CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 76 results for author: <span class="mathjax">Cheng, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Cheng%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Cheng, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Cheng%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Cheng, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23857">arXiv:2410.23857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23857">pdf</a>, <a href="https://arxiv.org/format/2410.23857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> ECDQC: Efficient Compilation for Distributed Quantum Computing with Linear Layout </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+K">Kecheng Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yidong Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+H">Haochen Luo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiong%2C+L">Lingjun Xiong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Y">Yuchen Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Casey%2C+E">Eilis Casey</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23857v2-abstract-short" style="display: inline;"> In this paper, we propose an efficient compilation method for distributed quantum computing (DQC) using the Linear Nearest Neighbor (LNN) architecture. By exploiting the LNN topology&#39;s symmetry, we optimize quantum circuit compilation for High Local Connectivity, Sparse Full Connectivity (HLC-SFC) algorithms like Quantum Approximate Optimization Algorithm (QAOA) and Quantum Fourier Transform (QFT)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23857v2-abstract-full').style.display = 'inline'; document.getElementById('2410.23857v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23857v2-abstract-full" style="display: none;"> In this paper, we propose an efficient compilation method for distributed quantum computing (DQC) using the Linear Nearest Neighbor (LNN) architecture. By exploiting the LNN topology&#39;s symmetry, we optimize quantum circuit compilation for High Local Connectivity, Sparse Full Connectivity (HLC-SFC) algorithms like Quantum Approximate Optimization Algorithm (QAOA) and Quantum Fourier Transform (QFT). We also utilize dangling qubits to minimize non-local interactions and reduce SWAP gates. Our approach significantly decreases compilation time, gate count, and circuit depth, improving scalability and robustness for large-scale quantum computations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23857v2-abstract-full').style.display = 'none'; document.getElementById('2410.23857v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10275">arXiv:2410.10275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10275">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing the Meissner effect in pressurized bilayer nickelate superconductors using diamond quantum sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wen%2C+J">Junyan Wen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Y">Yue Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+G">Gang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+Z">Ze-Xu He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yang Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ningning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+T">Tenglong Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+X">Xiaoli Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+F">Feng Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+L">Liucheng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+M">Miao Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fan%2C+J">Jing-Wei Fan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+X">Xiaobing Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+X">Xin-Yu Pan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+G">Gang-Qin Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+X">Xiaohui Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10275v1-abstract-short" style="display: inline;"> Recent reports on the signatures of high-temperature superconductivity with a critical temperature Tc close to 80 K have triggered great research interest and extensive follow-up studies. Although zero-resistance state has been successfully achieved under improved hydrostatic pressure conditions, there is no clear evidence of superconducting diamagnetism in pressurized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10275v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10275v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10275v1-abstract-full" style="display: none;"> Recent reports on the signatures of high-temperature superconductivity with a critical temperature Tc close to 80 K have triggered great research interest and extensive follow-up studies. Although zero-resistance state has been successfully achieved under improved hydrostatic pressure conditions, there is no clear evidence of superconducting diamagnetism in pressurized $\mathrm{La_{3}Ni_{2}O_{7-未}}$ due to the low superconducting volume fraction and limited magnetic measurement techniques under high pressure conditions. Here, using shallow nitrogen-vacancy centers implanted on the culet of diamond anvils as in-situ quantum sensors, we observe convincing evidence for the Meissner effect in polycrystalline samples $\mathrm{La_{3}Ni_{2}O_{7-未}}$ and $\mathrm{La_{2}PrNi_{2}O_{7}}$: the magnetic field expulsion during both field cooling and field warming processes. The correlated measurements of Raman spectra and NV-based magnetic imaging indicate an incomplete structural transformation related to the displacement of oxygen ions emerging in the non-superconducting region. Furthermore, comparative experiments on different pressure transmitting media (silicone oil and KBr) and nickelates ($\mathrm{La_{3}Ni_{2}O_{7-未}}$ and $\mathrm{La_{2}PrNi_{2}O_{7}}$) reveal that an improved hydrostatic pressure conditions and the substitution of La by Pr in $\mathrm{La_{3}Ni_{2}O_{7-未}}$ can dramatically increase the superconductivity. Our work clarifies the controversy about the Meissner effect of bilayer nickelate and contributes to a deeper understanding of the mechanism of nickelate high-temperature superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10275v1-abstract-full').style.display = 'none'; document.getElementById('2410.10275v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14048">arXiv:2409.14048</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14048">pdf</a>, <a href="https://arxiv.org/ps/2409.14048">ps</a>, <a href="https://arxiv.org/format/2409.14048">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Super-Heisenberg scaling in a triple point criticality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jia-Ming Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yong-Chang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+X">Xiang-Fa Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Z">Zheng-Wei Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14048v1-abstract-short" style="display: inline;"> We investigate quantum-enhanced metrology in a triple point criticality and discover that quantum criticality can not always enhance measuring precision. We have developed suitable adiabatic evolution protocols approaching a final point around the triple point to effectively restrain excitations, which could accelerate the adiabatic evolutions and lead to an exponential super-Heisenberg scaling. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14048v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14048v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14048v1-abstract-full" style="display: none;"> We investigate quantum-enhanced metrology in a triple point criticality and discover that quantum criticality can not always enhance measuring precision. We have developed suitable adiabatic evolution protocols approaching a final point around the triple point to effectively restrain excitations, which could accelerate the adiabatic evolutions and lead to an exponential super-Heisenberg scaling. This scaling behavior is quite valuable in practical parameter estimating experiments with limited coherence time. The super-Heisenberg scaling will degrade into a sub-Heisenberg scaling if the adiabatic parameter modulations adopted can not reduce excitations and weaken the slowing down effect. Additionally, a feasible experimental scheme is also suggested to achieve the anticipated exponential super-Heisenberg scaling. Our findings strongly indicate that criticality-enhanced metrology can indeed significantly enhance measuring precision to a super-Heisenberg scaling when combining a triple point and beneficial parameter modulations in the adiabatic evolution, which will be conducive to the exploration of other super-Heisenberg scaling and their applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14048v1-abstract-full').style.display = 'none'; document.getElementById('2409.14048v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13479">arXiv:2408.13479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13479">pdf</a>, <a href="https://arxiv.org/format/2408.13479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Quantum-machine-assisted Drug Discovery: Survey and Perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yidong Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jintai Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Karemore%2C+G">Gopal Karemore</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zitnik%2C+M">Marinka Zitnik</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+J">Junyu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fu%2C+T">Tianfan Fu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13479v3-abstract-short" style="display: inline;"> Drug discovery and development is a highly complex and costly endeavor, typically requiring over a decade and substantial financial investment to bring a new drug to market. Traditional computer-aided drug design (CADD) has made significant progress in accelerating this process, but the development of quantum computing offers potential due to its unique capabilities. This paper discusses the integ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13479v3-abstract-full').style.display = 'inline'; document.getElementById('2408.13479v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13479v3-abstract-full" style="display: none;"> Drug discovery and development is a highly complex and costly endeavor, typically requiring over a decade and substantial financial investment to bring a new drug to market. Traditional computer-aided drug design (CADD) has made significant progress in accelerating this process, but the development of quantum computing offers potential due to its unique capabilities. This paper discusses the integration of quantum computing into drug discovery and development, focusing on how quantum technologies might accelerate and enhance various stages of the drug development cycle. Specifically, we explore the application of quantum computing in addressing challenges related to drug discovery, such as molecular simulation and the prediction of drug-target interactions, as well as the optimization of clinical trial outcomes. By leveraging the inherent capabilities of quantum computing, we might be able to reduce the time and cost associated with bringing new drugs to market, ultimately benefiting public health. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13479v3-abstract-full').style.display = 'none'; document.getElementById('2408.13479v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08365">arXiv:2408.08365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08365">pdf</a>, <a href="https://arxiv.org/format/2408.08365">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Coqa: Blazing Fast Compiler Optimizations for QAOA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Y">Yuchen Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yidong Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+Y">Yuwei Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Boxi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+S">Siyuan Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08365v1-abstract-short" style="display: inline;"> The Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage over classical computers. However, existing compilers lack specialized methods for optimizing QAOA circuits. There are circuit patterns inside the QAOA circuits, and current quantum hardware has specific qubit connectivity topologies. Therefore, we propose Coqa to optimize&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08365v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08365v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08365v1-abstract-full" style="display: none;"> The Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage over classical computers. However, existing compilers lack specialized methods for optimizing QAOA circuits. There are circuit patterns inside the QAOA circuits, and current quantum hardware has specific qubit connectivity topologies. Therefore, we propose Coqa to optimize QAOA circuit compilation tailored to different types of quantum hardware. Our method integrates a linear nearest-neighbor (LNN) topology and efficiently map the patterns of QAOA circuits to the LNN topology by heuristically checking the interaction based on the weight of problem Hamiltonian. This approach allows us to reduce the number of SWAP gates during compilation, which directly impacts the circuit depth and overall fidelity of the quantum computation. By leveraging the inherent patterns in QAOA circuits, our approach achieves more efficient compilation compared to general-purpose compilers. With our proposed method, we are able to achieve an average of 30% reduction in gate count and a 39x acceleration in compilation time across our benchmarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08365v1-abstract-full').style.display = 'none'; document.getElementById('2408.08365v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03804">arXiv:2405.03804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03804">pdf</a>, <a href="https://arxiv.org/format/2405.03804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> EPOC: A Novel Pulse Generation Framework Incorporating Advanced Synthesis Techniques for Quantum Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Y">Yuchen Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yidong Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zhixin Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03804v1-abstract-short" style="display: inline;"> In this paper we propose EPOC, an efficient pulse generation framework for quantum circuits that combines ZX-Calculus, circuit partitioning, and circuit synthesis to accelerate pulse generation. Unlike previous works that focus on generating pulses from unitary matrices without exploring equivalent representations, EPOC employs a finer granularity approach by grouping quantum gates and decomposing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03804v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03804v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03804v1-abstract-full" style="display: none;"> In this paper we propose EPOC, an efficient pulse generation framework for quantum circuits that combines ZX-Calculus, circuit partitioning, and circuit synthesis to accelerate pulse generation. Unlike previous works that focus on generating pulses from unitary matrices without exploring equivalent representations, EPOC employs a finer granularity approach by grouping quantum gates and decomposing the resulting unitary matrices into smaller ones using synthesis techniques. This enables increased parallelism and decreased latency in quantum pulses. EPOC also continuously optimizes the circuit by identifying equivalent representations, leading to further reductions in circuit latency while minimizing the computational overhead associated with quantum optimal control. We introduce circuit synthesis into the workflow of quantum optimal control for the first time and achieve a 31.74% reduction in latency compared to previous work and a 76.80% reduction compared to the gate-based method for creating pulses. The approach demonstrates the potential for significant performance improvements in quantum circuits while minimizing computational overhead. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03804v1-abstract-full').style.display = 'none'; document.getElementById('2405.03804v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10586">arXiv:2404.10586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10586">pdf</a>, <a href="https://arxiv.org/ps/2404.10586">ps</a>, <a href="https://arxiv.org/format/2404.10586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-024-00814-z">10.1038/s41534-024-00814-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semi-device-independent quantum random number generator with a broadband squeezed state of light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jialin Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+S">Shaocong Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+J">Jiliang Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jiatong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+Z">Zhihui Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jia%2C+X">Xiaojun Jia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+C">Changde Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+K">Kunchi Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10586v1-abstract-short" style="display: inline;"> Random numbers are a basic ingredient of simulation algorithms and cryptography, and play a significant part in computer simulation and information processing. One prominent feature of a squeezed light is its lower fluctuation and more randomness in a pair </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10586v1-abstract-full" style="display: none;"> Random numbers are a basic ingredient of simulation algorithms and cryptography, and play a significant part in computer simulation and information processing. One prominent feature of a squeezed light is its lower fluctuation and more randomness in a pair <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10586v1-abstract-full').style.display = 'none'; document.getElementById('2404.10586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Information 10:20 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10256">arXiv:2404.10256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10256">pdf</a>, <a href="https://arxiv.org/ps/2404.10256">ps</a>, <a href="https://arxiv.org/format/2404.10256">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.140802">10.1103/PhysRevLett.132.140802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-speed quantum radio-frequency-over-light communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+S">Shaocong Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jialin Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+J">Jiliang Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jiatong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yi Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+Z">Zhihui Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jia%2C+X">Xiaojun Jia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+C">Changde Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+K">Kunchi Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10256v1-abstract-short" style="display: inline;"> Quantum dense coding (QDC) means to transmit two classical bits by only transferring one quantum bit, which has enabled high-capacity information transmission and strengthened system security. Continuousvariable QDC offers a promising solution to increase communication rates while achieving seamless integration with classical communication systems. Here, we propose and experimentally demonstrate a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10256v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10256v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10256v1-abstract-full" style="display: none;"> Quantum dense coding (QDC) means to transmit two classical bits by only transferring one quantum bit, which has enabled high-capacity information transmission and strengthened system security. Continuousvariable QDC offers a promising solution to increase communication rates while achieving seamless integration with classical communication systems. Here, we propose and experimentally demonstrate a high-speed quantum radio-frequency-over-light (RFoL) communication scheme based on QDC with entangled state, and achieve a practical rate of 20 Mbps through digital modulation and RFoL communication. This scheme bridges the gap between quantum technology and real-world communication systems, which bring QDC closer to practical applications and offer prospects for further enhancement of metropolitan communication networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10256v1-abstract-full').style.display = 'none'; document.getElementById('2404.10256v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 140802 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03310">arXiv:2403.03310</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03310">pdf</a>, <a href="https://arxiv.org/format/2403.03310">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Graph Learning for Parameter Prediction of Quantum Approximate Optimization Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+G">Gang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Z">Zheyuan Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hao%2C+T">Tianyi Hao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+K">Kecheng Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zhixin Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+J">Ji Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+F">Fanny Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03310v1-abstract-short" style="display: inline;"> In recent years, quantum computing has emerged as a transformative force in the field of combinatorial optimization, offering novel approaches to tackling complex problems that have long challenged classical computational methods. Among these, the Quantum Approximate Optimization Algorithm (QAOA) stands out for its potential to efficiently solve the Max-Cut problem, a quintessential example of com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03310v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03310v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03310v1-abstract-full" style="display: none;"> In recent years, quantum computing has emerged as a transformative force in the field of combinatorial optimization, offering novel approaches to tackling complex problems that have long challenged classical computational methods. Among these, the Quantum Approximate Optimization Algorithm (QAOA) stands out for its potential to efficiently solve the Max-Cut problem, a quintessential example of combinatorial optimization. However, practical application faces challenges due to current limitations on quantum computational resource. Our work optimizes QAOA initialization, using Graph Neural Networks (GNN) as a warm-start technique. This sacrifices affordable computational resource on classical computer to reduce quantum computational resource overhead, enhancing QAOA&#39;s effectiveness. Experiments with various GNN architectures demonstrate the adaptability and stability of our framework, highlighting the synergy between quantum algorithms and machine learning. Our findings show GNN&#39;s potential in improving QAOA performance, opening new avenues for hybrid quantum-classical approaches in quantum computing and contributing to practical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03310v1-abstract-full').style.display = 'none'; document.getElementById('2403.03310v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17423">arXiv:2311.17423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.17423">pdf</a>, <a href="https://arxiv.org/format/2311.17423">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> SpacePulse: Combining Parameterized Pulses and Contextual Subspace for More Practical VQE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zhixin Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hao%2C+T">Tianyi Hao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+R">Rui Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tongyang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17423v1-abstract-short" style="display: inline;"> In this paper, we explore the integration of parameterized quantum pulses with the contextual subspace method. The advent of parameterized quantum pulses marks a transition from traditional quantum gates to a more flexible and efficient approach to quantum computing. Working with pulses allows us to potentially access areas of the Hilbert space that are inaccessible with a CNOT-based circuit decom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17423v1-abstract-full').style.display = 'inline'; document.getElementById('2311.17423v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17423v1-abstract-full" style="display: none;"> In this paper, we explore the integration of parameterized quantum pulses with the contextual subspace method. The advent of parameterized quantum pulses marks a transition from traditional quantum gates to a more flexible and efficient approach to quantum computing. Working with pulses allows us to potentially access areas of the Hilbert space that are inaccessible with a CNOT-based circuit decomposition. Compared to solving the complete Hamiltonian via the traditional Variational Quantum Eigensolver (VQE), the computation of the contextual correction generally requires fewer qubits and measurements, thus improving computational efficiency. Plus a Pauli grouping strategy, our framework, SpacePulse, can minimize the quantum resource cost for the VQE and enhance the potential for processing larger molecular structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17423v1-abstract-full').style.display = 'none'; document.getElementById('2311.17423v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16035">arXiv:2311.16035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.16035">pdf</a>, <a href="https://arxiv.org/format/2311.16035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> RobustState: Boosting Fidelity of Quantum State Preparation via Noise-Aware Variational Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Hanrui Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yilian Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+P">Pengyu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gu%2C+J">Jiaqi Gu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zirui Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+Y">Yongshan Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+X">Xuehai Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+D+Z">David Z. Pan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+S">Song Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16035v1-abstract-short" style="display: inline;"> Quantum state preparation, a crucial subroutine in quantum computing, involves generating a target quantum state from initialized qubits. Arbitrary state preparation algorithms can be broadly categorized into arithmetic decomposition (AD) and variational quantum state preparation (VQSP). AD employs a predefined procedure to decompose the target state into a series of gates, whereas VQSP iterativel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16035v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16035v1-abstract-full" style="display: none;"> Quantum state preparation, a crucial subroutine in quantum computing, involves generating a target quantum state from initialized qubits. Arbitrary state preparation algorithms can be broadly categorized into arithmetic decomposition (AD) and variational quantum state preparation (VQSP). AD employs a predefined procedure to decompose the target state into a series of gates, whereas VQSP iteratively tunes ansatz parameters to approximate target state. VQSP is particularly apt for Noisy-Intermediate Scale Quantum (NISQ) machines due to its shorter circuits. However, achieving noise-robust parameter optimization still remains challenging. We present RobustState, a novel VQSP training methodology that combines high robustness with high training efficiency. The core idea involves utilizing measurement outcomes from real machines to perform back-propagation through classical simulators, thus incorporating real quantum noise into gradient calculations. RobustState serves as a versatile, plug-and-play technique applicable for training parameters from scratch or fine-tuning existing parameters to enhance fidelity on target machines. It is adaptable to various ansatzes at both gate and pulse levels and can even benefit other variational algorithms, such as variational unitary synthesis. Comprehensive evaluation of RobustState on state preparation tasks for 4 distinct quantum algorithms using 10 real quantum machines demonstrates a coherent error reduction of up to 7.1 $\times$ and state fidelity improvement of up to 96\% and 81\% for 4-Q and 5-Q states, respectively. On average, RobustState improves fidelity by 50\% and 72\% for 4-Q and 5-Q states compared to baseline approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16035v1-abstract-full').style.display = 'none'; document.getElementById('2311.16035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to FASTML @ ICCAD 2023. 14 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02222">arXiv:2308.02222</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.02222">pdf</a>, <a href="https://arxiv.org/format/2308.02222">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.013704">10.1103/PhysRevA.109.013704 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong squeezing of microwave output fields via reservoir-engineered cavity magnomechanics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+H">Hang Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zuo%2C+X">Xuan Zuo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fan%2C+Z">Zhi-Yuan Fan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jiong Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jie Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02222v3-abstract-short" style="display: inline;"> We show how to achieve strong squeezing of a microwave output field by reservoir engineering a cavity magnomechanical system, consisting of a microwave cavity, a magnon mode, and a mechanical vibration mode. The magnon mode is simultaneously driven by two microwave fields at the blue and red sidebands associated with the vibration mode. The two-tone drive induces a squeezed magnonic reservoir for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02222v3-abstract-full').style.display = 'inline'; document.getElementById('2308.02222v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02222v3-abstract-full" style="display: none;"> We show how to achieve strong squeezing of a microwave output field by reservoir engineering a cavity magnomechanical system, consisting of a microwave cavity, a magnon mode, and a mechanical vibration mode. The magnon mode is simultaneously driven by two microwave fields at the blue and red sidebands associated with the vibration mode. The two-tone drive induces a squeezed magnonic reservoir for the intracavity field, leading to a squeezed cavity mode due to the cavity-magnon state swapping, which further yields a squeezed cavity output field. The squeezing of the output field is stationary and substantial using currently available parameters in cavity magnomechanics. The work indicates the potential of the cavity magnomechanical system in preparing squeezed microwave fields, and may find promising applications in quantum information science and quantum metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02222v3-abstract-full').style.display = 'none'; document.getElementById('2308.02222v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in PRA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 109, 013704 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.01608">arXiv:2308.01608</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.01608">pdf</a>, <a href="https://arxiv.org/format/2308.01608">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Manifestation of topological phase in neutron spin rotation without adiabatic regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jian-Jian Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.01608v2-abstract-short" style="display: inline;"> The Bitter-Dubbers (BD) experiment is an important experiment that originally aimed to measure topological phase using polarized-neutron spin rotation in a helical magnetic field under adiabatic conditions. Contrary to expectations, upon reevaluation of the BD experiment, it has been found that adiabatic conditions are not necessary for measuring topological phase. In scenarios where the magnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.01608v2-abstract-full').style.display = 'inline'; document.getElementById('2308.01608v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.01608v2-abstract-full" style="display: none;"> The Bitter-Dubbers (BD) experiment is an important experiment that originally aimed to measure topological phase using polarized-neutron spin rotation in a helical magnetic field under adiabatic conditions. Contrary to expectations, upon reevaluation of the BD experiment, it has been found that adiabatic conditions are not necessary for measuring topological phase. In scenarios where the magnetic field is neither homogeneous nor strong enough, and the neutron has a fast velocity, the topological phase can still be manifested. To demonstrate this, we analytically solve the time-dependent Schrodinger equation for the neutron spin rotation in general rotating systems. These exact solutions are then utilized to investigate the nonadiabatic topological phase under the conditions mentioned above. The numerical simulations of the nonadiabatic topological phase have shown a strong concurrence with the BD experimental data. This novel result extends our understanding of the topological phase observed in neutron spin rotation, even in more complex and dynamic scenarios beyond the originally required adiabatic conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.01608v2-abstract-full').style.display = 'none'; document.getElementById('2308.01608v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14990">arXiv:2307.14990</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14990">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Super-resolution enabled widefield quantum diamond microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jialong Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+Y">Yong Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Juan Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hui%2C+T+K">Tony KC Hui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+S">Shih-Chi Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Z">Zhiqin Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14990v1-abstract-short" style="display: inline;"> Widefield quantum diamond microscopy (WQDM) based on Kohler-illumination has been widely adopted in the field of quantum sensing, however, practical applications are still limited by issues such as unavoidable photodamage and unsatisfied spatial-resolution. Here, we design and develop a super-resolution enabled WQDM using a digital micromirror device (DMD)-based structured illumination microscopy.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14990v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14990v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14990v1-abstract-full" style="display: none;"> Widefield quantum diamond microscopy (WQDM) based on Kohler-illumination has been widely adopted in the field of quantum sensing, however, practical applications are still limited by issues such as unavoidable photodamage and unsatisfied spatial-resolution. Here, we design and develop a super-resolution enabled WQDM using a digital micromirror device (DMD)-based structured illumination microscopy. With the rapidly programmable illumination patterns, we have firstly demonstrated how to mitigate phototoxicity when imaging nanodiamonds in cell samples. As a showcase, we have performed the super-resolved quantum sensing measurements of two individual nanodiamonds not even distinguishable with conventional WQDM. The DMD-powered WQDM presents not only excellent compatibility with quantum sensing solutions, but also strong advantages in high imaging speed, high resolution, low phototoxicity, and enhanced signal-to-background ratio, making it a competent tool to for applications in demanding fields such as biomedical science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14990v1-abstract-full').style.display = 'none'; document.getElementById('2307.14990v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08191">arXiv:2307.08191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.08191">pdf</a>, <a href="https://arxiv.org/format/2307.08191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Unleashing the Potential of LLMs for Quantum Computing: A Study in Quantum Architecture Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+R">Rui Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zhixin Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+D">Di Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+X">Xuehai Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tongyang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08191v1-abstract-short" style="display: inline;"> Large Language Models (LLMs) contribute significantly to the development of conversational AI and has great potentials to assist the scientific research in various areas. This paper attempts to address the following questions: What opportunities do the current generation of generative pre-trained transformers (GPTs) offer for the developments of noisy intermediate-scale quantum (NISQ) technologies&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08191v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08191v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08191v1-abstract-full" style="display: none;"> Large Language Models (LLMs) contribute significantly to the development of conversational AI and has great potentials to assist the scientific research in various areas. This paper attempts to address the following questions: What opportunities do the current generation of generative pre-trained transformers (GPTs) offer for the developments of noisy intermediate-scale quantum (NISQ) technologies? Additionally, what potentials does the forthcoming generation of GPTs possess to push the frontier of research in fault-tolerant quantum computing (FTQC)? In this paper, we implement a QGAS model, which can rapidly propose promising ansatz architectures and evaluate them with application benchmarks including quantum chemistry and quantum finance tasks. Our results demonstrate that after a limited number of prompt guidelines and iterations, we can obtain a high-performance ansatz which is able to produce comparable results that are achieved by state-of-the-art quantum architecture search methods. This study provides a simple overview of GPT&#39;s capabilities in supporting quantum computing research while highlighting the limitations of the current GPT at the same time. Additionally, we discuss futuristic applications for LLM in quantum research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08191v1-abstract-full').style.display = 'none'; document.getElementById('2307.08191v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13942">arXiv:2306.13942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.13942">pdf</a>, <a href="https://arxiv.org/format/2306.13942">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.043197">10.1103/PhysRevResearch.5.043197 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synchronization by Magnetostriction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jiong Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+W">Wenlin Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jie Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13942v2-abstract-short" style="display: inline;"> We show how to utilize magnetostriction to synchronize two mechanical vibration modes in a cavity magnomechanical system. The dispersive magnetostrictive interaction provides necessary nonlinearity required for achieving synchronization. Strong phase correlation between two mechanical oscillators can be established, leading to the synchronization robust against thermal noise. We develop a theoreti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13942v2-abstract-full').style.display = 'inline'; document.getElementById('2306.13942v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13942v2-abstract-full" style="display: none;"> We show how to utilize magnetostriction to synchronize two mechanical vibration modes in a cavity magnomechanical system. The dispersive magnetostrictive interaction provides necessary nonlinearity required for achieving synchronization. Strong phase correlation between two mechanical oscillators can be established, leading to the synchronization robust against thermal noise. We develop a theoretical framework to analyze the synchronization by solving the constraint conditions of steady-state limit cycles. We determine that the strong cavity-magnon linear coupling can enhance and regulate the synchronization, which offers a new path to modulate synchronization. The work reveals a new mechanism for achieving and modulating synchronization and indicates that cavity magnomechanical systems can be an ideal platform to explore rich synchronization phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13942v2-abstract-full').style.display = 'none'; document.getElementById('2306.13942v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Phys. Rev. Research</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 043197 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.12597">arXiv:2305.12597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.12597">pdf</a>, <a href="https://arxiv.org/format/2305.12597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Fidelity estimator, randomized benchmarking and ZNE for quantum pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+R">Rui Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tongyang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+X">Xuehai Qian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.12597v1-abstract-short" style="display: inline;"> Most previous research focused on designing pulse programs without considering the performance of individual elements or the final fidelity. To evaluate the performance of quantum pulses, it is required to know the noiseless results of the pulses. However, quantum pulses can implement unitary matrices that are not analytically known to the user, and pulse simulator usually comes with significant c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12597v1-abstract-full').style.display = 'inline'; document.getElementById('2305.12597v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.12597v1-abstract-full" style="display: none;"> Most previous research focused on designing pulse programs without considering the performance of individual elements or the final fidelity. To evaluate the performance of quantum pulses, it is required to know the noiseless results of the pulses. However, quantum pulses can implement unitary matrices that are not analytically known to the user, and pulse simulator usually comes with significant computational overhead. Consequently, determining fidelity of a pulse program is challenging without the knowledge of the ideal results. In this paper, we propose to use reversed pulses to evaluate the performance of quantum pulses, which can provide guidance to design pulse programs. By employing reversed pulses, we can ensure that, in the noiseless situation, the final quantum states are the same as the initial states. This method enables us to evaluate the fidelity of pulse programs by measuring the difference between the final states and the initial states. Such fidelity estimator can tell whether the results are meaningful for quantum pulses on real quantum machines. There are various quantum error correction (QEC) methods available for gate circuits; however, few studies have demonstrated QEC on pulse-level programs. In this paper, we use reversed pulses to implement zero noise extrapolation (ZNE) on pulse programs and demonstrate results for variational quantum eigensolver (VQE) tasks. The deviation from the idea energy value is reduced by an average of 54.1\% with our techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12597v1-abstract-full').style.display = 'none'; document.getElementById('2305.12597v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10760">arXiv:2304.10760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.10760">pdf</a>, <a href="https://arxiv.org/format/2304.10760">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.108.063703">10.1103/PhysRevA.108.063703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnon squeezing by two-tone driving of a qubit in cavity-magnon-qubit systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Q">Qi Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jiong Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+H">Huatang Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jie Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10760v4-abstract-short" style="display: inline;"> We propose a scheme for preparing magnon squeezed states in a hybrid cavity-magnon-qubit system. The system consists of a microwave cavity that simultaneously couples to a magnon mode of a macroscopic yttrium-iron-garnet (YIG) sphere via the magnetic-dipole interaction and to a transmon-type superconducting qubit via the electric-dipole interaction. By far detuning from the magnon-qubit system, th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10760v4-abstract-full').style.display = 'inline'; document.getElementById('2304.10760v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10760v4-abstract-full" style="display: none;"> We propose a scheme for preparing magnon squeezed states in a hybrid cavity-magnon-qubit system. The system consists of a microwave cavity that simultaneously couples to a magnon mode of a macroscopic yttrium-iron-garnet (YIG) sphere via the magnetic-dipole interaction and to a transmon-type superconducting qubit via the electric-dipole interaction. By far detuning from the magnon-qubit system, the microwave cavity is adiabatically eliminated. The magnon mode and the qubit then get effectively coupled via the mediation of virtual photons of the microwave cavity. We show that by driving the qubit with two microwave fields and by appropriately choosing the drive frequencies and strengths, magnonic parametric amplification can be realized, which leads to magnon quadrature squeezing with the noise below vacuum fluctuation. We provide optimal conditions for achieving magnon squeezing, and moderate squeezing can be obtained using currently available parameters. The generated squeezed states are of a magnon mode involving more than $10^{18}$ spins and thus macroscopic quantum states. The work may find promising applications in quantum information processing and high-precision measurements based on magnons and in the study of macroscopic quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10760v4-abstract-full').style.display = 'none'; document.getElementById('2304.10760v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in PRA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 108, 063703 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.09253">arXiv:2304.09253</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.09253">pdf</a>, <a href="https://arxiv.org/format/2304.09253">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Towards Advantages of Parameterized Quantum Pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zhixin Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+R">Rui Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+K">Kecheng Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kogge%2C+P">Peter Kogge</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tongyang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+Y">Yongshan Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.09253v2-abstract-short" style="display: inline;"> The advantages of quantum pulses over quantum gates have attracted increasing attention from researchers. Quantum pulses offer benefits such as flexibility, high fidelity, scalability, and real-time tuning. However, while there are established workflows and processes to evaluate the performance of quantum gates, there has been limited research on profiling parameterized pulses and providing guidan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09253v2-abstract-full').style.display = 'inline'; document.getElementById('2304.09253v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.09253v2-abstract-full" style="display: none;"> The advantages of quantum pulses over quantum gates have attracted increasing attention from researchers. Quantum pulses offer benefits such as flexibility, high fidelity, scalability, and real-time tuning. However, while there are established workflows and processes to evaluate the performance of quantum gates, there has been limited research on profiling parameterized pulses and providing guidance for pulse circuit design. To address this gap, our study proposes a set of design spaces for parameterized pulses, evaluating these pulses based on metrics such as expressivity, entanglement capability, and effective parameter dimension. Using these design spaces, we demonstrate the advantages of parameterized pulses over gate circuits in the aspect of duration and performance at the same time thus enabling high-performance quantum computing. Our proposed design space for parameterized pulse circuits has shown promising results in quantum chemistry benchmarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09253v2-abstract-full').style.display = 'none'; document.getElementById('2304.09253v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 Figures, 4 Tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.05643">arXiv:2302.05643</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.05643">pdf</a>, <a href="https://arxiv.org/format/2302.05643">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Photon-phonon quantum cloning in optomechanical system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Mu%2C+Q">Qingxia Mu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+T">Ting Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jiong Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Wen-Zhao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.05643v1-abstract-short" style="display: inline;"> Quantum cloning is an essential operation in quantum information and quantum computing. Similar to the `copy&#39; operation in classical computing, the cloning of flying bits for further processing from the solid-state quantum bits in storage is an operation frequently used in quantum information processing. Here we propose a high-fidelity and controllable quantum cloning scheme between solid bits and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05643v1-abstract-full').style.display = 'inline'; document.getElementById('2302.05643v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.05643v1-abstract-full" style="display: none;"> Quantum cloning is an essential operation in quantum information and quantum computing. Similar to the `copy&#39; operation in classical computing, the cloning of flying bits for further processing from the solid-state quantum bits in storage is an operation frequently used in quantum information processing. Here we propose a high-fidelity and controllable quantum cloning scheme between solid bits and flying bits. In order to overcome the obstacles from the no-cloning theorem and the weak phonon-photon interaction, we introduce a hybrid optomechanical system that performs both the probabilistic cloning and deterministic cloning closed to the theoretical optimal limit with the help of designed driving pulse in the presence of dissipation. In addition, our scheme allows a highly tunable switching between two cloning methods, namely the probabilistic and deterministic cloning, by simply changing the input laser pulse. This provides a promising platform for experimental executability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05643v1-abstract-full').style.display = 'none'; document.getElementById('2302.05643v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.03341">arXiv:2301.03341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.03341">pdf</a>, <a href="https://arxiv.org/format/2301.03341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0144743">10.1063/5.0144743 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enantio-specific state transfer of chiral molecules through enantio-selective shortcut-to-adiabaticity paths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jian-Jian Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+C">Chong Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.03341v1-abstract-short" style="display: inline;"> An interesting method of fast enantio-specific state transfer is proposed for cyclic three-level systems of chiral molecules. We show that the fast population transfer via shortcut to adiabaticity can be accomplished for the cyclic three-level system of a general (chiral) molecule with invariant-based inverse engineering of the coupling strengths. By choosing appropriate parameters, the two enanti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03341v1-abstract-full').style.display = 'inline'; document.getElementById('2301.03341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.03341v1-abstract-full" style="display: none;"> An interesting method of fast enantio-specific state transfer is proposed for cyclic three-level systems of chiral molecules. We show that the fast population transfer via shortcut to adiabaticity can be accomplished for the cyclic three-level system of a general (chiral) molecule with invariant-based inverse engineering of the coupling strengths. By choosing appropriate parameters, the two enantiomers, which are initially prepared in their ground states in the three-level systems, will evolve respectively along their enantio-selective shortcut-to-adiabaticity paths to different-energy final states simultaneously, namely achieving the fast enantio-specific state transfer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03341v1-abstract-full').style.display = 'none'; document.getElementById('2301.03341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.00661">arXiv:2212.00661</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.00661">pdf</a>, <a href="https://arxiv.org/format/2212.00661">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Hybrid Gate-Pulse Model for Variational Quantum Algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zhixin Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+Z">Zichang He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+J">Ji Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Hanrui Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+R">Ruiyang Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yiru Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+S">Song Han</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+X">Xuehai Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.00661v1-abstract-short" style="display: inline;"> Current quantum programs are mostly synthesized and compiled on the gate-level, where quantum circuits are composed of quantum gates. The gate-level workflow, however, introduces significant redundancy when quantum gates are eventually transformed into control signals and applied on quantum devices. For superconducting quantum computers, the control signals are microwave pulses. Therefore, pulse-l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00661v1-abstract-full').style.display = 'inline'; document.getElementById('2212.00661v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.00661v1-abstract-full" style="display: none;"> Current quantum programs are mostly synthesized and compiled on the gate-level, where quantum circuits are composed of quantum gates. The gate-level workflow, however, introduces significant redundancy when quantum gates are eventually transformed into control signals and applied on quantum devices. For superconducting quantum computers, the control signals are microwave pulses. Therefore, pulse-level optimization has gained more attention from researchers due to their advantages in terms of circuit duration. Recent works, however, are limited by their poor scalability brought by the large parameter space of control signals. In addition, the lack of gate-level &#34;knowledge&#34; also affects the performance of pure pulse-level frameworks. We present a hybrid gate-pulse model that can mitigate these problems. We propose to use gate-level compilation and optimization for &#34;fixed&#34; part of the quantum circuits and to use pulse-level methods for problem-agnostic parts. Experimental results demonstrate the efficiency of the proposed framework in discrete optimization tasks. We achieve a performance boost at most 8% with 60% shorter pulse duration in the problem-agnostic layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00661v1-abstract-full').style.display = 'none'; document.getElementById('2212.00661v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.16724">arXiv:2210.16724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.16724">pdf</a>, <a href="https://arxiv.org/format/2210.16724">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3508352.3561118">10.1145/3508352.3561118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QuEst: Graph Transformer for Quantum Circuit Reliability Estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Hanrui Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+P">Pengyu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gu%2C+J">Jiaqi Gu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zirui Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+Y">Yongshan Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+W">Weiwen Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+X">Xuehai Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+D+Z">David Z. Pan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+S">Song Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.16724v1-abstract-short" style="display: inline;"> Among different quantum algorithms, PQC for QML show promises on near-term devices. To facilitate the QML and PQC research, a recent python library called TorchQuantum has been released. It can construct, simulate, and train PQC for machine learning tasks with high speed and convenient debugging supports. Besides quantum for ML, we want to raise the community&#39;s attention on the reversed direction:&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16724v1-abstract-full').style.display = 'inline'; document.getElementById('2210.16724v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.16724v1-abstract-full" style="display: none;"> Among different quantum algorithms, PQC for QML show promises on near-term devices. To facilitate the QML and PQC research, a recent python library called TorchQuantum has been released. It can construct, simulate, and train PQC for machine learning tasks with high speed and convenient debugging supports. Besides quantum for ML, we want to raise the community&#39;s attention on the reversed direction: ML for quantum. Specifically, the TorchQuantum library also supports using data-driven ML models to solve problems in quantum system research, such as predicting the impact of quantum noise on circuit fidelity and improving the quantum circuit compilation efficiency. This paper presents a case study of the ML for quantum part. Since estimating the noise impact on circuit reliability is an essential step toward understanding and mitigating noise, we propose to leverage classical ML to predict noise impact on circuit fidelity. Inspired by the natural graph representation of quantum circuits, we propose to leverage a graph transformer model to predict the noisy circuit fidelity. We firstly collect a large dataset with a variety of quantum circuits and obtain their fidelity on noisy simulators and real machines. Then we embed each circuit into a graph with gate and noise properties as node features, and adopt a graph transformer to predict the fidelity. Evaluated on 5 thousand random and algorithm circuits, the graph transformer predictor can provide accurate fidelity estimation with RMSE error 0.04 and outperform a simple neural network-based model by 0.02 on average. It can achieve 0.99 and 0.95 R$^2$ scores for random and algorithm circuits, respectively. Compared with circuit simulators, the predictor has over 200X speedup for estimating the fidelity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16724v1-abstract-full').style.display = 'none'; document.getElementById('2210.16724v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICCAD 2022; 10 pages, 10 figures; code at https://github.com/mit-han-lab/torchquantum</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08190">arXiv:2210.08190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.08190">pdf</a>, <a href="https://arxiv.org/format/2210.08190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> TopGen: Topology-Aware Bottom-Up Generator for Variational Quantum Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Hanrui Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+S">Song Han</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+X">Xuehai Qian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08190v1-abstract-short" style="display: inline;"> Variational Quantum Algorithms (VQA) are promising to demonstrate quantum advantages on near-term devices. Designing ansatz, a variational circuit with parameterized gates, is of paramount importance for VQA as it lays the foundation for parameter optimizations. Due to the large noise on Noisy-Intermediate Scale Quantum (NISQ) machines, considering circuit size and real device noise in the ansatz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08190v1-abstract-full').style.display = 'inline'; document.getElementById('2210.08190v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08190v1-abstract-full" style="display: none;"> Variational Quantum Algorithms (VQA) are promising to demonstrate quantum advantages on near-term devices. Designing ansatz, a variational circuit with parameterized gates, is of paramount importance for VQA as it lays the foundation for parameter optimizations. Due to the large noise on Noisy-Intermediate Scale Quantum (NISQ) machines, considering circuit size and real device noise in the ansatz design process is necessary. Unfortunately, recent works on ansatz design either consider no noise impact or only treat the real device as a black box with no specific noise information. In this work, we propose to open the black box by designing specific ansatz tailored for the qubit topology on target machines. Specifically, we propose a bottom-up approach to generate topology-specific ansatz. Firstly, we generate topology-compatible sub-circuits with desirable properties such as high expressibility and entangling capability. Then, the sub-circuits are combined together to form an initial ansatz. We further propose circuits stitching to solve the sparse connectivity issue between sub-circuits, and dynamic circuit growing to improve the accuracy. The ansatz constructed with this method is highly flexible and thus we can explore a much larger design space than previous state-of-the-art method in which all ansatz candidates are strict subsets of a pre-defined large ansatz. We use a popular VQA algorithm - Quantum Neural Networks (QNN) for Machine Learning (ML) task as the benchmarks. Experiments on 14 ML tasks show that under the same performance, the TopGen-searched ansatz can reduce the circuit depth and the number of CNOT gates by up to 2 * and 4 * respectively. Experiments on three real quantum machines demonstrate on average 17% accuracy improvements over baselines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08190v1-abstract-full').style.display = 'none'; document.getElementById('2210.08190v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.01656">arXiv:2210.01656</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.01656">pdf</a>, <a href="https://arxiv.org/format/2210.01656">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Improving Quantum Classifier Performance in NISQ Computers by Voting Strategy from Ensemble Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+R">Ruiyang Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kogge%2C+P">Peter Kogge</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.01656v3-abstract-short" style="display: inline;"> Due to the immense potential of quantum computers and the significant computing overhead required in machine learning applications, the variational quantum classifier (VQC) has received a lot of interest recently for image classification. The performance of VQC is jeopardized by the noise in Noisy Intermediate-Scale Quantum (NISQ) computers, which is a significant hurdle. It is crucial to remember&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01656v3-abstract-full').style.display = 'inline'; document.getElementById('2210.01656v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.01656v3-abstract-full" style="display: none;"> Due to the immense potential of quantum computers and the significant computing overhead required in machine learning applications, the variational quantum classifier (VQC) has received a lot of interest recently for image classification. The performance of VQC is jeopardized by the noise in Noisy Intermediate-Scale Quantum (NISQ) computers, which is a significant hurdle. It is crucial to remember that large error rates occur in quantum algorithms due to quantum decoherence and imprecision of quantum gates. Previous studies have looked towards using ensemble learning in conventional computing to reduce quantum noise. We also point out that the simple average aggregation in classical ensemble learning may not work well for NISQ computers due to the unbalanced confidence distribution in VQC. Therefore, in this study, we suggest that ensemble quantum classifiers be optimized with plurality voting. On the MNIST dataset and IBM quantum computers, experiments are carried out. The results show that the suggested method can outperform state-of-the-art on two- and four-class classifications by up to 16.0% and 6.1% , respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01656v3-abstract-full').style.display = 'none'; document.getElementById('2210.01656v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11360">arXiv:2209.11360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.11360">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Realization of high-dynamic-range broadband magnetic-field sensing with ensemble nitrogen-vacancy centers in diamond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+C">Cao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Q">Qihui Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+Y">Yuqiang Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+F">Fei Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Krishna%2C+K">Krishangi Krishna</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Nan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+L">Lihao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Toussaint%2C+K+C">Kimani C. Toussaint Jr</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jiangong Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+H">Hao Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Z">Zhenyu Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11360v1-abstract-short" style="display: inline;"> We present a new magnetometry method integrating an ensemble of nitrogen-vacancy (NV) centers in a single-crystal diamond with an extended dynamic range for monitoring the fast changing magnetic-field. The NV-center spin resonance frequency is tracked using a closed-loop frequency locked technique with fast frequency hopping to achieve a 10 kHz measurement bandwidth, thus, allowing for the detecti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11360v1-abstract-full').style.display = 'inline'; document.getElementById('2209.11360v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11360v1-abstract-full" style="display: none;"> We present a new magnetometry method integrating an ensemble of nitrogen-vacancy (NV) centers in a single-crystal diamond with an extended dynamic range for monitoring the fast changing magnetic-field. The NV-center spin resonance frequency is tracked using a closed-loop frequency locked technique with fast frequency hopping to achieve a 10 kHz measurement bandwidth, thus, allowing for the detection of fast changing magnetic signals up to 0.723 T/s.This technique exhibits an extended dynamic range subjected to the working bandwidth of the microwave source. This extended dynamic range can reach up to 4.3 mT, which is 86 times broader than the intrinsic dynamic range. The essential components for NV spin control and signal processing such as signal generation, microwave frequency control, data processing and readout are integrated in a board-level system. With this platform, we demonstrate broadband magnetometry with an optimized sensitivity of 4.2 nT-Hz-1/2. This magnetometry method has the potential to be implemented in a multichannel frequency locked vector magnetometer suitable for a wide range of practical applications such as magnetocardiography and high-precision current sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11360v1-abstract-full').style.display = 'none'; document.getElementById('2209.11360v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05133">arXiv:2208.05133</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05133">pdf</a>, <a href="https://arxiv.org/ps/2208.05133">ps</a>, <a href="https://arxiv.org/format/2208.05133">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11432-022-3620-2">10.1007/s11432-022-3620-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detecting coherence with respect to general quantum measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yu-Cheng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jiong Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Wen-Zhao Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Cheng-Jie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05133v1-abstract-short" style="display: inline;"> Quantum coherence is a crucial resource in quantum resource theory. Previous study mainly focused on standard coherence under a complete orthogonal reference basis. The standard coherence has recently been extended to general positive-operator-valued measure (POVM)-based coherence, including block coherence as a special case. Therefore, it is necessary to construct block coherence and POVM-based c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05133v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05133v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05133v1-abstract-full" style="display: none;"> Quantum coherence is a crucial resource in quantum resource theory. Previous study mainly focused on standard coherence under a complete orthogonal reference basis. The standard coherence has recently been extended to general positive-operator-valued measure (POVM)-based coherence, including block coherence as a special case. Therefore, it is necessary to construct block coherence and POVM-based coherence witnesses to detect them. In this work, we present witnesses for block coherence and POVM-based coherence, and obtain the necessary and sufficient conditions for arbitrary block coherence and POVM-based coherence witnesses. We also discuss possible realizations of some block coherence and POVM-based coherence witnesses in experiments, and present examples of measuring block coherence witnesses based on real experimental data. Furthermore, an application of block coherence witnesses has been presented in a quantum parameter estimation task with a degenerate Hamiltonian, and one can estimate the unknown parameter by measuring our block coherence witnesses if the input state is block coherent. Lase but not least, we prove that the quantum Fisher information of any block incoherent state is equal to zero, which coincides with the result from measuring block coherence witnesses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05133v1-abstract-full').style.display = 'none'; document.getElementById('2208.05133v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Inf. Sci. 66, 180504 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.01215">arXiv:2208.01215</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.01215">pdf</a>, <a href="https://arxiv.org/format/2208.01215">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> NAPA: Intermediate-level Variational Native-pulse Ansatz for Variational Quantum Algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Hanrui Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hua%2C+F">Fei Hua</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zhixin Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+Y">Yongshan Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chong%2C+F">Fred Chong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+S">Song Han</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+X">Xuehai Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.01215v5-abstract-short" style="display: inline;"> Variational quantum algorithms (VQAs) have demonstrated great potentials in the Noisy Intermediate Scale Quantum (NISQ) era. In the workflow of VQA, the parameters of ansatz are iteratively updated to approximate the desired quantum states. We have seen various efforts to draft better ansatz with less gates. Some works consider the physical meaning of the underlying circuits, while others adopt th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01215v5-abstract-full').style.display = 'inline'; document.getElementById('2208.01215v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.01215v5-abstract-full" style="display: none;"> Variational quantum algorithms (VQAs) have demonstrated great potentials in the Noisy Intermediate Scale Quantum (NISQ) era. In the workflow of VQA, the parameters of ansatz are iteratively updated to approximate the desired quantum states. We have seen various efforts to draft better ansatz with less gates. Some works consider the physical meaning of the underlying circuits, while others adopt the ideas of neural architecture search (NAS) for ansatz generator. However, these designs do not exploit the full advantages of VQAs. Because most techniques target gate ansatz, and the parameters are usually rotation angles of the gates. In quantum computers, the gate ansatz will eventually be transformed into control signals such as microwave pulses on superconducting qubits. These control pulses need elaborate calibrations to minimize the errors such as over-rotation and under-rotation. In the case of VQAs, this procedure will introduce redundancy, but the variational properties of VQAs can naturally handle problems of over-rotation and under-rotation by updating the amplitude and frequency parameters. Therefore, we propose NAPA, a native-pulse ansatz generator framework for VQAs. We generate native-pulse ansatz with trainable parameters for amplitudes and frequencies. In our proposed NAPA, we are tuning parametric pulses, which are natively supported on NISQ computers. Given the limited availability of gradient-based optimizers for pulse-level quantum programs, we choose to deploy non-gradient optimizers in our framework. To constrain the number of parameters sent to the optimizer, we adopt a progressive way to generate our native-pulse ansatz. Experiments are conducted on both simulators and quantum devices for Variational Quantum Eigensolver (VQE) tasks to evaluate our methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01215v5-abstract-full').style.display = 'none'; document.getElementById('2208.01215v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.01625">arXiv:2204.01625</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.01625">pdf</a>, <a href="https://arxiv.org/format/2204.01625">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abq3903">10.1126/sciadv.abq3903 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon Collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=STAR+Collaboration"> STAR Collaboration</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Abdallah%2C+M+S">M. S. Abdallah</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Aboona%2C+B+E">B. E. Aboona</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Adam%2C+J">J. Adam</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Adamczyk%2C+L">L. Adamczyk</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Adams%2C+J+R">J. R. Adams</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Agakishiev%2C+G">G. Agakishiev</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Aggarwal%2C+I">I. Aggarwal</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Aitbaev%2C+A">A. Aitbaev</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Anderson%2C+D+M">D. M. Anderson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Aparin%2C+A">A. Aparin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Aschenauer%2C+E+C">E. C. Aschenauer</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ashraf%2C+M+U">M. U. Ashraf</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Atetalla%2C+F+G">F. G. Atetalla</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bairathi%2C+V">V. Bairathi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Baker%2C+W">W. Baker</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cap%2C+J+G+B">J. G. Ball Cap</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Barish%2C+K">K. Barish</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Behera%2C+A">A. Behera</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a> , et al. (370 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.01625v1-abstract-short" style="display: inline;"> A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultra-relativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus forming a short-lived vector meson (e.g. ${蟻^0}$).&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01625v1-abstract-full').style.display = 'inline'; document.getElementById('2204.01625v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.01625v1-abstract-full" style="display: none;"> A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultra-relativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus forming a short-lived vector meson (e.g. ${蟻^0}$). In this experiment, the polarization was utilized in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of ${蟻^0\rightarrow蟺^+蟺^-}$ decays. The observed interference is a result of an overlap of two wave functions at a distance an order of magnitude larger than the ${蟻^0}$ travel distance within its lifetime. The strong-interaction nuclear radii were extracted from these diffractive interactions, and found to be $6.53\pm 0.06$ fm ($^{197} {\rm Au }$) and $7.29\pm 0.08$ fm ($^{238} {\rm U}$), larger than the nuclear charge radii. The observable is demonstrated to be sensitive to the nuclear geometry and quantum interference of non-identical particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01625v1-abstract-full').style.display = 'none'; document.getElementById('2204.01625v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> STAR Collaboration, Sci. Adv. 9, abq3903 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.17267">arXiv:2203.17267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.17267">pdf</a>, <a href="https://arxiv.org/format/2203.17267">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Variational Quantum Pulse Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Hanrui Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+Y">Yongshan Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Z">Zhengqi Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+Z">Zhirui Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Boning%2C+D+S">Duane S. Boning</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+X">Xuehai Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+S">Song Han</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+W">Weiwen Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.17267v3-abstract-short" style="display: inline;"> Quantum computing is among the most promising emerging techniques to solve problems that are computationally intractable on classical hardware. A large body of existing works focus on using variational quantum algorithms on the gate level for machine learning tasks, such as the variational quantum circuit (VQC). However, VQC has limited flexibility and expressibility due to limited number of param&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17267v3-abstract-full').style.display = 'inline'; document.getElementById('2203.17267v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.17267v3-abstract-full" style="display: none;"> Quantum computing is among the most promising emerging techniques to solve problems that are computationally intractable on classical hardware. A large body of existing works focus on using variational quantum algorithms on the gate level for machine learning tasks, such as the variational quantum circuit (VQC). However, VQC has limited flexibility and expressibility due to limited number of parameters, e.g. only one parameter can be trained in one rotation gate. On the other hand, we observe that quantum pulses are lower than quantum gates in the stack of quantum computing and offers more control parameters. Inspired by the promising performance of VQC, in this paper we propose variational quantum pulses (VQP), a novel paradigm to directly train quantum pulses for learning tasks. The proposed method manipulates variational quantum pulses by pulling and pushing the amplitudes of pulses in an optimization framework. Similar to variational quantum algorithms, our framework to train pulses maintains the robustness to noise on Noisy Intermediate-Scale Quantum (NISQ) computers. In an example task of binary classification, VQP learning achieves up to 11% and 9% higher accuracy compared with VQC learning on the qiskit noise simulators (with noise model from real machine) and ibmq-jarkata, respectively, demonstrating its effectiveness and feasibility. Stability for VQP to obtain reliable results has also been verified in the presence of noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17267v3-abstract-full').style.display = 'none'; document.getElementById('2203.17267v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09935">arXiv:2112.09935</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.09935">pdf</a>, <a href="https://arxiv.org/ps/2112.09935">ps</a>, <a href="https://arxiv.org/format/2112.09935">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ac4100">10.1088/1674-1056/ac4100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlocal nonreciprocal optomechanical circulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+J">Ji-Hui Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+R">Rui Peng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jiong Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=An%2C+J">Jing An</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Wen-Zhao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09935v1-abstract-short" style="display: inline;"> A nonlocal circulator protocol is proposed in hybrid optomechanical system. By analogy with quantum communication, using the input-output relationship, we establish the quantum channel between two optical modes with long-range. The three body nonlocal interaction between the cavity and the two oscillators is obtained by eliminating the optomechanical cavity mode and verifying the Bell-CHSH inequal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09935v1-abstract-full').style.display = 'inline'; document.getElementById('2112.09935v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09935v1-abstract-full" style="display: none;"> A nonlocal circulator protocol is proposed in hybrid optomechanical system. By analogy with quantum communication, using the input-output relationship, we establish the quantum channel between two optical modes with long-range. The three body nonlocal interaction between the cavity and the two oscillators is obtained by eliminating the optomechanical cavity mode and verifying the Bell-CHSH inequality of continuous variables. By introducing the phase accumulation between cyclic interactions, the unidirectional transmission of quantum state between optical mode and two mechanical modes are achieved. The results show that nonreciprocal transmissions are achieved as long as the accumulated phase reaches a certain value. In addition, the effective interaction parameters in our system are amplified, which reduces the difficulty of the implementation of our protocol. Our research can provide potential applications for nonlocal manipulation and transmission control of quantum platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09935v1-abstract-full').style.display = 'none'; document.getElementById('2112.09935v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.06028">arXiv:2111.06028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.06028">pdf</a>, <a href="https://arxiv.org/ps/2111.06028">ps</a>, <a href="https://arxiv.org/format/2111.06028">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.013100">10.1103/PhysRevResearch.4.013100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enantio-detection of cyclic three-level chiral molecules in a driven cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yu-Yuan Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jian-Jian Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+C">Chong Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.06028v1-abstract-short" style="display: inline;"> We propose an enantio-detection method of chiral molecules in a cavity with external drive. The chiral molecules are coupled with a quantized cavity field and two classical light fields to form the cyclic three-level systems. The chirality-dependent cavity-assisted three-photon process in the three-level systems leads to the generation of intracavity photons. Simultaneously, the drive field also r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06028v1-abstract-full').style.display = 'inline'; document.getElementById('2111.06028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.06028v1-abstract-full" style="display: none;"> We propose an enantio-detection method of chiral molecules in a cavity with external drive. The chiral molecules are coupled with a quantized cavity field and two classical light fields to form the cyclic three-level systems. The chirality-dependent cavity-assisted three-photon process in the three-level systems leads to the generation of intracavity photons. Simultaneously, the drive field also results in the chirality-independent process of the generation of intracavity photons. Based on the interference between the intracavity photons generated from these two processes, one can detect the enantiomeric excess of chiral mixture via monitoring the transmission rate of the drive field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06028v1-abstract-full').style.display = 'none'; document.getElementById('2111.06028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Research 4, 013100 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14059">arXiv:2106.14059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.14059">pdf</a>, <a href="https://arxiv.org/format/2106.14059">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.106.012411">10.1103/PhysRevA.106.012411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-qubit universal classifier implemented on an ion-trap quantum device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Dutta%2C+T">Tarun Dutta</a>, <a href="/search/quant-ph?searchtype=author&amp;query=P%C3%A9rez-Salinas%2C+A">Adri谩n P茅rez-Salinas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J+P+S">Jasper Phua Sing Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Latorre%2C+J+I">Jos茅 Ignacio Latorre</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mukherjee%2C+M">Manas Mukherjee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14059v3-abstract-short" style="display: inline;"> Quantum computers can provide solutions to classically intractable problems under specific and adequate conditions. However, current devices have only limited computational resources, and an effort is made to develop useful quantum algorithms under these circumstances. This work experimentally demonstrates that a single-qubit device can host a universal classifier. The quantum processor used in th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14059v3-abstract-full').style.display = 'inline'; document.getElementById('2106.14059v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14059v3-abstract-full" style="display: none;"> Quantum computers can provide solutions to classically intractable problems under specific and adequate conditions. However, current devices have only limited computational resources, and an effort is made to develop useful quantum algorithms under these circumstances. This work experimentally demonstrates that a single-qubit device can host a universal classifier. The quantum processor used in this work is based on ion traps, providing highly accurate control on small systems. The algorithm chosen is the re-uploading scheme, which can address general learning tasks. Ion traps suit the needs of accurate control required by re-uploading. In the experiment here presented, a set of non-trivial classification tasks are successfully carried. The training procedure is performed in two steps combining simulation and experiment. Final results are benchmarked against exact simulations of the same method and also classical algorithms, showing a competitive performance of the ion-trap quantum classifier. This work constitutes the first experimental implementation of a classification algorithm based on the re-uploading scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14059v3-abstract-full').style.display = 'none'; document.getElementById('2106.14059v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures, and 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 106, 012411 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14570">arXiv:2012.14570</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.14570">pdf</a>, <a href="https://arxiv.org/format/2012.14570">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.023328">10.1103/PhysRevA.103.023328 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bose-Einstein condensates in an atom-optomechanical system with effective global non-uniform interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jia-Ming Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Z">Zheng-Wei Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pu%2C+H">Han Pu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+X">Xiang-Fa Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14570v1-abstract-short" style="display: inline;"> We consider a hybrid atom-optomechanical system consisting of a mechanical membrane inside an optical cavity and an atomic Bose-Einstein condensate outside the cavity. The condensate is confined in an optical lattice potential formed by a traveling laser beam reflected off one cavity mirror. We derive the cavity-mediated effective atom-atom interaction potential, and find that it is non-uniform, s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14570v1-abstract-full').style.display = 'inline'; document.getElementById('2012.14570v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14570v1-abstract-full" style="display: none;"> We consider a hybrid atom-optomechanical system consisting of a mechanical membrane inside an optical cavity and an atomic Bose-Einstein condensate outside the cavity. The condensate is confined in an optical lattice potential formed by a traveling laser beam reflected off one cavity mirror. We derive the cavity-mediated effective atom-atom interaction potential, and find that it is non-uniform, site-dependent, and does not decay as the interatomic distance increases. We show that the presence of this effective interaction breaks the Z$_2$ symmetry of the system and gives rise to new quantum phases and phase transitions. When the long-range interaction dominates, the condensate breaks the translation symmetry and turns into a novel self-organized lattice-like state with increasing particle densities for sites farther away from the cavity. We present the phase diagram of the system, and investigate the stabilities of different phases by calculating their respective excitation spectra. The system can serve as a platform to explore various self-organized phenomena induced by the long-range interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14570v1-abstract-full').style.display = 'none'; document.getElementById('2012.14570v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, 023328 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05165">arXiv:2012.05165</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.05165">pdf</a>, <a href="https://arxiv.org/ps/2012.05165">ps</a>, <a href="https://arxiv.org/format/2012.05165">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Quantum Discrimination of Two Noisy Displaced Number States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+R">Renzhi Yuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Julian Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05165v1-abstract-short" style="display: inline;"> The quantum discrimination of two non-coherent states draws much attention recently. In this letter, we first consider the quantum discrimination of two noiseless displaced number states. Then we derive the Fock representation of noisy displaced number states and address the problem of discriminating between two noisy displaced number states. We further prove that the optimal quantum discriminatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05165v1-abstract-full').style.display = 'inline'; document.getElementById('2012.05165v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05165v1-abstract-full" style="display: none;"> The quantum discrimination of two non-coherent states draws much attention recently. In this letter, we first consider the quantum discrimination of two noiseless displaced number states. Then we derive the Fock representation of noisy displaced number states and address the problem of discriminating between two noisy displaced number states. We further prove that the optimal quantum discrimination of two noisy displaced number states can be achieved by the Kennedy receiver with threshold detection. Simulation results verify the theoretical derivations and show that the error probability of on-off keying modulation using a displaced number state is significantly less than that of on-off keying modulation using a coherent state with the same average energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05165v1-abstract-full').style.display = 'none'; document.getElementById('2012.05165v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.04403">arXiv:2010.04403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.04403">pdf</a>, <a href="https://arxiv.org/ps/2010.04403">ps</a>, <a href="https://arxiv.org/format/2010.04403">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.053707">10.1103/PhysRevA.103.053707 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the mechanical reservoir spectral density in optomechanical system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Wen-Zhao Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+X">Xian-Ting Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jiong Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+L">Ling Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.04403v1-abstract-short" style="display: inline;"> To investigate the dynamical behavior of a quantum system embedded in a memory environment, it is crucial to obtain the knowledge of the reservoir spectral density. However, such knowledge is usually based on a priori assumptions about the environment. In this paper, we put forward a method to obtain key information about the reservoir spectral density of an optomechanical resonator without additi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04403v1-abstract-full').style.display = 'inline'; document.getElementById('2010.04403v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.04403v1-abstract-full" style="display: none;"> To investigate the dynamical behavior of a quantum system embedded in a memory environment, it is crucial to obtain the knowledge of the reservoir spectral density. However, such knowledge is usually based on a priori assumptions about the environment. In this paper, we put forward a method to obtain key information about the reservoir spectral density of an optomechanical resonator without additional assumptions about the spectral shape. This is achieved by detecting and analysing the optical transmission rate of the emitted light. In the weak optomechanical singlephoton coupling regime, we establish a simple relation between the output light spectrum and the reservoir spectral density. This provide a straightforward and effective way for reconstructing the spectral density profile in single or even multiple decoherence channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04403v1-abstract-full').style.display = 'none'; document.getElementById('2010.04403v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, 053707 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02064">arXiv:2010.02064</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.02064">pdf</a>, <a href="https://arxiv.org/format/2010.02064">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.032616">10.1103/PhysRevA.103.032616 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Implementing conventional and unconventional nonadiabatic geometric quantum gates via SU(2) transformations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jian-jian Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Lin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02064v2-abstract-short" style="display: inline;"> We propose a simple but versatile protocol to engineer time-dependent Hamiltonians inversely for geometric quantum computation. By utilizing SU(2) transformation, a speedup goal on gate operation is achieved with more freedom to design the control parameters. As an application, this protocol enables the conventional and unconventional nonadiabatic geometric quantum gates with desired evolution pat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02064v2-abstract-full').style.display = 'inline'; document.getElementById('2010.02064v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02064v2-abstract-full" style="display: none;"> We propose a simple but versatile protocol to engineer time-dependent Hamiltonians inversely for geometric quantum computation. By utilizing SU(2) transformation, a speedup goal on gate operation is achieved with more freedom to design the control parameters. As an application, this protocol enables the conventional and unconventional nonadiabatic geometric quantum gates with desired evolution paths by controlling the microwave pulses in the diamond nitrogen-vacancy center system. We show that the inversely designed Hamiltonian can fulfill the geometric gate with more economical evolution time and further reduces the influence of the environment noise on gate fidelity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02064v2-abstract-full').style.display = 'none'; document.getElementById('2010.02064v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages,4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, 032616 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.12538">arXiv:2009.12538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.12538">pdf</a>, <a href="https://arxiv.org/format/2009.12538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/abd747">10.1088/1674-1056/abd747 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lie transformation on shortcut to adiabaticity in parametric driving quantum system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jian-jian Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+Y">Yao Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Lin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.12538v1-abstract-short" style="display: inline;"> Shortcut to adiabaticity (STA) is a speed way to produce the same final state that would result in an adiabatic, infinitely slow process. Two typical techniques to engineer STA are developed by either introducing auxiliary counterdiabatic fields or finding new Hamiltonians that own dynamical invariants to constraint the system into the adiabatic paths. In this paper, a consistent method is introdu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12538v1-abstract-full').style.display = 'inline'; document.getElementById('2009.12538v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.12538v1-abstract-full" style="display: none;"> Shortcut to adiabaticity (STA) is a speed way to produce the same final state that would result in an adiabatic, infinitely slow process. Two typical techniques to engineer STA are developed by either introducing auxiliary counterdiabatic fields or finding new Hamiltonians that own dynamical invariants to constraint the system into the adiabatic paths. In this paper, a consistent method is introduced to naturally connect the above two techniques with a unified Lie algebraic framework, which neatly removes the requirements of finding instantaneous states in the transitionless driving method and the invariant quantities in the invariant-based inverse engineering approach. The general STA schemes for different potential expansions are concisely achieved with the aid of this method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12538v1-abstract-full').style.display = 'none'; document.getElementById('2009.12538v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages,2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14094">arXiv:2007.14094</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimized sideband cooling with initial system correlations in non-Markovian regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Wen-Zhao Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+T">Ting Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+J">Jie Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+W">Wenlin Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jiong Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14094v2-abstract-short" style="display: inline;"> An optimized sideband cooling in the presence of initial system correlations is investigated for a standard optomechanical system coupled to a general mechanical non-Markovian reservoir. We study the evolution of phonon number by incorporating the effects of initial correlations into the time-dependent coefficients in the Heisenberg equation. We introduce the concept of cooling rate and define an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14094v2-abstract-full').style.display = 'inline'; document.getElementById('2007.14094v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14094v2-abstract-full" style="display: none;"> An optimized sideband cooling in the presence of initial system correlations is investigated for a standard optomechanical system coupled to a general mechanical non-Markovian reservoir. We study the evolution of phonon number by incorporating the effects of initial correlations into the time-dependent coefficients in the Heisenberg equation. We introduce the concept of cooling rate and define an average phonon reduction function to describe the sideband cooling effect in non-Markovian regime. Our results show that the instantaneous phonon number can be significantly reduced by introducing either the parametric-amplification type or the beam-splitter type initial correlations. In addition, the ground state cooling rate can be accelerated by enhancing the initial correlation of beam-splitter type. By optimizing the initial state of the system and utilizing Q-modulation technology, a stable mechanical ground state can be obtained in a very short time. Our optimized cooling protocol provides an appealing platform for phonon manipulation and quantum information processing in solid-state systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14094v2-abstract-full').style.display = 'none'; document.getElementById('2007.14094v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The research data and numerical program of our manuscript were lost and the correctness cannot be verified. It is withdrawn to avoid being misleading</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.11109">arXiv:2007.11109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.11109">pdf</a>, <a href="https://arxiv.org/format/2007.11109">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimally Displaced Threshold Detection for Discriminating Binary Coherent States Using Imperfect Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+R">Renzhi Yuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+M">Mufei Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+S">Shuai Han</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Julian Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.11109v1-abstract-short" style="display: inline;"> Because of the potential applications in quantum information processing tasks, discrimination of binary coherent states using generalized Kennedy receiver with maximum a posteriori probability (MAP) detection has attracted increasing attentions in recent years. In this paper, we analytically study the performance of the generalized Kennedy receiver having optimally displaced threshold detection (O&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.11109v1-abstract-full').style.display = 'inline'; document.getElementById('2007.11109v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.11109v1-abstract-full" style="display: none;"> Because of the potential applications in quantum information processing tasks, discrimination of binary coherent states using generalized Kennedy receiver with maximum a posteriori probability (MAP) detection has attracted increasing attentions in recent years. In this paper, we analytically study the performance of the generalized Kennedy receiver having optimally displaced threshold detection (ODTD) in a realistic situation with noises and imperfect devices. We first prove that the MAP detection for a generalized Kennedy receiver is equivalent to a threshold detection in this realistic situation. Then we analyze the properties of the optimum threshold and the optimum displacement for ODTD, and propose a heuristic greedy search algorithm to obtain them. We prove that the ODTD degenerates to the Kennedy receiver with threshold detection when the signal power is large, and we also clarify the connection between the generalized Kennedy receiver with threshold detection and the one-port homodyne detection. Numerical results show that the proposed heuristic greedy search algorithm can obtain a lower and smoother error probability than the existing works. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.11109v1-abstract-full').style.display = 'none'; document.getElementById('2007.11109v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.00376">arXiv:2003.00376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.00376">pdf</a>, <a href="https://arxiv.org/format/2003.00376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> AccQOC: Accelerating Quantum Optimal Control Based Pulse Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+H">Haoqing Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+X">Xuehai Qian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.00376v1-abstract-short" style="display: inline;"> In the last decades, we have witnessed the rapid growth of Quantum Computing. In the current Noisy Intermediate-Scale Quantum (NISQ) era, the capability of a quantum machine is limited by the decoherence time, gate fidelity and the number of Qubits. Current quantum computing applications are far from the real &#34;quantum supremacy&#34; due to the fragile physical Qubits, which can only be entangled for a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00376v1-abstract-full').style.display = 'inline'; document.getElementById('2003.00376v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.00376v1-abstract-full" style="display: none;"> In the last decades, we have witnessed the rapid growth of Quantum Computing. In the current Noisy Intermediate-Scale Quantum (NISQ) era, the capability of a quantum machine is limited by the decoherence time, gate fidelity and the number of Qubits. Current quantum computing applications are far from the real &#34;quantum supremacy&#34; due to the fragile physical Qubits, which can only be entangled for a few microseconds. Recent works use quantum optimal control to reduce the latency of quantum circuits, thereby effectively increasing quantum volume. However, the key challenge of this technique is the large overhead due to long compilation time. In this paper, we propose AccQOC, a comprehensive static/dynamic hybrid workflow to transform gate groups (equivalent to matrices) to pulses using QOC (Quantum Optimal Control) with a reasonable compilation time budget. AccQOC is composed of static pre-compilation and accelerated dynamic compilation. With the methodology of AccQOC, we reached a balanced point of compilation time and overall latency. The results show that accelerated compilation based on MST achieves 9.88x compilation speedup compared to the standard compilation of each group while maintaining an average 2.43x latency reduction compared with gate-based compilation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00376v1-abstract-full').style.display = 'none'; document.getElementById('2003.00376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.02216">arXiv:1907.02216</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.02216">pdf</a>, <a href="https://arxiv.org/format/1907.02216">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Topological spinor vortex matter on spherical surface induced by non-Abelian spin-orbital-angular-momentum coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jia-Ming Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Z">Zheng-Wei Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+X">Xiang-Fa Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.02216v1-abstract-short" style="display: inline;"> We provide an explicit way to implement non-Abelian spin-orbital-angular-momentum (SOAM) coupling in spinor Bose-Einstein condensates using magnetic gradient coupling. For a spherical surface trap addressable using high-order Hermite-Gaussian beams, we show that this system supports various degenerate ground states carrying different total angular momenta $\mathbf{J}$, and the degeneracy can be tu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.02216v1-abstract-full').style.display = 'inline'; document.getElementById('1907.02216v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.02216v1-abstract-full" style="display: none;"> We provide an explicit way to implement non-Abelian spin-orbital-angular-momentum (SOAM) coupling in spinor Bose-Einstein condensates using magnetic gradient coupling. For a spherical surface trap addressable using high-order Hermite-Gaussian beams, we show that this system supports various degenerate ground states carrying different total angular momenta $\mathbf{J}$, and the degeneracy can be tuned by changing the strength of SOAM coupling. For weakly interacting spinor condensates with $f=1$, the system supports various meta-ferromagnetic phases and meta-polar states described by quantized total mean angular momentum $|\langle \mathbf{J} \rangle|$. Polar states with $Z_2$ symmetry and Thomson lattices formed by defects of spin vortices are also discussed. The system can be used to prepare various stable spin vortex states with nontrivial topology, and serve as a platform to investigate strong-correlated physics of neutral atoms with tunable ground-state degeneracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.02216v1-abstract-full').style.display = 'none'; document.getElementById('1907.02216v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.03088">arXiv:1905.03088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.03088">pdf</a>, <a href="https://arxiv.org/ps/1905.03088">ps</a>, <a href="https://arxiv.org/format/1905.03088">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-019-1470-6">10.1007/s11433-019-1470-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hyperbolic Dispersion in Chiral Molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+J">Jie-Xing Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jing-Jing Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Yin-Qi Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yan-Xiang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+F">Fu-Guo Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ai%2C+Q">Qing Ai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.03088v1-abstract-short" style="display: inline;"> We theoretically investigate the intra-band transitions in M枚bius molecules. Due to the weak magnetic response, the relative permittivity is significantly modified by the presence of the medium while the relative permeability is not. We show that there is hyperbolic dispersion relation induced by the intra-band transitions because one of the eigen-values of permittivity possesses a different sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03088v1-abstract-full').style.display = 'inline'; document.getElementById('1905.03088v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.03088v1-abstract-full" style="display: none;"> We theoretically investigate the intra-band transitions in M枚bius molecules. Due to the weak magnetic response, the relative permittivity is significantly modified by the presence of the medium while the relative permeability is not. We show that there is hyperbolic dispersion relation induced by the intra-band transitions because one of the eigen-values of permittivity possesses a different sign from the other two, while all three eigen-values of permeability are positive. We further demonstrate that the bandwidth of negative refraction is 0.1952~eV for the $H$-polarized incident light, which is broader than the ones for inter-band transitions by 3 orders of magnitude. Moreover, the frequency domain has been shifted from ultra-violet to visible domain. Although there is negative refraction for the $E$-polarized incident light, the bandwidth is much narrower and depends on the incident angle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03088v1-abstract-full').style.display = 'none'; document.getElementById('1905.03088v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Meh. 63, 260311(2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08767">arXiv:1811.08767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.08767">pdf</a>, <a href="https://arxiv.org/ps/1811.08767">ps</a>, <a href="https://arxiv.org/format/1811.08767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.99.063811">10.1103/PhysRevA.99.063811 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum correlation enhanced weak field detection in optomechanical system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Wen-Zhao Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+L">Li-Bo Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jiong Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+Y">Yun-Feng Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08767v1-abstract-short" style="display: inline;"> We propose a theoretical scheme to enhance the signal-to-noise ratio in ultrasensitive detection with the help of quantum correlation. By introducing the auxiliary oscillator and treated as an added probe for weak field detection, the additional noise can be greatly suppressed and the measurement accuracy may even break the standard quantum limit. We use the magnetic field as an example to exhibit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08767v1-abstract-full').style.display = 'inline'; document.getElementById('1811.08767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08767v1-abstract-full" style="display: none;"> We propose a theoretical scheme to enhance the signal-to-noise ratio in ultrasensitive detection with the help of quantum correlation. By introducing the auxiliary oscillator and treated as an added probe for weak field detection, the additional noise can be greatly suppressed and the measurement accuracy may even break the standard quantum limit. We use the magnetic field as an example to exhibit the detection capability of our scheme. The result show that, comparing with the traditional detection protocol, our scheme can have higher signal-to-noise ratio and better detection accuracy. Furthermore, the signal intensity detection curve shows a good linearity. Our results provide a promising platform for reducing the additional noise by utilizing quantum correlation in ultrasensitive detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08767v1-abstract-full').style.display = 'none'; document.getElementById('1811.08767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 99, 063811 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.02304">arXiv:1807.02304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.02304">pdf</a>, <a href="https://arxiv.org/format/1807.02304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2399-6528/aafe4b">10.1088/2399-6528/aafe4b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broad-Band Negative Refraction via Simultaneous Multi-Electron Transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jing-Jing Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chu%2C+Y">Ying-Qi Chu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+T">Tao Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+J">Jie-Xing Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+F">Fu-Guo Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ai%2C+Q">Qing Ai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.02304v1-abstract-short" style="display: inline;"> We analyze different factors which influence the negative refraction in solids and multi-atom molecules. We find that this negative refraction is significantly influenced by simultaneous multi-electron transitions with the same transition frequency and dipole redistribution over different eigenstates. We show that these simultaneous multi-electron transitions and enhanced transition dipole broaden&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.02304v1-abstract-full').style.display = 'inline'; document.getElementById('1807.02304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.02304v1-abstract-full" style="display: none;"> We analyze different factors which influence the negative refraction in solids and multi-atom molecules. We find that this negative refraction is significantly influenced by simultaneous multi-electron transitions with the same transition frequency and dipole redistribution over different eigenstates. We show that these simultaneous multi-electron transitions and enhanced transition dipole broaden the bandwidth of the negative refraction by at least one order of magnitude. This work provides additional connection between metamaterials and Mobius strips. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.02304v1-abstract-full').style.display = 'none'; document.getElementById('1807.02304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Commun. 3, 015010 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.02145">arXiv:1805.02145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.02145">pdf</a>, <a href="https://arxiv.org/ps/1805.02145">ps</a>, <a href="https://arxiv.org/format/1805.02145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/JOSAB.35.002192">10.1364/JOSAB.35.002192 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum evolution speed in the finite-temperature bosonic environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jun-Qing Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+G">Guo-Qing Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+J">Jing-Bo Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.02145v1-abstract-short" style="display: inline;"> We investigate the quantum evolution speed of a qubit in two kinds of finite-temperature environments. The first environment is a bosonic bath with Ohmic-like spectrum. It is found that the high temperature not only leads to the speed-up but also speed-down processes in the weak-coupling regime, which is different from the strong-coupling case where only exhibits speed-up process, and the effects&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02145v1-abstract-full').style.display = 'inline'; document.getElementById('1805.02145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.02145v1-abstract-full" style="display: none;"> We investigate the quantum evolution speed of a qubit in two kinds of finite-temperature environments. The first environment is a bosonic bath with Ohmic-like spectrum. It is found that the high temperature not only leads to the speed-up but also speed-down processes in the weak-coupling regime, which is different from the strong-coupling case where only exhibits speed-up process, and the effects of Ohmicity parameter of the bath on the quantum evolution speed are also different in the strong-coupling and weak-coupling regimes. Furthermore, we realize the controllable and stationary quantum evolution speed by applying the bang-bang pulse. For the second nonlinear bath, we study the quantum evolution speed of a qubit by resorting to the hierarchical equations of motion method beyond the Born-Markov approximation. It is shown that the performances of quantum evolution speed in weak-coupling and strong-coupling regimes are also different. In particular, the quantum evolution speed can be decelerated by the rise of temperature in the strong-coupling regime which is an anomalous phenomenon and contrary to the common recognition that quantum evolution speed always increases with the temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.02145v1-abstract-full').style.display = 'none'; document.getElementById('1805.02145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81P40; 81P15 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.03177">arXiv:1802.03177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.03177">pdf</a>, <a href="https://arxiv.org/ps/1802.03177">ps</a>, <a href="https://arxiv.org/format/1802.03177">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.97.062134">10.1103/PhysRevE.97.062134 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multipartite entanglement, quantum coherence, and quantum criticality in triangular and Sierpi艅ski fractal lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jun-Qing Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+J">Jing-Bo Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.03177v3-abstract-short" style="display: inline;"> We investigate the quantum phase transitions of the transverse-field quantum Ising model on the triangular lattice and Sierpi艅ski fractal lattices by employing multipartite entanglement and quantum coherence along with the quantum renormalization group method. It is shown that the quantum criticalities of these high-dimensional models closely relate to the behaviors of the multipartite entanglemen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.03177v3-abstract-full').style.display = 'inline'; document.getElementById('1802.03177v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.03177v3-abstract-full" style="display: none;"> We investigate the quantum phase transitions of the transverse-field quantum Ising model on the triangular lattice and Sierpi艅ski fractal lattices by employing multipartite entanglement and quantum coherence along with the quantum renormalization group method. It is shown that the quantum criticalities of these high-dimensional models closely relate to the behaviors of the multipartite entanglement and quantum coherence. As the thermodynamic limit is approached, the first derivatives of multipartite entanglement and quantum coherence exhibit singular behaviors and the consistent finite-size scaling behaviors for each lattice are also obtained from the first derivatives. The multipartite entanglement and quantum coherence are demonstrated to be good indicators for detecting the quantum phase transitions in the triangular lattice and Sierpi艅ski fractal lattices. Furthermore, the factors that determine the relations between the critical exponents and the correlation length exponents for these models are diverse. For the triangular lattice, the decisive factor is the spatial dimension, while for the Sierpi艅ski fractal lattices, it is the Hausdorff dimension. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.03177v3-abstract-full').style.display = 'none'; document.getElementById('1802.03177v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages; 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 82B26(Primary); 81P40; 81T17 (Secondary) </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 97, 062134 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.09486">arXiv:1712.09486</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.09486">pdf</a>, <a href="https://arxiv.org/ps/1712.09486">ps</a>, <a href="https://arxiv.org/format/1712.09486">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Coherent dynamics of a qubit-oscillator system in a noisy environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+W">Wei Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jun-Qing Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.09486v1-abstract-short" style="display: inline;"> We investigate the non-Markovian dynamics of a qubit-oscillator system embedded in a noisy environment by employing the hierarchical equations of motion approach. It is found that the decoherence rate of the whole qubit-oscillator-bath system can be significantly suppressed by enhancing the coupling strength between the qubit and the harmonic oscillator. Moreover, we find that the non-Markovian me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09486v1-abstract-full').style.display = 'inline'; document.getElementById('1712.09486v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.09486v1-abstract-full" style="display: none;"> We investigate the non-Markovian dynamics of a qubit-oscillator system embedded in a noisy environment by employing the hierarchical equations of motion approach. It is found that the decoherence rate of the whole qubit-oscillator-bath system can be significantly suppressed by enhancing the coupling strength between the qubit and the harmonic oscillator. Moreover, we find that the non-Markovian memory character of the bath is able to facilitate a robust quantum coherent dynamics in this qubit-oscillator-bath system. Our findings may be used to engineer some tunable coherent manipulations in mesoscopic quantum circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09486v1-abstract-full').style.display = 'none'; document.getElementById('1712.09486v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.11308">arXiv:1710.11308</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.11308">pdf</a>, <a href="https://arxiv.org/ps/1710.11308">ps</a>, <a href="https://arxiv.org/format/1710.11308">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Bistable cooling in optomechanical system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Wen-Zhao Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+W">Wen-Lin Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jiong Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mu%2C+Q">Qingxia Mu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.11308v1-abstract-short" style="display: inline;"> A scheme is presented to optimize the optomechanical cooling of mechanical resonator in instability regime. Based on the stability analysis, we uncovered a distinct bistable effect of photons and phonons, which can be used to realize a strong nonlinear effect even in the single-photon weak coupling regime. Considering the experimental realization, we investigate the sideband cooling in bistable re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.11308v1-abstract-full').style.display = 'inline'; document.getElementById('1710.11308v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.11308v1-abstract-full" style="display: none;"> A scheme is presented to optimize the optomechanical cooling of mechanical resonator in instability regime. Based on the stability analysis, we uncovered a distinct bistable effect of photons and phonons, which can be used to realize a strong nonlinear effect even in the single-photon weak coupling regime. Considering the experimental realization, we investigate the sideband cooling in bistable regime with and without quantum nonlinearity. It is shown that the fluctuation of the steady state phonons can be excellently suppressed at a rather low level due to the anti-rotating-wave effect, and it does not require high quality factor of the cavity. Our scheme offers a new perspective for optimizing the sideband cooling of mechanical resonators in the weak coupling regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.11308v1-abstract-full').style.display = 'none'; document.getElementById('1710.11308v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.01828">arXiv:1701.01828</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.01828">pdf</a>, <a href="https://arxiv.org/ps/1701.01828">ps</a>, <a href="https://arxiv.org/format/1701.01828">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0219749916500489">10.1142/S0219749916500489 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Solutions to the mean king&#39;s problem: higher-dimensional quantum error-correcting codes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yoshida%2C+M">Masakazu Yoshida</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kuriyama%2C+T">Toru Kuriyama</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.01828v2-abstract-short" style="display: inline;"> Mean king&#39;s problem is a kind of quantum state discrimination problems. In the problem, we try to discriminate eigenstates of noncommutative observables with the help of classical delayed information. The problem has been investigated from the viewpoint of error detection and correction. We construct higher-dimensional quantum error-correcting codes against error corresponding to the noncommutativ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.01828v2-abstract-full').style.display = 'inline'; document.getElementById('1701.01828v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.01828v2-abstract-full" style="display: none;"> Mean king&#39;s problem is a kind of quantum state discrimination problems. In the problem, we try to discriminate eigenstates of noncommutative observables with the help of classical delayed information. The problem has been investigated from the viewpoint of error detection and correction. We construct higher-dimensional quantum error-correcting codes against error corresponding to the noncommutative observables. Any code state of the codes provides a way to discriminate the eigenstates correctly with the classical delayed information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.01828v2-abstract-full').style.display = 'none'; document.getElementById('1701.01828v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8pages, supplemental paper for Phys. Rev. A 91, 052326 (2015)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Journal of Quantum Information, 14, 1650048 (2016) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cheng%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10