CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 200 results for author: <span class="mathjax">Li, B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Li%2C+B">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Li, B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Li%2C+B&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Li, B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10116">arXiv:2502.10116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.10116">pdf</a>, <a href="https://arxiv.org/format/2502.10116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Suppressing spurious transitions using spectrally balanced pulse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+R">Ruixia Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Feng%2C+Y">Yaqing Feng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yujia Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+J">Jiayu Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Boxi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Motzoi%2C+F">Felix Motzoi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yang Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+H">Huikai Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+Z">Zhen Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nuerbolati%2C+W">Wuerkaixi Nuerbolati</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+H">Haifeng Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+W">Weijie Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+F">Fei Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10116v1-abstract-short" style="display: inline;"> Achieving precise control over quantum systems presents a significant challenge, especially in many-body setups, where residual couplings and unintended transitions undermine the accuracy of quantum operations. In superconducting qubits, parasitic interactions -- both between distant qubits and with spurious two-level systems -- can severely limit the performance of quantum gates. In this work, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10116v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10116v1-abstract-full" style="display: none;"> Achieving precise control over quantum systems presents a significant challenge, especially in many-body setups, where residual couplings and unintended transitions undermine the accuracy of quantum operations. In superconducting qubits, parasitic interactions -- both between distant qubits and with spurious two-level systems -- can severely limit the performance of quantum gates. In this work, we introduce a pulse-shaping technique that uses spectrally balanced microwave pulses to suppress undesired transitions. Experimental results demonstrate an order-of-magnitude reduction in spurious excitations between weakly detuned qubits, as well as a substantial decrease in single-qubit gate errors caused by a strongly coupled two-level defect over a broad frequency range. Our method provides a simple yet powerful solution to mitigate adverse effects from parasitic couplings, enhancing the fidelity of quantum operations and expanding feasible frequency allocations for large-scale quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10116v1-abstract-full').style.display = 'none'; document.getElementById('2502.10116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09542">arXiv:2502.09542</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.09542">pdf</a>, <a href="https://arxiv.org/format/2502.09542">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Constant-Overhead Fault-Tolerant Bell-Pair Distillation using High-Rate Codes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ataides%2C+J+P+B">J. Pablo Bonilla Ataides</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+H">Hengyun Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Q">Qian Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Baranes%2C+G">Gefen Baranes</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bikun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lukin%2C+M+D">Mikhail D. Lukin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09542v1-abstract-short" style="display: inline;"> We present a fault-tolerant Bell-pair distillation scheme achieving constant overhead through high-rate quantum low-density parity-check (qLDPC) codes. Our approach maintains a constant distillation rate equal to the code rate - as high as $1/3$ in our implementations - while requiring no additional overhead beyond the physical qubits of the code. Full circuit-level analysis demonstrates fault-tol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09542v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09542v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09542v1-abstract-full" style="display: none;"> We present a fault-tolerant Bell-pair distillation scheme achieving constant overhead through high-rate quantum low-density parity-check (qLDPC) codes. Our approach maintains a constant distillation rate equal to the code rate - as high as $1/3$ in our implementations - while requiring no additional overhead beyond the physical qubits of the code. Full circuit-level analysis demonstrates fault-tolerance for input Bell pair infidelities below a threshold $\sim 5\%$, readily achievable with near-term capabilities. Unlike previous proposals, our scheme keeps the output Bell pairs encoded in qLDPC codes at each node, eliminating decoding overhead and enabling direct use in distributed quantum applications through recent advances in qLDPC computation. These results establish qLDPC-based distillation as a practical route toward resource-efficient quantum networks and distributed quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09542v1-abstract-full').style.display = 'none'; document.getElementById('2502.09542v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13367">arXiv:2501.13367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.13367">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Read out the fermion parity of a potential artificial Kitaev chain utilizing a transmon qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhuo%2C+E">Enna Zhuo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+X">Xiaozhou Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+Y">Yuyang Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lyu%2C+Z">Zhaozheng Lyu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+A">Ang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yunxiao Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xiang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+D">Duolin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Y">Yukun Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+A">Anqi Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bakkers%2C+E+P+A+M">E. P. A. M. Bakkers</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+X">Xiaodong Han</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+X">Xiaohui Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+P">Peiling Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tong%2C+B">Bingbing Tong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dou%2C+Z">Ziwei Dou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+G">Guangtong Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qu%2C+F">Fanming Qu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+J">Jie Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+L">Li Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13367v1-abstract-short" style="display: inline;"> Artificial Kitaev chains have emerged as a promising platform for realizing topological quantum computing. Once the chains are formed and the Majorana zero modes are braided/fused, reading out the parity of the chains is essential for further verifying the non-Abelian property of the Majorana zero modes. Here we demonstrate the feasibility of using a superconducting transmon qubit, which incorpora&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13367v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13367v1-abstract-full" style="display: none;"> Artificial Kitaev chains have emerged as a promising platform for realizing topological quantum computing. Once the chains are formed and the Majorana zero modes are braided/fused, reading out the parity of the chains is essential for further verifying the non-Abelian property of the Majorana zero modes. Here we demonstrate the feasibility of using a superconducting transmon qubit, which incorporates an end of a four-site quantum dot-superconductor chain based on a Ge/Si nanowire, to directly detect the singlet/doublet state, and thus the parity of the entire chain. We also demonstrate that for multiple-dot chains there are two types of 0-蟺 transitions between different charging states: the parity-flip 0-蟺 transition and the parity-preserved 0-蟺 transition. Furthermore, we show that the inter-dot coupling, hence the strengths of cross Andreev reflection and elastic cotunneling of electrons, can be adjusted by local electrostatic gating in chains fabricated on Ge/Si core-shell nanowires. Our exploration would be helpful for the ultimate realization of topological quantum computing based on artificial Kitaev chains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13367v1-abstract-full').style.display = 'none'; document.getElementById('2501.13367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07775">arXiv:2501.07775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.07775">pdf</a>, <a href="https://arxiv.org/format/2501.07775">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.202400562">10.1002/qute.202400562 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantifying the imaginarity via different distance measures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+M">Meng-Li Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+S">Si-Yin Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fei%2C+S">Shao-Ming Fei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07775v1-abstract-short" style="display: inline;"> The recently introduced resource theory of imaginarity facilitates a systematic investigation into the role of complex numbers in quantum mechanics and quantum information theory. In this work, we propose well-defined measures of imaginarity using various distance metrics, drawing inspiration from recent advancements in quantum entanglement and coherence. Specifically, we focus on quantitatively e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07775v1-abstract-full').style.display = 'inline'; document.getElementById('2501.07775v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07775v1-abstract-full" style="display: none;"> The recently introduced resource theory of imaginarity facilitates a systematic investigation into the role of complex numbers in quantum mechanics and quantum information theory. In this work, we propose well-defined measures of imaginarity using various distance metrics, drawing inspiration from recent advancements in quantum entanglement and coherence. Specifically, we focus on quantitatively evaluating imaginarity through measures such as Tsallis relative $伪$-entropy, Sandwiched R茅nyi relative entropy, and Tsallis relative operator entropy. Additionally, we analyze the decay rates of these measures. Our findings reveal that the Tsallis relative $伪$-entropy of imaginarity exhibits higher decay rate under quantum channels compared to other measures. Finally, we examine the ordering of single-qubit states under these imaginarity measures, demonstrating that the order remains invariant under the bit-flip channel for specific parameter ranges. This study enhances our understanding of imaginarity as a quantum resource and its potential applications in quantum information theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07775v1-abstract-full').style.display = 'none'; document.getElementById('2501.07775v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Quantum Technol. 2025, 2400562 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18339">arXiv:2412.18339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.18339">pdf</a>, <a href="https://arxiv.org/format/2412.18339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal pulses for superconducting qudit ladder gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Boxi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=C%C3%A1rdenas-L%C3%B3pez%2C+F+A">F. A. C谩rdenas-L贸pez</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lupascu%2C+A">Adrian Lupascu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Motzoi%2C+F">Felix Motzoi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18339v2-abstract-short" style="display: inline;"> Qudits, generalizations of qubits to multi-level quantum systems, offer enhanced computational efficiency by encoding more information per lattice cell, avoiding costly swap operations and providing even exponential speedup in some cases. Utilizing the $d$-level manifold, however, requires high-speed gate operations because of the stronger decoherence at higher levels. While analytical control met&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18339v2-abstract-full').style.display = 'inline'; document.getElementById('2412.18339v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18339v2-abstract-full" style="display: none;"> Qudits, generalizations of qubits to multi-level quantum systems, offer enhanced computational efficiency by encoding more information per lattice cell, avoiding costly swap operations and providing even exponential speedup in some cases. Utilizing the $d$-level manifold, however, requires high-speed gate operations because of the stronger decoherence at higher levels. While analytical control methods have proven effective for qubits in achieving fast gates with minimal control errors, their extension to qudits is nontrivial due to the increased complexity of the energy level structure arising from additional ancillary states. In this work, we present a universal pulse construction for generating rapid, high-fidelity unitary rotations between adjacent qudit levels, thereby providing a prescription for any gate in $SU(d)$. Control errors in these operations are effectively analyzed within a four-level subspace, including two leakage levels with approximately opposite detuning. By identifying the optimal degrees of freedom, we derive concise analytical pulse schemes that suppress multiple control errors and outperform existing methods. Remarkably, our approach achieves consistent coherent error scaling across all levels, approaching the quantum speed limit independently of parameter variations between levels. Validation on transmon circuits demonstrates significant improvements in gate fidelity for various qudit sizes aiming for $10^{-4}$ error. This method provides a scalable solution for improving qudit control and can be broadly applied to other quantum systems with ladder structures or operations involving multiple ancillary levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18339v2-abstract-full').style.display = 'none'; document.getElementById('2412.18339v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14757">arXiv:2412.14757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.14757">pdf</a>, <a href="https://arxiv.org/format/2412.14757">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Space-time Peer-to-Peer Distribution of Multi-party Entanglement for Any Quantum Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+Y">Yuexun Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+X">Xiangyu Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bikun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wong%2C+Y">Yat Wong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14757v2-abstract-short" style="display: inline;"> Graph states are a class of important multiparty entangled states, of which bell pairs are the special case. Realizing a robust and fast distribution of arbitrary graph states in the downstream layer of the quantum network can be essential for further large-scale quantum networks. We propose a novel quantum network protocol called P2PGSD inspired by the classical Peer-to-Peer (P2P) network to effi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14757v2-abstract-full').style.display = 'inline'; document.getElementById('2412.14757v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14757v2-abstract-full" style="display: none;"> Graph states are a class of important multiparty entangled states, of which bell pairs are the special case. Realizing a robust and fast distribution of arbitrary graph states in the downstream layer of the quantum network can be essential for further large-scale quantum networks. We propose a novel quantum network protocol called P2PGSD inspired by the classical Peer-to-Peer (P2P) network to efficiently implement the general graph state distribution in the network layer, which demonstrates advantages in resource efficiency and scalability over existing methods for sparse graph states. An explicit mathematical model for a general graph state distribution problem has also been constructed, above which the intractability for a wide class of resource minimization problems is proved and the optimality of the existing algorithms is discussed. In addition, we leverage the spacetime quantum network inspired by the symmetry from relativity for memory management in network problems and used it to improve our proposed algorithm. The advantages of our protocols are confirmed by numerical simulations showing an improvement of up to 50% for general sparse graph states, paving the way for a resource-efficient multiparty entanglement distribution across any network topology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14757v2-abstract-full').style.display = 'none'; document.getElementById('2412.14757v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09070">arXiv:2412.09070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.09070">pdf</a>, <a href="https://arxiv.org/ps/2412.09070">ps</a>, <a href="https://arxiv.org/format/2412.09070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Boundaries of the sets of quantum realizable values of arbitrary order Bargmann invariants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Lin Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+B">Bing Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09070v1-abstract-short" style="display: inline;"> In the latest developments within the field of quantum information science, Bargmann invariants have emerged as fundamental quantities, uniquely characterizing tuples of quantum states while remaining invariant under unitary transformations. However, determining the boundaries of quantum-realizable values for Bargmann invariants of arbitrary order remains a significant theoretical challenge. In th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09070v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09070v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09070v1-abstract-full" style="display: none;"> In the latest developments within the field of quantum information science, Bargmann invariants have emerged as fundamental quantities, uniquely characterizing tuples of quantum states while remaining invariant under unitary transformations. However, determining the boundaries of quantum-realizable values for Bargmann invariants of arbitrary order remains a significant theoretical challenge. In this work, we completely solve this problem by deriving a unified boundary formulation for these values. Through rigorous mathematical analysis and numerical simulations, we explore the constraints imposed by quantum mechanics to delineate the achievable ranges of these invariants. We demonstrate that the boundaries depend on the specific properties of quantum states and the order of the Bargmann invariants, illustrated by a family of single-parameter qubit pure states. Our findings uncover intricate connections between Bargmann invariants and quantum imaginarity, offering a unified perspective on the associated boundary curves. These results enhance our understanding of the physical limits within quantum mechanics and may lead to novel applications of Bargmann invariants in quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09070v1-abstract-full').style.display = 'none'; document.getElementById('2412.09070v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04705">arXiv:2412.04705</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04705">pdf</a>, <a href="https://arxiv.org/format/2412.04705">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> QuTiP 5: The Quantum Toolbox in Python </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lambert%2C+N">Neill Lambert</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gigu%C3%A8re%2C+E">Eric Gigu猫re</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Menczel%2C+P">Paul Menczel</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Boxi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hopf%2C+P">Patrick Hopf</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Su%C3%A1rez%2C+G">Gerardo Su谩rez</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gali%2C+M">Marc Gali</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lishman%2C+J">Jake Lishman</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gadhvi%2C+R">Rushiraj Gadhvi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Agarwal%2C+R">Rochisha Agarwal</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Galicia%2C+A">Asier Galicia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shammah%2C+N">Nathan Shammah</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nation%2C+P">Paul Nation</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Johansson%2C+J+R">J. R. Johansson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ahmed%2C+S">Shahnawaz Ahmed</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cross%2C+S">Simon Cross</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pitchford%2C+A">Alexander Pitchford</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nori%2C+F">Franco Nori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04705v1-abstract-short" style="display: inline;"> QuTiP, the Quantum Toolbox in Python, has been at the forefront of open-source quantum software for the last ten years. It is used as a research, teaching, and industrial tool, and has been downloaded millions of times by users around the world. Here we introduce the latest developments in QuTiP v5, which are set to have a large impact on the future of QuTiP and enable it to be a modern, continuou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04705v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04705v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04705v1-abstract-full" style="display: none;"> QuTiP, the Quantum Toolbox in Python, has been at the forefront of open-source quantum software for the last ten years. It is used as a research, teaching, and industrial tool, and has been downloaded millions of times by users around the world. Here we introduce the latest developments in QuTiP v5, which are set to have a large impact on the future of QuTiP and enable it to be a modern, continuously developed and popular tool for another decade and more. We summarize the code design and fundamental data layer changes as well as efficiency improvements, new solvers, applications to quantum circuits with QuTiP-QIP, and new quantum control tools with QuTiP-QOC. Additional flexibility in the data layer underlying all &#34;quantum objects&#34; in QuTiP allows us to harness the power of state-of-the-art data formats and packages like JAX, CuPy, and more. We explain these new features with a series of both well-known and new examples. The code for these examples is available in a static form on GitHub and will be available also in a continuously updated and documented notebook form in the qutip-tutorials package. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04705v1-abstract-full').style.display = 'none'; document.getElementById('2412.04705v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">70 pages, 25 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19905">arXiv:2411.19905</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19905">pdf</a>, <a href="https://arxiv.org/format/2411.19905">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Universal non-Hermitian transport in disordered systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+C">Chuan Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19905v1-abstract-short" style="display: inline;"> In disordered Hermitian systems, localization of energy eigenstates prohibits wave propagation. In non-Hermitian systems, however, wave propagation is possible even when the eigenstates of Hamiltonian are exponentially localized by disorders. We find in this regime that non-Hermitian wave propagation exhibits novel universal scaling behaviors without Hermitian counterpart. Furthermore, our theory&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19905v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19905v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19905v1-abstract-full" style="display: none;"> In disordered Hermitian systems, localization of energy eigenstates prohibits wave propagation. In non-Hermitian systems, however, wave propagation is possible even when the eigenstates of Hamiltonian are exponentially localized by disorders. We find in this regime that non-Hermitian wave propagation exhibits novel universal scaling behaviors without Hermitian counterpart. Furthermore, our theory demonstrates how the tail of imaginary-part density of states dictates wave propagation in the long-time limit. Specifically, for the three typical classes, namely the Gaussian, the uniform, and the linear imaginary-part density of states, we obtain logarithmically suppressed sub-ballistic transport, and two types of subdiffusion with exponents that depend only on spatial dimensions, respectively. Our work highlights the fundamental differences between Hermitian and non-Hermitian Anderson localization, and uncovers unique universality in non-Hermitian wave propagation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19905v1-abstract-full').style.display = 'none'; document.getElementById('2411.19905v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+10 pages,3+2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19308">arXiv:2411.19308</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19308">pdf</a>, <a href="https://arxiv.org/format/2411.19308">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Leveraging Hardware Power through Optimal Pulse Profiling for Each Qubit Pair </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Y">Yuchen Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Boxi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yidong Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+Y">Yufei Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19308v1-abstract-short" style="display: inline;"> In the scaling development of quantum computers, the calibration process emerges as a critical challenge. Existing calibration methods, utilizing the same pulse waveform for two-qubit gates across the device, overlook hardware differences among physical qubits and lack efficient parallel calibration. In this paper, we enlarge the pulse candidates for two-qubit gates to three pulse waveforms, and i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19308v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19308v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19308v1-abstract-full" style="display: none;"> In the scaling development of quantum computers, the calibration process emerges as a critical challenge. Existing calibration methods, utilizing the same pulse waveform for two-qubit gates across the device, overlook hardware differences among physical qubits and lack efficient parallel calibration. In this paper, we enlarge the pulse candidates for two-qubit gates to three pulse waveforms, and introduce a fine-grained calibration protocol. In the calibration protocol, three policies are proposed to profile each qubit pair with its optimal pulse waveform. Afterwards, calibration subgraphs are introduced to enable parallel calibraton through identifying compatible calibration operations. The protocol is validated on real machine with up to 127 qubits. Real-machine experiments demonstrates a minimum gate error of 0.001 with a median error of 0.006 which is 1.84x reduction compared to default pulse waveform provided by IBM. On device level, a double fold increase in quantum volume as well as 2.3x reduction in error per layered gate are achieved. The proposed protocol leverages the potential current hardware and could server as an important step toward fault-tolerant quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19308v1-abstract-full').style.display = 'none'; document.getElementById('2411.19308v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06863">arXiv:2411.06863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06863">pdf</a>, <a href="https://arxiv.org/format/2411.06863">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Computable Model-Independent Bounds for Adversarial Quantum Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bacui Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Alpcan%2C+T">Tansu Alpcan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Thapa%2C+C">Chandra Thapa</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Parampalli%2C+U">Udaya Parampalli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06863v1-abstract-short" style="display: inline;"> By leveraging the principles of quantum mechanics, QML opens doors to novel approaches in machine learning and offers potential speedup. However, machine learning models are well-documented to be vulnerable to malicious manipulations, and this susceptibility extends to the models of QML. This situation necessitates a thorough understanding of QML&#39;s resilience against adversarial attacks, particula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06863v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06863v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06863v1-abstract-full" style="display: none;"> By leveraging the principles of quantum mechanics, QML opens doors to novel approaches in machine learning and offers potential speedup. However, machine learning models are well-documented to be vulnerable to malicious manipulations, and this susceptibility extends to the models of QML. This situation necessitates a thorough understanding of QML&#39;s resilience against adversarial attacks, particularly in an era where quantum computing capabilities are expanding. In this regard, this paper examines model-independent bounds on adversarial performance for QML. To the best of our knowledge, we introduce the first computation of an approximate lower bound for adversarial error when evaluating model resilience against sophisticated quantum-based adversarial attacks. Experimental results are compared to the computed bound, demonstrating the potential of QML models to achieve high robustness. In the best case, the experimental error is only 10% above the estimated bound, offering evidence of the inherent robustness of quantum models. This work not only advances our theoretical understanding of quantum model resilience but also provides a precise reference bound for the future development of robust QML algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06863v1-abstract-full').style.display = 'none'; document.getElementById('2411.06863v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23622">arXiv:2410.23622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23622">pdf</a>, <a href="https://arxiv.org/format/2410.23622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Optimality Condition for the Transpose Channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bikun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhaoyou Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+G">Guo Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23622v2-abstract-short" style="display: inline;"> In quantum error correction, the Petz transpose channel serves as a perfect recovery map when the Knill-Laflamme conditions are satisfied. Notably, while perfect recovery is generally infeasible for most quantum channels of finite dimension, the transpose channel remains a versatile tool with near-optimal performance in recovering quantum states. This work introduces and proves, for the first time&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23622v2-abstract-full').style.display = 'inline'; document.getElementById('2410.23622v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23622v2-abstract-full" style="display: none;"> In quantum error correction, the Petz transpose channel serves as a perfect recovery map when the Knill-Laflamme conditions are satisfied. Notably, while perfect recovery is generally infeasible for most quantum channels of finite dimension, the transpose channel remains a versatile tool with near-optimal performance in recovering quantum states. This work introduces and proves, for the first time, the necessary and sufficient conditions for the strict optimality of the transpose channel in terms of channel fidelity. The violation of this condition can be easily characterized by a simple commutator that can be efficiently computed. We provide multiple examples that substantiate our new findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23622v2-abstract-full').style.display = 'none'; document.getElementById('2410.23622v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20879">arXiv:2410.20879</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20879">pdf</a>, <a href="https://arxiv.org/format/2410.20879">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2514-x">10.1007/s11433-024-2514-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometric-Like imaginarity: quantification and state conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+M">Meng-Li Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fei%2C+S">Shao-Ming Fei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20879v1-abstract-short" style="display: inline;"> From the perspective of resource-theoretic approach, this study explores the quantification of imaginary in quantum physics. We propose a well defined measure of imaginarity, the geometric-like measure of imaginarity. Compared with the usual geometric imaginarity measure, this geometric-like measure of imaginarity exhibits smaller decay difference under quantum noisy channels and higher stability.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20879v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20879v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20879v1-abstract-full" style="display: none;"> From the perspective of resource-theoretic approach, this study explores the quantification of imaginary in quantum physics. We propose a well defined measure of imaginarity, the geometric-like measure of imaginarity. Compared with the usual geometric imaginarity measure, this geometric-like measure of imaginarity exhibits smaller decay difference under quantum noisy channels and higher stability. As applications, we show that both the optimal probability of state transformations from a pure state to an arbitrary mixed state via real operations, and the maximal probability of stochastic-approximate state transformations from a pure state to an arbitrary mixed state via real operations with a given fidelity $f$, are given by the geometric-like measure of imaginarity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20879v1-abstract-full').style.display = 'none'; document.getElementById('2410.20879v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> February 2025 Vol. 68 No. 2: 220311 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SCIENCE CHINA Physics, Mechanics &amp; Astronomy 2025 Vol. 68 No. 2: 220311 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16841">arXiv:2410.16841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16841">pdf</a>, <a href="https://arxiv.org/format/2410.16841">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum metrology timing limits of biphoton frequency comb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Baihong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Q">Qi-qi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+B">Boxin Yuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dong%2C+R">Ruifang Dong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shougang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+R">Rui-Bo Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16841v1-abstract-short" style="display: inline;"> Biphoton frequency comb (BFC), which encompasses multiple discrete frequency modes and represents high-dimensional frequency entanglement, is crucial in quantum information processing due to its high information capacity and error resilience. It also holds significant potential for enhancing timing precision in quantum metrology. Here, we examine quantum metrology timing limits using the BFC as a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16841v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16841v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16841v1-abstract-full" style="display: none;"> Biphoton frequency comb (BFC), which encompasses multiple discrete frequency modes and represents high-dimensional frequency entanglement, is crucial in quantum information processing due to its high information capacity and error resilience. It also holds significant potential for enhancing timing precision in quantum metrology. Here, we examine quantum metrology timing limits using the BFC as a probe state and derive a quantum Cram茅r-Rao bound that scales quadratically with the number of frequency modes. Under ideal conditions (zero loss and perfect visibility), this bound can be saturated by both spectrally non-resolved Hong-Ou-Mandel (HOM) interferometry at zero delay and spectrally resolved HOM interferometry at arbitrary delays. In particular, under imperfect experimental conditions, Fisher information rapidly increases up to its maximum as the mode number increases for a fixed time delay close to zero, indicating that increasing the mode number is an optimal strategy for improving the timing precision in practice. Furthermore, compared with spectrally non-resolved measurement, spectrally resolved measurement is a better strategy due to its higher Fisher information, shorter measurement times, and ambiguity-free dynamic range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16841v1-abstract-full').style.display = 'none'; document.getElementById('2410.16841v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15389">arXiv:2410.15389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15389">pdf</a>, <a href="https://arxiv.org/format/2410.15389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adr9527">10.1126/sciadv.adr9527 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of quantum superposition of topological defects in a trapped ion quantum simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+Z">Zhijie Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yukai Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+S">Shijiao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mei%2C+Q">Quanxin Mei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bowen Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+G">Gangxi Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+Y">Yue Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qi%2C+B">Binxiang Qi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Z">Zichao Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P">Panyu Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Duan%2C+L">Luming Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15389v1-abstract-short" style="display: inline;"> Topological defects are discontinuities of a system protected by global properties, with wide applications in mathematics and physics. While previous experimental studies mostly focused on their classical properties, it has been predicted that topological defects can exhibit quantum superposition. Despite the fundamental interest and potential applications in understanding symmetry-breaking dynami&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15389v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15389v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15389v1-abstract-full" style="display: none;"> Topological defects are discontinuities of a system protected by global properties, with wide applications in mathematics and physics. While previous experimental studies mostly focused on their classical properties, it has been predicted that topological defects can exhibit quantum superposition. Despite the fundamental interest and potential applications in understanding symmetry-breaking dynamics of quantum phase transitions, its experimental realization still remains a challenge. Here, we report the observation of quantum superposition of topological defects in a trapped-ion quantum simulator. By engineering long-range spin-spin interactions, we observe a spin kink splitting into a superposition of kinks at different positions, creating a ``Schrodinger kink&#39;&#39; that manifests non-locality and quantum interference. Furthermore, by preparing superposition states of neighboring kinks with different phases, we observe the propagation of the wave packet in different directions, thus unambiguously verifying the quantum coherence in the superposition states. Our work provides useful tools for non-equilibrium dynamics in quantum Kibble-Zurek physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15389v1-abstract-full').style.display = 'none'; document.getElementById('2410.15389v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, already published in Science Advances</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Adv.10,eadr9527(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01206">arXiv:2410.01206</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01206">pdf</a>, <a href="https://arxiv.org/format/2410.01206">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Polynomial-Time Preparation of Low-Temperature Gibbs States for 2D Toric Code </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+Z">Zhiyan Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bowen Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+L">Lin Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+R">Ruizhe Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01206v1-abstract-short" style="display: inline;"> We propose a polynomial-time algorithm for preparing the Gibbs state of the two-dimensional toric code Hamiltonian at any temperature, starting from any initial condition, significantly improving upon prior estimates that suggested exponential scaling with inverse temperature. Our approach combines the Lindblad dynamics using a local Davies generator with simple global jump operators to enable eff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01206v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01206v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01206v1-abstract-full" style="display: none;"> We propose a polynomial-time algorithm for preparing the Gibbs state of the two-dimensional toric code Hamiltonian at any temperature, starting from any initial condition, significantly improving upon prior estimates that suggested exponential scaling with inverse temperature. Our approach combines the Lindblad dynamics using a local Davies generator with simple global jump operators to enable efficient transitions between logical sectors. We also prove that the Lindblad dynamics with a digitally implemented low temperature local Davies generator is able to efficiently drive the quantum state towards the ground state manifold. Despite this progress, we explain why protecting quantum information in the 2D toric code with passive dynamics remains challenging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01206v1-abstract-full').style.display = 'none'; document.getElementById('2410.01206v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14661">arXiv:2409.14661</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14661">pdf</a>, <a href="https://arxiv.org/format/2409.14661">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Spectral signatures of the Markovian to Non-Markovian transition in open quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zeng-Zhao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yip%2C+C">Cho-Tung Yip</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14661v2-abstract-short" style="display: inline;"> We present a new approach for investigating the Markovian to non-Markovian transition in quantum aggregates strongly coupled to a vibrational bath through the analysis of linear absorption spectra. Utilizing hierarchical algebraic equations in the frequency domain, we elucidate how these spectra can effectively reveal transitions between Markovian and non-Markovian regimes, driven by the complex i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14661v2-abstract-full').style.display = 'inline'; document.getElementById('2409.14661v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14661v2-abstract-full" style="display: none;"> We present a new approach for investigating the Markovian to non-Markovian transition in quantum aggregates strongly coupled to a vibrational bath through the analysis of linear absorption spectra. Utilizing hierarchical algebraic equations in the frequency domain, we elucidate how these spectra can effectively reveal transitions between Markovian and non-Markovian regimes, driven by the complex interplay of dissipation, aggregate-bath coupling, and intra-aggregate dipole-dipole interactions. Our results demonstrate that reduced dissipation induces spectral peak splitting, signaling the emergence of bath-induced non-Markovian effects. The spectral peak splitting can also be driven by enhanced dipole-dipole interactions, although the underlying mechanism differs from that of dissipation-induced splitting. Additionally, with an increase in aggregate-bath coupling strength, initially symmetric or asymmetric peaks with varying spectral amplitudes may merge under weak dipole-dipole interactions, whereas strong dipole-dipole interactions are more likely to cause peak splitting. Moreover, we find that spectral features serve as highly sensitive indicators for distinguishing the geometric structures of aggregates, while also unveiling the critical role geometry plays in shaping non-Markovian behavior. This study not only deepens our understanding of the Markovian to non-Markovian transition but also provides a robust framework for optimizing and controlling quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14661v2-abstract-full').style.display = 'none'; document.getElementById('2409.14661v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08365">arXiv:2408.08365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08365">pdf</a>, <a href="https://arxiv.org/format/2408.08365">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Coqa: Blazing Fast Compiler Optimizations for QAOA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Y">Yuchen Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yidong Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+J">Jinglei Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+Y">Yuwei Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Boxi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+S">Siyuan Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Z">Zhiding Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08365v1-abstract-short" style="display: inline;"> The Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage over classical computers. However, existing compilers lack specialized methods for optimizing QAOA circuits. There are circuit patterns inside the QAOA circuits, and current quantum hardware has specific qubit connectivity topologies. Therefore, we propose Coqa to optimize&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08365v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08365v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08365v1-abstract-full" style="display: none;"> The Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage over classical computers. However, existing compilers lack specialized methods for optimizing QAOA circuits. There are circuit patterns inside the QAOA circuits, and current quantum hardware has specific qubit connectivity topologies. Therefore, we propose Coqa to optimize QAOA circuit compilation tailored to different types of quantum hardware. Our method integrates a linear nearest-neighbor (LNN) topology and efficiently map the patterns of QAOA circuits to the LNN topology by heuristically checking the interaction based on the weight of problem Hamiltonian. This approach allows us to reduce the number of SWAP gates during compilation, which directly impacts the circuit depth and overall fidelity of the quantum computation. By leveraging the inherent patterns in QAOA circuits, our approach achieves more efficient compilation compared to general-purpose compilers. With our proposed method, we are able to achieve an average of 30% reduction in gate count and a 39x acceleration in compilation time across our benchmarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08365v1-abstract-full').style.display = 'none'; document.getElementById('2408.08365v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05435">arXiv:2408.05435</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05435">pdf</a>, <a href="https://arxiv.org/format/2408.05435">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> SuperEncoder: Towards Universal Neural Approximate Quantum State Preparation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+Y">Yilun Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+B">Bingmeng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+W">Wenle Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+X">Xiwei Pan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+Y">Yinhe Han</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Ying Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05435v1-abstract-short" style="display: inline;"> Numerous quantum algorithms operate under the assumption that classical data has already been converted into quantum states, a process termed Quantum State Preparation (QSP). However, achieving precise QSP requires a circuit depth that scales exponentially with the number of qubits, making it a substantial obstacle in harnessing quantum advantage. Recent research suggests using a Parameterized Qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05435v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05435v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05435v1-abstract-full" style="display: none;"> Numerous quantum algorithms operate under the assumption that classical data has already been converted into quantum states, a process termed Quantum State Preparation (QSP). However, achieving precise QSP requires a circuit depth that scales exponentially with the number of qubits, making it a substantial obstacle in harnessing quantum advantage. Recent research suggests using a Parameterized Quantum Circuit (PQC) to approximate a target state, offering a more scalable solution with reduced circuit depth compared to precise QSP. Despite this, the need for iterative updates of circuit parameters results in a lengthy runtime, limiting its practical application. In this work, we demonstrate that it is possible to leverage a pre-trained neural network to directly generate the QSP circuit for arbitrary quantum state, thereby eliminating the significant overhead of online iterations. Our study makes a steady step towards a universal neural designer for approximate QSP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05435v1-abstract-full').style.display = 'none'; document.getElementById('2408.05435v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04361">arXiv:2408.04361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04361">pdf</a>, <a href="https://arxiv.org/format/2408.04361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrabright-entanglement-based quantum key distribution over a 404-km-long optical fiber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhuang%2C+S">Shi-Chang Zhuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+M">Ming-Yang Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+Y">Yi-Xi Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+H">Hui-Nan Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+G">Guang-Bing Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yao%2C+Q">Quan Yao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+X">Xiu-Ping Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yu-Huai Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qin%2C+H">Hao Qin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=You%2C+L">Li-Xing You</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+F">Fei-Hu Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+J">Juan Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+Y">Yuan Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+C">Cheng-Zhi Peng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04361v2-abstract-short" style="display: inline;"> The entangled photons are crucial resources for quantum communications and networking. Here, we present an ultra-bright polarization-entangled photon source based on a periodically poled lithium niobate waveguide designed for practical quantum communication networks. Using a 780 nm pump laser, the source achieves a pair generation rate of 2.4 $\times 10^{10}$ pairs/s/mW. This work has achieved a d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04361v2-abstract-full').style.display = 'inline'; document.getElementById('2408.04361v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04361v2-abstract-full" style="display: none;"> The entangled photons are crucial resources for quantum communications and networking. Here, we present an ultra-bright polarization-entangled photon source based on a periodically poled lithium niobate waveguide designed for practical quantum communication networks. Using a 780 nm pump laser, the source achieves a pair generation rate of 2.4 $\times 10^{10}$ pairs/s/mW. This work has achieved a directly measured power of 17.9 nW in entangled photon generation with a 3.2 mW pump power. Based on this, we demonstrate the practicality of the source by conducting quantum key distribution experiments over long-distance fiber links, achieving the applicable secure key rates of up to 440.80 bits/s over 200 km with 62 dB loss and reaching a maximum secure key generation distance of 404 km. These results demonstrate the potential of wavelength-multiplexed polarization-entangled photon sources for high-speed, long-distance quantum communication, positioning them as key components for future large-scale quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04361v2-abstract-full').style.display = 'none'; document.getElementById('2408.04361v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03259">arXiv:2408.03259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03259">pdf</a>, <a href="https://arxiv.org/format/2408.03259">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.020201">10.1103/PhysRevLett.133.020201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-photon interference over 8.4 km urban atmosphere: towards testing quantum effects in curved spacetime with photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+H">Hui-Nan Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yu-Huai Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=You%2C+X">Xiang You</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+R">Run-Ze Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+J">Ji-Gang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+J">Juan Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+C">Chao-Yang Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+Y">Yuan Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+C">Cheng-Zhi Peng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03259v2-abstract-short" style="display: inline;"> The emergence of quantum mechanics and general relativity has transformed our understanding of the natural world significantly. However, integrating these two theories presents immense challenges, and their interplay remains untested. Recent theoretical studies suggest that the single-photon interference covering huge space can effectively probe the interface between quantum mechanics and general&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03259v2-abstract-full').style.display = 'inline'; document.getElementById('2408.03259v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03259v2-abstract-full" style="display: none;"> The emergence of quantum mechanics and general relativity has transformed our understanding of the natural world significantly. However, integrating these two theories presents immense challenges, and their interplay remains untested. Recent theoretical studies suggest that the single-photon interference covering huge space can effectively probe the interface between quantum mechanics and general relativity. We developed an alternative design using unbalanced Michelson interferometers to address this and validated its feasibility over an 8.4 km free-space channel. Using a high-brightness single-photon source based on quantum dots, we demonstrated single-photon interference along this long-distance baseline. We achieved a phase measurement precision of 16.2 mrad, which satisfied the measurement requirements for a gravitational redshift at the geosynchronous orbit by five times the standard deviation. Our results confirm the feasibility of the single-photon version of the Colella-Overhauser-Werner experiment for testing the quantum effects in curved spacetime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03259v2-abstract-full').style.display = 'none'; document.getElementById('2408.03259v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 020201 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08131">arXiv:2407.08131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08131">pdf</a>, <a href="https://arxiv.org/format/2407.08131">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.012609">10.1103/PhysRevA.110.012609 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Asynchronous measurement-device-independent quantum digital signatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bian%2C+J">Jing-Wei Bian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bing-Hong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+Y">Yuan-Mei Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+H">Hua-Lei Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zeng-Bing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08131v1-abstract-short" style="display: inline;"> Quantum digital signatures (QDSs), which distribute and measure quantum states by key generation protocols and then sign messages via classical data processing, are a key area of interest in quantum cryptography. However, the practical implementation of a QDS network has many challenges, including complex interference technical requirements, linear channel loss of quantum state transmission, and p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08131v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08131v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08131v1-abstract-full" style="display: none;"> Quantum digital signatures (QDSs), which distribute and measure quantum states by key generation protocols and then sign messages via classical data processing, are a key area of interest in quantum cryptography. However, the practical implementation of a QDS network has many challenges, including complex interference technical requirements, linear channel loss of quantum state transmission, and potential side-channel attacks on detectors. Here, we propose an asynchronous measurement-device-independent (MDI) QDS protocol with asynchronous two-photon interference strategy and one-time universal hashing method. The two-photon interference approach protects our protocol against all detector side-channel attacks and relaxes the difficulty of experiment implementation, while the asynchronous strategy effectively reduces the equivalent channel loss to its square root. Compared to previous MDI-QDS schemes, our protocol shows several orders of magnitude performance improvements and doubling of transmission distance when processing multi-bit messages. Our findings present an efficient and practical MDI-QDS scheme, paving the way for large-scale data processing with non-repudiation in quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08131v1-abstract-full').style.display = 'none'; document.getElementById('2407.08131v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures, accepted by Physical Review A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110, 012609 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07513">arXiv:2407.07513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07513">pdf</a>, <a href="https://arxiv.org/format/2407.07513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> High-rate quantum digital signatures network with integrated silicon photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+Y">Yongqiang Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bing-Hong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hua%2C+X">Xin Hua</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+X">Xiao-Yu Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+Z">Zhengeng Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+F">Feng Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Z">Zhenrong Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+H">Hua-Lei Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+X">Xi Xiao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wei%2C+K">Kejin Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07513v1-abstract-short" style="display: inline;"> The development of quantum networks is paramount towards practical and secure communications. Quantum digital signatures (QDS) offer an information-theoretically secure solution for ensuring data integrity, authenticity, and non-repudiation, rapidly growing from proof-of-concept to robust demonstrations. However, previous QDS systems relied on expensive and bulky optical equipment, limiting large-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07513v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07513v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07513v1-abstract-full" style="display: none;"> The development of quantum networks is paramount towards practical and secure communications. Quantum digital signatures (QDS) offer an information-theoretically secure solution for ensuring data integrity, authenticity, and non-repudiation, rapidly growing from proof-of-concept to robust demonstrations. However, previous QDS systems relied on expensive and bulky optical equipment, limiting large-scale deployment and reconfigurable networking construction. Here, we introduce and verify a chip-based QDS network, placing the complicated and expensive measurement devices in the central relay while each user needs only a low-cost transmitter. We demonstrate the network with a three-node setup using an integrated encoder chip and decoder chip. By developing a 1-decoy-state one-time universal hash-QDS protocol, we achieve a maximum signature rate of 0.0414 times per second for a 1 Mbit file over fiber distances up to 200 km, surpassing all current state-of-the-art QDS experiments. This study validates the feasibility of chip-based QDS, paving the way for large-scale deployment and integration with existing fiber infrastructure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07513v1-abstract-full').style.display = 'none'; document.getElementById('2407.07513v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06594">arXiv:2407.06594</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06594">pdf</a>, <a href="https://arxiv.org/ps/2407.06594">ps</a>, <a href="https://arxiv.org/format/2407.06594">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A Randomized Method for Simulating Lindblad Equations and Thermal State Preparation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+H">Hongrui Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bowen Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+J">Jianfeng Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ying%2C+L">Lexing Ying</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06594v2-abstract-short" style="display: inline;"> We study a qDRIFT-type randomized method to simulate Lindblad dynamics by decomposing its generator into an ensemble of Lindbladians, $\mathcal{L} = \sum_{a \in \mathcal{A}} \mathcal{L}_a$, where each $\mathcal{L}_a$ involves only a single jump operator. Assuming an efficient quantum simulation is available for the Hamiltonian evolution $e^{t\mathcal{L}_a}$, we implement a randomly sampled&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06594v2-abstract-full').style.display = 'inline'; document.getElementById('2407.06594v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06594v2-abstract-full" style="display: none;"> We study a qDRIFT-type randomized method to simulate Lindblad dynamics by decomposing its generator into an ensemble of Lindbladians, $\mathcal{L} = \sum_{a \in \mathcal{A}} \mathcal{L}_a$, where each $\mathcal{L}_a$ involves only a single jump operator. Assuming an efficient quantum simulation is available for the Hamiltonian evolution $e^{t\mathcal{L}_a}$, we implement a randomly sampled $\mathcal{L}_a$ at each time step according to a probability distribution $渭$ over the ensemble $\{\mathcal{L}_a\}_{a \in \mathcal{A}}$. This strategy reduces the quantum cost of simulating Lindblad dynamics, especially in quantum many-body systems with a large or even infinite number of jump operators. Our contributions are two-fold. First, we provide a detailed convergence analysis of the proposed randomized method, covering both average and typical algorithmic realizations. This analysis extends the known results for the random product formula from closed systems to open systems, ensuring rigorous performance guarantees. Second, based on the random product approximation, we derive a new quantum Gibbs sampler algorithm that utilizes jump operators sampled from a Clifford-random circuit. This generator (i) can be efficiently implemented using our randomized algorithm, and (ii) exhibits a spectral gap lower bound that depends on the spectrum of the Hamiltonian. Our results present a new instance of a class of Hamiltonians for which the thermal state can be efficiently prepared using a quantum Gibbs sampling algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06594v2-abstract-full').style.display = 'none'; document.getElementById('2407.06594v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04784">arXiv:2407.04784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04784">pdf</a>, <a href="https://arxiv.org/format/2407.04784">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Cavity QED in a High NA Resonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Shadmany%2C+D">Danial Shadmany</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kumar%2C+A">Aishwarya Kumar</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Soper%2C+A">Anna Soper</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Palm%2C+L">Lukas Palm</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+C">Chuan Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ando%2C+H">Henry Ando</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bowen Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Taneja%2C+L">Lavanya Taneja</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jaffe%2C+M">Matt Jaffe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Schuster%2C+D">David Schuster</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Simon%2C+J">Jon Simon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04784v1-abstract-short" style="display: inline;"> From fundamental studies of light-matter interaction to applications in quantum networking and sensing, cavity quantum electrodynamics (QED) provides a platform-crossing toolbox to control interactions between atoms and photons. The coherence of such interactions is determined by the product of the single-pass atomic absorption and the number of photon round-trips. Reducing the cavity loss has ena&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04784v1-abstract-full').style.display = 'inline'; document.getElementById('2407.04784v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04784v1-abstract-full" style="display: none;"> From fundamental studies of light-matter interaction to applications in quantum networking and sensing, cavity quantum electrodynamics (QED) provides a platform-crossing toolbox to control interactions between atoms and photons. The coherence of such interactions is determined by the product of the single-pass atomic absorption and the number of photon round-trips. Reducing the cavity loss has enabled resonators supporting nearly 1-million optical roundtrips at the expense of severely limited optical material choices and increased alignment sensitivity. The single-pass absorption probability can be increased through the use of near-concentric, fiber or nanophotonic cavities, which reduce the mode waists at the expense of constrained optical access and exposure to surface fields. Here we present a new high numerical-aperture, lens-based resonator that pushes the single-atom-single-photon absorption probability per round trip close to its fundamental limit by reducing the mode size at the atom below a micron while keeping the atom mm-to-cm away from all optics. This resonator provides strong light-matter coupling in a cavity where the light circulates only ~ 10 times. We load a single 87Rb atom into such a cavity, observe strong coupling, demonstrate cavity-enhanced atom detection with imaging fidelity of 99.55(6) percent and survival probability of 99.89(4) percent in 130 microseconds, and leverage this new platform for a time-resolved exploration of cavity cooling. The resonator&#39;s loss-resilience paves the way to coupling of atoms to nonlinear and adaptive optical elements and provides a minimally invasive route to readout of defect centers. Introduction of intra-cavity imaging systems will enable the creation of cavity arrays compatible with Rydberg atom array computing technologies, vastly expanding the applicability of the cavity QED toolbox. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04784v1-abstract-full').style.display = 'none'; document.getElementById('2407.04784v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03609">arXiv:2407.03609</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03609">pdf</a>, <a href="https://arxiv.org/ps/2407.03609">ps</a>, <a href="https://arxiv.org/format/2407.03609">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.052613">10.1103/PhysRevA.110.052613 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Continuous-variable quantum digital signatures that can withstand coherent attacks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yi-Fan Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+W">Wen-Bo Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bing-Hong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+H">Hua-Lei Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zeng-Bing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03609v2-abstract-short" style="display: inline;"> Quantum digital signatures (QDSs), which utilize correlated bit strings among sender and recipients, guarantee the authenticity, integrity, and nonrepudiation of classical messages based on quantum laws. Continuous-variable (CV) quantum protocol with heterodyne and homodyne measurement has obvious advantages of low-cost implementation and easy wavelength division multiplexing. However, security an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03609v2-abstract-full').style.display = 'inline'; document.getElementById('2407.03609v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03609v2-abstract-full" style="display: none;"> Quantum digital signatures (QDSs), which utilize correlated bit strings among sender and recipients, guarantee the authenticity, integrity, and nonrepudiation of classical messages based on quantum laws. Continuous-variable (CV) quantum protocol with heterodyne and homodyne measurement has obvious advantages of low-cost implementation and easy wavelength division multiplexing. However, security analyses in previous researches are limited to the proof against collective attacks in finite-size scenarios. Moreover, existing multibit CV QDS schemes have primarily focused on adapting single-bit protocols for simplicity of security proof, often sacrificing signature efficiency. Here, we introduce a CV QDS protocol designed to withstand general coherent attacks through the use of a cutting-edge fidelity test function, while achieving high signature efficiency by employing a refined one-time universal hashing signing technique. Our protocol is proved to be robust against finite-size effects and excess noise in quantum channels. In simulation, results demonstrate a significant reduction of eight orders of magnitude in signature length for a megabit message signing task compared with existing CV QDS protocols and this advantage expands as the message size grows. Our work offers a solution with enhanced security and efficiency, paving the way for large-scale deployment of CV QDSs in future quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03609v2-abstract-full').style.display = 'none'; document.getElementById('2407.03609v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110, 052613 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01429">arXiv:2407.01429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01429">pdf</a>, <a href="https://arxiv.org/format/2407.01429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Generalized quantum repeater graph states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bikun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goodenough%2C+K">Kenneth Goodenough</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rozp%C4%99dek%2C+F">Filip Rozp臋dek</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01429v1-abstract-short" style="display: inline;"> All-photonic quantum repeaters are essential for establishing long-range quantum entanglement. Within repeater nodes, reliably performing entanglement swapping is a key component of scalable quantum communication. To tackle the challenge of probabilistic Bell state measurement in linear optics, which often leads to information loss, various approaches have been proposed to ensure the loss toleranc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01429v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01429v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01429v1-abstract-full" style="display: none;"> All-photonic quantum repeaters are essential for establishing long-range quantum entanglement. Within repeater nodes, reliably performing entanglement swapping is a key component of scalable quantum communication. To tackle the challenge of probabilistic Bell state measurement in linear optics, which often leads to information loss, various approaches have been proposed to ensure the loss tolerance of distributing a single ebit. We have generalized previous work regarding repeater graph states with elaborate connectivity, enabling the efficient establishment of exploitable ebits at a finite rate with high probability. We demonstrate that our new scheme significantly outperforms the previous work with much flexibility and discuss the generation overhead of such resource states. These findings offer new insights into the scalability and reliability of loss-tolerant quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01429v1-abstract-full').style.display = 'none'; document.getElementById('2407.01429v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10715">arXiv:2406.10715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.10715">pdf</a>, <a href="https://arxiv.org/format/2406.10715">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Large-scale cluster quantum microcombs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Ze Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+K">Kangkang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yue Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+X">Xin Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+Y">Yinke Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jing%2C+B">Boxuan Jing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+F">Fengxiao Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jincheng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zhilin Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+B">Bingyan Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+Q">Qihuang Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+Q">Qiongyi He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bei-Bei Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+Q">Qi-Fan Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10715v2-abstract-short" style="display: inline;"> An optical frequency comb comprises a cluster of equally spaced, phase-locked spectral lines. Replacing these classical components with correlated quantum light gives rise to cluster quantum frequency combs, providing abundant quantum resources for measurement-based quantum computation and multi-user quantum networks. We propose and generate cluster quantum microcombs within an on-chip optical mic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10715v2-abstract-full').style.display = 'inline'; document.getElementById('2406.10715v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10715v2-abstract-full" style="display: none;"> An optical frequency comb comprises a cluster of equally spaced, phase-locked spectral lines. Replacing these classical components with correlated quantum light gives rise to cluster quantum frequency combs, providing abundant quantum resources for measurement-based quantum computation and multi-user quantum networks. We propose and generate cluster quantum microcombs within an on-chip optical microresonator driven by multi-frequency lasers. Through resonantly enhanced four-wave mixing processes, continuous-variable cluster states with 60 qumodes are deterministically created. The graph structures can be programmed into one- and two-dimensional lattices by adjusting the configurations of the pump lines, which are confirmed inseparable based on the measured covariance matrices. Our work demonstrates the largest-scale cluster states with unprecedented raw squeezing levels from a photonic chip, offering a compact and scalable platform for computational and communicational tasks with quantum advantages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10715v2-abstract-full').style.display = 'none'; document.getElementById('2406.10715v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09115">arXiv:2406.09115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.09115">pdf</a>, <a href="https://arxiv.org/ps/2406.09115">ps</a>, <a href="https://arxiv.org/format/2406.09115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> Quantum space-time Poincar茅 inequality for Lindblad dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bowen Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+J">Jianfeng Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09115v3-abstract-short" style="display: inline;"> We investigate the mixing properties of primitive Markovian Lindblad dynamics (i.e., quantum Markov semigroups), where the detailed balance is disrupted by a coherent drift term. It is known that the sharp $L^2$-exponential convergence rate of Lindblad dynamics is determined by the spectral gap of the generator. We show that incorporating a Hamiltonian component into a detailed balanced Lindbladia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09115v3-abstract-full').style.display = 'inline'; document.getElementById('2406.09115v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09115v3-abstract-full" style="display: none;"> We investigate the mixing properties of primitive Markovian Lindblad dynamics (i.e., quantum Markov semigroups), where the detailed balance is disrupted by a coherent drift term. It is known that the sharp $L^2$-exponential convergence rate of Lindblad dynamics is determined by the spectral gap of the generator. We show that incorporating a Hamiltonian component into a detailed balanced Lindbladian can generically enhance its spectral gap, thereby accelerating the mixing. In addition, we analyze the asymptotic behavior of the spectral gap for Lindblad dynamics with a large coherent contribution. However, estimating the spectral gap, particularly for a non-detailed balanced Lindbladian, presents a significant challenge. In the case of hypocoercive Lindblad dynamics, we extend the variational framework originally developed for underdamped Langevin dynamics to derive fully explicit and constructive exponential decay estimates for convergence in the noncommutative $L^2$-norm. This analysis relies on establishing a quantum analog of space-time Poincar茅 inequality. Furthermore, we provide several examples with connections to quantum noise and quantum Gibbs samplers as applications of our theoretical results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09115v3-abstract-full').style.display = 'none'; document.getElementById('2406.09115v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">revised</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02482">arXiv:2406.02482</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02482">pdf</a>, <a href="https://arxiv.org/format/2406.02482">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.205108">10.1103/PhysRevB.110.205108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-dimensional fracton topological orders with boundary Toeplitz braiding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo-Xi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yao Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+P">Peng Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02482v4-abstract-short" style="display: inline;"> In this paper, we theoretically study a class of 3D non-liquid states that show exotic boundary phenomena in the thermodynamical limit. More concretely, we focus on a class of 3D fracton topological orders formed via stacking 2D twisted \(\mathbb{Z}_N\) topologically ordered layers along \(z\)-direction. Nearby layers are coupled while maintaining translation symmetry along \(z\) direction. The ef&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02482v4-abstract-full').style.display = 'inline'; document.getElementById('2406.02482v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02482v4-abstract-full" style="display: none;"> In this paper, we theoretically study a class of 3D non-liquid states that show exotic boundary phenomena in the thermodynamical limit. More concretely, we focus on a class of 3D fracton topological orders formed via stacking 2D twisted \(\mathbb{Z}_N\) topologically ordered layers along \(z\)-direction. Nearby layers are coupled while maintaining translation symmetry along \(z\) direction. The effective field theory is given by the infinite-component Chern-Simons (iCS) field theory, with an integer-valued symmetric block-tridiagonal Toeplitz \(K\)-matrix whose size is thermodynamically large. With open boundary conditions (OBC) along \(z\), certain choice of \(K\)-matrices exhibits exotic boundary ``Toeplitz braiding&#39;&#39;, where the mutual braiding phase angle between two anyons at opposite boundaries oscillates and remains non-zero in the thermodynamic limit. In contrast, in trivial case, the mutual braiding phase angle decays exponentially to zero in the thermodynamical limit. As a necessary condition, this phenomenon requires the existence of boundary zero modes in the \(K\)-matrix spectrum under OBC. We categorize nontrivial \(K\)-matrices into two distinct types. Each type-I possesses two boundary zero modes, whereas each type-II possesses only one boundary zero mode. Interestingly, the integer-valued Hamiltonian matrix of the familiar 1D SSH can be used as a non-trivial $K$-matrix. Importantly, since large-gauge-invariance ensures integer quantized \(K\)-matrix entries, global symmetries are not needed to protect these zero modes. We also present numerical simulation as well as finite size scaling, further confirming the above analytical results. Symmetry fractionalization is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02482v4-abstract-full').style.display = 'none'; document.getElementById('2406.02482v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 205108 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20570">arXiv:2405.20570</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20570">pdf</a>, <a href="https://arxiv.org/ps/2405.20570">ps</a>, <a href="https://arxiv.org/format/2405.20570">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.527497">10.1364/OE.527497 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of subnatural-linewidth orbital angular momentum entangled biphotons using a single driving laser in hot atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+J">Jiaheng Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+C">Chengyuan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bingbing Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+Y">Ye Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jinwen Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+X">Xin Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qiu%2C+S">Shuwei Qiu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+H">Hong Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+F">Fuli Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20570v1-abstract-short" style="display: inline;"> Orbital angular momentum (OAM) entangled photon pairs with narrow bandwidths play a crucial role in the interaction of light and quantum states of matter. In this article, we demonstrate an approach for generating OAM entangled photon pairs with a narrow bandwidth by using a single driving beam in a $^{85}$Rb atomic vapor cell. This single driving beam is able to simultaneously couple two atomic t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20570v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20570v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20570v1-abstract-full" style="display: none;"> Orbital angular momentum (OAM) entangled photon pairs with narrow bandwidths play a crucial role in the interaction of light and quantum states of matter. In this article, we demonstrate an approach for generating OAM entangled photon pairs with a narrow bandwidth by using a single driving beam in a $^{85}$Rb atomic vapor cell. This single driving beam is able to simultaneously couple two atomic transitions and directly generate OAM entangled biphotons by leveraging the OAM conservation law through the spontaneous four-wave mixing (SFWM) process. The photon pairs exhibit a maximum cross-correlation function value of 27.7 and a linewidth of 4 MHz. The OAM entanglement is confirmed through quantum state tomography, revealing a fidelity of 95.7\% and a concurrence of 0.926 when compared to the maximally entangled state. Our scheme is notably simpler than previously proposed schemes and represents the first demonstration of generating subnatural-linewidth entangled photon pairs in hot atomic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20570v1-abstract-full').style.display = 'none'; document.getElementById('2405.20570v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express 32, 23026-23035 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15236">arXiv:2405.15236</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15236">pdf</a>, <a href="https://arxiv.org/format/2405.15236">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Detecting Errors in a Quantum Network with Pauli Checks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Gonzales%2C+A">Alvin Gonzales</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dilley%2C+D">Daniel Dilley</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bikun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Saleem%2C+Z+H">Zain H. Saleem</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15236v3-abstract-short" style="display: inline;"> We apply the quantum error detection scheme Pauli check sandwiching (PCS) to quantum networks by turning it into a distributed multiparty protocol. PCS is a distance 1 code and requires less resource overhead than standard quantum error correction and detection methods. We provide analytical equations for the final fidelity and postselection rate. We also introduce a recursive version of PCS for e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15236v3-abstract-full').style.display = 'inline'; document.getElementById('2405.15236v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15236v3-abstract-full" style="display: none;"> We apply the quantum error detection scheme Pauli check sandwiching (PCS) to quantum networks by turning it into a distributed multiparty protocol. PCS is a distance 1 code and requires less resource overhead than standard quantum error correction and detection methods. We provide analytical equations for the final fidelity and postselection rate. We also introduce a recursive version of PCS for entanglement purification that only scales polynomially in the resources required as a function of the number of recursions. The recursive PCS scheme generates a family of distance 2 quantum codes. Our analytical results are benchmarked against BBPSSW in comparable scenarios. We also perform simulations with noisy gates for entanglement swapping and attain substantial fidelity improvements. Lastly, we discuss various setups and graph state properties of PCS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15236v3-abstract-full').style.display = 'none'; document.getElementById('2405.15236v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15148">arXiv:2405.15148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15148">pdf</a>, <a href="https://arxiv.org/ps/2405.15148">ps</a>, <a href="https://arxiv.org/format/2405.15148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.22.064029">10.1103/PhysRevApplied.22.064029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamically corrected gates in silicon singlet-triplet spin qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Walelign%2C+H+Y">Habitamu Y. Walelign</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+X">Xinxin Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bikun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Barnes%2C+E">Edwin Barnes</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nichol%2C+J+M">John M. Nichol</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15148v3-abstract-short" style="display: inline;"> Fault-tolerant quantum computation requires low physical-qubit gate errors. Many approaches exist to reduce gate errors, including both hardware- and control-optimization strategies. Dynamically corrected gates are designed to cancel specific errors and offer the potential for high-fidelity gates, but they have yet to be implemented in singlet-triplet spin qubits in semiconductor quantum dots, due&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15148v3-abstract-full').style.display = 'inline'; document.getElementById('2405.15148v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15148v3-abstract-full" style="display: none;"> Fault-tolerant quantum computation requires low physical-qubit gate errors. Many approaches exist to reduce gate errors, including both hardware- and control-optimization strategies. Dynamically corrected gates are designed to cancel specific errors and offer the potential for high-fidelity gates, but they have yet to be implemented in singlet-triplet spin qubits in semiconductor quantum dots, due in part to the stringent control constraints in these systems. In this work, we experimentally implement dynamically corrected gates designed to mitigate hyperfine noise in a singlet-triplet qubit realized in a Si/SiGe double quantum dot. The corrected gates reduce infidelities by about a factor of three, resulting in gate fidelities above 0.99 for both identity and Hadamard gates. The gate performances depend sensitively on pulse distortions, and their specific performance reveals an unexpected distortion in our experimental setup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15148v3-abstract-full').style.display = 'none'; document.getElementById('2405.15148v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages including appendices. 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07509">arXiv:2404.07509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07509">pdf</a>, <a href="https://arxiv.org/format/2404.07509">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.optlastec.2024.111558">10.1016/j.optlastec.2024.111558 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiparameter cascaded quantum interferometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Baihong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Q">Qi-qi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhuo-zhuo Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+P">Penglong Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+C">Changhua Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+B">Boxin Yuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhai%2C+Y">Yiwei Zhai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xiaofei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07509v3-abstract-short" style="display: inline;"> We theoretically propose a multiparameter cascaded quantum interferometer in which a two-input and two-output setup is obtained by concatenating 50:50 beam splitters with $n$ independent and adjustable time delays. A general method for deriving the coincidence probability of such an interferometer is given based on the linear transformation of the matrix of beam splitters. As examples, we analyze&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07509v3-abstract-full').style.display = 'inline'; document.getElementById('2404.07509v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07509v3-abstract-full" style="display: none;"> We theoretically propose a multiparameter cascaded quantum interferometer in which a two-input and two-output setup is obtained by concatenating 50:50 beam splitters with $n$ independent and adjustable time delays. A general method for deriving the coincidence probability of such an interferometer is given based on the linear transformation of the matrix of beam splitters. As examples, we analyze the interference characteristics of one-, two- and three-parameter cascaded quantum interferometers with different frequency correlations and input states. Some typical interferograms of such interferometers are provided to reveal richer and more complicated two-photon interference phenomena. This work offers a general theoretical framework for designing versatile quantum interferometers and provides a convenient method for deriving the coincidence probabilities involved. In principle, arbitrary two-input and two-output experimental setups can be designed with the framework. Potential applications can be found in the complete spectral characterization of two-photon states, multiparameter estimation, and quantum metrology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07509v3-abstract-full').style.display = 'none'; document.getElementById('2404.07509v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures. arXiv admin note: text overlap with arXiv:2305.13734</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics &amp; Laser Technology 181 (2025) 111558 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05998">arXiv:2404.05998</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.05998">pdf</a>, <a href="https://arxiv.org/format/2404.05998">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient quantum Gibbs samplers with Kubo--Martin--Schwinger detailed balance condition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+Z">Zhiyan Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bowen Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+L">Lin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05998v5-abstract-short" style="display: inline;"> Lindblad dynamics and other open-system dynamics provide a promising path towards efficient Gibbs sampling on quantum computers. In these proposals, the Lindbladian is obtained via an algorithmic construction akin to designing an artificial thermostat in classical Monte Carlo or molecular dynamics methods, rather than treated as an approximation to weakly coupled system-bath unitary dynamics. Rece&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05998v5-abstract-full').style.display = 'inline'; document.getElementById('2404.05998v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05998v5-abstract-full" style="display: none;"> Lindblad dynamics and other open-system dynamics provide a promising path towards efficient Gibbs sampling on quantum computers. In these proposals, the Lindbladian is obtained via an algorithmic construction akin to designing an artificial thermostat in classical Monte Carlo or molecular dynamics methods, rather than treated as an approximation to weakly coupled system-bath unitary dynamics. Recently, Chen, Kastoryano, and Gily茅n (arXiv:2311.09207) introduced the first efficiently implementable Lindbladian satisfying the Kubo--Martin--Schwinger (KMS) detailed balance condition, which ensures that the Gibbs state is a fixed point of the dynamics and is applicable to non-commuting Hamiltonians. This Gibbs sampler uses a continuously parameterized set of jump operators, and the energy resolution required for implementing each jump operator depends only logarithmically on the precision and the mixing time. In this work, we build upon the structural characterization of KMS detailed balanced Lindbladians by Fagnola and Umanit脿, and develop a family of efficient quantum Gibbs samplers using a finite set of jump operators (the number can be as few as one), \re{akin to the classical Markov chain-based sampling algorithm. Compared to the existing works, our quantum Gibbs samplers have a comparable quantum simulation cost but with greater design flexibility and a much simpler implementation and error analysis.} Moreover, it encompasses the construction of Chen, Kastoryano, and Gily茅n as a special instance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05998v5-abstract-full').style.display = 'none'; document.getElementById('2404.05998v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.14476">arXiv:2403.14476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.14476">pdf</a>, <a href="https://arxiv.org/format/2403.14476">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-024-00870-5">10.1038/s41534-024-00870-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Loss-induced quantum nonreciprocity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Baijun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zuo%2C+Y">Yunlan Zuo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kuang%2C+L">Le-Man Kuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jing%2C+H">Hui Jing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lee%2C+C">Chaohong Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.14476v1-abstract-short" style="display: inline;"> Attribute to their robustness against loss and external noise, nonreciprocal photonic devices hold great promise for applications in quantum information processing. Recent advancements have demonstrated that nonreciprocal optical transmission in linear systems can be achieved through the strategic introduction of loss. However, a crucial question remains unanswered: can loss be harnessed as a reso&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14476v1-abstract-full').style.display = 'inline'; document.getElementById('2403.14476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.14476v1-abstract-full" style="display: none;"> Attribute to their robustness against loss and external noise, nonreciprocal photonic devices hold great promise for applications in quantum information processing. Recent advancements have demonstrated that nonreciprocal optical transmission in linear systems can be achieved through the strategic introduction of loss. However, a crucial question remains unanswered: can loss be harnessed as a resource for generating nonreciprocal quantum correlations? Here, we take a counterintuitive stance by engineering loss to generate a novel form of nonreciprocal quantum correlations, termed nonreciprocal photon blockade. We examine a dissipative three-cavity system comprising two nonlinear cavities and a linear cavity. The interplay of loss and nonlinearity leads to a robust nonreciprocal single- and two-photon blockade, facilitated by destructive quantum interference. Furthermore, we demonstrate the tunability of this nonreciprocal photon blockade by manipulating the relative phase between the two nonlinear cavities. Remarkably, this allows for the reversal of the direction of nonreciprocity. Our study not only sheds new light on the concept of loss-engineered quantum nonreciprocity but also opens up a unique pathway for the design of quantum nonreciprocal photonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14476v1-abstract-full').style.display = 'none'; document.getElementById('2403.14476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Inf 10, 75 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11441">arXiv:2403.11441</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.11441">pdf</a>, <a href="https://arxiv.org/format/2403.11441">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adp2877">10.1126/sciadv.adp2877 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Quantum Byzantine Agreement on a Three-User Quantum Network with Integrated Photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Jing%2C+X">Xu Jing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+C">Cheng Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Weng%2C+C">Chen-Xun Weng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bing-Hong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zhe Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+C">Chen-Quan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+J">Jie Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gu%2C+X">Xiao-Wen Gu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kong%2C+Y">Yue-Chan Kong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+T">Tang-Sheng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+H">Hua-Lei Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+D">Dong Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+B">Bin Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+L">Liang-Liang Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11441v2-abstract-short" style="display: inline;"> Quantum communication networks are crucial for both secure communication and cryptographic networked tasks. Building quantum communication networks in a scalable and cost-effective way is essential for their widespread adoption, among which a stable and miniaturized high-quality quantum light source is a key component. Here, we establish a complete polarization entanglement-based fully connected n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11441v2-abstract-full').style.display = 'inline'; document.getElementById('2403.11441v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11441v2-abstract-full" style="display: none;"> Quantum communication networks are crucial for both secure communication and cryptographic networked tasks. Building quantum communication networks in a scalable and cost-effective way is essential for their widespread adoption, among which a stable and miniaturized high-quality quantum light source is a key component. Here, we establish a complete polarization entanglement-based fully connected network, which features an ultrabright integrated Bragg reflection waveguide quantum source, managed by an untrusted service provider, and a streamlined polarization analysis module, which requires only one single-photon detector for each end user. We perform a continuously working quantum entanglement distribution and create correlated bit strings between users. Within the framework of one-time universal hashing, we provide the first experimental implementation of source-independent quantum digital signatures using imperfect keys circumventing the necessity for private amplification. More importantly, we further beat the 1/3 fault-tolerance bound in Byzantine agreement, achieving unconditional security without relying on sophisticated techniques. Our results offer an affordable and practical route for addressing consensus challenges within the emerging quantum network landscape. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11441v2-abstract-full').style.display = 'none'; document.getElementById('2403.11441v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 10, eadp2877 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10657">arXiv:2403.10657</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.10657">pdf</a>, <a href="https://arxiv.org/format/2403.10657">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.033715">10.1103/PhysRevA.110.033715 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Fisher information and polaron picture for identification of transition coupling in quantum Rabi model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ying%2C+Z">Zu-Jian Ying</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+W">Wen-Long Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo-Jian Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10657v1-abstract-short" style="display: inline;"> The quantum Rabi model (QRM) is a fundamental model for light-matter interactions. A fascinating feature of the QRM is that it manifests a quantum phase transition which is applicable for critical quantum metrology (CQM). Effective application for CQM needs the exact location of the transition point, however the conventional expression for the transition coupling is only valid in the extreme limit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10657v1-abstract-full').style.display = 'inline'; document.getElementById('2403.10657v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10657v1-abstract-full" style="display: none;"> The quantum Rabi model (QRM) is a fundamental model for light-matter interactions. A fascinating feature of the QRM is that it manifests a quantum phase transition which is applicable for critical quantum metrology (CQM). Effective application for CQM needs the exact location of the transition point, however the conventional expression for the transition coupling is only valid in the extreme limit of low frequency, while apart from zero frequency an accurate location is still lacking. In the present work we conversely use the quantum Fisher information (QFI) in the CQM to identify the transition coupling, which finds out that transition coupling indeed much deviates from the conventional one once a finite frequency is turned on. Polaron picture is applied to analytically reproduce the numeric QFI. An accurate expression for the transition coupling is obtained by the inspiration from the fractional-power-law effect of polaron frequency renormalization. From the QFI in the polaron picture we find that the transition occurs around a point where the effective velocity and the susceptibility of the single-photon absorption rate reach maximum. Our result provides an accurate reference of transition couplings for quantum metrology at non-zero frequencies. The formulation of the QFI in the polaron picture also prepares an analytic method with an accurate compensation for the parameter regime difficult to access for the numerics. Besides the integer/fractional power law analysis to extract the underlying physics of transition, the QFI/velocity relation may also add some insight in bridging the QFI and transition observables. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10657v1-abstract-full').style.display = 'none'; document.getElementById('2403.10657v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 110, 033715 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17163">arXiv:2311.17163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.17163">pdf</a>, <a href="https://arxiv.org/format/2311.17163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A Site-Resolved 2D Quantum Simulator with Hundreds of Trapped Ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+S+-">S. -A. Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y+-">Y. -K. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+J">J. Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">L. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lian%2C+W+-">W. -Q. Lian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yao%2C+R">R. Yao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+R+-">R. -Y. Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+Y+-">Y. -J. Yi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Y+-">Y. -L. Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B+-">B. -W. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+Y+-">Y. -H. Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Y+-">Y. -Z. Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+W+-">W. -X. Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qi%2C+B+-">B. -X. Qi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Z+-">Z. -C. Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Duan%2C+L+-">L. -M. Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17163v2-abstract-short" style="display: inline;"> A large qubit capacity and an individual readout capability are two crucial requirements for large-scale quantum computing and simulation. As one of the leading physical platforms for quantum information processing, the ion trap has achieved quantum simulation of tens of ions with site-resolved readout in 1D Paul trap, and that of hundreds of ions with global observables in 2D Penning trap. Howeve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17163v2-abstract-full').style.display = 'inline'; document.getElementById('2311.17163v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17163v2-abstract-full" style="display: none;"> A large qubit capacity and an individual readout capability are two crucial requirements for large-scale quantum computing and simulation. As one of the leading physical platforms for quantum information processing, the ion trap has achieved quantum simulation of tens of ions with site-resolved readout in 1D Paul trap, and that of hundreds of ions with global observables in 2D Penning trap. However, integrating these two features into a single system is still very challenging. Here we report the stable trapping of 512 ions in a 2D Wigner crystal and the sideband cooling of their transverse motion. We demonstrate the quantum simulation of long-range quantum Ising models with tunable coupling strengths and patterns, with or without frustration, using 300 ions. Enabled by the site resolution in the single-shot measurement, we observe rich spatial correlation patterns in the quasi-adiabatically prepared ground states, which allows us to verify quantum simulation results by comparing with the calculated collective phonon modes and with classical simulated annealing. We further probe the quench dynamics of the Ising model in a transverse field to demonstrate quantum sampling tasks. Our work paves the way for simulating classically intractable quantum dynamics and for running NISQ algorithms using 2D ion trap quantum simulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17163v2-abstract-full').style.display = 'none'; document.getElementById('2311.17163v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08164">arXiv:2311.08164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08164">pdf</a>, <a href="https://arxiv.org/format/2311.08164">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Full characterization of biphotons with a generalized quantum interferometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Baihong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+C">Changhua Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+B">Boxin Yuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xiaofei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dong%2C+R">Ruifang Dong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shougang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+R">Rui-Bo Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08164v3-abstract-short" style="display: inline;"> Entangled photons (biphotons) in the time-frequency degree of freedom play a crucial role in both foundational physics and advanced quantum technologies. Fully characterizing them poses a key scientific challenge. Here, we propose a theoretical approach to achieving the complete tomography of biphotons by introducing a frequency shift in one arm of the combination interferometer. Our method, a gen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08164v3-abstract-full').style.display = 'inline'; document.getElementById('2311.08164v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08164v3-abstract-full" style="display: none;"> Entangled photons (biphotons) in the time-frequency degree of freedom play a crucial role in both foundational physics and advanced quantum technologies. Fully characterizing them poses a key scientific challenge. Here, we propose a theoretical approach to achieving the complete tomography of biphotons by introducing a frequency shift in one arm of the combination interferometer. Our method, a generalized combination interferometer, enables the reconstruction of the full complex joint spectral amplitude associated with both frequency sum and difference in a single interferometer. In contrast, the generalized Hong-Ou-Mandel and N00N state interferometers only allow for the partial tomography of biphotons, either in frequency difference or frequency sum. This provides an alternative method for full characterization of an arbitrary two-photon state with exchange symmetry and holds potential for applications in high-dimensional quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08164v3-abstract-full').style.display = 'none'; document.getElementById('2311.08164v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.06435">arXiv:2311.06435</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.06435">pdf</a>, <a href="https://arxiv.org/format/2311.06435">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-43393-x">10.1038/s41467-023-43393-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optomechanical ring resonator for efficient microwave-optical frequency conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+I">I-Tung Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bingzhao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lee%2C+S">Seokhyeong Lee</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chakravarthi%2C+S">Srivatsa Chakravarthi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fu%2C+K">Kai-Mei Fu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+M">Mo Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.06435v2-abstract-short" style="display: inline;"> Phonons traveling in solid-state devices are emerging as a universal excitation that can couple to different physical systems through mechanical interaction. At microwave frequencies and in solid-state materials, phonons have a similar wavelength to optical photons, enabling them to interact efficiently with light and produce strong optomechanical effects that are highly desirable for classical an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06435v2-abstract-full').style.display = 'inline'; document.getElementById('2311.06435v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.06435v2-abstract-full" style="display: none;"> Phonons traveling in solid-state devices are emerging as a universal excitation that can couple to different physical systems through mechanical interaction. At microwave frequencies and in solid-state materials, phonons have a similar wavelength to optical photons, enabling them to interact efficiently with light and produce strong optomechanical effects that are highly desirable for classical and quantum signal transduction between optical and microwave. It becomes conceivable to build optomechanical integrated circuits (OMIC) that guide both photons and phonons and interconnect discrete photonic and phononic devices. Here, we demonstrate an OMIC including an optomechanical ring resonator (OMR), in which infrared photons and GHz phonons co-resonate to induce significantly enhanced interconversion. The OMIC is built on a hybrid platform where wide bandgap semiconductor gallium phosphide (GaP) is used as the waveguiding material and piezoelectric zinc oxide (ZnO) is used for phonon generation. The OMR features photonic and phononic quality factors of $&gt;1\times10^5$ and $3.2\times10^3$, respectively, and resonantly enhances the optomechanical conversion between photonic modes to achieve an internal conversion efficiency $畏_i=(2.1\pm0.1)%$ and a total device efficiency $畏_{tot}=0.57\times10^{-6}$ at a low acoustic pump power of 1.6 mW. The efficient conversion in OMICs enables microwave-optical transduction for many applications in quantum information processing and microwave photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06435v2-abstract-full').style.display = 'none'; document.getElementById('2311.06435v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12893">arXiv:2310.12893</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12893">pdf</a>, <a href="https://arxiv.org/format/2310.12893">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.120602">10.1103/PhysRevLett.133.120602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Blind quantum machine learning with quantum bipartite correlator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">Changhao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Boning Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Amer%2C+O">Omar Amer</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shaydulin%2C+R">Ruslan Shaydulin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chakrabarti%2C+S">Shouvanik Chakrabarti</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+G">Guoqing Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+H">Haowei Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+H">Hao Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Schoch%2C+I">Isidor Schoch</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kumar%2C+N">Niraj Kumar</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lim%2C+C">Charles Lim</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Ju Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cappellaro%2C+P">Paola Cappellaro</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pistoia%2C+M">Marco Pistoia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12893v1-abstract-short" style="display: inline;"> Distributed quantum computing is a promising computational paradigm for performing computations that are beyond the reach of individual quantum devices. Privacy in distributed quantum computing is critical for maintaining confidentiality and protecting the data in the presence of untrusted computing nodes. In this work, we introduce novel blind quantum machine learning protocols based on the quant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12893v1-abstract-full').style.display = 'inline'; document.getElementById('2310.12893v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12893v1-abstract-full" style="display: none;"> Distributed quantum computing is a promising computational paradigm for performing computations that are beyond the reach of individual quantum devices. Privacy in distributed quantum computing is critical for maintaining confidentiality and protecting the data in the presence of untrusted computing nodes. In this work, we introduce novel blind quantum machine learning protocols based on the quantum bipartite correlator algorithm. Our protocols have reduced communication overhead while preserving the privacy of data from untrusted parties. We introduce robust algorithm-specific privacy-preserving mechanisms with low computational overhead that do not require complex cryptographic techniques. We then validate the effectiveness of the proposed protocols through complexity and privacy analysis. Our findings pave the way for advancements in distributed quantum computing, opening up new possibilities for privacy-aware machine learning applications in the era of quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12893v1-abstract-full').style.display = 'none'; document.getElementById('2310.12893v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 120602 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12725">arXiv:2310.12725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12725">pdf</a>, <a href="https://arxiv.org/format/2310.12725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Spectrally resolved Franson interference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+R">Rui-Bo Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+Z">Zi-Qi Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+D">Dan Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+C">Chen-Zhi Yuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bai-Hong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">You Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shimizu%2C+R">Ryosuke Shimizu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Takeoka%2C+M">Masahiro Takeoka</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fujiwara%2C+M">Mikio Fujiwara</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sasaki%2C+M">Masahide Sasaki</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+P">Pei-Xiang Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12725v1-abstract-short" style="display: inline;"> Franson interference can be used to test the nonlocal features of energy-time entanglement and has become a standard in quantum physics. However, most of the previous Franson interference experiments were demonstrated in the time domain, and the spectral properties of Franson interference have not been fully explored. Here, we theoretically and experimentally demonstrate spectrally resolved Franso&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12725v1-abstract-full').style.display = 'inline'; document.getElementById('2310.12725v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12725v1-abstract-full" style="display: none;"> Franson interference can be used to test the nonlocal features of energy-time entanglement and has become a standard in quantum physics. However, most of the previous Franson interference experiments were demonstrated in the time domain, and the spectral properties of Franson interference have not been fully explored. Here, we theoretically and experimentally demonstrate spectrally resolved Franson interference using biphotons with different correlations, including positive correlation, negative correlation, and non-correlation. It is found that the joint spectral intensities of the biphotons can be modulated along both the signal and idler directions, which has potential applications in generating high-dimensional frequency entanglement and time-frequency grid states. This work may provide a new perspective for understanding the spectral-temporal properties of the Franson interferometer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12725v1-abstract-full').style.display = 'none'; document.getElementById('2310.12725v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+7pages, 3+1 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08108">arXiv:2310.08108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.08108">pdf</a>, <a href="https://arxiv.org/ps/2310.08108">ps</a>, <a href="https://arxiv.org/format/2310.08108">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Electrical and thermal control of Fabry-P茅rot cavities mediated by Casimir forces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ge%2C+L">Lixin Ge</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bingzhong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Luo%2C+H">Hao Luo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+K">Ke Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08108v1-abstract-short" style="display: inline;"> Dynamic tuning of optical cavities is highly desired in many photonic systems. Here, we show that Fabry-P茅rot(FP) cavities can be actively controlled by the Casimir force. The optical FP cavities consist of a gold nanoplate confronted to an electrical-connecting multi-layer substrate in a liquid environment. The gold nanoplate can be stably suspended due to the balance of repulsive and attractive&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08108v1-abstract-full').style.display = 'inline'; document.getElementById('2310.08108v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08108v1-abstract-full" style="display: none;"> Dynamic tuning of optical cavities is highly desired in many photonic systems. Here, we show that Fabry-P茅rot(FP) cavities can be actively controlled by the Casimir force. The optical FP cavities consist of a gold nanoplate confronted to an electrical-connecting multi-layer substrate in a liquid environment. The gold nanoplate can be stably suspended due to the balance of repulsive and attractive Casimir forces. Moreover, the suspension distance are modulated strongly by the electric gating or temperature of the system. As a result, we could shift the resonant wavelengthes of the cavities with tens of nanometers at optical frequencies. Finally, we analyze the influence of Brownian motion on the equilibrium distances. Due to the high Q-factor of the FP cavities, our proposed system offers a remarkable platform to experimentally investigate the thermal Casimir effect at sub-micrometer separations <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08108v1-abstract-full').style.display = 'none'; document.getElementById('2310.08108v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.08821">arXiv:2308.08821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.08821">pdf</a>, <a href="https://arxiv.org/format/2308.08821">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adk3258">10.1126/sciadv.adk3258 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental quantum e-commerce </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+X">Xiao-Yu Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bing-Hong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fu%2C+Y">Yao Fu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+H">Hua-Lei Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zeng-Bing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.08821v2-abstract-short" style="display: inline;"> E-commerce, a type of trading that occurs at a high frequency on the Internet, requires guaranteeing the integrity, authentication and non-repudiation of messages through long distance. As current e-commerce schemes are vulnerable to computational attacks, quantum cryptography, ensuring information-theoretic security against adversary&#39;s repudiation and forgery, provides a solution to this problem.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08821v2-abstract-full').style.display = 'inline'; document.getElementById('2308.08821v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.08821v2-abstract-full" style="display: none;"> E-commerce, a type of trading that occurs at a high frequency on the Internet, requires guaranteeing the integrity, authentication and non-repudiation of messages through long distance. As current e-commerce schemes are vulnerable to computational attacks, quantum cryptography, ensuring information-theoretic security against adversary&#39;s repudiation and forgery, provides a solution to this problem. However, quantum solutions generally have much lower performance compared to classical ones. Besides, when considering imperfect devices, the performance of quantum schemes exhibits a significant decline. Here, for the first time, we demonstrate the whole e-commerce process of involving the signing of a contract and payment among three parties by proposing a quantum e-commerce scheme, which shows resistance of attacks from imperfect devices. Results show that with a maximum attenuation of 25 dB among participants, our scheme can achieve a signature rate of 0.82 times per second for an agreement size of approximately 0.428 megabit. This proposed scheme presents a promising solution for providing information-theoretic security for e-commerce. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08821v2-abstract-full').style.display = 'none'; document.getElementById('2308.08821v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 10, eadk3258 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10386">arXiv:2307.10386</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.10386">pdf</a>, <a href="https://arxiv.org/format/2307.10386">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-023-38572-1">10.1038/s41598-023-38572-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the equivalence between squeezing and entanglement potential for two-mode Gaussian states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bohan Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Das%2C+A">Aritra Das</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tserkis%2C+S">Spyros Tserkis</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Narang%2C+P">Prineha Narang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lam%2C+P+K">Ping Koy Lam</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Assad%2C+S+M">Syed M. Assad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10386v1-abstract-short" style="display: inline;"> The maximum amount of entanglement achievable under passive transformations by continuous-variable states is called the entanglement potential. Recent work has demonstrated that the entanglement potential is upper-bounded by a simple function of the squeezing of formation, and that certain classes of two-mode Gaussian states can indeed saturate this bound, though saturability in the general case r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10386v1-abstract-full').style.display = 'inline'; document.getElementById('2307.10386v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10386v1-abstract-full" style="display: none;"> The maximum amount of entanglement achievable under passive transformations by continuous-variable states is called the entanglement potential. Recent work has demonstrated that the entanglement potential is upper-bounded by a simple function of the squeezing of formation, and that certain classes of two-mode Gaussian states can indeed saturate this bound, though saturability in the general case remains an open problem. In this study, we introduce a larger class of states that we prove saturates the bound, and we conjecture that all two-mode Gaussian states can be passively transformed into this class, meaning that for all two-mode Gaussian states, entanglement potential is equivalent to squeezing of formation. We provide an explicit algorithm for the passive transformations and perform extensive numerical testing of our claim, which seeks to unite the resource theories of two characteristic quantum properties of continuous-variable systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10386v1-abstract-full').style.display = 'none'; document.getElementById('2307.10386v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05305">arXiv:2307.05305</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05305">pdf</a>, <a href="https://arxiv.org/format/2307.05305">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.108.012414">10.1103/PhysRevA.108.012414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Visualization of all two-qubit states via partial-transpose-moments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Lin Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+Y">Yi Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiang%2C+H">Hua Xiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+Q">Quan Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05305v1-abstract-short" style="display: inline;"> Efficiently detecting entanglement based on measurable quantities is a basic problem for quantum information processing. Recently, the measurable quantities called partial-transpose (PT)-moments have been proposed to detect and characterize entanglement. In the recently published paper [L. Zhang \emph{et al.}, \href{https://doi.org/10.1002/andp.202200289}{Ann. Phys.(Berlin) \textbf{534}, 2200289 (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05305v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05305v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05305v1-abstract-full" style="display: none;"> Efficiently detecting entanglement based on measurable quantities is a basic problem for quantum information processing. Recently, the measurable quantities called partial-transpose (PT)-moments have been proposed to detect and characterize entanglement. In the recently published paper [L. Zhang \emph{et al.}, \href{https://doi.org/10.1002/andp.202200289}{Ann. Phys.(Berlin) \textbf{534}, 2200289 (2022)}], we have already identified the 2-dimensional (2D) region, comprised of the second and third PT-moments, corresponding to two-qubit entangled states, and described the whole region for all two-qubit states. In the present paper, we visualize the 3D region corresponding to all two-qubit states by further involving the fourth PT-moment (the last one for two-qubit states). The characterization of this 3D region can finally be achieved by optimizing some polynomials. Furthermore, we identify the dividing surface which separates the two parts of the whole 3D region corresponding to entangled and separable states respectively. Due to the measurability of PT-moments, we obtain a complete and operational criterion for the detection of two-qubit entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05305v1-abstract-full').style.display = 'none'; document.getElementById('2307.05305v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, LaTeX, 8 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 108, 012414 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01987">arXiv:2307.01987</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01987">pdf</a>, <a href="https://arxiv.org/format/2307.01987">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1751-8121/ace409">10.1088/1751-8121/ace409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tetrahedron genuine entanglement measure of four-qubit systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+M">Meng-Li Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+Z">Zhi-Xiang Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fei%2C+S">Shao-Ming Fei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01987v1-abstract-short" style="display: inline;"> Quantifying genuine entanglement is a key task in quantum information theory. We study the quantification of genuine multipartite entanglement for four-qubit systems. Based on the concurrence of nine different classes of four-qubit states, with each class being closed under stochastic local operation and classical communication, we construct a concurrence tetrahedron. Proper genuine four-qubit ent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01987v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01987v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01987v1-abstract-full" style="display: none;"> Quantifying genuine entanglement is a key task in quantum information theory. We study the quantification of genuine multipartite entanglement for four-qubit systems. Based on the concurrence of nine different classes of four-qubit states, with each class being closed under stochastic local operation and classical communication, we construct a concurrence tetrahedron. Proper genuine four-qubit entanglement measure is presented by using the volume of the concurrence tetrahedron. For non genuine entangled pure states, the four-qubit entanglement measure classifies the bi-separable entanglement. We show that the concurrence tetrahedron based measure of genuine four-qubit entanglement is not equivalent to the genuine four-partite entanglement concurrence. We illustrate the advantages of the concurrence tetrahedron by detailed examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01987v1-abstract-full').style.display = 'none'; document.getElementById('2307.01987v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. A: Math. Theor. 56(2023)315302 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17428">arXiv:2306.17428</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.17428">pdf</a>, <a href="https://arxiv.org/format/2306.17428">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.19.064083">10.1103/PhysRevApplied.19.064083 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pure-state photon-pair source with a long coherence time for large-scale quantum information processing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yu-Huai Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+Y">Yuan Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+J">Juan Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+C">Cheng-Zhi Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17428v1-abstract-short" style="display: inline;"> The Hong-Ou-Mandel interference between independent photons plays a pivotal role in the large-scale quantum networks involving distant nodes. Photons need to work in a pure state for indistinguishability to reach high-quality interference. Also, they need to have a sufficiently long coherence time to reduce the time synchronization requirements in practical application. In this paper, we discuss a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17428v1-abstract-full').style.display = 'inline'; document.getElementById('2306.17428v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17428v1-abstract-full" style="display: none;"> The Hong-Ou-Mandel interference between independent photons plays a pivotal role in the large-scale quantum networks involving distant nodes. Photons need to work in a pure state for indistinguishability to reach high-quality interference. Also, they need to have a sufficiently long coherence time to reduce the time synchronization requirements in practical application. In this paper, we discuss a scheme for generating a pure-state photon-pair source with a long coherence time in periodically poled potassium titanyl phosphate (PPKTP) crystals. By selecting the appropriate pump laser and filter, we could simultaneously eliminate the frequency correlation of the parametric photons while achieving a long coherence time. We experimentally developed this pure-state photon-pair source of 780 nm on PPKTP crystals pumped by a 390 nm pulsed laser. The source provided a coherence time of tens of picoseconds, and it showed to have the potential to be applied in long-distance quantum interference. Furthermore, we experimentally demonstrated the Hong-Ou-Mandel (HOM) interference between two photon sources with visibility exceeding the classical limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17428v1-abstract-full').style.display = 'none'; document.getElementById('2306.17428v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 19, 064083 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11973">arXiv:2306.11973</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11973">pdf</a>, <a href="https://arxiv.org/format/2306.11973">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.rinp.2023.106611">10.1016/j.rinp.2023.106611 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parameterized coherence measure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+M">Meng-Li Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+Z">Zhi-Xiang Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+J">Jin-Min Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fei%2C+S">Shao-Ming Fei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11973v1-abstract-short" style="display: inline;"> Quantifying coherence is an essential endeavor for both quantum mechanical foundations and quantum technologies. We present a bona fide measure of quantum coherence by utilizing the Tsallis relative operator $(伪, 尾)$-entropy. We first prove that the proposed coherence measure fulfills all the criteria of a well defined coherence measure, including the strong monotonicity in the resource theories o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11973v1-abstract-full').style.display = 'inline'; document.getElementById('2306.11973v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11973v1-abstract-full" style="display: none;"> Quantifying coherence is an essential endeavor for both quantum mechanical foundations and quantum technologies. We present a bona fide measure of quantum coherence by utilizing the Tsallis relative operator $(伪, 尾)$-entropy. We first prove that the proposed coherence measure fulfills all the criteria of a well defined coherence measure, including the strong monotonicity in the resource theories of quantum coherence. We then study the ordering of the Tsallis relative operator $(伪, 尾)$-entropy of coherence, Tsallis relative $伪$-entropies of coherence, R茅nyi $伪$-entropy of coherence and $l_{1}$ norm of coherence for both pure and mixed qubit states. This provides a new method for defining new coherence measure and entanglement measure, and also provides a new idea for further study of quantum coherence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11973v1-abstract-full').style.display = 'none'; document.getElementById('2306.11973v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Results in Physics,51,106611 (2023) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+B&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10