CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 114 results for author: <span class="mathjax">Peng, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Peng%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Peng, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Peng%2C+C&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Peng, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Peng%2C+C&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Peng%2C+C&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Peng%2C+C&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Peng%2C+C&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12806">arXiv:2411.12806</a> <span> [<a href="https://arxiv.org/pdf/2411.12806">pdf</a>, <a href="https://arxiv.org/format/2411.12806">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> D-commuting SYK model: building quantum chaos from integrable blocks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gao%2C+P">Ping Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Han Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12806v1-abstract-short" style="display: inline;"> We construct a new family of quantum chaotic models by combining multiple copies of integrable commuting SYK models. As each copy of the commuting SYK model does not commute with others, this construction breaks the integrability of each commuting SYK and the family of models demonstrates the emergence of quantum chaos. We study the spectrum of this model analytically in the double-scaled limit. A… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12806v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12806v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12806v1-abstract-full" style="display: none;"> We construct a new family of quantum chaotic models by combining multiple copies of integrable commuting SYK models. As each copy of the commuting SYK model does not commute with others, this construction breaks the integrability of each commuting SYK and the family of models demonstrates the emergence of quantum chaos. We study the spectrum of this model analytically in the double-scaled limit. As the number of copies tends to infinity, the spectrum becomes compact and equivalent to the regular SYK model. For finite $d$ copies, the spectrum is close to the regular SYK model in UV but has an exponential tail $e^{E/T_c}$ in the IR. We identify the reciprocal of the exponent in the tail as a critical temperature $T_c$, above which the model should be quantum chaotic. $T_c$ monotonically decreases as $d$ increases, which expands the chaotic regime over the non-chaotic regime. We propose the existence of a new phase around $T_c$, and the dynamics should be very different in two phases. We further carry out numeric analysis at finite $d$, which supports our proposal. Given any finite dimensional local Hamiltonian, by decomposing it into $d$ groups, in which all terms in one group commute with each other but terms from different groups may not, our analysis can give an estimate of the critical temperature for quantum chaos based on the decomposition. We also comment on the implication of the critical temperature to future quantum simulations of quantum chaos and quantum gravity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12806v1-abstract-full').style.display = 'none'; document.getElementById('2411.12806v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages plus appendix, 16 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18826">arXiv:2410.18826</a> <span> [<a href="https://arxiv.org/pdf/2410.18826">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tetragonal BaCoO$_3$: A Co$^{4+}$ Ferromagnetic Mott Insulator with Inverted Spin Crossover </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+M">Mingyu Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Haozhe Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Koirala%2C+K+P">Krishna Prasad Koirala</a>, <a href="/search/cond-mat?searchtype=author&query=Melnick%2C+C">Corey Melnick</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Gonz%C3%A1lez-Rivas%2C+M+U">Mario U. Gonz谩lez-Rivas</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+J">Jiaqi Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Le Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Engelhard%2C+M+H">Mark H. Engelhard</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+Y">Yingge Du</a>, <a href="/search/cond-mat?searchtype=author&query=Ke%2C+X">Xianglin Ke</a>, <a href="/search/cond-mat?searchtype=author&query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/cond-mat?searchtype=author&query=Hallas%2C+A+M">Alannah M. Hallas</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jie Li</a>, <a href="/search/cond-mat?searchtype=author&query=Kotliar%2C+G">Gabriel Kotliar</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+W">Weiwei Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18826v1-abstract-short" style="display: inline;"> The interplay between crystal electric field splitting of d states and Hund's rule exchange energy in cobalt-based perovskites offers a promising avenue for inducing spin-state transitions. This study reports a new body-centered tetragonal (BCT) phase of BaCoO$_3$ (BCT-BaCoO$_3$), synthesized under high pressure (15 GPa) and high temperature (1200 掳C) conditions. BCT-BaCoO$_3$ adopts a double pero… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18826v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18826v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18826v1-abstract-full" style="display: none;"> The interplay between crystal electric field splitting of d states and Hund's rule exchange energy in cobalt-based perovskites offers a promising avenue for inducing spin-state transitions. This study reports a new body-centered tetragonal (BCT) phase of BaCoO$_3$ (BCT-BaCoO$_3$), synthesized under high pressure (15 GPa) and high temperature (1200 掳C) conditions. BCT-BaCoO$_3$ adopts a double perovskite structure of EuTiO$_3$-type (space group I4/mcm, #140), confirmed by high-resolution scanning transmission electron microscopy. X-ray photoelectron spectroscopy reveals a rare Co$^{4+}$ valence state. Magnetization and X-ray absorption measurements reveal a low-spin to high-spin transition that takes place between 200 and 300 K. While spin crossovers are relatively common among common oxides, the one observed in BCT-BaCoO$_3$ is remarkable in that it proceeds in the opposite direction from conventional spin transitions. BCT-BaCoO$_3$ exhibits a low-spin (S = 1/2) state at high temperatures and transitions to a high-spin (S = 5/2) state at low temperatures. Within the high-spin state, hard ferromagnetic order onsets at T$_C$ = 107 K. Electrical resistivity indicates weak magnetoresistance and insulating behavior. Overall, BCT-BaCoO$_3$ presents an exceptional model for the exploration of spin-state transitions and the study of Co spin states in cobalt-based perovskites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18826v1-abstract-full').style.display = 'none'; document.getElementById('2410.18826v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22+14 pages, 5+7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05578">arXiv:2408.05578</a> <span> [<a href="https://arxiv.org/pdf/2408.05578">pdf</a>, <a href="https://arxiv.org/format/2408.05578">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Order by projection in single-band Hubbard model: a DMRG study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shuyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Y">Yue Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Shastry%2C+B+S">B. Sriram Shastry</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+C">Chunjing Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05578v1-abstract-short" style="display: inline;"> In a Fermi system near or at half-filling, a specific superconducting pairing channel, if not explicitly included in the Hamiltonian, can be boosted by suppressing a competing pairing channel; this is exemplified by the enhancement of extended $s$-wave correlations upon suppressing $s$-wave Cooper pairing. This phenomenon, originally found by the use of generalized uncertainty relations is referre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05578v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05578v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05578v1-abstract-full" style="display: none;"> In a Fermi system near or at half-filling, a specific superconducting pairing channel, if not explicitly included in the Hamiltonian, can be boosted by suppressing a competing pairing channel; this is exemplified by the enhancement of extended $s$-wave correlations upon suppressing $s$-wave Cooper pairing. This phenomenon, originally found by the use of generalized uncertainty relations is referred to as \emph{order by projection}. The case of zero on-site Coulomb interaction in the thermodynamic limit, confirms this mechanism through the analytical solution. In this study, we go further and systematically investigate this mechanism for a strongly correlated fermionic Hubbard model, now with finite on-site interaction, on a square lattice with an extended set of hopping parameters. We explore the behaviors of different pairing channels when one of them is suppressed, utilizing density matrix renormalization group calculations. Our findings provide numerical evidence supporting the existence of \emph{order by projection} in the strongly correlated system we studied. We also investigate the effect of the strength of Hubbard $U$, next-nearest neighbor $t'$, hole-doping, as well as finite-size scaling approaching the thermodynamic limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05578v1-abstract-full').style.display = 'none'; document.getElementById('2408.05578v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04533">arXiv:2408.04533</a> <span> [<a href="https://arxiv.org/pdf/2408.04533">pdf</a>, <a href="https://arxiv.org/ps/2408.04533">ps</a>, <a href="https://arxiv.org/format/2408.04533">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Dynamical scaling behavior of the two-dimensional random singlet state in the random $Q$ model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Chen Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04533v1-abstract-short" style="display: inline;"> In this work, we study the scaling relation of energy and length scales in the 2D random-singlet (RS) state of the random $Q$ model. To investigate the intrinsic energy scale of the spinon subsystem arising from the model, we develop a constrained subspace update algorithm within the framework of the stochastic series expansion method (SSE) to extract the singlet-triplet gap of the system. The 2D… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04533v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04533v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04533v1-abstract-full" style="display: none;"> In this work, we study the scaling relation of energy and length scales in the 2D random-singlet (RS) state of the random $Q$ model. To investigate the intrinsic energy scale of the spinon subsystem arising from the model, we develop a constrained subspace update algorithm within the framework of the stochastic series expansion method (SSE) to extract the singlet-triplet gap of the system. The 2D RS state exhibits scaling behavior similar to the infinite randomness fixed point (IRFP), at least within the length scales that we simulate. Furthermore, by rescaling the system size according to the strength of randomness, we observe that the data for the excitation gap and the width of the gap distribution collapse onto a single curve. This implies that the model with different strengths of randomness may correspond to the same fixed point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04533v1-abstract-full').style.display = 'none'; document.getElementById('2408.04533v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00276">arXiv:2408.00276</a> <span> [<a href="https://arxiv.org/pdf/2408.00276">pdf</a>, <a href="https://arxiv.org/format/2408.00276">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Provably Efficient Adiabatic Learning for Quantum-Classical Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Changnan Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jin-Peng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chern%2C+G">Gia-Wei Chern</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+D">Di Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00276v2-abstract-short" style="display: inline;"> Quantum-classical hybrid dynamics is crucial for accurately simulating complex systems where both quantum and classical behaviors need to be considered. However, coupling between classical and quantum degrees of freedom and the exponential growth of the Hilbert space present significant challenges. Current machine learning approaches for predicting such dynamics, while promising, remain unknown in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00276v2-abstract-full').style.display = 'inline'; document.getElementById('2408.00276v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00276v2-abstract-full" style="display: none;"> Quantum-classical hybrid dynamics is crucial for accurately simulating complex systems where both quantum and classical behaviors need to be considered. However, coupling between classical and quantum degrees of freedom and the exponential growth of the Hilbert space present significant challenges. Current machine learning approaches for predicting such dynamics, while promising, remain unknown in their error bounds, sample complexity, and generalizability. In this work, we establish a generic theoretical framework for analyzing quantum-classical adiabatic dynamics with learning algorithms. Based on quantum information theory, we develop a provably efficient adiabatic learning (PEAL) algorithm with logarithmic system size sampling complexity and favorable time scaling properties. We benchmark PEAL on the Holstein model, and demonstrate its accuracy in predicting single-path dynamics and ensemble dynamics observables as well as transfer learning over a family of Hamiltonians. Our framework and algorithm open up new avenues for reliable and efficient learning of quantum-classical dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00276v2-abstract-full').style.display = 'none'; document.getElementById('2408.00276v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03740">arXiv:2406.03740</a> <span> [<a href="https://arxiv.org/pdf/2406.03740">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Correlated Electronic Structure and Incipient Flat Bands of the Kagome Superconductor CsCr3Sb5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yidian Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+X">Xian Du</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+S">Siqi Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W">Wenxuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+K">Kaiyi Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Y">Yinqi Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Senyao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Houke Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jieyi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yiheng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yilin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+G">Guanghan Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Lexian Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03740v1-abstract-short" style="display: inline;"> Kagome materials exhibit many novel phenomena emerging from the interplay between lattice geometry, electronic structure, and topology. A prime example is the vanadium-based kagome materials AV3Sb5 (A = K, Rb, and Cs) with superconductivity and unconventional charge-density wave (CDW). More interestingly, the substitution of vanadium by chromium further introduces magnetism and enhances the correl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03740v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03740v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03740v1-abstract-full" style="display: none;"> Kagome materials exhibit many novel phenomena emerging from the interplay between lattice geometry, electronic structure, and topology. A prime example is the vanadium-based kagome materials AV3Sb5 (A = K, Rb, and Cs) with superconductivity and unconventional charge-density wave (CDW). More interestingly, the substitution of vanadium by chromium further introduces magnetism and enhances the correlation effect in CsCr3Sb5 which likewise exhibits superconductivity under pressure and competing density-wave state. Here we systematically investigate the electronic structure of CsCr3Sb5 using high-resolution angle-resolved photoemission spectroscopy (APRES) and ab-initio calculations. Overall, the measured electronic structure agrees with the theoretical calculation. Remarkably, Cr 3d orbitals exhibit incoherent electronic states and contribute to incipient flat bands close to the Fermi level. The electronic structure shows a minor change across the magnetic transition at 55 K, suggesting a weak interplay between the local magnetic moment and itinerant electrons. Furthermore, we reveal a drastic enhancement of the electron scattering rate across the magnetic transition, which is relevant to the semiconducting-like transport property of the system at high temperatures. Our results suggest that CsCr3Sb5 is a strongly correlated Hund's metal with incipient flat bands near the Fermi level, which provides an electronic basis for understanding its novel properties in comparison to the non-magnetic and weakly correlated AV3Sb5. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03740v1-abstract-full').style.display = 'none'; document.getElementById('2406.03740v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19517">arXiv:2405.19517</a> <span> [<a href="https://arxiv.org/pdf/2405.19517">pdf</a>, <a href="https://arxiv.org/format/2405.19517">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High-pressure characterization of Ag$_3$AuTe$_2$: Implications for strain-induced band tuning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Won%2C+J">Juyeon Won</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Kumar%2C+R">Ravhi Kumar</a>, <a href="/search/cond-mat?searchtype=author&query=Gebre%2C+M+S">Mebatsion S. Gebre</a>, <a href="/search/cond-mat?searchtype=author&query=Popov%2C+D">Dmitry Popov</a>, <a href="/search/cond-mat?searchtype=author&query=Hemley%2C+R+J">Russell J. Hemley</a>, <a href="/search/cond-mat?searchtype=author&query=Bradlyn%2C+B">Barry Bradlyn</a>, <a href="/search/cond-mat?searchtype=author&query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&query=Shoemaker%2C+D+P">Daniel P. Shoemaker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19517v2-abstract-short" style="display: inline;"> Recent band structure calculations have suggested the potential for band tuning in a chiral semiconductor, Ag$_3$AuTe$_2$, to zero upon application of negative strain. In this study, we report on the synthesis of polycrystalline Ag$_3$AuTe$_2$ and investigate its transport, optical properties, and pressure compatibility. Transport measurements reveal the semiconducting behavior of Ag$_3$AuTe$_2$ w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19517v2-abstract-full').style.display = 'inline'; document.getElementById('2405.19517v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19517v2-abstract-full" style="display: none;"> Recent band structure calculations have suggested the potential for band tuning in a chiral semiconductor, Ag$_3$AuTe$_2$, to zero upon application of negative strain. In this study, we report on the synthesis of polycrystalline Ag$_3$AuTe$_2$ and investigate its transport, optical properties, and pressure compatibility. Transport measurements reveal the semiconducting behavior of Ag$_3$AuTe$_2$ with high resistivity and an activation energy $E_a$ of 0.2 eV. The optical band gap determined by diffuse reflectance measurements is about three times wider than the experimental $E_a$. Despite the difference, both experimental gaps fall within the range of predicted band gaps by our first-principles DFT calculations employing the PBE and mBJ methods. Furthermore, our DFT simulations predict a progressive narrowing of the band gap under compressive strain, with a full closure expected at a strain of -4% relative to the lattice parameter. To evaluate the feasibility of gap tunability at such substantial strain, the high-pressure behavior of Ag$_3$AuTe$_2$ was investigated by $in$ $situ$ high-pressure X-ray diffraction up to 47 GPa. Mechanical compression beyond 4% resulted in a pressure-induced structural transformation, indicating the possibilities of substantial gap modulation under extreme compression conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19517v2-abstract-full').style.display = 'none'; document.getElementById('2405.19517v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15261">arXiv:2405.15261</a> <span> [<a href="https://arxiv.org/pdf/2405.15261">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jallcom.2023.170685">10.1016/j.jallcom.2023.170685 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric Polarization and Magnetic Properties of (NH$_4$)$_{1-x}$K$_x$I (x = 0.05-0.17) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y+Y">Yi Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+L">Lei Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+M+M">Miao Miao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C+X">Chu Xin Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Yen%2C+F">Fei Yen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15261v1-abstract-short" style="display: inline;"> While all of the polymorphs of pure NH$_4$I and KI are non-polar, we identify that (NH$_4$)$_{0.95}$K$_{0.05}$I is ferroelectric and (NH$_4$)$_{0.87}$K$_{0.13}$I and (NH$_4$)$_{0.83}$K$_{0.17}$I are pyroelectric through measurements of their pyroelectric current and complex dielectric constant. The order to disorder phase transitions occur near 245 K. Magnetic susceptibility measurements indicate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15261v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15261v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15261v1-abstract-full" style="display: none;"> While all of the polymorphs of pure NH$_4$I and KI are non-polar, we identify that (NH$_4$)$_{0.95}$K$_{0.05}$I is ferroelectric and (NH$_4$)$_{0.87}$K$_{0.13}$I and (NH$_4$)$_{0.83}$K$_{0.17}$I are pyroelectric through measurements of their pyroelectric current and complex dielectric constant. The order to disorder phase transitions occur near 245 K. Magnetic susceptibility measurements indicate that the proton orbitals of the NH$_4$$^+$ continue to become ordered in the ground state in the (NH$_4$)$_{1-x}$K$_x$I system up to x <= 0.17. The polar phases are proposed to stem from K$^+$ ions disrupting the symmetry of proton-orbital-lattice interactions between the NH$_4$$^+$ and I$^-$ ions. Our work introduces a new pathway for the ordered phases of ammonium-based compounds to potentially become ferroelectric. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15261v1-abstract-full').style.display = 'none'; document.getElementById('2405.15261v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Alloys and Compounds 960, 170685 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10230">arXiv:2405.10230</a> <span> [<a href="https://arxiv.org/pdf/2405.10230">pdf</a>, <a href="https://arxiv.org/format/2405.10230">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Universal entanglement correction induced by relevant deformations at the quantum critical point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+R">Rui-Zhen Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Chen Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10230v1-abstract-short" style="display: inline;"> Local relevant deformations are important tool to study universal properties of quantum critical points. We investigate the effect of small relevant deformations on the bi-partite entanglement entropy at the quantum critical points. Within the quantum critical region, a universal power-law correction in the entanglement entropy induced by the relevant operator is found in both one- and two-dimensi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10230v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10230v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10230v1-abstract-full" style="display: none;"> Local relevant deformations are important tool to study universal properties of quantum critical points. We investigate the effect of small relevant deformations on the bi-partite entanglement entropy at the quantum critical points. Within the quantum critical region, a universal power-law correction in the entanglement entropy induced by the relevant operator is found in both one- and two-dimensional critical lattice models. The exponent of the power-law correction term is determined by the scaling dimension of the relevant operator. Based on numerical simulations and scaling theory argument, it is conjectured that such a universal power-law correction in the entanglement entropy is universal for Lorentz invariant quantum critical points. Without Lorentz invariance, it is found the exponent in the power-law correction term does not fit in with the scaling argument in models with a dynamical exponent z=2 in two dimension. This may be because the relevant operator added in the lattice model corresponds to complicated operators in the corresponding conformal field theory. Our study provides a different perspective to extract universal information of quantum critical points. We expect it would be useful to detect unique properties of topological quantum phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10230v1-abstract-full').style.display = 'none'; document.getElementById('2405.10230v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09759">arXiv:2405.09759</a> <span> [<a href="https://arxiv.org/pdf/2405.09759">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/d1tc04718c">10.1039/d1tc04718c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ferroelectricity Driven by Orbital Resonance of Protons in CH$_3$NH$_3$Cl and CH$_3$NH$_3$Br </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C+X">Chu Xin Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Meng%2C+L">Lei Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y+Y">Yi Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Xing%2C+T+T">Tian Tian Xing</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+M+M">Miao Miao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+P">Peng Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Yen%2C+F">Fei Yen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09759v1-abstract-short" style="display: inline;"> The $尾$ and $纬$ phases of methylammonium chloride CH$_3$NH$_3$Cl and methylammonium bromide CH$_3$NH$_3$Br are identified to be ferroelectric $via$ pyroelectric current and dielectric constant measurements. The magnetic susceptibility also exhibits pronounced discontinuities at the Curie temperatures. We attribute the origin of spontaneous polarization to the emergence of two groups of proton orbi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09759v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09759v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09759v1-abstract-full" style="display: none;"> The $尾$ and $纬$ phases of methylammonium chloride CH$_3$NH$_3$Cl and methylammonium bromide CH$_3$NH$_3$Br are identified to be ferroelectric $via$ pyroelectric current and dielectric constant measurements. The magnetic susceptibility also exhibits pronounced discontinuities at the Curie temperatures. We attribute the origin of spontaneous polarization to the emergence of two groups of proton orbital magnetic moments from the uncorrelated motion of the CH$_3$ and NH$_3$ groups in the $尾$ and $纬$ phases. The two inequivalent frameworks of intermolecular orbital resonances interact with each other to distort the lattice in a non-centrosymmetric fashion. Our findings indicate that the structural instabilities in molecular frameworks are magnetic in origin as well as provide a new pathway toward uncovering new organic ferroelectrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09759v1-abstract-full').style.display = 'none'; document.getElementById('2405.09759v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Mater. Chem. C, 10, 1334-1338 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09094">arXiv:2405.09094</a> <span> [<a href="https://arxiv.org/pdf/2405.09094">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scriptamat.2022.115229">10.1016/j.scriptamat.2022.115229 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic interactions based on proton orbital motion in CH$_3$NH$_3$PbI$_3$ and CH$_3$NH$_3$PbBr$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Meng%2C+L">Lei Meng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+M+M">Miao Miao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y+Y">Yi Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C+X">Chu Xin Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yang Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Xing%2C+T+T">Tian Tian Xing</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+P">Peng Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Yen%2C+F">Fei Yen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09094v1-abstract-short" style="display: inline;"> The microscopic origin of the remarkable optoelectronic properties of one of the most studied contemporary materials remains unclear. Here, we identify the existence of magnetic interactions between intermolecular proton orbitals in CH$_3$NH$_3$PbI$_3$ and CH$_3$NH$_3$PbBr$_3$. In particular, a unique sharp drop and a pronounced step-up discontinuity in the magnetic susceptibility at the tetragona… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09094v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09094v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09094v1-abstract-full" style="display: none;"> The microscopic origin of the remarkable optoelectronic properties of one of the most studied contemporary materials remains unclear. Here, we identify the existence of magnetic interactions between intermolecular proton orbitals in CH$_3$NH$_3$PbI$_3$ and CH$_3$NH$_3$PbBr$_3$. In particular, a unique sharp drop and a pronounced step-up discontinuity in the magnetic susceptibility at the tetragonal-to-cubic phase transitions are identified in CH$_3$NH$_3$PbI$_3$ and CH$_3$NH$_3$PbBr$_3$, respectively. The magnetic interactions in the orthorhombic and tetragonal phases are dependent on thermal history and lattice orientation while nearly independent of the applied external magnetic field. In CH$_3$NH$_3$PbBr$_3$, the CH$_3$ and NH$_3$$^+$ components reorient in an uncorrelated fashion resulting the cubic phase to also exhibit magnetic anisotropy. Our findings provide a potential link connecting the highly light-absorbing CH$_3$NH$_3$$^+$ and the exceptional properties of the charge carriers of the inorganic framework in hybrid perovskite solar cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09094v1-abstract-full').style.display = 'none'; document.getElementById('2405.09094v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript + Supplementary Material file (17 + 6 pages, 4 + 2 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scripta Mater. 226, 115229 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03212">arXiv:2405.03212</a> <span> [<a href="https://arxiv.org/pdf/2405.03212">pdf</a>, <a href="https://arxiv.org/format/2405.03212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Using magnetic dynamics to measure the spin gap in a candidate Kitaev material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+X">Xinyi Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Jang%2C+H">Hoyoung Jang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+W">Wenjie Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+X">Xianghong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Yue%2C+L">Li Yue</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+B">Byungjune Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+S">Sang-Youn Park</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+M">Minseok Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+H">Hyeong-Do Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+X">Xinqiang Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+T">Tao Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Nanlin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Turner%2C+J+J">Joshua J. Turner</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Y">Yingying Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03212v1-abstract-short" style="display: inline;"> Materials potentially hosting Kitaev spin-liquid states are considered crucial for realizing topological quantum computing. However, the intricate nature of spin interactions within these materials complicates the precise measurement of low-energy spin excitations indicative of fractionalized excitations. Using Na$_{2}$Co$_2$TeO$_{6}$ as an example, we study these low-energy spin excitations using… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03212v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03212v1-abstract-full" style="display: none;"> Materials potentially hosting Kitaev spin-liquid states are considered crucial for realizing topological quantum computing. However, the intricate nature of spin interactions within these materials complicates the precise measurement of low-energy spin excitations indicative of fractionalized excitations. Using Na$_{2}$Co$_2$TeO$_{6}$ as an example, we study these low-energy spin excitations using the time-resolved resonant elastic x-ray scattering (tr-REXS). Our observations unveil remarkably slow spin dynamics at the magnetic peak, whose recovery timescale is several nanoseconds. This timescale aligns with the extrapolated spin gap of $\sim$ 1 $渭$eV, obtained by density matrix renormalization group (DMRG) simulations in the thermodynamic limit. The consistency demonstrates the efficacy of tr-REXS in discerning low-energy spin gaps inaccessible to conventional spectroscopic techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03212v1-abstract-full').style.display = 'none'; document.getElementById('2405.03212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16239">arXiv:2404.16239</a> <span> [<a href="https://arxiv.org/pdf/2404.16239">pdf</a>, <a href="https://arxiv.org/format/2404.16239">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Synthesis of layered gold tellurides AuSbTe and Au$_2$Te$_3$ and their semiconducting and metallic behavior </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pappas%2C+E+A">Emma A. Pappas</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Busch%2C+R+T">Robert T. Busch</a>, <a href="/search/cond-mat?searchtype=author&query=Zuo%2C+J">Jian-Min Zuo</a>, <a href="/search/cond-mat?searchtype=author&query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&query=Shoemaker%2C+D+P">Daniel P. Shoemaker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16239v2-abstract-short" style="display: inline;"> Previous studies on natural samples of pampaloite (AuSbTe) revealed the crystal structure of a potentially cleavable and/or exfoliable material, while studies on natural and synthetic montbrayite (Sb-containing Au$_2$Te$_3$) claimed various chemical compositions for this low symmetry compound. Few investigations of synthetic samples have been reported for both materials, leaving much of their chem… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16239v2-abstract-full').style.display = 'inline'; document.getElementById('2404.16239v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16239v2-abstract-full" style="display: none;"> Previous studies on natural samples of pampaloite (AuSbTe) revealed the crystal structure of a potentially cleavable and/or exfoliable material, while studies on natural and synthetic montbrayite (Sb-containing Au$_2$Te$_3$) claimed various chemical compositions for this low symmetry compound. Few investigations of synthetic samples have been reported for both materials, leaving much of their chemical, thermal and electronic characteristics unknown. Here, we investigate the stability, electronic properties and synthesis of the gold antimony tellurides AuSbTe and Au$_{1.9}$Sb$_{0.46}$Te$_{2.64}$ (montbrayite). Differential thermal analysis and $\textit{in situ}$ powder x-ray diffraction revealed that AuSbTe is incongruently melting, while Au$_{1.9}$Sb$_{0.46}$Te$_{2.64}$ is congruently melting. Calculations of the band structures and four-point resistivity measurements showed that AuSbTe is a semiconductor and Au$_{1.9}$Sb$_{0.46}$Te$_{2.64}$ a metal. Various synthesis attempts confirmed the limited stable chemical composition of Au$_{1.9}$Sb$_{0.46}$Te$_{2.64}$, identified successful methods to synthesize both compounds, and highlighted the challenges associated with single crystal synthesis of AuSbTe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16239v2-abstract-full').style.display = 'none'; document.getElementById('2404.16239v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11934">arXiv:2404.11934</a> <span> [<a href="https://arxiv.org/pdf/2404.11934">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.L161102">10.1103/PhysRevB.109.L161102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum simulation of honeycomb lattice model by high-order moir茅 pattern </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wan%2C+Q">Qiang Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+C">Chunlong Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+X">Xun-Jiang Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+S">Shenghao Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cao Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+R">Renzhe Li</a>, <a href="/search/cond-mat?searchtype=author&query=Mo%2C+S">Shangkun Mo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+K">Keming Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+W">Wen-Xuan Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+H">Hao Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yiwei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chendong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+F">Fengcheng Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+N">Nan Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11934v1-abstract-short" style="display: inline;"> Moir茅 superlattices have become an emergent solid-state platform for simulating quantum lattice models. However, in single moir茅 device, Hamiltonians parameters like lattice constant, hopping and interaction terms can hardly be manipulated, limiting the controllability and accessibility of moire quantum simulator. Here, by combining angle-resolved photoemission spectroscopy and theoretical analysi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11934v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11934v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11934v1-abstract-full" style="display: none;"> Moir茅 superlattices have become an emergent solid-state platform for simulating quantum lattice models. However, in single moir茅 device, Hamiltonians parameters like lattice constant, hopping and interaction terms can hardly be manipulated, limiting the controllability and accessibility of moire quantum simulator. Here, by combining angle-resolved photoemission spectroscopy and theoretical analysis, we demonstrate that high-order moir茅 patterns in graphene-monolayered xenon/krypton heterostructures can simulate honeycomb model in mesoscale, with in-situ tunable Hamiltonians parameters. The length scale of simulated lattice constant can be tuned by annealing processes, which in-situ adjusts intervalley interaction and hopping parameters in the simulated honeycomb lattice. The sign of the lattice constant can be switched by choosing xenon or krypton monolayer deposited on graphene, which controls sublattice degree of freedom and valley arrangment of Dirac fermions. Our work establishes a novel path for experimentally simulating the honeycomb model with tunable parameters by high-order moir茅 patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11934v1-abstract-full').style.display = 'none'; document.getElementById('2404.11934v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phy. Rev. B 109, L161102 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11416">arXiv:2403.11416</a> <span> [<a href="https://arxiv.org/pdf/2403.11416">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.115415">10.1103/PhysRevB.109.115415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface region band enhancement in noble gas adsorption assisted ARPES on kagome superconductor RbV3Sb5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cao Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yiwei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+S">Shenghao Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Zewen Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+C">Chunlong Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wan%2C+Q">Qiang Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+K">Keming Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+R">Renzhe Li</a>, <a href="/search/cond-mat?searchtype=author&query=Mo%2C+S">Shangkun Mo</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+D">Dingkun Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+S">Shuming Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+H">Hao Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+S">Shengjun Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+J">Jiangang Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+N">Nan Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11416v1-abstract-short" style="display: inline;"> Electronic states near surface regions can be distinct from bulk states, which are paramount in understanding various physical phenomena occurring at surfaces and in applications in semiconductors, energy, and catalysis. Here, we report an abnormal surface region band enhancement effect in angle-resolved photoemission spectroscopy on kagome superconductor RbV3Sb5, by depositing noble gases with fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11416v1-abstract-full').style.display = 'inline'; document.getElementById('2403.11416v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11416v1-abstract-full" style="display: none;"> Electronic states near surface regions can be distinct from bulk states, which are paramount in understanding various physical phenomena occurring at surfaces and in applications in semiconductors, energy, and catalysis. Here, we report an abnormal surface region band enhancement effect in angle-resolved photoemission spectroscopy on kagome superconductor RbV3Sb5, by depositing noble gases with fine control. In contrast to conventional surface contamination, the intensity of surface region Sb band can be enhanced more than three times with noble gas adsorption. In the meantime, a hole-dope effect is observed for the enhanced surface region band, with other bands hardly changing. The doping effect is more pronounced with heavier noble gases. We propose that noble gas atoms selectively fill into alkali metal vacancy sites on the surface, which improves the surface condition, boosts surface region bands, and effectively dopes it with the Pauli repulsion mechanism. Our results provide a novel and reversible way to improve surface conditions and tune surface region bands by controlled surface noble gas deposition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11416v1-abstract-full').style.display = 'none'; document.getElementById('2403.11416v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages,4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 115415 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09831">arXiv:2403.09831</a> <span> [<a href="https://arxiv.org/pdf/2403.09831">pdf</a>, <a href="https://arxiv.org/format/2403.09831">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Kitaev physics in the two-dimensional magnet NiPSe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&query=Petsch%2C+A+N">Alexander N. Petsch</a>, <a href="/search/cond-mat?searchtype=author&query=Sharma%2C+V+K">Vineet Kumar Sharma</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shuyi Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&query=Chowdhury%2C+S">Sugata Chowdhury</a>, <a href="/search/cond-mat?searchtype=author&query=Turner%2C+J+J">Joshua J. Turner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09831v1-abstract-short" style="display: inline;"> The Kitaev interaction, found in candidate materials such as $伪$-RuCl$_3$, occurs through the metal ($M$)-ligand ($X$)-metal ($M$) paths of the edge-sharing octahedra because the large spin-orbit coupling (SOC) on the metal atoms activates directional spin interactions. Here, we show that even in $3d$ transition-metal compounds, where the SOC of the metal atom is negligible, heavy ligands can indu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09831v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09831v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09831v1-abstract-full" style="display: none;"> The Kitaev interaction, found in candidate materials such as $伪$-RuCl$_3$, occurs through the metal ($M$)-ligand ($X$)-metal ($M$) paths of the edge-sharing octahedra because the large spin-orbit coupling (SOC) on the metal atoms activates directional spin interactions. Here, we show that even in $3d$ transition-metal compounds, where the SOC of the metal atom is negligible, heavy ligands can induce bond-dependent Kitaev interactions. In this work, we take as an example the $3d$ transition-metal chalcogenophosphate NiPSe$_3$ and show that the key is found in the presence of a sizable SOC on the Se $p$ orbital, one which mediates the super-exchange between the nearest-neighbor Ni sites. Our study provides a pathway for engineering enhanced Kitaev interactions through the interplay of SOC strength, lattice distortions, and chemical substitutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09831v1-abstract-full').style.display = 'none'; document.getElementById('2403.09831v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary material is included in the package</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.01503">arXiv:2402.01503</a> <span> [<a href="https://arxiv.org/pdf/2402.01503">pdf</a>, <a href="https://arxiv.org/format/2402.01503">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Skyrmions: A review on materials perspective for future electronic devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sharma%2C+V+K">Vineet Kumar Sharma</a>, <a href="/search/cond-mat?searchtype=author&query=Okullo%2C+A">Alana Okullo</a>, <a href="/search/cond-mat?searchtype=author&query=Garner%2C+J">Jalen Garner</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Plumley%2C+R">Rajan Plumley</a>, <a href="/search/cond-mat?searchtype=author&query=Feiguin%2C+A">Adrian Feiguin</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Turner%2C+J">Josh Turner</a>, <a href="/search/cond-mat?searchtype=author&query=Bansil%2C+A">A. Bansil</a>, <a href="/search/cond-mat?searchtype=author&query=Chowdhury%2C+S">Sugata Chowdhury</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.01503v3-abstract-short" style="display: inline;"> Recent years have witnessed an enormous rise in research interest in magnetic skyrmions owing to their capability to improve over contemporary spintronic devices. An overview of the various magnetic interactions responsible for the formation of skyrmion together with distinct noncentrosymmetric and centrosymmetric skyrmion candidates is given in this review article. The magnetic interactions known… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01503v3-abstract-full').style.display = 'inline'; document.getElementById('2402.01503v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.01503v3-abstract-full" style="display: none;"> Recent years have witnessed an enormous rise in research interest in magnetic skyrmions owing to their capability to improve over contemporary spintronic devices. An overview of the various magnetic interactions responsible for the formation of skyrmion together with distinct noncentrosymmetric and centrosymmetric skyrmion candidates is given in this review article. The magnetic interactions known as Dzyaloshinskii-Moriya interactions (DMI) have been extensively studied over the years to better understand the mechanism of skyrmions in chiral magnets that have larger skyrmion sizes. Because of their low skyrmion size, the centrosymmetric frustrated magnets are dwelling to skyrmions controlled by long-range interactions such as the Ruderman-Kittel-Kasuya-Yosida interaction (RKKY), which may be useful in the development of high-density memory devices. To lay a solid foundation for the magnetic interactions involved in skyrmion formations and many other special physical properties, more research in the field of centrosymmetric skyrmions is required. Apart from studying candidates with low skyrmion sizes, one of the main goals for the future is to better understand the dynamics of skyrmion using polarized magnons, which has the potential to be extremely beneficial for spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01503v3-abstract-full').style.display = 'none'; document.getElementById('2402.01503v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13767">arXiv:2401.13767</a> <span> [<a href="https://arxiv.org/pdf/2401.13767">pdf</a>, <a href="https://arxiv.org/format/2401.13767">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00659-x">10.1038/s41535-024-00659-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The emergence of antiferromagnetic correlations and Kondo-like features in a two-band model for infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+F">Fangze Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+E+W">Edwin W. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13767v2-abstract-short" style="display: inline;"> We report a determinant quantum Monte Carlo study of a two-band model, inspired by infinite-layer nickelates, focusing on the influence of interlayer hybridization between $3d_{x^2-y^2}$ orbitals derived from Ni (or Ni and O) in one layer and rare-earth ($R$) 5d orbitals in the other layer, hereafter the NI and $R$ layers, respectively. For a filling with one electron shared between the two layers… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13767v2-abstract-full').style.display = 'inline'; document.getElementById('2401.13767v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13767v2-abstract-full" style="display: none;"> We report a determinant quantum Monte Carlo study of a two-band model, inspired by infinite-layer nickelates, focusing on the influence of interlayer hybridization between $3d_{x^2-y^2}$ orbitals derived from Ni (or Ni and O) in one layer and rare-earth ($R$) 5d orbitals in the other layer, hereafter the NI and $R$ layers, respectively. For a filling with one electron shared between the two layers on average, interlayer hybridization leads to "self-doped" holes in the Ni layer and the absence of antiferromagnetic ordering, but rather the appearance of spin-density and charge-density stripe-like states. As the interlayer hybridization increases, both the Ni and $R$ layers develop antiferromagnetic correlations, even though either layer individually remains away from half-filling. For hybridization within an intermediate range, roughly comparable to the intralayer nearest-neighbor hopping $t_{\text{Ni}}$, the model develops signatures of Kondo-like physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13767v2-abstract-full').style.display = 'none'; document.getElementById('2401.13767v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08919">arXiv:2312.08919</a> <span> [<a href="https://arxiv.org/pdf/2312.08919">pdf</a>, <a href="https://arxiv.org/format/2312.08919">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Scaling analysis of two-dimensional random singlet state in magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Chen Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08919v1-abstract-short" style="display: inline;"> Quenched randomness strongly affects properties of magnetic materials. Two-dimensional (2D) random singlet (RS) states emerge in random $J$-$Q$ model by destroying valence bond solid order with spatial randomness. We examine the 2D RS state in magnetic field with quantum Monte Carlo simulations. The magnetization and susceptibilities show power-law scaling with magnetic field at low temperature. M… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08919v1-abstract-full').style.display = 'inline'; document.getElementById('2312.08919v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08919v1-abstract-full" style="display: none;"> Quenched randomness strongly affects properties of magnetic materials. Two-dimensional (2D) random singlet (RS) states emerge in random $J$-$Q$ model by destroying valence bond solid order with spatial randomness. We examine the 2D RS state in magnetic field with quantum Monte Carlo simulations. The magnetization and susceptibilities show power-law scaling with magnetic field at low temperature. Moreover, they show one-parameter scaling behavior with $B/T$, and the scaling functions are remarkably consistent with a phenomenological model of random spin pairs with a singular distribution of interactions. These universal scaling functions can be used to diagnose 2D RS states in experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08919v1-abstract-full').style.display = 'none'; document.getElementById('2312.08919v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+epsilon pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18660">arXiv:2311.18660</a> <span> [<a href="https://arxiv.org/pdf/2311.18660">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale confinement and control of excitonic complexes in a monolayer WSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Moon%2C+H">Hyowon Moon</a>, <a href="/search/cond-mat?searchtype=author&query=Mennel%2C+L">Lukas Mennel</a>, <a href="/search/cond-mat?searchtype=author&query=Chakraborty%2C+C">Chitraleema Chakraborty</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Almutlaq%2C+J">Jawaher Almutlaq</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Englund%2C+D">Dirk Englund</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18660v1-abstract-short" style="display: inline;"> Nanoscale control and observation of photophysical processes in semiconductors is critical for basic understanding and applications from optoelectronics to quantum information processing. In particular, there are open questions and opportunities in controlling excitonic complexes in two-dimensional materials such as excitons, trions or biexcitons. However, neither conventional diffraction-limited… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18660v1-abstract-full').style.display = 'inline'; document.getElementById('2311.18660v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18660v1-abstract-full" style="display: none;"> Nanoscale control and observation of photophysical processes in semiconductors is critical for basic understanding and applications from optoelectronics to quantum information processing. In particular, there are open questions and opportunities in controlling excitonic complexes in two-dimensional materials such as excitons, trions or biexcitons. However, neither conventional diffraction-limited optical spectroscopy nor lithography-limited electric control provides a proper tool to investigate these quasiparticles at the nanometer-scale at cryogenic temperature. Here, we introduce a cryogenic capacitive confocal optical microscope (C3OM) as a tool to study quasiparticle dynamics at the nanometer scale. Using a conductive atomic force microscope (AFM) tip as a gate electrode, we can modulate the electronic doping at the nanometer scale in WSe2 at 4K. This tool allows us to modulate with nanometer-scale confinement the exciton and trion peaks, as well a distinct photoluminescence line associated with a larger excitonic complex that exhibits distinctive nonlinear optical response. Our results demonstrate nanoscale confinement and spectroscopy of exciton complexes at arbitrary positions, which should prove an important tool for quantitative understanding of complex optoelectronic properties in semiconductors as well as for applications ranging from quantum spin liquids to superresolution measurements to control of quantum emitters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18660v1-abstract-full').style.display = 'none'; document.getElementById('2311.18660v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02893">arXiv:2311.02893</a> <span> [<a href="https://arxiv.org/pdf/2311.02893">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-43882-z">10.1038/s41467-023-43882-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological electronic structure and spin texture of quasi-one-dimensional higher-order topological insulator Bi4Br4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W+X">W. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+M">M. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+R+Z">R. Z. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+X">X. Du</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y+D">Y. D. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+K+Y">K. Y. Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">C. Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Pei%2C+D">D. Pei</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+H">H. Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y+W">Y. W. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+L+X">L. X. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+J+F">J. F. Han</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z+K">Z. K. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y+G">Y. G. Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhuang%2C+J+C">J. C. Zhuang</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+Y">Y. Du</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+J+J">J. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y+L">Y. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L+X">L. X. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02893v1-abstract-short" style="display: inline;"> The notion of topological insulators (TIs), characterized by an insulating bulk and conducting topological surface states, can be extended to higher-order topological insulators (HOTIs) hosting gapless modes localized at the boundaries of two or more dimensions lower than the insulating bulk1-5. In this work, by performing high-resolution angle-resolved photoemission spectroscopy (ARPES) measureme… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02893v1-abstract-full').style.display = 'inline'; document.getElementById('2311.02893v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02893v1-abstract-full" style="display: none;"> The notion of topological insulators (TIs), characterized by an insulating bulk and conducting topological surface states, can be extended to higher-order topological insulators (HOTIs) hosting gapless modes localized at the boundaries of two or more dimensions lower than the insulating bulk1-5. In this work, by performing high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements with submicron spatial and spin resolutions, we systematically investigate the electronic structure and spin texture of quasi-one-dimensional (1D) HOTI candidate Bi4Br4. In contrast to the bulk-state-dominant spectra on the (001) surface, we observe gapped surface states on the (100) surface, whose dispersion and spin-polarization agree well with our ab initio calculations. Moreover, we reveal in-gap states connecting the surface valence and conduction bands, which is an explicit signature of the existence of hinge states inside the (100) surface gap. Our findings provide compelling evidence for the HOTI phase of Bi4Br4. The identification of the higher-order topological phase will lay the promising prospect of applications based on 1D spin-momentum locked current in electronic and spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02893v1-abstract-full').style.display = 'none'; document.getElementById('2311.02893v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 14, 8089 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.00914">arXiv:2311.00914</a> <span> [<a href="https://arxiv.org/pdf/2311.00914">pdf</a>, <a href="https://arxiv.org/ps/2311.00914">ps</a>, <a href="https://arxiv.org/format/2311.00914">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Multifield tunable valley splitting in two-dimensional MXene Cr$_2$COOH </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+P">Ping Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+C">Chao Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+M">Mutian Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Xun%2C+W">Wei Xun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.00914v1-abstract-short" style="display: inline;"> Manipulation of the valley degree of freedom provides a novel paradigm in quantum information technology. Here, through first-principles calculations and model analysis, we demonstrate that monolayer Cr$_2$COOH MXene is a promising candidate material for valleytronics applications. We reveal that Cr$_2$COOH is a ferromagnetic semiconductor and harbors valley features. Due to the simultaneous break… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00914v1-abstract-full').style.display = 'inline'; document.getElementById('2311.00914v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.00914v1-abstract-full" style="display: none;"> Manipulation of the valley degree of freedom provides a novel paradigm in quantum information technology. Here, through first-principles calculations and model analysis, we demonstrate that monolayer Cr$_2$COOH MXene is a promising candidate material for valleytronics applications. We reveal that Cr$_2$COOH is a ferromagnetic semiconductor and harbors valley features. Due to the simultaneous breaking inversion symmetry and time-reversal symmetry, the valleys are polarized spontaneously. Moreover, the valley polarization is sizeable in both the valence and conduction bands, benefiting the observation of the anomalous valley Hall effect. More remarkably, the valley splitting can be effectively tuned by the magnetization direction, strain and ferroelectric substrate. More interestingly, the ferroelectric substrate Sc$_2$CO$_2$ can not only regulate the MAE, but also tune valley polarization state. Our findings offer a practical way for realizing highly tunable valleys by multiferroic couplings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00914v1-abstract-full').style.display = 'none'; document.getElementById('2311.00914v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures, Accepted Physical Review B (2023). arXiv admin note: text overlap with arXiv:2305.13670</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07948">arXiv:2310.07948</a> <span> [<a href="https://arxiv.org/pdf/2310.07948">pdf</a>, <a href="https://arxiv.org/format/2310.07948">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> 3D Heisenberg universality in the Van der Waals antiferromagnet NiPS$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Plumley%2C+R">Rajan Plumley</a>, <a href="/search/cond-mat?searchtype=author&query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Nokelainen%2C+J">Johannes Nokelainen</a>, <a href="/search/cond-mat?searchtype=author&query=Assefa%2C+T">Tadesse Assefa</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+L">Lingjia Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Burdet%2C+N">Nicholas Burdet</a>, <a href="/search/cond-mat?searchtype=author&query=Porter%2C+Z">Zach Porter</a>, <a href="/search/cond-mat?searchtype=author&query=Petsch%2C+A">Alexander Petsch</a>, <a href="/search/cond-mat?searchtype=author&query=Israelski%2C+A">Aidan Israelski</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongwei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J+S">Jun Sik Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Morley%2C+S">Sophie Morley</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sujoy Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Fabbris%2C+G">Gilberto Fabbris</a>, <a href="/search/cond-mat?searchtype=author&query=Blackburn%2C+E">Elizabeth Blackburn</a>, <a href="/search/cond-mat?searchtype=author&query=Feiguin%2C+A">Adrian Feiguin</a>, <a href="/search/cond-mat?searchtype=author&query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+W">Wei-Sheng Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Lindenberg%2C+A">Aaron Lindenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Chowdhury%2C+S">Sugata Chowdhury</a>, <a href="/search/cond-mat?searchtype=author&query=Dunne%2C+M">Mike Dunne</a>, <a href="/search/cond-mat?searchtype=author&query=Turner%2C+J+J">Joshua J. Turner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07948v4-abstract-short" style="display: inline;"> Van der Waals (vdW) magnetic materials are comprised of layers of atomically thin sheets, making them ideal platforms for studying magnetism at the two-dimensional (2D) limit. These materials are at the center of a host of novel types of experiments, however, there are notably few pathways to directly probe their magnetic structure. We report the magnetic order within a single crystal of NiPS$_3$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07948v4-abstract-full').style.display = 'inline'; document.getElementById('2310.07948v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07948v4-abstract-full" style="display: none;"> Van der Waals (vdW) magnetic materials are comprised of layers of atomically thin sheets, making them ideal platforms for studying magnetism at the two-dimensional (2D) limit. These materials are at the center of a host of novel types of experiments, however, there are notably few pathways to directly probe their magnetic structure. We report the magnetic order within a single crystal of NiPS$_3$ and show it can be accessed with resonant elastic X-ray diffraction along the edge of the vdW planes in a carefully grown crystal by detecting structurally forbidden resonant magnetic X-ray scattering. We find the magnetic order parameter has a critical exponent of $尾\sim0.36$, indicating that the magnetism of these vdW crystals is more adequately characterized by the three-dimensional (3D) Heisenberg universality class. We verify these findings with first-principle density functional theory, Monte-Carlo simulations, and density matrix renormalization group calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07948v4-abstract-full').style.display = 'none'; document.getElementById('2310.07948v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15371">arXiv:2309.15371</a> <span> [<a href="https://arxiv.org/pdf/2309.15371">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-40997-1">10.1038/s41467-023-40997-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From Stoner to Local Moment Magnetism in Atomically Thin Cr2Te3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+Y">Yong Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+H">Haili Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Hwang%2C+J">Jinwoong Hwang</a>, <a href="/search/cond-mat?searchtype=author&query=Hsu%2C+K+H">Kuan H. Hsu</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Y">Yi Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J">Jun-Sik Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J">Jin-Feng Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15371v1-abstract-short" style="display: inline;"> The field of two-dimensional (2D) ferromagnetism has been proliferating over the past few years, with ongoing interests in basic science and potential applications in spintronic technology. However, a high-resolution spectroscopic study of the 2D ferromagnet is still lacking due to the small size and air sensitivity of the exfoliated nanoflakes. Here, we report a thickness-dependent ferromagnetism… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15371v1-abstract-full').style.display = 'inline'; document.getElementById('2309.15371v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15371v1-abstract-full" style="display: none;"> The field of two-dimensional (2D) ferromagnetism has been proliferating over the past few years, with ongoing interests in basic science and potential applications in spintronic technology. However, a high-resolution spectroscopic study of the 2D ferromagnet is still lacking due to the small size and air sensitivity of the exfoliated nanoflakes. Here, we report a thickness-dependent ferromagnetism in epitaxially grown Cr2Te3 thin films and investigate the evolution of the underlying electronic structure by synergistic angle-resolved photoemission spectroscopy, scanning tunneling microscopy, x-ray absorption spectroscopy, and first-principle calculations. A conspicuous ferromagnetic transition from Stoner to Heisenberg-type is directly observed in the atomically thin limit, indicating that dimensionality is a powerful tuning knob to manipulate the novel properties of 2D magnetism. Monolayer Cr2Te3 retains robust ferromagnetism, but with a suppressed Curie temperature, due to the drastic drop in the density of states near the Fermi level. Our results establish atomically thin Cr2Te3 as an excellent platform to explore the dual nature of localized and itinerant ferromagnetism in 2D magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15371v1-abstract-full').style.display = 'none'; document.getElementById('2309.15371v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 4 + 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 5340 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07876">arXiv:2309.07876</a> <span> [<a href="https://arxiv.org/pdf/2309.07876">pdf</a>, <a href="https://arxiv.org/format/2309.07876">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Particle-hole asymmetric ferromagnetism and spin textures in the triangular Hubbard-Hofstadter model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ding%2C+J+K">Jixun K. Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+L">Luhang Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W+O">Wen O. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Ziyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Mai%2C+P">Peizhi Mai</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+E+W">Edwin W. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&query=Phillips%2C+P+W">Philip W. Phillips</a>, <a href="/search/cond-mat?searchtype=author&query=Feldman%2C+B+E">Benjamin E. Feldman</a>, <a href="/search/cond-mat?searchtype=author&query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07876v2-abstract-short" style="display: inline;"> In a lattice model subject to a perpendicular magnetic field, when the lattice constant is comparable to the magnetic length, one enters the "Hofstadter regime," where continuum Landau levels become fractal magnetic Bloch bands. Strong mixing between bands alters the nature of the resulting quantum phases compared to the continuum limit; lattice potential, magnetic field, and Coulomb interaction m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07876v2-abstract-full').style.display = 'inline'; document.getElementById('2309.07876v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07876v2-abstract-full" style="display: none;"> In a lattice model subject to a perpendicular magnetic field, when the lattice constant is comparable to the magnetic length, one enters the "Hofstadter regime," where continuum Landau levels become fractal magnetic Bloch bands. Strong mixing between bands alters the nature of the resulting quantum phases compared to the continuum limit; lattice potential, magnetic field, and Coulomb interaction must be treated on equal footing. Using determinant quantum Monte Carlo (DQMC) and density matrix renormalization group (DMRG) techniques, we study this regime numerically in the context of the Hubbard-Hofstadter model on a triangular lattice. In the field-filling phase diagram, we find a broad wedge-shaped region of ferromagnetic ground states for filling factor $谓\leq 1$, bounded below by filling factor $谓= 1$ and bounded above by half-filling the lowest Hofstadter subband. We observe signatures of SU(2) quantum Hall ferromagnetism at filling factors $谓=1$ and $谓=3$. The phases near $谓=1$ are particle-hole asymmetric, and we observe a rapid decrease in ground state spin polarization consistent with the formation of skyrmions only on the electron doped side. At large fields, above the ferromagnetic wedge, we observe a low-spin metallic region with spin correlations peaked at small momenta. We argue that the phenomenology of this region likely results from exchange interaction mixing fractal Hofstadter subbands. The phase diagram derived beyond the continuum limit points to a rich landscape to explore interaction effects in magnetic Bloch bands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07876v2-abstract-full').style.display = 'none'; document.getElementById('2309.07876v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10+7 pages, 6+13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14112">arXiv:2308.14112</a> <span> [<a href="https://arxiv.org/pdf/2308.14112">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43246-023-00392-1">10.1038/s43246-023-00392-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tightly-bound and room-temperature-stable excitons in van der Waals degenerate-semiconductor Bi4O4SeCl2 with high charge-carrier density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yueshan Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Junjie Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+B">Bo Su</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+J">Jun Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cao Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+C">Chunlong Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+N">Nan Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+J">Jian-gang Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhi-Guo Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14112v1-abstract-short" style="display: inline;"> Excitons, which represent a type of quasi-particles consisting of electron-hole pairs bound by the mutual Coulomb interaction, were often observed in lowly-doped semiconductors or insulators. However, realizing excitons in the semiconductors or insulators with high charge carrier densities is a challenging task. Here, we perform infrared spectroscopy, electrical transport, ab initio calculation, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14112v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14112v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14112v1-abstract-full" style="display: none;"> Excitons, which represent a type of quasi-particles consisting of electron-hole pairs bound by the mutual Coulomb interaction, were often observed in lowly-doped semiconductors or insulators. However, realizing excitons in the semiconductors or insulators with high charge carrier densities is a challenging task. Here, we perform infrared spectroscopy, electrical transport, ab initio calculation, and angle-resolved-photoemission spectroscopy studies of a van der Waals degenerate-semiconductor Bi4O4SeCl2. A peak-like feature (i.e., alpha peak) is present around ~ 125 meV in the optical conductivity spectra at low temperature T = 8 K and room temperature. After being excluded from the optical excitations of free carriers, interband transitions, localized states and polarons, the alpha peak is assigned as the exciton absorption. Moreover, assuming the existence of weakly-bound excitons--Wannier-type excitons in this material violates the Lyddane-Sachs-Teller relation. Besides, the exciton binding energy of ~ 375 meV, which is about an order of magnitude larger than those of conventional semiconductors, and the charge-carrier concentration of ~ 1.25 * 10^19 cm^-3, which is higher than the Mott density, further indicate that the excitons in this highly-doped system should be tightly bound. Our results pave the way for developing the optoelectronic devices based on the tightly-bound and room-temperature-stable excitons in highly-doped van der Waals degenerate semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14112v1-abstract-full').style.display = 'none'; document.getElementById('2308.14112v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Communications Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Materials 4, 69 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02015">arXiv:2306.02015</a> <span> [<a href="https://arxiv.org/pdf/2306.02015">pdf</a>, <a href="https://arxiv.org/format/2306.02015">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Machine learning enabled experimental design and parameter estimation for ultrafast spin dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhantao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Petsch%2C+A+N">Alexander N. Petsch</a>, <a href="/search/cond-mat?searchtype=author&query=Chitturi%2C+S+R">Sathya R. Chitturi</a>, <a href="/search/cond-mat?searchtype=author&query=Okullo%2C+A">Alana Okullo</a>, <a href="/search/cond-mat?searchtype=author&query=Chowdhury%2C+S">Sugata Chowdhury</a>, <a href="/search/cond-mat?searchtype=author&query=Yoon%2C+C+H">Chun Hong Yoon</a>, <a href="/search/cond-mat?searchtype=author&query=Turner%2C+J+J">Joshua J. Turner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02015v1-abstract-short" style="display: inline;"> Advanced experimental measurements are crucial for driving theoretical developments and unveiling novel phenomena in condensed matter and material physics, which often suffer from the scarcity of facility resources and increasing complexities. To address the limitations, we introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED), exemplified with x-r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02015v1-abstract-full').style.display = 'inline'; document.getElementById('2306.02015v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02015v1-abstract-full" style="display: none;"> Advanced experimental measurements are crucial for driving theoretical developments and unveiling novel phenomena in condensed matter and material physics, which often suffer from the scarcity of facility resources and increasing complexities. To address the limitations, we introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED), exemplified with x-ray photon fluctuation spectroscopy (XPFS) measurements for spin fluctuations. Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED. The capability of automatic differentiation from the neural network model is further leveraged for more robust and accurate parameter estimation. Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time. Although focusing on XPFS and spin fluctuations, our method can be adapted to other experiments, facilitating more efficient data collection and accelerating scientific discoveries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02015v1-abstract-full').style.display = 'none'; document.getElementById('2306.02015v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07787">arXiv:2305.07787</a> <span> [<a href="https://arxiv.org/pdf/2305.07787">pdf</a>, <a href="https://arxiv.org/format/2305.07787">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> On Ultrafast X-ray Methods for Magnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Plumley%2C+R">Rajan Plumley</a>, <a href="/search/cond-mat?searchtype=author&query=Chitturi%2C+S">Sathya Chitturi</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Assefa%2C+T">Tadesse Assefa</a>, <a href="/search/cond-mat?searchtype=author&query=Burdet%2C+N">Nicholas Burdet</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+L">Lingjia Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Reid%2C+A">Alex Reid</a>, <a href="/search/cond-mat?searchtype=author&query=Dakovski%2C+G">Georgi Dakovski</a>, <a href="/search/cond-mat?searchtype=author&query=Seaberg%2C+M">Matthew Seaberg</a>, <a href="/search/cond-mat?searchtype=author&query=O%27Dowd%2C+F">Frank O'Dowd</a>, <a href="/search/cond-mat?searchtype=author&query=Montoya%2C+S">Sergio Montoya</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongwei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Okullo%2C+A">Alana Okullo</a>, <a href="/search/cond-mat?searchtype=author&query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&query=Kevan%2C+S">Stephen Kevan</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+P">Peter Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Fullerton%2C+E">Eric Fullerton</a>, <a href="/search/cond-mat?searchtype=author&query=Sinha%2C+S">Sunil Sinha</a>, <a href="/search/cond-mat?searchtype=author&query=Colocho%2C+W">William Colocho</a>, <a href="/search/cond-mat?searchtype=author&query=Lutman%2C+A">Alberto Lutman</a>, <a href="/search/cond-mat?searchtype=author&query=Decker%2C+F">Franz-Joseph Decker</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+S">Sujoy Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Fujioka%2C+J">Jun Fujioka</a>, <a href="/search/cond-mat?searchtype=author&query=Tokura%2C+Y">Yoshinori Tokura</a>, <a href="/search/cond-mat?searchtype=author&query=Minitti%2C+M+P">Michael P. Minitti</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07787v1-abstract-short" style="display: inline;"> With the introduction of x-ray free electron laser sources around the world, new scientific approaches for visualizing matter at fundamental length and time-scales have become possible. As it relates to magnetism and "magnetic-type" systems, advanced methods are being developed for studying ultrafast magnetic responses on the time-scales at which they occur. We describe three capabilities which ha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07787v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07787v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07787v1-abstract-full" style="display: none;"> With the introduction of x-ray free electron laser sources around the world, new scientific approaches for visualizing matter at fundamental length and time-scales have become possible. As it relates to magnetism and "magnetic-type" systems, advanced methods are being developed for studying ultrafast magnetic responses on the time-scales at which they occur. We describe three capabilities which have the potential to seed new directions in this area and present original results from each: pump-probe x-ray scattering with low energy excitation, x-ray photon fluctuation spectroscopy, and ultrafast diffuse x-ray scattering. By combining these experimental techniques with advanced modeling together with machine learning, we describe how the combination of these domains allows for a new understanding in the field of magnetism. Finally, we give an outlook for future areas of investigation and the newly developed instruments which will take us there. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07787v1-abstract-full').style.display = 'none'; document.getElementById('2305.07787v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.03949">arXiv:2304.03949</a> <span> [<a href="https://arxiv.org/pdf/2304.03949">pdf</a>, <a href="https://arxiv.org/format/2304.03949">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-41378-4">10.1038/s41467-023-41378-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Capturing dynamical correlations using implicit neural representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chitturi%2C+S">Sathya Chitturi</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Z">Zhurun Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Petsch%2C+A">Alexander Petsch</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zhantao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Plumley%2C+R">Rajan Plumley</a>, <a href="/search/cond-mat?searchtype=author&query=Dunne%2C+M">Mike Dunne</a>, <a href="/search/cond-mat?searchtype=author&query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&query=Chowdhury%2C+S">Sugata Chowdhury</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongwei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&query=Feiguin%2C+A">Adrian Feiguin</a>, <a href="/search/cond-mat?searchtype=author&query=Kolesnikov%2C+A">Alexander Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&query=Hayden%2C+S">Stephen Hayden</a>, <a href="/search/cond-mat?searchtype=author&query=Ratner%2C+D">Daniel Ratner</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Nashed%2C+Y">Youssef Nashed</a>, <a href="/search/cond-mat?searchtype=author&query=Turner%2C+J">Joshua Turner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.03949v1-abstract-short" style="display: inline;"> The observation and description of collective excitations in solids is a fundamental issue when seeking to understand the physics of a many-body system. Analysis of these excitations is usually carried out by measuring the dynamical structure factor, S(Q, $蠅$), with inelastic neutron or x-ray scattering techniques and comparing this against a calculated dynamical model. Here, we develop an artific… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03949v1-abstract-full').style.display = 'inline'; document.getElementById('2304.03949v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.03949v1-abstract-full" style="display: none;"> The observation and description of collective excitations in solids is a fundamental issue when seeking to understand the physics of a many-body system. Analysis of these excitations is usually carried out by measuring the dynamical structure factor, S(Q, $蠅$), with inelastic neutron or x-ray scattering techniques and comparing this against a calculated dynamical model. Here, we develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data. We benchmark this approach on a Linear Spin Wave Theory (LSWT) simulator and advanced inelastic neutron scattering data from the square-lattice spin-1 antiferromagnet La$_2$NiO$_4$. We find that the model predicts the unknown parameters with excellent agreement relative to analytical fitting. In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data, without the need for human-guided peak finding and fitting algorithms. This prototypical approach promises a new technology for this field to automatically detect and refine more advanced models for ordered quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03949v1-abstract-full').style.display = 'none'; document.getElementById('2304.03949v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14903">arXiv:2303.14903</a> <span> [<a href="https://arxiv.org/pdf/2303.14903">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Strong Inter-valley Electron-Phonon Coupling in Magic-Angle Twisted Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+C">Cheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Nuckolls%2C+K+P">Kevin P. Nuckolls</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+S">Shuhan Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+W">Wangqian Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Wong%2C+D">Dillon Wong</a>, <a href="/search/cond-mat?searchtype=author&query=Oh%2C+M">Myungchul Oh</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+R+L">Ryan L. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+S">Shanmei He</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Pei%2C+D">Ding Pei</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yiwei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shihao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+C">Chu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+D">Ding Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+X">Xi Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chaoxing Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yazdani%2C+A">Ali Yazdani</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14903v1-abstract-short" style="display: inline;"> The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked enormous research interest. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms, the origin of its superconductivity remains elusive. Here, using angle-resolved photoemission spectroscopy with micrometer spatial resolution, w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14903v1-abstract-full').style.display = 'inline'; document.getElementById('2303.14903v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14903v1-abstract-full" style="display: none;"> The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked enormous research interest. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms, the origin of its superconductivity remains elusive. Here, using angle-resolved photoemission spectroscopy with micrometer spatial resolution, we discover replicas of the flat bands in superconducting MATBG unaligned with its hexagonal boron nitride (hBN) substrate, which are absent in non-superconducting MATBG aligned with the hBN substrate. Crucially, the replicas are evenly spaced in energy, separated by 150 +- 15 meV, signalling the strong coupling of electrons in MATBG to a bosonic mode of this energy. By comparing our observations to simulations, the formation of replicas is attributed to the presence of strong inter-valley electron-phonon coupling to a K-point phonon mode. In total, the observation of these replica flat bands and the corresponding phonon mode in MATBG could provide important information for understanding the origin and the unusual properties of its superconducting phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14903v1-abstract-full').style.display = 'none'; document.getElementById('2303.14903v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.12348">arXiv:2303.12348</a> <span> [<a href="https://arxiv.org/pdf/2303.12348">pdf</a>, <a href="https://arxiv.org/format/2303.12348">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity in lightly doped Hubbard model on honeycomb lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Sheng%2C+D+N">D. N. Sheng</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+H">Hong-Chen Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.12348v1-abstract-short" style="display: inline;"> We have performed large-scale density-matrix renormalization group studies of the lightly doped Hubbard model on the honeycomb lattice on long three and four-leg cylinders. We find that the ground state of the system upon lightly doping is consistent with that of a superconducting state with coexisting quasi-long-range superconducting and charge density wave orders. Both the superconducting and ch… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12348v1-abstract-full').style.display = 'inline'; document.getElementById('2303.12348v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.12348v1-abstract-full" style="display: none;"> We have performed large-scale density-matrix renormalization group studies of the lightly doped Hubbard model on the honeycomb lattice on long three and four-leg cylinders. We find that the ground state of the system upon lightly doping is consistent with that of a superconducting state with coexisting quasi-long-range superconducting and charge density wave orders. Both the superconducting and charge density wave correlations decay as a power law at long distances with corresponding exponents $K_{sc}<2$ and $K_c<2$. On the contrary, the spin-spin and single-particle correlations decay exponentially, although with relatively long correlation lengths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12348v1-abstract-full').style.display = 'none'; document.getElementById('2303.12348v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.11239">arXiv:2301.11239</a> <span> [<a href="https://arxiv.org/pdf/2301.11239">pdf</a>, <a href="https://arxiv.org/format/2301.11239">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.107.024606">10.1103/PhysRevE.107.024606 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collective Vortical Motion and Vorticity Reversals of Self-Propelled Particles on Circularly Patterned Substrates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wen%2C+H">Haosheng Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yu Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Chenhui Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Kumar%2C+P+B+S">P. B. Sunil Kumar</a>, <a href="/search/cond-mat?searchtype=author&query=Laradji%2C+M">Mohamed Laradji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.11239v1-abstract-short" style="display: inline;"> The collective behavior of self-propelled particles (SPPs) under the combined effects of a circularly patterned substrate and circular confinement is investigated through coarse-grained molecular dynamics simulations of polarized and disjoint ring polymers. The study is performed over a wide range of values of the SPPs packing fraction $\bar蠁$, motility force $F_D$, and area fraction of the patter… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11239v1-abstract-full').style.display = 'inline'; document.getElementById('2301.11239v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.11239v1-abstract-full" style="display: none;"> The collective behavior of self-propelled particles (SPPs) under the combined effects of a circularly patterned substrate and circular confinement is investigated through coarse-grained molecular dynamics simulations of polarized and disjoint ring polymers. The study is performed over a wide range of values of the SPPs packing fraction $\bar蠁$, motility force $F_D$, and area fraction of the patterned region. At low packing fractions, the SPPs are excluded from the system's center and exhibit a vortical motion that is dominated by the substrate at intermediate values of $F_D$. This exclusion zone is due to the coupling between the driving force and torque induced by the substrate, which induces an outward spiral motion of the SPPs. For high values of $F_D$, the SPPs exclusion from the center is dominated by the confining boundary. At high values of $\bar蠁$, the substrate pattern leads to reversals in the vorticity, which become quasi-periodic with increasing $\bar蠁$. We also found that the substrate pattern is able to separate SPPs based on their motilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11239v1-abstract-full').style.display = 'none'; document.getElementById('2301.11239v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.09288">arXiv:2210.09288</a> <span> [<a href="https://arxiv.org/pdf/2210.09288">pdf</a>, <a href="https://arxiv.org/format/2210.09288">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38408-6">10.1038/s41467-023-38408-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Traces of Electron-Phonon Coupling in One-Dimensional Cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tang%2C+T">Ta Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.09288v1-abstract-short" style="display: inline;"> The appearance of certain spectral features in one-dimensional (1D) cuprate materials has been attributed to a strong, extended attractive coupling between electrons. Here, using time-dependent density matrix renormalization group methods on a Hubbard-extended Holstein model, we show that extended electron-phonon ({\it e-ph}) coupling presents an obvious choice to produce such an attractive intera… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09288v1-abstract-full').style.display = 'inline'; document.getElementById('2210.09288v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.09288v1-abstract-full" style="display: none;"> The appearance of certain spectral features in one-dimensional (1D) cuprate materials has been attributed to a strong, extended attractive coupling between electrons. Here, using time-dependent density matrix renormalization group methods on a Hubbard-extended Holstein model, we show that extended electron-phonon ({\it e-ph}) coupling presents an obvious choice to produce such an attractive interaction that reproduces the observed spectral features and doping dependence seen in angle-resolved photoemission experiments: diminished $3k_F$ spectral weight, prominent spectral intensity of a holon-folding branch, and the correct holon band width. While extended {\it e-ph} coupling does not qualitatively alter the ground state of the 1D system compared to the Hubbard model, it quantitatively enhances the long-range superconducting correlations and suppresses spin correlations. Such an extended {\it e-ph} interaction may be an important missing ingredient in describing the physics of the structurally similar two-dimensional high-temperature superconducting layered cuprates, which may tip the balance between intertwined orders in favor of uniform $d$-wave superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09288v1-abstract-full').style.display = 'none'; document.getElementById('2210.09288v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 14, 3129 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.11463">arXiv:2206.11463</a> <span> [<a href="https://arxiv.org/pdf/2206.11463">pdf</a>, <a href="https://arxiv.org/format/2206.11463">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.214311">10.1103/PhysRevB.106.214311 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bridging quantum many-body scar and quantum integrability in Ising chains with transverse and longitudinal fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+X">Xiaoling Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.11463v3-abstract-short" style="display: inline;"> Quantum many-body scar (QMBS) and quantum integrability(QI) have been recognized as two distinct mechanisms for the breakdown of eigenstate thermalization hypothesis(ETH) in an isolated system. In this work, we reveal a smooth route to connect these two ETH-breaking mechanisms in the Ising chain with transverse and longitudinal fields. Specifically, starting from an initial Ising anti-ferromagneti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11463v3-abstract-full').style.display = 'inline'; document.getElementById('2206.11463v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.11463v3-abstract-full" style="display: none;"> Quantum many-body scar (QMBS) and quantum integrability(QI) have been recognized as two distinct mechanisms for the breakdown of eigenstate thermalization hypothesis(ETH) in an isolated system. In this work, we reveal a smooth route to connect these two ETH-breaking mechanisms in the Ising chain with transverse and longitudinal fields. Specifically, starting from an initial Ising anti-ferromagnetic state, we find that the dynamical system undergoes a smooth non-thermal crossover from QMBS to QI by changing the Ising coupling($J$) and longitudinal field($h$) simultaneously while keeping their ratio fixed, which corresponds to the Rydberg Hamiltonian with an arbitrary nearest-neighbor repulsion. Deviating from this ratio, we further identify a continuous thermalization trajectory in ($h,J$) plane that is exactly given by the Ising transition line, signifying an intimate relation between thermalization and quantum critical point. Finally, we map out a completely different dynamical phase diagram starting from an initial ferromagnetic state, where the thermalization is shown to be equally facilitated by the resonant spin-flip at special ratios of $J$ and $h$. By bridging QMBS and QI in Ising chains, our results demonstrate the breakdown of ETH in much broader physical settings, which also suggest an alternative way to characterize quantum phase transition via thermalization in non-equilibrium dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11463v3-abstract-full').style.display = 'none'; document.getElementById('2206.11463v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 13 figures; accepted version by PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 214311 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.03486">arXiv:2206.03486</a> <span> [<a href="https://arxiv.org/pdf/2206.03486">pdf</a>, <a href="https://arxiv.org/format/2206.03486">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L201102">10.1103/PhysRevB.107.L201102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced superconductivity by near-neighbor attraction in the doped Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+J">Jiajia Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+Y">Young Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Devereaux%2C+T">Thomas Devereaux</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+H">Hong-Chen Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.03486v1-abstract-short" style="display: inline;"> Recent experiment has unveiled an anomalously strong electron-electron attraction in one-dimensional copper-oxide chain Ba$_{2-x}$Sr$_x$CuO$_{3+未}$. While the near-neighbor electron attraction $V$ in the one-dimensional extended Hubbard chain has been examined recently, its effect in the Hubbard model beyond the one-dimensional chain remains unclear. We report a density-matrix renormalization grou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03486v1-abstract-full').style.display = 'inline'; document.getElementById('2206.03486v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.03486v1-abstract-full" style="display: none;"> Recent experiment has unveiled an anomalously strong electron-electron attraction in one-dimensional copper-oxide chain Ba$_{2-x}$Sr$_x$CuO$_{3+未}$. While the near-neighbor electron attraction $V$ in the one-dimensional extended Hubbard chain has been examined recently, its effect in the Hubbard model beyond the one-dimensional chain remains unclear. We report a density-matrix renormalization group study of the extended Hubbard model on long four-leg cylinders on the square lattice. We find that the near-neighbor electron attraction $V$ can notably enhance the long-distance superconducting correlations while simultaneously suppressing the charge-density-wave correlations. Specifically, for a modestly strong electron attraction, the superconducting correlations become dominant over the CDW correlations with a Luttinger exponent $K_{sc}\sim 1$ and strong divergent superconducting susceptibility. Our results provide a promising way to realize long-range superconductivity in the doped Hubbard model in two dimensions. The relevance of our numerical results to cuprate materials is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03486v1-abstract-full').style.display = 'none'; document.getElementById('2206.03486v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.14596">arXiv:2205.14596</a> <span> [<a href="https://arxiv.org/pdf/2205.14596">pdf</a>, <a href="https://arxiv.org/format/2205.14596">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP09(2022)179">10.1007/JHEP09(2022)179 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Black holes Entangled by Radiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yuxuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xian%2C+Z">Zhuo-Yu Xian</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Ling%2C+Y">Yi Ling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.14596v3-abstract-short" style="display: inline;"> We construct three models to describe the scenario where two eternal black holes are separated by a flat space, and can eventually be entangled by exchanging radiations. In the doubly holographic setup, we compute the entanglement entropy and the mutual information among the subsystems and obtain the dynamic phase structure of the entanglement. The formation of entanglement between the two black h… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14596v3-abstract-full').style.display = 'inline'; document.getElementById('2205.14596v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.14596v3-abstract-full" style="display: none;"> We construct three models to describe the scenario where two eternal black holes are separated by a flat space, and can eventually be entangled by exchanging radiations. In the doubly holographic setup, we compute the entanglement entropy and the mutual information among the subsystems and obtain the dynamic phase structure of the entanglement. The formation of entanglement between the two black holes is delayed by the space where the radiations must travel through. Finally, if the two black holes exchange sufficient Hawking modes, the final state is characterized by a connected entanglement wedge; otherwise, the final entanglement wedge contains two separated islands. In the former case, the entanglement wedge of the two black holes forms at the time scale of the size of the flat space between them. While in both cases, unitarity of the evolution is preserved. When the sizes of two black holes are not equal, we observe a loss of entanglement between the smaller black hole and the radiation at late times. In the field theory side, we consider two Sachdev-Ye-Kitaev (SYK) clusters coupled to a Majorana chain, which resemble two black holes connected by a radiation region. We numerically compute the same entanglement measures, and obtain similar phase structures as the bulk results. In general, a time delay of the entanglement between the two SYK clusters is found in cases with a long Majorana chain. In particular, when the two SYK clusters are different in size, similar entanglement loss between the smaller SYK cluster and the Majorana chain is observed. Finally, we investigate a chain model composed of EPR clusters with particle exchanges between neighboring clusters, and reproduce the features of entanglement observed in the other models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.14596v3-abstract-full').style.display = 'none'; document.getElementById('2205.14596v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 16 figures; V2: references added, minor revision; V3: references added, minor revision; typo revision;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12720">arXiv:2205.12720</a> <span> [<a href="https://arxiv.org/pdf/2205.12720">pdf</a>, <a href="https://arxiv.org/format/2205.12720">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-020-00808-w">10.1038/s41565-020-00808-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant enhancement of third-harmonic generation in graphene-metal heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Calafell%2C+I+A">Irati Alonso Calafell</a>, <a href="/search/cond-mat?searchtype=author&query=Rozema%2C+L+A">Lee A. Rozema</a>, <a href="/search/cond-mat?searchtype=author&query=Iranzo%2C+D+A">David Alcaraz Iranzo</a>, <a href="/search/cond-mat?searchtype=author&query=Trenti%2C+A">Alessandro Trenti</a>, <a href="/search/cond-mat?searchtype=author&query=Cox%2C+J+D">Joel D. Cox</a>, <a href="/search/cond-mat?searchtype=author&query=Kumar%2C+A">Avinash Kumar</a>, <a href="/search/cond-mat?searchtype=author&query=Bieliaiev%2C+H">Hlib Bieliaiev</a>, <a href="/search/cond-mat?searchtype=author&query=Nanot%2C+S">Sebastian Nanot</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Efetov%2C+D+K">Dmitri K. Efetov</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+J+Y">Jin Yong Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Kong%2C+J">Jing Kong</a>, <a href="/search/cond-mat?searchtype=author&query=Englund%2C+D+R">Dirk R. Englund</a>, <a href="/search/cond-mat?searchtype=author&query=de+Abajo%2C+F+J+G">F. Javier Garc铆a de Abajo</a>, <a href="/search/cond-mat?searchtype=author&query=Koppens%2C+F+H+L">Frank H. L. Koppens</a>, <a href="/search/cond-mat?searchtype=author&query=Walther%2C+P">Philp Walther</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12720v1-abstract-short" style="display: inline;"> Nonlinear nanophotonics leverages engineered nanostructures to funnel light into small volumes and intensify nonlinear optical processes with spectral and spatial control. Due to its intrinsically large and electrically tunable nonlinear optical response, graphene is an especially promising nanomaterial for nonlinear optoelectronic applications. Here we report on exceptionally strong optical nonli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12720v1-abstract-full').style.display = 'inline'; document.getElementById('2205.12720v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12720v1-abstract-full" style="display: none;"> Nonlinear nanophotonics leverages engineered nanostructures to funnel light into small volumes and intensify nonlinear optical processes with spectral and spatial control. Due to its intrinsically large and electrically tunable nonlinear optical response, graphene is an especially promising nanomaterial for nonlinear optoelectronic applications. Here we report on exceptionally strong optical nonlinearities in graphene-insulator-metal heterostructures, demonstrating an enhancement by three orders of magnitude in the third-harmonic signal compared to bare graphene. Furthermore, by increasing the graphene Fermi energy through an external gate voltage, we find that graphene plasmons mediate the optical nonlinearity and modify the third-harmonic signal. Our findings show that graphene-insulator-metal is a promising heterostructure for optically-controlled and electrically-tunable nano-optoelectronic components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12720v1-abstract-full').style.display = 'none'; document.getElementById('2205.12720v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnology 16, 318-324, (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09705">arXiv:2203.09705</a> <span> [<a href="https://arxiv.org/pdf/2203.09705">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.176402">10.1103/PhysRevLett.129.176402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tailoring Dirac fermions by in-situ tunable high-order moire pattern in graphene-monolayer xenon heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+C">Chunlong Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wan%2C+Q">Qiang Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cao Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Mo%2C+S">Shangkun Mo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+R">Renzhe Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+K">Keming Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yanping Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+S">Shengjun Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+F">Fengcheng Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chendong Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+N">Nan Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09705v1-abstract-short" style="display: inline;"> A variety of novel quantum phases have been achieved in twist bilayer graphene (tBLG) and other moire superlattices recently, including correlated insulators, superconductivity, magnetism, and topological states. These phenomena are very sensitive to the moire superlattices, which can hardly be changed rapidly or intensely. Here, we report the experimental realization of a high-order moire pattern… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09705v1-abstract-full').style.display = 'inline'; document.getElementById('2203.09705v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09705v1-abstract-full" style="display: none;"> A variety of novel quantum phases have been achieved in twist bilayer graphene (tBLG) and other moire superlattices recently, including correlated insulators, superconductivity, magnetism, and topological states. These phenomena are very sensitive to the moire superlattices, which can hardly be changed rapidly or intensely. Here, we report the experimental realization of a high-order moire pattern (a high-order interference pattern) in graphene-monolayer xenon heterostructure (G/mXe), with moire period in-situ tuned from few nanometers to infinity by changing the lattice constant of Xe through different annealing temperatures and pressures. We use angle-resolved photoemission spectroscopy to directly observe that replicas of graphene Dirac cone emerge and move close to each other in momentum-space as moire pattern continuously expands in real-space. When the moire period approaches infinity, the replicas finally overlap with each other and an energy gap is observed at the Dirac point induced by intervalley coupling, which is a manifestation of Kekule distortion. We construct a continuum moire Hamiltonian, which can explain the experimental results well. The form of moire Hamiltonian in G/mXe is similar to that in tBLG, and moire band with narrow bandwidth is predicted in G/mXe. However, the moire Hamiltonian couples Dirac fermions from different valleys in G/mXe, instead of ones from different layers in tBLG. Our work demonstrates a novel platform to study the continuous evolution of moire pattern and its modulation effect on electronic structure, and provides an unprecedented approach for tailoring Dirac fermions with tunable intervalley coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09705v1-abstract-full').style.display = 'none'; document.getElementById('2203.09705v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, supplementary materials available from the authors, submitted Feb. 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 176402 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.03623">arXiv:2202.03623</a> <span> [<a href="https://arxiv.org/pdf/2202.03623">pdf</a>, <a href="https://arxiv.org/format/2202.03623">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.xcrp.2022.100993">10.1016/j.xcrp.2022.100993 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of Crystalline Few-body Correlations in Mass-imbalanced Fermi Polarons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Ruijin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+X">Xiaoling Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.03623v3-abstract-short" style="display: inline;"> Polarons can serve as an ideal platform to identify few-body correlations in tackling complex many-body problems. In this work, we reveal various crystalline few-body correlations smoothly emergent from the mass-imbalanced Fermi polarons in two dimensions. A unified variational approach up to three particle-hole excitations allows us to extract the dominant dimer, trimer or tetramer correlation in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03623v3-abstract-full').style.display = 'inline'; document.getElementById('2202.03623v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.03623v3-abstract-full" style="display: none;"> Polarons can serve as an ideal platform to identify few-body correlations in tackling complex many-body problems. In this work, we reveal various crystalline few-body correlations smoothly emergent from the mass-imbalanced Fermi polarons in two dimensions. A unified variational approach up to three particle-hole excitations allows us to extract the dominant dimer, trimer or tetramer correlation in a single framework. When the fermion-impurity mass ratio is beyond certain critical value, the Fermi polaron is found to undergo a smooth crossover, instead of a sharp transition, from the polaronic to trimer and tetramer regimes as increasing the fermion-impurity attraction. The emergent trimer and tetramer correlations result in the momentum-space crystallization of particle-hole excitations featuring a stable diagonal or triangular structure, as can be directly probed through the density-density correlation of majority fermions. Our results shed light on the intriguing quantum phases in the mass-imbalanced Fermi-Fermi mixtures beyond the pairing superfluid paradigm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03623v3-abstract-full').style.display = 'none'; document.getElementById('2202.03623v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11+5 pages, 5+4 figures; to appear in Cell Reports Physical Science</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Cell Reports Physical Science 3, 100993 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.01437">arXiv:2202.01437</a> <span> [<a href="https://arxiv.org/pdf/2202.01437">pdf</a>, <a href="https://arxiv.org/format/2202.01437">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.073401">10.1103/PhysRevLett.129.073401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal tetramer and pentamer in two-dimensional fermionic mixtures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Ruijin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+X">Xiaoling Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.01437v2-abstract-short" style="display: inline;"> We study the emergence of universal tetramer and pentamer bound states in the two-dimensional $(N+1)$ system, which consists of $N$ identical heavy fermions interacting with a light atom. We show that the critical heavy-light mass ratio to support a ($3+1$) tetramer below the trimer threshold is $3.38$, and to support a ($4+1$) pentamer below the tetramer threshold is $5.14$. While these ground st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01437v2-abstract-full').style.display = 'inline'; document.getElementById('2202.01437v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.01437v2-abstract-full" style="display: none;"> We study the emergence of universal tetramer and pentamer bound states in the two-dimensional $(N+1)$ system, which consists of $N$ identical heavy fermions interacting with a light atom. We show that the critical heavy-light mass ratio to support a ($3+1$) tetramer below the trimer threshold is $3.38$, and to support a ($4+1$) pentamer below the tetramer threshold is $5.14$. While these ground state tetramer and pentamer are both with zero total angular momentum, they exhibit very different density distributions and correlations in momentum space, due to their distinct angular momentum decompositions in the dimer-fermion frame. These universal bound states can be accessible by a number of Fermi-Fermi mixtures now realized in cold atoms laboratories, which also suggest novel few-body correlations dominant in their corresponding many-body systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01437v2-abstract-full').style.display = 'none'; document.getElementById('2202.01437v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures; version to appear in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 073401 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09157">arXiv:2112.09157</a> <span> [<a href="https://arxiv.org/pdf/2112.09157">pdf</a>, <a href="https://arxiv.org/format/2112.09157">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.011603">10.1103/PhysRevLett.129.011603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disordered vector models: from higher spins to incipient strings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chang%2C+C">Chi-Ming Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Colin-Ellerin%2C+S">Sean Colin-Ellerin</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Rangamani%2C+M">Mukund Rangamani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09157v2-abstract-short" style="display: inline;"> We present a one-parameter family of large $N$ disordered models, with and without supersymmetry, in three spacetime dimensions. They interpolate from the critical large $N$ vector model dual to a classical higher spin theory, towards a theory with a classical string dual. We analyze the spectrum and OPE data of the theories. While the supersymmetric model is always well-behaved the non-supersymme… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09157v2-abstract-full').style.display = 'inline'; document.getElementById('2112.09157v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09157v2-abstract-full" style="display: none;"> We present a one-parameter family of large $N$ disordered models, with and without supersymmetry, in three spacetime dimensions. They interpolate from the critical large $N$ vector model dual to a classical higher spin theory, towards a theory with a classical string dual. We analyze the spectrum and OPE data of the theories. While the supersymmetric model is always well-behaved the non-supersymmetric model is unitary only over a small parameter range. We offer some speculations on the origin of strings from the higher spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09157v2-abstract-full').style.display = 'none'; document.getElementById('2112.09157v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages + appendix, several figures. v2: minor changes, published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04616">arXiv:2112.04616</a> <span> [<a href="https://arxiv.org/pdf/2112.04616">pdf</a>, <a href="https://arxiv.org/format/2112.04616">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.214409">10.1103/PhysRevB.106.214409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Persistent Corner Spin Mode at the Quantum Critical Point of a Plaquette Heisenberg Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Y">Yining Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Chen Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+Z">Zijian Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+L">Long Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04616v3-abstract-short" style="display: inline;"> Gapless edge states are the hallmark of a large class of topological states of matter. Recently, intensive research has been devoted to understanding the physical properties of the edge states at the quantum phase transitions of the bulk topological states. A higher-order symmetry-protected topological state is realized in a plaquette Heisenberg model on the square lattice. In its disordered phase… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04616v3-abstract-full').style.display = 'inline'; document.getElementById('2112.04616v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04616v3-abstract-full" style="display: none;"> Gapless edge states are the hallmark of a large class of topological states of matter. Recently, intensive research has been devoted to understanding the physical properties of the edge states at the quantum phase transitions of the bulk topological states. A higher-order symmetry-protected topological state is realized in a plaquette Heisenberg model on the square lattice. In its disordered phase, the lattice with an open boundary hosts either dangling corner states with spin-$1/2$ degeneracy characterizing the topological phase, or nondangling corner states without degeneracy, which depends on the bond configuration near the corners. In this work, we study the critical behavior of these corner states at the quantum critical point (QCP), and find that the spin-$1/2$ corner state induces a new universality class of the corner critical behavior, which is distinct from the ordinary transition of the nondangling corners. In particular, we find that the dangling spin-$1/2$ corner state persists at the QCP despite its coupling to the critical spin fluctuations in the bulk. This shows the robustness of the corner state of the higher-order topological state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04616v3-abstract-full').style.display = 'none'; document.getElementById('2112.04616v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures; v2: revised version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 214409 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.07593">arXiv:2110.07593</a> <span> [<a href="https://arxiv.org/pdf/2110.07593">pdf</a>, <a href="https://arxiv.org/format/2110.07593">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.245115">10.1103/PhysRevB.108.245115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge order and superconductivity in a minimal two-band model for infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+H">Hong-Chen Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+C">Chunjing Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.07593v2-abstract-short" style="display: inline;"> The recent discovery of superconductivity in infinite-layer nickelates has drawn considerable attention; however, a consensus on the fundamental building blocks and common ingredients necessary to understand and describe their ground states and emergent properties is lacking. A series of experimental and theoretical studies have suggested that an effective two-band Hubbard model with Ni 3… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07593v2-abstract-full').style.display = 'inline'; document.getElementById('2110.07593v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.07593v2-abstract-full" style="display: none;"> The recent discovery of superconductivity in infinite-layer nickelates has drawn considerable attention; however, a consensus on the fundamental building blocks and common ingredients necessary to understand and describe their ground states and emergent properties is lacking. A series of experimental and theoretical studies have suggested that an effective two-band Hubbard model with Ni 3$d_{x^2-y^2}$ and rare-earth ($R$) 5$d$ character may describe the low-energy physics. Here, we study the ground state properties of this two-band model on four-leg cylinders using the density-matrix renormalization group (DMRG) technique to better grasp whether such a simple model can embody the essential physics. A key difference compared to single-band Hubbard materials is that the system is self-doped: even at overall half-filling, the $R$-band acts as an electron reservoir, hole-doping the Ni-layer and fundamentally altering the physics expected from an undoped antiferromagnet. On the four-leg cylinder, the ground state is consistent with a Luttinger liquid, with anti-phase modulations of the charge density in the Ni- and $R$-layers having corresponding wavevectors that lock together. Light hole doping away from 1/2 filling releases the locking between the Ni and the $R$ charge modulations, as the electron density in the $R$-band decreases and eventually becomes exhausted at a hole doping concentration that depends sensitively on the effective splitting between the Ni and the $R$ orbitals. The ground state of the doped system is consistent with a Luther-Emery liquid, possessing quasi-long-range superconducting correlations in the Ni layer, similar to the single-band Hubbard model. Our results are consistent with experimental observations and may help to reveal the microscopic mechanism for pairing and other emergent properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07593v2-abstract-full').style.display = 'none'; document.getElementById('2110.07593v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.00994">arXiv:2109.00994</a> <span> [<a href="https://arxiv.org/pdf/2109.00994">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum design for advanced qubits: plasmonium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+F">Feng-Ming Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+M">Ming-Cheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Can Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shao-Wei Li</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+Z">Zhong-Xia Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Ying%2C+C">Chong Ying</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jian-Wen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng-Zhi Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xiaobo Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+C">Chao-Yang Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.00994v3-abstract-short" style="display: inline;"> The increasingly complex quantum electronic circuits with a number of coupled quantum degrees of freedom will become intractable to be simulated on classical computers, and requires quantum computers for an efficient simulation. In turn, it will be a central concept in quantum-aided design for next-generation quantum processors. Here, we demonstrate variational quantum eigensolvers to simulate sup… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00994v3-abstract-full').style.display = 'inline'; document.getElementById('2109.00994v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.00994v3-abstract-full" style="display: none;"> The increasingly complex quantum electronic circuits with a number of coupled quantum degrees of freedom will become intractable to be simulated on classical computers, and requires quantum computers for an efficient simulation. In turn, it will be a central concept in quantum-aided design for next-generation quantum processors. Here, we demonstrate variational quantum eigensolvers to simulate superconducting quantum circuits with varying parameters covering a plasmon-transition regime, which reveals an advanced post-transmon qubit, "plasmonium". We fabricate this new qubit and demonstrate that it exhibits not only high single- and two-qubit gate fidelities (99.85(1)% and 99.58(3)%, respectively), but also a shrinking (by 60%) physical size and larger (by 50%) anharmonicity than the transmon, which can bring a number of advantages for scaling up multi-qubit devices. Our work opens the way to designing advanced quantum processors using existing quantum computing resources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00994v3-abstract-full').style.display = 'none'; document.getElementById('2109.00994v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We demonstrate quantum computer-aided design of a new high-performance superconducting quantum processor</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.13857">arXiv:2108.13857</a> <span> [<a href="https://arxiv.org/pdf/2108.13857">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsaelm.1c01233">10.1021/acsaelm.1c01233 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Toward 100% Spin-Orbit Torque Efficiency with High Spin-Orbital Hall Conductivity Pt-Cr Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">Chen-Yu Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Chiu%2C+Y">Yu-Fang Chiu</a>, <a href="/search/cond-mat?searchtype=author&query=Tsai%2C+C">Chia-Chin Tsai</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+C">Chao-Chung Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+K">Kuan-Hao Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng-Wei Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+C">Chien-Min Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+M">Ming-Yuan Song</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yen-Lin Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+S">Shy-Jay Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Pai%2C+C">Chi-Feng Pai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.13857v3-abstract-short" style="display: inline;"> 5d transition metal Pt is the canonical spin Hall material for efficient generation of spin-orbit torques (SOTs) in Pt/ferromagnetic layer (FM) heterostructures. However, for a long while with tremendous engineering endeavors, the damping-like SOT efficiencies ($尉_{DL}$) of Pt and Pt alloys have still been limited to $尉_{DL}$<0.5. Here we present that with proper alloying elements, particularly 3d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13857v3-abstract-full').style.display = 'inline'; document.getElementById('2108.13857v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.13857v3-abstract-full" style="display: none;"> 5d transition metal Pt is the canonical spin Hall material for efficient generation of spin-orbit torques (SOTs) in Pt/ferromagnetic layer (FM) heterostructures. However, for a long while with tremendous engineering endeavors, the damping-like SOT efficiencies ($尉_{DL}$) of Pt and Pt alloys have still been limited to $尉_{DL}$<0.5. Here we present that with proper alloying elements, particularly 3d transition metals V and Cr, a high spin-orbital Hall conductivity ($蟽_{SH}{\sim}6.5{\times}10^{5}({\hbar}/2e)惟^{-1}{\cdot} m^{-1}$) can be developed. Especially for the Cr-doped case, an extremely high $尉_{DL}{\sim}0.9$ in a Pt$_{0.69}$Cr$_{0.31}$/Co device can be achieved with a moderate Pt$_{0.69}$Cr$_{0.31}$ resistivity of $蟻_{xx}{\sim}133 渭惟{\cdot}cm$. A low critical SOT-driven switching current density of $J_{c}{\sim}3.2{\times}10^{6} A{\cdot}cm^{-2}$ is also demonstrated. The damping constant ($伪$) of Pt$_{0.69}$Cr$_{0.31}$/FM structure is also found to be reduced to 0.052 from the pure Pt/FM case of 0.078. The overall high $蟽_{SH}$, giant $尉_{DL}$, moderate $蟻_{xx}$, and reduced $伪$ of such a Pt-Cr/FM heterostructure makes it promising for versatile extremely low power consumption SOT memory applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13857v3-abstract-full').style.display = 'none'; document.getElementById('2108.13857v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 12 figures, 3 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.07780">arXiv:2107.07780</a> <span> [<a href="https://arxiv.org/pdf/2107.07780">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.024432">10.1103/PhysRevB.104.024432 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Unidirectional Magnetoresistance in Metallic Heterostructures in the Spin Transfer Torque Regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Ting-Yu Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+C">Chih-Lin Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+C">Chao-Chung Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng-Wei Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yu-Hao Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+T">Tian-Yue Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yan-Ting Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Pai%2C+C">Chi-Feng Pai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.07780v1-abstract-short" style="display: inline;"> A large unidirectional magnetoresistance (UMR) ratio of UMR/$R_{xx}\sim$ $0.36\%$ is found in W/CoFeB metallic bilayer heterostructures at room temperature. Three different regimes in terms of the current dependence of UMR ratio are identified: A spin-dependent-scattering mechanism regime at small current densities $J \sim$ $10$$^{9}$A/m$^{2}$ (UMR ratio $\propto$ $J$), a spin-magnon-interaction m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.07780v1-abstract-full').style.display = 'inline'; document.getElementById('2107.07780v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.07780v1-abstract-full" style="display: none;"> A large unidirectional magnetoresistance (UMR) ratio of UMR/$R_{xx}\sim$ $0.36\%$ is found in W/CoFeB metallic bilayer heterostructures at room temperature. Three different regimes in terms of the current dependence of UMR ratio are identified: A spin-dependent-scattering mechanism regime at small current densities $J \sim$ $10$$^{9}$A/m$^{2}$ (UMR ratio $\propto$ $J$), a spin-magnon-interaction mechanism regime at intermediate $J \sim$ $10$$^{10}$A/m$^{2}$ (UMR ratio $\propto$ $J$$^{3}$), and a spin-transfer torque (STT) regime at $J \sim$ $10$$^{11}$A/m$^{2}$ (UMR ratio independent of $J$). We verify the direct correlation between this large UMR and the transfer of spin angular momentum from the W layer to the CoFeB layer by both field-dependent and current-dependent UMR characterizations. Numerical simulations further confirm that the large STT-UMR stems from the tilting of the magnetization affected by the spin Hall effect-induced spin-transfer torques. An alternative approach to estimate damping-like spin-torque efficiencies from magnetic heterostructures is also proposed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.07780v1-abstract-full').style.display = 'none'; document.getElementById('2107.07780v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.07331">arXiv:2104.07331</a> <span> [<a href="https://arxiv.org/pdf/2104.07331">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.165107">10.1103/PhysRevB.103.165107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inherited Weak Topological Insulator Signatures in Topological Hourglass Semimetal Nb3XTe6 (X = Si, Ge) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wan%2C+Q">Q. Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+T+Y">T. Y. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">S. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+M">M. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Z. Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+C+L">C. L. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">C. Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Mo%2C+S+K">S. K. Mo</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+W">W. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z+H">Z. H. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y+B">Y. B. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Lev%2C+L+L">L. L. Lev</a>, <a href="/search/cond-mat?searchtype=author&query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+J">J. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Mao%2C+Z+Q">Z. Q. Mao</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+J+F">J. F. Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S+A">Shengyuan A. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+N">N. Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.07331v1-abstract-short" style="display: inline;"> Using spin-resolved and angle-resolved photoemission spectroscopy and first-principles calculations, we have identified bulk band inversion and spin polarized surface state evolved from a weak topological insulator (TI) phase in van der Waals materials Nb3XTe6 (X = Si, Ge). The fingerprints of weak TI homologically emerge with hourglass fermions, as multi nodal chains composed by the same pair of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07331v1-abstract-full').style.display = 'inline'; document.getElementById('2104.07331v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.07331v1-abstract-full" style="display: none;"> Using spin-resolved and angle-resolved photoemission spectroscopy and first-principles calculations, we have identified bulk band inversion and spin polarized surface state evolved from a weak topological insulator (TI) phase in van der Waals materials Nb3XTe6 (X = Si, Ge). The fingerprints of weak TI homologically emerge with hourglass fermions, as multi nodal chains composed by the same pair of valence and conduction bands gapped by spin orbit coupling. The novel topological state, with a pair of valence and conduction bands encoding both weak TI and hourglass semimetal nature, is essential and guaranteed by nonsymmorphic symmetry. It is distinct from TIs studied previously based on band inversions without symmetry protections. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07331v1-abstract-full').style.display = 'none'; document.getElementById('2104.07331v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 165107 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.12735">arXiv:2103.12735</a> <span> [<a href="https://arxiv.org/pdf/2103.12735">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.235130">10.1103/PhysRevB.104.235130 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of multi Dirac fermion cloning induced by moir茅 potential in graphene-SiC heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+C+L">C. L. Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wan%2C+Q">Q. Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">C. Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Mo%2C+S+K">S. K. Mo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+R+Z">R. Z. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+K+M">K. M. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y+P">Y. P. Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C+D">C. D. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+N">N. Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.12735v1-abstract-short" style="display: inline;"> We reexamine the electronic structure of graphene on SiC substrate by angle-resolved photoemission spectroscopy. We directly observed multiply cloning of Dirac cone, in addition to ones previously attributed to reconstruction. The locations, relative distances and anisotropy of Dirac cone replicas fully agree with the moir茅 pattern of graphene-SiC heterostructure. Our results provide a straightfor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12735v1-abstract-full').style.display = 'inline'; document.getElementById('2103.12735v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.12735v1-abstract-full" style="display: none;"> We reexamine the electronic structure of graphene on SiC substrate by angle-resolved photoemission spectroscopy. We directly observed multiply cloning of Dirac cone, in addition to ones previously attributed to reconstruction. The locations, relative distances and anisotropy of Dirac cone replicas fully agree with the moir茅 pattern of graphene-SiC heterostructure. Our results provide a straightforward example of moir茅 potential modulation in engineering electronic structure with Dirac fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12735v1-abstract-full').style.display = 'none'; document.getElementById('2103.12735v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 235130 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.08123">arXiv:2103.08123</a> <span> [<a href="https://arxiv.org/pdf/2103.08123">pdf</a>, <a href="https://arxiv.org/format/2103.08123">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.040403">10.1103/PhysRevLett.128.040403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ruling out real-valued standard formalism of quantum theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+M">Ming-Cheng Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Can Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+F">Feng-Ming Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jian-Wen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ying%2C+C">Chong Ying</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+Z">Zhong-Xia Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yulin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+M">Ming Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+H">Hui Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+F">Futian Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng-Zhi Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xiaobo Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Cabello%2C+A">Adan Cabello</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+C">Chao-Yang Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.08123v3-abstract-short" style="display: inline;"> Standard quantum theory was formulated with complex-valued Schrodinger equations, wave functions, operators, and Hilbert spaces. Previous work attempted to simulate quantum systems using only real numbers by exploiting an enlarged Hilbert space. A fundamental question arises: are complex numbers really necessary in the standard formalism of quantum theory? To answer this question, a quantum game h… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08123v3-abstract-full').style.display = 'inline'; document.getElementById('2103.08123v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.08123v3-abstract-full" style="display: none;"> Standard quantum theory was formulated with complex-valued Schrodinger equations, wave functions, operators, and Hilbert spaces. Previous work attempted to simulate quantum systems using only real numbers by exploiting an enlarged Hilbert space. A fundamental question arises: are complex numbers really necessary in the standard formalism of quantum theory? To answer this question, a quantum game has been developed to distinguish standard quantum theory from its real-number analog by revealing a contradiction in the maximum game scores between a high-fidelity multi-qubit quantum experiment and players using only real-number quantum theory. Here, using superconducting qubits, we faithfully experimentally implement the quantum game based on entanglement swapping with a state-of-the-art fidelity of 0.952(1), which beats the real-number bound of 7.66 by 43 standard deviations. Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08123v3-abstract-full').style.display = 'none'; document.getElementById('2103.08123v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted on March 2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 040403 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.08047">arXiv:2103.08047</a> <span> [<a href="https://arxiv.org/pdf/2103.08047">pdf</a>, <a href="https://arxiv.org/format/2103.08047">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.202000126">10.1002/qute.202000126 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doping quantum spin liquids on the Kagome lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yi-Fan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Sheng%2C+D">Dong-Ning Sheng</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+H">Hong-Chen Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.08047v1-abstract-short" style="display: inline;"> We review recent density-matrix renormalization group (DMRG) studies of lightly doped quantum spin liquids (QSLs) on the kagome lattice. While a number of distinct conducting phases, including high-temperature superconductivity, have been theoretically anticipated we find instead a tendency toward fractionalized insulating charge-density-wave (CDW) states. In agreement with earlier work (Jiang, De… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08047v1-abstract-full').style.display = 'inline'; document.getElementById('2103.08047v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.08047v1-abstract-full" style="display: none;"> We review recent density-matrix renormalization group (DMRG) studies of lightly doped quantum spin liquids (QSLs) on the kagome lattice. While a number of distinct conducting phases, including high-temperature superconductivity, have been theoretically anticipated we find instead a tendency toward fractionalized insulating charge-density-wave (CDW) states. In agreement with earlier work (Jiang, Devereaux, and Kivelson, Phys. Rev. Lett. ${\bf 119}$, 067002 (2017)), results for the $t$-$J$ model reveal that starting from a fully gapped QSL, light doping leads to CDW long-range order with a pattern that depends on lattice geometry and doping concentration such that there is one doped-hole per CDW unit cell, while the spin-spin correlations remain short-ranged. Alternatively, this state can be viewed as a stripe crystal or Wigner crystal of spinless holons, rather than doped holes. From here, by studying generalized versions of the $t$-$J$ model, we extend these results to light doping of other types of QSLs, including critical and chiral QSLs. Our results suggest that doping these QSLs also leads to insulating states with long-range CDW orders. While the superconducting correlations are short-ranged, they can be significantly enhanced by second-neighbor electron hopping. The relevance of our numerical results to Kagome materials is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08047v1-abstract-full').style.display = 'none'; document.getElementById('2103.08047v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Quantum Technol. 2021, 2000126 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Peng%2C+C&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Peng%2C+C&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Peng%2C+C&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Peng%2C+C&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>