CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 106 results for author: <span class="mathjax">Vergniory, M G</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Vergniory%2C+M+G">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Vergniory, M G"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Vergniory%2C+M+G&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Vergniory, M G"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Vergniory%2C+M+G&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Vergniory%2C+M+G&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Vergniory%2C+M+G&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Vergniory%2C+M+G&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18684">arXiv:2411.18684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18684">pdf</a>, <a href="https://arxiv.org/format/2411.18684">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A New Moir茅 Platform Based on M-Point Twisting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+H">Hanqi Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jiabin Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+J">Jie Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efetov%2C+D+K">Dmitri K. Efetov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mak%2C+K+F">Kin Fai Mak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18684v1-abstract-short" style="display: inline;"> We introduce a new class of moir茅 systems and materials based on monolayers with triangular lattices and low-energy states at the M points of the Brillouin zone. These M-point moir茅 materials are fundamentally distinct from those derived from $螕$- or K-point monolayers, featuring three time-reversal-preserving valleys related by three-fold rotational symmetry. We propose twisted bilayers of experi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18684v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18684v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18684v1-abstract-full" style="display: none;"> We introduce a new class of moir茅 systems and materials based on monolayers with triangular lattices and low-energy states at the M points of the Brillouin zone. These M-point moir茅 materials are fundamentally distinct from those derived from $螕$- or K-point monolayers, featuring three time-reversal-preserving valleys related by three-fold rotational symmetry. We propose twisted bilayers of experimentally exfoliable 1T-SnSe$_2$ and 1T-ZrS$_2$ as realizations of this new class. Using extensive ab initio simulations, we develop quantitative continuum models and analytically show that the corresponding M-point moir茅 Hamiltonians exhibit emergent momentum-space non-symmorphic symmetries and a kagome plane-wave lattice in momentum space. This represents the first experimentally viable realization of a projective representation of crystalline space groups in a non-magnetic system. With interactions, these materials represent six-flavor Hubbard simulators with Mott physics, as can be seen by their flat Wilson loops. Furthermore, the presence of a non-symmorphic momentum-space in-plane mirror symmetry makes some of the M-point moir茅 Hamiltonians quasi-one-dimensional in each valley, suggesting the possibility of realizing Luttinger liquid physics. We predict the twist angles at which a series of (conduction) flat bands appear, provide a faithful continuum Hamiltonian, analyze its topology and charge density and briefly discuss several aspects of the physics of this new platform. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18684v1-abstract-full').style.display = 'none'; document.getElementById('2411.18684v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+124 pages, 5+132 figures, 1+27 tables. Previously submitted. See also arXiv:2411.08950 and arXiv:2411.09741</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09741">arXiv:2411.09741</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09741">pdf</a>, <a href="https://arxiv.org/format/2411.09741">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> 2D Theoretically Twistable Material Database </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petralanda%2C+U">Urko Petralanda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skorupskii%2C+G">Grigorii Skorupskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Q">Qiaoling Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+H">Hanqi Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+J">Jiaze Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mustaf%2C+R+A">Rose Albu Mustaf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%B6hn%2C+P">Peter H枚hn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haase%2C+V">Vicky Haase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claassen%2C+M">Martin Claassen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elcoro%2C+L">Luis Elcoro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+J">Jie Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mak%2C+K+F">Kin Fai Mak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efetov%2C+D+K">Dmitri K. Efetov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morosan%2C+E">Emilia Morosan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kennes%2C+D+M">Dante M. Kennes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xian%2C+L">Lede Xian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09741v1-abstract-short" style="display: inline;"> The study of twisted two-dimensional (2D) materials, where twisting layers create moir茅 superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs) have been extensively studied, the broader potential of a seemingly infinite set of other twi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09741v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09741v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09741v1-abstract-full" style="display: none;"> The study of twisted two-dimensional (2D) materials, where twisting layers create moir茅 superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs) have been extensively studied, the broader potential of a seemingly infinite set of other twistable 2D materials remains largely unexplored. In this paper, we define &#34;theoretically twistable materials&#34; as single- or multi-layer structures that allow for the construction of simple continuum models of their moir茅 structures. This excludes, for example, materials with a &#34;spaghetti&#34; of bands or those with numerous crossing points at the Fermi level, for which theoretical moir茅 modeling is unfeasible. We present a high-throughput algorithm that systematically searches for theoretically twistable semimetals and insulators based on the Topological 2D Materials Database. By analyzing key electronic properties, we identify thousands of new candidate materials that could host rich topological and strongly correlated phenomena when twisted. We propose representative twistable materials for realizing different types of moir茅 systems, including materials with different Bravais lattices, valleys, and strength of spin-orbital coupling. We provide examples of crystal growth for several of these materials and showcase twisted bilayer band structures along with simplified twisted continuum models. Our results significantly broaden the scope of moir茅 heterostructures and provide a valuable resource for future experimental and theoretical studies on novel moir茅 systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09741v1-abstract-full').style.display = 'none'; document.getElementById('2411.09741v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15+81 pages, 5+187 figures, 4+104 tables. The Topological 2D Materials Database is available at https://topologicalquantumchemistry.com/topo2d/index.html . See also the accompanying paper &#34;Two-dimensional Topological Quantum Chemistry and Catalog of Topological Materials&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08200">arXiv:2411.08200</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08200">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Atomic-scale mapping of superconductivity in the incoherent CDW mosaic phase of a transition metal dichalcogenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sajan%2C+S">Sandra Sajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Haojie Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+T">Tarushi Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Ram%C3%ADrez%2C+I">Iri谩n S谩nchez-Ram铆rez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patra%2C+C">Chandan Patra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Juan%2C+F">Fernando de Juan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+R+P">Ravi Prakash Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ugeda%2C+M+M">Miguel M. Ugeda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08200v1-abstract-short" style="display: inline;"> The emergence of superconductivity in the octahedrally coordinated (1T) phase of TaS2 is preceded by the intriguing loss of long-range order in the charge density wave (CDW). Such decoherence, attainable by different methods, results in the formation of nm-sized coherent CDW domains bound by a two-dimensional network of domain walls (DW) - mosaic phase -, which has been proposed as the spatial ori&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08200v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08200v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08200v1-abstract-full" style="display: none;"> The emergence of superconductivity in the octahedrally coordinated (1T) phase of TaS2 is preceded by the intriguing loss of long-range order in the charge density wave (CDW). Such decoherence, attainable by different methods, results in the formation of nm-sized coherent CDW domains bound by a two-dimensional network of domain walls (DW) - mosaic phase -, which has been proposed as the spatial origin of the superconductivity. Here, we report the atomic-scale characterization of the superconducting state of 1T-TaSSe, a model 1T compound exhibiting the CDW mosaic phase. We use high-resolution scanning tunneling spectroscopy and Andreev spectroscopy to probe the microscopic nature of the superconducting state in unambiguous connection with the electronic structure of the mosaic phase. Spatially resolved conductance maps at the Fermi level at the onset of superconductivity reveal that the density of states is mostly localized on the CDW domains compared to the domain walls, which suggests their dominant role in the formation of superconductivity. This scenario is confirmed within the superconducting dome at 340 mK, where superconductivity is fully developed, and the subtle spatial inhomogeneity of the superconducting gap remains unlinked to the domain wall network. Our results provide key new insights into the fundamental interplay between superconductivity and CDW in these relevant strongly correlated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08200v1-abstract-full').style.display = 'none'; document.getElementById('2411.08200v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07823">arXiv:2411.07823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07823">pdf</a>, <a href="https://arxiv.org/format/2411.07823">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Interlayer charge transfer induced by electronic instabilities in the natural van der Waals hetrostructure 4H$_b$-TaS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+R+M">R. Mathew Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">X. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wenzel%2C+M">M. Wenzel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasse%2C+V">V. Hasse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">C. Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">M. G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pronin%2C+A+V">A. V. Pronin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dressel%2C+M">M. Dressel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07823v1-abstract-short" style="display: inline;"> The natural van der Waals heterostructure 4H$_b$-TaS$_2$ composed of alternating 1T- and 1H-TaS$_2$ layers serves as a platform for investigating the electronic correlations and layer-dependent properties of novel quantum materials. The temperature evolution of the conductivity spectra $蟽(蠅)$ obtained through infrared spectroscopy elucidates the influence of band modifications associated with the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07823v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07823v1-abstract-full" style="display: none;"> The natural van der Waals heterostructure 4H$_b$-TaS$_2$ composed of alternating 1T- and 1H-TaS$_2$ layers serves as a platform for investigating the electronic correlations and layer-dependent properties of novel quantum materials. The temperature evolution of the conductivity spectra $蟽(蠅)$ obtained through infrared spectroscopy elucidates the influence of band modifications associated with the charge-density-wave (CDW) superlattice on the 1T layer, resulting in a room-temperature energy gap, $螖_{\rm CDW}\approx$ 0.35 eV. However, there is no gap associated to the 1H layer. Supported by density functional theory calculations, we attribute the behavior of interband transitions to the convergence of the layers, which amplifies the charge transfer from the 1T to the 1H layers, progressing as the temperature decreases. This phenomenon leads to an enhanced low-energy spectral weight and carrier density. The presence of an energy gap and the temperature-tunable charge transfer within the bulk of 4H$_b$-TaS$_2$ driven by layer-dependent CDW states contribute to a more comprehensive understanding of other complex compounds of transition-metal dichalcogenides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07823v1-abstract-full').style.display = 'none'; document.getElementById('2411.07823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages including SM</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17993">arXiv:2410.17993</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17993">pdf</a>, <a href="https://arxiv.org/format/2410.17993">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin Hall and Edelstein Effects in Novel Chiral Noncollinear Altermagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Mengli Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janson%2C+O">Oleg Janson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McClarty%2C+P">Paul McClarty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17993v2-abstract-short" style="display: inline;"> Altermagnets are a newly discovered class of magnetic phases that combine the spin polarization behavior of ferromagnetic band structures with the vanishing net magnetization characteristic of antiferromagnets. Initially proposed for collinear magnets, the concept has since been extended to include certain non-collinear structures. A recent development in Landau theory for collinear altermagnets i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17993v2-abstract-full').style.display = 'inline'; document.getElementById('2410.17993v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17993v2-abstract-full" style="display: none;"> Altermagnets are a newly discovered class of magnetic phases that combine the spin polarization behavior of ferromagnetic band structures with the vanishing net magnetization characteristic of antiferromagnets. Initially proposed for collinear magnets, the concept has since been extended to include certain non-collinear structures. A recent development in Landau theory for collinear altermagnets incorporates spin-space symmetries, providing a robust framework for identifying this class of materials. Here we expand on that theory to identify altermagnetic multipolar order parameters in non-collinear chiral materials. We demonstrate that the interplay between non-collinear altermagnetism and chirality allows for spatially odd multipole components, leading to non-trivial spin textures on Fermi surfaces and unexpected transport phenomena, even in the absence of SOC. This makes such chiral altermagnets fundamentally different from the well-known SOC-driven Rashba-Edelstein and spin Hall effects used for 2D spintronics. Choosing the chiral topological magnetic material Mn$_3$IrSi as a case study, we apply toy models and first-principles calculations to predict experimental signatures, such as large spin-Hall and Edelstein effects, that have not been previously observed in altermagnets. These findings pave the way for a new realm of spintronics applications based on spin-transport properties of chiral altermagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17993v2-abstract-full').style.display = 'none'; document.getElementById('2410.17993v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19783">arXiv:2409.19783</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19783">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Emergence of reentrant structural modulations far beyond the thermal limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mathur%2C+N">Nitish Mathur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ballester%2C+F">Francesc Ballester</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carrel%2C+G">Gabrielle Carrel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plisson%2C+V+M">Vincent M. Plisson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+F">Fang Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+J">Jiangchang Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Caiyun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S+B">Scott B. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singha%2C+R">Ratnadwip Singha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatterjee%2C+S">Sudipta Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burch%2C+K+S">Kenneth S. Burch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=J%C3%A4ck%2C+B">Berthold J盲ck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19783v1-abstract-short" style="display: inline;"> A single material can exist in different states, with solids, liquids, and gases being the most familiar examples. In materials, these states can exhibit periodic structures spanning from atomic to macroscopic length scales. The conventional wisdom is that a low-symmetry periodic structure transitions into a high-symmetry structure as temperature increases beyond the critical point, which is defin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19783v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19783v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19783v1-abstract-full" style="display: none;"> A single material can exist in different states, with solids, liquids, and gases being the most familiar examples. In materials, these states can exhibit periodic structures spanning from atomic to macroscopic length scales. The conventional wisdom is that a low-symmetry periodic structure transitions into a high-symmetry structure as temperature increases beyond the critical point, which is defined by a thermal limit. In this work, we demonstrate an unforeseen emergence of low-symmetry modulated structures with a reentrant phase in nanoflakes of two-dimensional TaCo2Te2 far beyond their thermal limit, using in-situ heating transmission electron microscopy. We contend that entropy can drive the reappearance of structural modulations, consistent with predicted dynamic structural instabilities in undistorted TaCo2Te2, and further supported by Raman measurements. These findings not only reveal unexpected phase transitions in a crystalline material but also present a new pathway for creating novel ordered phases in low-dimensional systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19783v1-abstract-full').style.display = 'none'; document.getElementById('2409.19783v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13078">arXiv:2409.13078</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13078">pdf</a>, <a href="https://arxiv.org/format/2409.13078">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Catalogue of Phonon Instabilities in Symmetry Group 191 Kagome MT$_6$Z$_6$ Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">X. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">H. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">D. C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">N. Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">M. G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13078v1-abstract-short" style="display: inline;"> Kagome materials manifest rich physical properties due to the emergence of abundant electronic phases. Here, we carry out a high-throughput first-principles study of the kagome 1:6:6 family MT$_6$Z$_6$ materials in space group 191, focusing on their phonon instability and electronic flat bands. Different MT$_6$Z$_6$ kagome candidates reveal a remarkable variety of kagome flat bands ranging from un&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13078v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13078v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13078v1-abstract-full" style="display: none;"> Kagome materials manifest rich physical properties due to the emergence of abundant electronic phases. Here, we carry out a high-throughput first-principles study of the kagome 1:6:6 family MT$_6$Z$_6$ materials in space group 191, focusing on their phonon instability and electronic flat bands. Different MT$_6$Z$_6$ kagome candidates reveal a remarkable variety of kagome flat bands ranging from unfilled, partially filled, to fully filled. Notably, the Mn/Fe-166 compounds exhibit partially filled flat bands with a pronounced sharp peak in the density of states near the Fermi level, leading to magnetic orders that polarize the bands and stabilize the otherwise unstable phonon. When the flat bands are located away from the Fermi level, we find a large number of phonon instabilities, which can be classified into three types, based on the phonon dispersion and vibrational modes. Type-I instabilities involve the in-plane distortion of kagome nets, while type-II and type-III present out-of-plane distortion of trigonal M and Z atoms. We take MgNi$_6$Ge$_6$ and HfNi$_6$In$_6$ as examples to illustrate the possible CDW structures derived from the emergent type-I and type-II instabilities. The type-I instability in MgNi$_6$Ge$_6$ suggests a nematic phase transition, governed by the local twisting of kagome nets. The type-II instability in HfNi$_6$In$_6$ may result in a hexagonal-to-orthorhombic transition, offering insight into the formation of MT$_6$Z$_6$ in other space groups. Additionally, the predicted ScNb$_6$Sn$_6$ is analyzed as an example of the type-III instability. Our predictions suggest a vast kagome family with rich properties induced by the flat bands, possible CDW transitions, and their interplay with magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13078v1-abstract-full').style.display = 'none'; document.getElementById('2409.13078v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures, with 1000 pages of additional supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16851">arXiv:2408.16851</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16851">pdf</a>, <a href="https://arxiv.org/format/2408.16851">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> New magnetic topological materials from high-throughput search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuanfeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elcoro%2C+L">Luis Elcoro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16851v1-abstract-short" style="display: inline;"> We conducted a high-throughput search for topological magnetic materials on 522 new, experimentally reported commensurate magnetic structures from MAGNDATA, doubling the number of available materials on the Topological Magnetic Materials database. This brings up to date the previous studies which had become incomplete due to the discovery of new materials. For each material, we performed first-pri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16851v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16851v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16851v1-abstract-full" style="display: none;"> We conducted a high-throughput search for topological magnetic materials on 522 new, experimentally reported commensurate magnetic structures from MAGNDATA, doubling the number of available materials on the Topological Magnetic Materials database. This brings up to date the previous studies which had become incomplete due to the discovery of new materials. For each material, we performed first-principle electronic calculations and diagnosed the topology as a function of the Hubbard U parameter. Our high-throughput calculation led us to the prediction of 250 experimentally relevant topologically non-trivial materials, which represent 47.89% of the newly analyzed materials. We present five remarkable examples of these materials, each showcasing a different topological phase: Mn${}_2$AlB${}_2$ (BCSID 1.508), which exhibits a nodal line semimetal to topological insulator transition as a function of SOC, CaMnSi (BCSID 0.599), a narrow gap axion insulator, UAsS (BCSID 0.594) a 5f-orbital Weyl semimetal, CsMnF${}_4$ (BCSID 0.327), a material presenting a new type of quasi-symmetry protected closed nodal surface and FeCr${}_2$S${}_4$ (BCSID 0.613), a symmetry-enforced semimetal with double Weyls and spin-polarised surface states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16851v1-abstract-full').style.display = 'none'; document.getElementById('2408.16851v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">249 pages, Full topologies and band structures are provided on the Topological Magnetic Materials Database https://www.topologicalquantumchemistry.fr/magnetic/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17369">arXiv:2406.17369</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17369">pdf</a>, <a href="https://arxiv.org/format/2406.17369">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Charge transfer in T/H heterostructures of transition metal dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Ram%C3%ADrez%2C+I">Iri谩n S谩nchez-Ram铆rez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Juan%2C+F">Fernando de Juan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17369v1-abstract-short" style="display: inline;"> The $\sqrt{13}\times\sqrt{13}$ charge density wave state of the T polytype of MX$_2$ (M=Nb,Ta, X=S, Se) is known to host a half-filled flat band, which electronic correlations drive into a Mott insulating state. When T polytypes are coupled to strongly metallic H polytypes, such as in T/H bilayer heterostructures or the bulk 4H$_b$ polytype, charge transfer can destabilize the Mott state, but quan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17369v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17369v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17369v1-abstract-full" style="display: none;"> The $\sqrt{13}\times\sqrt{13}$ charge density wave state of the T polytype of MX$_2$ (M=Nb,Ta, X=S, Se) is known to host a half-filled flat band, which electronic correlations drive into a Mott insulating state. When T polytypes are coupled to strongly metallic H polytypes, such as in T/H bilayer heterostructures or the bulk 4H$_b$ polytype, charge transfer can destabilize the Mott state, but quantifying its magnitude has been a source of controversy. In this work, we perform a systematic ab-initio study of charge transfer for all experimentally relevant T/H bilayers and bulk 4H$_b$ structures. In all cases we find charge transfer from T to H layers which depends strongly on the interlayer distance but weakly on the Hubbard interaction. Additionally, Se compounds display smaller charge transfer than S compounds, and 4H$_b$ bulk polytypes display more charge transfer than isolated bilayers. We rationalize these findings in terms of band structure properties, and argue they might explain differences between compounds observed experimentally. Our work reveals the tendency to Mott insulation and the origin of superconductivity may vary significantly across the family of T/H heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17369v1-abstract-full').style.display = 'none'; document.getElementById('2406.17369v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14777">arXiv:2405.14777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.14777">pdf</a>, <a href="https://arxiv.org/format/2405.14777">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Topological Weyl Altermagnetism in CrSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Cong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Mengli Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhilin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wanyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiagarajan%2C+B">Balasubramanian Thiagarajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leandersson%2C+M">Mats Leandersson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+C">Craig Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">Timur Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fulga%2C+C">Cosma Fulga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janson%2C+O">Oleg Janson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjernberg%2C+O">Oscar Tjernberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14777v2-abstract-short" style="display: inline;"> Altermagnets constitute a novel, third fundamental class of collinear magnetic ordered materials, alongside with ferro- and antiferromagnets. They share with conventional antiferromagnets the feature of a vanishing net magnetization. At the same time they show a spin-splitting of electronic bands, just as in ferromagnets, caused by the atomic exchange interaction. On the other hand, topology has r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14777v2-abstract-full').style.display = 'inline'; document.getElementById('2405.14777v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14777v2-abstract-full" style="display: none;"> Altermagnets constitute a novel, third fundamental class of collinear magnetic ordered materials, alongside with ferro- and antiferromagnets. They share with conventional antiferromagnets the feature of a vanishing net magnetization. At the same time they show a spin-splitting of electronic bands, just as in ferromagnets, caused by the atomic exchange interaction. On the other hand, topology has recently revolutionized our understanding of condensed matter physics, introducing new phases of matter classified by intrinsic topological order. Here we connect the worlds of altermagnetism and topology, showing that the electronic structure of the altermagnet CrSb is topological and hosts a novel Weyl semimetallic state. Using high-resolution and spin angleresolved photoemission spectroscopy, we observe a large momentum-dependent spin-splitting in CrSb, reaching up to 1 eV, that induces altermagnetic Weyl nodes with an associated magnetic quantum number. At the surface we observe their spin-polarized topological Fermi-arcs. This establishes that in altermagnets the large energy scale intrinsic to the spin-splitting - orders of magnitude larger than the relativistic spin-orbit coupling - creates its own realm of robust electronic topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14777v2-abstract-full').style.display = 'none'; document.getElementById('2405.14777v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 16 pages, 4 figures. Supplementary material: 23 pages, 15 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18597">arXiv:2404.18597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.18597">pdf</a>, <a href="https://arxiv.org/format/2404.18597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-52456-6">10.1038/s41467-024-52456-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital selective commensurate modulations of the local density of states in ScV6Sn6 probed by nuclear spins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guehne%2C+R">Robin Guehne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noky%2C+J">Jonathan Noky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C">Changjiang Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baenitz%2C+M">Michael Baenitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18597v1-abstract-short" style="display: inline;"> The Kagome network is a unique platform in solid state physics that harbors a diversity of special electronic states due to its inherent band structure features comprising Dirac cones, van-Hove singularities, and flat bands. Some Kagome-based non-magnetic metals have recently been found to exhibit favorable properties, including unconventional superconductivity, charge density waves (CDW), switcha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18597v1-abstract-full').style.display = 'inline'; document.getElementById('2404.18597v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18597v1-abstract-full" style="display: none;"> The Kagome network is a unique platform in solid state physics that harbors a diversity of special electronic states due to its inherent band structure features comprising Dirac cones, van-Hove singularities, and flat bands. Some Kagome-based non-magnetic metals have recently been found to exhibit favorable properties, including unconventional superconductivity, charge density waves (CDW), switchable chiral transport, and signatures of an anomalous Hall effect (AHE). The Kagome metal ScV6Sn6 is another promising candidate for studying the emergence of an unconventional CDW and accompanying effects. We use 51V nuclear magnetic resonance (NMR) to study the local properties of the CDW phase in single crystalline ScV6Sn6, aided by density functional theory (DFT). We trace the dynamics of the local magnetic field during the CDW phase transition and determine a loss in the density of states (DOS) by a factor of $\sqrt{2}$, in excellent agreement with DFT. The local charge symmetry of the V surrounding in the CDW phase reflects the commensurate modulation of the charge density with wave vector q=(1/3,1/3,1/3). An unusual orientation dependent change in the NMR shift splitting symmetry, however, reveals orbital selective modulations of the local DOS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18597v1-abstract-full').style.display = 'none'; document.getElementById('2404.18597v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 6 figures, supplementary files</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 8213 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17539">arXiv:2404.17539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.17539">pdf</a>, <a href="https://arxiv.org/format/2404.17539">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Multifold topological semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6eter%2C+N">Niels Schr枚eter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cano%2C+J">Jennifer Cano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bradlyn%2C+B">Barry Bradlyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17539v1-abstract-short" style="display: inline;"> The discovery of topological semimetals with multifold band crossings has opened up a new and exciting frontier in the field of topological physics. These materials exhibit large Chern numbers, leading to long double Fermi arcs on their surfaces, which are protected by either crystal symmetries or topological order. The impact of these multifold crossings extends beyond surface science, as they ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17539v1-abstract-full').style.display = 'inline'; document.getElementById('2404.17539v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17539v1-abstract-full" style="display: none;"> The discovery of topological semimetals with multifold band crossings has opened up a new and exciting frontier in the field of topological physics. These materials exhibit large Chern numbers, leading to long double Fermi arcs on their surfaces, which are protected by either crystal symmetries or topological order. The impact of these multifold crossings extends beyond surface science, as they are not constrained by the Poincar茅 classification of quasiparticles and only need to respect the crystal symmetry of one of the 1651 magnetic space groups. Consequently, we observe the emergence of free fermionic excitations in solid-state systems that have no high-energy counterparts, protected by non-symmorphic symmetries. In this work, we review the recent theoretical and experimental progress made in the field of multifold topological semimetals. We begin with the theoretical prediction of the so-called multifold fermions and discuss the subsequent discoveries of chiral and magnetic topological semimetals. Several experiments that have realized chiral semimetals in spectroscopic measurements are described, and we discuss the future prospects of this field. These exciting developments have the potential to deepen our understanding of the fundamental properties of quantum matter and inspire new technological applications in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17539v1-abstract-full').style.display = 'none'; document.getElementById('2404.17539v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03324">arXiv:2403.03324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03324">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Observation of Chiral Surface State in Superconducting NbGe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+M">Mengyu Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roychowdhury%2C+S">Subhajit Roychowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03324v2-abstract-short" style="display: inline;"> The interplay between topology and superconductivity in quantum materials harbors rich physics ripe for discovery. In this study, we investigate the topological properties and superconductivity of the nonsymmorphic chiral superconductor NbGe$_2$ using high-resolution angle-resolved pho-toemission spectroscopy (ARPES), transport measurements, and ab initio calculations. The ARPES data revealed exot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03324v2-abstract-full').style.display = 'inline'; document.getElementById('2403.03324v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03324v2-abstract-full" style="display: none;"> The interplay between topology and superconductivity in quantum materials harbors rich physics ripe for discovery. In this study, we investigate the topological properties and superconductivity of the nonsymmorphic chiral superconductor NbGe$_2$ using high-resolution angle-resolved pho-toemission spectroscopy (ARPES), transport measurements, and ab initio calculations. The ARPES data revealed exotic chiral surface states on the (100) surface originating from the inherent chiral crystal structure. Supporting calculations indicate that NbGe$_2$ likely hosts elusive Weyl fermions in its bulk electronic structure. Furthermore, we uncovered the signatures of van Hove singularities that can enhance many-body interactions. Additionally, transport measurements demonstrated that NbGe$_2$ exhibits superconductivity below 2K. Overall, our comprehensive results provide the first concrete evidence that NbGe$_2$ is a promising platform for investigating the interplay between non-trivial band topology, possible Weyl fermions, van Hove singularities, and superconductivity in chiral quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03324v2-abstract-full').style.display = 'none'; document.getElementById('2403.03324v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02295">arXiv:2403.02295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.02295">pdf</a>, <a href="https://arxiv.org/format/2403.02295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Magnetic Weyl-Kondo semimetals induced by quantum fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yuan Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokofiev%2C+A">Andrey Prokofiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cano%2C+J">Jennifer Cano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paschen%2C+S">Silke Paschen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+Q">Qimiao Si</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02295v2-abstract-short" style="display: inline;"> Weyl-Kondo semimetals are strongly correlated topological semimetals that develop through the cooperation of the Kondo effect with space group symmetries. The Kondo effect, capturing quantum fluctuations associated with strong correlations, is usually suppressed by magnetic order. Here we develop the theory of magnetic Weyl-Kondo semimetal. The key of the proposed mechanism is that the magnetic or&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02295v2-abstract-full').style.display = 'inline'; document.getElementById('2403.02295v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02295v2-abstract-full" style="display: none;"> Weyl-Kondo semimetals are strongly correlated topological semimetals that develop through the cooperation of the Kondo effect with space group symmetries. The Kondo effect, capturing quantum fluctuations associated with strong correlations, is usually suppressed by magnetic order. Here we develop the theory of magnetic Weyl-Kondo semimetal. The key of the proposed mechanism is that the magnetic order comes from conduction $d$ electrons, such that the local $f$ moments can still fluctuate. We illustrate the extreme case where the magnetic space group symmetries prevent any spontaneous magnetization on the sites with the $f$-orbitals. In this case, topological degeneracies, including hourglass Weyl-Kondo nodal lines, appear when the magnetic space group symmetry constrains the Kondo-driven low-energy excitations; they lead to a third-order nonlinear anomalous Hall response. Based on the proposed mechanism, we explore the interplay between strong correlations and symmetries with database search leading to several candidate materials. The most prominent candidates are antiferromagnetic $\rm UNiGa$ and $\rm UNiAl$, with a third-order anomalous Hall response, as well as ferromagnetic $\rm USbTe$ and $\rm CeCoPO$, with a first-order one. Our findings pave the way for future experimental and theoretical investigations that promise to further advance the overarching theme of strongly correlated topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02295v2-abstract-full').style.display = 'none'; document.getElementById('2403.02295v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12156">arXiv:2401.12156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.12156">pdf</a>, <a href="https://arxiv.org/format/2401.12156">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Dirac zeros in an orbital selective Mott phase: Green&#39;s function Berry curvature and flux quantization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cano%2C+J">Jennifer Cano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+Q">Qimiao Si</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12156v1-abstract-short" style="display: inline;"> How electronic topology develops in strongly correlated systems represents a fundamental challenge in the field of quantum materials. Recent studies have advanced the characterization and diagnosis of topology in Mott insulators whose underlying electronic structure is topologically nontrivial, through ``Green&#39;s function zeros&#34;. However, their counterparts in metallic systems have yet to be explor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12156v1-abstract-full').style.display = 'inline'; document.getElementById('2401.12156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12156v1-abstract-full" style="display: none;"> How electronic topology develops in strongly correlated systems represents a fundamental challenge in the field of quantum materials. Recent studies have advanced the characterization and diagnosis of topology in Mott insulators whose underlying electronic structure is topologically nontrivial, through ``Green&#39;s function zeros&#34;. However, their counterparts in metallic systems have yet to be explored. Here, we address this problem in an orbital-selective Mott phase (OSMP), which is of extensive interest to a variety of strongly correlated systems with a short-range Coulomb repulsion. We demonstrate symmetry protected crossing of the zeros in an OSMP. Utilizing the concept of Green&#39;s function Berry curvature, we show that the zero crossing has a quantized Berry flux. The resulting notion of Dirac zeros provides a window into the largely hidden landscape of topological zeros in strongly correlated metallic systems and, moreover, opens up a means to diagnose strongly correlated topology in new materials classes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12156v1-abstract-full').style.display = 'none'; document.getElementById('2401.12156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17903">arXiv:2311.17903</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.17903">pdf</a>, <a href="https://arxiv.org/format/2311.17903">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.023242">10.1103/PhysRevResearch.6.023242 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ce$_3$Bi$_4$Ni$_3$ $-$ A large hybridization-gap variant of Ce$_3$Bi$_4$Pt$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kirschbaum%2C+D+M">D. M. Kirschbaum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+X">X. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Waas%2C+M">M. Waas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svagera%2C+R">R. Svagera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokofiev%2C+A">A. Prokofiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St%C3%B6ger%2C+B">B. St枚ger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giester%2C+G">G. Giester</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rogl%2C+P">P. Rogl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oprea%2C+D+-">D. -G. Oprea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">R. Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">M. G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Custers%2C+J">J. Custers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paschen%2C+S">S. Paschen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zocco%2C+D+A">D. A. Zocco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17903v2-abstract-short" style="display: inline;"> The family of cubic noncentrosymmetric 3-4-3 compounds has become a fertile ground for the discovery of novel correlated metallic and insulating phases. Here, we report the synthesis of a new heavy fermion compound, Ce$_3$Bi$_4$Ni$_3$. It is an isoelectronic analog of the prototypical Kondo insulator Ce$_3$Bi$_4$Pt$_3$ and of the recently discovered Weyl-Kondo semimetal Ce$_3$Bi$_4$Pd$_3$. In cont&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17903v2-abstract-full').style.display = 'inline'; document.getElementById('2311.17903v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17903v2-abstract-full" style="display: none;"> The family of cubic noncentrosymmetric 3-4-3 compounds has become a fertile ground for the discovery of novel correlated metallic and insulating phases. Here, we report the synthesis of a new heavy fermion compound, Ce$_3$Bi$_4$Ni$_3$. It is an isoelectronic analog of the prototypical Kondo insulator Ce$_3$Bi$_4$Pt$_3$ and of the recently discovered Weyl-Kondo semimetal Ce$_3$Bi$_4$Pd$_3$. In contrast to the volume-preserving Pt-Pd substitution, structural and chemical analyses reveal a positive chemical pressure effect in Ce$_3$Bi$_4$Ni$_3$ relative to its heavier counterparts. Based on the results of electrical resistivity, Hall effect, magnetic susceptibility, and specific heat measurements, we identify an energy gap of 65-70 meV, about eight times larger than that in Ce$_3$Bi$_4$Pt$_3$ and about 45 times larger than that of the Kondo-insulating background hosting the Weyl nodes in Ce$_3$Bi$_4$Pd$_3$. We show that this gap as well as other physical properties do not evolve monotonically with increasing atomic number, i.e., in the sequence Ce$_3$Bi$_4$Ni$_3$-Ce$_3$Bi$_4$Pd$_3$-Ce$_3$Bi$_4$Pt$_3$, but instead with increasing partial electronic density of states of the $d$ orbitals at the Fermi energy. To understand under which condition topological states form in these materials is a topic for future studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17903v2-abstract-full').style.display = 'none'; document.getElementById('2311.17903v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 023242 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14112">arXiv:2311.14112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14112">pdf</a>, <a href="https://arxiv.org/format/2311.14112">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43246-024-00676-0">10.1038/s43246-024-00676-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phonon collapse and anharmonic melting of the 3D charge-density wave in kagome metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dangi%C4%87%2C+%C3%90">脨or膽e Dangi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14112v1-abstract-short" style="display: inline;"> The charge-density wave (CDW) mechanism and resulting structure of the AV3Sb5 family of kagome metals has posed a puzzling challenge since their discovery four years ago. In fact, the lack of consensus on the origin and structure of the CDW hinders the understanding of the emerging phenomena. Here, by employing a non-perturbative treatment of anharmonicity from first-principles calculations, we re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14112v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14112v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14112v1-abstract-full" style="display: none;"> The charge-density wave (CDW) mechanism and resulting structure of the AV3Sb5 family of kagome metals has posed a puzzling challenge since their discovery four years ago. In fact, the lack of consensus on the origin and structure of the CDW hinders the understanding of the emerging phenomena. Here, by employing a non-perturbative treatment of anharmonicity from first-principles calculations, we reveal that the charge-density transition in CsV3Sb5 is driven by the large electron-phonon coupling of the material and that the melting of the CDW state is attributed to ionic entropy and lattice anharmonicity. The calculated transition temperature is in very good agreement with experiments, implying that soft mode physics are at the core of the charge-density wave transition. Contrary to the standard assumption associated with a pure kagome lattice, the CDW is essentially three-dimensional as it is triggered by an unstable phonon at the L point. The absence of involvement of phonons at the M point enables us to constrain the resulting symmetries to six possible space groups. The unusually large electron-phonon linewidth of the soft mode explains why inelastic scattering experiments did not observe any softened phonon. We foresee that large anharmonic effects are ubiquitous and could be fundamental to understand the observed phenomena also in other kagome families. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14112v1-abstract-full').style.display = 'none'; document.getElementById('2311.14112v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Materials 5, 234 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13217">arXiv:2311.13217</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.13217">pdf</a>, <a href="https://arxiv.org/format/2311.13217">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Controllable orbital angular momentum monopoles in chiral topological semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yen%2C+Y">Yun Yen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krieger%2C+J+A">Jonas A. Krieger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+M">Mengyu Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manna%2C+K">Kaustuv Manna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McFarlane%2C+E+C">Emily C. McFarlane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borrmann%2C+H">Horst Borrmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stolz%2C+S">Samuel Stolz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Widmer%2C+R">Roland Widmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gr%C3%B6ning%2C+O">Oliver Gr枚ning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">Stuart S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BCler%2C+M">Michael Sch眉ler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">Niels B. M. Schr枚ter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13217v1-abstract-short" style="display: inline;"> The emerging field of orbitronics aims at generating and controlling currents of electronic orbital angular momentum (OAM) for information processing. Structurally chiral topological crystals could be particularly suitable orbitronic materials because they have been predicted to host topological band degeneracies in reciprocal space that are monopoles of OAM. Around such a monopole, the OAM is loc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13217v1-abstract-full').style.display = 'inline'; document.getElementById('2311.13217v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13217v1-abstract-full" style="display: none;"> The emerging field of orbitronics aims at generating and controlling currents of electronic orbital angular momentum (OAM) for information processing. Structurally chiral topological crystals could be particularly suitable orbitronic materials because they have been predicted to host topological band degeneracies in reciprocal space that are monopoles of OAM. Around such a monopole, the OAM is locked isotopically parallel or antiparallel to the direction of the electron&#39;s momentum, which could be used to generate large and controllable OAM currents. However, OAM monopoles have not yet been directly observed in chiral crystals, and no handle to control their polarity has been discovered. Here, we use circular dichroism in angle-resolved photoelectron spectroscopy (CD-ARPES) to image OAM monopoles in the chiral topological semimetals PtGa and PdGa. Moreover, we also demonstrate that the polarity of the monopole can be controlled via the structural handedness of the host crystal by imaging OAM monopoles and anti-monopoles in the two enantiomers of PdGa, respectively. For most photon energies used in our study, we observe a sign change in the CD-ARPES spectrum when comparing positive and negative momenta along the light direction near the topological degeneracy. This is consistent with the conventional view that CD-ARPES measures the projection of the OAM monopole along the photon momentum. For some photon energies, however, this sign change disappears, which can be understood from our numerical simulations as the interference of polar atomic OAM contributions, consistent with the presence of OAM monopoles. Our results highlight the potential of chiral crystals for orbitronic device applications, and our methodology could enable the discovery of even more complicated nodal OAM textures that could be exploited for orbitronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13217v1-abstract-full').style.display = 'none'; document.getElementById('2311.13217v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.12031">arXiv:2311.12031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.12031">pdf</a>, <a href="https://arxiv.org/format/2311.12031">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Topological Diagnosis of Strongly Correlated Electron Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Setty%2C+C">Chandan Setty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+F">Fang Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sur%2C+S">Shouvik Sur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paschen%2C+S">Silke Paschen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cano%2C+J">Jennifer Cano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+Q">Qimiao Si</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.12031v2-abstract-short" style="display: inline;"> The intersection of electronic topology and strong correlations offers a rich platform to discover exotic quantum phases of matter and unusual materials. An overarching challenge that impedes the discovery is how to diagnose topology in strongly correlated settings, as exemplified by Mott insulators. Here, we develop a general framework to address this outstanding question and illustrate its power&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12031v2-abstract-full').style.display = 'inline'; document.getElementById('2311.12031v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.12031v2-abstract-full" style="display: none;"> The intersection of electronic topology and strong correlations offers a rich platform to discover exotic quantum phases of matter and unusual materials. An overarching challenge that impedes the discovery is how to diagnose topology in strongly correlated settings, as exemplified by Mott insulators. Here, we develop a general framework to address this outstanding question and illustrate its power in the case of Mott insulators. The concept of Green&#39;s function Berry curvature -- which is frequency dependent -- is introduced. We apply this notion in a system that contains symmetry-protected nodes in its noninteracting bandstructure; strong correlations drive the system into a Mott insulating state, creating contours in frequency-momentum space where the Green&#39;s function vanishes. The Green&#39;s function Berry flux of such zeros is found to be quantized, and is as such direct probe of the system&#39;s topology. Our framework allows for a comprehensive search of strongly correlated topological materials with Green&#39;s function topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12031v2-abstract-full').style.display = 'none'; document.getElementById('2311.12031v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 13 figures including Supplemental Information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03442">arXiv:2311.03442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.03442">pdf</a>, <a href="https://arxiv.org/format/2311.03442">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.033195">10.1103/PhysRevResearch.6.033195 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topology of SmB6 revisited by means of topological quantum chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Iraola%2C+M">Mikel Iraola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">TItus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%C3%B1es%2C+J+L">Juan L. Ma帽es</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03442v1-abstract-short" style="display: inline;"> The mixed-valence compound SmB6 with partially filled samarium 4f flat bands hybridizing with 5d conduction bands is a paramount example of a correlated topological heavy-fermion system. In this study we revisit the topology of SmB6 with the band theory paradigm and uncover previously overlooked aspects resulting from the formation of multiple topological gaps in the electronic structure. By invok&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03442v1-abstract-full').style.display = 'inline'; document.getElementById('2311.03442v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03442v1-abstract-full" style="display: none;"> The mixed-valence compound SmB6 with partially filled samarium 4f flat bands hybridizing with 5d conduction bands is a paramount example of a correlated topological heavy-fermion system. In this study we revisit the topology of SmB6 with the band theory paradigm and uncover previously overlooked aspects resulting from the formation of multiple topological gaps in the electronic structure. By invoking topological quantum chemistry (TQC) we provide a detailed classification of the strong and crystalline topological features that derive from the existence of such topological gaps. To corroborate this classification, we calculate Wilson loops and simulate the surface electronic structure using a minimal tight-binding model, allowing us to describe its surface states and confirm the crystalline topology. We finally discuss its implications for experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03442v1-abstract-full').style.display = 'none'; document.getElementById('2311.03442v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14340">arXiv:2309.14340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.14340">pdf</a>, <a href="https://arxiv.org/format/2309.14340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.033235">10.1103/PhysRevResearch.6.033235 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic properties, correlated topology and Green&#39;s function zeros </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Setty%2C+C">Chandan Setty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+F">Fang Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sur%2C+S">Shouvik Sur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+Q">Qimiao Si</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14340v3-abstract-short" style="display: inline;"> There is extensive current interest about electronic topology in correlated settings. In strongly correlated systems, contours of Green&#39;s function zeros may develop in frequency-momentum space, and their role in correlated topology has increasingly been recognized. However, whether and how the zeros contribute to electronic properties is a matter of uncertainty. Here we address the issue in an exa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14340v3-abstract-full').style.display = 'inline'; document.getElementById('2309.14340v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14340v3-abstract-full" style="display: none;"> There is extensive current interest about electronic topology in correlated settings. In strongly correlated systems, contours of Green&#39;s function zeros may develop in frequency-momentum space, and their role in correlated topology has increasingly been recognized. However, whether and how the zeros contribute to electronic properties is a matter of uncertainty. Here we address the issue in an exactly solvable model for Mott insulator. We show that the Green&#39;s function zeros contribute to several physically measurable correlation functions, in a way that does not run into inconsistencies. In particular, the physical properties remain robust to chemical potential variations up to the Mott gap as it should be based on general considerations. Our work sets the stage for further understandings on the rich interplay among topology, symmetry and strong correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14340v3-abstract-full').style.display = 'none'; document.getElementById('2309.14340v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 033235 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05847">arXiv:2309.05847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05847">pdf</a>, <a href="https://arxiv.org/format/2309.05847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.174112">10.1103/PhysRevB.109.174112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Purely anharmonic charge-density wave in the 2D Dirac semimetal SnP </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+F">Fang Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campi%2C+D">Davide Campi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05847v1-abstract-short" style="display: inline;"> Charge density waves (CDWs) in two-dimensional (2D) materials have been a major focus of research in condensed matter physics for several decades due to their potential for quantum-based technologies. In particular, CDWs can induce a metal-insulator transition by coupling two Dirac fermions, resulting in the emergence of a topological phase. Following this idea, here we explore the behavior of thr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05847v1-abstract-full').style.display = 'inline'; document.getElementById('2309.05847v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05847v1-abstract-full" style="display: none;"> Charge density waves (CDWs) in two-dimensional (2D) materials have been a major focus of research in condensed matter physics for several decades due to their potential for quantum-based technologies. In particular, CDWs can induce a metal-insulator transition by coupling two Dirac fermions, resulting in the emergence of a topological phase. Following this idea, here we explore the behavior of three different CDWs in a new 2D layered material, SnP, using both density functional theory calculations and experimental synthesis to study its stability. The layered structure of its bulk counterpart, Sn4P3, suggests that the structure can be synthesized down to the monolayer by exfoliation or chemical means. However, despite the stability of the bulk, the monolayer shows unstable phonons at 螕, K, and M points of the Brillouin zone, which lead to three possible charge-density-wave phases. All three CDWs lead to metastable insulating phases, with the one driven by the the active phonon in the K point being topologically non-trivial under strain. Strikingly, the ground-state structure is only revealed due to the presence of strong anharmonic effects. This, underscores the importance of studying CDWs beyond the conventional harmonic picture, where the system&#39;s ground state can be elucidated solely from the harmonic phonon spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05847v1-abstract-full').style.display = 'none'; document.getElementById('2309.05847v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 109, 174112 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05143">arXiv:2308.05143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.05143">pdf</a>, <a href="https://arxiv.org/format/2308.05143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Pb$_9$Cu(PO4)$_6$(OH)$_2$: Phonon bands, Localized Flat Band Magnetism, Models, and Chemical Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S+B">Scott B. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herzog-Arbeitman%2C+J">Jonah Herzog-Arbeitman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jiabin Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiaolong Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brodale%2C+P+S">Parker S. Brodale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gormley%2C+E+L">Eoghan L. Gormley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia Garcia Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hendon%2C+C+H">Christopher H. Hendon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05143v2-abstract-short" style="display: inline;"> In a series of recent reports, doped lead apatite (LK-99) has been proposed as a candidate ambient temperature and pressure superconductor. However, from both an experimental and theoretical perspective, these claims are largely unsubstantiated. To this end, our synthesis and subsequent analysis of an LK-99 sample reveals a multiphase material that does not exhibit high-temperature superconductivi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05143v2-abstract-full').style.display = 'inline'; document.getElementById('2308.05143v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05143v2-abstract-full" style="display: none;"> In a series of recent reports, doped lead apatite (LK-99) has been proposed as a candidate ambient temperature and pressure superconductor. However, from both an experimental and theoretical perspective, these claims are largely unsubstantiated. To this end, our synthesis and subsequent analysis of an LK-99 sample reveals a multiphase material that does not exhibit high-temperature superconductivity. We study the structure of this phase with single-crystal X-ray diffraction (SXRD) and find a structure consistent with doped $\text{Pb}_{10}(\text{PO}_4)_6(\text{OH})_2$. However, the material is transparent which rules out a superconducting nature. From ab initio defect formation energy calculations, we find that the material likely hosts $\text{OH}^-$ anions, rather than divalent $\text{O}^{2-}$ anions, within the hexagonal channels and that Cu substitution is highly thermodynamically disfavored. Phonon spectra on the equilibrium structures reveal numerous unstable phonon modes. Together, these calculations suggest it is doubtful that Cu enters the structure in meaningful concentrations, despite initial attempts to model LK-99 in this way. However for the sake of completeness, we perform ab initio calculations of the topology, quantum geometry, and Wannier function localization in the Cu-dominated flat bands of four separate doped structures. In all cases, we find they are atomically localized by irreps, Wilson loops, and the Fubini-Study metric. It is unlikely that such bands can support strong superfluidity, and instead are susceptible to ferromagnetism (or out-of-plane antiferromagnetism) at low temperatures, which we find in ab initio studies. In sum, $\text{Pb}_{9}\text{Cu}(\text{PO}_4)_6(\text{OH})_2$ could more likely be a magnet, rather than an ambient temperature and pressure superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05143v2-abstract-full').style.display = 'none'; document.getElementById('2308.05143v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages including appendices. Updated defect calculations and energy-dispersive X-ray spectroscopy data</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00192">arXiv:2308.00192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00192">pdf</a>, <a href="https://arxiv.org/format/2308.00192">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Evidence of Pseudogravitational Distortions of the Fermi Surface Geometry in the Antiferromagnetic Metal FeRh </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sklenar%2C+J">Joseph Sklenar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shim%2C+S">Soho Shim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saglam%2C+H">Hilal Saglam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+J">Junseok Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">M. G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+A">Axel Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bradlyn%2C+B">Barry Bradlyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mason%2C+N">Nadya Mason</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gilbert%2C+M+J">Matthew J. Gilbert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00192v1-abstract-short" style="display: inline;"> The confluence between high-energy physics and condensed matter has produced groundbreaking results via unexpected connections between the two traditionally disparate areas. In this work, we elucidate additional connectivity between high-energy and condensed matter physics by examining the interplay between spin-orbit interactions and local symmetry-breaking magnetic order in the magnetotransport&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00192v1-abstract-full').style.display = 'inline'; document.getElementById('2308.00192v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00192v1-abstract-full" style="display: none;"> The confluence between high-energy physics and condensed matter has produced groundbreaking results via unexpected connections between the two traditionally disparate areas. In this work, we elucidate additional connectivity between high-energy and condensed matter physics by examining the interplay between spin-orbit interactions and local symmetry-breaking magnetic order in the magnetotransport of thin-film magnetic semimetal FeRh. We show that the change in sign of the normalized longitudinal magnetoresistance observed as a function of increasing in-plane magnetic field results from changes in the Fermi surface morphology. We demonstrate that the geometric distortions in the Fermi surface morphology are more clearly understood via the presence of pseudogravitational fields in the low-energy theory. The pseudogravitational connection provides additional insights into the origins of a ubiquitous phenomenon observed in many common magnetic materials and points to an alternative methodology for understanding phenomena in locally-ordered materials with strong spin-orbit interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00192v1-abstract-full').style.display = 'none'; document.getElementById('2308.00192v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted version. 34+22pgs, 4+7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03861">arXiv:2307.03861</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.03861">pdf</a>, <a href="https://arxiv.org/format/2307.03861">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Spectroscopic evidence for topological band structure in FeTe$_{0.55}$Se$_{0.45}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y+-">Y. -F. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S+-">S. -D. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Diez%2C+M">M. Garcia-Diez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iraola%2C+M+I">M. I. Iraola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfau%2C+H">H. Pfau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y+-">Y. -L. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Z+-">Z. -Q. Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">T. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">M. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+P+-">P. -C. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sobota%2C+J+A">J. A. Sobota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">M. Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">M. G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D+-">D. -H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+-">Z. -X. Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03861v2-abstract-short" style="display: inline;"> FeTe$_{0.55}$Se$_{0.45}$(FTS) occupies a special spot in modern condensed matter physics at the intersections of electron correlation, topology, and unconventional superconductivity. The bulk electronic structure of FTS is predicted to be topologically nontrivial thanks to the band inversion between the $d_{xz}$ and $p_z$ bands along $螕$-$Z$. However, there remain debates in both the authenticity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03861v2-abstract-full').style.display = 'inline'; document.getElementById('2307.03861v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03861v2-abstract-full" style="display: none;"> FeTe$_{0.55}$Se$_{0.45}$(FTS) occupies a special spot in modern condensed matter physics at the intersections of electron correlation, topology, and unconventional superconductivity. The bulk electronic structure of FTS is predicted to be topologically nontrivial thanks to the band inversion between the $d_{xz}$ and $p_z$ bands along $螕$-$Z$. However, there remain debates in both the authenticity of the Dirac surface states (DSS) and the experimental deviations of band structure from the theoretical band inversion picture. Here we resolve these debates through a comprehensive ARPES investigation. We first observe a persistent DSS independent of $k_z$. Then, by comparing FTS with FeSe which has no band inversion along $螕$-$Z$, we identify the spectral weight fingerprint of both the presence of the $p_z$ band and the inversion between the $d_{xz}$ and $p_z$ bands. Furthermore, we propose a reconciling band structure under the framework of a tight-binding model preserving crystal symmetry. Our results highlight the significant influence of correlation on modifying the band structure and make a strong case for the existence of topological band structure in this unconventional superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03861v2-abstract-full').style.display = 'none'; document.getElementById('2307.03861v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02668">arXiv:2307.02668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.02668">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Monopole-like orbital-momentum locking and the induced orbital transport in topological chiral semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+J">Jiewen Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02668v2-abstract-short" style="display: inline;"> The interplay between chirality and topology nurtures many exotic electronic properties. For instance, topological chiral semimetals display multifold chiral fermions that manifest nontrivial topological charge and spin texture. They are an ideal playground for exploring chirality-driven exotic physical phenomena. In this work, we reveal a monopole-like orbital-momentum locking texture on the thre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02668v2-abstract-full').style.display = 'inline'; document.getElementById('2307.02668v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02668v2-abstract-full" style="display: none;"> The interplay between chirality and topology nurtures many exotic electronic properties. For instance, topological chiral semimetals display multifold chiral fermions that manifest nontrivial topological charge and spin texture. They are an ideal playground for exploring chirality-driven exotic physical phenomena. In this work, we reveal a monopole-like orbital-momentum locking texture on the three-dimensional Fermi surfaces of topological chiral semimetals with B20 structures (e.g., RhSi and PdGa). This orbital texture enables a large orbital Hall effect (OHE) and a giant orbital magnetoelectric (OME) effect in the presence of current flow. Different enantiomers exhibit the same OHE which can be converted to the spin Hall effect by spin-orbit coupling in materials. In contrast, the OME effect is chirality-dependent and much larger than its spin counterpart. Our work reveals the crucial role of orbital texture for understanding OHE and OME effects in topological chiral semimetals and paves the path for applications in orbitronics, spintronics, and enantiomer recognition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02668v2-abstract-full').style.display = 'none'; document.getElementById('2307.02668v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.00593">arXiv:2306.00593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.00593">pdf</a>, <a href="https://arxiv.org/format/2306.00593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00629-3">10.1038/s41535-024-00629-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distinct switching of chiral transport in the kagome metals KV$_3$Sb$_5$ and CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Delft%2C+M+R">Maarten R. van Delft</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzke%2C+C">Carsten Putzke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiedmann%2C+S">Steffen Wiedmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.00593v1-abstract-short" style="display: inline;"> The kagome metals AV$_3$Sb$_5$ (A=K,Rb,Cs) present an ideal sandbox to study the interrelation between multiple coexisting correlated phases such as charge order and superconductivity. So far, no consensus on the microscopic nature of these states has been reached as the proposals struggle to explain all their exotic physical properties. Among these, field-switchable electric magneto-chiral anisot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00593v1-abstract-full').style.display = 'inline'; document.getElementById('2306.00593v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.00593v1-abstract-full" style="display: none;"> The kagome metals AV$_3$Sb$_5$ (A=K,Rb,Cs) present an ideal sandbox to study the interrelation between multiple coexisting correlated phases such as charge order and superconductivity. So far, no consensus on the microscopic nature of these states has been reached as the proposals struggle to explain all their exotic physical properties. Among these, field-switchable electric magneto-chiral anisotropy (eMChA) in CsV$_3$Sb$_5$ provides intriguing evidence for a rewindable electronic chirality, yet the other family members have not been likewise investigated. Here, we present a comparative study of magneto-chiral transport between CsV$_3$Sb$_5$ and KV$_3$Sb$_5$. Despite their similar electronic structure, KV$_3$Sb$_5$ displays negligible eMChA, if any, and with no field switchability. This is in stark contrast to the non-saturating eMChA in CsV$_3$Sb$_5$ even in high fields up to 35 T. In light of their similar band structures, the stark difference in eMChA suggests its origin in the correlated states. Clearly, the V kagome nets alone are not sufficient to describe the physics and the interactions with their environment are crucial in determining the nature of their low-temperature state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00593v1-abstract-full').style.display = 'none'; document.getElementById('2306.00593v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials, 9, 20 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19805">arXiv:2305.19805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.19805">pdf</a>, <a href="https://arxiv.org/format/2305.19805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Axion Topology in Photonic Crystal Domain Walls </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Devescovi%2C+C">Chiara Devescovi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morales-P%C3%A9rez%2C+A">Antonio Morales-P茅rez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+Y">Yoonseok Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garc%C3%ADa-D%C3%ADez%2C+M">Mikel Garc铆a-D铆ez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%C3%B1es%2C+J+L">Juan Luis Ma帽es</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bradlyn%2C+B">Barry Bradlyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garc%C3%ADa-Etxarri%2C+A">Aitzol Garc铆a-Etxarri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19805v1-abstract-short" style="display: inline;"> Axion insulators are 3D magnetic higher-order topological insulators protected by inversion-symmetry that exhibit hinge-localized chiral channels and induce quantized topological magnetoelectric effects. Recent research has suggested that axion insulators may be capable of detecting dark-matter axion-like particles by coupling to their axionic excitations. Beyond its fundamental theoretical intere&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19805v1-abstract-full').style.display = 'inline'; document.getElementById('2305.19805v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19805v1-abstract-full" style="display: none;"> Axion insulators are 3D magnetic higher-order topological insulators protected by inversion-symmetry that exhibit hinge-localized chiral channels and induce quantized topological magnetoelectric effects. Recent research has suggested that axion insulators may be capable of detecting dark-matter axion-like particles by coupling to their axionic excitations. Beyond its fundamental theoretical interest, designing a photonic AXI offers the potential to enable the development of magnetically-tunable photonic switch devices through the manipulation of the axionic modes and their chiral propagation using external magnetic fields. Motivated by these facts, in this work, we propose a novel approach to induce axionic band topology in gyrotropic 3D Weyl photonic crystals gapped by supercell modulation. To quantize an axionic angle, we create domain-walls across inversion-symmetric photonic crystals, incorporating a phase-obstruction in the supercell modulation of their dielectric elements. This allows us to bind chiral channels on inversion-related hinges, ultimately leading to the realization of an axionic chiral channel of light. Moreover, by controlling the material gyrotropic response, we demonstrate a physically accessible way of manipulating the axionic modes through a small external magnetic bias, which provides an effective topological switch between different 1D chiral photonic fiber configurations. Remarkably, the unidirectional axionic hinge states supported by the photonic axion insulator are buried in a fully connected 3D dielectric structure, thereby being protected from radiation through the electromagnetic continuum. As a result, they are highly suitable for applications in guided-light communication, where the preservation and non-reciprocal propagation of photonic signals are of paramount importance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19805v1-abstract-full').style.display = 'none'; document.getElementById('2305.19805v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures and 11 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.18257">arXiv:2305.18257</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.18257">pdf</a>, <a href="https://arxiv.org/format/2305.18257">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Transversality-Enforced Tight-Binding Model for 3D Photonic Crystals aided by Topological Quantum Chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Morales-P%C3%A9rez%2C+A">Antonio Morales-P茅rez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devescovi%2C+C">Chiara Devescovi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+Y">Yoonseok Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garc%C3%ADa-D%C3%ADez%2C+M">Mikel Garc铆a-D铆ez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bradlyn%2C+B">Barry Bradlyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%C3%B1es%2C+J+L">Juan Luis Ma帽es</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garc%C3%ADa-Etxarri%2C+A">Aitzol Garc铆a-Etxarri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.18257v1-abstract-short" style="display: inline;"> Tight-binding models can accurately predict the band structure and topology of crystalline systems and they have been heavily used in solid-state physics due to their versatility and low computational cost. It is quite straightforward to build an accurate tight-binding model of any crystalline system using the maximally localized Wannier functions of the crystal as a basis. In 1D and 2D photonic c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18257v1-abstract-full').style.display = 'inline'; document.getElementById('2305.18257v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.18257v1-abstract-full" style="display: none;"> Tight-binding models can accurately predict the band structure and topology of crystalline systems and they have been heavily used in solid-state physics due to their versatility and low computational cost. It is quite straightforward to build an accurate tight-binding model of any crystalline system using the maximally localized Wannier functions of the crystal as a basis. In 1D and 2D photonic crystals, it is possible to express the wave equation as two decoupled scalar eigenproblems where finding a basis of maximally localized Wannier functions is feasible using standard Wannierization methods. Unfortunately, in 3D photonic crystals, the vectorial nature of the electromagnetic solutions cannot be avoided. This precludes the construction of a basis of maximally localized Wannier functions via usual techniques. In this work, we show how to overcome this problem by using topological quantum chemistry which will allow us to express the band structure of the photonic crystal as a difference of elementary band representations. This can be achieved by the introduction of a set of auxiliary modes, as recently proposed by Solja膷i膰 et. al., which regularize the $螕$-point obstruction arising from transversality constraint of the Maxwell equations. The decomposition into elementary band representations allows us to isolate a set of pseudo-orbitals that permit us to construct an accurate transversality-enforced tight-binding model (TETB) that matches the dispersion, symmetry content, and topology of the 3D photonic crystal under study. Moreover, we show how to introduce the effects of a gyrotropic bias in the framework, modeled via non-minimal coupling to a static magnetic field. Our work provides the first systematic method to analytically model the photonic bands of the lowest transverse modes over the entire BZ via a TETB model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18257v1-abstract-full').style.display = 'none'; document.getElementById('2305.18257v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.15469">arXiv:2305.15469</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.15469">pdf</a>, <a href="https://arxiv.org/format/2305.15469">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Kagome Materials I: SG 191, ScV$_6$Sn$_6$. Flat Phonon Soft Modes and Unconventional CDW Formation: Microscopic and Effective Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiaolong Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Subires%2C+D">David Subires</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">Santiago Blanco-Canosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.15469v1-abstract-short" style="display: inline;"> Kagome Materials with flat bands exhibit wildly different physical properties depending on symmetry group, and electron number. For the case of ScV$_6$Sn$_6$ in space group 191, we investigate the existence of a charge density wave (CDW) at vector $\bar{K}=(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ and its relationship with the phonon behavior. The experimental findings reveal a $\sim$95K CDW without&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.15469v1-abstract-full').style.display = 'inline'; document.getElementById('2305.15469v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.15469v1-abstract-full" style="display: none;"> Kagome Materials with flat bands exhibit wildly different physical properties depending on symmetry group, and electron number. For the case of ScV$_6$Sn$_6$ in space group 191, we investigate the existence of a charge density wave (CDW) at vector $\bar{K}=(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ and its relationship with the phonon behavior. The experimental findings reveal a $\sim$95K CDW without nesting/peaks in the electron susceptibility at $\bar{K}$. Notably, ScV$_6$Sn$_6$ exhibits a collapsed phonon mode at $H=(\frac{1}{3},\frac{1}{3},\frac{1}{2})$ and an imaginary flat phonon band in the vicinity of $H$. The soft phonon is attributed to triangular Sn ($Sn^T$) mirror-even vibrations along the $z$-direction. We develop a simple force constant model to describe the entire soft phonon dispersion. By employing a new (Gaussian) approximation of the hopping parameter, we demonstrate the renormalization of the phonon frequency and the consequent collapse of the $H$ phonon. Additionally, we propose an effective model with two order parameters (OPs) to explain the appearance of the CDW at $\bar{K}$, which competes with the collapsed phonon at $H$. Through comparisons with experimental data, we show that the $H$ OP undergoes a second-order phase transition while exhibiting substantial fluctuations, ultimately inducing the first-order transition of the $\bar{K}$ OP. Furthermore, we extend our analysis to the similar compound YV$_6$Sn$_6$, which lacks a CDW phase, attributing this difference to the participation of the heavier Y atom in the out-of-plane phonon behavior. Our comprehensive study not only elucidates the CDW in ScV$_6$Sn$_6$ but also presents a significant advancement in modeling complex electronic systems, fostering collaborations between ab-initio simulations and analytical approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.15469v1-abstract-full').style.display = 'none'; document.getElementById('2305.15469v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+108 pages, 3+42 figures, previously submitted. See also the related experimental study arXiv:2304.09173</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00295">arXiv:2305.00295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00295">pdf</a>, <a href="https://arxiv.org/format/2305.00295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Weyl metallic state induced by helical magnetic order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+J">Jian-Rui Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Ram%C3%ADrez%2C+I">Iri谩n S谩nchez-Ram铆rez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xupeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jinzhao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zivkovic%2C+I">Ivica Zivkovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodr%C3%ADguez-Velamaz%C3%A1n%2C+J+A">J. Alberto Rodr铆guez-Velamaz谩n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabelo%2C+O">Oscar Fabelo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stunault%2C+A">Anne Stunault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bombardi%2C+A">Alessandro Bombardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balz%2C+C">Christian Balz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+M+D">Manh Duc Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">Helen C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dil%2C+J+H">J. Hugo Dil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">Henrik M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Juan%2C+F">Fernando de Juan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boothroyd%2C+A+T">Andrew T. Boothroyd</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00295v1-abstract-short" style="display: inline;"> In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi level, are of particular interest owing to their exotic charge and spin transport properties. Up to now, the majority of magnetic Weyl semimetal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00295v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00295v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00295v1-abstract-full" style="display: none;"> In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi level, are of particular interest owing to their exotic charge and spin transport properties. Up to now, the majority of magnetic Weyl semimetals have been realized in ferro- or ferrimagnetically ordered compounds, but a disadvantage of these materials for practical use is their stray magnetic field which limits the minimum size of devices. Here we show that Weyl nodes can be induced by a helical spin configuration, in which the magnetization is fully compensated. Using a combination of neutron diffraction and resonant elastic x-ray scattering, we find that EuCuAs develops a planar helical structure below $T_\textrm{N}$ = 14.5 K which induces Weyl nodes along the $螕$--A high symmetry line in the Brillouin zone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00295v1-abstract-full').style.display = 'none'; document.getElementById('2305.00295v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.09173">arXiv:2304.09173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.09173">pdf</a>, <a href="https://arxiv.org/format/2304.09173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-42186-6">10.1038/s41467-023-42186-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Softening of a flat phonon mode in the kagome ScV$_6$Sn$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Korshunov%2C+A">A. Korshunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">H. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Subires%2C+D">D. Subires</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">D. C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">X. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rajapitamahuni%2C+A">A. Rajapitamahuni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C">C. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roychowdhury%2C+S">S. Roychowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">M. G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">J. Strempfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">C. Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vescovo%2C+E">E. Vescovo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chernyshov%2C+D">D. Chernyshov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Said%2C+A+H">A. H. Said</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bosak%2C+A">A. Bosak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.09173v1-abstract-short" style="display: inline;"> The long range electronic modulations recently discovered in the geometrically frustrated kagome lattice have opened new avenues to explore the effect of correlations in materials with topological electron flat bands. The observation of the lattice response to the emergent new phases of matter, a soft phonon mode, has remained elusive and the microscopic origin of charge density waves (CDWs) is st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09173v1-abstract-full').style.display = 'inline'; document.getElementById('2304.09173v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.09173v1-abstract-full" style="display: none;"> The long range electronic modulations recently discovered in the geometrically frustrated kagome lattice have opened new avenues to explore the effect of correlations in materials with topological electron flat bands. The observation of the lattice response to the emergent new phases of matter, a soft phonon mode, has remained elusive and the microscopic origin of charge density waves (CDWs) is still unknown. Here, we show, for the first time, a complete melting of the ScV$_ 6$Sn$_ 6$ (166) kagome lattice. The low energy phonon with propagation vector $\frac{1}{3} \frac{1}{3} \frac{1}{2}$ collapses at 98 K, without the emergence of long-range charge order, which sets in with a propagation vector $\frac{1}{3} \frac{1}{3} \frac{1}{3}$. The CDW is driven (but locks at a different vector) by the softening of an overdamped phonon flat plane at k$_z$=$蟺$. We observe broad phonon anomalies in momentum space, pointing to (1) the existence of approximately flat phonon bands which gain some dispersion due to electron renormalization, and (2) the effects of the momentum dependent electron-phonon interaction in the CDW formation. Ab initio and analytical calculations corroborate the experimental findings to indicate that the weak leading order phonon instability is located at the wave vector $\frac{1}{3} \frac{1}{3} \frac{1}{2}$ of a rather flat collapsed mode. We analytically compute the phonon frequency renormalization from high temperatures to the soft mode, and relate it to a peak in the orbital-resolved susceptibility, obtaining an excellent match with both ab initio and experimental results, and explaining the origin of the approximately flat phonon dispersion. Our data report the first example of the collapse of a softening of a flat phonon plane and promote the 166 compounds of the kagome family as primary candidates to explore correlated flat phonon-topological flat electron physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09173v1-abstract-full').style.display = 'none'; document.getElementById('2304.09173v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 14, 6646 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00972">arXiv:2304.00972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.00972">pdf</a>, <a href="https://arxiv.org/format/2304.00972">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02374-z">10.1038/s41567-023-02374-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlated order at the tipping point in the kagome metal CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzke%2C+C">Carsten Putzke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaize Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Ling Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00972v1-abstract-short" style="display: inline;"> Spontaneously broken symmetries are at the heart of many phenomena of quantum matter and physics more generally. However, determining the exact symmetries broken can be challenging due to imperfections such as strain, in particular when multiple electronic orders form complex interactions. This is exemplified by charge order in some kagome systems, which are speculated to show nematicity and flux&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00972v1-abstract-full').style.display = 'inline'; document.getElementById('2304.00972v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00972v1-abstract-full" style="display: none;"> Spontaneously broken symmetries are at the heart of many phenomena of quantum matter and physics more generally. However, determining the exact symmetries broken can be challenging due to imperfections such as strain, in particular when multiple electronic orders form complex interactions. This is exemplified by charge order in some kagome systems, which are speculated to show nematicity and flux order from orbital currents. We fabricated highly symmetric samples of a member of this family, CsV$_3$Sb$_5$, and measured their transport properties. We find the absence of measurable anisotropy at any temperature in the unperturbed material, however, a striking in-plane transport anisotropy appears when either weak magnetic fields or strains are present. A symmetry analysis indicates that a perpendicular magnetic field can indeed lead to in-plane anisotropy by inducing a flux order coexisting with more conventional bond order. Our results provide a unifying picture for the controversial charge order in kagome metals and highlight the need for microscopic materials control in the identification of broken symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00972v1-abstract-full').style.display = 'none'; document.getElementById('2304.00972v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 20, 579 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.13688">arXiv:2212.13688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.13688">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c05100">10.1021/acs.nanolett.2c05100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomically Sharp Internal Interface in a Chiral Weyl Semimetal Nanowire </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mathur%2C+N">Nitish Mathur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+F">Fang Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaushik%2C+S">Sahal Kaushik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cano%2C+J">Jennifer Cano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+S">Song Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.13688v1-abstract-short" style="display: inline;"> Internal interfaces in Weyl semimetals (WSMs) are predicted to host distinct topological features that are different from the commonly studied external interfaces (crystal-to-vacuum boundaries). However, the lack of atomically sharp and crystallographically oriented internal interfaces in WSMs makes it difficult to experimentally investigate hidden topological states buried inside the material. He&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13688v1-abstract-full').style.display = 'inline'; document.getElementById('2212.13688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.13688v1-abstract-full" style="display: none;"> Internal interfaces in Weyl semimetals (WSMs) are predicted to host distinct topological features that are different from the commonly studied external interfaces (crystal-to-vacuum boundaries). However, the lack of atomically sharp and crystallographically oriented internal interfaces in WSMs makes it difficult to experimentally investigate hidden topological states buried inside the material. Here, we study a unique internal interface known as merohedral twin boundary in chemically synthesized single-crystal nanowires (NWs) of CoSi, a chiral WSM of space group P213 (No. 198). High resolution scanning transmission electron microscopy reveals that this internal interface is (001) twin plane and connects two enantiomeric counterparts at an atomically sharp interface with inversion twinning. Ab-initio calculations show localized internal Fermi arcs at the (001) twin boundary that can be clearly distinguished from both external Fermi arcs and bulk states. These merohedrally twinned CoSi NWs provide an ideal material system to probe unexplored topological properties associated with internal interfaces in WSMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13688v1-abstract-full').style.display = 'none'; document.getElementById('2212.13688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11324">arXiv:2212.11324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11324">pdf</a>, <a href="https://arxiv.org/format/2212.11324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41524-023-01106-4">10.1038/s41524-023-01106-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large anomalous Hall, Nernst effect and topological phases in the 3d-4d/5d based oxide double perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Samanta%2C+K">Kartik Samanta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noky%2C+J">Jonathan Noky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuebler%2C+J">Juergen Kuebler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11324v1-abstract-short" style="display: inline;"> Magnetic topological quantum materials are attracting considerable attention owing to their potential technological applications. However, only a small number of these materials have been experimentally realized, thereby giving rise to the need for new stable magnetic topological quantum materials. Magnetism and spin-orbit coupling, two essential ingredients of the oxide materials, lead to various&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11324v1-abstract-full').style.display = 'inline'; document.getElementById('2212.11324v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11324v1-abstract-full" style="display: none;"> Magnetic topological quantum materials are attracting considerable attention owing to their potential technological applications. However, only a small number of these materials have been experimentally realized, thereby giving rise to the need for new stable magnetic topological quantum materials. Magnetism and spin-orbit coupling, two essential ingredients of the oxide materials, lead to various topological transport phenomena such as the anomalous Hall and anomalous Nernst effects, which can be significantly enhanced by designing an electronic structure with a large Berry curvature. In that respect, double perovskites with the general formula A$_2$BB&#39;O$_6$ with an alternating ordered arrangement of two transition metal sites, B(3d) and B&#39;(4d/5d), present attractive possibilities as they are robustly stable against oxidation under ambient conditions and versatile. These double perovskites also offer a high energy scale for magnetism as well as strong spin-orbit coupling with a high magnetic ordering temperature. Here, using first-principles density functional theory calculations, we present a comprehensive study of the intrinsic anomalous transport for 3d-4d/5d based cubic and tetragonal stable double perovskite (DP) compounds. A few of the DPs exhibit a very large anomalous Hall effect with a distinct topological band crossing in the vicinity of the Fermi energy. Our results show the importance of symmetries, particularly the mirror planes, as well as the clean topological band crossing near the Fermi energy, which is primarily contributed by the 5d-t$_{2g}$ for large anomalous Hall and Nernst effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11324v1-abstract-full').style.display = 'none'; document.getElementById('2212.11324v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Comput Mater 9, 167 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09878">arXiv:2212.09878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09878">pdf</a>, <a href="https://arxiv.org/format/2212.09878">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Band structures of (NbSe$_4$)$_3$I and (TaSe$_4$)$_3$I: Reconciling transport, optics and ARPES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Ram%C3%ADrez%2C+I">Iri谩n S谩nchez-Ram铆rez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Juan%2C+F">Fernando de Juan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09878v1-abstract-short" style="display: inline;"> Among the quasi one-dimensional transition metal tetrachalcogenides (MSe$_4$)$_n$I (M=Nb,Ta), the $n=3$ compounds are the only ones not displaying charge density waves. Instead, they show structural transitions with puzzling transport behavior. They are semiconductors at the lowest temperatures, but their transport gaps are significantly smaller than those inferred from ARPES and optical conductiv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09878v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09878v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09878v1-abstract-full" style="display: none;"> Among the quasi one-dimensional transition metal tetrachalcogenides (MSe$_4$)$_n$I (M=Nb,Ta), the $n=3$ compounds are the only ones not displaying charge density waves. Instead, they show structural transitions with puzzling transport behavior. They are semiconductors at the lowest temperatures, but their transport gaps are significantly smaller than those inferred from ARPES and optical conductivity. Recently, a metallic polytype of (TaSe$_4$)$_3$I has been found with ferromagnetism and superconductivity coexisting at low temperature, in contrast to previous reports. In this work we present detailed ab-initio and tight binding band structure calculations for the different (MSe$_4$)$_n$I reported structures. We obtain good agreement with the observed transport gaps, and explain how ARPES and optics experiments effectively probe a gap between different bands due to an approximate translation symmetry, solving the controversy. Finally, we show how small extrinsic hole doping can tune the Fermi level through a Van Hove singularity in (TaSe$_4$)$_3$I and discuss the implications for magnetism and superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09878v1-abstract-full').style.display = 'none'; document.getElementById('2212.09878v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.13346">arXiv:2211.13346</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.13346">pdf</a>, <a href="https://arxiv.org/format/2211.13346">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.144307">10.1103/PhysRevB.107.144307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological phonon analysis of the 2D buckled honeycomb lattice: an application to real materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%C3%B1es%2C+J+L">J. L. Ma帽es</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.13346v1-abstract-short" style="display: inline;"> By means of group theory, topological quantum chemistry, first-principles and Monte Carlo calculations, we analyze the topology of the 2D buckled honeycomb lattice phonon spectra. Taking the pure crystal structure as an input, we show that eleven distinct phases are possible, five of which necessarily have non-trivial topology according to topological quantum chemistry. Another four of them are al&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13346v1-abstract-full').style.display = 'inline'; document.getElementById('2211.13346v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.13346v1-abstract-full" style="display: none;"> By means of group theory, topological quantum chemistry, first-principles and Monte Carlo calculations, we analyze the topology of the 2D buckled honeycomb lattice phonon spectra. Taking the pure crystal structure as an input, we show that eleven distinct phases are possible, five of which necessarily have non-trivial topology according to topological quantum chemistry. Another four of them are also identified as topological using Wilson loops in an analytical model that includes all the symmetry allowed force constants up to third nearest neighbors, making a total of nine topological phases. We then compute the ab initio phonon spectra for the two-dimensional crystals of Si, Ge, P, As and Sb in this structure and construct its phase diagram. Despite the large proportion of topological phases found in the analytical model, all of the crystals lie in a trivial phase. By analyzing the force constants space using Monte Carlo calculations, we elucidate why topological phonon phases are physically difficult to realize in real materials with this crystal structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13346v1-abstract-full').style.display = 'none'; document.getElementById('2211.13346v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 107, 144307 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.11776">arXiv:2211.11776</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.11776">pdf</a>, <a href="https://arxiv.org/format/2211.11776">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Catalogue of topological phonon materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuanfeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">M. G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+D">Da-Shuai Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%C3%B1es%2C+J+L">Juan L. Ma帽es</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zhi-Da Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elcoro%2C+L">Luis Elcoro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.11776v1-abstract-short" style="display: inline;"> Phonons play a crucial role in many properties of solid state systems, such as thermal and electrical conductivity, neutron scattering and associated effects or superconductivity. Hence, it is expected that topological phonons will also lead to rich and unconventional physics and the search of materials hosting topological phonons becomes a priority in the field. In electronic crystalline material&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11776v1-abstract-full').style.display = 'inline'; document.getElementById('2211.11776v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.11776v1-abstract-full" style="display: none;"> Phonons play a crucial role in many properties of solid state systems, such as thermal and electrical conductivity, neutron scattering and associated effects or superconductivity. Hence, it is expected that topological phonons will also lead to rich and unconventional physics and the search of materials hosting topological phonons becomes a priority in the field. In electronic crystalline materials, a large part of the topological properties of Bloch states can be indicated by their symmetry eigenvalues in reciprocal space. This has been adapted to the high-throughput calculations of topological materials, and more than half of the stoichiometric materials on the databases are found to be topological insulators or semi-metals. Based on the existing phonon materials databases, here we have performed the first catalogue of topological phonon bands for more than ten thousand three-dimensional crystalline materials. Using topological quantum chemistry, we calculate the band representations, compatibility relations, and band topologies of each isolated set of phonon bands for the materials in the phonon databases. We have also calculated the real space invariants for all the topologically trivial bands and classified them as atomic and obstructed atomic bands. In particular, surface phonon modes (dispersion) are calculated on different cleavage planes for all the materials. Remarkably, we select more than one thousand &#34;ideal&#34; non-trivial phonon materials to fascinate the future experimental studies. All the data-sets obtained in the the high-throughput calculations are used to build a Topological Phonon Database. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11776v1-abstract-full').style.display = 'none'; document.getElementById('2211.11776v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8+535 pages, 187 figures, 21 tables. The Topological Phonon Database is available at https://www.topologicalquantumchemistry.com/topophonons or https://www.topologicalquantumchemistry.fr/topophonons</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09095">arXiv:2211.09095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.09095">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.19.014053">10.1103/PhysRevApplied.19.014053 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional charge-to-spin conversions in graphene/MoTe2 van der Waals heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ontoso%2C+N">Nerea Ontoso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Safeer%2C+C+K">C. K. Safeer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herling%2C+F">Franz Herling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ingla-Ayn%C3%A9s%2C+J">Josep Ingla-Ayn茅s</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haozhe Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+Z">Zhendong Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Juan%2C+F">Fernando de Juan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calvo%2C+M+R">M. Reyes Calvo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hueso%2C+L+E">Luis E. Hueso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casanova%2C+F">F猫lix Casanova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09095v1-abstract-short" style="display: inline;"> Spin-charge interconversion (SCI) is a central phenomenon to the development of spintronic devices from materials with strong spin-orbit coupling (SOC). In the case of materials with high crystal symmetry, the only allowed SCI processes are those where the spin current, charge current and spin polarization directions are orthogonal to each other. Consequently, standard SCI experiments are designed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09095v1-abstract-full').style.display = 'inline'; document.getElementById('2211.09095v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09095v1-abstract-full" style="display: none;"> Spin-charge interconversion (SCI) is a central phenomenon to the development of spintronic devices from materials with strong spin-orbit coupling (SOC). In the case of materials with high crystal symmetry, the only allowed SCI processes are those where the spin current, charge current and spin polarization directions are orthogonal to each other. Consequently, standard SCI experiments are designed to maximize the signals arising from the SCI processes with conventional mutually orthogonal geometry. However, in low-symmetry materials, certain non-orthogonal SCI processes are also allowed. Since the standard SCI experiment is limited to charge current flowing only in one direction in the SOC material, certain allowed SCI configurations remain unexplored. In this work, we performed a thorough SCI study in a graphene-based lateral spin valve combined with low-symmetry MoTe$_2$. Due to a very low contact resistance between the two materials, we could detect SCI signals using both a standard configuration, where the charge current is applied along the MoTe$_2$, and a recently introduced (3D-current) configuration, where the charge current flow can be controlled in three directions within the heterostructure. As a result, we observed three different SCI components, one orthogonal and two non-orthogonal, giving new insight into the SCI processes in low-symmetry materials. The large SCI signals obtained at room temperature, along with the versatility of the 3D-current configuration, provide feasibility and flexibility to the design of the next generation of spin-based devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09095v1-abstract-full').style.display = 'none'; document.getElementById('2211.09095v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 19, 014053 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.11615">arXiv:2210.11615</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.11615">pdf</a>, <a href="https://arxiv.org/format/2210.11615">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A new quasi-one-dimensional transition metal chalcogenide semiconductor (Nb$_4$Se$_{15}$I$_2$)I$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+K">Kejian Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riedel%2C+Z+W">Zachary W. Riedel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez-Ram%C3%ADrez%2C+I">Iri谩n S谩nchez-Ram铆rez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bettler%2C+S">Simon Bettler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+J">Junseok Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Waite%2C+E+N">Emily N. Waite</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mason%2C+N">Nadya Mason</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbamonte%2C+P">Peter Abbamonte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanz%2C+F+d+J">Fernando de Juan Sanz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shoemaker%2C+D+P">Daniel P. Shoemaker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.11615v1-abstract-short" style="display: inline;"> The discovery of new low-dimensional transition metal chalcogenides is contributing to the already prosperous family of these materials. In this study, needle-shaped single crystals of a new quasi-one-dimensional material (Nb$_4$Se$_{15}$I$_2$)I$_2$ were grown by chemical vapor transport, and the structure was solved by single crystal X-ray diffraction (XRD). The new structure has one-dimensional&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.11615v1-abstract-full').style.display = 'inline'; document.getElementById('2210.11615v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.11615v1-abstract-full" style="display: none;"> The discovery of new low-dimensional transition metal chalcogenides is contributing to the already prosperous family of these materials. In this study, needle-shaped single crystals of a new quasi-one-dimensional material (Nb$_4$Se$_{15}$I$_2$)I$_2$ were grown by chemical vapor transport, and the structure was solved by single crystal X-ray diffraction (XRD). The new structure has one-dimensional (Nb$_4$Se$_{15}$I$_2$)$_n$ chains along the [101] direction, with two I$^-$ ions per formula unit directly bonded to Nb$^{5+}$. The other two I$^-$ ions are loosely coordinated and intercalate between the chains. Individual chains are chiral, and stack along the $b$ axis in opposing directions, giving space group $P2_1/c$. The phase purity and crystal structure was verified by powder XRD. Density functional theory calculations show (Nb$_4$Se$_{15}$I$_2$)I$_2$ to be a semiconductor with a direct band gap of around 0.6 eV. Resistivity measurements of bulk crystals and micro-patterned devices demonstrate that (Nb$_4$Se$_{15}$I$_2$)I$_2$ has an activation energy of around 0.1 eV, and no anomaly or transition was seen upon cooling. (Nb$_4$Se$_{15}$I$_2$)I$_2$ does not undergo structural phase transformation from room temperature down to 8.2 K, based on cryogenic temperature single crystal XRD. This compound represents a well-characterized and valence-precise member of a diverse family of anisotropic transition metal chalcogenides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.11615v1-abstract-full').style.display = 'none'; document.getElementById('2210.11615v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08221">arXiv:2210.08221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.08221">pdf</a>, <a href="https://arxiv.org/format/2210.08221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-47976-0">10.1038/s41467-024-47976-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parallel spin-momentum locking in a chiral topological semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krieger%2C+J+A">Jonas A. Krieger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stolz%2C+S">Samuel Stolz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">Inigo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manna%2C+K">Kaustuv Manna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McFarlane%2C+E+C">Emily C. McFarlane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Date%2C+M">Mihir Date</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guedes%2C+E+B">Eduardo B. Guedes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dil%2C+J+H">J. Hugo Dil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borrmann%2C+H">Horst Borrmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+M">Mao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caputo%2C+M">Marco Caputo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pal%2C+B">Banabir Pal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzola%2C+F">Federico Mazzola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujii%2C+J">Jun Fujii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vobornik%2C+I">Ivana Vobornik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">Stuart S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bradlyn%2C+B">Barry Bradlyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08221v1-abstract-short" style="display: inline;"> Spin-momentum locking in solids describes a directional relationship between the electron&#39;s spin angular momentum and its linear momentum over the entire Fermi surface. While orthogonal spin-momentum locking, such as Rashba spin-orbit coupling, has been studied for decades and inspired a vast number of applications, its natural counterpart, the purely parallel spin-momentum locking, has remained e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08221v1-abstract-full').style.display = 'inline'; document.getElementById('2210.08221v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08221v1-abstract-full" style="display: none;"> Spin-momentum locking in solids describes a directional relationship between the electron&#39;s spin angular momentum and its linear momentum over the entire Fermi surface. While orthogonal spin-momentum locking, such as Rashba spin-orbit coupling, has been studied for decades and inspired a vast number of applications, its natural counterpart, the purely parallel spin-momentum locking, has remained elusive in experiments. Recently, chiral topological semimetals that host single- and multifold band crossings have been predicted to realize such parallel locking. Here, we use spin- and angle-resolved photoelectron spectroscopy to probe spin-momentum locking of a multifold fermion in the chiral topological semimetal PtGa via the spin-texture of its topological Fermi-arc surface states. We find that the electron spin of the Fermi-arcs points orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion, which is consistent with parallel spin-momentum locking of the latter. We anticipate that our discovery of parallel spin-momentum locking of multifold fermions will lead to the integration of chiral topological semimetals in novel spintronic devices, and the search for spin-dependent superconducting and magnetic instabilities in these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08221v1-abstract-full').style.display = 'none'; document.getElementById('2210.08221v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 3720 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10556">arXiv:2209.10556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10556">pdf</a>, <a href="https://arxiv.org/format/2209.10556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.245145">10.1103/PhysRevB.107.245145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interacting topological quantum chemistry of Mott atomic limits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soldini%2C+M+O">Martina O. Soldini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iraola%2C+M">Mikel Iraola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10556v2-abstract-short" style="display: inline;"> Topological quantum chemistry (TQC) is a successful framework for identifying (noninteracting) topological materials. Based on the symmetry eigenvalues of Bloch eigenstates at maximal momenta, which are attainable from first principles calculations, a band structure can either be classified as an atomic limit, in other words adiabatically connected to independent electronic orbitals on the respect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10556v2-abstract-full').style.display = 'inline'; document.getElementById('2209.10556v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10556v2-abstract-full" style="display: none;"> Topological quantum chemistry (TQC) is a successful framework for identifying (noninteracting) topological materials. Based on the symmetry eigenvalues of Bloch eigenstates at maximal momenta, which are attainable from first principles calculations, a band structure can either be classified as an atomic limit, in other words adiabatically connected to independent electronic orbitals on the respective crystal lattice, or it is topological. For interacting systems, there is no single-particle band structure and hence, the TQC machinery grinds to a halt. We develop a framework analogous to TQC, but employing $n$-particle Green&#39;s function to classify interacting systems. Fundamentally, we define a class of interacting reference states that generalize the notion of atomic limits, which we call Mott atomic limits, and are symmetry protected topological states. Our formalism allows to fully classify these reference states (with $n=2$), which can themselves represent symmetry protected topological states. We present a comprehensive classification of such states in one-dimension and provide numerical results on model systems. With this, we establish Mott atomic limit states as a generalization of the atomic limits to interacting systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10556v2-abstract-full').style.display = 'none'; document.getElementById('2209.10556v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11988">arXiv:2208.11988</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.11988">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Berry curvature induced anomalous Hall conductivity in magnetic topological oxide double perovskite Sr2FeMoO6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chakraborty%2C+T">Tirthankar Chakraborty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samanta%2C+K">Kartik Samanta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guin%2C+S+N">Satya N. Guin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noky%2C+J">Jonathan Noky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prasad%2C+S">Suchitra Prasad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuebler%2C+J">Juergen Kuebler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11988v1-abstract-short" style="display: inline;"> Oxide materials exhibit several novel structural, magnetic, and electronic properties. Their stability under ambient conditions, easy synthesis, and high transition temperatures provide such systems with an ideal ground for realizing topological properties and real-life technological applications. However, experimental evidence of topological states in oxide materials is rare. In this study, we ha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11988v1-abstract-full').style.display = 'inline'; document.getElementById('2208.11988v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11988v1-abstract-full" style="display: none;"> Oxide materials exhibit several novel structural, magnetic, and electronic properties. Their stability under ambient conditions, easy synthesis, and high transition temperatures provide such systems with an ideal ground for realizing topological properties and real-life technological applications. However, experimental evidence of topological states in oxide materials is rare. In this study, we have synthesized single crystals of oxide double perovskite Sr2FeMoO6 and revealed its topological nature by investigating its structural, magnetic, and electronic properties. We observed that the system crystallized in the cubic space group Fm-3m, which is a half-metallic ferromagnet. Transport measurements show an anomalous Hall effect, and it is evident that the Hall contribution originates from the Berry curvature. Assuming a shift of the Fermi energy towards the conduction band, the contribution of the anomalous Hall effect is enhanced owing to the presence of a gaped nodal line. This study can be used to explore and realize the topological properties of bulk oxide systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11988v1-abstract-full').style.display = 'none'; document.getElementById('2208.11988v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Topological quantum material, Oxide topological material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14109">arXiv:2207.14109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.14109">pdf</a>, <a href="https://arxiv.org/format/2207.14109">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Transport signatures of Fermi arcs at twin boundaries in Weyl materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kaushik%2C+S">Sahal Kaushik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathur%2C+N">Nitish Mathur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+S">Song Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cano%2C+J">Jennifer Cano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14109v1-abstract-short" style="display: inline;"> One of the most striking signatures of Weyl fermions is their surface Fermi arcs. Less known is that Fermi arcs can also be localized at internal twin boundaries where two Weyl materials of opposite chirality meet. In this work, we derive constraints on the topology and connectivity of these &#34;internal Fermi arcs.&#34; We show that internal Fermi arcs can exhibit transport signatures and propose two pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14109v1-abstract-full').style.display = 'inline'; document.getElementById('2207.14109v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14109v1-abstract-full" style="display: none;"> One of the most striking signatures of Weyl fermions is their surface Fermi arcs. Less known is that Fermi arcs can also be localized at internal twin boundaries where two Weyl materials of opposite chirality meet. In this work, we derive constraints on the topology and connectivity of these &#34;internal Fermi arcs.&#34; We show that internal Fermi arcs can exhibit transport signatures and propose two probes: quantum oscillations and a quantized chiral magnetic current. We propose merohedrally twinned B20 materials as candidates to host internal Fermi arcs, verified through both model and ab initio calculations. Our theoretical investigation sheds lights on the topological features and motivates experimental studies into the intriguing physics of internal Fermi arcs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14109v1-abstract-full').style.display = 'none'; document.getElementById('2207.14109v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.04147">arXiv:2206.04147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.04147">pdf</a>, <a href="https://arxiv.org/format/2206.04147">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Vectorial Bulk-Boundary Correspondence for 3D Photonic Chern Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Devescovi%2C+C">Chiara Devescovi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Diez%2C+M">Mikel Garcia-Diez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bradlyn%2C+B">Barry Bradlyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%C3%B1es%2C+J+L">Juan Luis Ma帽es</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Etxarri%2C+A">Aitzol Garcia-Etxarri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.04147v1-abstract-short" style="display: inline;"> In 2D Chern insulators (2D CI), the topology of the bulk states is captured by a topological invariant, the Chern number. The scalar bulk-boundary correspondence (sBBC) relates the change in Chern number across an interface with the number of 1D chiral edge modes at the interface. However, 3D Chern insulators (3D CI) can be characterized by a Chern vector C = (Cx, Cy, Cz) and a more general vector&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04147v1-abstract-full').style.display = 'inline'; document.getElementById('2206.04147v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.04147v1-abstract-full" style="display: none;"> In 2D Chern insulators (2D CI), the topology of the bulk states is captured by a topological invariant, the Chern number. The scalar bulk-boundary correspondence (sBBC) relates the change in Chern number across an interface with the number of 1D chiral edge modes at the interface. However, 3D Chern insulators (3D CI) can be characterized by a Chern vector C = (Cx, Cy, Cz) and a more general vector bulk-boundary correspondence (vBBC) is needed to correctly predict the propagation of the surface modes. In this work the possible interfaces between 3D photonic CIs are explored, focusing on possible changes in Chern vector orientation. To formulate a 3D vBBC, a link is derived between the Chern vector discontinuity across an interface and the winding of the surface equifrequency loops on the boundary. Lastly, it is demonstrated how to correctly predict the number and the propagation direction of topological photonic surface modes in 3D CIs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04147v1-abstract-full').style.display = 'none'; document.getElementById('2206.04147v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.10113">arXiv:2204.10113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.10113">pdf</a>, <a href="https://arxiv.org/format/2204.10113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.245101">10.1103/PhysRevB.106.245101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-momentum locking from topological quantum chemistry: applications to multifold fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+M">Mao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">Niels B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bradlyn%2C+B">Barry Bradlyn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.10113v1-abstract-short" style="display: inline;"> In spin-orbit coupled crystals, symmetries can protect multifold degeneracies with large Chern numbers and Brillouin zone spanning topological surface states. In this work, we explore the extent to which the nontrivial topology of chiral multifold fermions impacts the spin texture of bulk states. To do so, we formulate a definition of spin-momentum locking in terms of reduced density matrices. Usi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10113v1-abstract-full').style.display = 'inline'; document.getElementById('2204.10113v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.10113v1-abstract-full" style="display: none;"> In spin-orbit coupled crystals, symmetries can protect multifold degeneracies with large Chern numbers and Brillouin zone spanning topological surface states. In this work, we explore the extent to which the nontrivial topology of chiral multifold fermions impacts the spin texture of bulk states. To do so, we formulate a definition of spin-momentum locking in terms of reduced density matrices. Using tools from the theory of topological quantum chemistry, we show how the reduced density matrix can be determined from the knowledge of the basis orbitals and band representation forming the multifold fermion. We show how on-site spin orbit coupling, crystal field splitting, and Wyckoff position multiplicity compete to determine the spin texture of states near chiral fermions. We compute the spin texture of multifold fermions in several representative examples from space groups $P432$ (207) and $P2_13$ (198). We show that the winding number of the spin around the Fermi surface can take many different integer values, from zero all the way to $\pm 7$. Finally, we conclude by showing how to apply our theory to real materials using the example of PtGa in space group $P2_13$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10113v1-abstract-full').style.display = 'none'; document.getElementById('2204.10113v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10908">arXiv:2203.10908</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.10908">pdf</a>, <a href="https://arxiv.org/format/2203.10908">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ac73cf">10.1088/1361-648X/ac73cf <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy density as a probe of band representations in photonic crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=de+Paz%2C+M+B">M. Blanco de Paz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herrera%2C+M+A+J">M. A. J. Herrera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huidobro%2C+P+A">P. Arroyo Huidobro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alaeian%2C+H">H. Alaeian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">M. G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bradlyn%2C+B">B. Bradlyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giedke%2C+G">G. Giedke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garc%C3%ADa-Etxarri%2C+A">A. Garc铆a-Etxarri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bercioux%2C+D">D. Bercioux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10908v1-abstract-short" style="display: inline;"> Topological Quantum Chemistry (TQC) has recently emerged as a instrumental tool to characterize the topological nature of both fermionic and bosonic band structures. TQC is based on the study of band representations and the localization of maximally localized Wannier functions. In this article, we study various two-dimensional photonic crystal structures analyzing their topological character throu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10908v1-abstract-full').style.display = 'inline'; document.getElementById('2203.10908v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10908v1-abstract-full" style="display: none;"> Topological Quantum Chemistry (TQC) has recently emerged as a instrumental tool to characterize the topological nature of both fermionic and bosonic band structures. TQC is based on the study of band representations and the localization of maximally localized Wannier functions. In this article, we study various two-dimensional photonic crystal structures analyzing their topological character through a combined study of TQC, their Wilson-loop spectra and the electromagnetic energy density. Our study demonstrates that the analysis of the spatial localization of the energy density complements the study of the topological properties in terms of the spectrum of the Wilson-loop operator and TQC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10908v1-abstract-full').style.display = 'none'; document.getElementById('2203.10908v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 34 314002 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09593">arXiv:2203.09593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.09593">pdf</a>, <a href="https://arxiv.org/format/2203.09593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05127-9">10.1038/s41586-022-05127-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Switchable chiral transport in charge-ordered Kagome metal CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzke%2C+C">Carsten Putzke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Konyzheva%2C+S">Sofia Konyzheva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xiangwei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09593v2-abstract-short" style="display: inline;"> When electric conductors differ from their mirror image, unusual chiral transport coefficients appear that are forbidden in achiral metals, such as a non-linear electric response known as electronic magneto-chiral anisotropy (eMChA). While chiral transport signatures are by symmetry allowed in many conductors without a center of inversion, it reaches appreciable levels only in rare cases when an e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09593v2-abstract-full').style.display = 'inline'; document.getElementById('2203.09593v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09593v2-abstract-full" style="display: none;"> When electric conductors differ from their mirror image, unusual chiral transport coefficients appear that are forbidden in achiral metals, such as a non-linear electric response known as electronic magneto-chiral anisotropy (eMChA). While chiral transport signatures are by symmetry allowed in many conductors without a center of inversion, it reaches appreciable levels only in rare cases when an exceptionally strong chiral coupling to the itinerant electrons is present. So far, observations of chiral transport have been limited to materials in which the atomic positions strongly break mirror symmetries. Here, we report chiral transport in the centro-symmetric layered Kagome metal CsV$_3$Sb$_5$, observed via second harmonic generation under in-plane magnetic field. The eMChA signal becomes significant only at temperatures below $T&#39;\sim$ 35 K, deep within the charge-ordered state of CsV$_3$Sb$_5$ ($T_{\mathrm{CDW}}\sim$ 94 K). This temperature dependence reveals a direct correspondence between electronic chirality, unidirectional charge order, and spontaneous time-reversal-symmetry breaking due to putative orbital loop currents. We show that the chirality is set by the out-of-plane field component and that a transition from left- to right-handed transport can be induced by changing the field sign. CsV$_3$Sb$_5$ is the first material in which strong chiral transport can be controlled and switched by small magnetic-field changes, in stark contrast to structurally chiral materials -- a prerequisite for their applications in chiral electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09593v2-abstract-full').style.display = 'none'; document.getElementById('2203.09593v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 611, 461 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.07780">arXiv:2201.07780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.07780">pdf</a>, <a href="https://arxiv.org/ps/2201.07780">ps</a>, <a href="https://arxiv.org/format/2201.07780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.064510">10.1103/PhysRevB.106.064510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 3D Fermi surfaces from charge order in layered CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xiangwei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzke%2C+C">Carsten Putzke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.07780v3-abstract-short" style="display: inline;"> The cascade of electronic phases in CsV$_3$Sb$_5$ raises the prospect to disentangle their mutual interactions in a clean, strongly interacting Kagome lattice. When the Kagome planes are stacked into a crystal, its electronic dimensionality encodes how much of the Kagome physics and its topological aspects survive. The layered structure of CsV$_3$Sb$_5$ reflects in Brillouin-zone-sized quasi-2D Fe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07780v3-abstract-full').style.display = 'inline'; document.getElementById('2201.07780v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.07780v3-abstract-full" style="display: none;"> The cascade of electronic phases in CsV$_3$Sb$_5$ raises the prospect to disentangle their mutual interactions in a clean, strongly interacting Kagome lattice. When the Kagome planes are stacked into a crystal, its electronic dimensionality encodes how much of the Kagome physics and its topological aspects survive. The layered structure of CsV$_3$Sb$_5$ reflects in Brillouin-zone-sized quasi-2D Fermi surfaces and a significant transport anisotropy. Yet here we demonstrate that CsV$_3$Sb$_5$ is a three-dimensional metal within the charge-density-wave (CDW) state. Small 3D pockets play a crucial role in its low-temperature magneto- and quantum transport. Their emergence at $T_{CDW}\sim 93$ K results in an anomalous sudden increase of the in-plane magnetoresistance by 4 orders of magnitude. The presence of these 3D pockets is further confirmed by quantum oscillations under in-plane magnetic fields - demonstrating their closed nature. These results emphasize the impact of interlayer coupling on the Kagome physics in 3D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07780v3-abstract-full').style.display = 'none'; document.getElementById('2201.07780v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 064510 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05699">arXiv:2201.05699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.05699">pdf</a>, <a href="https://arxiv.org/format/2201.05699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/zaac.202200055">10.1002/zaac.202200055 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transport and optical properties of the chiral semiconductor Ag3AuSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Won%2C+J">Juyeon Won</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Soyeun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bettler%2C+S">Simon Bettler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+B">Bumjoo Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Son%2C+J">Jaeseok Son</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+T+W">Tae Won Noh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbamonte%2C+P">Peter Abbamonte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahmood%2C+F">Fahad Mahmood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shoemaker%2C+D+P">Daniel P. Shoemaker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05699v1-abstract-short" style="display: inline;"> Previous band structure calculations predicted Ag3AuSe2 to be a semiconductor with a band gap of approximately 1 eV. Here, we report single crystal growth of Ag3AuSe2 and its transport and optical properties. Single crystals of Ag3AuSe2 were synthesized by slow-cooling from the melt, and grain sizes were confirmed to be greater than 2 mm using electron backscatter diffraction. Optical and transpor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05699v1-abstract-full').style.display = 'inline'; document.getElementById('2201.05699v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05699v1-abstract-full" style="display: none;"> Previous band structure calculations predicted Ag3AuSe2 to be a semiconductor with a band gap of approximately 1 eV. Here, we report single crystal growth of Ag3AuSe2 and its transport and optical properties. Single crystals of Ag3AuSe2 were synthesized by slow-cooling from the melt, and grain sizes were confirmed to be greater than 2 mm using electron backscatter diffraction. Optical and transport measurements reveal that Ag3AuSe2 is a highly resistive semiconductor with a band gap of and activation energy around 0.3 eV. Our first-principles calculations show that the experimentally-determined band gap lies between the predicted band gaps from GGA and hybrid functionals. We predict band inversion to be possible by applying tensile strain. The sensitivity of the gap to Ag/Au ordering, chemical substitution, and heat treatment merit further investigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05699v1-abstract-full').style.display = 'none'; document.getElementById('2201.05699v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Z. Anorg. Allg. Chem. 648 [15] e202200055 (2022) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Vergniory%2C+M+G&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Vergniory%2C+M+G&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Vergniory%2C+M+G&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Vergniory%2C+M+G&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10