+S">S. Krotzky</a>, <a href="/search/cond-mat?searchtype=author&query=Menzel%2C+M">M. Menzel</a>, <a href="/search/cond-mat?searchtype=author&query=Herden%2C+T">T. Herden</a>, <a href="/search/cond-mat?searchtype=author&query=Sessi%2C+V">V. Sessi</a>, <a href="/search/cond-mat?searchtype=author&query=Ebert%2C+H">H. Ebert</a>, <a href="/search/cond-mat?searchtype=author&query=Minar%2C+J">J. Minar</a>, <a href="/search/cond-mat?searchtype=author&query=von+Bergmann%2C+K">K. von Bergmann</a>, <a href="/search/cond-mat?searchtype=author&query=Wiesendanger%2C+R">R. Wiesendanger</a>, <a href="/search/cond-mat?searchtype=author&query=Sipr%2C+O">O. Sipr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.01729v1-abstract-short" style="display: inline;"> The noncollinear magnetic state of epitaxial Mn monolayers on tungsten (110) crystal surfaces is investigated by means of soft x-ray absorption spectroscopy, to complement earlier spin-polarized STM experiments. X-ray absorption spectra (XAS), x-ray linear dichroism (XLD) and x-ray magnetic circular dichroism (XMCD) Mn L23-edge spectra were measured in the temperature range from 8 to 300 K and com… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01729v1-abstract-full').style.display = 'inline'; document.getElementById('2012.01729v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.01729v1-abstract-full" style="display: none;"> The noncollinear magnetic state of epitaxial Mn monolayers on tungsten (110) crystal surfaces is investigated by means of soft x-ray absorption spectroscopy, to complement earlier spin-polarized STM experiments. X-ray absorption spectra (XAS), x-ray linear dichroism (XLD) and x-ray magnetic circular dichroism (XMCD) Mn L23-edge spectra were measured in the temperature range from 8 to 300 K and compared to results of fully-relativistic ab initio calculations. We show that antiferromagnetic (AFM) helical and cycloidal spirals give rise to significantly different Mn L23-edge XLD signals, enabling thus to distinguish between them. It follows from our results that the magnetic ground state of a Mn monolayer on W(110) is an AFM cycloidal spin spiral. Based on temperature-dependent XAS, XLD and field-induced XMCD spectra we deduce that magnetic properties of the Mn monolayer on W(110) vary with temperature, but this variation lacks a clear indication of a phase transition in the investigated temperature range up to 300 K - even though a crossover exists around 170 K in the temperature dependence of XAS branching ratios and in XLD profiles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01729v1-abstract-full').style.display = 'none'; document.getElementById('2012.01729v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 174419 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.12648">arXiv:2011.12648</a> <span> [<a href="https://arxiv.org/pdf/2011.12648">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Photoemission study on pristine and Ni-doped SrTiO$_{3}$ thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Alarab%2C+F">F. Alarab</a>, <a href="/search/cond-mat?searchtype=author&query=Hricovini%2C+K">K. Hricovini</a>, <a href="/search/cond-mat?searchtype=author&query=Leikert%2C+B">B. Leikert</a>, <a href="/search/cond-mat?searchtype=author&query=Nicolai%2C+L">L. Nicolai</a>, <a href="/search/cond-mat?searchtype=author&query=Fanciulli%2C+M">M. Fanciulli</a>, <a href="/search/cond-mat?searchtype=author&query=Heckmann%2C+O">O. Heckmann</a>, <a href="/search/cond-mat?searchtype=author&query=Richter%2C+M">M. Richter</a>, <a href="/search/cond-mat?searchtype=author&query=Pru%C5%A1akova%2C+L">L. Pru拧akova</a>, <a href="/search/cond-mat?searchtype=author&query=Jansa%2C+Z">Z. Jansa</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%A0utta%2C+P">P. 艩utta</a>, <a href="/search/cond-mat?searchtype=author&query=Rault%2C+J">J. Rault</a>, <a href="/search/cond-mat?searchtype=author&query=Lefevre%2C+P">P. Lefevre</a>, <a href="/search/cond-mat?searchtype=author&query=Muntwiller%2C+M">M. Muntwiller</a>, <a href="/search/cond-mat?searchtype=author&query=Claessen%2C+R">R. Claessen</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J. Min谩r</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.12648v1-abstract-short" style="display: inline;"> We combined photoelemission spectroscopy with first-principle calculations to investigate structural and electronic properties of SrTiO$_{3}$ doped with Ni impurities. In SrTiO$_{3}$ polycrystalline thin films, grown by magnetron sputtering, the mean size of the crystallites increases with the concentration of Ni. To determine the electronic band structure of SrTiO$_{3}$ films doped with Ni, high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12648v1-abstract-full').style.display = 'inline'; document.getElementById('2011.12648v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.12648v1-abstract-full" style="display: none;"> We combined photoelemission spectroscopy with first-principle calculations to investigate structural and electronic properties of SrTiO$_{3}$ doped with Ni impurities. In SrTiO$_{3}$ polycrystalline thin films, grown by magnetron sputtering, the mean size of the crystallites increases with the concentration of Ni. To determine the electronic band structure of SrTiO$_{3}$ films doped with Ni, high quality ordered pristine and SrTiO3:Ni$_{x}$ films with x=0.06 and 0.12 were prepared by pulsed laser deposition. Electronic band structure calculations for the ground state, as well as one-step model photoemission calculations, which were obtained by means of the Korringa-Khon-Rostoker Greens's function method, predicted the formation of localised $3d$-impurity bands in the band gap of SrTiO$_{3}$ close to the valence band maxima. The measured valence bands at the resonance Ni2p excitation and band dispersion confirm these findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12648v1-abstract-full').style.display = 'none'; document.getElementById('2011.12648v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages and 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.13196">arXiv:2010.13196</a> <span> [<a href="https://arxiv.org/pdf/2010.13196">pdf</a>, <a href="https://arxiv.org/format/2010.13196">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.125139">10.1103/PhysRevB.103.125139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface band characters of Weyl semimetal candidate material MoTe$_2$ revealed by one-step ARPES theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ono%2C+R">Ryota Ono</a>, <a href="/search/cond-mat?searchtype=author&query=Marmodoro%2C+A">Alberto Marmodoro</a>, <a href="/search/cond-mat?searchtype=author&query=Schusser%2C+J">Jakub Schusser</a>, <a href="/search/cond-mat?searchtype=author&query=Nakata%2C+Y">Yositaka Nakata</a>, <a href="/search/cond-mat?searchtype=author&query=Schwier%2C+E+F">Eike F. Schwier</a>, <a href="/search/cond-mat?searchtype=author&query=Braun%2C+J">J眉rgen Braun</a>, <a href="/search/cond-mat?searchtype=author&query=Ebert%2C+H">Hubert Ebert</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Sakamoto%2C+K">Kazuyuki Sakamoto</a>, <a href="/search/cond-mat?searchtype=author&query=Kr%C3%BCger%2C+P">Peter Kr眉ger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.13196v2-abstract-short" style="display: inline;"> The layered 2D-material MoTe$_2$ in the T$_d$ crystal phase is a semimetal which has theoretically been predicted to possess topologically non-trivial bands corresponding to Weyl fermions. Clear experimental evidence by angle-resolved photoemission spectroscopy (ARPES) is, however, lacking, which calls for a careful examination of the relation between ground state band structure calculations and A… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.13196v2-abstract-full').style.display = 'inline'; document.getElementById('2010.13196v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.13196v2-abstract-full" style="display: none;"> The layered 2D-material MoTe$_2$ in the T$_d$ crystal phase is a semimetal which has theoretically been predicted to possess topologically non-trivial bands corresponding to Weyl fermions. Clear experimental evidence by angle-resolved photoemission spectroscopy (ARPES) is, however, lacking, which calls for a careful examination of the relation between ground state band structure calculations and ARPES intensity plots. Here we report a study of the near Fermi-energy band structure of MoTe$_2$(T$_d$) by means of ARPES measurements, density functional theory, and one-step-model ARPES calculations. Good agreement between theory and experiment is obtained. We analyze the orbital character of the surface bands and its relation to the ARPES polarization dependence. We find that light polarization has a major efect on which bands can be observed by ARPES. For s-polarized light, the ARPES intensity is dominated by subsurface Mo d orbitals, while p-polarized light reveals the bands composed mainly derived from Te p orbitals. Suitable light polarization for observing either electron or hole pocket are determined <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.13196v2-abstract-full').style.display = 'none'; document.getElementById('2010.13196v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 125139 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.06285">arXiv:2009.06285</a> <span> [<a href="https://arxiv.org/pdf/2009.06285">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.115111">10.1103/PhysRevB.103.115111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Minority-Spin Impurity Band in n-Type (In,Fe)As: A Materials Perspective for Ferromagnetic Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kobayashi%2C+M">Masaki Kobayashi</a>, <a href="/search/cond-mat?searchtype=author&query=Anh%2C+L+D">Le Duc Anh</a>, <a href="/search/cond-mat?searchtype=author&query=Minar%2C+J">Jan Minar</a>, <a href="/search/cond-mat?searchtype=author&query=Khan%2C+W">Walayat Khan</a>, <a href="/search/cond-mat?searchtype=author&query=Borek%2C+S">Stephan Borek</a>, <a href="/search/cond-mat?searchtype=author&query=Hai%2C+P+N">Pham Nam Hai</a>, <a href="/search/cond-mat?searchtype=author&query=Harada%2C+Y">Yoshihisa Harada</a>, <a href="/search/cond-mat?searchtype=author&query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&query=Oshima%2C+M">Masaharu Oshima</a>, <a href="/search/cond-mat?searchtype=author&query=Fujimori%2C+A">Atsushi Fujimori</a>, <a href="/search/cond-mat?searchtype=author&query=Tanaka%2C+M">Masaaki Tanaka</a>, <a href="/search/cond-mat?searchtype=author&query=Strocov%2C+V+N">Vladimir N. Strocov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.06285v1-abstract-short" style="display: inline;"> Fully understanding the properties of n-type ferromagnetic semiconductors (FMSs), complementary to the mainstream p-type ones, is a challenging goal in semiconductor spintronics because ferromagnetism in n-type FMSs is theoretically non-trivial. Soft-x-ray angle-resolved photoemission spectroscopy (SX-ARPES) is a powerful approach to examine the mechanism of carrier-induced ferromagnetism in FMSs.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06285v1-abstract-full').style.display = 'inline'; document.getElementById('2009.06285v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.06285v1-abstract-full" style="display: none;"> Fully understanding the properties of n-type ferromagnetic semiconductors (FMSs), complementary to the mainstream p-type ones, is a challenging goal in semiconductor spintronics because ferromagnetism in n-type FMSs is theoretically non-trivial. Soft-x-ray angle-resolved photoemission spectroscopy (SX-ARPES) is a powerful approach to examine the mechanism of carrier-induced ferromagnetism in FMSs. Here our SX-ARPES study on the prototypical n-type FMS (In,Fe)As reveals the entire band structure including the Fe-3d impurity bands (IBs) and the host InAs ones, and provides direct evidence for electron occupation of the InAs-derived conduction band (CB). A minority-spin Fe-3d IB is found to be located just below the conduction-band minimum (CBM). The IB is formed by the hybridization of the unoccupied Fe-3d states with the occupied CBM of InAs in a spin-dependent way, resulting in the large spin polarization of CB. The band structure with the IB is varied with band filling, which cannot be explained by the rigid-band picture, suggesting a unified picture for realization of carrier-induced ferromagnetism in FMS materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06285v1-abstract-full').style.display = 'none'; document.getElementById('2009.06285v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 115111 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.01657">arXiv:2006.01657</a> <span> [<a href="https://arxiv.org/pdf/2006.01657">pdf</a>, <a href="https://arxiv.org/format/2006.01657">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.216404">10.1103/PhysRevLett.125.216404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing Hidden Orbital Pseudospin Texture with Time-Reversal Dichroism in Photoelectron Angular Distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Beaulieu%2C+S">Samuel Beaulieu</a>, <a href="/search/cond-mat?searchtype=author&query=Schusser%2C+J">Jakub Schusser</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+S">Shuo Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Sch%C3%BCler%2C+M">Michael Sch眉ler</a>, <a href="/search/cond-mat?searchtype=author&query=Pincelli%2C+T">Tommaso Pincelli</a>, <a href="/search/cond-mat?searchtype=author&query=Dendzik%2C+M">Maciej Dendzik</a>, <a href="/search/cond-mat?searchtype=author&query=Maklar%2C+J">Julian Maklar</a>, <a href="/search/cond-mat?searchtype=author&query=Neef%2C+A">Alexander Neef</a>, <a href="/search/cond-mat?searchtype=author&query=Ebert%2C+H">Hubert Ebert</a>, <a href="/search/cond-mat?searchtype=author&query=Hricovini%2C+K">Karol Hricovini</a>, <a href="/search/cond-mat?searchtype=author&query=Wolf%2C+M">Martin Wolf</a>, <a href="/search/cond-mat?searchtype=author&query=Braun%2C+J">J眉rgen Braun</a>, <a href="/search/cond-mat?searchtype=author&query=Rettig%2C+L">Laurenz Rettig</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">Jan Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Ernstorfer%2C+R">Ralph Ernstorfer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.01657v2-abstract-short" style="display: inline;"> We performed angle-resolved photoemission spectroscopy (ARPES) of bulk 2H-WSe$_2$ for different crystal orientations linked to each other by time-reversal symmetry. We introduce a new observable called time-reversal dichroism in photoelectron angular distributions (TRDAD), which quantifies the modulation of the photoemission intensity upon effective time-reversal operation. We demonstrate that the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01657v2-abstract-full').style.display = 'inline'; document.getElementById('2006.01657v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.01657v2-abstract-full" style="display: none;"> We performed angle-resolved photoemission spectroscopy (ARPES) of bulk 2H-WSe$_2$ for different crystal orientations linked to each other by time-reversal symmetry. We introduce a new observable called time-reversal dichroism in photoelectron angular distributions (TRDAD), which quantifies the modulation of the photoemission intensity upon effective time-reversal operation. We demonstrate that the hidden orbital pseudospin texture leaves its imprint onto TRDAD, due to multiple orbitals interference effects in photoemission. Our experimental results are in quantitative agreement with both tight-binding model and state-of-the-art fully relativistic calculations performed using the one-step model of photoemission. While spin-resolved ARPES probes the spin component of entangled spin-orbital texture in multiorbital systems, we unambiguously demonstrate that TRDAD reveals its orbital pseudospin texture counterpart. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01657v2-abstract-full').style.display = 'none'; document.getElementById('2006.01657v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 216404 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.05756">arXiv:2005.05756</a> <span> [<a href="https://arxiv.org/pdf/2005.05756">pdf</a>, <a href="https://arxiv.org/format/2005.05756">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0012901">10.1063/5.0012901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The CECAM Electronic Structure Library and the modular software development paradigm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Oliveira%2C+M+J+T">Micael J. T. Oliveira</a>, <a href="/search/cond-mat?searchtype=author&query=Papior%2C+N">Nick Papior</a>, <a href="/search/cond-mat?searchtype=author&query=Pouillon%2C+Y">Yann Pouillon</a>, <a href="/search/cond-mat?searchtype=author&query=Blum%2C+V">Volker Blum</a>, <a href="/search/cond-mat?searchtype=author&query=Artacho%2C+E">Emilio Artacho</a>, <a href="/search/cond-mat?searchtype=author&query=Caliste%2C+D">Damien Caliste</a>, <a href="/search/cond-mat?searchtype=author&query=Corsetti%2C+F">Fabiano Corsetti</a>, <a href="/search/cond-mat?searchtype=author&query=de+Gironcoli%2C+S">Stefano de Gironcoli</a>, <a href="/search/cond-mat?searchtype=author&query=Elena%2C+A+M">Alin M. Elena</a>, <a href="/search/cond-mat?searchtype=author&query=Garcia%2C+A">Alberto Garcia</a>, <a href="/search/cond-mat?searchtype=author&query=Garcia-Suarez%2C+V+M">Victor M. Garcia-Suarez</a>, <a href="/search/cond-mat?searchtype=author&query=Genovese%2C+L">Luigi Genovese</a>, <a href="/search/cond-mat?searchtype=author&query=Huhn%2C+W+P">William P. Huhn</a>, <a href="/search/cond-mat?searchtype=author&query=Huhs%2C+G">Georg Huhs</a>, <a href="/search/cond-mat?searchtype=author&query=Kokott%2C+S">Sebastian Kokott</a>, <a href="/search/cond-mat?searchtype=author&query=Kucukbenli%2C+E">Emine Kucukbenli</a>, <a href="/search/cond-mat?searchtype=author&query=Larsen%2C+A+H">Ask H. Larsen</a>, <a href="/search/cond-mat?searchtype=author&query=Lazzaro%2C+A">Alfio Lazzaro</a>, <a href="/search/cond-mat?searchtype=author&query=Lebedeva%2C+I+V">Irina V. Lebedeva</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yingzhou Li</a>, <a href="/search/cond-mat?searchtype=author&query=Lopez-Duran%2C+D">David Lopez-Duran</a>, <a href="/search/cond-mat?searchtype=author&query=Lopez-Tarifa%2C+P">Pablo Lopez-Tarifa</a>, <a href="/search/cond-mat?searchtype=author&query=Luders%2C+M">Martin Luders</a>, <a href="/search/cond-mat?searchtype=author&query=Marques%2C+M+A+L">Miguel A. L. Marques</a>, <a href="/search/cond-mat?searchtype=author&query=Minar%2C+J">Jan Minar</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.05756v2-abstract-short" style="display: inline;"> First-principles electronic structure calculations are very widely used thanks to the many successful software packages available. Their traditional coding paradigm is monolithic, i.e., regardless of how modular its internal structure may be, the code is built independently from others, from the compiler up, with the exception of linear-algebra and message-passing libraries. This model has been qu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.05756v2-abstract-full').style.display = 'inline'; document.getElementById('2005.05756v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.05756v2-abstract-full" style="display: none;"> First-principles electronic structure calculations are very widely used thanks to the many successful software packages available. Their traditional coding paradigm is monolithic, i.e., regardless of how modular its internal structure may be, the code is built independently from others, from the compiler up, with the exception of linear-algebra and message-passing libraries. This model has been quite successful for decades. The rapid progress in methodology, however, has resulted in an ever increasing complexity of those programs, which implies a growing amount of replication in coding and in the recurrent re-engineering needed to adapt to evolving hardware architecture. The Electronic Structure Library (\esl) was initiated by CECAM (European Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and promote modularization, with the ambition to extract common tasks from electronic structure programs and redesign them as free, open-source libraries. They include "heavy-duty" ones with a high degree of parallelisation, and potential for adaptation to novel hardware within them, thereby separating the sophisticated computer science aspects of performance optimization and re-engineering from the computational science done by scientists when implementing new ideas. It is a community effort, undertaken by developers of various successful codes, now facing the challenges arising in the new model. This modular paradigm will improve overall coding efficiency and enable specialists (computer scientists or computational scientists) to use their skills more effectively. It will lead to a more sustainable and dynamic evolution of software as well as lower barriers to entry for new developers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.05756v2-abstract-full').style.display = 'none'; document.getElementById('2005.05756v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version as finally accepted by J. Chem. Phys. to appear within the Special Topic in Electronic Structure Software (version prior to JCP's typesetting and proofs)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.00607">arXiv:2005.00607</a> <span> [<a href="https://arxiv.org/pdf/2005.00607">pdf</a>, <a href="https://arxiv.org/format/2005.00607">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Kink dynamics and quantum simulation of supersymmetric lattice Hamiltonians </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1%C5%99%2C+J">Ji艡铆 Min谩艡</a>, <a href="/search/cond-mat?searchtype=author&query=van+Voorden%2C+B">Bart van Voorden</a>, <a href="/search/cond-mat?searchtype=author&query=Schoutens%2C+K">Kareljan Schoutens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.00607v2-abstract-short" style="display: inline;"> We propose a quantum simulation of a supersymmetric lattice model using atoms trapped in a 1D configuration and interacting through a Rydberg dressed potential. The elementary excitations in the model are kinks or (in a sector with one extra particle) their superpartners - the skinks. The two are connected by supersymmetry and display identical quantum dynamics. We provide an analytical descriptio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.00607v2-abstract-full').style.display = 'inline'; document.getElementById('2005.00607v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.00607v2-abstract-full" style="display: none;"> We propose a quantum simulation of a supersymmetric lattice model using atoms trapped in a 1D configuration and interacting through a Rydberg dressed potential. The elementary excitations in the model are kinks or (in a sector with one extra particle) their superpartners - the skinks. The two are connected by supersymmetry and display identical quantum dynamics. We provide an analytical description of the kink/skink quench dynamics and propose a protocol to prepare and detect these excitations in the quantum simulator. We make a detailed analysis, based on numerical simulation, of the Rydberg atom simulator and show that it accurately tracks the dynamics of the supersymmetric model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.00607v2-abstract-full').style.display = 'none'; document.getElementById('2005.00607v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+16 pages; Significantly extended new version with added analysis of the superpartners of the kinks - the skinks - containing one more fermion, details of quantum engineering of the model away from criticality and improvement of the quantum simulation using multiple Rydberg dressing</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.14429">arXiv:2004.14429</a> <span> [<a href="https://arxiv.org/pdf/2004.14429">pdf</a>, <a href="https://arxiv.org/ps/2004.14429">ps</a>, <a href="https://arxiv.org/format/2004.14429">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.035107">10.1103/PhysRevB.102.035107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One step model of photo-emission at finite temperatures: spin fluctuations of Fe(001) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Minar%2C+J">Jan Minar</a>, <a href="/search/cond-mat?searchtype=author&query=Mankovsky%2C+S">Sergey Mankovsky</a>, <a href="/search/cond-mat?searchtype=author&query=Braun%2C+J">Jurgen Braun</a>, <a href="/search/cond-mat?searchtype=author&query=Ebert%2C+H">Hubert Ebert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.14429v1-abstract-short" style="display: inline;"> Various technical developments extended the potential of angle-resolved photoemission (ARPES) tremendously during the last twenty years. In particular improved momentum, energy and spin resolution as well as the use of photon energies from few eV up to several keV makes ARPES a rather unique tool to investigate the electronic properties of solids and surfaces. With our work we present a generaliza… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.14429v1-abstract-full').style.display = 'inline'; document.getElementById('2004.14429v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.14429v1-abstract-full" style="display: none;"> Various technical developments extended the potential of angle-resolved photoemission (ARPES) tremendously during the last twenty years. In particular improved momentum, energy and spin resolution as well as the use of photon energies from few eV up to several keV makes ARPES a rather unique tool to investigate the electronic properties of solids and surfaces. With our work we present a generalization of the state of the art description of the photoemission process, the so called one-step model that describes excitation, transport to the surface and escape into the vacuum in a coherent way. In particular, we present a theoretical description of temperature-dependent ARPES with a special emphasis on spin fluctuations. Finite temperature effects are included within the so called alloy analogy model which is based on the coherent potential approximation and this way allows to describe uncorrelated lattice vibrations in combination with spin fluctuations quantitatively on the same level of accuracy. To demonstrate the applicability of our approach a corresponding numerical analysis has been applied to spin- and angle-resolved photoemission of Fe(100) at finite temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.14429v1-abstract-full').style.display = 'none'; document.getElementById('2004.14429v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 035107 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.02826">arXiv:2004.02826</a> <span> [<a href="https://arxiv.org/pdf/2004.02826">pdf</a>, <a href="https://arxiv.org/format/2004.02826">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.235431">10.1103/PhysRevB.101.235431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bulk and surface electronic states in the dosed semimetallic HfTe$\boldsymbol{_2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Youbi%2C+Z+E">Zakariae El Youbi</a>, <a href="/search/cond-mat?searchtype=author&query=Jung%2C+S+W">Sung Won Jung</a>, <a href="/search/cond-mat?searchtype=author&query=Mukherjee%2C+S">Saumya Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&query=Fanciulli%2C+M">Mauro Fanciulli</a>, <a href="/search/cond-mat?searchtype=author&query=Schusser%2C+J">Jakub Schusser</a>, <a href="/search/cond-mat?searchtype=author&query=Heckmann%2C+O">Olivier Heckmann</a>, <a href="/search/cond-mat?searchtype=author&query=Richter%2C+C">Christine Richter</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J谩n Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Hricovini%2C+K">Karol Hricovini</a>, <a href="/search/cond-mat?searchtype=author&query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&query=Cacho%2C+C">Cephise Cacho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.02826v2-abstract-short" style="display: inline;"> The dosing of layered materials with alkali metals has become a commonly used strategy in ARPES experiments. However, precisely what occurs under such conditions, both structurally and electronically, has remained a matter of debate. Here we perform a systematic study of 1T-HfTe$_2$, a prototypical semimetal of the transition metal dichalcogenide family. By utilizing photon energy-dependent angle-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02826v2-abstract-full').style.display = 'inline'; document.getElementById('2004.02826v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.02826v2-abstract-full" style="display: none;"> The dosing of layered materials with alkali metals has become a commonly used strategy in ARPES experiments. However, precisely what occurs under such conditions, both structurally and electronically, has remained a matter of debate. Here we perform a systematic study of 1T-HfTe$_2$, a prototypical semimetal of the transition metal dichalcogenide family. By utilizing photon energy-dependent angle-resolved photoemission spectroscopy (ARPES), we have investigated the electronic structure of this material as a function of Potassium (K) deposition. From the k$_z$ maps, we observe the appearance of 2D dispersive bands after electron dosing, with an increasing sharpness of the bands, consistent with the wavefunction confinement at the topmost layer. In our highest-dosing cases, a monolayer-like electronic structure emerges, presumably as a result of intercalation of the alkali metal. Here, by bringing the topmost valence band below $E_F$, we can directly measure a band overlap of $\sim$ 0.2 eV. However, 3D bulk-like states still contribute to the spectra even after considerable dosing. Our work provides a reference point for the increasingly popular studies of the alkali metal dosing of semimetals using ARPES. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02826v2-abstract-full').style.display = 'none'; document.getElementById('2004.02826v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.01667">arXiv:2004.01667</a> <span> [<a href="https://arxiv.org/pdf/2004.01667">pdf</a>, <a href="https://arxiv.org/format/2004.01667">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.033115">10.1103/PhysRevResearch.2.033115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unveiling the complete dispersion of the giant Rashba split surface states of ferroelectric $伪$-GeTe(111) by alkali doping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kremer%2C+G">G. Kremer</a>, <a href="/search/cond-mat?searchtype=author&query=Jaouen%2C+T">T. Jaouen</a>, <a href="/search/cond-mat?searchtype=author&query=Salzmann%2C+B">B. Salzmann</a>, <a href="/search/cond-mat?searchtype=author&query=Nicola%C3%AF%2C+L">L. Nicola茂</a>, <a href="/search/cond-mat?searchtype=author&query=Rumo%2C+M">M. Rumo</a>, <a href="/search/cond-mat?searchtype=author&query=Nicholson%2C+C+W">C. W. Nicholson</a>, <a href="/search/cond-mat?searchtype=author&query=Hildebrand%2C+B">B. Hildebrand</a>, <a href="/search/cond-mat?searchtype=author&query=Dil%2C+J+H">J. H. Dil</a>, <a href="/search/cond-mat?searchtype=author&query=Min%C3%A1r%2C+J">J. Min谩r</a>, <a href="/search/cond-mat?searchtype=author&query=Springholz%2C+G">G. Springholz</a>, <a href="/search/cond-mat?searchtype=author&query=Krempask%C3%BD%2C+J">J. Krempask媒</a>, <a href="/search/cond-mat?searchtype=author&query=Monney%2C+C">C. Monney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.01667v2-abstract-short" style="display: inline;"> $伪… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01667v2-abstract-full').style.display = 'inline'; document.getElementById('2004.01667v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.01667v2-abstract-full" style="display: none;"> $伪$-GeTe(111) is a non-centrosymmetric ferroelectric material, for which a strong spin-orbit interaction gives rise to giant Rashba split states in the bulk and at the surface. The detailed dispersions of the surface states inside the bulk band gap remains an open question because they are located in the unoccupied part of the electronic structure, making them inaccessible to static angle-resolved photoemission spectroscopy. We show that this difficulty can be overcome via in-situ potassium doping of the surface, leading to a rigid shift of 80 meV of the surface states into the occupied states. Thus, we resolve in great detail their dispersion and highlight their crossing at the $\bar螕$ point, which, in comparison with density functional theory calculations, definitively confirms the Rashba mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01667v2-abstract-full').style.display = 'none'; document.getElementById('2004.01667v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 033115 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Min%C3%A1r%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Min%C3%A1r%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Min%C3%A1r%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Min%C3%A1r%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Min%C3%A1r%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>