CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 311 results for author: <span class="mathjax">Devereaux, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Devereaux, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Devereaux%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Devereaux, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22727">arXiv:2410.22727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22727">pdf</a>, <a href="https://arxiv.org/format/2410.22727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Colossal magnetoresistance from spin-polarized polarons in an Ising system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Ying-Fei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E+M">Emily M. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balguri%2C+S">Sudhaman Balguri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chun-Jing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahenderu%2C+M+B">Mira B. Mahenderu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhi-Cheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Su-Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Dong-Hui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaanen%2C+J">Jan Zaanen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F">Fazel Tafti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22727v1-abstract-short" style="display: inline;"> Recent experiments suggest a new paradigm towards novel colossal magnetoresistance (CMR) in a family of materials EuM$_2$X$_2$(M=Cd, In, Zn; X=P, As), distinct from the traditional avenues involving Kondo-RKKY crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy (ARPES) and density functional th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22727v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22727v1-abstract-full" style="display: none;"> Recent experiments suggest a new paradigm towards novel colossal magnetoresistance (CMR) in a family of materials EuM$_2$X$_2$(M=Cd, In, Zn; X=P, As), distinct from the traditional avenues involving Kondo-RKKY crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to explore their origin, particularly focusing on EuCd$_2$P$_2$. While the low-energy spectral weight royally tracks that of the resistivity anomaly near the temperature with maximum magnetoresistance (T$_{MR}$) as expected from transport-spectroscopy correspondence, the spectra are completely incoherent and strongly suppressed with no hint of a Landau quasiparticle. Using systematic material and temperature dependence investigation complemented by theory, we attribute this non-quasiparticle caricature to the strong presence of entangled magnetic and lattice interactions, a characteristic enabled by the $p$-$f$ mixing. Given the known presence of ferromagnetic clusters, this naturally points to the origin of CMR being the scattering of spin-polarized polarons at the boundaries of ferromagnetic clusters. These results are not only illuminating to investigate the strong correlations and topology in EuCd$_2$X$_2$ family, but, in a broader view, exemplify how multiple cooperative interactions can give rise to extraordinary behaviors in condensed matter systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22727v1-abstract-full').style.display = 'none'; document.getElementById('2410.22727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14863">arXiv:2410.14863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14863">pdf</a>, <a href="https://arxiv.org/format/2410.14863">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Intrinsic Thermal Hall Effect in Mott Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J+K">Jixun K. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+E+Z">Emily Z. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W+O">Wen O. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cookmeyer%2C+T">Tessa Cookmeyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y+B">Yong Baek Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14863v1-abstract-short" style="display: inline;"> In light of recent experimental data indicating a substantial thermal Hall effect in square lattice antiferromagnetic Mott insulators, we investigate whether a simple Mott insulator can sustain a finite thermal Hall effect. We verify that the answer is &#34;no&#34; if one performs calculations within a spin-only low-energy effective spin model with non-interacting magnons. However, by performing determina&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14863v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14863v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14863v1-abstract-full" style="display: none;"> In light of recent experimental data indicating a substantial thermal Hall effect in square lattice antiferromagnetic Mott insulators, we investigate whether a simple Mott insulator can sustain a finite thermal Hall effect. We verify that the answer is &#34;no&#34; if one performs calculations within a spin-only low-energy effective spin model with non-interacting magnons. However, by performing determinant quantum Monte Carlo simulations, we show the single-band $t$-$t&#39;$-$U$ Hubbard model coupled to an orbital magnetic field does support a finite thermal Hall effect when $t&#39; \neq 0$ and $B \neq 0$ in the Mott insulating phase. We argue that the (carrier agnostic) necessary conditions for observing a finite thermal Hall effect are time-reversal and particle-hole symmetry breaking. By considering magnon-magnon scattering using a semi-classical Boltzmann analysis, we illustrate a physical mechanism by which finite transverse thermal conductivity may arise, consistent with our symmetry argument and numerical results. Our results contradict the conventional wisdom that square and triangular lattices with SU(2) symmetry do not support a finite thermal Hall effect and call for a critical re-examination of thermal Hall effect data in insulating magnets, as the magnon contribution should not be excluded a priori. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14863v1-abstract-full').style.display = 'none'; document.getElementById('2410.14863v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+23 pages, 3+11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07705">arXiv:2409.07705</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07705">pdf</a>, <a href="https://arxiv.org/format/2409.07705">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital inversion and emergent lattice dynamics in infinite layer CaCoO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jost%2C+D">Daniel Jost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lomeli%2C+E+G">Eder G. Lomeli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+W+J">Woo Jin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E+M">Emily M. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">Matteo Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Kejin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Wei-Sheng Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07705v1-abstract-short" style="display: inline;"> The layered cobaltate CaCoO$_2$ exhibits a unique herringbone-like structure. Serving as a potential prototype for a new class of complex lattice patterns, we study the properties of CaCoO$_2$ using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). Our results reveal a significant inter-plane hybridization between the Ca $4s-$ and Co $3d-$orbitals, leading to an i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07705v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07705v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07705v1-abstract-full" style="display: none;"> The layered cobaltate CaCoO$_2$ exhibits a unique herringbone-like structure. Serving as a potential prototype for a new class of complex lattice patterns, we study the properties of CaCoO$_2$ using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). Our results reveal a significant inter-plane hybridization between the Ca $4s-$ and Co $3d-$orbitals, leading to an inversion of the textbook orbital occupation of a square planar geometry. Further, our RIXS data reveal a strong low energy mode, with anomalous intensity modulations as a function of momentum transfer close to a quasi-static response suggestive of electronic and/or orbital ordering. These findings indicate that the newly discovered herringbone structure exhibited in CaCoO$_2$ may serve as a promising laboratory for the design of materials having strong electronic, orbital and lattice correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07705v1-abstract-full').style.display = 'none'; document.getElementById('2409.07705v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01685">arXiv:2408.01685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01685">pdf</a>, <a href="https://arxiv.org/format/2408.01685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Contrasting electron-phonon interaction between electron- and hole-doped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qinda Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Ke-Jun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berntsen%2C+M+H">Magnus H. Berntsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grubi%C5%A1i%C4%87-%C4%8Cabo%2C+A">Antonija Grubi拧i膰-膶abo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dendzik%2C+M">Maciej Dendzik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balasubramanian%2C+T">Thiagarajan Balasubramanian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+C">Craig Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Su-Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Junfeng He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotundu%2C+C+R">Costel R. Rotundu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+S">Young S. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Dong-Hui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D">Dung-Hai Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjernberg%2C+O">Oscar Tjernberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01685v1-abstract-short" style="display: inline;"> Spin- and charge-lattice interactions are potential key factors in the microscopic mechanism of high-temperature superconductivity in cuprates. Although both interactions can dramatically shape the low-energy electronic structure, their phenomenological roles in superconductivity are usually investigated independently. Employing angle-resolved photoemission spectroscopy, we reveal the spectroscopi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01685v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01685v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01685v1-abstract-full" style="display: none;"> Spin- and charge-lattice interactions are potential key factors in the microscopic mechanism of high-temperature superconductivity in cuprates. Although both interactions can dramatically shape the low-energy electronic structure, their phenomenological roles in superconductivity are usually investigated independently. Employing angle-resolved photoemission spectroscopy, we reveal the spectroscopic fingerprint of short-range antiferromagnetic order in conjunction with enhanced electron-phonon interaction in the electron-doped cuprate superconductor $\mathrm{Nd_{1.85}Ce_{0.15}CuO_4}$. The observed mode coupling exhibits a strong momentum dependence that is in striking contrast to the node-antinode dichotomy previously observed in the hole-doped cuprates. Our results reveal an intimate relationship between electron-phonon coupling and antiferromagnetic fluctuations, which collectively sets the stage for unconventional superconductivity in the electron-doped cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01685v1-abstract-full').style.display = 'none'; document.getElementById('2408.01685v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03293">arXiv:2407.03293</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03293">pdf</a>, <a href="https://arxiv.org/format/2407.03293">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Microscopic theory for electron-phonon coupling in twisted bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03293v1-abstract-short" style="display: inline;"> The origin of superconductivity in twisted bilayer graphene -- whether phonon-driven or electron-driven -- remains unresolved. The answer to this question is hindered by the absence of a quantitative and efficient model for electron-phonon coupling (EPC). In this work, we develop a first-principles-based microscopic theory to calculate EPC in twisted bilayer graphene for arbitrary twist angles wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03293v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03293v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03293v1-abstract-full" style="display: none;"> The origin of superconductivity in twisted bilayer graphene -- whether phonon-driven or electron-driven -- remains unresolved. The answer to this question is hindered by the absence of a quantitative and efficient model for electron-phonon coupling (EPC). In this work, we develop a first-principles-based microscopic theory to calculate EPC in twisted bilayer graphene for arbitrary twist angles without needing a periodic moir茅 supercell. We adopt a momentum-space model for the electronic and phonon structures and quantify the EPC using generalized Eliashberg-McMillan theory for superconductivity without an adiabatic approximation. Using this framework, we find that the EPC is significantly enhanced near the magic angle, and drops abruptly for larger twist angles. We show that the EPC strength of a phonon corresponds to the modification of the moir茅 potential. In particular, we identify several $螕$-phonon branches that contribute most significantly to the EPC, including one layer breathing mode, three layer shearing modes, and one chiral mode. These phonons should be experimentally detectable via Raman spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03293v1-abstract-full').style.display = 'none'; document.getElementById('2407.03293v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19517">arXiv:2405.19517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.19517">pdf</a>, <a href="https://arxiv.org/format/2405.19517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High-pressure characterization of Ag$_3$AuTe$_2$: Implications for strain-induced band tuning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Won%2C+J">Juyeon Won</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+R">Ravhi Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gebre%2C+M+S">Mebatsion S. Gebre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popov%2C+D">Dmitry Popov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hemley%2C+R+J">Russell J. Hemley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bradlyn%2C+B">Barry Bradlyn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shoemaker%2C+D+P">Daniel P. Shoemaker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19517v2-abstract-short" style="display: inline;"> Recent band structure calculations have suggested the potential for band tuning in a chiral semiconductor, Ag$_3$AuTe$_2$, to zero upon application of negative strain. In this study, we report on the synthesis of polycrystalline Ag$_3$AuTe$_2$ and investigate its transport, optical properties, and pressure compatibility. Transport measurements reveal the semiconducting behavior of Ag$_3$AuTe$_2$ w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19517v2-abstract-full').style.display = 'inline'; document.getElementById('2405.19517v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19517v2-abstract-full" style="display: none;"> Recent band structure calculations have suggested the potential for band tuning in a chiral semiconductor, Ag$_3$AuTe$_2$, to zero upon application of negative strain. In this study, we report on the synthesis of polycrystalline Ag$_3$AuTe$_2$ and investigate its transport, optical properties, and pressure compatibility. Transport measurements reveal the semiconducting behavior of Ag$_3$AuTe$_2$ with high resistivity and an activation energy $E_a$ of 0.2 eV. The optical band gap determined by diffuse reflectance measurements is about three times wider than the experimental $E_a$. Despite the difference, both experimental gaps fall within the range of predicted band gaps by our first-principles DFT calculations employing the PBE and mBJ methods. Furthermore, our DFT simulations predict a progressive narrowing of the band gap under compressive strain, with a full closure expected at a strain of -4% relative to the lattice parameter. To evaluate the feasibility of gap tunability at such substantial strain, the high-pressure behavior of Ag$_3$AuTe$_2$ was investigated by $in$ $situ$ high-pressure X-ray diffraction up to 47 GPa. Mechanical compression beyond 4% resulted in a pressure-induced structural transformation, indicating the possibilities of substantial gap modulation under extreme compression conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19517v2-abstract-full').style.display = 'none'; document.getElementById('2405.19517v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16025">arXiv:2405.16025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.16025">pdf</a>, <a href="https://arxiv.org/format/2405.16025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Time-resolved X-ray Spectroscopy from the Atomic Orbital Ground State Up </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jost%2C+D">Daniel Jost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lomeli%2C+E+G">Eder G. Lomeli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+T">Ta Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kas%2C+J+J">Joshua J. Kas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rehr%2C+J+J">John J. Rehr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Wei-Sheng Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hong-Chen Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16025v1-abstract-short" style="display: inline;"> X-ray spectroscopy has been a key method to determine ground and excited state properties of quantum materials with atomic specificity. Now, new x-ray facilities are opening the door to the study of pump-probe x-ray spectroscopy - specifically time-resolved x-ray absorption (trXAS) and time-resolved resonant inelastic x-ray scattering (trRIXS). In this paper we will present simulations of each of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16025v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16025v1-abstract-full" style="display: none;"> X-ray spectroscopy has been a key method to determine ground and excited state properties of quantum materials with atomic specificity. Now, new x-ray facilities are opening the door to the study of pump-probe x-ray spectroscopy - specifically time-resolved x-ray absorption (trXAS) and time-resolved resonant inelastic x-ray scattering (trRIXS). In this paper we will present simulations of each of these spectroscopies using a time-domain full atomic multiplet, charge transfer Hamiltonian, adapted to study the properties of a generalized cluster model including a central transition metal ion caged by ligand atoms in a planar geometry. The numerically evaluated trXAS and trRIXS cross-sections for representative electron configurations $3d^9$ and $3d^8$ demonstrate the insights that can be obtained from charge transfer pumping, and how this nonequilibrium process affects ground and excited state properties. The straightforward characterization of the excitations in these systems, based on our analysis of the simulations, can serve as a benchmark for future experiments, as access to these time-resolved spectroscopic techniques becomes more widely available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16025v1-abstract-full').style.display = 'none'; document.getElementById('2405.16025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11445">arXiv:2405.11445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11445">pdf</a>, <a href="https://arxiv.org/format/2405.11445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> The Influence of Extended Interactions on Spin Dynamics in One-dimensional Cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+T">Ta Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jost%2C+D">Daniel Jost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11445v1-abstract-short" style="display: inline;"> Quasi-one-dimensional (1D) materials provide a unique platform for understanding the importance and influence of extended interactions on the physics of strongly correlated systems due to their relative structural simplicity and the existence of powerful theoretical tools well-adapted to one spatial dimension. Recently, this was highlighted by anomalous observations in the single-particle spectral&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11445v1-abstract-full').style.display = 'inline'; document.getElementById('2405.11445v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11445v1-abstract-full" style="display: none;"> Quasi-one-dimensional (1D) materials provide a unique platform for understanding the importance and influence of extended interactions on the physics of strongly correlated systems due to their relative structural simplicity and the existence of powerful theoretical tools well-adapted to one spatial dimension. Recently, this was highlighted by anomalous observations in the single-particle spectral function $A(q,蠅)$ of 1D cuprate chain compounds, measured by angle-resolved photoemission spectroscopy (ARPES), which were explained by the presence of a long-range attractive interaction. Such an extended interaction should leave its fingerprints on other observables, notably the dynamical spin structure factor $S(q,蠅)$, measured by neutron scattering or resonant inelastic x-ray scattering (RIXS). Starting from a simple Hubbard Hamiltonian in 1D and using time-dependent density matrix renormalization group (tDMRG) methods, we show that the presence of long-range attractive coupling, directly through an instantaneous Coulomb interaction $V$ or retarded electron-phonon ({\it el-ph}) coupling, can introduce significant spectral weight redistribution in $S(q,蠅)$ across a wide range of doping. This underscores the significant impact that extended interactions can have on dynamical correlations among particles, and the importance of properly incorporating this influence in modeling. Our results demonstrate that $S(q,蠅)$ can provide a sensitive experimental constraint, which complements ARPES measurements, in identifying key interactions in 1D cuprates, beyond the standard Hubbard model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11445v1-abstract-full').style.display = 'none'; document.getElementById('2405.11445v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16239">arXiv:2404.16239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.16239">pdf</a>, <a href="https://arxiv.org/format/2404.16239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Synthesis of layered gold tellurides AuSbTe and Au$_2$Te$_3$ and their semiconducting and metallic behavior </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pappas%2C+E+A">Emma A. Pappas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Busch%2C+R+T">Robert T. Busch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+J">Jian-Min Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shoemaker%2C+D+P">Daniel P. Shoemaker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16239v2-abstract-short" style="display: inline;"> Previous studies on natural samples of pampaloite (AuSbTe) revealed the crystal structure of a potentially cleavable and/or exfoliable material, while studies on natural and synthetic montbrayite (Sb-containing Au$_2$Te$_3$) claimed various chemical compositions for this low symmetry compound. Few investigations of synthetic samples have been reported for both materials, leaving much of their chem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16239v2-abstract-full').style.display = 'inline'; document.getElementById('2404.16239v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16239v2-abstract-full" style="display: none;"> Previous studies on natural samples of pampaloite (AuSbTe) revealed the crystal structure of a potentially cleavable and/or exfoliable material, while studies on natural and synthetic montbrayite (Sb-containing Au$_2$Te$_3$) claimed various chemical compositions for this low symmetry compound. Few investigations of synthetic samples have been reported for both materials, leaving much of their chemical, thermal and electronic characteristics unknown. Here, we investigate the stability, electronic properties and synthesis of the gold antimony tellurides AuSbTe and Au$_{1.9}$Sb$_{0.46}$Te$_{2.64}$ (montbrayite). Differential thermal analysis and $\textit{in situ}$ powder x-ray diffraction revealed that AuSbTe is incongruently melting, while Au$_{1.9}$Sb$_{0.46}$Te$_{2.64}$ is congruently melting. Calculations of the band structures and four-point resistivity measurements showed that AuSbTe is a semiconductor and Au$_{1.9}$Sb$_{0.46}$Te$_{2.64}$ a metal. Various synthesis attempts confirmed the limited stable chemical composition of Au$_{1.9}$Sb$_{0.46}$Te$_{2.64}$, identified successful methods to synthesize both compounds, and highlighted the challenges associated with single crystal synthesis of AuSbTe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16239v2-abstract-full').style.display = 'none'; document.getElementById('2404.16239v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01389">arXiv:2404.01389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.01389">pdf</a>, <a href="https://arxiv.org/format/2404.01389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.156503">10.1103/PhysRevLett.133.156503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced pair-density-wave vertices in a bilayer Hubbard model at half-filling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fangze Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xu-Xin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+E+W">Edwin W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01389v2-abstract-short" style="display: inline;"> Motivated by the pair-density-wave (PDW) state found in the one-dimensional Kondo-Heisenberg chain, we report on a determinant quantum Monte Carlo DQMC study of pair-fields for a two-dimensional half-filled Hubbard layer coupled to an itinerant, non-interacting layer with one electron per site. In a specific range of interlayer hopping, the pairing vertex associated with PDW order becomes more att&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01389v2-abstract-full').style.display = 'inline'; document.getElementById('2404.01389v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01389v2-abstract-full" style="display: none;"> Motivated by the pair-density-wave (PDW) state found in the one-dimensional Kondo-Heisenberg chain, we report on a determinant quantum Monte Carlo DQMC study of pair-fields for a two-dimensional half-filled Hubbard layer coupled to an itinerant, non-interacting layer with one electron per site. In a specific range of interlayer hopping, the pairing vertex associated with PDW order becomes more attractive than that for uniform d-wave pairing, although both remain subdominant to the leading antiferromagnetic correlations at half-filling. Our result sheds light on where one potentially may find a PDW state in such a model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01389v2-abstract-full').style.display = 'none'; document.getElementById('2404.01389v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.07143">arXiv:2402.07143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.07143">pdf</a>, <a href="https://arxiv.org/ps/2402.07143">ps</a>, <a href="https://arxiv.org/format/2402.07143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Electronic structure of the alternating monolayer-trilayer phase of La3Ni2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Abadi%2C+S+N">Sebastien N. Abadi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Ke-Jun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lomeli%2C+E+G">Eder G. Lomeli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puphal%2C+P">Pascal Puphal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isobe%2C+M">Masahiko Isobe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Y">Yong Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A+V">Alexei V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Dong-Hui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hepting%2C+M">Matthias Hepting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.07143v2-abstract-short" style="display: inline;"> Recent studies of La$_3$Ni$_2$O$_7$ have identified a bilayer (2222) structure and an unexpected alternating monolayer-trilayer (1313) structure, both of which feature signatures of superconductivity near 80 K under high pressures. Using angle-resolved photoemission spectroscopy, we measure the electronic structure of 1313 samples. In contrast to the previously studied 2222 structure, we find that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07143v2-abstract-full').style.display = 'inline'; document.getElementById('2402.07143v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.07143v2-abstract-full" style="display: none;"> Recent studies of La$_3$Ni$_2$O$_7$ have identified a bilayer (2222) structure and an unexpected alternating monolayer-trilayer (1313) structure, both of which feature signatures of superconductivity near 80 K under high pressures. Using angle-resolved photoemission spectroscopy, we measure the electronic structure of 1313 samples. In contrast to the previously studied 2222 structure, we find that the 1313 structure hosts a flat band with a markedly different binding energy, as well as an additional electron pocket and band splittings. By comparison to local-density approximation calculations, we find renormalizations of the Ni-$d_{z^2}$ and Ni-$d_{x^2-y^2}$ derived bands to be about 5 to 7 and about 4 respectively, suggesting strong correlation effects. These results reveal important differences in the electronic structure brought about by the distinct structural motifs with the same stoichiometry. Such differences may be relevant to the putative high temperature superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07143v2-abstract-full').style.display = 'none'; document.getElementById('2402.07143v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version 2: Improved data quality of the small electron pocket at the zone center ($蔚$ band). Also, observations of multilayer splitting effects in the flat band ($纬$ and $未$ bands) and in the large cuprate-like pockets ($尾$ bands). Band structure calculations now use LDA instead of LDA+U. Main text: 7 pages, 3 figures. SM: 9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14734">arXiv:2401.14734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.14734">pdf</a>, <a href="https://arxiv.org/format/2401.14734">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Anomalous electron-phonon coupling in kagome ferromagnetic Weyl semimetal Co$_3$Sn$_2$S$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+G">G. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kute%2C+M">M. Kute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z+C">Z. C. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peis%2C+L">L. Peis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stumberger%2C+R">R. Stumberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baum%2C+A">A. Baum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jost%2C+D">D. Jost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E+M">E. M. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y+G">Y. G. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hackl%2C+R">R. Hackl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14734v1-abstract-short" style="display: inline;"> We present results of a Raman scattering study of the Kagome ferromagnet Co$_3$Sn$_2$S$_2$, with a focus on electronic and phononic excitations and their interplay. In addition, the electronic band structure is analyzed theoretically, enabling a semi-quantitative explanation of the spectra. A prominent feature in the electronic spectra is a redistribution of spectral weight from low to high energi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14734v1-abstract-full').style.display = 'inline'; document.getElementById('2401.14734v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14734v1-abstract-full" style="display: none;"> We present results of a Raman scattering study of the Kagome ferromagnet Co$_3$Sn$_2$S$_2$, with a focus on electronic and phononic excitations and their interplay. In addition, the electronic band structure is analyzed theoretically, enabling a semi-quantitative explanation of the spectra. A prominent feature in the electronic spectra is a redistribution of spectral weight from low to high energies starting at the Curie temperature Tc. The Raman intensity is suppressed below approximately 1000cm$^{-1}$ and increases above to a peak at 2000 cm$^{-1}$ in all symmetries. Two Raman active phonon modes are identified in A$_{1g}$ and E$_g$ symmetry. The A$_{1g}$ phonon couples strongly to the electronic continuum as indicated by the asymmetric Fano-type line shape. The asymmetry depends non-monotonically on temperature and is maximal close to the magnetic transition. In the limit $T\to 0$ the phonon is nearly symmetric. The evolution of the coupling strength and the electronic continuum as a function of temperature is attributed to a band splitting induced by the ferromagnetic phase transition which substantially reduces the DOS towards $T=0$. The $3d_{z^2}$ electrons of the Co atoms in the crystal field modulated by the A$_{1g}$ phonon are implied to be a critical component contributing to the strong electron-phonon coupling of that phonon. These results allow a comprehensive understanding of the bulk band structure evolution as a function of temperature in Co$_3$Sn$_2$S$_2$, offering key insights for further studies of the driving force behind the long-range magnetic order and novel topological states in this compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14734v1-abstract-full').style.display = 'none'; document.getElementById('2401.14734v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13767">arXiv:2401.13767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.13767">pdf</a>, <a href="https://arxiv.org/format/2401.13767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00659-x">10.1038/s41535-024-00659-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The emergence of antiferromagnetic correlations and Kondo-like features in a two-band model for infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Fangze Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+E+W">Edwin W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13767v2-abstract-short" style="display: inline;"> We report a determinant quantum Monte Carlo study of a two-band model, inspired by infinite-layer nickelates, focusing on the influence of interlayer hybridization between $3d_{x^2-y^2}$ orbitals derived from Ni (or Ni and O) in one layer and rare-earth ($R$) 5d orbitals in the other layer, hereafter the NI and $R$ layers, respectively. For a filling with one electron shared between the two layers&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13767v2-abstract-full').style.display = 'inline'; document.getElementById('2401.13767v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13767v2-abstract-full" style="display: none;"> We report a determinant quantum Monte Carlo study of a two-band model, inspired by infinite-layer nickelates, focusing on the influence of interlayer hybridization between $3d_{x^2-y^2}$ orbitals derived from Ni (or Ni and O) in one layer and rare-earth ($R$) 5d orbitals in the other layer, hereafter the NI and $R$ layers, respectively. For a filling with one electron shared between the two layers on average, interlayer hybridization leads to &#34;self-doped&#34; holes in the Ni layer and the absence of antiferromagnetic ordering, but rather the appearance of spin-density and charge-density stripe-like states. As the interlayer hybridization increases, both the Ni and $R$ layers develop antiferromagnetic correlations, even though either layer individually remains away from half-filling. For hybridization within an intermediate range, roughly comparable to the intralayer nearest-neighbor hopping $t_{\text{Ni}}$, the model develops signatures of Kondo-like physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13767v2-abstract-full').style.display = 'none'; document.getElementById('2401.13767v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16444">arXiv:2312.16444</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16444">pdf</a>, <a href="https://arxiv.org/format/2312.16444">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Universal orbital and magnetic structures in infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">K. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goodge%2C+B+H">B. H. Goodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">J. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Y. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">B. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jost%2C+D">D. Jost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E">E. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kourkoutis%2C+L+F">L. F. Kourkoutis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16444v1-abstract-short" style="display: inline;"> We conducted a comparative study of the rare-earth infinite-layer nickelates films, RNiO2 (R = La, Pr, and Nd) using resonant inelastic X-ray scattering (RIXS). We found that the gross features of the orbital configurations are essentially the same, with minor variations in the detailed hybridization. For low-energy excitations, we unambiguously confirm the presence of damped magnetic excitations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16444v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16444v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16444v1-abstract-full" style="display: none;"> We conducted a comparative study of the rare-earth infinite-layer nickelates films, RNiO2 (R = La, Pr, and Nd) using resonant inelastic X-ray scattering (RIXS). We found that the gross features of the orbital configurations are essentially the same, with minor variations in the detailed hybridization. For low-energy excitations, we unambiguously confirm the presence of damped magnetic excitations in all three compounds. By fitting to a linear spin-wave theory, comparable spin exchange coupling strengths and damping coefficients are extracted, indicating a universal magnetic structure in the infinite-layer nickelates. Interestingly, while signatures of a charge order are observed in LaNiO2 in the quasi-elastic region of the RIXS spectrum, it is absent in NdNiO2 and PrNiO2. This prompts further investigation into the universality and the origins of charge order within the infinite-layer inickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16444v1-abstract-full').style.display = 'none'; document.getElementById('2312.16444v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures. Accepted by Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04211">arXiv:2311.04211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.04211">pdf</a>, <a href="https://arxiv.org/format/2311.04211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Harnessing excitons at the nanoscale -- photoelectrical platform for quantitative sensing and imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Z">Zhurun Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barber%2C+M+E">Mark E. Barber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kometter%2C+C+R">Carlos R. Kometter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jiachen Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Mengkun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feldman%2C+B+E">Benjamin E. Feldman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhixun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04211v3-abstract-short" style="display: inline;"> Excitons -- quasiparticles formed by the binding of an electron and a hole through electrostatic attraction -- hold promise in the fields of quantum light confinement and optoelectronic sensing. Atomically thin transition metal dichalcogenides (TMDs) provide a versatile platform for hosting and manipulating excitons, given their robust Coulomb interactions and exceptional sensitivity to dielectric&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04211v3-abstract-full').style.display = 'inline'; document.getElementById('2311.04211v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04211v3-abstract-full" style="display: none;"> Excitons -- quasiparticles formed by the binding of an electron and a hole through electrostatic attraction -- hold promise in the fields of quantum light confinement and optoelectronic sensing. Atomically thin transition metal dichalcogenides (TMDs) provide a versatile platform for hosting and manipulating excitons, given their robust Coulomb interactions and exceptional sensitivity to dielectric environments. In this study, we introduce a cryogenic scanning probe photoelectrical sensing platform, termed exciton-resonant microwave impedance microscopy (ER-MIM). ER-MIM enables ultra-sensitive probing of exciton polarons and their Rydberg states at the nanoscale. Utilizing this technique, we explore the interplay between excitons and material properties, including carrier density, in-plane electric field, and dielectric screening. Furthermore, we employ deep learning for automated data analysis and quantitative extraction of electrical information, unveiling the potential of exciton-assisted nano-electrometry. Our findings establish an invaluable sensing platform and readout mechanism, advancing our understanding of exciton excitations and their applications in the quantum realm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04211v3-abstract-full').style.display = 'none'; document.getElementById('2311.04211v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17706">arXiv:2310.17706</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.17706">pdf</a>, <a href="https://arxiv.org/format/2310.17706">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Recovery of a Luther-Emery phase in the three-band Hubbard model with longer-range hopping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Luhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hong-Chen Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17706v1-abstract-short" style="display: inline;"> A lightly doped single-band Hubbard model on a two leg ladder exhibits a Luther-Emery phase, while the three-band Hubbard ladder behaves as a Luttinger liquid upon hole doping. In order to understand this discrepancy, we present a systematic density-matrix renormalization group study of the three-band Hubbard model on two-leg cylinders with further-neighbor particle hoppings. The inclusion of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17706v1-abstract-full').style.display = 'inline'; document.getElementById('2310.17706v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17706v1-abstract-full" style="display: none;"> A lightly doped single-band Hubbard model on a two leg ladder exhibits a Luther-Emery phase, while the three-band Hubbard ladder behaves as a Luttinger liquid upon hole doping. In order to understand this discrepancy, we present a systematic density-matrix renormalization group study of the three-band Hubbard model on two-leg cylinders with further-neighbor particle hoppings. The inclusion of the longer-range hopping is motivated by the studies of the single-band Hubbard model in which the further-neighbor hopping terms are suggested to be crucial for the unconventional superconductivity. When the longer-range hopping parameters are small, the ground state is a Luttinger liquid having mutually commensurate superconducting, charge and spin density wave correlations. Increasing the longer-range hopping drives a transition into a Luther-Emery phase with quasi-long ranged superconducting and charge orders but short-ranged spin-spin correlations. By down-folding the three-band Hubbard model into an effective $t$-$t&#39;$-$J$-$J&#39;$ model, we find that in the Luther-Emery phase, both the nearest and second neighbor kinetic energies are enhanced due to an effective increase of copper-oxygen hybridization. Amplifying inter-cell oxygen orbital hopping mirrors the benefits of reducing the charge transfer energy, causing doped holes to favor oxygen orbitals and strengthening superconducting pairing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17706v1-abstract-full').style.display = 'none'; document.getElementById('2310.17706v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15371">arXiv:2309.15371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.15371">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-40997-1">10.1038/s41467-023-40997-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From Stoner to Local Moment Magnetism in Atomically Thin Cr2Te3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Y">Yong Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Haili Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+J">Jinwoong Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+K+H">Kuan H. Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jun-Sik Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jin-Feng Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15371v1-abstract-short" style="display: inline;"> The field of two-dimensional (2D) ferromagnetism has been proliferating over the past few years, with ongoing interests in basic science and potential applications in spintronic technology. However, a high-resolution spectroscopic study of the 2D ferromagnet is still lacking due to the small size and air sensitivity of the exfoliated nanoflakes. Here, we report a thickness-dependent ferromagnetism&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15371v1-abstract-full').style.display = 'inline'; document.getElementById('2309.15371v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15371v1-abstract-full" style="display: none;"> The field of two-dimensional (2D) ferromagnetism has been proliferating over the past few years, with ongoing interests in basic science and potential applications in spintronic technology. However, a high-resolution spectroscopic study of the 2D ferromagnet is still lacking due to the small size and air sensitivity of the exfoliated nanoflakes. Here, we report a thickness-dependent ferromagnetism in epitaxially grown Cr2Te3 thin films and investigate the evolution of the underlying electronic structure by synergistic angle-resolved photoemission spectroscopy, scanning tunneling microscopy, x-ray absorption spectroscopy, and first-principle calculations. A conspicuous ferromagnetic transition from Stoner to Heisenberg-type is directly observed in the atomically thin limit, indicating that dimensionality is a powerful tuning knob to manipulate the novel properties of 2D magnetism. Monolayer Cr2Te3 retains robust ferromagnetism, but with a suppressed Curie temperature, due to the drastic drop in the density of states near the Fermi level. Our results establish atomically thin Cr2Te3 as an excellent platform to explore the dual nature of localized and itinerant ferromagnetism in 2D magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15371v1-abstract-full').style.display = 'none'; document.getElementById('2309.15371v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 4 + 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 5340 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.11786">arXiv:2309.11786</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.11786">pdf</a>, <a href="https://arxiv.org/format/2309.11786">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Pair density wave and superconductivity in a kinetically frustrated doped Emery model on a square lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hong-Chen Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas Peter Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.11786v1-abstract-short" style="display: inline;"> The quest to understand the nature of superconductivity in cuprates has spotlighted the pair density wave (PDW) -- a superconducting state characterized by a spatially modulated order parameter. Despite significant advances in understanding PDW properties, conclusively demonstrating its presence in systems pertinent to cuprate superconductors remains elusive. In this study, we present a systematic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11786v1-abstract-full').style.display = 'inline'; document.getElementById('2309.11786v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.11786v1-abstract-full" style="display: none;"> The quest to understand the nature of superconductivity in cuprates has spotlighted the pair density wave (PDW) -- a superconducting state characterized by a spatially modulated order parameter. Despite significant advances in understanding PDW properties, conclusively demonstrating its presence in systems pertinent to cuprate superconductors remains elusive. In this study, we present a systematic density-matrix renormalization group study to investigate the Emery model (or the three-band Hubbard model) on two-leg square cylinders with negative electron hopping term $t_{pp}$ between adjacent oxygen sites. Kinetic frustration - introduced by changing the sign of oxygen-oxygen hopping - leads to a much reduced Cu-Cu antiferromagnetic exchange along with an enlarged charge transfer energy that changes the local properties of the model. At light doping levels, our findings reveal a ground state remarkably consistent with a PDW, exhibiting mutually commensurate superconducting (SC), charge and spin density wave correlations. Intriguingly, the dominant SC pairing is observed between neighboring oxygen sites, diverging from the expected Cu sites in the positive $t_{pp}$ case. When the system incorporates moderate near-neighbor interactions, particularly an attractive $V_{pp}$ between adjacent oxygen sites, the SC correlations become quasi-long-ranged, accompanied by a pronounced divergence in the PDW susceptibility. When further increase the attractive $V_{pp}$, the system gives ways to an unconventional $d$-wave superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11786v1-abstract-full').style.display = 'none'; document.getElementById('2309.11786v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.10208">arXiv:2309.10208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.10208">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adk4792">10.1126/science.adk4792 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous normal state gap in an electron-doped cuprate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Ke-Jun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Junfeng He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Su-Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abadi%2C+S+N">Sebastien N. Abadi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotundu%2C+C+R">Costel. R. Rotundu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+S">Young S. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Dong-Hui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qinda Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjernberg%2C+O">Oscar Tjernberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D">Dung-Hai Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.10208v1-abstract-short" style="display: inline;"> In the underdoped n-type cuprate Nd2-xCexCuO4, long-ranged antiferromagnetic order reconstructs the Fermi surface, resulting in a putative antiferromagnetic metal with small pockets. Using angle-resolved photoemission spectroscopy, we observe an anomalous energy gap, an order of magnitude smaller than the antiferromagnetic gap, in a wide range of the underdoped regime and smoothly connecting to th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10208v1-abstract-full').style.display = 'inline'; document.getElementById('2309.10208v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.10208v1-abstract-full" style="display: none;"> In the underdoped n-type cuprate Nd2-xCexCuO4, long-ranged antiferromagnetic order reconstructs the Fermi surface, resulting in a putative antiferromagnetic metal with small pockets. Using angle-resolved photoemission spectroscopy, we observe an anomalous energy gap, an order of magnitude smaller than the antiferromagnetic gap, in a wide range of the underdoped regime and smoothly connecting to the superconducting gap at optimal doping. After carefully considering all the known ordering tendencies in tandem with the phase diagram, we hypothesize that the normal state gap in the underdoped n-type cuprates originates from Cooper pairing. The high temperature scale of the normal state gap raises the prospect of engineering higher transition temperatures in the n-type cuprates comparable to that of the p-type cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10208v1-abstract-full').style.display = 'none'; document.getElementById('2309.10208v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 385, 796-800 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07876">arXiv:2309.07876</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.07876">pdf</a>, <a href="https://arxiv.org/format/2309.07876">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Particle-hole asymmetric ferromagnetism and spin textures in the triangular Hubbard-Hofstadter model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J+K">Jixun K. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Luhang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W+O">Wen O. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Ziyan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mai%2C+P">Peizhi Mai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+E+W">Edwin W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phillips%2C+P+W">Philip W. Phillips</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feldman%2C+B+E">Benjamin E. Feldman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07876v2-abstract-short" style="display: inline;"> In a lattice model subject to a perpendicular magnetic field, when the lattice constant is comparable to the magnetic length, one enters the &#34;Hofstadter regime,&#34; where continuum Landau levels become fractal magnetic Bloch bands. Strong mixing between bands alters the nature of the resulting quantum phases compared to the continuum limit; lattice potential, magnetic field, and Coulomb interaction m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07876v2-abstract-full').style.display = 'inline'; document.getElementById('2309.07876v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07876v2-abstract-full" style="display: none;"> In a lattice model subject to a perpendicular magnetic field, when the lattice constant is comparable to the magnetic length, one enters the &#34;Hofstadter regime,&#34; where continuum Landau levels become fractal magnetic Bloch bands. Strong mixing between bands alters the nature of the resulting quantum phases compared to the continuum limit; lattice potential, magnetic field, and Coulomb interaction must be treated on equal footing. Using determinant quantum Monte Carlo (DQMC) and density matrix renormalization group (DMRG) techniques, we study this regime numerically in the context of the Hubbard-Hofstadter model on a triangular lattice. In the field-filling phase diagram, we find a broad wedge-shaped region of ferromagnetic ground states for filling factor $谓\leq 1$, bounded below by filling factor $谓= 1$ and bounded above by half-filling the lowest Hofstadter subband. We observe signatures of SU(2) quantum Hall ferromagnetism at filling factors $谓=1$ and $谓=3$. The phases near $谓=1$ are particle-hole asymmetric, and we observe a rapid decrease in ground state spin polarization consistent with the formation of skyrmions only on the electron doped side. At large fields, above the ferromagnetic wedge, we observe a low-spin metallic region with spin correlations peaked at small momenta. We argue that the phenomenology of this region likely results from exchange interaction mixing fractal Hofstadter subbands. The phase diagram derived beyond the continuum limit points to a rich landscape to explore interaction effects in magnetic Bloch bands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07876v2-abstract-full').style.display = 'none'; document.getElementById('2309.07876v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10+7 pages, 6+13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07482">arXiv:2308.07482</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.07482">pdf</a>, <a href="https://arxiv.org/format/2308.07482">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Anharmonic Strong-Coupling Effects at the Origin of the Charge Density Wave in CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+G">Ge He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peis%2C+L">Leander Peis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cuddy%2C+E+F">Emma Frances Cuddy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zhen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Dong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stumberger%2C+R">Ramona Stumberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas Peter Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hackl%2C+R">Rudi Hackl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07482v1-abstract-short" style="display: inline;"> The formation of charge density waves (CDW) is a long-standing open problem particularly in dimensions higher than one. Various observations in the vanadium antimonides discovered recently, such as the missing Kohn anomaly in the acoustic phonons or the latent heat at the transition $T_{\rm CDW}$ = 95 K , further underpin this notion. Here, we study the Kagome metal CsV$_3$Sb$_5$ using polarized i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07482v1-abstract-full').style.display = 'inline'; document.getElementById('2308.07482v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07482v1-abstract-full" style="display: none;"> The formation of charge density waves (CDW) is a long-standing open problem particularly in dimensions higher than one. Various observations in the vanadium antimonides discovered recently, such as the missing Kohn anomaly in the acoustic phonons or the latent heat at the transition $T_{\rm CDW}$ = 95 K , further underpin this notion. Here, we study the Kagome metal CsV$_3$Sb$_5$ using polarized inelastic light scattering. The electronic energy gap $2螖$ as derived from the redistribution of the continuum is much larger than expected from mean-field theory and reaches values above 20 for $2螖/k_{\rm B}T_{\rm CDW}$. The A$_{1g}$ phonon has a discontinuity at $T_{\rm CDW}$ and a precursor starting 20 K above $T_{\rm CDW}$. Density functional theory qualitatively reproduces the redistribution of the electronic continuum at the CDW transition and the phonon energies of the pristine and distorted structures. The linewidths of all A$_{1g}$ and E$_{2g}$ phonon lines including those emerging below $T_{\rm CDW}$ were analyzed in terms of anharmonic symmetric decay revealing strong phonon-phonon coupling. In addition, we observe two CDW amplitude modes (AMs): one in A$_{1g}$ symmetry and one in E$_{2g}$ symmetry. The temperature dependence of both modes deviates from the prediction of mean-field theory. The A$_{1g}$ AM displays an asymmetric Fano-type lineshape, suggestive of strong electron-phonon coupling. The asymmetric A$_{1g}$ AM, along with the discontinuity of the A$_{1g}$ phonon, the large phonon-phonon coupling parameters and the large gap ratio, indicate the importance of anharmonic strong phonon-phonon and electron-phonon coupling for the CDW formation in CsV$_3$Sb$_5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07482v1-abstract-full').style.display = 'none'; document.getElementById('2308.07482v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06638">arXiv:2308.06638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.06638">pdf</a>, <a href="https://arxiv.org/format/2308.06638">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.165134">10.1103/PhysRevB.108.165134 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Angle-Resolved Pair Photoemission Theory for Correlated Electrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claassen%2C+M">Martin Claassen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xu-Xin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaletel%2C+M">Michael Zaletel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+J+E">Joel E. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morr%2C+D">Dirk Morr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahmood%2C+F">Fahad Mahmood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbamonte%2C+P">Peter Abbamonte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06638v1-abstract-short" style="display: inline;"> In this paper we consider the possibility and conditions for pair photoemission whereby two incident photons emit pairs of electrons from a candidate material as a novel method to measure and visualize electronic correlations. As opposed to double photoemission - where a single photon precipitates the ejection of a pair electrons via a subsequent electron energy loss scattering process - we show t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06638v1-abstract-full').style.display = 'inline'; document.getElementById('2308.06638v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06638v1-abstract-full" style="display: none;"> In this paper we consider the possibility and conditions for pair photoemission whereby two incident photons emit pairs of electrons from a candidate material as a novel method to measure and visualize electronic correlations. As opposed to double photoemission - where a single photon precipitates the ejection of a pair electrons via a subsequent electron energy loss scattering process - we show that pair photoemission need not be limited to interference between initial photoelectrons and valence electrons, and moreover, can occur without the energy penalty of two work functions. This enables detection of pairs of electrons at high energy resolution that may be correlated in the same quantum many-body states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06638v1-abstract-full').style.display = 'none'; document.getElementById('2308.06638v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 165134 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05313">arXiv:2308.05313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.05313">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02209-x">10.1038/s41567-023-02209-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bogoliubov Quasiparticle on the Gossamer Fermi Surface in Electron-Doped Cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+K">Ke-Jun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qinda Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zi-Xiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Su-Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Junfeng He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Cong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berntsen%2C+M+H">Magnus H. Berntsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotundu%2C+C+R">Costel R. Rotundu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y+S">Young S. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rydh%2C+A">Andreas Rydh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Dong-Hui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D">Dung-Hai Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjernberg%2C+O">Oscar Tjernberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05313v1-abstract-short" style="display: inline;"> In contrast to hole-doped cuprates, electron-doped cuprates consistently exhibit strong antiferromagnetic correlations with a commensurate (蟺, 蟺) ordering wave vector, leading to the prevalent belief that antiferromagnetic spin fluctuations mediate Cooper pairing in these unconventional superconductors. However, early investigations produced two paradoxical findings: while antiferromagnetic spin f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05313v1-abstract-full').style.display = 'inline'; document.getElementById('2308.05313v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05313v1-abstract-full" style="display: none;"> In contrast to hole-doped cuprates, electron-doped cuprates consistently exhibit strong antiferromagnetic correlations with a commensurate (蟺, 蟺) ordering wave vector, leading to the prevalent belief that antiferromagnetic spin fluctuations mediate Cooper pairing in these unconventional superconductors. However, early investigations produced two paradoxical findings: while antiferromagnetic spin fluctuations create the largest pseudogap at &#34;hot spots&#34; in momentum space, Raman scattering and angle-resolved photoemission spectroscopy measurements using the leading-edge method seem to suggest the superconducting gap is also maximized at these locations. This presented a dilemma for spin-fluctuation-mediated pairing: Cooper pairing is strongest at momenta where normal state low energy spectral weight is most suppressed. Here we investigate this dilemma in Nd2-xCexCuO4 using angle-resolved photoemission spectroscopy under significantly improved experimental conditions. The unprecedented signal-to-noise ratio and resolution allow us to directly observe the Bogoliubov quasiparticles, demonstrating the existence and importance of two sectors of states: 1. The reconstructed main band and the states gapped by the antiferromagnetic pseudogap around the hot spots. 2. The gossamer Fermi surface states with distinct dispersion inside the pseudogap, from which Bogoliubov quasiparticle coherence peaks emerge below Tc. Supported by numerical results, we propose that the non-zero modulus of the antiferromagnetic order parameter causes the former, while fluctuations in the antiferromagnetic order parameter orientation are responsible for the latter. Our revelations of the gossamer Fermi surface reconcile the paradoxical observations, deepening our understanding of superconductivity in electron-doped cuprates in particular, and unconventional superconductivity in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05313v1-abstract-full').style.display = 'none'; document.getElementById('2308.05313v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted version 30 pages, 4 main figures, 8 extended data figures. Accepted version in press at Nature Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00718">arXiv:2307.00718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.00718">pdf</a>, <a href="https://arxiv.org/format/2307.00718">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.186502">10.1103/PhysRevLett.132.186502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low temperature dynamic polaron liquid in a manganite exhibiting colossal magnetoresistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jost%2C+D">Daniel Jost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Hsiao-Yu Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">Matteo Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+A">Amol Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">Di-Jing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Hong Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitchell%2C+J+F">J. F. Mitchell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Wei-Sheng Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00718v3-abstract-short" style="display: inline;"> Polarons - fermionic charge carriers bearing a strong companion lattice deformation - exhibit a natural tendency for self-localization due to the recursive interaction between electrons and the lattice. While polarons are ubiquitous in insulators, how they evolve in transitions to metallic and superconducting states in quantum materials remains an open question. Here, we use resonant inelastic x-r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00718v3-abstract-full').style.display = 'inline'; document.getElementById('2307.00718v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00718v3-abstract-full" style="display: none;"> Polarons - fermionic charge carriers bearing a strong companion lattice deformation - exhibit a natural tendency for self-localization due to the recursive interaction between electrons and the lattice. While polarons are ubiquitous in insulators, how they evolve in transitions to metallic and superconducting states in quantum materials remains an open question. Here, we use resonant inelastic x-ray scattering (RIXS) to track the electron-lattice coupling in the colossal magneto-resistive bi-layer manganite La$_{1.2}$Sr$_{1.8}$Mn$_2$O$_7$ across its metal-to-insulator transition. The response in the insulating high-temperature state features harmonic emissions of a dispersionless oxygen phonon at small energy transfer. Upon cooling into the metallic state, we observe a drastic redistribution of spectral weight from the region of these harmonic emissions to a broad high energy continuum. In concert with theoretical calculations, we show that this evolution implies a shift in electron-lattice coupling from static to dynamic lattice distortions that leads to a distinct polaronic ground state in the low temperature metallic phase - a dynamic polaron liquid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00718v3-abstract-full').style.display = 'none'; document.getElementById('2307.00718v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 132, 18 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.02115">arXiv:2304.02115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.02115">pdf</a>, <a href="https://arxiv.org/format/2304.02115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.066004">10.1103/PhysRevLett.132.066004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collective nature of orbital excitations in layered cuprates in the absence of apical oxygens </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Martinelli%2C+L">Leonardo Martinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wohlfeld%2C+K">Krzysztof Wohlfeld</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arpaia%2C+R">Riccardo Arpaia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">Nicholas B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Castro%2C+D">Daniele Di Castro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandez%2C+M+G">Mirian G. Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">Mingu Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krockenberger%2C+Y">Yoshiharu Krockenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kummer%2C+K">Kurt Kummer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McNally%2C+D+E">Daniel E. McNally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">Eugenio Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamamoto%2C+H">Hideki Yamamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walters%2C+A">Andrew Walters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braicovich%2C+L">Lucio Braicovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">Marco Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daghofer%2C+M">Maria Daghofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">Giacomo Ghiringhelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.02115v3-abstract-short" style="display: inline;"> We have investigated the 3d orbital excitations in CaCuO2 (CCO), Nd2CuO4 (NCO), and La2CuO4 (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the dxy orbital clearly disperse, pointing to a collective character of this excitation (orbiton) in compounds without apica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02115v3-abstract-full').style.display = 'inline'; document.getElementById('2304.02115v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.02115v3-abstract-full" style="display: none;"> We have investigated the 3d orbital excitations in CaCuO2 (CCO), Nd2CuO4 (NCO), and La2CuO4 (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the dxy orbital clearly disperse, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen. We ascribe the origin of the dispersion as stemming from a substantial next-nearest-neighbor (NNN) orbital superexchange. Such an exchange leads to the liberation of orbiton from its coupling to magnons, which is associated with the orbiton hopping between nearest neighbor copper sites. We show that the exceptionally large NNN orbital superexchange can be traced back to the absence of apical oxygens suppressing the charge transfer energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02115v3-abstract-full').style.display = 'none'; document.getElementById('2304.02115v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 066004 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.16350">arXiv:2303.16350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.16350">pdf</a>, <a href="https://arxiv.org/format/2303.16350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electrolyte Coatings for High Adhesion Interfaces in Solid-state Batteries from First Principles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ransom%2C+B">Brandi Ransom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramdas%2C+A">Akash Ramdas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lomeli%2C+E">Eder Lomeli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fidawi%2C+J">Jad Fidawi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sendek%2C+A">Austin Sendek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T">Thomas Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reed%2C+E">Evan Reed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schindler%2C+P">Peter Schindler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.16350v1-abstract-short" style="display: inline;"> We introduce an adhesion parameter that enables rapid screening for materials interfaces with high adhesion. This parameter is obtained by density functional theory calculations of individual single-material slabs rather than slabs consisting of combinations of two materials, eliminating the need to calculate all configurations of a prohibitively vast space of possible interface configurations. Cl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16350v1-abstract-full').style.display = 'inline'; document.getElementById('2303.16350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.16350v1-abstract-full" style="display: none;"> We introduce an adhesion parameter that enables rapid screening for materials interfaces with high adhesion. This parameter is obtained by density functional theory calculations of individual single-material slabs rather than slabs consisting of combinations of two materials, eliminating the need to calculate all configurations of a prohibitively vast space of possible interface configurations. Cleavage energy calculations are used as an upper bound for electrolyte and coating energies and implemented in an adapted contact angle equation to derive the adhesion parameter. In addition to good adhesion, we impose further constraints in electrochemical stability window, abundance, bulk reactivity, and stability to screen for coating materials for next-generation solid-state batteries. Good adhesion is critical in combating delamination and resistance to Lithium diffusivity in solid-state batteries. Here, we identify several promising coating candidates for the Li7La3Zr2O12 and sulfide electrolyte systems including the previously investigated electrode coating materials LiAlSiO4 and Li5AlO8, making them especially attractive for experimental optimization and commercialization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16350v1-abstract-full').style.display = 'none'; document.getElementById('2303.16350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15541">arXiv:2303.15541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.15541">pdf</a>, <a href="https://arxiv.org/format/2303.15541">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ground state phase diagram and superconductivity of the doped Hubbard model on six-leg square cylinders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi-Fan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hong-Chen Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15541v1-abstract-short" style="display: inline;"> We have studied the ground state properties of Hubbard model on long six-leg square cylinders with doped hole concentration per site $5.55\% \leq 未\leq 12.5\%$ using density-matrix renormalization group. By keeping a large number of states for long system sizes, we find that the nature of the ground state is remarkably sensitive to the presence of next-nearest-neighbor electron hopping $t&#39;$. In th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15541v1-abstract-full').style.display = 'inline'; document.getElementById('2303.15541v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15541v1-abstract-full" style="display: none;"> We have studied the ground state properties of Hubbard model on long six-leg square cylinders with doped hole concentration per site $5.55\% \leq 未\leq 12.5\%$ using density-matrix renormalization group. By keeping a large number of states for long system sizes, we find that the nature of the ground state is remarkably sensitive to the presence of next-nearest-neighbor electron hopping $t&#39;$. In the positive $t&#39;$ side, we find a robust $d$-wave superconducting (SC) phase characterized by coexisting quasi-long-range SC and charge density wave (CDW) correlations. Without $t&#39;$ the ground state forms an insulating stripe phase with long-range CDW order but short-range spin-spin and SC correlations. In stark contrast to four-leg cylinders, our results show that the lightly doped Hubbard model on six-leg cylinders remains insulating in the negative $t&#39;$ side where the SC correlations decay exponentially with short correlation lengths. In the larger negative $t&#39;$ side, the doped holes form a novel holon Wigner crystal with one doped hole per emergent unit cell and short-range spin-spin correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15541v1-abstract-full').style.display = 'none'; document.getElementById('2303.15541v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.13169">arXiv:2302.13169</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.13169">pdf</a>, <a href="https://arxiv.org/format/2302.13169">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-42772-8">10.1038/s41467-023-42772-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantitative assessment of the universal thermopower in the Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W+O">Wen O. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J+K">Jixun K. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+E+W">Edwin W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.13169v2-abstract-short" style="display: inline;"> As primarily an electronic observable, the room-temperature thermopower $S$ in cuprates provides possibilities for a quantitative assessment of the Hubbard model. Using determinant quantum Monte Carlo, we demonstrate agreement between Hubbard model calculations and experimentally measured room-temperature $S$ across multiple cuprate families, both qualitatively in terms of the doping dependence an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13169v2-abstract-full').style.display = 'inline'; document.getElementById('2302.13169v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.13169v2-abstract-full" style="display: none;"> As primarily an electronic observable, the room-temperature thermopower $S$ in cuprates provides possibilities for a quantitative assessment of the Hubbard model. Using determinant quantum Monte Carlo, we demonstrate agreement between Hubbard model calculations and experimentally measured room-temperature $S$ across multiple cuprate families, both qualitatively in terms of the doping dependence and quantitatively in terms of magnitude. We observe an upturn in $S$ with decreasing temperatures, which possesses a slope comparable to that observed experimentally in cuprates. From our calculations, the doping at which $S$ changes sign occurs in close proximity to a vanishing temperature dependence of the chemical potential at fixed density. Our results emphasize the importance of interaction effects in the systematic assessment of the thermopower $S$ in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13169v2-abstract-full').style.display = 'none'; document.getElementById('2302.13169v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Supplementary Information: 9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 14, 7064 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10201">arXiv:2210.10201</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.10201">pdf</a>, <a href="https://arxiv.org/ps/2210.10201">ps</a>, <a href="https://arxiv.org/format/2210.10201">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.155109">10.1103/PhysRevB.106.155109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identification of a Critical Doping for Charge Order Phenomena in Bi-2212 Cuprates via RIXS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Haiyu Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Su-Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishida%2C+S">Shigeyuki Ishida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+D">Dongjoon Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arpaia%2C+R">Riccardo Arpaia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">Giacomo Ghiringhelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braicovich%2C+L">Lucio Braicovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaanen%2C+J">Jan Zaanen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kummer%2C+K">Kurt Kummer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">Nicholas B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Wei-Sheng Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10201v1-abstract-short" style="display: inline;"> Identifying quantum critical points (QCPs) and their associated fluctuations may hold the key to unraveling the unusual electronic phenomena observed in cuprate superconductors. Recently, signatures of quantum fluctuations associated with charge order (CO) have been inferred from the anomalous enhancement of CO excitations that accompany the reduction of the CO order parameter in the superconducti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10201v1-abstract-full').style.display = 'inline'; document.getElementById('2210.10201v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10201v1-abstract-full" style="display: none;"> Identifying quantum critical points (QCPs) and their associated fluctuations may hold the key to unraveling the unusual electronic phenomena observed in cuprate superconductors. Recently, signatures of quantum fluctuations associated with charge order (CO) have been inferred from the anomalous enhancement of CO excitations that accompany the reduction of the CO order parameter in the superconducting state. To gain more insight about the interplay between CO and superconductivity, here we investigate the doping dependence of this phenomenon throughout the Bi-2212 cuprate phase diagram using resonant inelastic x-ray scattering (RIXS) at the Cu L3- edge. As doping increases, the CO wavevector decreases, saturating at a commensurate value of 0.25 r.l.u. beyond a characteristic doping pc, where the correlation length becomes shorter than the apparent periodicity (4a0). Such behavior is indicative of the fluctuating nature of the CO; and the proliferation of CO excitations in the superconducting state also appears strongest at pc, consistent with expected behavior at a CO QCP. Intriguingly, pc appears to be near optimal doping, where the superconducting transition temperature Tc is maximal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10201v1-abstract-full').style.display = 'none'; document.getElementById('2210.10201v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is a submitted version of the manuscript. The revised manuscript is now published on Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 106, 155109 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.09288">arXiv:2210.09288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.09288">pdf</a>, <a href="https://arxiv.org/format/2210.09288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38408-6">10.1038/s41467-023-38408-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Traces of Electron-Phonon Coupling in One-Dimensional Cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+T">Ta Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.09288v1-abstract-short" style="display: inline;"> The appearance of certain spectral features in one-dimensional (1D) cuprate materials has been attributed to a strong, extended attractive coupling between electrons. Here, using time-dependent density matrix renormalization group methods on a Hubbard-extended Holstein model, we show that extended electron-phonon ({\it e-ph}) coupling presents an obvious choice to produce such an attractive intera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09288v1-abstract-full').style.display = 'inline'; document.getElementById('2210.09288v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.09288v1-abstract-full" style="display: none;"> The appearance of certain spectral features in one-dimensional (1D) cuprate materials has been attributed to a strong, extended attractive coupling between electrons. Here, using time-dependent density matrix renormalization group methods on a Hubbard-extended Holstein model, we show that extended electron-phonon ({\it e-ph}) coupling presents an obvious choice to produce such an attractive interaction that reproduces the observed spectral features and doping dependence seen in angle-resolved photoemission experiments: diminished $3k_F$ spectral weight, prominent spectral intensity of a holon-folding branch, and the correct holon band width. While extended {\it e-ph} coupling does not qualitatively alter the ground state of the 1D system compared to the Hubbard model, it quantitatively enhances the long-range superconducting correlations and suppresses spin correlations. Such an extended {\it e-ph} interaction may be an important missing ingredient in describing the physics of the structurally similar two-dimensional high-temperature superconducting layered cuprates, which may tip the balance between intertwined orders in favor of uniform $d$-wave superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09288v1-abstract-full').style.display = 'none'; document.getElementById('2210.09288v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 14, 3129 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.09144">arXiv:2208.09144</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.09144">pdf</a>, <a href="https://arxiv.org/format/2208.09144">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.ade3232">10.1126/science.ade3232 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Wiedemann-Franz law in doped Mott insulators without quasiparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W+O">Wen O. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J+K">Jixun K. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schattner%2C+Y">Yoni Schattner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+E+W">Edwin W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.09144v2-abstract-short" style="display: inline;"> Many metallic quantum materials display anomalous transport phenomena that defy a Fermi liquid description. Here, we use numerical methods to calculate thermal and charge transport in the doped Hubbard model and observe a cross-over separating high- and low-temperature behaviors. Distinct from the behavior at high temperatures, the Lorenz number $L$ becomes weakly doping dependent and less sensiti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09144v2-abstract-full').style.display = 'inline'; document.getElementById('2208.09144v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.09144v2-abstract-full" style="display: none;"> Many metallic quantum materials display anomalous transport phenomena that defy a Fermi liquid description. Here, we use numerical methods to calculate thermal and charge transport in the doped Hubbard model and observe a cross-over separating high- and low-temperature behaviors. Distinct from the behavior at high temperatures, the Lorenz number $L$ becomes weakly doping dependent and less sensitive to parameters at low temperatures. At the lowest numerically accessible temperatures, $L$ roughly approaches the Wiedemann-Franz constant $L_0$, even in a doped Mott insulator that lacks well-defined quasiparticles. Decomposing the energy current operator indicates a compensation between kinetic and potential contributions, which may help to clarify the interpretation of transport experiments beyond Boltzmann theory in strongly correlated metals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.09144v2-abstract-full').style.display = 'none'; document.getElementById('2208.09144v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures. Supplementary Materials: 23 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 382, 1070-1073 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.03486">arXiv:2206.03486</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.03486">pdf</a>, <a href="https://arxiv.org/format/2206.03486">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L201102">10.1103/PhysRevB.107.L201102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced superconductivity by near-neighbor attraction in the doped Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Jiajia Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Young Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T">Thomas Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hong-Chen Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.03486v1-abstract-short" style="display: inline;"> Recent experiment has unveiled an anomalously strong electron-electron attraction in one-dimensional copper-oxide chain Ba$_{2-x}$Sr$_x$CuO$_{3+未}$. While the near-neighbor electron attraction $V$ in the one-dimensional extended Hubbard chain has been examined recently, its effect in the Hubbard model beyond the one-dimensional chain remains unclear. We report a density-matrix renormalization grou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03486v1-abstract-full').style.display = 'inline'; document.getElementById('2206.03486v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.03486v1-abstract-full" style="display: none;"> Recent experiment has unveiled an anomalously strong electron-electron attraction in one-dimensional copper-oxide chain Ba$_{2-x}$Sr$_x$CuO$_{3+未}$. While the near-neighbor electron attraction $V$ in the one-dimensional extended Hubbard chain has been examined recently, its effect in the Hubbard model beyond the one-dimensional chain remains unclear. We report a density-matrix renormalization group study of the extended Hubbard model on long four-leg cylinders on the square lattice. We find that the near-neighbor electron attraction $V$ can notably enhance the long-distance superconducting correlations while simultaneously suppressing the charge-density-wave correlations. Specifically, for a modestly strong electron attraction, the superconducting correlations become dominant over the CDW correlations with a Luttinger exponent $K_{sc}\sim 1$ and strong divergent superconducting susceptibility. Our results provide a promising way to realize long-range superconductivity in the doped Hubbard model in two dimensions. The relevance of our numerical results to cuprate materials is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.03486v1-abstract-full').style.display = 'none'; document.getElementById('2206.03486v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.15355">arXiv:2205.15355</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.15355">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Rare-Earth Control of the Superconducting Upper Critical Field in Infinite-Layer Nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T+C">Tiffany C. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+Y">Yu-Te Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duffy%2C+C">Caitlin Duffy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Danfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fowlie%2C+J">Jennifer Fowlie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beasley%2C+M+R">Malcolm R. Beasley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fisher%2C+I+R">Ian R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussey%2C+N+E">Nigel E. Hussey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.15355v1-abstract-short" style="display: inline;"> The consequences of varying the rare-earth element in the superconducting infinite-layer nickelates have been much debated. Here we show striking differences in the magnitude and anisotropy of the superconducting upper critical field across the La-, Pr-, and Nd-nickelates. These 5 distinctions originate from the 4f electron characteristics of the rare-earth ions in the lattice: they are absent for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15355v1-abstract-full').style.display = 'inline'; document.getElementById('2205.15355v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.15355v1-abstract-full" style="display: none;"> The consequences of varying the rare-earth element in the superconducting infinite-layer nickelates have been much debated. Here we show striking differences in the magnitude and anisotropy of the superconducting upper critical field across the La-, Pr-, and Nd-nickelates. These 5 distinctions originate from the 4f electron characteristics of the rare-earth ions in the lattice: they are absent for La3+, nonmagnetic for the Pr3+ singlet ground state, and magnetic for the Nd3+ Kramer&#39;s doublet. The unique polar and azimuthal angle-dependent magnetoresistance found in the Nd-nickelates can be understood to arise from the magnetic contribution of the Nd3+ 4f moments. In the absence of rare-earth effects, we find that the nickelates broadly violate the Pauli limit. Such robust and tunable superconductivity suggests potential in future high-field applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15355v1-abstract-full').style.display = 'none'; document.getElementById('2205.15355v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, 1 supplementary materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04727">arXiv:2205.04727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.04727">pdf</a>, <a href="https://arxiv.org/format/2205.04727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.064428">10.1103/PhysRevB.106.064428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectra of a Gapped Quantum Spin Liquid with a Strong Chiral Excitation on the Triangular Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+T">Ta Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04727v2-abstract-short" style="display: inline;"> While a quantum spin liquid (QSL) phase has been identified in the $J_1$-$J_2$ Heisenberg model on a triangular lattice via numerical calculations, debate persists about whether or not such a QSL is gapped or gapless, with contradictory conclusions from different techniques. Moreover, information about excitations and dynamics is crucial for the experimental detection of such a phase. In this work&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04727v2-abstract-full').style.display = 'inline'; document.getElementById('2205.04727v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04727v2-abstract-full" style="display: none;"> While a quantum spin liquid (QSL) phase has been identified in the $J_1$-$J_2$ Heisenberg model on a triangular lattice via numerical calculations, debate persists about whether or not such a QSL is gapped or gapless, with contradictory conclusions from different techniques. Moreover, information about excitations and dynamics is crucial for the experimental detection of such a phase. In this work, we use exact diagonalization to characterize signatures of a QSL phase on the triangular lattice through the dynamical spin structure factor $\mathcal{S}(q,蠅)$ and Raman susceptibility $\mathcal蠂(蠅)$. We find that spectra for the QSL phase show distinct features compared to those of neighboring phases; and both the Raman spectra and spin structure factor show gapped behaviour in the QSL phase. Interestingly, there is a prominent excitation mode in the Raman $A_2$ channel, indicating a strong subleading tendency toward a chiral spin liquid phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04727v2-abstract-full').style.display = 'none'; document.getElementById('2205.04727v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.09963">arXiv:2202.09963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.09963">pdf</a>, <a href="https://arxiv.org/format/2202.09963">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.165122">10.1103/PhysRevB.105.165122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropy of the magnetic and transport properties in EuZn$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhi-Cheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E">Emily Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaudet%2C+J">Jonathan Gaudet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alqasseri%2C+G+M+A">Gadeer Matook A. Alqasseri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fruhling%2C+K">Kyle Fruhling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+X">Xiaohan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stuhr%2C+U">Uwe Stuhr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Q">Qinqing Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Z">Zhi Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chowdhury%2C+S">Sugata Chowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T">Thomas Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tafti%2C+F">Fazel Tafti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.09963v1-abstract-short" style="display: inline;"> Several recent studies have shown that the anisotropy in the magnetic structure of \ECA\ plays a significant role in stabilizing the Weyl nodes. To investigate the relationship between magnetic anisotropy and Weyl physics, we present a comparative study between EuZn$_2$As$_2$ and EuCd$_2$As$_2$ that are isostructural but with different magnetic anisotropy. We performed structural analysis, electro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09963v1-abstract-full').style.display = 'inline'; document.getElementById('2202.09963v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.09963v1-abstract-full" style="display: none;"> Several recent studies have shown that the anisotropy in the magnetic structure of \ECA\ plays a significant role in stabilizing the Weyl nodes. To investigate the relationship between magnetic anisotropy and Weyl physics, we present a comparative study between EuZn$_2$As$_2$ and EuCd$_2$As$_2$ that are isostructural but with different magnetic anisotropy. We performed structural analysis, electronic transport, and magnetization experiments on millimeter-sized single crystals of EuZn$_2$As$_2$, and compared the results to those of EuCd$_2$As$_2$. By combining the first principle calculations and neutron diffraction experiment, we identify the magnetic ground state of EuZn$_2$As$_2$ as A-type antiferromagnetic order with a transition temperature ($T_\mathrm{N}$ = 19.6 K) twice that of EuCd$_2$As$_2$. Like EuCd$_2$As$_2$, the negative magnetoresistance of EuZn$_2$As$_2$ is observed after suppressing the resistivity peak at $T_\mathrm{N}$ with increasing fields. However, the anisotropy in both transport and magnetization are much reduced in EuZn$_2$As$_2$. The difference could be ascribed to the weaker spin-orbit coupling, more localized $d$-orbitals, and a larger contribution from the Eu $s$-orbitals in the zinc compound, as suggested by the electronic band calculations. The same band structure effect could be also responsible for the observation of a smaller non-linear anomalous Hall effect in EuZn$_2$As$_2$ compared to EuCd$_2$As$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09963v1-abstract-full').style.display = 'none'; document.getElementById('2202.09963v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08845">arXiv:2202.08845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.08845">pdf</a>, <a href="https://arxiv.org/format/2202.08845">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.085126">10.1103/PhysRevB.107.085126 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fluctuating intertwined stripes in the strange metal regime of the Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+E+W">Edwin W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tianyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W+O">Wen O. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hong-Chen Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mai%2C+P">Peizhi Mai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maier%2C+T+A">Thomas A. Maier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnston%2C+S">Steven Johnston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08845v1-abstract-short" style="display: inline;"> Strongly correlated electron systems host a variety of poorly understood correlations in their high temperature normal state. Unlike ordered phases defined by order parameters, these normal state phases are often defined through unconventional properties such as strange metallic transport or spectroscopic pseudogaps. Characterizing the microscopic correlations in the normal state is necessary to e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08845v1-abstract-full').style.display = 'inline'; document.getElementById('2202.08845v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08845v1-abstract-full" style="display: none;"> Strongly correlated electron systems host a variety of poorly understood correlations in their high temperature normal state. Unlike ordered phases defined by order parameters, these normal state phases are often defined through unconventional properties such as strange metallic transport or spectroscopic pseudogaps. Characterizing the microscopic correlations in the normal state is necessary to elucidate mechanisms that lead to these properties and their connection to ground state orders. Here we establish the presence of intertwined charge and spin stripes in the strange metal normal state of the Hubbard model using determinant quantum Monte Carlo calculations. The charge and spin density waves constituting the stripes are fluctuating and short-ranged, yet they obey a mutual commensurability relation and remain microscopically interlocked, as evidenced through measurements of three-point spin-spin-hole correlation functions. Our findings demonstrate the ability of many-body numerical simulations to unravel the microscopic correlations that define quantum states of matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08845v1-abstract-full').style.display = 'none'; document.getElementById('2202.08845v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.11592">arXiv:2201.11592</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.11592">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-36857-7">10.1038/s41467-023-36857-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidences for the exciton gas phase and its condensation in monolayer 1T-ZrTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y">Yekai Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+H">Hongyu Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Binbin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Zhicheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">Kui Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+J">Jinwoong Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhuojun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+C">Choongyu Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D">Dawei Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sobota%2C+J">Jonathan Sobota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirchmann%2C+P">Patrick Kirchmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+J">Jiamin Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+S">Shujie Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.11592v2-abstract-short" style="display: inline;"> The excitonic insulator (EI) is a Bose-Einstein condensation (BEC) of excitons bound by electron-hole interaction in a solid, which could support high-temperature BEC transition. The material realization of EI has been elusive, which is further challenged by the difficulty of distinguishing it from a conventional charge density wave (CDW) state. In the BEC limit, the pre-condensation exciton gas p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11592v2-abstract-full').style.display = 'inline'; document.getElementById('2201.11592v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.11592v2-abstract-full" style="display: none;"> The excitonic insulator (EI) is a Bose-Einstein condensation (BEC) of excitons bound by electron-hole interaction in a solid, which could support high-temperature BEC transition. The material realization of EI has been elusive, which is further challenged by the difficulty of distinguishing it from a conventional charge density wave (CDW) state. In the BEC limit, the pre-condensation exciton gas phase is a hallmark to distinguish EI from conventional CDW, yet direct experimental evidence has been lacking. Here we report a distinct correlated phase beyond the $2\times2$ CDW ground state emerging in epitaxially grown monolayer 1T-ZrTe2 and its investigation by angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). The results show novel band- and energy-dependent folding behavior in a two-step process, evidenced by an exciton gas phase prior to its condensation into the final CDW state. The excellent agreement between experiments and theoretical predictions on the recovery of the pristine band structure by carrier-density-dependent suppression of the CDW state further corroborates the monolayer 1T-ZrTe2 as an EI. Our findings provide a versatile two-dimensional platform that allows tuning of the excitonic effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.11592v2-abstract-full').style.display = 'none'; document.getElementById('2201.11592v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.10758">arXiv:2112.10758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.10758">pdf</a>, <a href="https://arxiv.org/format/2112.10758">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fphy.2022.836959">10.3389/fphy.2022.836959 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the nature of valence charge and spin excitations via multi-orbital Hubbard models for infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E+M">Emily M. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+K+H">Kuan H. Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.10758v1-abstract-short" style="display: inline;"> Building upon the recent progress on the intriguing underlying physics for the newly discovered infinite-layer nickelates, in this article we review an examination of valence charge and spin excitations via multi-orbital Hubbard models as way to determine the fundamental building blocks for Hamiltonians that can describe the low energy properties of infinite-layer nickelates. We summarize key resu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10758v1-abstract-full').style.display = 'inline'; document.getElementById('2112.10758v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.10758v1-abstract-full" style="display: none;"> Building upon the recent progress on the intriguing underlying physics for the newly discovered infinite-layer nickelates, in this article we review an examination of valence charge and spin excitations via multi-orbital Hubbard models as way to determine the fundamental building blocks for Hamiltonians that can describe the low energy properties of infinite-layer nickelates. We summarize key results from density-functional approaches, and apply them to the study of x-ray absorption to determine the valence ground states of infinite-layer nickelates in their parent form, and show that a fundamental $d^9$ configuration as in the cuprates is incompatible with a self-doped ground state having holes in both $d_{x^2-y^2}$ and a rare-earth-derived axial orbital. When doped, we determine that the rare-earth-derived orbitals empty and additional holes form low spin $(S=0)$ $d^8$ Ni states, which can be well-described as a doped single-band Hubbard model. Using exact diagonalization for a 2-orbital model involving Ni and rare earth orbitals, we find clear magnons at 1/2 filling that persist when doped, albeit with larger damping, and with a dependence on the precise orbital energy separation between the Ni- and rare-earth-derived orbitals. Taken together, a full two-band model for infinite-layer nickelates can well describe the valence charge and spin excitations observed experimentally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10758v1-abstract-full').style.display = 'none'; document.getElementById('2112.10758v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Frontiers in Physics, 10, 836959, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04718">arXiv:2112.04718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04718">pdf</a>, <a href="https://arxiv.org/format/2112.04718">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.165124">10.1103/PhysRevB.105.165124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sign-Free Determinant Quantum Monte Carlo Study of Excitonic Density Orders in a Two-Orbital Hubbard-Kanamori Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xu-Xin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claassen%2C+M">Martin Claassen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04718v1-abstract-short" style="display: inline;"> While excitonic instabilities in multiorbital systems recently have come under scrutiny in a variety of transition-metal compounds, understanding emergence of these instabilities from strong electronic interactions has remained a challenge. Here, we present a sign-problem-free determinant quantum Monte Carlo study of excitonic density orders in a half-filled two-orbital Hubbard-Kanamori model with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04718v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04718v1-abstract-full" style="display: none;"> While excitonic instabilities in multiorbital systems recently have come under scrutiny in a variety of transition-metal compounds, understanding emergence of these instabilities from strong electronic interactions has remained a challenge. Here, we present a sign-problem-free determinant quantum Monte Carlo study of excitonic density orders in a half-filled two-orbital Hubbard-Kanamori model with broken orbital degeneracy, which accounts for the role of Hund&#39;s coupling in transition-metal compounds. For strong inverted (negative) Hund&#39;s exchange, we find numerical evidence for the emergence of excitonic density order, with competition between anti-ferro-orbital order and $\mathbf{Q} = (蟺,蟺)$ excitonic density order as a function of orbital splitting and Hund&#39;s coupling. While inverted Hund&#39;s coupling stabilizes a spin-singlet excitonic density phase for weak orbital splitting, positive Hund&#39;s coupling favors a spin-triplet excitonic density phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04718v1-abstract-full').style.display = 'none'; document.getElementById('2112.04718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02484">arXiv:2112.02484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.02484">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01660-6">10.1038/s41567-022-01660-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Broken Translational Symmetry State in an Infinite-Layer Nickelate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">Matteo Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">Motoki Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jost%2C+D">Daniel Jost</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yonghun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Haiyu Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K">Kyuho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y">Yi-De Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuo%2C+C">Cheng-Tai Kuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sang-Jun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jun-Sik Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Wei-Sheng Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02484v1-abstract-short" style="display: inline;"> A defining signature of strongly correlated electronic systems is the existence of competing phases with similar ground state energies, resulting in a rich phase diagram. While in the recently discovered nickelate superconductors, a high antiferromagnetic exchange energy has been reported, which implies the existence of strong electronic correlations, signatures of competing phases have not yet be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02484v1-abstract-full').style.display = 'inline'; document.getElementById('2112.02484v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02484v1-abstract-full" style="display: none;"> A defining signature of strongly correlated electronic systems is the existence of competing phases with similar ground state energies, resulting in a rich phase diagram. While in the recently discovered nickelate superconductors, a high antiferromagnetic exchange energy has been reported, which implies the existence of strong electronic correlations, signatures of competing phases have not yet been observed. Here, we uncover a charge order (CO) in infinite-layer nickelates La1-xSrxNiO2 using resonant x-ray scattering across the Ni L-edge. In the parent compound, the CO arranges along the Ni-O bond direction with an incommensurate wave vector (0.344+/-0.002, 0) r.l.u., distinct from the stripe order in other nickelates which propagates along a direction 45 degree to the Ni-O bond. The CO resonance profile indicates that CO originates from the Ni 3d states and induces a parasitic charge modulation of La electrons. Upon doping, the CO diminishes and the ordering wave vector shifts toward a commensurate value of 1/3 r.l.u., indicating that the CO likely arises from strong correlation effects and not from Fermi surface nesting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02484v1-abstract-full').style.display = 'none'; document.getElementById('2112.02484v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 18, 869 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09258">arXiv:2111.09258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.09258">pdf</a>, <a href="https://arxiv.org/format/2111.09258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-022-00968-2">10.1038/s42005-022-00968-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermodynamics of correlated electrons in a magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J+K">Jixun K. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W+O">Wen O. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schattner%2C+Y">Yoni Schattner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+E+W">Edwin W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09258v2-abstract-short" style="display: inline;"> The Hofstadter-Hubbard model captures the physics of strongly correlated electrons in an applied magnetic field, which is relevant to many recent experiments on Moir茅 materials. Few large-scale, numerically exact simulations exists for this model. In this work, we simulate the Hubbard-Hofstadter model using the determinant quantum Monte Carlo (DQMC) algorithm. We report the field and Hubbard inter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09258v2-abstract-full').style.display = 'inline'; document.getElementById('2111.09258v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09258v2-abstract-full" style="display: none;"> The Hofstadter-Hubbard model captures the physics of strongly correlated electrons in an applied magnetic field, which is relevant to many recent experiments on Moir茅 materials. Few large-scale, numerically exact simulations exists for this model. In this work, we simulate the Hubbard-Hofstadter model using the determinant quantum Monte Carlo (DQMC) algorithm. We report the field and Hubbard interaction strength dependence of charge compressibility, fermion sign, local moment, magnetic structure factor, and specific heat. The gross structure of magnetic Bloch bands and band gaps determined by the non-interacting Hofstadter spectrum is preserved in the presence of $U$. Incompressible regions of the phase diagram have improved fermion sign. At half filling and intermediate and larger couplings, a strong orbital magnetic field delocalizes electrons and reduces the effect of Hubbard $U$ on thermodynamic properties of the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09258v2-abstract-full').style.display = 'none'; document.getElementById('2111.09258v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: 11 pages, 7 figures; accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics 5, 204 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.07593">arXiv:2110.07593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.07593">pdf</a>, <a href="https://arxiv.org/format/2110.07593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.245115">10.1103/PhysRevB.108.245115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge order and superconductivity in a minimal two-band model for infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hong-Chen Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.07593v2-abstract-short" style="display: inline;"> The recent discovery of superconductivity in infinite-layer nickelates has drawn considerable attention; however, a consensus on the fundamental building blocks and common ingredients necessary to understand and describe their ground states and emergent properties is lacking. A series of experimental and theoretical studies have suggested that an effective two-band Hubbard model with Ni 3&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07593v2-abstract-full').style.display = 'inline'; document.getElementById('2110.07593v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.07593v2-abstract-full" style="display: none;"> The recent discovery of superconductivity in infinite-layer nickelates has drawn considerable attention; however, a consensus on the fundamental building blocks and common ingredients necessary to understand and describe their ground states and emergent properties is lacking. A series of experimental and theoretical studies have suggested that an effective two-band Hubbard model with Ni 3$d_{x^2-y^2}$ and rare-earth ($R$) 5$d$ character may describe the low-energy physics. Here, we study the ground state properties of this two-band model on four-leg cylinders using the density-matrix renormalization group (DMRG) technique to better grasp whether such a simple model can embody the essential physics. A key difference compared to single-band Hubbard materials is that the system is self-doped: even at overall half-filling, the $R$-band acts as an electron reservoir, hole-doping the Ni-layer and fundamentally altering the physics expected from an undoped antiferromagnet. On the four-leg cylinder, the ground state is consistent with a Luttinger liquid, with anti-phase modulations of the charge density in the Ni- and $R$-layers having corresponding wavevectors that lock together. Light hole doping away from 1/2 filling releases the locking between the Ni and the $R$ charge modulations, as the electron density in the $R$-band decreases and eventually becomes exhausted at a hole doping concentration that depends sensitively on the effective splitting between the Ni and the $R$ orbitals. The ground state of the doped system is consistent with a Luther-Emery liquid, possessing quasi-long-range superconducting correlations in the Ni layer, similar to the single-band Hubbard model. Our results are consistent with experimental observations and may help to reveal the microscopic mechanism for pairing and other emergent properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07593v2-abstract-full').style.display = 'none'; document.getElementById('2110.07593v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.11527">arXiv:2109.11527</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.11527">pdf</a>, <a href="https://arxiv.org/format/2109.11527">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02259-1">10.1038/s41567-023-02259-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Witnessing quantum criticality and entanglement in the triangular antiferromagnet KYbSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scheie%2C+A+O">A. O. Scheie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghioldi%2C+E+A">E. A. Ghioldi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+J">J. Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paddison%2C+J+A+M">J. A. M. Paddison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sherman%2C+N+E">N. E. Sherman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dupont%2C+M">M. Dupont</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanjeewa%2C+L+D">L. D. Sanjeewa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sangyun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woods%2C+A+J">A. J. Woods</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abernathy%2C+D">D. Abernathy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pajerowski%2C+D+M">D. M. Pajerowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Williams%2C+T+J">T. J. Williams</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shang-Shun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manuel%2C+L+O">L. O. Manuel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trumper%2C+A+E">A. E. Trumper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pemmaraju%2C+C+D">C. D. Pemmaraju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sefat%2C+A+S">A. S. Sefat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parker%2C+D+S">D. S. Parker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Movshovich%2C+R">R. Movshovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+J+E">J. E. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batista%2C+C+D">C. D. Batista</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennant%2C+D+A">D. A. Tennant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.11527v4-abstract-short" style="display: inline;"> The Heisenberg triangular lattice quantum spin liquid and the phase transitions to nearby magnetic orders have received much theoretical attention, but clear experimental manifestations of these states are rare. This work investigates a new spin-half Yb$^{3+}$ delafossite material, KYbSe$_2$, whose inelastic neutron scattering spectra reveal a diffuse continuum with a sharp lower bound. Applying e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11527v4-abstract-full').style.display = 'inline'; document.getElementById('2109.11527v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.11527v4-abstract-full" style="display: none;"> The Heisenberg triangular lattice quantum spin liquid and the phase transitions to nearby magnetic orders have received much theoretical attention, but clear experimental manifestations of these states are rare. This work investigates a new spin-half Yb$^{3+}$ delafossite material, KYbSe$_2$, whose inelastic neutron scattering spectra reveal a diffuse continuum with a sharp lower bound. Applying entanglement witnesses to the data reveals significant multipartite entanglement spread between its neighbors, and analysis of its magnetic exchange couplings shows close proximity to the triangular lattice Heisenberg quantum spin liquid. Key features of the data are reproduced by Schwinger-boson theory and tensor network calculations with a significant second-neighbor coupling $J_2$. The strength of the dynamical structure factor at the $K$ point shows a scaling collapse in $\hbar蠅/k_\mathrm{B}T$ down to 0.3 K, indicating a second-order quantum phase transition. Comparing this to previous theoretical work suggests that the proximate phase at larger $J_2$ is a gapped $\mathbb{Z}_2$ spin liquid, resolving a long-debated issue. We thus show that KYbSe$_2$ is close to a spin liquid phase, which in turn sheds light on the theoretical phase diagram itself. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11527v4-abstract-full').style.display = 'none'; document.getElementById('2109.11527v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages main text, 6 pages methods, 7 pages supplemental information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.01119">arXiv:2109.01119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.01119">pdf</a>, <a href="https://arxiv.org/format/2109.01119">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.L161103">10.1103/PhysRevB.105.L161103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnon heat transport in a two-dimensional Mott insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W+O">Wen O. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J+K">Jixun K. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+E+W">Edwin W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.01119v2-abstract-short" style="display: inline;"> Whether or not anomalies in the thermal conductivity in insulating cuprates can be attributed to antiferromagnetic order and magnons in a 2D Mott insulator remains an intriguing open question. To shed light on this issue, we investigate the thermal conductivity $魏$ and its relationship with the specific heat $c_v$ in the half-filled 2D single-band Hubbard model, using the numerically exact determi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01119v2-abstract-full').style.display = 'inline'; document.getElementById('2109.01119v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.01119v2-abstract-full" style="display: none;"> Whether or not anomalies in the thermal conductivity in insulating cuprates can be attributed to antiferromagnetic order and magnons in a 2D Mott insulator remains an intriguing open question. To shed light on this issue, we investigate the thermal conductivity $魏$ and its relationship with the specific heat $c_v$ in the half-filled 2D single-band Hubbard model, using the numerically exact determinant quantum Monte Carlo algorithm and maximum entropy analytic continuation. At low temperatures where the charge degrees of freedom are gapped-out and $c_v$ exhibits a clear magnon peak, we observe that thermal conductivity $魏$ also tends to form a peak at similar temperatures. Reducing temperature further produces a sharp upturn in $魏$, associated with an increasing mean-free path. We identify this as the high-temperature side of the anomalous peak in insulating cuprates, where the mean-free path eventually is cut-off by other scattering effects, including phonons, disorder, and physical size. Different scattering effects in our model are identified and analyzed in the thermal diffusivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.01119v2-abstract-full').style.display = 'none'; document.getElementById('2109.01119v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. Supplementary Material: 11 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, L161103 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.07913">arXiv:2108.07913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.07913">pdf</a>, <a href="https://arxiv.org/format/2108.07913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.commatsci.2021.110814">10.1016/j.commatsci.2021.110814 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Web-Based Methods for X-ray and Photoelectron Spectroscopies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">C. Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kas%2C+J+J">J. J. Kas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rehr%2C+J+J">J. J. Rehr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.07913v1-abstract-short" style="display: inline;"> We present a simplified web-based application for simulating x-ray and photoelectron spectra of transition metals, built around the notion that web-based applications lower the bar for novice users. The application provides a simple interface to simulate x-ray absorption spectroscopy, resonant inelastic x-ray scattering, and angle-resolved photoemission spectroscopy, incorporating the effects of l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.07913v1-abstract-full').style.display = 'inline'; document.getElementById('2108.07913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.07913v1-abstract-full" style="display: none;"> We present a simplified web-based application for simulating x-ray and photoelectron spectra of transition metals, built around the notion that web-based applications lower the bar for novice users. The application provides a simple interface to simulate x-ray absorption spectroscopy, resonant inelastic x-ray scattering, and angle-resolved photoemission spectroscopy, incorporating the effects of local electronic interactions, which give rise to multiplets, spin-orbit coupling, crystal field effects, and ligand hybridization/charge transfer. Results can be obtained that highlight the key role of photon polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.07913v1-abstract-full').style.display = 'none'; document.getElementById('2108.07913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 10 figures. Software can be accessed at https://www-times.stanford.edu/index and https://times-webxrs.stanford.edu</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Comp. Mat. Sci. 200, 110814 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.06118">arXiv:2108.06118</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.06118">pdf</a>, <a href="https://arxiv.org/format/2108.06118">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.12.021068">10.1103/PhysRevX.12.021068 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant Inelastic X-ray Scattering Study of Electron-Exciton Coupling in High-Tc Cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Barantani%2C+F">F. Barantani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+M+K">M. K. Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Madan%2C+I">I. Madan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kapon%2C+I">I. Kapon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bachar%2C+N">N. Bachar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asmara%2C+A+T+C">A. T. C. Asmara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">E. Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Y. Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">W. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Y. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giannini%2C+E">E. Giannini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">G. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berthod%2C+C">C. Berthod</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carbone%2C+F">F. Carbone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Marel%2C+D">D. van der Marel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.06118v4-abstract-short" style="display: inline;"> Explaining the mechanism of superconductivity in the high-$T_c$ cuprates requires an understanding of what causes electrons to form Cooper pairs. Pairing can be mediated by phonons, the screened Coulomb force, spin or charge fluctuations, excitons, or by a combination of these. An excitonic pairing mechanism has been postulated, but experimental evidence for coupling between conduction electrons a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06118v4-abstract-full').style.display = 'inline'; document.getElementById('2108.06118v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.06118v4-abstract-full" style="display: none;"> Explaining the mechanism of superconductivity in the high-$T_c$ cuprates requires an understanding of what causes electrons to form Cooper pairs. Pairing can be mediated by phonons, the screened Coulomb force, spin or charge fluctuations, excitons, or by a combination of these. An excitonic pairing mechanism has been postulated, but experimental evidence for coupling between conduction electrons and excitons in the cuprates is sporadic. Here we use resonant inelastic x-ray scattering (RIXS) to monitor the temperature dependence of the $\underline{d}d$ exciton spectrum of Bi$_2$Sr$_2$CaCu$_2$O$_{8-x}$ (Bi-2212) crystals with different charge carrier concentrations. We observe a significant change of the $\underline{d}d$ exciton spectra when the materials pass from the normal state into the superconductor state. Our observations show that the $\underline{d}d$ excitons start to shift up (down) in the overdoped (underdoped) sample when the material enters the superconducting phase. We attribute the superconductivity-induced effect and its sign-reversal from underdoped to overdoped to the exchange coupling of the site of the $\underline{d}d$ exciton to the surrounding copper spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06118v4-abstract-full').style.display = 'none'; document.getElementById('2108.06118v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 12, 021068 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.04260">arXiv:2108.04260</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.04260">pdf</a>, <a href="https://arxiv.org/format/2108.04260">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.064515">10.1103/PhysRevB.105.064515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distinguishing finite momentum superconducting pairing states with two-electron photoemission spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mahmood%2C+F">Fahad Mahmood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T">Thomas Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbamonte%2C+P">Peter Abbamonte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morr%2C+D+K">Dirk K. Morr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.04260v1-abstract-short" style="display: inline;"> We show theoretically that double photoemission (2$e$-ARPES) may be used to identify the pairing state in superconductors in which the Cooper pairs have a nonzero center-of-mass momentum, ${\bf q}_{cm}$. We theoretically evaluate the 2$e$ ARPES counting rate, $P^{(2)}$, for the cases of a $d_{x^2-y^2}$-wave superconductor, a pair-density-wave (PDW) phase, and a Fulde-Ferrel-Larkin-Ovchinnikov (FFL&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04260v1-abstract-full').style.display = 'inline'; document.getElementById('2108.04260v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.04260v1-abstract-full" style="display: none;"> We show theoretically that double photoemission (2$e$-ARPES) may be used to identify the pairing state in superconductors in which the Cooper pairs have a nonzero center-of-mass momentum, ${\bf q}_{cm}$. We theoretically evaluate the 2$e$ ARPES counting rate, $P^{(2)}$, for the cases of a $d_{x^2-y^2}$-wave superconductor, a pair-density-wave (PDW) phase, and a Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) phase. We show that $P^{(2)}$ provides direct insight into the center-of-mass momentum and spin state of the superconducting condensate, and thus can distinguish between these three different superconducting pairing states. In addition, $P^{(2)}$ can be used to map out the momentum dependence of the superconducting order parameter. Our results identify 2$e$-ARPES as an ideal tool for identifying and probing ${\bf q}_{cm} \neq 0$ superconducting pairing states in superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04260v1-abstract-full').style.display = 'none'; document.getElementById('2108.04260v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.10409">arXiv:2107.10409</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.10409">pdf</a>, <a href="https://arxiv.org/format/2107.10409">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.216401">10.1103/PhysRevLett.128.216401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ab initio multiplet plus cumulant approach for correlation effects in x-ray photoelectron spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kas%2C+J+J">J. J. Kas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rehr%2C+J+J">J. J. Rehr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.10409v2-abstract-short" style="display: inline;"> The treatment of electronic correlations in open-shell systems is among the most challenging problems of condensed matter theory. Current approximations are only partly successful. Ligand field multiplet theory (LFMT) has been widely successful in describing intra-atomic correlation effects in x-ray spectra, but typically ignores itinerant states. The cumulant expansion for the one electron Greens&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10409v2-abstract-full').style.display = 'inline'; document.getElementById('2107.10409v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.10409v2-abstract-full" style="display: none;"> The treatment of electronic correlations in open-shell systems is among the most challenging problems of condensed matter theory. Current approximations are only partly successful. Ligand field multiplet theory (LFMT) has been widely successful in describing intra-atomic correlation effects in x-ray spectra, but typically ignores itinerant states. The cumulant expansion for the one electron Greens function has been successful in describing shake-up effects but ignores atomic multiplets. More complete methods, such as dynamic mean-field theory can be computationally problematic. Here we show that separating the dynamic Coulomb interactions into local and longer-range parts with ab initio parameters yields a combined multiplet plus cumulant approach that accounts for both local atomic multiplets and satellite excitations. The approach is illustrated in transition metal oxides and explains the multiplet peaks, charge-transfer satellites and distributed background features observed in XPS experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10409v2-abstract-full').style.display = 'none'; document.getElementById('2107.10409v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.05773">arXiv:2107.05773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.05773">pdf</a>, <a href="https://arxiv.org/format/2107.05773">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.197003">10.1103/PhysRevLett.127.197003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phonon-Mediated Long-Range Attractive Interaction in One-Dimensional Cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhuoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+T">Tao Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.05773v2-abstract-short" style="display: inline;"> Establishing a minimal microscopic model for cuprates is a key step towards the elucidation of a high-$T_c$ mechanism. By a quantitative comparison with a recent \emph{in situ} angle-resolved photoemission spectroscopy measurement in doped 1D cuprate chains, our simulation identifies a crucial contribution from long-range electron-phonon coupling beyond standard Hubbard models. Using reasonable ra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05773v2-abstract-full').style.display = 'inline'; document.getElementById('2107.05773v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.05773v2-abstract-full" style="display: none;"> Establishing a minimal microscopic model for cuprates is a key step towards the elucidation of a high-$T_c$ mechanism. By a quantitative comparison with a recent \emph{in situ} angle-resolved photoemission spectroscopy measurement in doped 1D cuprate chains, our simulation identifies a crucial contribution from long-range electron-phonon coupling beyond standard Hubbard models. Using reasonable ranges of coupling strengths and phonon energies, we obtain a strong attractive interaction between neighboring electrons, whose strength is comparable to experimental observations. Nonlocal couplings play a significant role in the mediation of neighboring interactions. Considering the structural and chemical similarity between 1D and 2D cuprate materials, this minimal model with long-range electron-phonon coupling will provide important new insights on cuprate high-$T_C$ superconductivity and related quantum phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05773v2-abstract-full').style.display = 'none'; document.getElementById('2107.05773v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 197003 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14272">arXiv:2106.14272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.14272">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abf5174">10.1126/science.abf5174 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalously Strong Near-Neighbor Attraction in Doped 1D Cuprate Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhuoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rebec%2C+S+N">Slavko N. Rebec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+T">Tao Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R+G">Robert G. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14272v1-abstract-short" style="display: inline;"> In the cuprates, one-dimensional chain compounds provide a unique opportunity to understand the microscopic physics due to the availability of reliable theories. However, progress has been limited by the inability to controllably dope these materials. Here, we report the synthesis and spectroscopic analysis of the one-dimensional cuprate Ba$_{2-x}$Sr$_x$CuO$_{3+未}$ over a wide range of hole doping&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14272v1-abstract-full').style.display = 'inline'; document.getElementById('2106.14272v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14272v1-abstract-full" style="display: none;"> In the cuprates, one-dimensional chain compounds provide a unique opportunity to understand the microscopic physics due to the availability of reliable theories. However, progress has been limited by the inability to controllably dope these materials. Here, we report the synthesis and spectroscopic analysis of the one-dimensional cuprate Ba$_{2-x}$Sr$_x$CuO$_{3+未}$ over a wide range of hole doping. Our angle-resolved photoemission experiments reveal the doping evolution of the holon and spinon branches. We identify a prominent folding branch whose intensity fails to match predictions of the simple Hubbard model. An additional strong near-neighbor attraction, which may arise from coupling to phonons, quantitatively explains experiments for all accessible doping levels. Considering structural and quantum chemistry similarities among cuprates, this attraction will play a similarly crucial role in the high-$T_C$ superconducting counterparts <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14272v1-abstract-full').style.display = 'none'; document.getElementById('2106.14272v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 373, 1235-1239 (2021) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10