CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 200 results for author: <span class="mathjax">Shi, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Shi%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Shi, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Shi%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Shi, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Shi%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12417">arXiv:2411.12417</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12417">pdf</a>, <a href="https://arxiv.org/format/2411.12417">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Variational learning of integrated quantum photonic circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+C">Chengran Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mok%2C+W">Wai-Keong Mok</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+L">Lingxiao Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+H">Hong Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Q">Qiang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+F">Feng Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+X">Xianshu Luo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lo%2C+G">Guo-Qiang Lo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chin%2C+L+K">Lip Ket Chin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yuzhi Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Thompson%2C+J">Jayne Thompson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gu%2C+M">Mile Gu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+A+Q">Ai Qun Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12417v1-abstract-short" style="display: inline;"> Integrated photonic circuits play a crucial role in implementing quantum information processing in the noisy intermediate-scale quantum (NISQ) era. Variational learning is a promising avenue that leverages classical optimization techniques to enhance quantum advantages on NISQ devices. However, most variational algorithms are circuit-model-based and encounter challenges when implemented on integra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12417v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12417v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12417v1-abstract-full" style="display: none;"> Integrated photonic circuits play a crucial role in implementing quantum information processing in the noisy intermediate-scale quantum (NISQ) era. Variational learning is a promising avenue that leverages classical optimization techniques to enhance quantum advantages on NISQ devices. However, most variational algorithms are circuit-model-based and encounter challenges when implemented on integrated photonic circuits, because they involve explicit decomposition of large quantum circuits into sequences of basic entangled gates, leading to an exponential decay of success probability due to the non-deterministic nature of photonic entangling gates. Here, we present a variational learning approach for designing quantum photonic circuits, which directly incorporates post-selection and elementary photonic elements into the training process. The complicated circuit is treated as a single nonlinear logical operator, and a unified design is discovered for it through variational learning. Engineering an integrated photonic chip with automated control, we adjust and optimize the internal parameters of the chip in real time for task-specific cost functions. We utilize a simple case of designing photonic circuits for a single ancilla CNOT gate with improved success rate to illustrate how our proposed approach works, and then apply the approach in the first demonstration of quantum stochastic simulation using integrated photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12417v1-abstract-full').style.display = 'none'; document.getElementById('2411.12417v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20748">arXiv:2410.20748</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20748">pdf</a>, <a href="https://arxiv.org/format/2410.20748">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Detecting the Chern number via quench dynamics in two independent chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+D+K">D. K. He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y+B">Y. B. Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20748v1-abstract-short" style="display: inline;"> The Chern number, as a topological invariant, characterizes the topological features of a 2D system and can be experimentally detected through Hall conductivity. In this work, we investigate the connection between the Chern number and the features of two independent chains. It is shown that there exists a class of 2D systems that can be mapped into two independent chains. We demonstrate that the C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20748v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20748v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20748v1-abstract-full" style="display: none;"> The Chern number, as a topological invariant, characterizes the topological features of a 2D system and can be experimentally detected through Hall conductivity. In this work, we investigate the connection between the Chern number and the features of two independent chains. It is shown that there exists a class of 2D systems that can be mapped into two independent chains. We demonstrate that the Chern number is identical to the linking number of two loops, which are abstracted from each chain individually. This allows for the detection of the Chern number via quench dynamics in two independent chains. As an example, the Qi-Wu-Zhang (QWZ) model is employed to illustrate the scheme. Our finding provides a way to measure the phase diagram of a 2D system from the 1D systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20748v1-abstract-full').style.display = 'none'; document.getElementById('2410.20748v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15041">arXiv:2410.15041</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15041">pdf</a>, <a href="https://arxiv.org/format/2410.15041">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> High-precision pulse calibration of tunable couplers for high-fidelity two-qubit gates in superconducting quantum processors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tian-Ming Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jia-Chi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+B">Bing-Jie Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+K">Kaixuan Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Hao-Tian Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+Y">Yong-Xi Xiao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+C">Cheng-Lin Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+G">Gui-Han Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+C">Chi-Tong Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+Z">Zhen-Ting Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+K">Kui Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Y">Yueshan Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+L">Li Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+Y">Yang He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Z">Zheng-He Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+Y">Yi-Han Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+S">Si-Yun Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yan-Jun Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+X">Xiaohui Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+D">Dongning Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiang%2C+Z">Zhong-Cheng Xiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yun-Hao Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+K">Kai Xu</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15041v1-abstract-short" style="display: inline;"> For superconducting quantum processors, stable high-fidelity two-qubit operations depend on precise flux control of the tunable coupler. However, the pulse distortion poses a significant challenge to the control precision. Current calibration methods, which often rely on microwave crosstalk or additional readout resonators for coupler excitation and readout, tend to be cumbersome and inefficient,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15041v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15041v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15041v1-abstract-full" style="display: none;"> For superconducting quantum processors, stable high-fidelity two-qubit operations depend on precise flux control of the tunable coupler. However, the pulse distortion poses a significant challenge to the control precision. Current calibration methods, which often rely on microwave crosstalk or additional readout resonators for coupler excitation and readout, tend to be cumbersome and inefficient, especially when couplers only have flux control. Here, we introduce and experimentally validate a novel pulse calibration scheme that exploits the strong coupling between qubits and couplers, eliminating the need for extra coupler readout and excitation. Our method directly measures the short-time and long-time step responses of the coupler flux pulse transient, enabling us to apply predistortion to subsequent signals using fast Fourier transformation and deconvolution. This approach not only simplifies the calibration process but also significantly improves the precision and stability of the flux control. We demonstrate the efficacy of our method through the implementation of diabatic CZ and iSWAP gates with fidelities of $99.61\pm0.04\%$ and $99.82\pm0.02\%$, respectively, as well as a series of diabatic CPhase gates with high fidelities characterized by cross-entropy benchmarking. The consistency and robustness of our technique are further validated by the reduction in pulse distortion and phase error observed across multilayer CZ gates. These results underscore the potential of our calibration and predistortion method to enhance the performance of two-qubit gates in superconducting quantum processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15041v1-abstract-full').style.display = 'none'; document.getElementById('2410.15041v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05115">arXiv:2410.05115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05115">pdf</a>, <a href="https://arxiv.org/format/2410.05115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> AlphaRouter: Quantum Circuit Routing with Reinforcement Learning and Tree Search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+W">Wei Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Duan%2C+Y">Yiheng Duan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kharkov%2C+Y">Yaroslav Kharkov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fakoor%2C+R">Rasool Fakoor</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kessler%2C+E">Eric Kessler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yunong Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05115v1-abstract-short" style="display: inline;"> Quantum computers have the potential to outperform classical computers in important tasks such as optimization and number factoring. They are characterized by limited connectivity, which necessitates the routing of their computational bits, known as qubits, to specific locations during program execution to carry out quantum operations. Traditionally, the NP-hard optimization problem of minimizing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05115v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05115v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05115v1-abstract-full" style="display: none;"> Quantum computers have the potential to outperform classical computers in important tasks such as optimization and number factoring. They are characterized by limited connectivity, which necessitates the routing of their computational bits, known as qubits, to specific locations during program execution to carry out quantum operations. Traditionally, the NP-hard optimization problem of minimizing the routing overhead has been addressed through sub-optimal rule-based routing techniques with inherent human biases embedded within the cost function design. This paper introduces a solution that integrates Monte Carlo Tree Search (MCTS) with Reinforcement Learning (RL). Our RL-based router, called AlphaRouter, outperforms the current state-of-the-art routing methods and generates quantum programs with up to $20\%$ less routing overhead, thus significantly enhancing the overall efficiency and feasibility of quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05115v1-abstract-full').style.display = 'none'; document.getElementById('2410.05115v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures, International Conference on Quantum Computing and Engineering - QCE24</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04030">arXiv:2410.04030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04030">pdf</a>, <a href="https://arxiv.org/format/2410.04030">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> A comparison on constrain encoding methods for quantum approximate optimization algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yiwen Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiao%2C+Q">Qingyue Jiao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yidong Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+K">Ke Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+S">Shangjie Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04030v1-abstract-short" style="display: inline;"> The Quantum Approximate Optimization Algorithm (QAOA) represents a significant opportunity for practical quantum computing applications, particularly in the era before error correction is fully realized. This algorithm is especially relevant for addressing constraint satisfaction problems (CSPs), which are critical in various fields such as supply chain management, energy distribution, and financi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04030v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04030v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04030v1-abstract-full" style="display: none;"> The Quantum Approximate Optimization Algorithm (QAOA) represents a significant opportunity for practical quantum computing applications, particularly in the era before error correction is fully realized. This algorithm is especially relevant for addressing constraint satisfaction problems (CSPs), which are critical in various fields such as supply chain management, energy distribution, and financial modeling. In our study, we conduct a numerical comparison of three different strategies for incorporating linear constraints into QAOA: transforming them into an unconstrained format, introducing penalty dephasing, and utilizing the quantum Zeno effect. We assess the efficiency and effectiveness of these methods using the knapsack problem as a case study. Our findings provide insights into the potential applicability of different encoding methods for various use cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04030v1-abstract-full').style.display = 'none'; document.getElementById('2410.04030v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03838">arXiv:2410.03838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03838">pdf</a>, <a href="https://arxiv.org/format/2410.03838">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Andress%2C+J">Joseph Andress</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Engel%2C+A">Alexander Engel</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yuan Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Parker%2C+S">Scott Parker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03838v1-abstract-short" style="display: inline;"> We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations (ODEs), which may be generated from partial differential equations in plasma physics. We map a dynamical system to a Hamiltonian form, where the Hamiltonian matrix is a function of dynamical variables. To advance in time, we measure expectation values from the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03838v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03838v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03838v1-abstract-full" style="display: none;"> We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations (ODEs), which may be generated from partial differential equations in plasma physics. We map a dynamical system to a Hamiltonian form, where the Hamiltonian matrix is a function of dynamical variables. To advance in time, we measure expectation values from the previous time step, and evaluate the Hamiltonian function classically, which introduces stochasticity into the dynamics. We then perform standard quantum Hamiltonian simulation over a short time, using the evaluated constant Hamiltonian matrix. This approach requires evolving an ensemble of quantum states, which are consumed each step to measure required observables. We apply this approach to the classic logistic and Lorenz systems, in both integrable and chaotic regimes. Out analysis shows that solutions&#39; accuracy is influenced by both the stochastic sampling rate and the nature of the dynamical system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03838v1-abstract-full').style.display = 'none'; document.getElementById('2410.03838v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, under consideration for publication in J. Plasma Phys</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19224">arXiv:2409.19224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19224">pdf</a>, <a href="https://arxiv.org/format/2409.19224">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The controlled exciton transport of the Multi-chain system by cavity-dressed energy level crossings and anticrossings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+F">Fang-Qi Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yu-Ren Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+J">Ji-Ming Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+Z">Zi-Fa Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xue%2C+J">Ju-Kui Xue</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jia-Hui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19224v2-abstract-short" style="display: inline;"> The accomplished functions of a variety of quantum devices are closely associated with the controlling of exciton transport. To this end we study the exciton transport of the two-dimensional system consisting of two-level multichains with various coupling configurations in a cavity. Two types of the chains are considered, including Tavis-Cummings and Su-Schrieffer-Heeger chain. Two conformations o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19224v2-abstract-full').style.display = 'inline'; document.getElementById('2409.19224v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19224v2-abstract-full" style="display: none;"> The accomplished functions of a variety of quantum devices are closely associated with the controlling of exciton transport. To this end we study the exciton transport of the two-dimensional system consisting of two-level multichains with various coupling configurations in a cavity. Two types of the chains are considered, including Tavis-Cummings and Su-Schrieffer-Heeger chain. Two conformations of the coupling between chains are considered, including square and triangle type. The effects of the inter-chain coupling, dimerization parameter, the cavity, the length of chains, and the number of chains on the exciton transport are in detail investigated for different coupling configurations of the multi-chain system through spectra and steady-state dynamics. The results show that in the absence of a cavity the exciton transport effciency is decided by the distribution of population of exciton on whole chains. However, when the cavity is considered the exciton transport currents and effciency of the system is controlled by the cavity-dressed energy level crossings and anticrossings near zero-energy modes, at which the coherent excitation and Landau-Zener transitions occur. Therefore, the exciton transport can be enhanced or suppressed at the crossings and anticrossings, in which the polariton acts as crucial role. Besides, it is discovered that the exciton transport effciency is closely related with the parity of both the length and the number of chains. This work is important for the understanding of the exciton transport mechanism in the multichain-cavity system, and provides theoretical basis for excitonic devices with controllable and effcient exciton transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19224v2-abstract-full').style.display = 'none'; document.getElementById('2409.19224v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02010">arXiv:2409.02010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02010">pdf</a>, <a href="https://arxiv.org/format/2409.02010">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> HATT: Hamiltonian Adaptive Ternary Tree for Optimizing Fermion-to-Qubit Mapping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yuhao Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yao%2C+K">Kevin Yao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hong%2C+J">Jonathan Hong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Froustey%2C+J">Julien Froustey</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rrapaj%2C+E">Ermal Rrapaj</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Iancu%2C+C">Costin Iancu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+G">Gushu Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yunong Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02010v2-abstract-short" style="display: inline;"> This paper introduces the Hamiltonian-Adaptive Ternary Tree (HATT) framework to compile optimized Fermion-to-qubit mapping for specific Fermionic Hamiltonians. In the simulation of Fermionic quantum systems, efficient Fermion-to-qubit mapping plays a critical role in transforming the Fermionic system into a qubit system. HATT utilizes ternary tree mapping and a bottom-up construction procedure to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02010v2-abstract-full').style.display = 'inline'; document.getElementById('2409.02010v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02010v2-abstract-full" style="display: none;"> This paper introduces the Hamiltonian-Adaptive Ternary Tree (HATT) framework to compile optimized Fermion-to-qubit mapping for specific Fermionic Hamiltonians. In the simulation of Fermionic quantum systems, efficient Fermion-to-qubit mapping plays a critical role in transforming the Fermionic system into a qubit system. HATT utilizes ternary tree mapping and a bottom-up construction procedure to generate Hamiltonian aware Fermion-to-qubit mapping to reduce the Pauli weight of the qubit Hamiltonian, resulting in lower quantum simulation circuit overhead. Additionally, our optimizations retain the important vacuum state preservation property in our Fermion-to-qubit mapping and reduce the complexity of our algorithm from $O(N^4)$ to $O(N^3)$. Evaluations and simulations of various Fermionic systems demonstrate $5\sim20\%$ reduction in Pauli weight, gate count, and circuit depth, alongside excellent scalability to larger systems. Experiments on the Ionq quantum computer also show the advantages of our approach in noise resistance in quantum simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02010v2-abstract-full').style.display = 'none'; document.getElementById('2409.02010v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14684">arXiv:2408.14684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14684">pdf</a>, <a href="https://arxiv.org/format/2408.14684">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Preparing angular momentum eigenstates using engineered quantum walks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yuan Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Beck%2C+K+M">Kristin M. Beck</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kruse%2C+V+A">Veronika Anneliese Kruse</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Libby%2C+S+B">Stephen B. Libby</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14684v1-abstract-short" style="display: inline;"> Coupled angular momentum eigenstates are widely used in atomic and nuclear physics calculations, and are building blocks for spin networks and the Schur transform. To combine two angular momenta $\mathbf{J}_1$ and $\mathbf{J}_2$, forming eigenstates of their total angular momentum $\mathbf{J}=\mathbf{J}_1+\mathbf{J}_2$, we develop a quantum-walk scheme that does not require inputting $O(j^3)$ nonz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14684v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14684v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14684v1-abstract-full" style="display: none;"> Coupled angular momentum eigenstates are widely used in atomic and nuclear physics calculations, and are building blocks for spin networks and the Schur transform. To combine two angular momenta $\mathbf{J}_1$ and $\mathbf{J}_2$, forming eigenstates of their total angular momentum $\mathbf{J}=\mathbf{J}_1+\mathbf{J}_2$, we develop a quantum-walk scheme that does not require inputting $O(j^3)$ nonzero Clebsch-Gordan (CG) coefficients classically. In fact, our scheme may be regarded as a unitary method for computing CG coefficients on quantum computers with a typical complexity of $O(j)$ and a worst-case complexity of $O(j^3)$. Equivalently, our scheme provides decompositions of the dense CG unitary into sparser unitary operations. Our scheme prepares angular momentum eigenstates using a sequence of Hamiltonians to move an initial state deterministically to desired final states, which are usually highly entangled states in the computational basis. In contrast to usual quantum walks, whose Hamiltonians are prescribed, we engineer the Hamiltonians in $\mathfrak{su}(2)\times \mathfrak{su}(2)$, which are inspired by, but different from, Hamiltonians that govern magnetic resonances and dipole interactions. To achieve a deterministic preparation of both ket and bra states, we use projection and destructive interference to double pinch the quantum walks, such that each step is a unit-probability population transfer within a two-level system. We test our state preparation scheme on classical computers, reproducing CG coefficients. We also implement small test problems on current quantum hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14684v1-abstract-full').style.display = 'none'; document.getElementById('2408.14684v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages total, 17 pages main text, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Reviewed and released under LLNL-JRNL-867573 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07342">arXiv:2408.07342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07342">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Evidence of P-wave Pairing in K2Cr3As3 Superconductors from Phase-sensitive Measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Z">Zhiyuan Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dou%2C+Z">Ziwei Dou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+A">Anqi Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Cuiwei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hong%2C+Y">Yu Hong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lei%2C+X">Xincheng Lei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+Y">Yue Pan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Z">Zhongchen Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Z">Zhipeng Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yupeng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+G">Guoan Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+X">Xiaofan Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+X">Xingchen Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+X">Xiao Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lyu%2C+Z">Zhaozheng Lyu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+P">Peiling Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qu%2C+F">Faming Qu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+G">Guangtong Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Su%2C+D">Dong Su</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+L">Li Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+J">Jie Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07342v1-abstract-short" style="display: inline;"> P-wave superconductors hold immense promise for both fundamental physics and practical applications due to their unusual pairing symmetry and potential topological superconductivity. However, the exploration of the p-wave superconductors has proved to be a complex endeavor. Not only are they rare in nature but also the identification of p-wave superconductors has been an arduous task in history. F&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07342v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07342v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07342v1-abstract-full" style="display: none;"> P-wave superconductors hold immense promise for both fundamental physics and practical applications due to their unusual pairing symmetry and potential topological superconductivity. However, the exploration of the p-wave superconductors has proved to be a complex endeavor. Not only are they rare in nature but also the identification of p-wave superconductors has been an arduous task in history. For example, phase-sensitive measurement, an experimental technique which can provide conclusive evidence for unconventional pairing, has not been implemented successfully to identify p-wave superconductors. Here, we study a recently discovered family of superconductors, A2Cr3As3 (A = K, Rb, Cs), which were proposed theoretically to be a candidate of p-wave superconductors. We fabricate superconducting quantum interference devices (SQUIDs) on exfoliated K2Cr3As3, and perform the phase-sensitive measurement. We observe that such SQUIDs exhibit a pronounced second-order harmonic component sin(2蠁) in the current-phase relation, suggesting the admixture of 0- and 蟺-phase. By carefully examining the magnetic field dependence of the oscillation patterns of critical current and Shapiro steps under microwave irradiation, we reveal a crossover from 0- to 蟺-dominating phase state and conclude that the existence of the 蟺-phase is in favor of the p-wave pairing symmetry in K2Cr3As3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07342v1-abstract-full').style.display = 'none'; document.getElementById('2408.07342v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06299">arXiv:2408.06299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06299">pdf</a>, <a href="https://arxiv.org/format/2408.06299">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Stabilizer Entanglement Distillation and Efficient Fault-Tolerant Encoder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yu Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Patil%2C+A">Ashlesha Patil</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guha%2C+S">Saikat Guha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06299v1-abstract-short" style="display: inline;"> Entanglement is essential for quantum information processing but is limited by noise. We address this by developing high-yield entanglement distillation protocols with several advancements. (1) We extend the 2-to-1 recurrence entanglement distillation protocol to higher-rate n-to-(n-1) protocols that can correct any single-qubit errors. These protocols are evaluated through numerical simulations f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06299v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06299v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06299v1-abstract-full" style="display: none;"> Entanglement is essential for quantum information processing but is limited by noise. We address this by developing high-yield entanglement distillation protocols with several advancements. (1) We extend the 2-to-1 recurrence entanglement distillation protocol to higher-rate n-to-(n-1) protocols that can correct any single-qubit errors. These protocols are evaluated through numerical simulations focusing on fidelity and yield. We also outline a method to adapt any classical error-correcting code for entanglement distillation, where the code can correct both bit-flip and phase-flip errors by incorporating Hadamard gates. (2) We propose a constant-depth decoder for stabilizer codes that transforms logical states into physical ones using single-qubit measurements. This decoder is applied to entanglement distillation protocols, reducing circuit depth and enabling protocols derived from advanced quantum error-correcting codes. We demonstrate this by evaluating the circuit complexity for entanglement distillation protocols based on surface codes and quantum convolutional codes. (3) Our stabilizer entanglement distillation techniques advance quantum computing. We propose a fault-tolerant protocol for constant-depth encoding and decoding of arbitrary quantum states, applicable to quantum low-density parity-check (qLDPC) codes and surface codes. This protocol is feasible with state-of-the-art reconfigurable atom arrays and surpasses the limits of conventional logarithmic depth encoders. Overall, our study integrates stabilizer formalism, measurement-based quantum computing, and entanglement distillation, advancing both quantum communication and computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06299v1-abstract-full').style.display = 'none'; document.getElementById('2408.06299v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03429">arXiv:2408.03429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03429">pdf</a>, <a href="https://arxiv.org/format/2408.03429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> MarQSim: Reconciling Determinism and Randomness in Compiler Optimization for Quantum Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+X">Xiuqi Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+J">Junyu Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yuhao Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yunong Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+G">Gushu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03429v1-abstract-short" style="display: inline;"> Quantum simulation, fundamental in quantum algorithm design, extends far beyond its foundational roots, powering diverse quantum computing applications. However, optimizing the compilation of quantum Hamiltonian simulation poses significant challenges. Existing approaches fall short in reconciling deterministic and randomized compilation, lack appropriate intermediate representations, and struggle&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03429v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03429v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03429v1-abstract-full" style="display: none;"> Quantum simulation, fundamental in quantum algorithm design, extends far beyond its foundational roots, powering diverse quantum computing applications. However, optimizing the compilation of quantum Hamiltonian simulation poses significant challenges. Existing approaches fall short in reconciling deterministic and randomized compilation, lack appropriate intermediate representations, and struggle to guarantee correctness. Addressing these challenges, we present MarQSim, a novel compilation framework. MarQSim leverages a Markov chain-based approach, encapsulated in the Hamiltonian Term Transition Graph, adeptly reconciling deterministic and randomized compilation benefits. We rigorously prove its algorithmic efficiency and correctness criteria. Furthermore, we formulate a Min-Cost Flow model that can tune transition matrices to enforce correctness while accommodating various optimization objectives. Experimental results demonstrate MarQSim&#39;s superiority in generating more efficient quantum circuits for simulating various quantum Hamiltonians while maintaining precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03429v1-abstract-full').style.display = 'none'; document.getElementById('2408.03429v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16356">arXiv:2407.16356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16356">pdf</a>, <a href="https://arxiv.org/format/2407.16356">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Heralded High-Dimensional Photon-Photon Quantum Gate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Z">Zhi-Feng Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+Z">Zhi-Cheng Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+P">Pei Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+W">Wen-Zheng Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+Z">Zi-Mo Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jing Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yu-Peng Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xi%2C+H">Han-Bing Xi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huber%2C+M">Marcus Huber</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Friis%2C+N">Nicolai Friis</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+X">Xiaoqin Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xi-Lin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Hui-Tian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16356v1-abstract-short" style="display: inline;"> High-dimensional encoding of quantum information holds the potential to greatly increase the computational power of existing devices by enlarging the accessible state space for fixed register size and by reducing the number of required entangling gates. However, qudit-based quantum computation remains far less developed than conventional qubit-based approaches, in particular for photons, which rep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16356v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16356v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16356v1-abstract-full" style="display: none;"> High-dimensional encoding of quantum information holds the potential to greatly increase the computational power of existing devices by enlarging the accessible state space for fixed register size and by reducing the number of required entangling gates. However, qudit-based quantum computation remains far less developed than conventional qubit-based approaches, in particular for photons, which represent natural multi-level information carriers that play a crucial role in the development of quantum networks. A major obstacle for realizing quantum gates between two individual photons is the restriction of direct interaction between photons in linear media. In particular, essential logic components for quantum operations such as native qudit-qudit entangling gates are still missing for optical quantum information processing. Here we address this challenge by presenting a protocol for realizing an entangling gate -- the controlled phase-flip (CPF) gate -- for two photonic qudits in arbitrary dimension. We experimentally demonstrate this protocol by realizing a four-dimensional qudit-qudit CPF gate, whose decomposition would require at least 13 two-qubit entangling gates. Our photonic qudits are encoded in orbital angular momentum (OAM) and we have developed a new active high-precision phase-locking technology to construct a high-dimensional OAM beam splitter that increases the stability of the CPF gate, resulting in a process fidelity within a range of $ [0.64 \pm 0.01, 0.82 \pm 0.01]$. Our experiment represents a significant advance for high-dimensional optical quantum information processing and has the potential for wider applications beyond optical system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16356v1-abstract-full').style.display = 'none'; document.getElementById('2407.16356v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13003">arXiv:2406.13003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13003">pdf</a>, <a href="https://arxiv.org/format/2406.13003">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S0022377824001326">10.1017/S0022377824001326 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating nonlinear optical processes on a superconducting quantum device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yuan Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Evert%2C+B">Bram Evert</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Brown%2C+A+F">Amy F. Brown</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tripathi%2C+V">Vinay Tripathi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sete%2C+E+A">Eyob A. Sete</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Geyko%2C+V">Vasily Geyko</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cho%2C+Y">Yujin Cho</a>, <a href="/search/quant-ph?searchtype=author&amp;query=DuBois%2C+J+L">Jonathan L DuBois</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lidar%2C+D">Daniel Lidar</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Joseph%2C+I">Ilon Joseph</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Reagor%2C+M">Matt Reagor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13003v2-abstract-short" style="display: inline;"> Simulating plasma physics on quantum computers is difficult because most problems of interest are nonlinear, but quantum computers are not naturally suitable for nonlinear operations. In weakly nonlinear regimes, plasma problems can be modeled as wave-wave interactions. In this paper, we develop a quantization approach to convert nonlinear wave-wave interaction problems to Hamiltonian simulation p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13003v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13003v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13003v2-abstract-full" style="display: none;"> Simulating plasma physics on quantum computers is difficult because most problems of interest are nonlinear, but quantum computers are not naturally suitable for nonlinear operations. In weakly nonlinear regimes, plasma problems can be modeled as wave-wave interactions. In this paper, we develop a quantization approach to convert nonlinear wave-wave interaction problems to Hamiltonian simulation problems. We demonstrate our approach using two qubits on a superconducting device. Unlike a photonic device, a superconducting device does not naturally have the desired interactions in its native Hamiltonian. Nevertheless, Hamiltonian simulations can still be performed by decomposing required unitary operations into native gates. To improve experimental results, we employ a range of error mitigation techniques. Apart from readout error mitigation, we use randomized compilation to transform undiagnosed coherent errors into well-behaved stochastic Pauli channels. Moreover, to compensate for stochastic noise, we rescale exponentially decaying probability amplitudes using rates measured from cycle benchmarking. We carefully consider how different choices of product-formula algorithms affect the overall error and show how a trade-off can be made to best utilize limited quantum resources. This study provides an example of how plasma problems may be solved on near-term quantum computing platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13003v2-abstract-full').style.display = 'none'; document.getElementById('2406.13003v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Plasma Phys. 90 (2024) 805900602 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05958">arXiv:2406.05958</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05958">pdf</a>, <a href="https://arxiv.org/format/2406.05958">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Speedup of high-order unconstrained binary optimization using quantum Z2 lattice gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+B">Bi-Ying Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+X">Xiaopeng Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+Q">Qingguo Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+Y">Yemin Zhan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yu Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yung%2C+M">Man-Hong Yung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05958v1-abstract-short" style="display: inline;"> How to quickly solve the problem of high-order unconstrained binary optimization (HUBO) has attracted much attention, because of its importance and wide-range applications. Here we implement HUBO using a quantum adiabatic algorithm and achieve algorithmic speedup by introducing gauge symmetry into the algorithm. Gauge symmetry enforces the state to be in the instantaneous ground state, further spe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05958v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05958v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05958v1-abstract-full" style="display: none;"> How to quickly solve the problem of high-order unconstrained binary optimization (HUBO) has attracted much attention, because of its importance and wide-range applications. Here we implement HUBO using a quantum adiabatic algorithm and achieve algorithmic speedup by introducing gauge symmetry into the algorithm. Gauge symmetry enforces the state to be in the instantaneous ground state, further speeding up the computation. Specifically we map the HUBO problem to quantum Z2 lattice gauge theory defined on the dual graph. The gauge operators are found by using the closed-loop-search algorithm, and subsequently the speedup scheme with gauge symmetry for HUBO problem is developed. As an example demonstrated in the classical computers, we present the mathematical formulation of our speedup scheme and propose the so-called gauged local annealing (gLQA) , which is the local quantum annealing (LQA) protected by the gauge symmetry. We then use gLQA to calculate the ground state energy of the Z2 gauge theory. gLQA reduces the computational time by one order of magnitude from that of LQA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05958v1-abstract-full').style.display = 'none'; document.getElementById('2406.05958v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14138">arXiv:2405.14138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.14138">pdf</a>, <a href="https://arxiv.org/format/2405.14138">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> High transparency induced superconductivity in field effect two-dimensional electron gases in undoped InAs/AlGaSb surface quantum wells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bergeron%2C+E+A">E. Annelise Bergeron</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sfigakis%2C+F">F. Sfigakis</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Elbaroudy%2C+A">A. Elbaroudy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jordan%2C+A+W+M">A. W. M. Jordan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Thompson%2C+F">F. Thompson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nichols%2C+G">George Nichols</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Y. Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tam%2C+M+C">Man Chun Tam</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wasilewski%2C+Z+R">Z. R. Wasilewski</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Baugh%2C+J">J. Baugh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14138v1-abstract-short" style="display: inline;"> We report on transport characteristics of field effect two-dimensional electron gases (2DEG) in 24 nm wide indium arsenide surface quantum wells. High quality single-subband magnetotransport with clear quantized integer quantum Hall plateaus are observed to filling factor $谓=2$ in magnetic fields of up to B = 18 T, at electron densities up to 8$\times 10^{11}$ /cm$^2$. Peak mobility is 11,000 cm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14138v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14138v1-abstract-full" style="display: none;"> We report on transport characteristics of field effect two-dimensional electron gases (2DEG) in 24 nm wide indium arsenide surface quantum wells. High quality single-subband magnetotransport with clear quantized integer quantum Hall plateaus are observed to filling factor $谓=2$ in magnetic fields of up to B = 18 T, at electron densities up to 8$\times 10^{11}$ /cm$^2$. Peak mobility is 11,000 cm$^2$/Vs at 2$\times 10^{12}$ /cm$^2$. Large Rashba spin-orbit coefficients up to 124 meV$\cdot$脜 are obtained through weak anti-localization (WAL) measurements. Proximitized superconductivity is demonstrated in Nb-based superconductor-normal-superconductor (SNS) junctions, yielding 78$-$99% interface transparencies from superconducting contacts fabricated ex-situ (post-growth), using two commonly-used experimental techniques for measuring transparencies. These transparencies are on a par with those reported for epitaxially-grown superconductors. These SNS junctions show characteristic voltages $I_c R_{\text{N}}$ up to 870 $渭$V and critical current densities up to 9.6 $渭$A/$渭$m, among the largest values reported for Nb-InAs SNS devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14138v1-abstract-full').style.display = 'none'; document.getElementById('2405.14138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main text 8 pages with 3 figures; supplementary material 17 pages with 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06941">arXiv:2405.06941</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06941">pdf</a>, <a href="https://arxiv.org/format/2405.06941">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Surf-Deformer: Mitigating Dynamic Defects on Surface Code via Adaptive Deformation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+K">Keyi Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fang%2C+X">Xiang Fang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yunong Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Humble%2C+T">Travis Humble</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+A">Ang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+Y">Yufei Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06941v3-abstract-short" style="display: inline;"> In this paper, we introduce Surf-Deformer, a code deformation framework that seamlessly integrates adaptive defect mitigation functionality into the current surface code workflow. It crafts several basic deformation instructions based on fundamental gauge transformations, which can be combined to explore a larger design space than previous methods. This enables more optimized deformation processes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06941v3-abstract-full').style.display = 'inline'; document.getElementById('2405.06941v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06941v3-abstract-full" style="display: none;"> In this paper, we introduce Surf-Deformer, a code deformation framework that seamlessly integrates adaptive defect mitigation functionality into the current surface code workflow. It crafts several basic deformation instructions based on fundamental gauge transformations, which can be combined to explore a larger design space than previous methods. This enables more optimized deformation processes tailored to specific defect situations, restoring the QEC capability of deformed codes more efficiently with minimal qubit resources. Additionally, we design an adaptive code layout that accommodates our defect mitigation strategy while ensuring efficient execution of logical operations. Our evaluation shows that Surf-Deformer outperforms previous methods by significantly reducing the end-to-end failure rate of various quantum programs by 35x to 70x, while requiring only about 50% of the qubit resources compared to the previous method to achieve the same level of failure rate. Ablation studies show that Surf-Deformer surpasses previous defect removal methods in preserving QEC capability and facilitates surface code communication by achieving nearly optimal throughput. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06941v3-abstract-full').style.display = 'none'; document.getElementById('2405.06941v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05481">arXiv:2405.05481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.05481">pdf</a>, <a href="https://arxiv.org/format/2405.05481">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Achieving millisecond coherence fluxonium through overlap Josephson junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+F">Fei Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+K">Kannan Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+H">Huijuan Zhan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+L">Lu Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+F">Feng Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+H">Hantao Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+H">Hao Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bai%2C+Y">Yang Bai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+F">Feng Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chang%2C+X">Xu Chang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+R">Ran Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+X">Xun Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+G">Guicheng Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+L">Lijuan Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+R">Ruizi Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ji%2C+H">Honghong Ji</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+X">Xizheng Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mao%2C+L">Liyong Mao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zhijun Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+C">Chengchun Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Hongcheng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+T">Tenghui Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Ziang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xia%2C+T">Tian Xia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+H">Hongxin Xu</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05481v1-abstract-short" style="display: inline;"> Fluxonium qubits are recognized for their high coherence times and high operation fidelities, attributed to their unique design incorporating over 100 Josephson junctions per superconducting loop. However, this complexity poses significant fabrication challenges, particularly in achieving high yield and junction uniformity with traditional methods. Here, we introduce an overlap process for Josephs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05481v1-abstract-full').style.display = 'inline'; document.getElementById('2405.05481v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05481v1-abstract-full" style="display: none;"> Fluxonium qubits are recognized for their high coherence times and high operation fidelities, attributed to their unique design incorporating over 100 Josephson junctions per superconducting loop. However, this complexity poses significant fabrication challenges, particularly in achieving high yield and junction uniformity with traditional methods. Here, we introduce an overlap process for Josephson junction fabrication that achieves nearly 100% yield and maintains uniformity across a 2-inch wafer with less than 5% variation for the phase slip junction and less than 2% for the junction array. Our compact junction array design facilitates fluxonium qubits with energy relaxation times exceeding 1 millisecond at the flux frustration point, demonstrating consistency with state-of-the-art dielectric loss tangents and flux noise across multiple devices. This work suggests the scalability of high coherence fluxonium processors using CMOS-compatible processes, marking a significant step towards practical quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05481v1-abstract-full').style.display = 'none'; document.getElementById('2405.05481v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02555">arXiv:2405.02555</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.02555">pdf</a>, <a href="https://arxiv.org/format/2405.02555">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Design of an entanglement purification protocol selection module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yue Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+C">Chenxu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Stein%2C+S">Samuel Stein</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+M">Meng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+M">Muqing Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+A">Ang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02555v1-abstract-short" style="display: inline;"> Entanglement purification protocols, designed to improve the fidelity of Bell states over quantum networks for inter-node communications, have attracted significant attention over the last few decades. These protocols have great potential to resolve a core challenge in quantum networking of generating high-fidelity Bell states. However, previous studies focused on the theoretical discussion with l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02555v1-abstract-full').style.display = 'inline'; document.getElementById('2405.02555v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02555v1-abstract-full" style="display: none;"> Entanglement purification protocols, designed to improve the fidelity of Bell states over quantum networks for inter-node communications, have attracted significant attention over the last few decades. These protocols have great potential to resolve a core challenge in quantum networking of generating high-fidelity Bell states. However, previous studies focused on the theoretical discussion with limited consideration of realistic errors. Studies of dynamically selecting the right purification protocol under various realistic errors that populate in practice have yet to be performed. In this work, we study the performance of various purification protocols under realistic errors by conducting density matrix simulations over a large suite of error models. Based on our findings of how specific error channels affect the performance of purification protocols, we propose a module that can be embedded in the quantum network. This module determines and selects the appropriate purification protocol, considering not only expected specifications from the network layer but also the capabilities of the physical layer. Finally, the performance of our proposed module is verified using two benchmark categories. Compared with the default approach and exhaustive search approach, we show a success rate approaching 90% in identifying the optimal purification protocol for our target applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02555v1-abstract-full').style.display = 'none'; document.getElementById('2405.02555v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13184">arXiv:2404.13184</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13184">pdf</a>, <a href="https://arxiv.org/format/2404.13184">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> TANQ-Sim: Tensorcore Accelerated Noisy Quantum System Simulation via QIR on Perlmutter HPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+A">Ang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+C">Chenxu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Stein%2C+S">Samuel Stein</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Suh%2C+I">In-Saeng Suh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+M">Muqing Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+M">Meng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yue Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fang%2C+B">Bo Fang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Roetteler%2C+M">Martin Roetteler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Humble%2C+T">Travis Humble</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13184v2-abstract-short" style="display: inline;"> Although there have been remarkable advances in quantum computing (QC), it remains crucial to simulate quantum programs using classical large-scale parallel computing systems to validate quantum algorithms, comprehend the impact of noise, and develop resilient quantum applications. This is particularly important for bridging the gap between near-term noisy-intermediate-scale-quantum (NISQ) computi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13184v2-abstract-full').style.display = 'inline'; document.getElementById('2404.13184v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13184v2-abstract-full" style="display: none;"> Although there have been remarkable advances in quantum computing (QC), it remains crucial to simulate quantum programs using classical large-scale parallel computing systems to validate quantum algorithms, comprehend the impact of noise, and develop resilient quantum applications. This is particularly important for bridging the gap between near-term noisy-intermediate-scale-quantum (NISQ) computing and future fault-tolerant quantum computing (FTQC). Nevertheless, current simulation methods either lack the capability to simulate noise, or simulate with excessive computational costs, or do not scale out effectively. In this paper, we propose TANQ-Sim, a full-scale density matrix based simulator designed to simulate practical deep circuits with both coherent and non-coherent noise. To address the significant computational cost associated with such simulations, we propose a new density-matrix simulation approach that enables TANQ-Sim to leverage the latest double-precision tensorcores (DPTCs) in NVIDIA Ampere and Hopper GPUs. To the best of our knowledge, this is the first application of double-precision tensorcores for non-AI/ML workloads. To optimize performance, we also propose specific gate fusion techniques for density matrix simulation. For scaling, we rely on the advanced GPU-side communication library NVSHMEM and propose effective optimization methods for enhancing communication efficiency. Evaluations on the NERSC Perlmutter supercomputer demonstrate the functionality, performance, and scalability of the simulator. We also present three case studies to showcase the practical usage of TANQ-Sim, including teleportation, entanglement distillation, and Ising simulation. TANQ-Sim will be released on GitHub. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13184v2-abstract-full').style.display = 'none'; document.getElementById('2404.13184v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10256">arXiv:2404.10256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10256">pdf</a>, <a href="https://arxiv.org/ps/2404.10256">ps</a>, <a href="https://arxiv.org/format/2404.10256">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.140802">10.1103/PhysRevLett.132.140802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-speed quantum radio-frequency-over-light communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+S">Shaocong Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jialin Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+J">Jiliang Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jiatong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yi Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+Z">Zhihui Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jia%2C+X">Xiaojun Jia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+C">Changde Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+K">Kunchi Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10256v1-abstract-short" style="display: inline;"> Quantum dense coding (QDC) means to transmit two classical bits by only transferring one quantum bit, which has enabled high-capacity information transmission and strengthened system security. Continuousvariable QDC offers a promising solution to increase communication rates while achieving seamless integration with classical communication systems. Here, we propose and experimentally demonstrate a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10256v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10256v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10256v1-abstract-full" style="display: none;"> Quantum dense coding (QDC) means to transmit two classical bits by only transferring one quantum bit, which has enabled high-capacity information transmission and strengthened system security. Continuousvariable QDC offers a promising solution to increase communication rates while achieving seamless integration with classical communication systems. Here, we propose and experimentally demonstrate a high-speed quantum radio-frequency-over-light (RFoL) communication scheme based on QDC with entangled state, and achieve a practical rate of 20 Mbps through digital modulation and RFoL communication. This scheme bridges the gap between quantum technology and real-world communication systems, which bring QDC closer to practical applications and offer prospects for further enhancement of metropolitan communication networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10256v1-abstract-full').style.display = 'none'; document.getElementById('2404.10256v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 140802 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01173">arXiv:2404.01173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.01173">pdf</a>, <a href="https://arxiv.org/ps/2404.01173">ps</a>, <a href="https://arxiv.org/format/2404.01173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> </div> </div> <p class="title is-5 mathjax"> Strong quantum state transfer on graphs via loop edges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lippner%2C+G">Gabor Lippner</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yujia Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01173v1-abstract-short" style="display: inline;"> We quantify the effect of weighted loops at the source and target nodes of a graph on the strength of quantum state transfer between these vertices. We give lower bounds on loop weights that guarantee strong transfer fidelity that works for any graph where this protocol is feasible. By considering local spectral symmetry, we show that the required weight size depends only on the maximum degree of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01173v1-abstract-full').style.display = 'inline'; document.getElementById('2404.01173v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01173v1-abstract-full" style="display: none;"> We quantify the effect of weighted loops at the source and target nodes of a graph on the strength of quantum state transfer between these vertices. We give lower bounds on loop weights that guarantee strong transfer fidelity that works for any graph where this protocol is feasible. By considering local spectral symmetry, we show that the required weight size depends only on the maximum degree of the graph and, in some less favorable cases, the distance between vertices. Additionally, we explore the duration for which transfer strength remains above a specified threshold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01173v1-abstract-full').style.display = 'none'; document.getElementById('2404.01173v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 05C50; 81P45 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17794">arXiv:2403.17794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.17794">pdf</a>, <a href="https://arxiv.org/format/2403.17794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3620666.3651371">10.1145/3620666.3651371 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermihedral: On the Optimal Compilation for Fermion-to-Qubit Encoding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yuhao Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Che%2C+S">Shize Che</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+J">Junyu Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yunong Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+G">Gushu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17794v2-abstract-short" style="display: inline;"> This paper introduces Fermihedral, a compiler framework focusing on discovering the optimal Fermion-to-qubit encoding for targeted Fermionic Hamiltonians. Fermion-to-qubit encoding is a crucial step in harnessing quantum computing for efficient simulation of Fermionic quantum systems. Utilizing Pauli algebra, Fermihedral redefines complex constraints and objectives of Fermion-to-qubit encoding int&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17794v2-abstract-full').style.display = 'inline'; document.getElementById('2403.17794v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17794v2-abstract-full" style="display: none;"> This paper introduces Fermihedral, a compiler framework focusing on discovering the optimal Fermion-to-qubit encoding for targeted Fermionic Hamiltonians. Fermion-to-qubit encoding is a crucial step in harnessing quantum computing for efficient simulation of Fermionic quantum systems. Utilizing Pauli algebra, Fermihedral redefines complex constraints and objectives of Fermion-to-qubit encoding into a Boolean Satisfiability problem which can then be solved with high-performance solvers. To accommodate larger-scale scenarios, this paper proposed two new strategies that yield approximate optimal solutions mitigating the overhead from the exponentially large number of clauses. Evaluation across diverse Fermionic systems highlights the superiority of Fermihedral, showcasing substantial reductions in implementation costs, gate counts, and circuit depth in the compiled circuits. Real-system experiments on IonQ&#39;s device affirm its effectiveness, notably enhancing simulation accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17794v2-abstract-full').style.display = 'none'; document.getElementById('2403.17794v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ASPLOS 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15155">arXiv:2403.15155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15155">pdf</a>, <a href="https://arxiv.org/format/2403.15155">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Broad Instantaneous Bandwidth Microwave Spectrum Analyzer with a Microfabricated Atomic Vapor Cell </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yongqi Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ruster%2C+T">Thomas Ruster</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ho%2C+M">Melvyn Ho</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Karlen%2C+S">Sylvain Karlen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Haesler%2C+J">Jacques Haesler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Treutlein%2C+P">Philipp Treutlein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15155v2-abstract-short" style="display: inline;"> We report on broad instantaneous bandwidth microwave spectrum analysis with hot $^{87}\mathrm{Rb}$ atoms in a microfabricated vapor cell in a large magnetic field gradient. The sensor is a MEMS atomic vapor cell filled with isotopically pure $^{87}\mathrm{Rb}$ and $\mathrm{N}_2$ buffer gas to localize the motion of the atoms. The microwave signals of interest are coupled through a coplanar wavegui&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15155v2-abstract-full').style.display = 'inline'; document.getElementById('2403.15155v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15155v2-abstract-full" style="display: none;"> We report on broad instantaneous bandwidth microwave spectrum analysis with hot $^{87}\mathrm{Rb}$ atoms in a microfabricated vapor cell in a large magnetic field gradient. The sensor is a MEMS atomic vapor cell filled with isotopically pure $^{87}\mathrm{Rb}$ and $\mathrm{N}_2$ buffer gas to localize the motion of the atoms. The microwave signals of interest are coupled through a coplanar waveguide to the cell, inducing spin flip transitions between optically pumped ground states of the atoms. A static magnetic field with large gradient maps the $\textit{frequency spectrum}$ of the input microwave signals to a position-dependent $\textit{spin-flip pattern}$ on absorption images of the cell recorded with a laser beam onto a camera. In our proof-of-principle experiment, we demonstrate a microwave spectrum analyzer that has $\approx$ 1 GHz instantaneous bandwidth centered around 13 GHz, 3 MHz frequency resolution, 2 kHz refresh rate, and a -23 dBm single-tone microwave power detection limit in 1 s measurement time. A theoretical model is constructed to simulate the image signals by considering the processes of optical pumping, microwave interaction, diffusion of $^{87}\mathrm{Rb}$ atoms, and laser absorption. We expect to reach more than 25 GHz instantaneous bandwidth in an optimized setup, limited by the applied magnetic field gradient. Our demonstration offers a practical alternative to conventional microwave spectrum analyzers based on electronic heterodyne detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15155v2-abstract-full').style.display = 'none'; document.getElementById('2403.15155v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09095">arXiv:2403.09095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09095">pdf</a>, <a href="https://arxiv.org/format/2403.09095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Exploring Hilbert-Space Fragmentation on a Superconducting Processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yong-Yi Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yun-Hao Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+Z">Zheng-Hang Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+C">Chi-Tong Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zheng-An Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+K">Kui Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Hao-Tian Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+W">Wei-Guo Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Ziting Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jia-Chi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+C">Cheng-Lin Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tian-Ming Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+Y">Yang He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Z">Zheng-He Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+Z">Zhen-Yu Peng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+X">Xiaohui Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xue%2C+G">Guangming Xue</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+H">Haifeng Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+K">Kaixuan Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiang%2C+Z">Zhongcheng Xiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+D">Dongning Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+K">Kai Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fan%2C+H">Heng Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09095v1-abstract-short" style="display: inline;"> Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity, such as many-body localization and quantum scars. Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization. This phenomenon is closely associated with Hilbert-space fragmentation, characterized by a s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09095v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09095v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09095v1-abstract-full" style="display: none;"> Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity, such as many-body localization and quantum scars. Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization. This phenomenon is closely associated with Hilbert-space fragmentation, characterized by a strong dependence of dynamics on initial conditions. Here, we experimentally explore initial-state dependent dynamics using a ladder-type superconducting processor with up to 24 qubits, which enables precise control of the qubit frequency and initial state preparation. In systems with linear potentials, we observe distinct non-equilibrium dynamics for initial states with the same quantum numbers and energy, but with varying domain wall numbers. This distinction becomes increasingly pronounced as the system size grows, in contrast with disordered interacting systems. Our results provide convincing experimental evidence of the fragmentation in Stark systems, enriching our understanding of the weak breakdown of ergodicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09095v1-abstract-full').style.display = 'none'; document.getElementById('2403.09095v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main text: 7 pages, 4 figures; supplementary: 13 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03310">arXiv:2403.03310</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03310">pdf</a>, <a href="https://arxiv.org/format/2403.03310">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Graph Learning for Parameter Prediction of Quantum Approximate Optimization Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+G">Gang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Z">Zheyuan Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hao%2C+T">Tianyi Hao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+K">Kecheng Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zhixin Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+J">Ji Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+F">Fanny Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03310v1-abstract-short" style="display: inline;"> In recent years, quantum computing has emerged as a transformative force in the field of combinatorial optimization, offering novel approaches to tackling complex problems that have long challenged classical computational methods. Among these, the Quantum Approximate Optimization Algorithm (QAOA) stands out for its potential to efficiently solve the Max-Cut problem, a quintessential example of com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03310v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03310v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03310v1-abstract-full" style="display: none;"> In recent years, quantum computing has emerged as a transformative force in the field of combinatorial optimization, offering novel approaches to tackling complex problems that have long challenged classical computational methods. Among these, the Quantum Approximate Optimization Algorithm (QAOA) stands out for its potential to efficiently solve the Max-Cut problem, a quintessential example of combinatorial optimization. However, practical application faces challenges due to current limitations on quantum computational resource. Our work optimizes QAOA initialization, using Graph Neural Networks (GNN) as a warm-start technique. This sacrifices affordable computational resource on classical computer to reduce quantum computational resource overhead, enhancing QAOA&#39;s effectiveness. Experiments with various GNN architectures demonstrate the adaptability and stability of our framework, highlighting the synergy between quantum algorithms and machine learning. Our findings show GNN&#39;s potential in improving QAOA performance, opening new avenues for hybrid quantum-classical approaches in quantum computing and contributing to practical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03310v1-abstract-full').style.display = 'none'; document.getElementById('2403.03310v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02279">arXiv:2402.02279</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.02279">pdf</a>, <a href="https://arxiv.org/format/2402.02279">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Bosehedral: Compiler Optimization for Bosonic Quantum Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+J">Junyu Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yuhao Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yunong Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Javadi-Abhari%2C+A">Ali Javadi-Abhari</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+G">Gushu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02279v1-abstract-short" style="display: inline;"> Bosonic quantum computing, based on the infinite-dimensional qumodes, has shown promise for various practical applications that are classically hard. However, the lack of compiler optimizations has hindered its full potential. This paper introduces Bosehedral, an efficient compiler optimization framework for (Gaussian) Boson sampling on Bosonic quantum hardware. Bosehedral overcomes the challenge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02279v1-abstract-full').style.display = 'inline'; document.getElementById('2402.02279v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02279v1-abstract-full" style="display: none;"> Bosonic quantum computing, based on the infinite-dimensional qumodes, has shown promise for various practical applications that are classically hard. However, the lack of compiler optimizations has hindered its full potential. This paper introduces Bosehedral, an efficient compiler optimization framework for (Gaussian) Boson sampling on Bosonic quantum hardware. Bosehedral overcomes the challenge of handling infinite-dimensional qumode gate matrices by performing all its program analysis and optimizations at a higher algorithmic level, using a compact unitary matrix representation. It optimizes qumode gate decomposition and logical-to-physical qumode mapping, and introduces a tunable probabilistic gate dropout method. Overall, Bosehedral significantly improves the performance by accurately approximating the original program with much fewer gates. Our evaluation shows that Bosehedral can largely reduce the program size but still maintain a high approximation fidelity, which can translate to significant end-to-end application performance improvement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02279v1-abstract-full').style.display = 'none'; document.getElementById('2402.02279v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00617">arXiv:2402.00617</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.00617">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/JOCN.518226">10.1364/JOCN.518226 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Metropolitan-scale Entanglement Distribution with Co-existing Quantum and Classical Signals in a single fiber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Rahmouni%2C+A">A. Rahmouni</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kuo%2C+P+S">P. S. Kuo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li-Baboud%2C+Y+S">Y. S. Li-Baboud</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Burenkov%2C+I+A">I. A. Burenkov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Y. Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jabir%2C+M+V">M. V. Jabir</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lal%2C+N">N. Lal</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Reddy%2C+D">D. Reddy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Merzouki%2C+M">M. Merzouki</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+L">L. Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Battou%2C+A">A. Battou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Polyakov%2C+S+V">S. V. Polyakov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Slattery%2C+O">O. Slattery</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gerrits%2C+T">T. Gerrits</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00617v2-abstract-short" style="display: inline;"> The development of prototype metropolitan-scale quantum networks is underway and entails transmitting quantum information via single photons through deployed optical fibers spanning several tens of kilometers. The major challenges in building metropolitan-scale quantum networks are compensation of polarization mode dispersion, high-precision clock synchronization, and compensation for cumulative t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00617v2-abstract-full').style.display = 'inline'; document.getElementById('2402.00617v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00617v2-abstract-full" style="display: none;"> The development of prototype metropolitan-scale quantum networks is underway and entails transmitting quantum information via single photons through deployed optical fibers spanning several tens of kilometers. The major challenges in building metropolitan-scale quantum networks are compensation of polarization mode dispersion, high-precision clock synchronization, and compensation for cumulative transmission time fluctuations. One approach addressing these challenges is to co-propagate classical probe signals in the same fiber as the quantum signal. Thus, both signals experience the same conditions, and the changes of the fiber can therefore be monitored and compensated. Here, we demonstrate the distribution of polarization entangled quantum signals co-propagating with the White Rabbit Precision Time Protocol (WR-PTP) classical signals in the same single-core fiber strand at metropolitan-scale distances. Our results demonstrate the feasibility of this quantum-classical coexistence by achieving high-fidelity entanglement distribution between nodes separated by 100 km of optical fiber. This advancement is a significant step towards the practical implementation of robust and efficient metropolitan-scale quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00617v2-abstract-full').style.display = 'none'; document.getElementById('2402.00617v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17372">arXiv:2401.17372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17372">pdf</a>, <a href="https://arxiv.org/format/2401.17372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Optically-Trapped Nanodiamond-Relaxometry Detection of Nanomolar Paramagnetic Spins in Aqueous Environments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Iyer%2C+S">Shiva Iyer</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yao%2C+C">Changyu Yao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lazorik%2C+O">Olivia Lazorik</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kashem%2C+M+S+B">Md Shakil Bin Kashem</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+P">Pengyun Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Glenn%2C+G">Gianna Glenn</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mohs%2C+M">Michael Mohs</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yinyao Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mansour%2C+M">Michael Mansour</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Henriksen%2C+E">Erik Henriksen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Murch%2C+K">Kater Murch</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mukherji%2C+S">Shankar Mukherji</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zu%2C+C">Chong Zu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17372v3-abstract-short" style="display: inline;"> Probing electrical and magnetic properties in aqueous environments remains a frontier challenge in nanoscale sensing. Our inability to do so with quantitative accuracy imposes severe limitations, for example, on our understanding of the ionic environments in a diverse array of systems, ranging from novel materials to the living cell. The Nitrogen-Vacancy (NV) center in fluorescent nanodiamonds (FN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17372v3-abstract-full').style.display = 'inline'; document.getElementById('2401.17372v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17372v3-abstract-full" style="display: none;"> Probing electrical and magnetic properties in aqueous environments remains a frontier challenge in nanoscale sensing. Our inability to do so with quantitative accuracy imposes severe limitations, for example, on our understanding of the ionic environments in a diverse array of systems, ranging from novel materials to the living cell. The Nitrogen-Vacancy (NV) center in fluorescent nanodiamonds (FNDs) has emerged as a good candidate to sense temperature, pH, and the concentration of paramagnetic species at the nanoscale, but comes with several hurdles such as particle-to-particle variation which render calibrated measurements difficult, and the challenge to tightly confine and precisely position sensors in aqueous environment. To address this, we demonstrate relaxometry with NV centers within optically-trapped FNDs. In a proof of principle experiment, we show that optically-trapped FNDs enable highly reproducible nanomolar sensitivity to the paramagnetic ion, (\mathrm{Gd}^{3+}). We capture the three distinct phases of our experimental data by devising a model analogous to nanoscale Langmuir adsorption combined with spin coherence dynamics. Our work provides a basis for routes to sense free paramagnetic ions and molecules in biologically relevant conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17372v3-abstract-full').style.display = 'none'; document.getElementById('2401.17372v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11099">arXiv:2401.11099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.11099">pdf</a>, <a href="https://arxiv.org/format/2401.11099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Compact quantum random number generator based on a laser diode and silicon photonics integrated hybrid chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xuyang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+T">Tao Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jia%2C+Y">Yanxiang Jia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+Q">Qianru Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yuqi Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+Z">Zhenguo Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+J">Jun Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yongmin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11099v1-abstract-short" style="display: inline;"> In this study, a compact and low-power-consumption quantum random number generator (QRNG) based on a laser diode and silicon photonics integrated hybrid chip is proposed and verified experimentally. The hybrid chip&#39;s size is 8.8*2.6*1 mm3, and the power of entropy source is 80 mW. A common mode rejection ratio greater than 40 dB was achieved using an optimized 1*2 multimode interferometer structur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11099v1-abstract-full').style.display = 'inline'; document.getElementById('2401.11099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11099v1-abstract-full" style="display: none;"> In this study, a compact and low-power-consumption quantum random number generator (QRNG) based on a laser diode and silicon photonics integrated hybrid chip is proposed and verified experimentally. The hybrid chip&#39;s size is 8.8*2.6*1 mm3, and the power of entropy source is 80 mW. A common mode rejection ratio greater than 40 dB was achieved using an optimized 1*2 multimode interferometer structure. A method for optimizing the quantum-to-classical noise ratio is presented. A quantum-to-classical noise ratio of approximately 9 dB was achieved when the photoelectron current is 1 microampere using a balance homodyne detector with a high dark current GeSi photodiode. The proposed QRNG has the potential for use in scenarios of moderate MHz random number generation speed, with low power, small volume, and low cost prioritized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11099v1-abstract-full').style.display = 'none'; document.getElementById('2401.11099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09393">arXiv:2401.09393</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.09393">pdf</a>, <a href="https://arxiv.org/format/2401.09393">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> 脡liv谩gar: Efficient Quantum Circuit Search for Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Anagolum%2C+S">Sashwat Anagolum</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Alavisamani%2C+N">Narges Alavisamani</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Das%2C+P">Poulami Das</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qureshi%2C+M">Moinuddin Qureshi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kessler%2C+E">Eric Kessler</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yunong Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09393v1-abstract-short" style="display: inline;"> Designing performant and noise-robust circuits for Quantum Machine Learning (QML) is challenging -- the design space scales exponentially with circuit size, and there are few well-supported guiding principles for QML circuit design. Although recent Quantum Circuit Search (QCS) methods attempt to search for performant QML circuits that are also robust to hardware noise, they directly adopt designs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09393v1-abstract-full').style.display = 'inline'; document.getElementById('2401.09393v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09393v1-abstract-full" style="display: none;"> Designing performant and noise-robust circuits for Quantum Machine Learning (QML) is challenging -- the design space scales exponentially with circuit size, and there are few well-supported guiding principles for QML circuit design. Although recent Quantum Circuit Search (QCS) methods attempt to search for performant QML circuits that are also robust to hardware noise, they directly adopt designs from classical Neural Architecture Search (NAS) that are misaligned with the unique constraints of quantum hardware, resulting in high search overheads and severe performance bottlenecks. We present 脡liv谩gar, a novel resource-efficient, noise-guided QCS framework. 脡liv谩gar innovates in all three major aspects of QCS -- search space, search algorithm and candidate evaluation strategy -- to address the design flaws in current classically-inspired QCS methods. 脡liv谩gar achieves hardware-efficiency and avoids an expensive circuit-mapping co-search via noise- and device topology-aware candidate generation. By introducing two cheap-to-compute predictors, Clifford noise resilience and Representational capacity, 脡liv谩gar decouples the evaluation of noise robustness and performance, enabling early rejection of low-fidelity circuits and reducing circuit evaluation costs. Due to its resource-efficiency, 脡liv谩gar can further search for data embeddings, significantly improving performance. Based on a comprehensive evaluation of 脡liv谩gar on 12 real quantum devices and 9 QML applications, 脡liv谩gar achieves 5.3% higher accuracy and a 271$\times$ speedup compared to state-of-the-art QCS methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09393v1-abstract-full').style.display = 'none'; document.getElementById('2401.09393v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures. To appear in ASPLOS 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01530">arXiv:2401.01530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01530">pdf</a>, <a href="https://arxiv.org/format/2401.01530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Disorder-induced topological pumping on a superconducting quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yu-Ran Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yun-Hao Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+T">Tao Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+C">Congwei Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yong-Yi Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tian-Ming Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+C">Cheng-Lin Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+S">Si-Yun Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+T">Tong Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jia-Chi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+G">Gui-Han Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mei%2C+Z">Zheng-Yang Mei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+W">Wei-Guo Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Hao-Tian Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Z">Zheng-He Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+C">Chi-Tong Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+K">Kaixuan Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+X">Xiaohui Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+S">SP Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+Y">Ye Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiang%2C+Z">Zhongcheng Xiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+D">Dongning Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nori%2C+F">Franco Nori</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01530v1-abstract-short" style="display: inline;"> Thouless pumping, a dynamical version of the integer quantum Hall effect, represents the quantized charge pumped during an adiabatic cyclic evolution. Here we report experimental observations of nontrivial topological pumping that is induced by disorder even during a topologically trivial pumping trajectory. With a 41-qubit superconducting quantum processor, we develop a Floquet engineering techni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01530v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01530v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01530v1-abstract-full" style="display: none;"> Thouless pumping, a dynamical version of the integer quantum Hall effect, represents the quantized charge pumped during an adiabatic cyclic evolution. Here we report experimental observations of nontrivial topological pumping that is induced by disorder even during a topologically trivial pumping trajectory. With a 41-qubit superconducting quantum processor, we develop a Floquet engineering technique to realize cycles of adiabatic pumping by simultaneously varying the on-site potentials and the hopping couplings. We demonstrate Thouless pumping in the presence of disorder and show its breakdown as the strength of disorder increases. Moreover, we observe two types of topological pumping that are induced by on-site potential disorder and hopping disorder, respectively. Especially, an intrinsic topological pump that is induced by quasi-periodic hopping disorder has never been experimentally realized before. Our highly controllable system provides a valuable quantum simulating platform for studying various aspects of topological physics in the presence of disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01530v1-abstract-full').style.display = 'none'; document.getElementById('2401.01530v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17423">arXiv:2311.17423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.17423">pdf</a>, <a href="https://arxiv.org/format/2311.17423">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> SpacePulse: Combining Parameterized Pulses and Contextual Subspace for More Practical VQE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zhixin Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hao%2C+T">Tianyi Hao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+R">Rui Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tongyang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17423v1-abstract-short" style="display: inline;"> In this paper, we explore the integration of parameterized quantum pulses with the contextual subspace method. The advent of parameterized quantum pulses marks a transition from traditional quantum gates to a more flexible and efficient approach to quantum computing. Working with pulses allows us to potentially access areas of the Hilbert space that are inaccessible with a CNOT-based circuit decom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17423v1-abstract-full').style.display = 'inline'; document.getElementById('2311.17423v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17423v1-abstract-full" style="display: none;"> In this paper, we explore the integration of parameterized quantum pulses with the contextual subspace method. The advent of parameterized quantum pulses marks a transition from traditional quantum gates to a more flexible and efficient approach to quantum computing. Working with pulses allows us to potentially access areas of the Hilbert space that are inaccessible with a CNOT-based circuit decomposition. Compared to solving the complete Hamiltonian via the traditional Variational Quantum Eigensolver (VQE), the computation of the contextual correction generally requires fewer qubits and measurements, thus improving computational efficiency. Plus a Pauli grouping strategy, our framework, SpacePulse, can minimize the quantum resource cost for the VQE and enhance the potential for processing larger molecular structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17423v1-abstract-full').style.display = 'none'; document.getElementById('2311.17423v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16035">arXiv:2311.16035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.16035">pdf</a>, <a href="https://arxiv.org/format/2311.16035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> RobustState: Boosting Fidelity of Quantum State Preparation via Noise-Aware Variational Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Hanrui Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Y">Yilian Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+P">Pengyu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gu%2C+J">Jiaqi Gu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zirui Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+Y">Yongshan Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+X">Xuehai Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+D+Z">David Z. Pan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+S">Song Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16035v1-abstract-short" style="display: inline;"> Quantum state preparation, a crucial subroutine in quantum computing, involves generating a target quantum state from initialized qubits. Arbitrary state preparation algorithms can be broadly categorized into arithmetic decomposition (AD) and variational quantum state preparation (VQSP). AD employs a predefined procedure to decompose the target state into a series of gates, whereas VQSP iterativel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16035v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16035v1-abstract-full" style="display: none;"> Quantum state preparation, a crucial subroutine in quantum computing, involves generating a target quantum state from initialized qubits. Arbitrary state preparation algorithms can be broadly categorized into arithmetic decomposition (AD) and variational quantum state preparation (VQSP). AD employs a predefined procedure to decompose the target state into a series of gates, whereas VQSP iteratively tunes ansatz parameters to approximate target state. VQSP is particularly apt for Noisy-Intermediate Scale Quantum (NISQ) machines due to its shorter circuits. However, achieving noise-robust parameter optimization still remains challenging. We present RobustState, a novel VQSP training methodology that combines high robustness with high training efficiency. The core idea involves utilizing measurement outcomes from real machines to perform back-propagation through classical simulators, thus incorporating real quantum noise into gradient calculations. RobustState serves as a versatile, plug-and-play technique applicable for training parameters from scratch or fine-tuning existing parameters to enhance fidelity on target machines. It is adaptable to various ansatzes at both gate and pulse levels and can even benefit other variational algorithms, such as variational unitary synthesis. Comprehensive evaluation of RobustState on state preparation tasks for 4 distinct quantum algorithms using 10 real quantum machines demonstrates a coherent error reduction of up to 7.1 $\times$ and state fidelity improvement of up to 96\% and 81\% for 4-Q and 5-Q states, respectively. On average, RobustState improves fidelity by 50\% and 72\% for 4-Q and 5-Q states compared to baseline approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16035v1-abstract-full').style.display = 'none'; document.getElementById('2311.16035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to FASTML @ ICCAD 2023. 14 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08056">arXiv:2311.08056</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08056">pdf</a>, <a href="https://arxiv.org/format/2311.08056">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Emerging topological characterization in non-equilibrium states of quenched Kitaev chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y+B">Y. B. Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08056v2-abstract-short" style="display: inline;"> Topological characteristics of quantum systems are typically determined by the closing of a gap, while the dynamical quantum phase transition (DQPT) during quantum real-time evolution has emerged as a nonequilibrium analog to the quantum phase transition (QPT). In this paper, we illustrate that the system dynamics can be elucidated by considering the precession of a collection of free-pseudo spins&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08056v2-abstract-full').style.display = 'inline'; document.getElementById('2311.08056v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08056v2-abstract-full" style="display: none;"> Topological characteristics of quantum systems are typically determined by the closing of a gap, while the dynamical quantum phase transition (DQPT) during quantum real-time evolution has emerged as a nonequilibrium analog to the quantum phase transition (QPT). In this paper, we illustrate that the system dynamics can be elucidated by considering the precession of a collection of free-pseudo spins under a magnetic field based on the exact results of extended Kitaev chains. The topology of the driven Hamiltonian is determined by the average winding number of the nonequilibrium state. Furthermore, we establish that the singularity of the DQPT arises from two perpendicular pseudo-spin vectors associated with the pre- and post-quenched Hamiltonians. Moreover, we investigate the distinct behaviors of the dynamic pairing order parameter in both topological and non-topological regions. These findings offer valuable insights into the non-equilibrium behavior of topological superconductors, contributing to the understanding of the resilience of topological properties in driven quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08056v2-abstract-full').style.display = 'none'; document.getElementById('2311.08056v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+7 pages, 3+5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.11786">arXiv:2310.11786</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.11786">pdf</a>, <a href="https://arxiv.org/format/2310.11786">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Generalized phantom helix states in quantum spin graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C+H">C. H. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y+B">Y. B. Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.11786v1-abstract-short" style="display: inline;"> In general, the summation of a set of sub-Hamiltonians cannot share a common eigenstate of each one, only if it is an unentangled product state, such as a phantom helix state in quantum spin system. Here we present a method, referred to as the building block method (BBM), for constructing possible spin-1/2 XXZ Heisenberg lattice systems possessing phantom helix states. We focus on two types of XXZ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11786v1-abstract-full').style.display = 'inline'; document.getElementById('2310.11786v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.11786v1-abstract-full" style="display: none;"> In general, the summation of a set of sub-Hamiltonians cannot share a common eigenstate of each one, only if it is an unentangled product state, such as a phantom helix state in quantum spin system. Here we present a method, referred to as the building block method (BBM), for constructing possible spin-1/2 XXZ Heisenberg lattice systems possessing phantom helix states. We focus on two types of XXZ dimers as basic elements, with a non-Hermitian parity-time (PT ) field and Hermitian Dzyaloshinskii-Moriya interaction (DMI), which share the same degenerate eigenstates. Based on these two building blocks, one can construct a variety of Heisenberg quantum spin systems, which support helix states with zero energy. The underlying mechanism is the existence of a set of degenerate eigenstates. Furthermore, we show that such systems act as quantum spin graphs since they obey the analogs of Kirchhoff&#39;s laws for sets of spin helix states when the non-Hermitian PT fields cancel each other out. In addition, the dynamic response of the helix states for three types of perturbations is also investigated analytically and numerically. Our findings provide a way to study quantum spin systems with irregular geometries beyond the Bethe ansatz approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11786v1-abstract-full').style.display = 'none'; document.getElementById('2310.11786v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10037">arXiv:2310.10037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.10037">pdf</a>, <a href="https://arxiv.org/format/2310.10037">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.202400150">10.1002/qute.202400150 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Purity-Assisted Zero-Noise Extrapolation for Quantum Error Mitigation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+T">Tian-Ren Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yun-Hao Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zheng-An Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tian-Ming Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+K">Kai Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fan%2C+H">Heng Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10037v4-abstract-short" style="display: inline;"> Quantum error mitigation aims to reduce errors in quantum systems and improve accuracy. Zero-noise extrapolation (ZNE) is a commonly used method, where noise is amplified, and the target expectation is extrapolated to a noise-free point. However, ZNE relies on assumptions about error rates based on the error model. In this study, a purity-assisted zero-noise extrapolation (pZNE) method is utilized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10037v4-abstract-full').style.display = 'inline'; document.getElementById('2310.10037v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10037v4-abstract-full" style="display: none;"> Quantum error mitigation aims to reduce errors in quantum systems and improve accuracy. Zero-noise extrapolation (ZNE) is a commonly used method, where noise is amplified, and the target expectation is extrapolated to a noise-free point. However, ZNE relies on assumptions about error rates based on the error model. In this study, a purity-assisted zero-noise extrapolation (pZNE) method is utilized to address limitations in error rate assumptions and enhance the extrapolation process. The pZNE is based on the Pauli diagonal error model implemented using the Pauli twirling technique. Although this method does not significantly reduce the bias of routine ZNE, it extends its effectiveness to a wider range of error rates where routine ZNE may face limitations. In addition, the practicality of the pZNE method is verified through numerical simulations and experiments on the online quantum computation platform, Quafu. Comparisons with routine ZNE and virtual distillation methods show that biases in extrapolation methods increase with error rates and may become divergent at high error rates. The bias of pZNE is slightly lower than routine ZNE, while its error rate threshold surpasses that of routine ZNE. Furthermore, for full density matrix information, the pZNE method is more efficient than the routine ZNE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10037v4-abstract-full').style.display = 'none'; document.getElementById('2310.10037v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08690">arXiv:2310.08690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.08690">pdf</a>, <a href="https://arxiv.org/ps/2310.08690">ps</a>, <a href="https://arxiv.org/format/2310.08690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Combinatorics">math.CO</span> </div> </div> <p class="title is-5 mathjax"> Quantifying State Transfer Strength on Graphs with Involution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lippner%2C+G">Gabor Lippner</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yujia Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08690v1-abstract-short" style="display: inline;"> This paper discusses continuous-time quantum walks and asymptotic state transfer in graphs with an involution. By providing quantitative bounds on the eigenvectors of the Hamiltonian, it provides an approach to achieving high-fidelity state transfer by strategically selecting energy potentials based on the maximum degrees of the graphs. The study also involves an analysis of the time necessary for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08690v1-abstract-full').style.display = 'inline'; document.getElementById('2310.08690v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08690v1-abstract-full" style="display: none;"> This paper discusses continuous-time quantum walks and asymptotic state transfer in graphs with an involution. By providing quantitative bounds on the eigenvectors of the Hamiltonian, it provides an approach to achieving high-fidelity state transfer by strategically selecting energy potentials based on the maximum degrees of the graphs. The study also involves an analysis of the time necessary for quantum transfer to occur. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08690v1-abstract-full').style.display = 'none'; document.getElementById('2310.08690v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 05C50; 81P45 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.06621">arXiv:2310.06621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.06621">pdf</a>, <a href="https://arxiv.org/format/2310.06621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Unraveling the role of disorderness in superconducting materials on qubit coherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+R">Ran Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+F">Feng Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+H">Hantao Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jianjun Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+H">Hao Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+X">Xizheng Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Miao%2C+X">Xiaohe Miao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zhijun Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+X">Xin Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+F">Fei Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xia%2C+T">Tian Xia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ying%2C+M">Make Ying</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yaoyun Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+H">Hui-Hai Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+C">Chunqing Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.06621v2-abstract-short" style="display: inline;"> Introducing disorderness in the superconducting materials has been considered promising to enhance the electromagnetic impedance and realize noise-resilient superconducting qubits. Despite a number of pioneering implementations, the understanding of the correlation between the material disorderness and the qubit coherence is still developing. Here, we demonstrate the first and a systematic charact&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06621v2-abstract-full').style.display = 'inline'; document.getElementById('2310.06621v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.06621v2-abstract-full" style="display: none;"> Introducing disorderness in the superconducting materials has been considered promising to enhance the electromagnetic impedance and realize noise-resilient superconducting qubits. Despite a number of pioneering implementations, the understanding of the correlation between the material disorderness and the qubit coherence is still developing. Here, we demonstrate the first and a systematic characterization of fluxonium qubits with the superinductors made from titanium-aluminum-nitride with varied disorderness. From qubit noise spectroscopy, the flux noise and the dielectric loss are extracted as a measure of the coherence properties. Our results reveal that the $1/f$ flux noise dominates the qubit decoherence around the flux-frustration point, strongly correlated with the material disorderness; while the dielectric loss remains low under a wide range of material properties. From the flux-noise amplitudes, the areal density ($蟽$) of the phenomenological spin defects and material disorderness are found to be approximately correlated by $蟽\propto 蟻_{xx}^3$, or effectively $(k_F l)^{-3}$. This work has provided new insights on the origin of decoherence channels within superconductors, and could serve as a useful guideline for material design and optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06621v2-abstract-full').style.display = 'none'; document.getElementById('2310.06621v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.06565">arXiv:2310.06565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.06565">pdf</a>, <a href="https://arxiv.org/format/2310.06565">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-52082-2">10.1038/s41467-024-52082-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing spin hydrodynamics on a superconducting quantum simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yun-Hao Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+Z">Zheng-Hang Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yong-Yi Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zheng-An Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yu-Ran Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+W">Wei-Guo Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Hao-Tian Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+K">Kui Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+J">Jia-Cheng Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+G">Gui-Han Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mei%2C+Z">Zheng-Yang Mei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jia-Chi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+C">Chi-Tong Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+X">Xiaohui Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jieci Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xue%2C+G">Guangming Xue</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+H">Haifeng Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+K">Kaixuan Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiang%2C+Z">Zhongcheng Xiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+K">Kai Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+D">Dongning Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fan%2C+H">Heng Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.06565v3-abstract-short" style="display: inline;"> Characterizing the nature of hydrodynamical transport properties in quantum dynamics provides valuable insights into the fundamental understanding of exotic non-equilibrium phases of matter. Experimentally simulating infinite-temperature transport on large-scale complex quantum systems is of considerable interest. Here, using a controllable and coherent superconducting quantum simulator, we experi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06565v3-abstract-full').style.display = 'inline'; document.getElementById('2310.06565v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.06565v3-abstract-full" style="display: none;"> Characterizing the nature of hydrodynamical transport properties in quantum dynamics provides valuable insights into the fundamental understanding of exotic non-equilibrium phases of matter. Experimentally simulating infinite-temperature transport on large-scale complex quantum systems is of considerable interest. Here, using a controllable and coherent superconducting quantum simulator, we experimentally realize the analog quantum circuit, which can efficiently prepare the Haar-random states, and probe spin transport at infinite temperature. We observe diffusive spin transport during the unitary evolution of the ladder-type quantum simulator with ergodic dynamics. Moreover, we explore the transport properties of the systems subjected to strong disorder or a tilted potential, revealing signatures of anomalous subdiffusion in accompany with the breakdown of thermalization. Our work demonstrates a scalable method of probing infinite-temperature spin transport on analog quantum simulators, which paves the way to study other intriguing out-of-equilibrium phenomena from the perspective of transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06565v3-abstract-full').style.display = 'none'; document.getElementById('2310.06565v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 13 pages, 5 figures; Supplementary: 17 pages, 16 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 7573 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.16040">arXiv:2308.16040</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.16040">pdf</a>, <a href="https://arxiv.org/format/2308.16040">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Native approach to controlled-Z gates in inductively coupled fluxonium qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+X">Xizheng Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+G">Gengyan Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+F">Feng Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+F">Feng Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chang%2C+X">Xu Chang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jianjun Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+H">Hao Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+R">Ran Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+X">Xun Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+L">Lijuan Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ji%2C+H">Honghong Ji</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ku%2C+H">Hsiang-Sheng Ku</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+K">Kannan Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+L">Lu Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mao%2C+L">Liyong Mao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zhijun Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+H">Hantao Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+C">Chengchun Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+F">Fei Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+H">Hongcheng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+T">Tenghui Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xia%2C+T">Tian Xia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ying%2C+M">Make Ying</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhan%2C+H">Huijuan Zhan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+T">Tao Zhou</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.16040v1-abstract-short" style="display: inline;"> The fluxonium qubits have emerged as a promising platform for gate-based quantum information processing. However, their extraordinary protection against charge fluctuations comes at a cost: when coupled capacitively, the qubit-qubit interactions are restricted to XX-interactions. Consequently, effective XX- or XZ-interactions are only constructed either by temporarily populating higher-energy stat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16040v1-abstract-full').style.display = 'inline'; document.getElementById('2308.16040v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.16040v1-abstract-full" style="display: none;"> The fluxonium qubits have emerged as a promising platform for gate-based quantum information processing. However, their extraordinary protection against charge fluctuations comes at a cost: when coupled capacitively, the qubit-qubit interactions are restricted to XX-interactions. Consequently, effective XX- or XZ-interactions are only constructed either by temporarily populating higher-energy states, or by exploiting perturbative effects under microwave driving. Instead, we propose and demonstrate an inductive coupling scheme, which offers a wide selection of native qubit-qubit interactions for fluxonium. In particular, we leverage a built-in, flux-controlled ZZ-interaction to perform qubit entanglement. To combat the increased flux-noise-induced dephasing away from the flux-insensitive position, we use a continuous version of the dynamical decoupling scheme to perform noise filtering. Combining these, we demonstrate a 20 ns controlled-Z (CZ) gate with a mean fidelity of 99.53%. More than confirming the efficacy of our gate scheme, this high-fidelity result also reveals a promising but rarely explored parameter space uniquely suitable for gate operations between fluxonium qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16040v1-abstract-full').style.display = 'none'; document.getElementById('2308.16040v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10179">arXiv:2308.10179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10179">pdf</a>, <a href="https://arxiv.org/format/2308.10179">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Qubits on programmable geometries with a trapped-ion quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Q">Qiming Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yue Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jiehang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10179v1-abstract-short" style="display: inline;"> Geometry and dimensionality have played crucial roles in our understanding of the fundamental laws of nature, with examples ranging from curved space-time in general relativity to modern theories of quantum gravity. In quantum many-body systems, the entanglement structure can change if the constituents are connected differently, leading to altered bounds for correlation growth and difficulties for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10179v1-abstract-full').style.display = 'inline'; document.getElementById('2308.10179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10179v1-abstract-full" style="display: none;"> Geometry and dimensionality have played crucial roles in our understanding of the fundamental laws of nature, with examples ranging from curved space-time in general relativity to modern theories of quantum gravity. In quantum many-body systems, the entanglement structure can change if the constituents are connected differently, leading to altered bounds for correlation growth and difficulties for classical computers to simulate large systems. While a universal quantum computer can perform digital simulations, an analog-digital hybrid quantum processor offers advantages such as parallelism. Here, we engineer a class of high-dimensional Ising interactions using a linear one-dimensional (1D) ion chain with up to 8 qubits through stroboscopic sequences of commuting Hamiltonians. %with a thorough understanding of the error sources and deviation from the target Hamiltonian. In addition, we extend this method to non-commuting circuits and demonstrate the quantum XY and Heisenberg models using Floquet periodic drives with tunable symmetries. The realization of higher dimensional spin models offers new opportunities ranging from studying topological phases of matter or quantum spin glasses to future fault-tolerant quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10179v1-abstract-full').style.display = 'none'; document.getElementById('2308.10179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06428">arXiv:2308.06428</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.06428">pdf</a>, <a href="https://arxiv.org/format/2308.06428">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> QECC-Synth: A Layout Synthesizer for Quantum Error Correction Codes on Sparse Hardware Architectures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+K">Keyi Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+H">Hezi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fang%2C+X">Xiang Fang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yunong Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Humble%2C+T">Travis Humble</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+A">Ang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+Y">Yufei Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06428v4-abstract-short" style="display: inline;"> Quantum Error Correction (QEC) codes are essential for achieving fault-tolerant quantum computing (FTQC). However, their implementation faces significant challenges due to disparity between required dense qubit connectivity and sparse hardware architectures. Current approaches often either underutilize QEC circuit features or focus on manual designs tailored to specific codes and architectures, li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06428v4-abstract-full').style.display = 'inline'; document.getElementById('2308.06428v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06428v4-abstract-full" style="display: none;"> Quantum Error Correction (QEC) codes are essential for achieving fault-tolerant quantum computing (FTQC). However, their implementation faces significant challenges due to disparity between required dense qubit connectivity and sparse hardware architectures. Current approaches often either underutilize QEC circuit features or focus on manual designs tailored to specific codes and architectures, limiting their capability and generality. In response, we introduce QECC-Synth, an automated compiler for QEC code implementation that addresses these challenges. We leverage the ancilla bridge technique tailored to the requirements of QEC circuits and introduces a systematic classification of its design space flexibilities. We then formalize this problem using the MaxSAT framework to optimize these flexibilities. Evaluation shows that our method significantly outperforms existing methods while demonstrating broader applicability across diverse QEC codes and hardware architectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06428v4-abstract-full').style.display = 'none'; document.getElementById('2308.06428v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08191">arXiv:2307.08191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.08191">pdf</a>, <a href="https://arxiv.org/format/2307.08191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Unleashing the Potential of LLMs for Quantum Computing: A Study in Quantum Architecture Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+R">Rui Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zhixin Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+D">Di Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+X">Xuehai Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tongyang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08191v1-abstract-short" style="display: inline;"> Large Language Models (LLMs) contribute significantly to the development of conversational AI and has great potentials to assist the scientific research in various areas. This paper attempts to address the following questions: What opportunities do the current generation of generative pre-trained transformers (GPTs) offer for the developments of noisy intermediate-scale quantum (NISQ) technologies&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08191v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08191v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08191v1-abstract-full" style="display: none;"> Large Language Models (LLMs) contribute significantly to the development of conversational AI and has great potentials to assist the scientific research in various areas. This paper attempts to address the following questions: What opportunities do the current generation of generative pre-trained transformers (GPTs) offer for the developments of noisy intermediate-scale quantum (NISQ) technologies? Additionally, what potentials does the forthcoming generation of GPTs possess to push the frontier of research in fault-tolerant quantum computing (FTQC)? In this paper, we implement a QGAS model, which can rapidly propose promising ansatz architectures and evaluate them with application benchmarks including quantum chemistry and quantum finance tasks. Our results demonstrate that after a limited number of prompt guidelines and iterations, we can obtain a high-performance ansatz which is able to produce comparable results that are achieved by state-of-the-art quantum architecture search methods. This study provides a simple overview of GPT&#39;s capabilities in supporting quantum computing research while highlighting the limitations of the current GPT at the same time. Additionally, we discuss futuristic applications for LLM in quantum research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08191v1-abstract-full').style.display = 'none'; document.getElementById('2307.08191v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11578">arXiv:2306.11578</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11578">pdf</a>, <a href="https://arxiv.org/format/2306.11578">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.085108">10.1103/PhysRevB.108.085108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust unidirectional phantom helix states in the XXZ Heisenberg model with Dzyaloshinskii-Moriya interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y+B">Y. B. Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11578v5-abstract-short" style="display: inline;"> The phantom helix states are a special set of degenerate eigenstates of the XXZ Heisenberg model, which lie in the energy levels around zero energy and are bidirectionally equal. In this work, we study the helix state in the XXZ Heisenberg model with the Dzyaloshinskii-Moriya interaction (DMI). We show exactly that only the helix states in one direction remain unchanged in the presence of resonant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11578v5-abstract-full').style.display = 'inline'; document.getElementById('2306.11578v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11578v5-abstract-full" style="display: none;"> The phantom helix states are a special set of degenerate eigenstates of the XXZ Heisenberg model, which lie in the energy levels around zero energy and are bidirectionally equal. In this work, we study the helix state in the XXZ Heisenberg model with the Dzyaloshinskii-Moriya interaction (DMI). We show exactly that only the helix states in one direction remain unchanged in the presence of resonant DMI. Based on the Holstein--Primakoff (HP) transformation, the quantum spin model is mapped to a boson model, which allows us to understand the underlying mechanism. Furthermore, it also indicates that such phantom states can be separated from the spectrum by the strong DMI to enhance the robustness of the states. We demonstrate the dynamic formation processes of unidirectional phantom helix states by numerical simulations. The results indicate that the DMI as expected acts as a filter with high efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11578v5-abstract-full').style.display = 'none'; document.getElementById('2306.11578v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 085108 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05312">arXiv:2306.05312</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.05312">pdf</a>, <a href="https://arxiv.org/format/2306.05312">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.20.044028">10.1103/PhysRevApplied.20.044028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable Coupling Architectures with Capacitively Connecting Pads for Large-Scale Superconducting Multi-Qubit Processors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+G">Gui-Han Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+X">Xiao-Hui Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+C">Cheng-Lin Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gu%2C+X">Xu-Yang Gu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+Y">Yu Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mei%2C+Z">Zheng-Yang Mei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+S">Si-Lu Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bu%2C+Y">Yi-Zhou Bu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+Y">Yong-Xi Xiao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+Y">Yi-Han Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+M">Ming-Chuan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+T">Tong Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yun-Hao Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+H">He Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+X">Xiang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+L">Li Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jing-Zhe Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+Y">Ye Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+S">Shi-Ping Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+K">Kai Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fan%2C+H">Heng Fan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiang%2C+Z">Zhong-Cheng Xiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+D">Dong-Ning Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05312v1-abstract-short" style="display: inline;"> We have proposed and experimentally verified a tunable inter-qubit coupling scheme for large-scale integration of superconducting qubits. The key feature of the scheme is the insertion of connecting pads between qubit and tunable coupling element. In such a way, the distance between two qubits can be increased considerably to a few millimeters, leaving enough space for arranging control lines, rea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05312v1-abstract-full').style.display = 'inline'; document.getElementById('2306.05312v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05312v1-abstract-full" style="display: none;"> We have proposed and experimentally verified a tunable inter-qubit coupling scheme for large-scale integration of superconducting qubits. The key feature of the scheme is the insertion of connecting pads between qubit and tunable coupling element. In such a way, the distance between two qubits can be increased considerably to a few millimeters, leaving enough space for arranging control lines, readout resonators and other necessary structures. The increased inter-qubit distance provides more wiring space for flip-chip process and reduces crosstalk between qubits and from control lines to qubits. We use the term Tunable Coupler with Capacitively Connecting Pad (TCCP) to name the tunable coupling part that consists of a transmon coupler and capacitively connecting pads. With the different placement of connecting pads, different TCCP architectures can be realized. We have designed and fabricated a few multi-qubit devices in which TCCP is used for coupling. The measured results show that the performance of the qubits coupled by the TCCP, such as $T_1$ and $T_2$, was similar to that of the traditional transmon qubits without TCCP. Meanwhile, our TCCP also exhibited a wide tunable range of the effective coupling strength and a low residual ZZ interaction between the qubits by properly tuning the parameters on the design. Finally, we successfully implemented an adiabatic CZ gate with TCCP. Furthermore, by introducing TCCP, we also discuss the realization of the flip-chip process and tunable coupling qubits between different chips. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05312v1-abstract-full').style.display = 'none'; document.getElementById('2306.05312v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 7 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 20, 044028 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.14304">arXiv:2305.14304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.14304">pdf</a>, <a href="https://arxiv.org/format/2305.14304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> A Classical Architecture For Digital Quantum Computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+F">Fang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+X">Xing Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chao%2C+R">Rui Chao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+C">Cupjin Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kong%2C+L">Linghang Kong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+G">Guoyang Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+D">Dawei Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Feng%2C+H">Haishan Feng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yihuai Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ni%2C+X">Xiaotong Ni</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qiu%2C+L">Liwei Qiu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wei%2C+Z">Zhe Wei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+Y">Yueming Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+Y">Yang Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yaoyun Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Weifeng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+P">Peng Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jianxin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.14304v1-abstract-short" style="display: inline;"> Scaling bottlenecks the making of digital quantum computers, posing challenges from both the quantum and the classical components. We present a classical architecture to cope with a comprehensive list of the latter challenges {\em all at once}, and implement it fully in an end-to-end system by integrating a multi-core RISC-V CPU with our in-house control electronics. Our architecture enables sca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14304v1-abstract-full').style.display = 'inline'; document.getElementById('2305.14304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.14304v1-abstract-full" style="display: none;"> Scaling bottlenecks the making of digital quantum computers, posing challenges from both the quantum and the classical components. We present a classical architecture to cope with a comprehensive list of the latter challenges {\em all at once}, and implement it fully in an end-to-end system by integrating a multi-core RISC-V CPU with our in-house control electronics. Our architecture enables scalable, high-precision control of large quantum processors and accommodates evolving requirements of quantum hardware. A central feature is a microarchitecture executing quantum operations in parallel on arbitrary predefined qubit groups. Another key feature is a reconfigurable quantum instruction set that supports easy qubit re-grouping and instructions extensions. As a demonstration, we implement the widely-studied surface code quantum computing workflow, which is instructive for being demanding on both the controllers and the integrated classical computation. Our design, for the first time, reduces instruction issuing and transmission costs to constants, which do not scale with the number of qubits, without adding any overheads in decoding or dispatching. Rather than relying on specialized hardware for syndrome decoding, our system uses a dedicated multi-core CPU for both qubit control and classical computation, including syndrome decoding. This simplifies the system design and facilitates load-balancing between the quantum and classical components. We implement recent proposals as decoding firmware on a RISC-V system-on-chip (SoC) that parallelizes general inner decoders. By using our in-house Union-Find and PyMatching 2 implementations, we can achieve unprecedented decoding capabilities of up to distances 47 and 67 with the currently available SoCs, under realistic and optimistic assumptions of physical error rate $p=0.001 and p=0.0001, respectively, all in just 1 \textmu s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14304v1-abstract-full').style.display = 'none'; document.getElementById('2305.14304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.12597">arXiv:2305.12597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.12597">pdf</a>, <a href="https://arxiv.org/format/2305.12597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Fidelity estimator, randomized benchmarking and ZNE for quantum pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+R">Rui Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+H">Hang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yiyu Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tongyang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+X">Xuehai Qian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.12597v1-abstract-short" style="display: inline;"> Most previous research focused on designing pulse programs without considering the performance of individual elements or the final fidelity. To evaluate the performance of quantum pulses, it is required to know the noiseless results of the pulses. However, quantum pulses can implement unitary matrices that are not analytically known to the user, and pulse simulator usually comes with significant c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12597v1-abstract-full').style.display = 'inline'; document.getElementById('2305.12597v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.12597v1-abstract-full" style="display: none;"> Most previous research focused on designing pulse programs without considering the performance of individual elements or the final fidelity. To evaluate the performance of quantum pulses, it is required to know the noiseless results of the pulses. However, quantum pulses can implement unitary matrices that are not analytically known to the user, and pulse simulator usually comes with significant computational overhead. Consequently, determining fidelity of a pulse program is challenging without the knowledge of the ideal results. In this paper, we propose to use reversed pulses to evaluate the performance of quantum pulses, which can provide guidance to design pulse programs. By employing reversed pulses, we can ensure that, in the noiseless situation, the final quantum states are the same as the initial states. This method enables us to evaluate the fidelity of pulse programs by measuring the difference between the final states and the initial states. Such fidelity estimator can tell whether the results are meaningful for quantum pulses on real quantum machines. There are various quantum error correction (QEC) methods available for gate circuits; however, few studies have demonstrated QEC on pulse-level programs. In this paper, we use reversed pulses to implement zero noise extrapolation (ZNE) on pulse programs and demonstrate results for variational quantum eigensolver (VQE) tasks. The deviation from the idea energy value is reduced by an average of 54.1\% with our techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12597v1-abstract-full').style.display = 'none'; document.getElementById('2305.12597v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00496">arXiv:2305.00496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00496">pdf</a>, <a href="https://arxiv.org/format/2305.00496">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.125121">10.1103/PhysRevB.108.125121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fixed lines in a non-Hermitian Kitaev chain with spatially balanced pairing processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y+B">Y. B. Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00496v3-abstract-short" style="display: inline;"> Exact solutions for non-Hermitian quantum many-body systems are rare but may provide valuable insights into the interplay between Hermitian and non-Hermitian components. We report our investigation of a non-Hermitian variant of a p-wave Kitaev chain by introducing staggered imbalanced pair creation and annihilation terms. We find that there exists a fixed line in the phase diagram, at which the gr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00496v3-abstract-full').style.display = 'inline'; document.getElementById('2305.00496v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00496v3-abstract-full" style="display: none;"> Exact solutions for non-Hermitian quantum many-body systems are rare but may provide valuable insights into the interplay between Hermitian and non-Hermitian components. We report our investigation of a non-Hermitian variant of a p-wave Kitaev chain by introducing staggered imbalanced pair creation and annihilation terms. We find that there exists a fixed line in the phase diagram, at which the ground state remains unchanged in the presence of non-Hermitian term under the periodic boundary condition for a finite system. This allows the constancy of the topological index in the process of varying the balance strength at arbitrary rate, exhibiting the robustness of the topology for non-Hermitian Kitaev chain under time-dependent perturbations. The underlying mechanism is investigated through the equivalent quantum spin system obtained by the Jordan-Wigner transformation for infinite chain. In addition, the exact solution shows that a resonant non-Hermitian impurity can induce a pair of zero modes in the corresponding Majorana lattice, which asymptotically approach the edge modes in the thermodynamic limit, manifesting the bulk-boundary correspondence. Numerical simulation is performed for the quench dynamics for the systems with slight deviation from the fixed line to show the stability region in time. This work reveals the interplay between the pair creation and annihilation pairing processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00496v3-abstract-full').style.display = 'none'; document.getElementById('2305.00496v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 125121 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.09627">arXiv:2304.09627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.09627">pdf</a>, <a href="https://arxiv.org/format/2304.09627">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Nonreciprocal ultrastrong magnon-photon coupling in the bandgap of photonic crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hao%2C+Z">Zhenhui Hao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yongzhang Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+C">Changjun Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ong%2C+C+K">C. K. Ong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chai%2C+G">Guozhi Chai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.09627v1-abstract-short" style="display: inline;"> We observe a nonreciprocal ultrastrong magnon-photon coupling in the bandgap of photonic crystals by introducing a single crystal YIG cylinder into copper photonic crystals cavity as a point defect. The coupling strength reaches up to 1.18 GHz, which constitutes about 10.9% of the photon energy compared to the photon frequency around 10.8 GHz. It is fascinating that the coupling achieves unidirect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09627v1-abstract-full').style.display = 'inline'; document.getElementById('2304.09627v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.09627v1-abstract-full" style="display: none;"> We observe a nonreciprocal ultrastrong magnon-photon coupling in the bandgap of photonic crystals by introducing a single crystal YIG cylinder into copper photonic crystals cavity as a point defect. The coupling strength reaches up to 1.18 GHz, which constitutes about 10.9% of the photon energy compared to the photon frequency around 10.8 GHz. It is fascinating that the coupling achieves unidirectional signal transmission in the whole bandgap. This study demonstrates the possibility of controlling nonreciprocal magnon-photon coupling by manipulating the structure of photonic crystals, providing new methods to investigate the influence of magnetic point defects on microwave signal transmission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09627v1-abstract-full').style.display = 'none'; document.getElementById('2304.09627v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Shi%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Shi%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10