CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 103 results for author: <span class="mathjax">Chong, F T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&query=Chong%2C+F+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chong, F T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chong%2C+F+T&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chong, F T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Chong%2C+F+T&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Chong%2C+F+T&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Chong%2C+F+T&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Chong%2C+F+T&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11356">arXiv:2412.11356</a> <span> [<a href="https://arxiv.org/pdf/2412.11356">pdf</a>, <a href="https://arxiv.org/format/2412.11356">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> The Stabilizer Bootstrap of Quantum Machine Learning with up to 10000 qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yuqing Li</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+X">Xulong Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Youtao Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Junyu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11356v1-abstract-short" style="display: inline;"> Quantum machine learning is considered one of the flagship applications of quantum computers, where variational quantum circuits could be the leading paradigm both in the near-term quantum devices and the early fault-tolerant quantum computers. However, it is not clear how to identify the regime of quantum advantages from these circuits, and there is no explicit theory to guide the practical desig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11356v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11356v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11356v1-abstract-full" style="display: none;"> Quantum machine learning is considered one of the flagship applications of quantum computers, where variational quantum circuits could be the leading paradigm both in the near-term quantum devices and the early fault-tolerant quantum computers. However, it is not clear how to identify the regime of quantum advantages from these circuits, and there is no explicit theory to guide the practical design of variational ansatze to achieve better performance. We address these challenges with the stabilizer bootstrap, a method that uses stabilizer-based techniques to optimize quantum neural networks before their quantum execution, together with theoretical proofs and high-performance computing with 10000 qubits or random datasets up to 1000 data. We find that, in a general setup of variational ansatze, the possibility of improvements from the stabilizer bootstrap depends on the structure of the observables and the size of the datasets. The results reveal that configurations exhibit two distinct behaviors: some maintain a constant probability of circuit improvement, while others show an exponential decay in improvement probability as qubit numbers increase. These patterns are termed strong stabilizer enhancement and weak stabilizer enhancement, respectively, with most situations falling in between. Our work seamlessly bridges techniques from fault-tolerant quantum computing with applications of variational quantum algorithms. Not only does it offer practical insights for designing variational circuits tailored to large-scale machine learning challenges, but it also maps out a clear trajectory for defining the boundaries of feasible and practical quantum advantages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11356v1-abstract-full').style.display = 'none'; document.getElementById('2412.11356v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07670">arXiv:2412.07670</a> <span> [<a href="https://arxiv.org/pdf/2412.07670">pdf</a>, <a href="https://arxiv.org/format/2412.07670">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Fault-Tolerant Operation and Materials Science with Neutral Atom Logical Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Bedalov%2C+M+J">Matt. J. Bedalov</a>, <a href="/search/quant-ph?searchtype=author&query=Blakely%2C+M">Matt Blakely</a>, <a href="/search/quant-ph?searchtype=author&query=Buttler%2C+P+D">Peter. D. Buttler</a>, <a href="/search/quant-ph?searchtype=author&query=Carnahan%2C+C">Caitlin Carnahan</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Chung%2C+W+C">Woo Chang Chung</a>, <a href="/search/quant-ph?searchtype=author&query=Cole%2C+D+C">Dan C. Cole</a>, <a href="/search/quant-ph?searchtype=author&query=Goiporia%2C+P">Palash Goiporia</a>, <a href="/search/quant-ph?searchtype=author&query=Gokhale%2C+P">Pranav Gokhale</a>, <a href="/search/quant-ph?searchtype=author&query=Heim%2C+B">Bettina Heim</a>, <a href="/search/quant-ph?searchtype=author&query=Hickman%2C+G+T">Garrett T. Hickman</a>, <a href="/search/quant-ph?searchtype=author&query=Jones%2C+E+B">Eric B. Jones</a>, <a href="/search/quant-ph?searchtype=author&query=Jones%2C+R+A">Ryan A. Jones</a>, <a href="/search/quant-ph?searchtype=author&query=Khalate%2C+P">Pradnya Khalate</a>, <a href="/search/quant-ph?searchtype=author&query=Kim%2C+J">Jin-Sung Kim</a>, <a href="/search/quant-ph?searchtype=author&query=Kuper%2C+K+W">Kevin W. Kuper</a>, <a href="/search/quant-ph?searchtype=author&query=Lichtman%2C+M+T">Martin T. Lichtman</a>, <a href="/search/quant-ph?searchtype=author&query=Lee%2C+S">Stephanie Lee</a>, <a href="/search/quant-ph?searchtype=author&query=Mason%2C+D">David Mason</a>, <a href="/search/quant-ph?searchtype=author&query=Neff-Mallon%2C+N+A">Nathan A. Neff-Mallon</a>, <a href="/search/quant-ph?searchtype=author&query=Noel%2C+T+W">Thomas W. Noel</a>, <a href="/search/quant-ph?searchtype=author&query=Omole%2C+V">Victory Omole</a>, <a href="/search/quant-ph?searchtype=author&query=Radnaev%2C+A+G">Alexander G. Radnaev</a>, <a href="/search/quant-ph?searchtype=author&query=Rines%2C+R">Rich Rines</a>, <a href="/search/quant-ph?searchtype=author&query=Saffman%2C+M">Mark Saffman</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07670v1-abstract-short" style="display: inline;"> We report on the fault-tolerant operation of logical qubits on a neutral atom quantum computer, with logical performance surpassing physical performance for multiple circuits including Bell states (12x error reduction), random circuits (15x), and a prototype Anderson Impurity Model ground state solver for materials science applications (up to 6x, non-fault-tolerantly). The logical qubits are imple… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07670v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07670v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07670v1-abstract-full" style="display: none;"> We report on the fault-tolerant operation of logical qubits on a neutral atom quantum computer, with logical performance surpassing physical performance for multiple circuits including Bell states (12x error reduction), random circuits (15x), and a prototype Anderson Impurity Model ground state solver for materials science applications (up to 6x, non-fault-tolerantly). The logical qubits are implemented via the [[4, 2, 2]] code (C4). Our work constitutes the first complete realization of the benchmarking protocol proposed by Gottesman 2016 [1] demonstrating results consistent with fault-tolerance. In light of recent advances on applying concatenated C4/C6 detection codes to achieve error correction with high code rates and thresholds, our work can be regarded as a building block towards a practical scheme for fault tolerant quantum computation. Our demonstration of a materials science application with logical qubits particularly demonstrates the immediate value of these techniques on current experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07670v1-abstract-full').style.display = 'none'; document.getElementById('2412.07670v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.06623">arXiv:2412.06623</a> <span> [<a href="https://arxiv.org/pdf/2412.06623">pdf</a>, <a href="https://arxiv.org/format/2412.06623">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Using optimal control to guide neural-network interpolation of continuously-parameterized gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Bhattacharyya%2C+B">Bikrant Bhattacharyya</a>, <a href="/search/quant-ph?searchtype=author&query=An%2C+F">Fredy An</a>, <a href="/search/quant-ph?searchtype=author&query=Kozbiel%2C+D">Dominik Kozbiel</a>, <a href="/search/quant-ph?searchtype=author&query=Goldschmidt%2C+A+J">Andy J. Goldschmidt</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.06623v1-abstract-short" style="display: inline;"> Control synthesis for continuously-parameterized families of quantum gates can enable critical advantages for mid-sized quantum computing applications in advance of fault-tolerance. We combine quantum optimal control with physics-informed machine learning to efficiently synthesize control surfaces that interpolate among continuously-parameterized gate families. Using optimal control as an active l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06623v1-abstract-full').style.display = 'inline'; document.getElementById('2412.06623v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.06623v1-abstract-full" style="display: none;"> Control synthesis for continuously-parameterized families of quantum gates can enable critical advantages for mid-sized quantum computing applications in advance of fault-tolerance. We combine quantum optimal control with physics-informed machine learning to efficiently synthesize control surfaces that interpolate among continuously-parameterized gate families. Using optimal control as an active learning strategy to guide pretraining, we bootstrap a physics-informed neural network to achieve rapid convergence to nonlinear control surfaces sufficient for our desired gates. We find our approach is critical for enabling an expressiveness beyond linear interpolation, which is important in cases of hard quantum control. We show in simulation that by adapting our pretraining to use a few reference pulse calibrations, we can apply transfer learning to quickly calibrate our learned control surfaces when devices fluctuate over time. We demonstrate synthesis for one and two qubit gates with one or two parameters, focusing on gate families for variational quantum algorithm (VQA) ansatz. By avoiding the inefficient decomposition of VQA ansatz into basis gate sets, continuous gate families are a potential method to improve the noise robustness of VQAs in the near term. Our framework shows how accessible optimal control tools can be combined with simple machine learning to enable practitioners to achieve 3x speedups for their algorithms by going beyond the standard gate sets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.06623v1-abstract-full').style.display = 'none'; document.getElementById('2412.06623v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures; in conference proceedings, IEEE QCE24</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05115">arXiv:2412.05115</a> <span> [<a href="https://arxiv.org/pdf/2412.05115">pdf</a>, <a href="https://arxiv.org/format/2412.05115">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Predictive Window Decoding for Fault-Tolerant Quantum Programs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Viszlai%2C+J">Joshua Viszlai</a>, <a href="/search/quant-ph?searchtype=author&query=Chadwick%2C+J+D">Jason D. Chadwick</a>, <a href="/search/quant-ph?searchtype=author&query=Joshi%2C+S">Sarang Joshi</a>, <a href="/search/quant-ph?searchtype=author&query=Ravi%2C+G+S">Gokul Subramanian Ravi</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yanjing Li</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05115v1-abstract-short" style="display: inline;"> Real-time decoding is a key ingredient in future fault-tolerant quantum systems, yet many decoders are too slow to run in real time. Prior work has shown that parallel window decoding schemes can scalably meet throughput requirements in the presence of increasing decoding times, given enough classical resources. However, windowed decoding schemes require that some decoding tasks be delayed until o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05115v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05115v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05115v1-abstract-full" style="display: none;"> Real-time decoding is a key ingredient in future fault-tolerant quantum systems, yet many decoders are too slow to run in real time. Prior work has shown that parallel window decoding schemes can scalably meet throughput requirements in the presence of increasing decoding times, given enough classical resources. However, windowed decoding schemes require that some decoding tasks be delayed until others have completed, which can be problematic during time-sensitive operations such as T gate teleportation, leading to suboptimal program runtimes. To alleviate this, we introduce a speculative window decoding scheme. Taking inspiration from branch prediction in classical computer architecture our decoder utilizes a light-weight speculation step to predict data dependencies between adjacent decoding windows, allowing multiple layers of decoding tasks to be resolved simultaneously. Through a state-of-the-art compilation pipeline and a detailed simulator, we find that speculation reduces application runtimes by 40% on average compared to prior parallel window decoders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05115v1-abstract-full').style.display = 'none'; document.getElementById('2412.05115v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03566">arXiv:2411.03566</a> <span> [<a href="https://arxiv.org/pdf/2411.03566">pdf</a>, <a href="https://arxiv.org/format/2411.03566">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Programming an Optical Lattice Interferometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Seifert%2C+L+M">Lennart Maximilian Seifert</a>, <a href="/search/quant-ph?searchtype=author&query=Colussi%2C+V+E">Victor E. Colussi</a>, <a href="/search/quant-ph?searchtype=author&query=Perlin%2C+M+A">Michael A. Perlin</a>, <a href="/search/quant-ph?searchtype=author&query=Gokhale%2C+P">Pranav Gokhale</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03566v1-abstract-short" style="display: inline;"> Programming a quantum device describes the usage of quantum logic gates, agnostic of hardware specifics, to perform a sequence of operations with (typically) a computing or sensing task in mind. Such programs have been executed on digital quantum computers, which despite their noisy character, have shown the ability to optimize metrological functions, for example in the generation of spin squeezin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03566v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03566v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03566v1-abstract-full" style="display: none;"> Programming a quantum device describes the usage of quantum logic gates, agnostic of hardware specifics, to perform a sequence of operations with (typically) a computing or sensing task in mind. Such programs have been executed on digital quantum computers, which despite their noisy character, have shown the ability to optimize metrological functions, for example in the generation of spin squeezing and optimization of quantum Fisher information for signals manifesting as spin rotations in a quantum register. However, the qubits of these programmable quantum sensors are tightly spatially confined and therefore suboptimal for enclosing the kinds of large spacetime areas required for performing inertial sensing. In this work, we derive a set of quantum logic gates for a cold atom optical lattice interferometer that manipulates the momentum of atoms. Here, the operations are framed in terms of single qubit operations and mappings between qubit subspaces with internal levels given by the Bloch (crystal) eigenstates of the lattice. We describe how the quantum optimal control method of direct collocation is well suited for obtaining the modulation waveforms of the lattice which achieve these operations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03566v1-abstract-full').style.display = 'none'; document.getElementById('2411.03566v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13479">arXiv:2408.13479</a> <span> [<a href="https://arxiv.org/pdf/2408.13479">pdf</a>, <a href="https://arxiv.org/format/2408.13479">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Quantum-machine-assisted Drug Discovery: Survey and Perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Y">Yidong Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+J">Jintai Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&query=Karemore%2C+G">Gopal Karemore</a>, <a href="/search/quant-ph?searchtype=author&query=Zitnik%2C+M">Marinka Zitnik</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Junyu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Fu%2C+T">Tianfan Fu</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+Z">Zhiding Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13479v3-abstract-short" style="display: inline;"> Drug discovery and development is a highly complex and costly endeavor, typically requiring over a decade and substantial financial investment to bring a new drug to market. Traditional computer-aided drug design (CADD) has made significant progress in accelerating this process, but the development of quantum computing offers potential due to its unique capabilities. This paper discusses the integ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13479v3-abstract-full').style.display = 'inline'; document.getElementById('2408.13479v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13479v3-abstract-full" style="display: none;"> Drug discovery and development is a highly complex and costly endeavor, typically requiring over a decade and substantial financial investment to bring a new drug to market. Traditional computer-aided drug design (CADD) has made significant progress in accelerating this process, but the development of quantum computing offers potential due to its unique capabilities. This paper discusses the integration of quantum computing into drug discovery and development, focusing on how quantum technologies might accelerate and enhance various stages of the drug development cycle. Specifically, we explore the application of quantum computing in addressing challenges related to drug discovery, such as molecular simulation and the prediction of drug-target interactions, as well as the optimization of clinical trial outcomes. By leveraging the inherent capabilities of quantum computing, we might be able to reduce the time and cost associated with bringing new drugs to market, ultimately benefiting public health. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13479v3-abstract-full').style.display = 'none'; document.getElementById('2408.13479v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06482">arXiv:2408.06482</a> <span> [<a href="https://arxiv.org/pdf/2408.06482">pdf</a>, <a href="https://arxiv.org/format/2408.06482">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Demonstration of a CAFQA-bootstrapped Variational Quantum Eigensolver on a Trapped-Ion Quantum Computer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Q">Qingfeng Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhukas%2C+L">Liudmila Zhukas</a>, <a href="/search/quant-ph?searchtype=author&query=Miao%2C+Q">Qiang Miao</a>, <a href="/search/quant-ph?searchtype=author&query=Dalvi%2C+A+S">Aniket S. Dalvi</a>, <a href="/search/quant-ph?searchtype=author&query=Love%2C+P+J">Peter J. Love</a>, <a href="/search/quant-ph?searchtype=author&query=Monroe%2C+C">Christopher Monroe</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Ravi%2C+G+S">Gokul Subramanian Ravi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06482v1-abstract-short" style="display: inline;"> To enhance the variational quantum eigensolver (VQE), the CAFQA method can utilize classical computational capabilities to identify a better initial state than the Hartree-Fock method. Previous research has demonstrated that the initial state provided by CAFQA recovers more correlation energy than that of the Hartree-Fock method and results in faster convergence. In the present study, we advance t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06482v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06482v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06482v1-abstract-full" style="display: none;"> To enhance the variational quantum eigensolver (VQE), the CAFQA method can utilize classical computational capabilities to identify a better initial state than the Hartree-Fock method. Previous research has demonstrated that the initial state provided by CAFQA recovers more correlation energy than that of the Hartree-Fock method and results in faster convergence. In the present study, we advance the investigation of CAFQA by demonstrating its advantages on a high-fidelity trapped-ion quantum computer located at the Duke Quantum Center -- this is the first experimental demonstration of CAFQA-bootstrapped VQE on a TI device and on any academic quantum device. In our VQE experiment, we use LiH and BeH$_2$ as test cases to show that CAFQA achieves faster convergence and obtains lower energy values within the specified computational budget limits. To ensure the seamless execution of VQE on this academic device, we develop a novel hardware-software interface framework that supports independent software environments for both the circuit and hardware end. This mechanism facilitates the automation of VQE-type job executions as well as mitigates the impact of random hardware interruptions. This framework is versatile and can be applied to a variety of academic quantum devices beyond the trapped-ion quantum computer platform, with support for integration with customized packages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06482v1-abstract-full').style.display = 'none'; document.getElementById('2408.06482v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15721">arXiv:2406.15721</a> <span> [<a href="https://arxiv.org/pdf/2406.15721">pdf</a>, <a href="https://arxiv.org/format/2406.15721">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Clapton: Clifford-Assisted Problem Transformation for Error Mitigation in Variational Quantum Algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Seifert%2C+L+M">Lennart Maximilian Seifert</a>, <a href="/search/quant-ph?searchtype=author&query=Dangwal%2C+S">Siddharth Dangwal</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Ravi%2C+G+S">Gokul Subramanian Ravi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15721v1-abstract-short" style="display: inline;"> Variational quantum algorithms (VQAs) show potential for quantum advantage in the near term of quantum computing, but demand a level of accuracy that surpasses the current capabilities of NISQ devices. To systematically mitigate the impact of quantum device error on VQAs, we propose Clapton: Clifford-Assisted Problem Transformation for Error Mitigation in Variational Quantum Algorithms. Clapton le… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15721v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15721v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15721v1-abstract-full" style="display: none;"> Variational quantum algorithms (VQAs) show potential for quantum advantage in the near term of quantum computing, but demand a level of accuracy that surpasses the current capabilities of NISQ devices. To systematically mitigate the impact of quantum device error on VQAs, we propose Clapton: Clifford-Assisted Problem Transformation for Error Mitigation in Variational Quantum Algorithms. Clapton leverages classically estimated good quantum states for a given VQA problem, classical simulable models of device noise, and the variational principle for VQAs. It applies transformations on the VQA problem's Hamiltonian to lower the energy estimates of known good VQA states in the presence of the modeled device noise. The Clapton hypothesis is that as long as the known good states of the VQA problem are close to the problem's ideal ground state and the device noise modeling is reasonably accurate (both of which are generally true), then the Clapton transformation substantially decreases the impact of device noise on the ground state of the VQA problem, thereby increasing the accuracy of the VQA solution. Clapton is built as an end-to-end application-to-device framework and achieves mean VQA initialization improvements of 1.7x to 3.7x, and up to a maximum of 13.3x, over the state-of-the-art baseline when evaluated for a variety of scientific applications from physics and chemistry on noise models and real quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15721v1-abstract-full').style.display = 'none'; document.getElementById('2406.15721v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00146">arXiv:2405.00146</a> <span> [<a href="https://arxiv.org/pdf/2405.00146">pdf</a>, <a href="https://arxiv.org/format/2405.00146">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Averting multi-qubit burst errors in surface code magic state factories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chadwick%2C+J+D">Jason D. Chadwick</a>, <a href="/search/quant-ph?searchtype=author&query=Kang%2C+C">Christopher Kang</a>, <a href="/search/quant-ph?searchtype=author&query=Viszlai%2C+J">Joshua Viszlai</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+S+F">Sophia Fuhui Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00146v1-abstract-short" style="display: inline;"> Fault-tolerant quantum computation relies on the assumption of time-invariant, sufficiently low physical error rates. However, current superconducting quantum computers suffer from frequent disruptive noise events, including cosmic ray impacts and shifting two-level system defects. Several methods have been proposed to mitigate these issues in software, but they add large overheads in terms of phy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00146v1-abstract-full').style.display = 'inline'; document.getElementById('2405.00146v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00146v1-abstract-full" style="display: none;"> Fault-tolerant quantum computation relies on the assumption of time-invariant, sufficiently low physical error rates. However, current superconducting quantum computers suffer from frequent disruptive noise events, including cosmic ray impacts and shifting two-level system defects. Several methods have been proposed to mitigate these issues in software, but they add large overheads in terms of physical qubit count, as it is difficult to preserve logical information through burst error events. We focus on mitigating multi-qubit burst errors in magic state factories, which are expected to comprise up to 95% of the space cost of future quantum programs. Our key insight is that magic state factories do not need to preserve logical information over time; once we detect an increase in local physical error rates, we can simply turn off parts of the factory that are affected, re-map the factory to the new chip geometry, and continue operating. This is much more efficient than previous more general methods, and is resilient even under many simultaneous impact events. Using precise physical noise models, we show an efficient ray detection method and evaluate our strategy in different noise regimes. Compared to existing baselines, we find reductions in ray-induced overheads by several orders of magnitude, reducing total qubitcycle cost by geomean 6.5x to 13.9x depending on the noise model. This work reduces the burden on hardware by providing low-overhead software mitigation of these errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00146v1-abstract-full').style.display = 'none'; document.getElementById('2405.00146v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17962">arXiv:2404.17962</a> <span> [<a href="https://arxiv.org/pdf/2404.17962">pdf</a>, <a href="https://arxiv.org/format/2404.17962">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning for Low-Latency, Quantum-Ready RF Sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Gokhale%2C+P">Pranav Gokhale</a>, <a href="/search/quant-ph?searchtype=author&query=Carnahan%2C+C">Caitlin Carnahan</a>, <a href="/search/quant-ph?searchtype=author&query=Clark%2C+W">William Clark</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17962v1-abstract-short" style="display: inline;"> Recent work has shown the promise of applying deep learning to enhance software processing of radio frequency (RF) signals. In parallel, hardware developments with quantum RF sensors based on Rydberg atoms are breaking longstanding barriers in frequency range, resolution, and sensitivity. In this paper, we describe our implementations of quantum-ready machine learning approaches for RF signal clas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17962v1-abstract-full').style.display = 'inline'; document.getElementById('2404.17962v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17962v1-abstract-full" style="display: none;"> Recent work has shown the promise of applying deep learning to enhance software processing of radio frequency (RF) signals. In parallel, hardware developments with quantum RF sensors based on Rydberg atoms are breaking longstanding barriers in frequency range, resolution, and sensitivity. In this paper, we describe our implementations of quantum-ready machine learning approaches for RF signal classification. Our primary objective is latency: while deep learning offers a more powerful computational paradigm, it also traditionally incurs latency overheads that hinder wider scale deployment. Our work spans three axes. (1) A novel continuous wavelet transform (CWT) based recurrent neural network (RNN) architecture that enables flexible online classification of RF signals on-the-fly with reduced sampling time. (2) Low-latency inference techniques for both GPU and CPU that span over 100x reductions in inference time, enabling real-time operation with sub-millisecond inference. (3) Quantum-readiness validated through application of our models to physics-based simulation of Rydberg atom QRF sensors. Altogether, our work bridges towards next-generation RF sensors that use quantum technology to surpass previous physical limits, paired with latency-optimized AI/ML software that is suitable for real-time deployment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17962v1-abstract-full').style.display = 'none'; document.getElementById('2404.17962v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05571">arXiv:2401.05571</a> <span> [<a href="https://arxiv.org/pdf/2401.05571">pdf</a>, <a href="https://arxiv.org/format/2401.05571">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+T">Tianlong Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Z">Zhenyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hanrui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Gu%2C+J">Jiaqi Gu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zirui Li</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+D+Z">David Z. Pan</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Han%2C+S">Song Han</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z">Zhangyang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05571v1-abstract-short" style="display: inline;"> Parameterized Quantum Circuits (PQC) have obtained increasing popularity thanks to their great potential for near-term Noisy Intermediate-Scale Quantum (NISQ) computers. Achieving quantum advantages usually requires a large number of qubits and quantum circuits with enough capacity. However, limited coherence time and massive quantum noises severely constrain the size of quantum circuits that can… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05571v1-abstract-full').style.display = 'inline'; document.getElementById('2401.05571v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05571v1-abstract-full" style="display: none;"> Parameterized Quantum Circuits (PQC) have obtained increasing popularity thanks to their great potential for near-term Noisy Intermediate-Scale Quantum (NISQ) computers. Achieving quantum advantages usually requires a large number of qubits and quantum circuits with enough capacity. However, limited coherence time and massive quantum noises severely constrain the size of quantum circuits that can be executed reliably on real machines. To address these two pain points, we propose QuantumSEA, an in-time sparse exploration for noise-adaptive quantum circuits, aiming to achieve two key objectives: (1) implicit circuits capacity during training - by dynamically exploring the circuit's sparse connectivity and sticking a fixed small number of quantum gates throughout the training which satisfies the coherence time and enjoy light noises, enabling feasible executions on real quantum devices; (2) noise robustness - by jointly optimizing the topology and parameters of quantum circuits under real device noise models. In each update step of sparsity, we leverage the moving average of historical gradients to grow necessary gates and utilize salience-based pruning to eliminate insignificant gates. Extensive experiments are conducted with 7 Quantum Machine Learning (QML) and Variational Quantum Eigensolver (VQE) benchmarks on 6 simulated or real quantum computers, where QuantumSEA consistently surpasses noise-aware search, human-designed, and randomly generated quantum circuit baselines by a clear performance margin. For example, even in the most challenging on-chip training regime, our method establishes state-of-the-art results with only half the number of quantum gates and ~2x time saving of circuit executions. Codes are available at https://github.com/VITA-Group/QuantumSEA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05571v1-abstract-full').style.display = 'none'; document.getElementById('2401.05571v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">IEEE International Conference on Quantum Computing and Engineering (QCE 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09733">arXiv:2312.09733</a> <span> [<a href="https://arxiv.org/pdf/2312.09733">pdf</a>, <a href="https://arxiv.org/format/2312.09733">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.future.2024.04.060">10.1016/j.future.2024.04.060 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-centric Supercomputing for Materials Science: A Perspective on Challenges and Future Directions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Alexeev%2C+Y">Yuri Alexeev</a>, <a href="/search/quant-ph?searchtype=author&query=Amsler%2C+M">Maximilian Amsler</a>, <a href="/search/quant-ph?searchtype=author&query=Baity%2C+P">Paul Baity</a>, <a href="/search/quant-ph?searchtype=author&query=Barroca%2C+M+A">Marco Antonio Barroca</a>, <a href="/search/quant-ph?searchtype=author&query=Bassini%2C+S">Sanzio Bassini</a>, <a href="/search/quant-ph?searchtype=author&query=Battelle%2C+T">Torey Battelle</a>, <a href="/search/quant-ph?searchtype=author&query=Camps%2C+D">Daan Camps</a>, <a href="/search/quant-ph?searchtype=author&query=Casanova%2C+D">David Casanova</a>, <a href="/search/quant-ph?searchtype=author&query=Choi%2C+Y+J">Young Jai Choi</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Chung%2C+C">Charles Chung</a>, <a href="/search/quant-ph?searchtype=author&query=Codella%2C+C">Chris Codella</a>, <a href="/search/quant-ph?searchtype=author&query=Corcoles%2C+A+D">Antonio D. Corcoles</a>, <a href="/search/quant-ph?searchtype=author&query=Cruise%2C+J">James Cruise</a>, <a href="/search/quant-ph?searchtype=author&query=Di+Meglio%2C+A">Alberto Di Meglio</a>, <a href="/search/quant-ph?searchtype=author&query=Dubois%2C+J">Jonathan Dubois</a>, <a href="/search/quant-ph?searchtype=author&query=Duran%2C+I">Ivan Duran</a>, <a href="/search/quant-ph?searchtype=author&query=Eckl%2C+T">Thomas Eckl</a>, <a href="/search/quant-ph?searchtype=author&query=Economou%2C+S">Sophia Economou</a>, <a href="/search/quant-ph?searchtype=author&query=Eidenbenz%2C+S">Stephan Eidenbenz</a>, <a href="/search/quant-ph?searchtype=author&query=Elmegreen%2C+B">Bruce Elmegreen</a>, <a href="/search/quant-ph?searchtype=author&query=Fare%2C+C">Clyde Fare</a>, <a href="/search/quant-ph?searchtype=author&query=Faro%2C+I">Ismael Faro</a>, <a href="/search/quant-ph?searchtype=author&query=Fern%C3%A1ndez%2C+C+S">Cristina Sanz Fern谩ndez</a>, <a href="/search/quant-ph?searchtype=author&query=Ferreira%2C+R+N+B">Rodrigo Neumann Barros Ferreira</a> , et al. (102 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09733v3-abstract-short" style="display: inline;"> Computational models are an essential tool for the design, characterization, and discovery of novel materials. Hard computational tasks in materials science stretch the limits of existing high-performance supercomputing centers, consuming much of their simulation, analysis, and data resources. Quantum computing, on the other hand, is an emerging technology with the potential to accelerate many of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09733v3-abstract-full').style.display = 'inline'; document.getElementById('2312.09733v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09733v3-abstract-full" style="display: none;"> Computational models are an essential tool for the design, characterization, and discovery of novel materials. Hard computational tasks in materials science stretch the limits of existing high-performance supercomputing centers, consuming much of their simulation, analysis, and data resources. Quantum computing, on the other hand, is an emerging technology with the potential to accelerate many of the computational tasks needed for materials science. In order to do that, the quantum technology must interact with conventional high-performance computing in several ways: approximate results validation, identification of hard problems, and synergies in quantum-centric supercomputing. In this paper, we provide a perspective on how quantum-centric supercomputing can help address critical computational problems in materials science, the challenges to face in order to solve representative use cases, and new suggested directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09733v3-abstract-full').style.display = 'none'; document.getElementById('2312.09733v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">65 pages, 15 figures; comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Future Generation Computer Systems, Volume 160, November 2024, Pages 666-710 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16980">arXiv:2311.16980</a> <span> [<a href="https://arxiv.org/pdf/2311.16980">pdf</a>, <a href="https://arxiv.org/format/2311.16980">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Matching Generalized-Bicycle Codes to Neutral Atoms for Low-Overhead Fault-Tolerance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Viszlai%2C+J">Joshua Viszlai</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+W">Willers Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+S+F">Sophia Fuhui Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Junyu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Nottingham%2C+N">Natalia Nottingham</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16980v2-abstract-short" style="display: inline;"> Despite the necessity of fault-tolerant quantum sys- tems built on error correcting codes, many popular codes, such as the surface code, have prohibitively large qubit costs. In this work we present a protocol for efficiently implementing a restricted set of space-efficient quantum error correcting (QEC) codes in atom arrays. This protocol enables generalized-bicycle codes that require up to 10x f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16980v2-abstract-full').style.display = 'inline'; document.getElementById('2311.16980v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16980v2-abstract-full" style="display: none;"> Despite the necessity of fault-tolerant quantum sys- tems built on error correcting codes, many popular codes, such as the surface code, have prohibitively large qubit costs. In this work we present a protocol for efficiently implementing a restricted set of space-efficient quantum error correcting (QEC) codes in atom arrays. This protocol enables generalized-bicycle codes that require up to 10x fewer physical qubits than surface codes. Additionally, our protocol enables logical cycles that are 2-3x faster than more general solutions for implementing space- efficient QEC codes in atom arrays. We also evaluate a proof-of-concept quantum memory hier- archy where generalized-bicycle codes are used in conjunction with surface codes for general computation. Through a detailed compilation methodology, we estimate the costs of key fault- tolerant benchmarks in a hierarchical architecture versus a state-of-the-art surface code only architecture. Overall, we find the spatial savings of generalized-bicycle codes outweigh the overhead of loading and storing qubits, motivating the feasibility of a quantum memory hierarchy in practice. Through sensitivity studies, we also identify key program-level and hardware-level features for using a hierarchical architecture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16980v2-abstract-full').style.display = 'none'; document.getElementById('2311.16980v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16214">arXiv:2311.16214</a> <span> [<a href="https://arxiv.org/pdf/2311.16214">pdf</a>, <a href="https://arxiv.org/format/2311.16214">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> DGR: Tackling Drifted and Correlated Noise in Quantum Error Correction via Decoding Graph Re-weighting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hanrui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+P">Pengyu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Y">Yilian Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Gu%2C+J">Jiaqi Gu</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J">Jonathan Baker</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Han%2C+S">Song Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16214v3-abstract-short" style="display: inline;"> Quantum hardware suffers from high error rates and noise, which makes directly running applications on them ineffective. Quantum Error Correction (QEC) is a critical technique towards fault tolerance which encodes the quantum information distributively in multiple data qubits and uses syndrome qubits to check parity. Minimum-Weight-Perfect-Matching (MWPM) is a popular QEC decoder that takes the sy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16214v3-abstract-full').style.display = 'inline'; document.getElementById('2311.16214v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16214v3-abstract-full" style="display: none;"> Quantum hardware suffers from high error rates and noise, which makes directly running applications on them ineffective. Quantum Error Correction (QEC) is a critical technique towards fault tolerance which encodes the quantum information distributively in multiple data qubits and uses syndrome qubits to check parity. Minimum-Weight-Perfect-Matching (MWPM) is a popular QEC decoder that takes the syndromes as input and finds the matchings between syndromes that infer the errors. However, there are two paramount challenges for MWPM decoders. First, as noise in real quantum systems can drift over time, there is a potential misalignment with the decoding graph's initial weights, leading to a severe performance degradation in the logical error rates. Second, while the MWPM decoder addresses independent errors, it falls short when encountering correlated errors typical on real hardware, such as those in the 2Q depolarizing channel. We propose DGR, an efficient decoding graph edge re-weighting strategy with no quantum overhead. It leverages the insight that the statistics of matchings across decoding iterations offer rich information about errors on real quantum hardware. By counting the occurrences of edges and edge pairs in decoded matchings, we can statistically estimate the up-to-date probabilities of each edge and the correlations between them. The reweighting process includes two vital steps: alignment re-weighting and correlation re-weighting. The former updates the MWPM weights based on statistics to align with actual noise, and the latter adjusts the weight considering edge correlations. Extensive evaluations on surface code and honeycomb code under various settings show that DGR reduces the logical error rate by 3.6x on average-case noise mismatch with exceeding 5000x improvement under worst-case mismatch. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16214v3-abstract-full').style.display = 'none'; document.getElementById('2311.16214v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16035">arXiv:2311.16035</a> <span> [<a href="https://arxiv.org/pdf/2311.16035">pdf</a>, <a href="https://arxiv.org/format/2311.16035">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> RobustState: Boosting Fidelity of Quantum State Preparation via Noise-Aware Variational Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hanrui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+Y">Yilian Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+P">Pengyu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Gu%2C+J">Jiaqi Gu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zirui Li</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&query=Ding%2C+Y">Yongshan Ding</a>, <a href="/search/quant-ph?searchtype=author&query=Qian%2C+X">Xuehai Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+Y">Yiyu Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+D+Z">David Z. Pan</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Han%2C+S">Song Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16035v1-abstract-short" style="display: inline;"> Quantum state preparation, a crucial subroutine in quantum computing, involves generating a target quantum state from initialized qubits. Arbitrary state preparation algorithms can be broadly categorized into arithmetic decomposition (AD) and variational quantum state preparation (VQSP). AD employs a predefined procedure to decompose the target state into a series of gates, whereas VQSP iterativel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16035v1-abstract-full').style.display = 'inline'; document.getElementById('2311.16035v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16035v1-abstract-full" style="display: none;"> Quantum state preparation, a crucial subroutine in quantum computing, involves generating a target quantum state from initialized qubits. Arbitrary state preparation algorithms can be broadly categorized into arithmetic decomposition (AD) and variational quantum state preparation (VQSP). AD employs a predefined procedure to decompose the target state into a series of gates, whereas VQSP iteratively tunes ansatz parameters to approximate target state. VQSP is particularly apt for Noisy-Intermediate Scale Quantum (NISQ) machines due to its shorter circuits. However, achieving noise-robust parameter optimization still remains challenging. We present RobustState, a novel VQSP training methodology that combines high robustness with high training efficiency. The core idea involves utilizing measurement outcomes from real machines to perform back-propagation through classical simulators, thus incorporating real quantum noise into gradient calculations. RobustState serves as a versatile, plug-and-play technique applicable for training parameters from scratch or fine-tuning existing parameters to enhance fidelity on target machines. It is adaptable to various ansatzes at both gate and pulse levels and can even benefit other variational algorithms, such as variational unitary synthesis. Comprehensive evaluation of RobustState on state preparation tasks for 4 distinct quantum algorithms using 10 real quantum machines demonstrates a coherent error reduction of up to 7.1 $\times$ and state fidelity improvement of up to 96\% and 81\% for 4-Q and 5-Q states, respectively. On average, RobustState improves fidelity by 50\% and 72\% for 4-Q and 5-Q states compared to baseline approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16035v1-abstract-full').style.display = 'none'; document.getElementById('2311.16035v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to FASTML @ ICCAD 2023. 14 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.13507">arXiv:2309.13507</a> <span> [<a href="https://arxiv.org/pdf/2309.13507">pdf</a>, <a href="https://arxiv.org/format/2309.13507">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> An Architecture for Improved Surface Code Connectivity in Neutral Atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Viszlai%2C+J">Joshua Viszlai</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+S+F">Sophia Fuhui Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Dangwal%2C+S">Siddharth Dangwal</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.13507v1-abstract-short" style="display: inline;"> In order to achieve error rates necessary for advantageous quantum algorithms, Quantum Error Correction (QEC) will need to be employed, improving logical qubit fidelity beyond what can be achieved physically. As today's devices begin to scale, co-designing architectures for QEC with the underlying hardware will be necessary to reduce the daunting overheads and accelerate the realization of practic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13507v1-abstract-full').style.display = 'inline'; document.getElementById('2309.13507v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.13507v1-abstract-full" style="display: none;"> In order to achieve error rates necessary for advantageous quantum algorithms, Quantum Error Correction (QEC) will need to be employed, improving logical qubit fidelity beyond what can be achieved physically. As today's devices begin to scale, co-designing architectures for QEC with the underlying hardware will be necessary to reduce the daunting overheads and accelerate the realization of practical quantum computing. In this work, we focus on logical computation in QEC. We address quantum computers made from neutral atom arrays to design a surface code architecture that translates the hardware's higher physical connectivity into a higher logical connectivity. We propose groups of interleaved logical qubits, gaining all-to-all connectivity within the group via efficient transversal CNOT gates. Compared to standard lattice surgery operations, this reduces both the overall qubit footprint and execution time, lowering the spacetime overhead needed for small-scale QEC circuits. We also explore the architecture's scalability. We look at using physical atom movement schemes and propose interleaved lattice surgery which allows an all-to-all connectivity between qubits in adjacent interleaved groups, creating a higher connectivity routing space for large-scale circuits. Using numerical simulations, we evaluate the total routing time of interleaved lattice surgery and atom movement for various circuit sizes. We identify a cross-over point defining intermediate-scale circuits where atom movement is best and large-scale circuits where interleaved lattice surgery is best. We use this to motivate a hybrid approach as devices continue to scale, with the choice of operation depending on the routing distance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13507v1-abstract-full').style.display = 'none'; document.getElementById('2309.13507v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05157">arXiv:2309.05157</a> <span> [<a href="https://arxiv.org/pdf/2309.05157">pdf</a>, <a href="https://arxiv.org/format/2309.05157">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Superstaq: Deep Optimization of Quantum Programs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Campbell%2C+C">Colin Campbell</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Dahl%2C+D">Denny Dahl</a>, <a href="/search/quant-ph?searchtype=author&query=Frederick%2C+P">Paige Frederick</a>, <a href="/search/quant-ph?searchtype=author&query=Goiporia%2C+P">Palash Goiporia</a>, <a href="/search/quant-ph?searchtype=author&query=Gokhale%2C+P">Pranav Gokhale</a>, <a href="/search/quant-ph?searchtype=author&query=Hall%2C+B">Benjamin Hall</a>, <a href="/search/quant-ph?searchtype=author&query=Issa%2C+S">Salahedeen Issa</a>, <a href="/search/quant-ph?searchtype=author&query=Jones%2C+E">Eric Jones</a>, <a href="/search/quant-ph?searchtype=author&query=Lee%2C+S">Stephanie Lee</a>, <a href="/search/quant-ph?searchtype=author&query=Litteken%2C+A">Andrew Litteken</a>, <a href="/search/quant-ph?searchtype=author&query=Omole%2C+V">Victory Omole</a>, <a href="/search/quant-ph?searchtype=author&query=Owusu-Antwi%2C+D">David Owusu-Antwi</a>, <a href="/search/quant-ph?searchtype=author&query=Perlin%2C+M+A">Michael A. Perlin</a>, <a href="/search/quant-ph?searchtype=author&query=Rines%2C+R">Rich Rines</a>, <a href="/search/quant-ph?searchtype=author&query=Smith%2C+K+N">Kaitlin N. Smith</a>, <a href="/search/quant-ph?searchtype=author&query=Goss%2C+N">Noah Goss</a>, <a href="/search/quant-ph?searchtype=author&query=Hashim%2C+A">Akel Hashim</a>, <a href="/search/quant-ph?searchtype=author&query=Naik%2C+R">Ravi Naik</a>, <a href="/search/quant-ph?searchtype=author&query=Younis%2C+E">Ed Younis</a>, <a href="/search/quant-ph?searchtype=author&query=Lobser%2C+D">Daniel Lobser</a>, <a href="/search/quant-ph?searchtype=author&query=Yale%2C+C+G">Christopher G. Yale</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+B">Benchen Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Ji Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05157v1-abstract-short" style="display: inline;"> We describe Superstaq, a quantum software platform that optimizes the execution of quantum programs by tailoring to underlying hardware primitives. For benchmarks such as the Bernstein-Vazirani algorithm and the Qubit Coupled Cluster chemistry method, we find that deep optimization can improve program execution performance by at least 10x compared to prevailing state-of-the-art compilers. To highl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05157v1-abstract-full').style.display = 'inline'; document.getElementById('2309.05157v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05157v1-abstract-full" style="display: none;"> We describe Superstaq, a quantum software platform that optimizes the execution of quantum programs by tailoring to underlying hardware primitives. For benchmarks such as the Bernstein-Vazirani algorithm and the Qubit Coupled Cluster chemistry method, we find that deep optimization can improve program execution performance by at least 10x compared to prevailing state-of-the-art compilers. To highlight the versatility of our approach, we present results from several hardware platforms: superconducting qubits (AQT @ LBNL, IBM Quantum, Rigetti), trapped ions (QSCOUT), and neutral atoms (Infleqtion). Across all platforms, we demonstrate new levels of performance and new capabilities that are enabled by deeper integration between quantum programs and the device physics of hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05157v1-abstract-full').style.display = 'none'; document.getElementById('2309.05157v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Appearing in IEEE QCE 2023 (Quantum Week) conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06634">arXiv:2308.06634</a> <span> [<a href="https://arxiv.org/pdf/2308.06634">pdf</a>, <a href="https://arxiv.org/format/2308.06634">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> DISQ: Dynamic Iteration Skipping for Variational Quantum Algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+J">Junyao Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hanrui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Ravi%2C+G+S">Gokul Subramanian Ravi</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Han%2C+S">Song Han</a>, <a href="/search/quant-ph?searchtype=author&query=Mueller%2C+F">Frank Mueller</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yiran Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06634v3-abstract-short" style="display: inline;"> This paper proposes DISQ to craft a stable landscape for VQA training and tackle the noise drift challenge. DISQ adopts a "drift detector" with a reference circuit to identify and skip iterations that are severely affected by noise drift errors. Specifically, the circuits from the previous training iteration are re-executed as a reference circuit in the current iteration to estimate noise drift im… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06634v3-abstract-full').style.display = 'inline'; document.getElementById('2308.06634v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06634v3-abstract-full" style="display: none;"> This paper proposes DISQ to craft a stable landscape for VQA training and tackle the noise drift challenge. DISQ adopts a "drift detector" with a reference circuit to identify and skip iterations that are severely affected by noise drift errors. Specifically, the circuits from the previous training iteration are re-executed as a reference circuit in the current iteration to estimate noise drift impacts. The iteration is deemed compromised by noise drift errors and thus skipped if noise drift flips the direction of the ideal optimization gradient. To enhance noise drift detection reliability, we further propose to leverage multiple reference circuits from previous iterations to provide a well founded judge of current noise drift. Nevertheless, multiple reference circuits also introduce considerable execution overhead. To mitigate extra overhead, we propose Pauli-term subsetting (prime and minor subsets) to execute only observable circuits with large coefficient magnitudes (prime subset) during drift detection. Only this minor subset is executed when the current iteration is drift-free. Evaluations across various applications and QPUs demonstrate that DISQ can mitigate a significant portion of the noise drift impact on VQAs and achieve 1.51-2.24x fidelity improvement over the traditional baseline. DISQ's benefit is 1.1-1.9x over the best alternative approach while boosting average noise detection speed by 2.07x <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06634v3-abstract-full').style.display = 'none'; document.getElementById('2308.06634v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14996">arXiv:2307.14996</a> <span> [<a href="https://arxiv.org/pdf/2307.14996">pdf</a>, <a href="https://arxiv.org/format/2307.14996">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Circuit decompositions and scheduling for neutral atom devices with limited local addressability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Nottingham%2C+N">Natalia Nottingham</a>, <a href="/search/quant-ph?searchtype=author&query=Perlin%2C+M+A">Michael A. Perlin</a>, <a href="/search/quant-ph?searchtype=author&query=Shah%2C+D">Dhirpal Shah</a>, <a href="/search/quant-ph?searchtype=author&query=White%2C+R">Ryan White</a>, <a href="/search/quant-ph?searchtype=author&query=Bernien%2C+H">Hannes Bernien</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14996v2-abstract-short" style="display: inline;"> Despite major ongoing advancements in neutral atom hardware technology, there remains limited work in systems-level software tailored to overcoming the challenges of neutral atom quantum computers. In particular, most current neutral atom architectures do not natively support local addressing of single-qubit rotations about an axis in the xy-plane of the Bloch sphere. Instead, these are executed v… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14996v2-abstract-full').style.display = 'inline'; document.getElementById('2307.14996v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14996v2-abstract-full" style="display: none;"> Despite major ongoing advancements in neutral atom hardware technology, there remains limited work in systems-level software tailored to overcoming the challenges of neutral atom quantum computers. In particular, most current neutral atom architectures do not natively support local addressing of single-qubit rotations about an axis in the xy-plane of the Bloch sphere. Instead, these are executed via global beams applied simultaneously to all qubits. While previous neutral atom experimental work has used straightforward synthesis methods to convert short sequences of operations into this native gate set, these methods cannot be incorporated into a systems-level framework nor applied to entire circuits without imposing impractical amounts of serialization. Without sufficient compiler optimizations, decompositions involving global gates will significantly increase circuit depth, gate count, and accumulation of errors. No prior compiler work has addressed this, and adapting existing compilers to solve this problem is nontrivial. In this paper, we present an optimized compiler pipeline that translates an input circuit from an arbitrary gate set into a realistic neutral atom native gate set containing global gates. We focus on decomposition and scheduling passes that minimize the final circuit's global gate count and total global rotation amount. As we show, these costs contribute the most to the circuit's duration and overall error, relative to costs incurred by other gate types. Compared to the unoptimized version of our compiler pipeline, minimizing global gate costs gives up to 4.77x speedup in circuit duration. Compared to the closest prior existing work, we achieve up to 53.8x speedup. For large circuits, we observe a few orders of magnitude improvement in circuit fidelities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14996v2-abstract-full').style.display = 'none'; document.getElementById('2307.14996v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures, published in IEEE International Conference on Quantum Computing and Engineering (QCE) 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14459">arXiv:2307.14459</a> <span> [<a href="https://arxiv.org/pdf/2307.14459">pdf</a>, <a href="https://arxiv.org/format/2307.14459">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Training Quantum Boltzmann Machines with Coresets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Viszlai%2C+J">Joshua Viszlai</a>, <a href="/search/quant-ph?searchtype=author&query=Tomesh%2C+T">Teague Tomesh</a>, <a href="/search/quant-ph?searchtype=author&query=Gokhale%2C+P">Pranav Gokhale</a>, <a href="/search/quant-ph?searchtype=author&query=Anschuetz%2C+E">Eric Anschuetz</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14459v1-abstract-short" style="display: inline;"> Recent work has proposed and explored using coreset techniques for quantum algorithms that operate on classical data sets to accelerate the applicability of these algorithms on near-term quantum devices. We apply these ideas to Quantum Boltzmann Machines (QBM) where gradient-based steps which require Gibbs state sampling are the main computational bottleneck during training. By using a coreset in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14459v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14459v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14459v1-abstract-full" style="display: none;"> Recent work has proposed and explored using coreset techniques for quantum algorithms that operate on classical data sets to accelerate the applicability of these algorithms on near-term quantum devices. We apply these ideas to Quantum Boltzmann Machines (QBM) where gradient-based steps which require Gibbs state sampling are the main computational bottleneck during training. By using a coreset in place of the full data set, we try to minimize the number of steps needed and accelerate the overall training time. In a regime where computational time on quantum computers is a precious resource, we propose this might lead to substantial practical savings. We evaluate this approach on 6x6 binary images from an augmented bars and stripes data set using a QBM with 36 visible units and 8 hidden units. Using an Inception score inspired metric, we compare QBM training times with and without using coresets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14459v1-abstract-full').style.display = 'none'; document.getElementById('2307.14459v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Appeared in IEEE International Conference on Quantum Computing and Engineering (QCE22) in September 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13460">arXiv:2307.13460</a> <span> [<a href="https://arxiv.org/pdf/2307.13460">pdf</a>, <a href="https://arxiv.org/format/2307.13460">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-024-00848-3">10.1038/s41534-024-00848-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fundamental causal bounds of quantum random access memories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yunfei Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Alexeev%2C+Y">Yuri Alexeev</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Junyu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13460v1-abstract-short" style="display: inline;"> Quantum devices should operate in adherence to quantum physics principles. Quantum random access memory (QRAM), a fundamental component of many essential quantum algorithms for tasks such as linear algebra, data search, and machine learning, is often proposed to offer $\mathcal{O}(\log N)$ circuit depth for $\mathcal{O}(N)$ data size, given $N$ qubits. However, this claim appears to breach the pri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13460v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13460v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13460v1-abstract-full" style="display: none;"> Quantum devices should operate in adherence to quantum physics principles. Quantum random access memory (QRAM), a fundamental component of many essential quantum algorithms for tasks such as linear algebra, data search, and machine learning, is often proposed to offer $\mathcal{O}(\log N)$ circuit depth for $\mathcal{O}(N)$ data size, given $N$ qubits. However, this claim appears to breach the principle of relativity when dealing with a large number of qubits in quantum materials interacting locally. In our study we critically explore the intrinsic bounds of rapid quantum memories based on causality, employing the relativistic quantum field theory and Lieb-Robinson bounds in quantum many-body systems. In this paper, we consider a hardware-efficient QRAM design in hybrid quantum acoustic systems. Assuming clock cycle times of approximately $10^{-3}$ seconds and a lattice spacing of about 1 micrometer, we show that QRAM can accommodate up to $\mathcal{O}(10^7)$ logical qubits in 1 dimension, $\mathcal{O}(10^{15})$ to $\mathcal{O}(10^{20})$ in various 2D architectures, and $\mathcal{O}(10^{24})$ in 3 dimensions. We contend that this causality bound broadly applies to other quantum hardware systems. Our findings highlight the impact of fundamental quantum physics constraints on the long-term performance of quantum computing applications in data science and suggest potential quantum memory designs for performance enhancement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13460v1-abstract-full').style.display = 'none'; document.getElementById('2307.13460v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8+24=32 pages, many figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NPJ Quantum Information (2024) 10:71 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.15020">arXiv:2306.15020</a> <span> [<a href="https://arxiv.org/pdf/2306.15020">pdf</a>, <a href="https://arxiv.org/format/2306.15020">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Clifford Assisted Optimal Pass Selection for Quantum Transpilation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Dangwal%2C+S">Siddharth Dangwal</a>, <a href="/search/quant-ph?searchtype=author&query=Ravi%2C+G+S">Gokul Subramanian Ravi</a>, <a href="/search/quant-ph?searchtype=author&query=Seifert%2C+L+M">Lennart Maximilian Seifert</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.15020v1-abstract-short" style="display: inline;"> The fidelity of quantum programs in the NISQ era is limited by high levels of device noise. To increase the fidelity of quantum programs running on NISQ devices, a variety of optimizations have been proposed. These include mapping passes, routing passes, scheduling methods and standalone optimisations which are usually incorporated into a transpiler as passes. Popular transpilers such as those pro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15020v1-abstract-full').style.display = 'inline'; document.getElementById('2306.15020v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.15020v1-abstract-full" style="display: none;"> The fidelity of quantum programs in the NISQ era is limited by high levels of device noise. To increase the fidelity of quantum programs running on NISQ devices, a variety of optimizations have been proposed. These include mapping passes, routing passes, scheduling methods and standalone optimisations which are usually incorporated into a transpiler as passes. Popular transpilers such as those proposed by Qiskit, Cirq and Cambridge Quantum Computing make use of these extensively. However, choosing the right set of transpiler passes and the right configuration for each pass is a challenging problem. Transpilers often make critical decisions using heuristics since the ideal choices are impossible to identify without knowing the target application outcome. Further, the transpiler also makes simplifying assumptions about device noise that often do not hold in the real world. As a result, we often see effects where the fidelity of a target application decreases despite using state-of-the-art optimisations. To overcome this challenge, we propose OPTRAN, a framework for Choosing an Optimal Pass Set for Quantum Transpilation. OPTRAN uses classically simulable quantum circuits composed entirely of Clifford gates, that resemble the target application, to estimate how different passes interact with each other in the context of the target application. OPTRAN then uses this information to choose the optimal combination of passes that maximizes the target application's fidelity when run on the actual device. Our experiments on IBM machines show that OPTRAN improves fidelity by 87.66% of the maximum possible limit over the baseline used by IBM Qiskit. We also propose low-cost variants of OPTRAN, called OPTRAN-E-3 and OPTRAN-E-1 that improve fidelity by 78.33% and 76.66% of the maximum permissible limit over the baseline at a 58.33% and 69.44% reduction in cost compared to OPTRAN respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.15020v1-abstract-full').style.display = 'none'; document.getElementById('2306.15020v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06027">arXiv:2306.06027</a> <span> [<a href="https://arxiv.org/pdf/2306.06027">pdf</a>, <a href="https://arxiv.org/format/2306.06027">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> VarSaw: Application-tailored Measurement Error Mitigation for Variational Quantum Algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Dangwal%2C+S">Siddharth Dangwal</a>, <a href="/search/quant-ph?searchtype=author&query=Ravi%2C+G+S">Gokul Subramanian Ravi</a>, <a href="/search/quant-ph?searchtype=author&query=Das%2C+P">Poulami Das</a>, <a href="/search/quant-ph?searchtype=author&query=Smith%2C+K+N">Kaitlin N. Smith</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06027v2-abstract-short" style="display: inline;"> For potential quantum advantage, Variational Quantum Algorithms (VQAs) need high accuracy beyond the capability of today's NISQ devices, and thus will benefit from error mitigation. In this work we are interested in mitigating measurement errors which occur during qubit measurements after circuit execution and tend to be the most error-prone operations, especially detrimental to VQAs. Prior work,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06027v2-abstract-full').style.display = 'inline'; document.getElementById('2306.06027v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06027v2-abstract-full" style="display: none;"> For potential quantum advantage, Variational Quantum Algorithms (VQAs) need high accuracy beyond the capability of today's NISQ devices, and thus will benefit from error mitigation. In this work we are interested in mitigating measurement errors which occur during qubit measurements after circuit execution and tend to be the most error-prone operations, especially detrimental to VQAs. Prior work, JigSaw, has shown that measuring only small subsets of circuit qubits at a time and collecting results across all such subset circuits can reduce measurement errors. Then, running the entire (global) original circuit and extracting the qubit-qubit measurement correlations can be used in conjunction with the subsets to construct a high-fidelity output distribution of the original circuit. Unfortunately, the execution cost of JigSaw scales polynomially in the number of qubits in the circuit, and when compounded by the number of circuits and iterations in VQAs, the resulting execution cost quickly turns insurmountable. To combat this, we propose VarSaw, which improves JigSaw in an application-tailored manner, by identifying considerable redundancy in the JigSaw approach for VQAs: spatial redundancy across subsets from different VQA circuits and temporal redundancy across globals from different VQA iterations. VarSaw then eliminates these forms of redundancy by commuting the subset circuits and selectively executing the global circuits, reducing computational cost (in terms of the number of circuits executed) over naive JigSaw for VQA by 25x on average and up to 1000x, for the same VQA accuracy. Further, it can recover, on average, 45% of the infidelity from measurement errors in the noisy VQA baseline. Finally, it improves fidelity by 55%, on average, over JigSaw for a fixed computational budget. VarSaw can be accessed here: https://github.com/siddharthdangwal/VarSaw. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06027v2-abstract-full').style.display = 'none'; document.getElementById('2306.06027v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Appears at the International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS) 2024. First two authors contributed equally</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03243">arXiv:2305.03243</a> <span> [<a href="https://arxiv.org/pdf/2305.03243">pdf</a>, <a href="https://arxiv.org/format/2305.03243">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Microarchitectures for Heterogeneous Superconducting Quantum Computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Stein%2C+S">Samuel Stein</a>, <a href="/search/quant-ph?searchtype=author&query=Sussman%2C+S">Sara Sussman</a>, <a href="/search/quant-ph?searchtype=author&query=Tomesh%2C+T">Teague Tomesh</a>, <a href="/search/quant-ph?searchtype=author&query=Guinn%2C+C">Charles Guinn</a>, <a href="/search/quant-ph?searchtype=author&query=Tureci%2C+E">Esin Tureci</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+S+F">Sophia Fuhui Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+W">Wei Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Ang%2C+J">James Ang</a>, <a href="/search/quant-ph?searchtype=author&query=Chakram%2C+S">Srivatsan Chakram</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+A">Ang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Martonosi%2C+M">Margaret Martonosi</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Fred T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Houck%2C+A+A">Andrew A. Houck</a>, <a href="/search/quant-ph?searchtype=author&query=Chuang%2C+I+L">Isaac L. Chuang</a>, <a href="/search/quant-ph?searchtype=author&query=DeMarco%2C+M+A">Michael Austin DeMarco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03243v1-abstract-short" style="display: inline;"> Noisy Intermediate-Scale Quantum Computing (NISQ) has dominated headlines in recent years, with the longer-term vision of Fault-Tolerant Quantum Computation (FTQC) offering significant potential albeit at currently intractable resource costs and quantum error correction (QEC) overheads. For problems of interest, FTQC will require millions of physical qubits with long coherence times, high-fidelity… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03243v1-abstract-full').style.display = 'inline'; document.getElementById('2305.03243v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03243v1-abstract-full" style="display: none;"> Noisy Intermediate-Scale Quantum Computing (NISQ) has dominated headlines in recent years, with the longer-term vision of Fault-Tolerant Quantum Computation (FTQC) offering significant potential albeit at currently intractable resource costs and quantum error correction (QEC) overheads. For problems of interest, FTQC will require millions of physical qubits with long coherence times, high-fidelity gates, and compact sizes to surpass classical systems. Just as heterogeneous specialization has offered scaling benefits in classical computing, it is likewise gaining interest in FTQC. However, systematic use of heterogeneity in either hardware or software elements of FTQC systems remains a serious challenge due to the vast design space and variable physical constraints. This paper meets the challenge of making heterogeneous FTQC design practical by introducing HetArch, a toolbox for designing heterogeneous quantum systems, and using it to explore heterogeneous design scenarios. Using a hierarchical approach, we successively break quantum algorithms into smaller operations (akin to classical application kernels), thus greatly simplifying the design space and resulting tradeoffs. Specializing to superconducting systems, we then design optimized heterogeneous hardware composed of varied superconducting devices, abstracting physical constraints into design rules that enable devices to be assembled into standard cells optimized for specific operations. Finally, we provide a heterogeneous design space exploration framework which reduces the simulation burden by a factor of 10^4 or more and allows us to characterize optimal design points. We use these techniques to design superconducting quantum modules for entanglement distillation, error correction, and code teleportation, reducing error rates by 2.6x, 10.7x, and 3.0x compared to homogeneous systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03243v1-abstract-full').style.display = 'none'; document.getElementById('2305.03243v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00138">arXiv:2305.00138</a> <span> [<a href="https://arxiv.org/pdf/2305.00138">pdf</a>, <a href="https://arxiv.org/format/2305.00138">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3620665.3640362">10.1145/3620665.3640362 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Codesign of quantum error-correcting codes and modular chiplets in the presence of defects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lin%2C+S+F">Sophia Fuhui Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Viszlai%2C+J">Joshua Viszlai</a>, <a href="/search/quant-ph?searchtype=author&query=Smith%2C+K+N">Kaitlin N. Smith</a>, <a href="/search/quant-ph?searchtype=author&query=Ravi%2C+G+S">Gokul Subramanian Ravi</a>, <a href="/search/quant-ph?searchtype=author&query=Yuan%2C+C">Charles Yuan</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Brown%2C+B+J">Benjamin J. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00138v3-abstract-short" style="display: inline;"> Fabrication errors pose a significant challenge in scaling up solid-state quantum devices to the sizes required for fault-tolerant (FT) quantum applications. To mitigate the resource overhead caused by fabrication errors, we combine two approaches: (1) leveraging the flexibility of a modular architecture, (2) adapting the procedure of quantum error correction (QEC) to account for fabrication defec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00138v3-abstract-full').style.display = 'inline'; document.getElementById('2305.00138v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00138v3-abstract-full" style="display: none;"> Fabrication errors pose a significant challenge in scaling up solid-state quantum devices to the sizes required for fault-tolerant (FT) quantum applications. To mitigate the resource overhead caused by fabrication errors, we combine two approaches: (1) leveraging the flexibility of a modular architecture, (2) adapting the procedure of quantum error correction (QEC) to account for fabrication defects. We simulate the surface code adapted to qubit arrays with arbitrarily distributed defects to find metrics that characterize how defects affect fidelity. We then determine the impact of defects on the resource overhead of realizing a fault-tolerant quantum computer, on a chiplet-based modular architecture. Our strategy for dealing with fabrication defects demonstrates an exponential suppression of logical failure where error rates of non-faulty physical qubits are ~0.1% in a circuit-based noise model. This is a typical regime where we imagine running the defect-free surface code. We use our numerical results to establish post-selection criteria for building a device from defective chiplets. Using our criteria, we then evaluate the resource overhead in terms of the average number of fabricated physical qubits per logical qubit. We find that an optimal choice of chiplet size, based on the defect rate and target fidelity, is essential to limiting any additional error correction overhead due to defects. When the optimal chiplet size is chosen, at a defect rate of 1% the resource overhead can be reduced to below 3X and 6X respectively for the two defect models we use, for a wide range of target performance. We also determine cutoff fidelity values that help identify whether a qubit should be disabled or kept as part of the error correction code. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00138v3-abstract-full').style.display = 'none'; document.getElementById('2305.00138v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In ASPLOS 2024: the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.12166">arXiv:2304.12166</a> <span> [<a href="https://arxiv.org/pdf/2304.12166">pdf</a>, <a href="https://arxiv.org/format/2304.12166">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Automatic pulse-level calibration by tracking observables using iterative learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Goldschmidt%2C+A+J">Andy J. Goldschmidt</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.12166v1-abstract-short" style="display: inline;"> Model-based quantum optimal control promises to solve a wide range of critical quantum technology problems within a single, flexible framework. The catch is that highly-accurate models are needed if the optimized controls are to meet the exacting demands set by quantum engineers. A practical alternative is to directly calibrate control parameters by taking device data and tuning until success is a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.12166v1-abstract-full').style.display = 'inline'; document.getElementById('2304.12166v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.12166v1-abstract-full" style="display: none;"> Model-based quantum optimal control promises to solve a wide range of critical quantum technology problems within a single, flexible framework. The catch is that highly-accurate models are needed if the optimized controls are to meet the exacting demands set by quantum engineers. A practical alternative is to directly calibrate control parameters by taking device data and tuning until success is achieved. In quantum computing, gate errors due to inaccurate models can be efficiently polished if the control is limited to a few (usually hand-designed) parameters; however, an alternative tool set is required to enable efficient calibration of the complicated waveforms potentially returned by optimal control. We propose an automated model-based framework for calibrating quantum optimal controls called Learning Iteratively for Feasible Tracking (LIFT). LIFT achieves high-fidelity controls despite parasitic model discrepancies by precisely tracking feasible trajectories of quantum observables. Feasible trajectories are set by combining black-box optimal control and the bilinear dynamic mode decomposition, a physics-informed regression framework for discovering effective Hamiltonian models directly from rollout data. Any remaining tracking errors are eliminated in a non-causal way by applying model-based, norm-optimal iterative learning control to subsequent rollout data. We use numerical experiments of qubit gate synthesis to demonstrate how LIFT enables calibration of high-fidelity optimal control waveforms in spite of model discrepancies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.12166v1-abstract-full').style.display = 'none'; document.getElementById('2304.12166v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.11159">arXiv:2304.11159</a> <span> [<a href="https://arxiv.org/pdf/2304.11159">pdf</a>, <a href="https://arxiv.org/format/2304.11159">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.108.062609">10.1103/PhysRevA.108.062609 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring Ququart Computation on a Transmon using Optimal Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Seifert%2C+L+M">Lennart Maximilian Seifert</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Ziqian Li</a>, <a href="/search/quant-ph?searchtype=author&query=Roy%2C+T">Tanay Roy</a>, <a href="/search/quant-ph?searchtype=author&query=Schuster%2C+D+I">David I. Schuster</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.11159v1-abstract-short" style="display: inline;"> Contemporary quantum computers encode and process quantum information in binary qubits (d = 2). However, many architectures include higher energy levels that are left as unused computational resources. We demonstrate a superconducting ququart (d = 4) processor and combine quantum optimal control with efficient gate decompositions to implement high-fidelity ququart gates. We distinguish between vie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11159v1-abstract-full').style.display = 'inline'; document.getElementById('2304.11159v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.11159v1-abstract-full" style="display: none;"> Contemporary quantum computers encode and process quantum information in binary qubits (d = 2). However, many architectures include higher energy levels that are left as unused computational resources. We demonstrate a superconducting ququart (d = 4) processor and combine quantum optimal control with efficient gate decompositions to implement high-fidelity ququart gates. We distinguish between viewing the ququart as a generalized four-level qubit and an encoded pair of qubits, and characterize the resulting gates in each case. In randomized benchmarking experiments we observe gate fidelities greater 95% and identify coherence as the primary limiting factor. Our results validate ququarts as a viable tool for quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11159v1-abstract-full').style.display = 'none'; document.getElementById('2304.11159v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17380">arXiv:2303.17380</a> <span> [<a href="https://arxiv.org/pdf/2303.17380">pdf</a>, <a href="https://arxiv.org/format/2303.17380">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Fault Tolerant Non-Clifford State Preparation for Arbitrary Rotations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Choi%2C+H">Hyeongrak Choi</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Englund%2C+D">Dirk Englund</a>, <a href="/search/quant-ph?searchtype=author&query=Ding%2C+Y">Yongshan Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17380v1-abstract-short" style="display: inline;"> Quantum error correction is an essential component for practical quantum computing on noisy quantum hardware. However, logical operations on error-corrected qubits require a significant resource overhead, especially for high-precision and high-fidelity non-Clifford rotation gates. To address this issue, we propose a postselection-based algorithm to efficiently prepare resource states for gate tele… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17380v1-abstract-full').style.display = 'inline'; document.getElementById('2303.17380v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17380v1-abstract-full" style="display: none;"> Quantum error correction is an essential component for practical quantum computing on noisy quantum hardware. However, logical operations on error-corrected qubits require a significant resource overhead, especially for high-precision and high-fidelity non-Clifford rotation gates. To address this issue, we propose a postselection-based algorithm to efficiently prepare resource states for gate teleportation. Our algorithm achieves fault tolerance, demonstrating the exponential suppression of logical errors with code distance, and it applies to any stabilizer codes. We provide analytical derivations and numerical simulations of the fidelity and success probability of the algorithm. We benchmark the method on surface code and show a factor of 100 to 10,000 reduction in space-time overhead compared to existing methods. Overall, our approach presents a promising path to reducing the resource requirement for quantum algorithms on error-corrected and noisy intermediate-scale quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17380v1-abstract-full').style.display = 'none'; document.getElementById('2303.17380v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14069">arXiv:2303.14069</a> <span> [<a href="https://arxiv.org/pdf/2303.14069">pdf</a>, <a href="https://arxiv.org/format/2303.14069">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3579371.3589106">10.1145/3579371.3589106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dancing the Quantum Waltz: Compiling Three-Qubit Gates on Four Level Architectures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Litteken%2C+A">Andrew Litteken</a>, <a href="/search/quant-ph?searchtype=author&query=Seifert%2C+L+M">Lennart Maximilian Seifert</a>, <a href="/search/quant-ph?searchtype=author&query=Chadwick%2C+J+D">Jason D. Chadwick</a>, <a href="/search/quant-ph?searchtype=author&query=Nottingham%2C+N">Natalia Nottingham</a>, <a href="/search/quant-ph?searchtype=author&query=Roy%2C+T">Tanay Roy</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Ziqian Li</a>, <a href="/search/quant-ph?searchtype=author&query=Schuster%2C+D">David Schuster</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14069v3-abstract-short" style="display: inline;"> Superconducting quantum devices are a leading technology for quantum computation, but they suffer from several challenges. Gate errors, coherence errors and a lack of connectivity all contribute to low fidelity results. In particular, connectivity restrictions enforce a gate set that requires three-qubit gates to be decomposed into one- or two-qubit gates. This substantially increases the number o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14069v3-abstract-full').style.display = 'inline'; document.getElementById('2303.14069v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14069v3-abstract-full" style="display: none;"> Superconducting quantum devices are a leading technology for quantum computation, but they suffer from several challenges. Gate errors, coherence errors and a lack of connectivity all contribute to low fidelity results. In particular, connectivity restrictions enforce a gate set that requires three-qubit gates to be decomposed into one- or two-qubit gates. This substantially increases the number of two-qubit gates that need to be executed. However, many quantum devices have access to higher energy levels. We can expand the qubit abstraction of $|0\rangle$ and $|1\rangle$ to a ququart which has access to the $|2\rangle$ and $|3\rangle$ state, but with shorter coherence times. This allows for two qubits to be encoded in one ququart, enabling increased virtual connectivity between physical units from two adjacent qubits to four fully connected qubits. This connectivity scheme allows us to more efficiently execute three-qubit gates natively between two physical devices. We present direct-to-pulse implementations of several three-qubit gates, synthesized via optimal control, for compilation of three-qubit gates onto a superconducting-based architecture with access to four-level devices with the first experimental demonstration of four-level ququart gates designed through optimal control. We demonstrate strategies that temporarily use higher level states to perform Toffoli gates and always use higher level states to improve fidelities for quantum circuits. We find that these methods improve expected fidelities with increases of 2x across circuit sizes using intermediate encoding, and increases of 3x for fully-encoded ququart compilation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14069v3-abstract-full').style.display = 'none'; document.getElementById('2303.14069v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures, to be published at ISCA 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.10788">arXiv:2303.10788</a> <span> [<a href="https://arxiv.org/pdf/2303.10788">pdf</a>, <a href="https://arxiv.org/format/2303.10788">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Clifford-based Circuit Cutting for Quantum Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Smith%2C+K+N">Kaitlin N. Smith</a>, <a href="/search/quant-ph?searchtype=author&query=Perlin%2C+M+A">Michael A. Perlin</a>, <a href="/search/quant-ph?searchtype=author&query=Gokhale%2C+P">Pranav Gokhale</a>, <a href="/search/quant-ph?searchtype=author&query=Frederick%2C+P">Paige Frederick</a>, <a href="/search/quant-ph?searchtype=author&query=Owusu-Antwi%2C+D">David Owusu-Antwi</a>, <a href="/search/quant-ph?searchtype=author&query=Rines%2C+R">Richard Rines</a>, <a href="/search/quant-ph?searchtype=author&query=Omole%2C+V">Victory Omole</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.10788v1-abstract-short" style="display: inline;"> Quantum computing has potential to provide exponential speedups over classical computing for many important applications. However, today's quantum computers are in their early stages, and hardware quality issues hinder the scale of program execution. Benchmarking and simulation of quantum circuits on classical computers is therefore essential to advance the understanding of how quantum computers a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10788v1-abstract-full').style.display = 'inline'; document.getElementById('2303.10788v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.10788v1-abstract-full" style="display: none;"> Quantum computing has potential to provide exponential speedups over classical computing for many important applications. However, today's quantum computers are in their early stages, and hardware quality issues hinder the scale of program execution. Benchmarking and simulation of quantum circuits on classical computers is therefore essential to advance the understanding of how quantum computers and programs operate, enabling both algorithm discovery that leads to high-impact quantum computation and engineering improvements that deliver to more powerful quantum systems. Unfortunately, the nature of quantum information causes simulation complexity to scale exponentially with problem size. In this paper, we debut Super.tech's SuperSim framework, a new approach for high fidelity and scalable quantum circuit simulation. SuperSim employs two key techniques for accelerated quantum circuit simulation: Clifford-based simulation and circuit cutting. Through the isolation of Clifford subcircuit fragments within a larger non-Clifford circuit, resource-efficient Clifford simulation can be invoked, leading to significant reductions in runtime. After fragments are independently executed, circuit cutting and recombination procedures allow the final output of the original circuit to be reconstructed from fragment execution results. Through the combination of these two state-of-art techniques, SuperSim is a product for quantum practitioners that allows quantum circuit evaluation to scale beyond the frontiers of current simulators. Our results show that Clifford-based circuit cutting accelerates the simulation of near-Clifford circuits, allowing 100s of qubits to be evaluated with modest runtimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10788v1-abstract-full').style.display = 'none'; document.getElementById('2303.10788v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear at the 50th International Symposium on Computer Architecture (ISCA 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.02131">arXiv:2303.02131</a> <span> [<a href="https://arxiv.org/pdf/2303.02131">pdf</a>, <a href="https://arxiv.org/format/2303.02131">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Complexity">cs.CC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22331/q-2024-02-15-1257">10.22331/q-2024-02-15-1257 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spacetime-Efficient Low-Depth Quantum State Preparation with Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Gui%2C+K">Kaiwen Gui</a>, <a href="/search/quant-ph?searchtype=author&query=Dalzell%2C+A+M">Alexander M. Dalzell</a>, <a href="/search/quant-ph?searchtype=author&query=Achille%2C+A">Alessandro Achille</a>, <a href="/search/quant-ph?searchtype=author&query=Suchara%2C+M">Martin Suchara</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.02131v3-abstract-short" style="display: inline;"> We propose a novel deterministic method for preparing arbitrary quantum states. When our protocol is compiled into CNOT and arbitrary single-qubit gates, it prepares an $N$-dimensional state in depth $O(\log(N))$ and spacetime allocation (a metric that accounts for the fact that oftentimes some ancilla qubits need not be active for the entire circuit) $O(N)$, which are both optimal. When compiled… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02131v3-abstract-full').style.display = 'inline'; document.getElementById('2303.02131v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.02131v3-abstract-full" style="display: none;"> We propose a novel deterministic method for preparing arbitrary quantum states. When our protocol is compiled into CNOT and arbitrary single-qubit gates, it prepares an $N$-dimensional state in depth $O(\log(N))$ and spacetime allocation (a metric that accounts for the fact that oftentimes some ancilla qubits need not be active for the entire circuit) $O(N)$, which are both optimal. When compiled into the $\{\mathrm{H,S,T,CNOT}\}$ gate set, we show that it requires asymptotically fewer quantum resources than previous methods. Specifically, it prepares an arbitrary state up to error $蔚$ with optimal depth of $O(\log(N) + \log (1/蔚))$ and spacetime allocation $O(N\log(\log(N)/蔚))$, improving over $O(\log(N)\log(\log (N)/蔚))$ and $O(N\log(N/蔚))$, respectively. We illustrate how the reduced spacetime allocation of our protocol enables rapid preparation of many disjoint states with only constant-factor ancilla overhead -- $O(N)$ ancilla qubits are reused efficiently to prepare a product state of $w$ $N$-dimensional states in depth $O(w + \log(N))$ rather than $O(w\log(N))$, achieving effectively constant depth per state. We highlight several applications where this ability would be useful, including quantum machine learning, Hamiltonian simulation, and solving linear systems of equations. We provide quantum circuit descriptions of our protocol, detailed pseudocode, and gate-level implementation examples using Braket. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02131v3-abstract-full').style.display = 'none'; document.getElementById('2303.02131v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum 8, 1257 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00658">arXiv:2303.00658</a> <span> [<a href="https://arxiv.org/pdf/2303.00658">pdf</a>, <a href="https://arxiv.org/format/2303.00658">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3575693.3575726">10.1145/3575693.3575726 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Qompress: Efficient Compilation for Ququarts Exploiting Partial and Mixed Radix Operations for Communication Reduction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Litteken%2C+A">Andrew Litteken</a>, <a href="/search/quant-ph?searchtype=author&query=Seifert%2C+L+M">Lennart Maximilian Seifert</a>, <a href="/search/quant-ph?searchtype=author&query=Chadwick%2C+J">Jason Chadwick</a>, <a href="/search/quant-ph?searchtype=author&query=Nottingham%2C+N">Natalia Nottingham</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Fredric T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00658v2-abstract-short" style="display: inline;"> Quantum computing is in an era of limited resources. Current hardware lacks high fidelity gates, long coherence times, and the number of computational units required to perform meaningful computation. Contemporary quantum devices typically use a binary system, where each qubit exists in a superposition of the $\ket{0}$ and $\ket{1}$ states. However, it is often possible to access the $\ket{2}$ or… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00658v2-abstract-full').style.display = 'inline'; document.getElementById('2303.00658v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00658v2-abstract-full" style="display: none;"> Quantum computing is in an era of limited resources. Current hardware lacks high fidelity gates, long coherence times, and the number of computational units required to perform meaningful computation. Contemporary quantum devices typically use a binary system, where each qubit exists in a superposition of the $\ket{0}$ and $\ket{1}$ states. However, it is often possible to access the $\ket{2}$ or even $\ket{3}$ states in the same physical unit by manipulating the system in different ways. In this work, we consider automatically encoding two qubits into one four-state qu\emph{quart} via a \emph{compression scheme}. We use quantum optimal control to design efficient proof-of-concept gates that fully replicate standard qubit computation on these encoded qubits. We extend qubit compilation schemes to efficiently route qubits on an arbitrary mixed-radix system consisting of both qubits and ququarts, reducing communication and minimizing excess circuit execution time introduced by longer-duration ququart gates. In conjunction with these compilation strategies, we introduce several methods to find beneficial compressions, reducing circuit error due to computation and communication by up to 50\%. These methods can increase the computational space available on a limited near-term machine by up to 2x while maintaining circuit fidelity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00658v2-abstract-full').style.display = 'none'; document.getElementById('2303.00658v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures, 1 table, to be published at ASPLOS 2023</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ASPLOS 2023: Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, January 2023, Pages 646-659 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.02003">arXiv:2302.02003</a> <span> [<a href="https://arxiv.org/pdf/2302.02003">pdf</a>, <a href="https://arxiv.org/format/2302.02003">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ISCAS46773.2023.10181370">10.1109/ISCAS46773.2023.10181370 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QContext: Context-Aware Decomposition for Quantum Gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Ji Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Bowman%2C+M">Max Bowman</a>, <a href="/search/quant-ph?searchtype=author&query=Gokhale%2C+P">Pranav Gokhale</a>, <a href="/search/quant-ph?searchtype=author&query=Dangwal%2C+S">Siddharth Dangwal</a>, <a href="/search/quant-ph?searchtype=author&query=Larson%2C+J">Jeffrey Larson</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Hovland%2C+P+D">Paul D. Hovland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.02003v1-abstract-short" style="display: inline;"> In this paper we propose QContext, a new compiler structure that incorporates context-aware and topology-aware decompositions. Because of circuit equivalence rules and resynthesis, variants of a gate-decomposition template may exist. QContext exploits the circuit information and the hardware topology to select the gate variant that increases circuit optimization opportunities. We study the basis-g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02003v1-abstract-full').style.display = 'inline'; document.getElementById('2302.02003v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.02003v1-abstract-full" style="display: none;"> In this paper we propose QContext, a new compiler structure that incorporates context-aware and topology-aware decompositions. Because of circuit equivalence rules and resynthesis, variants of a gate-decomposition template may exist. QContext exploits the circuit information and the hardware topology to select the gate variant that increases circuit optimization opportunities. We study the basis-gate-level context-aware decomposition for Toffoli gates and the native-gate-level context-aware decomposition for CNOT gates. Our experiments show that QContext reduces the number of gates as compared with the state-of-the-art approach, Orchestrated Trios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02003v1-abstract-full').style.display = 'none'; document.getElementById('2302.02003v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01553">arXiv:2302.01553</a> <span> [<a href="https://arxiv.org/pdf/2302.01553">pdf</a>, <a href="https://arxiv.org/format/2302.01553">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/QCE57702.2023.00145">10.1109/QCE57702.2023.00145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient control pulses for continuous quantum gate families through coordinated re-optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chadwick%2C+J+D">Jason D. Chadwick</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01553v4-abstract-short" style="display: inline;"> We present a general method to quickly generate high-fidelity control pulses for any continuously-parameterized set of quantum gates after calibrating a small number of reference pulses. We find that interpolating between optimized control pulses for different quantum operations does not immediately yield a high-fidelity intermediate operation. To solve this problem, we propose a method to optimiz… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01553v4-abstract-full').style.display = 'inline'; document.getElementById('2302.01553v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01553v4-abstract-full" style="display: none;"> We present a general method to quickly generate high-fidelity control pulses for any continuously-parameterized set of quantum gates after calibrating a small number of reference pulses. We find that interpolating between optimized control pulses for different quantum operations does not immediately yield a high-fidelity intermediate operation. To solve this problem, we propose a method to optimize control pulses specifically to provide good interpolations. We pick several reference operations in the gate family of interest and optimize pulses that implement these operations, then iteratively re-optimize the pulses to guide their shapes to be similar for operations that are closely related. Once this set of reference pulses is calibrated, we can use a straightforward linear interpolation method to instantly obtain high-fidelity pulses for arbitrary gates in the continuous operation space. We demonstrate this procedure on the three-parameter Cartan decomposition of two-qubit gates to obtain control pulses for any arbitrary two-qubit gate (up to single-qubit operations) with consistently high fidelity. Compared to previous neural network approaches, the method is 7.7x more computationally efficient to calibrate the pulse space for the set of all single-qubit gates. Our technique generalizes to any number of gate parameters and could easily be used with advanced pulse optimization algorithms to allow for better translation from simulation to experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01553v4-abstract-full').style.display = 'none'; document.getElementById('2302.01553v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, 2 tables; appearing in QCE 2023</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.03850">arXiv:2212.03850</a> <span> [<a href="https://arxiv.org/pdf/2212.03850">pdf</a>, <a href="https://arxiv.org/format/2212.03850">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> SupercheQ: Quantum Advantage for Distributed Databases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Gokhale%2C+P">P. Gokhale</a>, <a href="/search/quant-ph?searchtype=author&query=Anschuetz%2C+E+R">E. R. Anschuetz</a>, <a href="/search/quant-ph?searchtype=author&query=Campbell%2C+C">C. Campbell</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">F. T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Dahl%2C+E+D">E. D. Dahl</a>, <a href="/search/quant-ph?searchtype=author&query=Frederick%2C+P">P. Frederick</a>, <a href="/search/quant-ph?searchtype=author&query=Jones%2C+E+B">E. B. Jones</a>, <a href="/search/quant-ph?searchtype=author&query=Hall%2C+B">B. Hall</a>, <a href="/search/quant-ph?searchtype=author&query=Issa%2C+S">S. Issa</a>, <a href="/search/quant-ph?searchtype=author&query=Goiporia%2C+P">P. Goiporia</a>, <a href="/search/quant-ph?searchtype=author&query=Lee%2C+S">S. Lee</a>, <a href="/search/quant-ph?searchtype=author&query=Noell%2C+P">P. Noell</a>, <a href="/search/quant-ph?searchtype=author&query=Omole%2C+V">V. Omole</a>, <a href="/search/quant-ph?searchtype=author&query=Owusu-Antwi%2C+D">D. Owusu-Antwi</a>, <a href="/search/quant-ph?searchtype=author&query=Perlin%2C+M+A">M. A. Perlin</a>, <a href="/search/quant-ph?searchtype=author&query=Rines%2C+R">R. Rines</a>, <a href="/search/quant-ph?searchtype=author&query=Saffman%2C+M">M. Saffman</a>, <a href="/search/quant-ph?searchtype=author&query=Smith%2C+K+N">K. N. Smith</a>, <a href="/search/quant-ph?searchtype=author&query=Tomesh%2C+T">T. Tomesh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.03850v1-abstract-short" style="display: inline;"> We introduce SupercheQ, a family of quantum protocols that achieves asymptotic advantage over classical protocols for checking the equivalence of files, a task also known as fingerprinting. The first variant, SupercheQ-EE (Efficient Encoding), uses n qubits to verify files with 2^O(n) bits -- an exponential advantage in communication complexity (i.e. bandwidth, often the limiting factor in network… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03850v1-abstract-full').style.display = 'inline'; document.getElementById('2212.03850v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.03850v1-abstract-full" style="display: none;"> We introduce SupercheQ, a family of quantum protocols that achieves asymptotic advantage over classical protocols for checking the equivalence of files, a task also known as fingerprinting. The first variant, SupercheQ-EE (Efficient Encoding), uses n qubits to verify files with 2^O(n) bits -- an exponential advantage in communication complexity (i.e. bandwidth, often the limiting factor in networked applications) over the best possible classical protocol in the simultaneous message passing setting. Moreover, SupercheQ-EE can be gracefully scaled down for implementation on circuits with poly(n^l) depth to enable verification for files with O(n^l) bits for arbitrary constant l. The quantum advantage is achieved by random circuit sampling, thereby endowing circuits from recent quantum supremacy and quantum volume experiments with a practical application. We validate SupercheQ-EE's performance at scale through GPU simulation. The second variant, SupercheQ-IE (Incremental Encoding), uses n qubits to verify files with O(n^2) bits while supporting constant-time incremental updates to the fingerprint. Moreover, SupercheQ-IE only requires Clifford gates, ensuring relatively modest overheads for error-corrected implementation. We experimentally demonstrate proof-of-concepts through Qiskit Runtime on IBM quantum hardware. We envision SupercheQ could be deployed in distributed data settings, accompanying replicas of important databases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03850v1-abstract-full').style.display = 'none'; document.getElementById('2212.03850v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16469">arXiv:2211.16469</a> <span> [<a href="https://arxiv.org/pdf/2211.16469">pdf</a>, <a href="https://arxiv.org/format/2211.16469">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ISMVL52857.2022.00014">10.1109/ISMVL52857.2022.00014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Communication Trade Offs in Intermediate Qudit Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Litteken%2C+A">Andrew Litteken</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16469v1-abstract-short" style="display: inline;"> Quantum computing promises speedup of classical algorithms in the long term. Current hardware is unable to support this goal and programs must be efficiently compiled to use of the devices through reduction of qubits used, gate count and circuit duration. Many quantum systems have access to higher levels, expanding the computational space for a device. We develop higher level qudit communication… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16469v1-abstract-full').style.display = 'inline'; document.getElementById('2211.16469v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16469v1-abstract-full" style="display: none;"> Quantum computing promises speedup of classical algorithms in the long term. Current hardware is unable to support this goal and programs must be efficiently compiled to use of the devices through reduction of qubits used, gate count and circuit duration. Many quantum systems have access to higher levels, expanding the computational space for a device. We develop higher level qudit communication circuits, compilation pipelines, and circuits that take advantage of this extra space by temporarily pushing qudits into these higher levels. We show how these methods are able to more efficiently use the device, and where they see diminishing returns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16469v1-abstract-full').style.display = 'none'; document.getElementById('2211.16469v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 9 Figures, In ISVML22: 2022 IEEE 52nd International Symposium on Multiple-Valued Logic</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15757">arXiv:2211.15757</a> <span> [<a href="https://arxiv.org/pdf/2211.15757">pdf</a>, <a href="https://arxiv.org/format/2211.15757">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Reducing Runtime Overhead via Use-Based Migration in Neutral Atom Quantum Architectures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Litteken%2C+A">Andrew Litteken</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15757v1-abstract-short" style="display: inline;"> Neutral atoms are a promising choice for scalable quantum computing architectures. Features such as long distance interactions and native multiqubit gates offer reductions in communication costs and operation count. However, the trapped atoms used as qubits can be lost over the course of computation and due to adverse environmental factors. The value of a lost computation qubit cannot be recovered… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15757v1-abstract-full').style.display = 'inline'; document.getElementById('2211.15757v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15757v1-abstract-full" style="display: none;"> Neutral atoms are a promising choice for scalable quantum computing architectures. Features such as long distance interactions and native multiqubit gates offer reductions in communication costs and operation count. However, the trapped atoms used as qubits can be lost over the course of computation and due to adverse environmental factors. The value of a lost computation qubit cannot be recovered and requires the reloading of the array and rerunning of the computation, greatly increasing the number of runs of a circuit. Software mitigation strategies exist but exhaust the original mapped locations of the circuit slowly and create more spread out clusters of qubits across the architecture decreasing the probability of success. We increase flexibility by developing strategies that find all reachable qubits, rather only adjacent hardware qubits. Second, we divide the architecture into separate sections, and run the circuit in each section, free of lost atoms. Provided the architecture is large enough, this resets the circuit without having to reload the entire architecture. This increases the number of effective shots before reloading by a factor of two for a circuit that utilizes 30% of the architecture. We also explore using these sections to parallelize execution of circuits, reducing the overall runtime by a total 50% for 30 qubit circuit. These techniques contribute to a dynamic new set of strategies to combat the detrimental effects of lost computational space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15757v1-abstract-full').style.display = 'none'; document.getElementById('2211.15757v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 Figures, In QCE22: 2022 IEEE International Conference on Quantum Computing & Engineering</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12711">arXiv:2211.12711</a> <span> [<a href="https://arxiv.org/pdf/2211.12711">pdf</a>, <a href="https://arxiv.org/format/2211.12711">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/QCE57702.2023.00034">10.1109/QCE57702.2023.00034 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SnCQA: A hardware-efficient equivariant quantum convolutional circuit architecture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+H">Han Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Kang%2C+C">Christopher Kang</a>, <a href="/search/quant-ph?searchtype=author&query=Ravi%2C+G+S">Gokul Subramanian Ravi</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hanrui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Setia%2C+K">Kanav Setia</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Junyu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12711v2-abstract-short" style="display: inline;"> We propose SnCQA, a set of hardware-efficient variational circuits of equivariant quantum convolutional circuits respective to permutation symmetries and spatial lattice symmetries with the number of qubits $n$. By exploiting permutation symmetries of the system, such as lattice Hamiltonians common to many quantum many-body and quantum chemistry problems, Our quantum neural networks are suitable f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12711v2-abstract-full').style.display = 'inline'; document.getElementById('2211.12711v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12711v2-abstract-full" style="display: none;"> We propose SnCQA, a set of hardware-efficient variational circuits of equivariant quantum convolutional circuits respective to permutation symmetries and spatial lattice symmetries with the number of qubits $n$. By exploiting permutation symmetries of the system, such as lattice Hamiltonians common to many quantum many-body and quantum chemistry problems, Our quantum neural networks are suitable for solving machine learning problems where permutation symmetries are present, which could lead to significant savings of computational costs. Aside from its theoretical novelty, we find our simulations perform well in practical instances of learning ground states in quantum computational chemistry, where we could achieve comparable performances to traditional methods with few tens of parameters. Compared to other traditional variational quantum circuits, such as the pure hardware-efficient ansatz (pHEA), we show that SnCQA is more scalable, accurate, and noise resilient (with $20\times$ better performance on $3 \times 4$ square lattice and $200\% - 1000\%$ resource savings in various lattice sizes and key criterions such as the number of layers, parameters, and times to converge in our cases), suggesting a potentially favorable experiment on near-time quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12711v2-abstract-full').style.display = 'none'; document.getElementById('2211.12711v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, many figures. IEEE QCE 2023, 1st best paper award in quantum algorithms</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), 2023, pp. 236-245 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07880">arXiv:2211.07880</a> <span> [<a href="https://arxiv.org/pdf/2211.07880">pdf</a>, <a href="https://arxiv.org/format/2211.07880">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Fast Fingerprinting of Cloud-based NISQ Quantum Computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Smith%2C+K+N">Kaitlin N. Smith</a>, <a href="/search/quant-ph?searchtype=author&query=Viszlai%2C+J">Joshua Viszlai</a>, <a href="/search/quant-ph?searchtype=author&query=Seifert%2C+L+M">Lennart Maximilian Seifert</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a>, <a href="/search/quant-ph?searchtype=author&query=Szefer%2C+J">Jakub Szefer</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07880v1-abstract-short" style="display: inline;"> Cloud-based quantum computers have become a reality with a number of companies allowing for cloud-based access to their machines with tens to more than 100 qubits. With easy access to quantum computers, quantum information processing will potentially revolutionize computation, and superconducting transmon-based quantum computers are among some of the more promising devices available. Cloud service… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07880v1-abstract-full').style.display = 'inline'; document.getElementById('2211.07880v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07880v1-abstract-full" style="display: none;"> Cloud-based quantum computers have become a reality with a number of companies allowing for cloud-based access to their machines with tens to more than 100 qubits. With easy access to quantum computers, quantum information processing will potentially revolutionize computation, and superconducting transmon-based quantum computers are among some of the more promising devices available. Cloud service providers today host a variety of these and other prototype quantum computers with highly diverse device properties, sizes, and performances. The variation that exists in today's quantum computers, even among those of the same underlying hardware, motivate the study of how one device can be clearly differentiated and identified from the next. As a case study, this work focuses on the properties of 25 IBM superconducting, fixed-frequency transmon-based quantum computers that range in age from a few months to approximately 2.5 years. Through the analysis of current and historical quantum computer calibration data, this work uncovers key features within the machines that can serve as basis for unique hardware fingerprint of each quantum computer. This work demonstrates a new and fast method to reliably fingerprint cloud-based quantum computers based on unique frequency characteristics of transmon qubits. Both enrollment and recall operations are very fast as fingerprint data can be generated with minimal executions on the quantum machine. The qubit frequency-based fingerprints also have excellent inter-device separation and intra-device stability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07880v1-abstract-full').style.display = 'none'; document.getElementById('2211.07880v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.16724">arXiv:2210.16724</a> <span> [<a href="https://arxiv.org/pdf/2210.16724">pdf</a>, <a href="https://arxiv.org/format/2210.16724">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3508352.3561118">10.1145/3508352.3561118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QuEst: Graph Transformer for Quantum Circuit Reliability Estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hanrui Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+P">Pengyu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+Z">Zhiding Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Gu%2C+J">Jiaqi Gu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zirui Li</a>, <a href="/search/quant-ph?searchtype=author&query=Ding%2C+Y">Yongshan Ding</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+W">Weiwen Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+Y">Yiyu Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Qian%2C+X">Xuehai Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+D+Z">David Z. Pan</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Han%2C+S">Song Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.16724v2-abstract-short" style="display: inline;"> Among different quantum algorithms, PQC for QML show promises on near-term devices. To facilitate the QML and PQC research, a recent python library called TorchQuantum has been released. It can construct, simulate, and train PQC for machine learning tasks with high speed and convenient debugging supports. Besides quantum for ML, we want to raise the community's attention on the reversed direction:… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16724v2-abstract-full').style.display = 'inline'; document.getElementById('2210.16724v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.16724v2-abstract-full" style="display: none;"> Among different quantum algorithms, PQC for QML show promises on near-term devices. To facilitate the QML and PQC research, a recent python library called TorchQuantum has been released. It can construct, simulate, and train PQC for machine learning tasks with high speed and convenient debugging supports. Besides quantum for ML, we want to raise the community's attention on the reversed direction: ML for quantum. Specifically, the TorchQuantum library also supports using data-driven ML models to solve problems in quantum system research, such as predicting the impact of quantum noise on circuit fidelity and improving the quantum circuit compilation efficiency. This paper presents a case study of the ML for quantum part. Since estimating the noise impact on circuit reliability is an essential step toward understanding and mitigating noise, we propose to leverage classical ML to predict noise impact on circuit fidelity. Inspired by the natural graph representation of quantum circuits, we propose to leverage a graph transformer model to predict the noisy circuit fidelity. We firstly collect a large dataset with a variety of quantum circuits and obtain their fidelity on noisy simulators and real machines. Then we embed each circuit into a graph with gate and noise properties as node features, and adopt a graph transformer to predict the fidelity. Evaluated on 5 thousand random and algorithm circuits, the graph transformer predictor can provide accurate fidelity estimation with RMSE error 0.04 and outperform a simple neural network-based model by 0.02 on average. It can achieve 0.99 and 0.95 R$^2$ scores for random and algorithm circuits, respectively. Compared with circuit simulators, the predictor has over 200X speedup for estimating the fidelity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16724v2-abstract-full').style.display = 'none'; document.getElementById('2210.16724v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICCAD 2022; 10 pages, 10 figures; code at https://github.com/mit-han-lab/torchquantum</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10921">arXiv:2210.10921</a> <span> [<a href="https://arxiv.org/pdf/2210.10921">pdf</a>, <a href="https://arxiv.org/format/2210.10921">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Scaling Superconducting Quantum Computers with Chiplet Architectures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Smith%2C+K+N">Kaitlin N. Smith</a>, <a href="/search/quant-ph?searchtype=author&query=Ravi%2C+G+S">Gokul Subramanian Ravi</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10921v1-abstract-short" style="display: inline;"> Fixed-frequency transmon quantum computers (QCs) have advanced in coherence times, addressability, and gate fidelities. Unfortunately, these devices are restricted by the number of on-chip qubits, capping processing power and slowing progress toward fault-tolerance. Although emerging transmon devices feature over 100 qubits, building QCs large enough for meaningful demonstrations of quantum advant… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10921v1-abstract-full').style.display = 'inline'; document.getElementById('2210.10921v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10921v1-abstract-full" style="display: none;"> Fixed-frequency transmon quantum computers (QCs) have advanced in coherence times, addressability, and gate fidelities. Unfortunately, these devices are restricted by the number of on-chip qubits, capping processing power and slowing progress toward fault-tolerance. Although emerging transmon devices feature over 100 qubits, building QCs large enough for meaningful demonstrations of quantum advantage requires overcoming many design challenges. For example, today's transmon qubits suffer from significant variation due to limited precision in fabrication. As a result, barring significant improvements in current fabrication techniques, scaling QCs by building ever larger individual chips with more qubits is hampered by device variation. Severe device variation that degrades QC performance is referred to as a defect. Here, we focus on a specific defect known as a frequency collision. When transmon frequencies collide, their difference falls within a range that limits two-qubit gate fidelity. Frequency collisions occur with greater probability on larger QCs, causing collision-free yields to decline as the number of on-chip qubits increases. As a solution, we propose exploiting the higher yields associated with smaller QCs by integrating quantum chiplets within quantum multi-chip modules (MCMs). Yield, gate performance, and application-based analysis show the feasibility of QC scaling through modularity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10921v1-abstract-full').style.display = 'none'; document.getElementById('2210.10921v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Appeared in the 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.12280">arXiv:2209.12280</a> <span> [<a href="https://arxiv.org/pdf/2209.12280">pdf</a>, <a href="https://arxiv.org/format/2209.12280">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Navigating the dynamic noise landscape of variational quantum algorithms with QISMET </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ravi%2C+G+S">Gokul Subramanian Ravi</a>, <a href="/search/quant-ph?searchtype=author&query=Smith%2C+K+N">Kaitlin N. Smith</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a>, <a href="/search/quant-ph?searchtype=author&query=Kannan%2C+T">Tejas Kannan</a>, <a href="/search/quant-ph?searchtype=author&query=Earnest%2C+N">Nathan Earnest</a>, <a href="/search/quant-ph?searchtype=author&query=Javadi-Abhari%2C+A">Ali Javadi-Abhari</a>, <a href="/search/quant-ph?searchtype=author&query=Hoffmann%2C+H">Henry Hoffmann</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.12280v2-abstract-short" style="display: inline;"> Transient errors from the dynamic NISQ noise landscape are challenging to comprehend and are especially detrimental to classes of applications that are iterative and/or long-running, and therefore their timely mitigation is important for quantum advantage in real-world applications. The most popular examples of iterative long-running quantum applications are variational quantum algorithms (VQAs).… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.12280v2-abstract-full').style.display = 'inline'; document.getElementById('2209.12280v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.12280v2-abstract-full" style="display: none;"> Transient errors from the dynamic NISQ noise landscape are challenging to comprehend and are especially detrimental to classes of applications that are iterative and/or long-running, and therefore their timely mitigation is important for quantum advantage in real-world applications. The most popular examples of iterative long-running quantum applications are variational quantum algorithms (VQAs). Iteratively, VQA's classical optimizer evaluates circuit candidates on an objective function and picks the best circuits towards achieving the application's target. Noise fluctuation can cause a significant transient impact on the objective function estimation of the VQA iterations / tuning candidates. This can severely affect VQA tuning and, by extension, its accuracy and convergence. This paper proposes QISMET: Quantum Iteration Skipping to Mitigate Error Transients, to navigate the dynamic noise landscape of VQAs. QISMET actively avoids instances of high fluctuating noise which are predicted to have a significant transient error impact on specific VQA iterations. To achieve this, QISMET estimates transient error in VQA iterations and designs a controller to keep the VQA tuning faithful to the transient-free scenario. By doing so, QISMET efficiently mitigates a large portion of the transient noise impact on VQAs and is able to improve the fidelity by 1.3x-3x over a traditional VQA baseline, with 1.6-2.4x improvement over alternative approaches, across different applications and machines. Further, to diligently analyze the effects of transients, this work also builds transient noise models for target VQA applications from observing real machine transients. These are then integrated with the Qiskit simulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.12280v2-abstract-full').style.display = 'none'; document.getElementById('2209.12280v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Appears at the 28th Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.13380">arXiv:2208.13380</a> <span> [<a href="https://arxiv.org/pdf/2208.13380">pdf</a>, <a href="https://arxiv.org/format/2208.13380">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Let Each Quantum Bit Choose Its Basis Gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lin%2C+S+F">Sophia Fuhui Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Sussman%2C+S">Sara Sussman</a>, <a href="/search/quant-ph?searchtype=author&query=Duckering%2C+C">Casey Duckering</a>, <a href="/search/quant-ph?searchtype=author&query=Mundada%2C+P+S">Pranav S. Mundada</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a>, <a href="/search/quant-ph?searchtype=author&query=Kumar%2C+R+S">Rohan S. Kumar</a>, <a href="/search/quant-ph?searchtype=author&query=Houck%2C+A+A">Andrew A. Houck</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.13380v2-abstract-short" style="display: inline;"> Near-term quantum computers are primarily limited by errors in quantum operations (or gates) between two quantum bits (or qubits). A physical machine typically provides a set of basis gates that include primitive 2-qubit (2Q) and 1-qubit (1Q) gates that can be implemented in a given technology. 2Q entangling gates, coupled with some 1Q gates, allow for universal quantum computation. In superconduc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13380v2-abstract-full').style.display = 'inline'; document.getElementById('2208.13380v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.13380v2-abstract-full" style="display: none;"> Near-term quantum computers are primarily limited by errors in quantum operations (or gates) between two quantum bits (or qubits). A physical machine typically provides a set of basis gates that include primitive 2-qubit (2Q) and 1-qubit (1Q) gates that can be implemented in a given technology. 2Q entangling gates, coupled with some 1Q gates, allow for universal quantum computation. In superconducting technologies, the current state of the art is to implement the same 2Q gate between every pair of qubits (typically an XX- or XY-type gate). This strict hardware uniformity requirement for 2Q gates in a large quantum computer has made scaling up a time and resource-intensive endeavor in the lab. We propose a radical idea -- allow the 2Q basis gate(s) to differ between every pair of qubits, selecting the best entangling gates that can be calibrated between given pairs of qubits. This work aims to give quantum scientists the ability to run meaningful algorithms with qubit systems that are not perfectly uniform. Scientists will also be able to use a much broader variety of novel 2Q gates for quantum computing. We develop a theoretical framework for identifying good 2Q basis gates on "nonstandard" Cartan trajectories that deviate from "standard" trajectories like XX. We then introduce practical methods for calibration and compilation with nonstandard 2Q gates, and discuss possible ways to improve the compilation. To demonstrate our methods in a case study, we simulated both standard XY-type trajectories and faster, nonstandard trajectories using an entangling gate architecture with far-detuned transmon qubits. We identify efficient 2Q basis gates on these nonstandard trajectories and use them to compile a number of standard benchmark circuits such as QFT and QAOA. Our results demonstrate an 8x improvement over the baseline 2Q gates with respect to speed and coherence-limited gate fidelity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13380v2-abstract-full').style.display = 'none'; document.getElementById('2208.13380v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In MICRO 2022: 55th IEEE/ACM International Symposium on Microarchitecture, 17 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.08547">arXiv:2208.08547</a> <span> [<a href="https://arxiv.org/pdf/2208.08547">pdf</a>, <a href="https://arxiv.org/format/2208.08547">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> </div> </div> <p class="title is-5 mathjax"> Better Than Worst-Case Decoding for Quantum Error Correction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ravi%2C+G+S">Gokul Subramanian Ravi</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a>, <a href="/search/quant-ph?searchtype=author&query=Fayyazi%2C+A">Arash Fayyazi</a>, <a href="/search/quant-ph?searchtype=author&query=Lin%2C+S+F">Sophia Fuhui Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Javadi-Abhari%2C+A">Ali Javadi-Abhari</a>, <a href="/search/quant-ph?searchtype=author&query=Pedram%2C+M">Massoud Pedram</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.08547v2-abstract-short" style="display: inline;"> The overheads of classical decoding for quantum error correction on superconducting quantum systems grow rapidly with the number of logical qubits and their correction code distance. Decoding at room temperature is bottle-necked by refrigerator I/O bandwidth while cryogenic on-chip decoding is limited by area/power/thermal budget. To overcome these overheads, we are motivated by the observation… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08547v2-abstract-full').style.display = 'inline'; document.getElementById('2208.08547v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.08547v2-abstract-full" style="display: none;"> The overheads of classical decoding for quantum error correction on superconducting quantum systems grow rapidly with the number of logical qubits and their correction code distance. Decoding at room temperature is bottle-necked by refrigerator I/O bandwidth while cryogenic on-chip decoding is limited by area/power/thermal budget. To overcome these overheads, we are motivated by the observation that in the common case, error signatures are fairly trivial with high redundancy/sparsity, since the error correction codes are over-provisioned to correct for uncommon worst-case complex scenarios (to ensure substantially low logical error rates). If suitably exploited, these trivial signatures can be decoded and corrected with insignificant overhead, thereby alleviating the bottlenecks described above, while still handling the worst-case complex signatures by state-of-the-art means. Our proposal, targeting Surface Codes, consists of: 1) Clique: A lightweight decoder for decoding and correcting trivial common-case errors, designed for the cryogenic domain. The decoder is implemented for SFQ logic. 2) A statistical confidence-based technique for off-chip decoding bandwidth allocation, to efficiently handle rare complex decodes which are not covered by the on-chip decoder. 3) A method for stalling circuit execution, for the worst-case scenarios in which the provisioned off-chip bandwidth is insufficient to complete all requested off-chip decodes. In all, our proposal enables 70-99+% off-chip bandwidth elimination across a range of logical and physical error rates, without significantly sacrificing the accuracy of state-of-the-art off-chip decoding. By doing so, it achieves 10-10000x bandwidth reduction over prior off-chip bandwidth reduction techniques. Furthermore, it achieves a 15-37x resource overhead reduction compared to prior on-chip-only decoding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08547v2-abstract-full').style.display = 'none'; document.getElementById('2208.08547v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear at the 28th Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14446">arXiv:2207.14446</a> <span> [<a href="https://arxiv.org/pdf/2207.14446">pdf</a>, <a href="https://arxiv.org/format/2207.14446">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TQE.2023.3343625">10.1109/TQE.2023.3343625 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Vulnerability Analysis to Accurate Estimate the Quantum Algorithm Success Rate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Qi%2C+F">Fang Qi</a>, <a href="/search/quant-ph?searchtype=author&query=Smith%2C+K+N">Kaitlin N. Smith</a>, <a href="/search/quant-ph?searchtype=author&query=LeCompte%2C+T">Travis LeCompte</a>, <a href="/search/quant-ph?searchtype=author&query=Tzeng%2C+N">Nianfeng Tzeng</a>, <a href="/search/quant-ph?searchtype=author&query=Yuan%2C+X">Xu Yuan</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Peng%2C+L">Lu Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14446v2-abstract-short" style="display: inline;"> While quantum computers provide exciting opportunities for information processing, they currently suffer from noise during computation that is not fully understood. Incomplete noise models have led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes. For example, the estimated probability of success (ESP) is the state-of-the-art metric used to gauge qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14446v2-abstract-full').style.display = 'inline'; document.getElementById('2207.14446v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14446v2-abstract-full" style="display: none;"> While quantum computers provide exciting opportunities for information processing, they currently suffer from noise during computation that is not fully understood. Incomplete noise models have led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes. For example, the estimated probability of success (ESP) is the state-of-the-art metric used to gauge quantum program performance. The ESP suffers poor prediction since it fails to account for the unique combination of circuit structure, quantum state, and quantum computer properties specific to each program execution. Thus, an urgent need exists for a systematic approach that can elucidate various noise impacts and accurately and robustly predict quantum computer success rates, emphasizing application and device scaling. In this article, we propose quantum vulnerability analysis (QVA) to systematically quantify the error impact on quantum applications and address the gap between current success rate (SR) estimators and real quantum computer results. The QVA determines the cumulative quantum vulnerability (CQV) of the target quantum computation, which quantifies the quantum error impact based on the entire algorithm applied to the target quantum machine. By evaluating the CQV with well-known benchmarks on three 27-qubit quantum computers, the CQV success estimation outperforms the estimated probability of success state-of-the-art prediction technique by achieving on average six times less relative prediction error, with best cases at 30 times, for benchmarks with a real SR rate above 0.1%. Direct application of QVA has been provided that helps researchers choose a promising compiling strategy at compile time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14446v2-abstract-full').style.display = 'none'; document.getElementById('2207.14446v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Quantum Engineering (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14975">arXiv:2206.14975</a> <span> [<a href="https://arxiv.org/pdf/2206.14975">pdf</a>, <a href="https://arxiv.org/format/2206.14975">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/QCE53715.2022.00051">10.1109/QCE53715.2022.00051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time-Efficient Qudit Gates through Incremental Pulse Re-seeding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Seifert%2C+L+M">Lennart Maximilian Seifert</a>, <a href="/search/quant-ph?searchtype=author&query=Chadwick%2C+J">Jason Chadwick</a>, <a href="/search/quant-ph?searchtype=author&query=Litteken%2C+A">Andrew Litteken</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Baker%2C+J+M">Jonathan M. Baker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14975v2-abstract-short" style="display: inline;"> Current efforts to build quantum computers focus mainly on the two-state qubit, which often involves suppressing readily-available higher states. In this work, we break this abstraction and synthesize short-duration control pulses for gates on generalized d-state qudits. We present Incremental Pulse Re-seeding, a practical scheme to guide optimal control software to the lowest-duration pulse by it… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14975v2-abstract-full').style.display = 'inline'; document.getElementById('2206.14975v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14975v2-abstract-full" style="display: none;"> Current efforts to build quantum computers focus mainly on the two-state qubit, which often involves suppressing readily-available higher states. In this work, we break this abstraction and synthesize short-duration control pulses for gates on generalized d-state qudits. We present Incremental Pulse Re-seeding, a practical scheme to guide optimal control software to the lowest-duration pulse by iteratively seeding the optimizer with previous results. We find a near-linear relationship between Hilbert space dimension and gate duration through explicit pulse optimization for one- and two-qudit gates on transmons. Our results suggest that qudit operations are much more efficient than previously expected in the practical regime of interest and have the potential to significantly increase the computational power of current hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14975v2-abstract-full').style.display = 'none'; document.getElementById('2206.14975v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.00661">arXiv:2205.00661</a> <span> [<a href="https://arxiv.org/pdf/2205.00661">pdf</a>, <a href="https://arxiv.org/format/2205.00661">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Programming Languages">cs.PL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Giallar: Push-Button Verification for the Qiskit Quantum Compiler </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tao%2C+R">Runzhou Tao</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+Y">Yunong Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Yao%2C+J">Jianan Yao</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+X">Xupeng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Javadi-Abhari%2C+A">Ali Javadi-Abhari</a>, <a href="/search/quant-ph?searchtype=author&query=Cross%2C+A+W">Andrew W. Cross</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Gu%2C+R">Ronghui Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.00661v1-abstract-short" style="display: inline;"> This paper presents Giallar, a fully-automated verification toolkit for quantum compilers. Giallar requires no manual specifications, invariants, or proofs, and can automatically verify that a compiler pass preserves the semantics of quantum circuits. To deal with unbounded loops in quantum compilers, Giallar abstracts three loop templates, whose loop invariants can be automatically inferred. To e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.00661v1-abstract-full').style.display = 'inline'; document.getElementById('2205.00661v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.00661v1-abstract-full" style="display: none;"> This paper presents Giallar, a fully-automated verification toolkit for quantum compilers. Giallar requires no manual specifications, invariants, or proofs, and can automatically verify that a compiler pass preserves the semantics of quantum circuits. To deal with unbounded loops in quantum compilers, Giallar abstracts three loop templates, whose loop invariants can be automatically inferred. To efficiently check the equivalence of arbitrary input and output circuits that have complicated matrix semantics representation, Giallar introduces a symbolic representation for quantum circuits and a set of rewrite rules for showing the equivalence of symbolic quantum circuits. With Giallar, we implemented and verified 44 (out of 56) compiler passes in 13 versions of the Qiskit compiler, the open-source quantum compiler standard, during which three bugs were detected in and confirmed by Qiskit. Our evaluation shows that most of Qiskit compiler passes can be automatically verified in seconds and verification imposes only a modest overhead to compilation performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.00661v1-abstract-full').style.display = 'none'; document.getElementById('2205.00661v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">PLDI 2022; Improves arXiv:1908.08963</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.13260">arXiv:2203.13260</a> <span> [<a href="https://arxiv.org/pdf/2203.13260">pdf</a>, <a href="https://arxiv.org/format/2203.13260">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Adaptive job and resource management for the growing quantum cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ravi%2C+G+S">Gokul Subramanian Ravi</a>, <a href="/search/quant-ph?searchtype=author&query=Smith%2C+K+N">Kaitlin N. Smith</a>, <a href="/search/quant-ph?searchtype=author&query=Murali%2C+P">Prakash Murali</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.13260v1-abstract-short" style="display: inline;"> As the popularity of quantum computing continues to grow, efficient quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13260v1-abstract-full').style.display = 'inline'; document.getElementById('2203.13260v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.13260v1-abstract-full" style="display: none;"> As the popularity of quantum computing continues to grow, efficient quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the client-end. While the analysis and optimization of job / resource consumption and management are popular in the classical HPC domain, it is severely lacking for more nascent technology like quantum computing. This paper proposes optimized adaptive job scheduling to the quantum cloud taking note of primary characteristics such as queuing times and fidelity trends across machines, as well as other characteristics such as quality of service guarantees and machine calibration constraints. Key components of the proposal include a) a prediction model which predicts fidelity trends across machine based on compiled circuit features such as circuit depth and different forms of errors, as well as b) queuing time prediction for each machine based on execution time estimations. Overall, this proposal is evaluated on simulated IBM machines across a diverse set of quantum applications and system loading scenarios, and is able to reduce wait times by over 3x and improve fidelity by over 40\% on specific usecases, when compared to traditional job schedulers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13260v1-abstract-full').style.display = 'none'; document.getElementById('2203.13260v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Appeared at the 2021 IEEE International Conference on Quantum Computing and Engineering. arXiv admin note: text overlap with arXiv:2203.13121. substantial text overlap with arXiv:2203.13121</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.13121">arXiv:2203.13121</a> <span> [<a href="https://arxiv.org/pdf/2203.13121">pdf</a>, <a href="https://arxiv.org/format/2203.13121">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> </div> </div> <p class="title is-5 mathjax"> Quantum Computing in the Cloud: Analyzing job and machine characteristics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ravi%2C+G+S">Gokul Subramanian Ravi</a>, <a href="/search/quant-ph?searchtype=author&query=Smith%2C+K+N">Kaitlin N. Smith</a>, <a href="/search/quant-ph?searchtype=author&query=Gokhale%2C+P">Pranav Gokhale</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.13121v1-abstract-short" style="display: inline;"> As the popularity of quantum computing continues to grow, quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the client-end… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13121v1-abstract-full').style.display = 'inline'; document.getElementById('2203.13121v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.13121v1-abstract-full" style="display: none;"> As the popularity of quantum computing continues to grow, quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the client-end. While the analysis of resource consumption and management are popular in the classical HPC domain, it is severely lacking for more nascent technology like quantum computing. This paper is a first-of-its-kind academic study, analyzing various trends in job execution and resources consumption / utilization on quantum cloud systems. We focus on IBM Quantum systems and analyze characteristics over a two year period, encompassing over 6000 jobs which contain over 600,000 quantum circuit executions and correspond to almost 10 billion "shots" or trials over 20+ quantum machines. Specifically, we analyze trends focused on, but not limited to, execution times on quantum machines, queuing/waiting times in the cloud, circuit compilation times, machine utilization, as well as the impact of job and machine characteristics on all of these trends. Our analysis identifies several similarities and differences with classical HPC cloud systems. Based on our insights, we make recommendations and contributions to improve the management of resources and jobs on future quantum cloud systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13121v1-abstract-full').style.display = 'none'; document.getElementById('2203.13121v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Appeared at the 2021 IEEE International Symposium on Workload Characterization</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12713">arXiv:2203.12713</a> <span> [<a href="https://arxiv.org/pdf/2203.12713">pdf</a>, <a href="https://arxiv.org/format/2203.12713">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Optimized Quantum Program Execution Ordering to Mitigate Errors in Simulations of Quantum Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tomesh%2C+T">Teague Tomesh</a>, <a href="/search/quant-ph?searchtype=author&query=Gui%2C+K">Kaiwen Gui</a>, <a href="/search/quant-ph?searchtype=author&query=Gokhale%2C+P">Pranav Gokhale</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+Y">Yunong Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/quant-ph?searchtype=author&query=Martonosi%2C+M">Margaret Martonosi</a>, <a href="/search/quant-ph?searchtype=author&query=Suchara%2C+M">Martin Suchara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12713v1-abstract-short" style="display: inline;"> Simulating the time evolution of a physical system at quantum mechanical levels of detail -- known as Hamiltonian Simulation (HS) -- is an important and interesting problem across physics and chemistry. For this task, algorithms that run on quantum computers are known to be exponentially faster than classical algorithms; in fact, this application motivated Feynman to propose the construction of qu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12713v1-abstract-full').style.display = 'inline'; document.getElementById('2203.12713v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12713v1-abstract-full" style="display: none;"> Simulating the time evolution of a physical system at quantum mechanical levels of detail -- known as Hamiltonian Simulation (HS) -- is an important and interesting problem across physics and chemistry. For this task, algorithms that run on quantum computers are known to be exponentially faster than classical algorithms; in fact, this application motivated Feynman to propose the construction of quantum computers. Nonetheless, there are challenges in reaching this performance potential. Prior work has focused on compiling circuits (quantum programs) for HS with the goal of maximizing either accuracy or gate cancellation. Our work proposes a compilation strategy that simultaneously advances both goals. At a high level, we use classical optimizations such as graph coloring and travelling salesperson to order the execution of quantum programs. Specifically, we group together mutually commuting terms in the Hamiltonian (a matrix characterizing the quantum mechanical system) to improve the accuracy of the simulation. We then rearrange the terms within each group to maximize gate cancellation in the final quantum circuit. These optimizations work together to improve HS performance and result in an average 40% reduction in circuit depth. This work advances the frontier of HS which in turn can advance physical and chemical modeling in both basic and applied sciences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12713v1-abstract-full').style.display = 'none'; document.getElementById('2203.12713v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, Awarded Best Paper during the IEEE International Conference on Rebooting Computing (ICRC) 2021</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Chong%2C+F+T&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Chong%2C+F+T&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Chong%2C+F+T&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Chong%2C+F+T&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>