CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 96 results for author: <span class="mathjax">Jin, X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Jin%2C+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Jin, X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Jin%2C+X&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Jin, X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jin%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jin%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jin%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02916">arXiv:2411.02916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02916">pdf</a>, <a href="https://arxiv.org/format/2411.02916">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Gyrotropic Magnetic Effect in Black Phosphorus Irradiated with Bicircular Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+D">Da-Shuai Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+D">Dong-Hui Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02916v1-abstract-short" style="display: inline;"> The gyrotropic magnetic effect, manifesting as a gyropropic current under a slowly-varying magnetic field, represents a fundamental property of Bloch electrons on the Fermi surface; however, it has not been observed in experiments. Here, we theoretically propose that Floquet engineering with bicircular light (BCL), which is a superposition of two opposite chiral waves of circularly polarized light&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02916v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02916v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02916v1-abstract-full" style="display: none;"> The gyrotropic magnetic effect, manifesting as a gyropropic current under a slowly-varying magnetic field, represents a fundamental property of Bloch electrons on the Fermi surface; however, it has not been observed in experiments. Here, we theoretically propose that Floquet engineering with bicircular light (BCL), which is a superposition of two opposite chiral waves of circularly polarized light with an integer frequency ratio, presents a fascinating strategy to generate and manipulate the gyrotropic magnetic effect in nodal line semimetals. The tailoring spatial symmetry of BCL irradiation can induce a topological transition from a nodal line semimetallic phase to a Weyl semimetallic phase characterized by a minimum number of misaligned Weyl nodes, resulting in the generation of gyrotropic current when a slowly oscillating magnetic field is applied. Moreover, using first-principles calculations, we show that the compressed black phosphorus under irradiation of BCL is an ideal candidate to realize the large gyropropic current with great advantages. Our work not only broadens potential candidate materials for achieving the experimentally accessible gyropropic current, but also provides deeper insights into the interplay between topological phenomena and light manipulation of symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02916v1-abstract-full').style.display = 'none'; document.getElementById('2411.02916v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04950">arXiv:2408.04950</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04950">pdf</a>, <a href="https://arxiv.org/format/2408.04950">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Regeneration of Spin Wave in Atomic Vapor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+J">Jian-Peng Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+F">Feng Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+X">Xiao-Wen Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+H">Hao Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04950v1-abstract-short" style="display: inline;"> Conventionally, atomic vapor is perceived as a non-living system governed by the principles of thermodynamics and statistical physics. However, the demarcation line between life and non-life appears to be less distinct than previously thought. In a study of amplifying spin waves, we observe a phenomenon reminiscent of life: The atomic spin wave stored in atomic vapor has a capability of absorbing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04950v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04950v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04950v1-abstract-full" style="display: none;"> Conventionally, atomic vapor is perceived as a non-living system governed by the principles of thermodynamics and statistical physics. However, the demarcation line between life and non-life appears to be less distinct than previously thought. In a study of amplifying spin waves, we observe a phenomenon reminiscent of life: The atomic spin wave stored in atomic vapor has a capability of absorbing energy from an external light source, and exhibits behaviors akin to active regeneration. We demonstrate that this regeneration significantly enhances the lifetime and retrieval efficiency of the spin wave, while concurrently the noise is effectively suppressed. Our results suggest that the regeneration mechanism holds promise for mitigating the pronounced decoherence typically encountered in spin waves carried by room-temperature media, therefore offering potential applications in the realms of quantum information and precision measurements at ambient conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04950v1-abstract-full').style.display = 'none'; document.getElementById('2408.04950v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15142">arXiv:2407.15142</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15142">pdf</a>, <a href="https://arxiv.org/format/2407.15142">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> A Feasible Way to Find Above-Room-Temperature Ferromagnetic Spintronic Materials: from Flat Band Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuanji Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xintao Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+J">Jiacheng Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Huiyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+F">Fuyang Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15142v1-abstract-short" style="display: inline;"> Finding and designing ferromagnets that operate above room temperature is crucial in advancing high-performance spintronic devices. The pioneering van der Waals (vdW) ferromagnet Fe$_3$GaTe$_2$ has extended the way for spintronic applications by achieving a record-high Curie temperature among its analogues. However, the physical mechanism of increasing Cuire temperature still needs to be explored.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15142v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15142v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15142v1-abstract-full" style="display: none;"> Finding and designing ferromagnets that operate above room temperature is crucial in advancing high-performance spintronic devices. The pioneering van der Waals (vdW) ferromagnet Fe$_3$GaTe$_2$ has extended the way for spintronic applications by achieving a record-high Curie temperature among its analogues. However, the physical mechanism of increasing Cuire temperature still needs to be explored. Here, we propose a practical approach to discovering high-temperature ferromagnetic materials for spintronic applications through flat band engineering. We simulate the magnetic transition directly from strongly correlated calculations, reconciling the dual nature of $d$-electrons with both localization and itinerant characters. Significantly, our systematic studies unveil the emergence of quasi-particle flat bands arising from collective many-body excitations preceding the ferromagnetic phase transition, reinforcing magnetic stability through a positive feedback mechanism. This research provides a promising pathway for exploring next-generation spintronic devices utilizing low-dimensional vdW flat band systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15142v1-abstract-full').style.display = 'none'; document.getElementById('2407.15142v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04957">arXiv:2407.04957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04957">pdf</a>, <a href="https://arxiv.org/format/2407.04957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-024-01874-5">10.1038/s42005-024-01874-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mechanism of magnetic phase transition in correlated magnetic metal: insight into itinerant ferromagnet Fe$_{3-未}$GeTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuanji Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuechao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xintao Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Haifeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+H">Haifeng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+F">Fuyang Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04957v3-abstract-short" style="display: inline;"> Developing a comprehensive magnetic theory for correlated itinerant magnets poses challenges due to the difficulty in reconciling both local moments and itinerant electrons. In this work, we investigate the microscopic process of magnetic phase transition in ferromagnetic metal Fe$_{3-未}$GeTe$_2$. We find that Hund&#39;s coupling is crucial for establishing ferromagnetic order. During the ferromagneti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04957v3-abstract-full').style.display = 'inline'; document.getElementById('2407.04957v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04957v3-abstract-full" style="display: none;"> Developing a comprehensive magnetic theory for correlated itinerant magnets poses challenges due to the difficulty in reconciling both local moments and itinerant electrons. In this work, we investigate the microscopic process of magnetic phase transition in ferromagnetic metal Fe$_{3-未}$GeTe$_2$. We find that Hund&#39;s coupling is crucial for establishing ferromagnetic order. During the ferromagnetic transition, we observe the formation of quasiparticle flat bands and an opposing tendency in spectral weight transfer, primarily between the lower and upper Hubbard bands, across the two spin channels. Moreover, our results indicate that one of the inequivalent Fe sites exhibits Mott physics, while the other Fe site exhibits Hund&#39;s physics, attributable to their distinct atomic environments. We suggest that ferromagnetic order reduces spin fluctuations and makes flat bands near the Fermi level more distinct. The hybridization between the distinctly flat bands and other itinerant bands offers a possible way to form heavy fermion behavior in ferromagnets. The complex interactions of competing orders drive correlated magnetic metals to a new frontier for discovering outstanding quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04957v3-abstract-full').style.display = 'none'; document.getElementById('2407.04957v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Phys. 7, 381 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02767">arXiv:2407.02767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02767">pdf</a>, <a href="https://arxiv.org/format/2407.02767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Comparison of Short-Range Order in GeSn Grown by Molecular Beam Epitaxy and Chemical Vapor Deposition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yunfan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Haochen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eldose%2C+N+M">Nirosh M. Eldose</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bae%2C+J">Jin-Hee Bae</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Concepcion%2C+O">Omar Concepcion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaochen Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shunda Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bikmukhametov%2C+I">Ilias Bikmukhametov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akey%2C+A">Austin Akey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cline%2C+C+T">Cory T. Cline</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Covian%2C+A+C">Alejandra Cuervo Covian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoxin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tianshu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Y">Yuping Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buca%2C+D">Dan Buca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+S">Shui-Qing Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salamo%2C+G+J">Gregory J. Salamo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shengbai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jifeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02767v1-abstract-short" style="display: inline;"> Atomic short-range order (SRO) in direct-bandgap GeSn for infrared photonics has recently attracted attention due to its notable impact on band structures. However, the SRO in GeSn thin films grown by different methods have hardly been compared. This paper compares SRO in GeSn thin films of similar compositions grown by molecular beam epitaxy (MBE) and chemical vapor deposition (CVD) using atom pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02767v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02767v1-abstract-full" style="display: none;"> Atomic short-range order (SRO) in direct-bandgap GeSn for infrared photonics has recently attracted attention due to its notable impact on band structures. However, the SRO in GeSn thin films grown by different methods have hardly been compared. This paper compares SRO in GeSn thin films of similar compositions grown by molecular beam epitaxy (MBE) and chemical vapor deposition (CVD) using atom probe tomography. An $\sim$15% stronger preference for Sn-Sn 1$^{st}$ nearest neighbor (1NN) is observed in MBE GeSn than CVD GeSn for both thin film and quantum well samples with Sn composition ranging from 7 to 20%. Interestingly, samples grown by different deposition tools under the same method (either MBE or CVD) showed remarkable consistency in Sn-Sn 1NN SRO, while MBE vs. CVD showed clear differences. Supported by theoretical modeling, we consider that this difference in SRO originates from the impact of surface termination, where MBE surfaces are exposed to ultrahigh vacuum while CVD surfaces are terminated by H to a good extent. This finding not only suggests engineering surface termination or surfactants during the growth as a potential approach to control SRO in GeSn, but also provides insight into the underlying reasons for very different growth temperature between MBE and CVD that directly impact the strain relaxation behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02767v1-abstract-full').style.display = 'none'; document.getElementById('2407.02767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17562">arXiv:2406.17562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17562">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Low Excess Noise, High Quantum Efficiency Avalanche Photodiodes for Beyond 2 渭m Wavelength Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+H">Hyemin Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Seunghyun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiao Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yifan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronningen%2C+T+J">Theodore J. Ronningen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grein%2C+C+H">Christoph H. Grein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=David%2C+J+P+R">John P. R. David</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krishna%2C+S">Sanjay Krishna</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17562v1-abstract-short" style="display: inline;"> The increasing concentration of greenhouse gases, notably CH4 and CO2, has fueled global temperature increases, intensifying concerns regarding the prevailing climate crisis. Effectively monitoring these gases demands a detector spanning the extended short-wavelength infrared (~2.4 渭m) range, covering wavelengths of CH4 (1.65 渭m) and CO2 (2.05 渭m). The state-of-the-art HgCdTe avalanche photodetect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17562v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17562v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17562v1-abstract-full" style="display: none;"> The increasing concentration of greenhouse gases, notably CH4 and CO2, has fueled global temperature increases, intensifying concerns regarding the prevailing climate crisis. Effectively monitoring these gases demands a detector spanning the extended short-wavelength infrared (~2.4 渭m) range, covering wavelengths of CH4 (1.65 渭m) and CO2 (2.05 渭m). The state-of-the-art HgCdTe avalanche photodetectors (APDs) offer exceptional performance metrics, including high gain (M) and low excess noise (F). However, their widespread adoption is hindered by inherent challenges such as manufacturability, reproducibility, and cost factors. Moreover, their reliance on cryogenic cooling adds to the cost, size, weight, and power of the system. We have demonstrated a linear mode APD combining an InGaAs/GaAsSb type-II superlattice absorber and an AlGaAsSb multiplier lattice matched to InP substrates. This APD has demonstrated a room temperature M of 178, a maximum measurable external quantum efficiency of 3560 % at 2 渭m, an extremely low excess noise (F &lt; 2 at M &lt; 20), and a small temperature coefficient of breakdown (7.58 mV/K 渭m). Such a high performance APD with manufacturable semiconductor materials could lead to a rapid transition to a commercial III-V foundry, holding the promise of revolutionizing high-sensitivity receivers for greenhouse gas monitoring. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17562v1-abstract-full').style.display = 'none'; document.getElementById('2406.17562v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03212">arXiv:2405.03212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03212">pdf</a>, <a href="https://arxiv.org/format/2405.03212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Using magnetic dynamics to measure the spin gap in a candidate Kitaev material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xinyi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+H">Hoyoung Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wenjie Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xianghong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+L">Li Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+B">Byungjune Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sang-Youn Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Minseok Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hyeong-Do Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xinqiang Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qizhi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+T">Tao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Nanlin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turner%2C+J+J">Joshua J. Turner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03212v1-abstract-short" style="display: inline;"> Materials potentially hosting Kitaev spin-liquid states are considered crucial for realizing topological quantum computing. However, the intricate nature of spin interactions within these materials complicates the precise measurement of low-energy spin excitations indicative of fractionalized excitations. Using Na$_{2}$Co$_2$TeO$_{6}$ as an example, we study these low-energy spin excitations using&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03212v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03212v1-abstract-full" style="display: none;"> Materials potentially hosting Kitaev spin-liquid states are considered crucial for realizing topological quantum computing. However, the intricate nature of spin interactions within these materials complicates the precise measurement of low-energy spin excitations indicative of fractionalized excitations. Using Na$_{2}$Co$_2$TeO$_{6}$ as an example, we study these low-energy spin excitations using the time-resolved resonant elastic x-ray scattering (tr-REXS). Our observations unveil remarkably slow spin dynamics at the magnetic peak, whose recovery timescale is several nanoseconds. This timescale aligns with the extrapolated spin gap of $\sim$ 1 $渭$eV, obtained by density matrix renormalization group (DMRG) simulations in the thermodynamic limit. The consistency demonstrates the efficacy of tr-REXS in discerning low-energy spin gaps inaccessible to conventional spectroscopic techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03212v1-abstract-full').style.display = 'none'; document.getElementById('2405.03212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02863">arXiv:2404.02863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02863">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Discovery of universal phonon thermal Hall effect in crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaobo Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+W">Wenbo Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hanru Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Y">Yihan Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiyan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02863v2-abstract-short" style="display: inline;"> Thermal Hall effect (THE) in insulator is a remarkable phenomenon that arises from the motion of chargeless quasi-particles under a magnetic field. While magnons or exotic spin excitations were considered as the origin of THE in some magnetic materials, there are more and more evidences suggesting that phonons play a significant role. However, the mechanism behind phonon THE is still unknown. Here&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02863v2-abstract-full').style.display = 'inline'; document.getElementById('2404.02863v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02863v2-abstract-full" style="display: none;"> Thermal Hall effect (THE) in insulator is a remarkable phenomenon that arises from the motion of chargeless quasi-particles under a magnetic field. While magnons or exotic spin excitations were considered as the origin of THE in some magnetic materials, there are more and more evidences suggesting that phonons play a significant role. However, the mechanism behind phonon THE is still unknown. Here we report the observation of THE, including planar THE, in a broad range of non-magnetic insulators and semiconductors: SrTiO3, SiO2 (quartz), MgO, MgAl2O4, Si and Ge. While the presence of antiferrodistortive domains in SrTiO3 and chiral phonons in SiO2 may complicate the interpretation of THE, the striking observations of THE in trivial insulators MgO and MgAl2O4, as well as in high-purity intrinsic semiconductors Si and Ge, demonstrate that phonon THE is a universal property of crystals. Without other effects on phonons such as from magnons, this universal phonon THE is characterized by a scaling law of |\k{appa}_xy| ~ \k{appa}_xx^2. Our results experimentally discover a fundamental physics of phonons in magnetic field, which should come from the direct coupling between atom vibrations and the field. Starting from this universal phonon THE in crystals, all previous interpretations of THE in magnetic or non-magnetic materials need to be reconsidered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02863v2-abstract-full').style.display = 'none'; document.getElementById('2404.02863v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09384">arXiv:2403.09384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09384">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anomalous thermal transport and high thermoelectric performance of Cu-based vanadate CuVO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ou%2C+Q">Qiling Ou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H">Haoran Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">Xianyong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xiaolong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+X">Xuewei Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peng Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09384v1-abstract-short" style="display: inline;"> Thermoelectric (TE) conversion technology, capable of transforming heat into electricity, is critical for sustainable energy solutions. Many promising TE materials contain rare or toxic elements, so the development of cost-effective and eco-friendly high-performance TE materials is highly urgent. Herein, we explore the thermal transport and TE properties of transition metal vanadate CuVO3 by using&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09384v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09384v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09384v1-abstract-full" style="display: none;"> Thermoelectric (TE) conversion technology, capable of transforming heat into electricity, is critical for sustainable energy solutions. Many promising TE materials contain rare or toxic elements, so the development of cost-effective and eco-friendly high-performance TE materials is highly urgent. Herein, we explore the thermal transport and TE properties of transition metal vanadate CuVO3 by using first-principles calculation. On the basis of unified theory of heat conduction, we uncover the hierarchical thermal transport feature in CuVO3, where wave-like tunneling makes a significant contribution to the lattice thermal conductivity (\k{appa}l) and result in the anomalously weak temperature dependence of \k{appa}l. This is primarily attributable to the complex phononic band structure caused by the heterogeneity of Cu-O and V-O bonds. Simultaneously, we report a high power factor of 5.45 mW K-2 m-1 realized in hole-doped CuVO3, which arises from a high electrical conductivity and a large Seebeck coefficient enabled by the multiple valleys and large electronic density of states near the valence band edge. Impressively, the low \k{appa}l and the high power factor make p-typed CuVO3 have ZT of up to 1.39, with the excellent average ZT above 1.0 from 300 to 600 K, which is superior to most reported Cu-based TE materials. Our findings suggest that CuVO3 compound is promising candidate for energy conversion applications in innovative TE devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09384v1-abstract-full').style.display = 'none'; document.getElementById('2403.09384v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02157">arXiv:2403.02157</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.02157">pdf</a>, <a href="https://arxiv.org/format/2403.02157">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Half-Metallic Ferromagnetic Weyl Fermions Related to Dynamic Correlations in the Zinc-blende Compound VAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">Xianyong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H">Haoran Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+R">Ruixiang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+X">Xiaoliang Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaozhi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02157v2-abstract-short" style="display: inline;"> The realization of 100\% polarized topological Weyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications. Here, we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs, which was deemed as a half-metallic ferromagnet related to dynamic correlations. Based on the combination of density&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02157v2-abstract-full').style.display = 'inline'; document.getElementById('2403.02157v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02157v2-abstract-full" style="display: none;"> The realization of 100\% polarized topological Weyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications. Here, we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs, which was deemed as a half-metallic ferromagnet related to dynamic correlations. Based on the combination of density functional theory and dynamical mean field theory, we uncover that the half-metallic ferromagnet VAs exhibit attractive Weyl semimetallic behaviors with twelve pairs of Weyl points, which are very close to the Fermi level. Meanwhile, we also investigate the magnetization-dependent topological properties; the results show that the change of magnetization directions only slightly affects the positions of Weyl points, which is attributed to the weak spin-orbital coupling effects. The topological surface states of VAs projected on semi-infinite (001) and (111) surfaces are investigated. The Fermi arcs of all Weyl points are clearly visible on the projected Fermi surfaces. Our findings suggest that VAs is a fully spin-polarized Weyl semimetal with many-body correlated effects for spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02157v2-abstract-full').style.display = 'none'; document.getElementById('2403.02157v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15200">arXiv:2312.15200</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15200">pdf</a>, <a href="https://arxiv.org/format/2312.15200">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.134416">10.1103/PhysRevB.109.134416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulse-driven depinning of magnetic gap modes in ferromagnetic films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin-Wei Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhan-Ying Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jing%2C+G">Guangyin Jing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15200v1-abstract-short" style="display: inline;"> Manipulation of magnons in artificial magnonic crystals (MCs) leads to fascinating nonlinear wave phenomena such as the generation of gap solitons, which has been mostly limited to one-dimensional systems. Here, we propose a model system for the magnetization in two-dimensional MCs subjected to a periodic external magnetic field, describing the dynamics of magnetic gap solitons (MGSs) formed by no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15200v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15200v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15200v1-abstract-full" style="display: none;"> Manipulation of magnons in artificial magnonic crystals (MCs) leads to fascinating nonlinear wave phenomena such as the generation of gap solitons, which has been mostly limited to one-dimensional systems. Here, we propose a model system for the magnetization in two-dimensional MCs subjected to a periodic external magnetic field, describing the dynamics of magnetic gap solitons (MGSs) formed by nonlinear self-trapping. We show the formation, stability, and dynamics for various two-dimensional gap modes, including gap solitons and vortical ones. Their existence regions depend on the anisotropic axis orientation of the ferromagnetic film. The Bloch oscillation and depinning propagation of MGSs under constant spin-current injections are discovered and characterized. We design a scheme of pulse current injection to achieve distortionless propagation of MGSs. These findings show that the 2D magnonic crystals can be viewed as a building block for MGSs-based storage and transmission, where the propagation and localization are variously controlled and reconfigurable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15200v1-abstract-full').style.display = 'none'; document.getElementById('2312.15200v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 134416 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09112">arXiv:2312.09112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.09112">pdf</a>, <a href="https://arxiv.org/format/2312.09112">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Analysis of lattice locations of deuterium in tungsten and its application for predicting deuterium trapping conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Djurabekova%2C+F">Flyura Djurabekova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hodille%2C+E+A">Etienne A. Hodille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markelj%2C+S">Sabina Markelj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nordlund%2C+K">Kai Nordlund</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09112v1-abstract-short" style="display: inline;"> Retention of hydrogen isotopes (protium, deuterium and tritium) in tungsten is one of the most severe issues in design of fusion power plants, since significant trapping of tritium may cause exceeding radioactivity safety limits in future reactors. Hydrogen isotopes in tungsten can be detected using the nuclear reaction analysis method in channeling mode (NRA/C). However, the information hidden wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09112v1-abstract-full').style.display = 'inline'; document.getElementById('2312.09112v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09112v1-abstract-full" style="display: none;"> Retention of hydrogen isotopes (protium, deuterium and tritium) in tungsten is one of the most severe issues in design of fusion power plants, since significant trapping of tritium may cause exceeding radioactivity safety limits in future reactors. Hydrogen isotopes in tungsten can be detected using the nuclear reaction analysis method in channeling mode (NRA/C). However, the information hidden within the experimental spectra is subject to interpretation. In this work, we propose the methodology to interpret the response of the experimental NRA/C spectra to the specific lattice locations of deuterium by simulations of the NRA/C spectra from atomic structures of deuterium lattice locations as obtained from the first principles calculations. We show that trapping conditions, i.e., states of local crystal structures retaining deuterium, affect the lattice locations of deuterium and the change of lattice locations can be detected by ion channeling method. By analyzing the experimental data, we are able to determine specific information on the deuterium trapping conditions, including the number of deuterium atoms trapped by one vacancy as well as the presence of impurity atoms along with deuterium in vacancies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09112v1-abstract-full').style.display = 'none'; document.getElementById('2312.09112v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04232">arXiv:2312.04232</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04232">pdf</a>, <a href="https://arxiv.org/format/2312.04232">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergent Error Correcting States in Networks of Nonlinear Oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaoya Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baker%2C+C+G">Christopher G. Baker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romero%2C+E">Erick Romero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mauranyapin%2C+N+P">Nicholas P. Mauranyapin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirsch%2C+T+M+F">Timothy M. F. Hirsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowen%2C+W+P">Warwick P. Bowen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harris%2C+G+I">Glen I. Harris</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04232v1-abstract-short" style="display: inline;"> Networks of nonlinear oscillators can exhibit complex collective behaviour ranging from synchronised states to chaos. Here, we simulate the dynamics of three coupled Duffing oscillators whose multiple equilibrium states can be used for information processing and storage. Our analysis reveals that even for this small network, there is the emergence of an error correcting phase where the system auto&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04232v1-abstract-full').style.display = 'inline'; document.getElementById('2312.04232v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04232v1-abstract-full" style="display: none;"> Networks of nonlinear oscillators can exhibit complex collective behaviour ranging from synchronised states to chaos. Here, we simulate the dynamics of three coupled Duffing oscillators whose multiple equilibrium states can be used for information processing and storage. Our analysis reveals that even for this small network, there is the emergence of an error correcting phase where the system autonomously corrects errors from random impulses. The system has several surprising and attractive features, including dynamic isolation of resonators exposed to extreme impulses and the ability to correct simultaneous errors. The existence of an error correcting phase opens the prospect of fault-tolerant information storage, with particular applications in nanomechanical computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04232v1-abstract-full').style.display = 'none'; document.getElementById('2312.04232v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14559">arXiv:2311.14559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14559">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Layer-dependent superconductivity in iron-based superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+K">Ke Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+B">Boqin Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Baizhuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+X">Xiangming Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Sicheng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xiaofan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaobo Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yiyuan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+J">Jiaying Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guanghan Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiyan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14559v1-abstract-short" style="display: inline;"> The Hohenberg-Mermin-Wagner theorem states that a two-dimensional system cannot spontaneously break a continuous symmetry at finite temperature. This is supported by the observation of layer-dependent superconductivity in the quasi-two-dimensional superconductor NbSe2, in which the superconducting transition temperature (Tc) is reduced by about 60% in the monolayer limit. However, for the extremel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14559v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14559v1-abstract-full" style="display: none;"> The Hohenberg-Mermin-Wagner theorem states that a two-dimensional system cannot spontaneously break a continuous symmetry at finite temperature. This is supported by the observation of layer-dependent superconductivity in the quasi-two-dimensional superconductor NbSe2, in which the superconducting transition temperature (Tc) is reduced by about 60% in the monolayer limit. However, for the extremely anisotropic copper-based high-Tc superconductor Bi2Sr2CaCu2O8+未 (Bi-2212), the Tc of the monolayer is almost identical to that of its bulk counterpart. To clarify the effect of dimensionality on superconductivity, here we successfully fabricate ultrathin flakes of CsCa2Fe4As4F2, a highly anisotropic iron-based high-Tc superconductor, down to monolayer. The monolayer flake exhibits the highest Tc of 24 K (after tuning to the optimal doping by ionic liquid gating), which is about 20% lower than that of the bulk crystal. We also fabricate ultrathin flakes of CaKFe4As4, another iron-based superconductor with much smaller anisotropy. The Tc of the 3-layer flake decreases by 46%, showing a more pronounced dimensional effect than that of CsCa2Fe4As4F2. By carefully examining their anisotropy and the c-axis coherence length, we reveal the general trend and empirical law of the layer-dependent superconductivity in these quasi-two-dimensional superconductors. From this, the Tc of a new monolayer superconductor can be extrapolated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14559v1-abstract-full').style.display = 'none'; document.getElementById('2311.14559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.08462">arXiv:2310.08462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.08462">pdf</a>, <a href="https://arxiv.org/format/2310.08462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Multigap nodeless superconductivity in the topological semimetal PdTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chengcheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiangqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinjin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Chunqiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Baomin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zhenhai Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaobo Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+D">Dongzhe Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+C">Chengpeng Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+J">Jiaying Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hanru Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Y">Yihan Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duong%2C+D">Daniel Duong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Silu Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+R">Rongying Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhu&#39;an Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaofeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiyan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.08462v1-abstract-short" style="display: inline;"> Recently PdTe was identified as a spin-orbit coupled topological Dirac semimetal and was claimed to exhibit both bulk-nodal and surface-nodeless superconducting gaps. Here we report the ultralow-temperature thermal conductivity measurements on PdTe single crystals with $T_c$ = 4.5 K to investigate its superconducting gap structure. It is found that the residual linear term $魏_0/T$ is negligible in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08462v1-abstract-full').style.display = 'inline'; document.getElementById('2310.08462v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.08462v1-abstract-full" style="display: none;"> Recently PdTe was identified as a spin-orbit coupled topological Dirac semimetal and was claimed to exhibit both bulk-nodal and surface-nodeless superconducting gaps. Here we report the ultralow-temperature thermal conductivity measurements on PdTe single crystals with $T_c$ = 4.5 K to investigate its superconducting gap structure. It is found that the residual linear term $魏_0/T$ is negligible in zero magnetic field. Furthermore, the field dependence of $魏_0(H)/T$ exhibits an $\sf S$-shaped curve. These results suggest that PdTe has multiple nodeless superconducting gaps, which is at odds with the claimed bulk-nodal gap. The reason for the discrepancy is likely that previous angle-resolved photoemission spectroscopy measurements were only performed down to 2 K and cannot observe the smaller nodeless gap. The fully gapped superconducting state in PdTe is compatible with it being a topological superconductor candidate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.08462v1-abstract-full').style.display = 'none'; document.getElementById('2310.08462v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10129">arXiv:2308.10129</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10129">pdf</a>, <a href="https://arxiv.org/format/2308.10129">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Pressure-induced double-dome superconductivity in kagome metal CsTi3Bi5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+J+Y">J. Y. Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+F">X. F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+Q">X. Q. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">W. Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+D+Z">D. Z. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C+C">C. C. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+C+P">C. P. Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+X+M">X. M. Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X+B">X. B. Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y+F">Y. F. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S+Y">S. Y. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10129v1-abstract-short" style="display: inline;"> We present high-pressure resistance measurements up to 40 GPa on recently discovered titanium-based kagome metal CsTi$_3$Bi$_5$. At ambient pressure, CsTi$_3$Bi$_5$ shows no evidence of superconductivity in resistivity and specific heat. By applying pressure, superconductivity emerges and the superconducting transition temperature ${\it T}_{\rm c}$ reaches its first maximum of 1.2 K at $\sim$5 GPa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10129v1-abstract-full').style.display = 'inline'; document.getElementById('2308.10129v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10129v1-abstract-full" style="display: none;"> We present high-pressure resistance measurements up to 40 GPa on recently discovered titanium-based kagome metal CsTi$_3$Bi$_5$. At ambient pressure, CsTi$_3$Bi$_5$ shows no evidence of superconductivity in resistivity and specific heat. By applying pressure, superconductivity emerges and the superconducting transition temperature ${\it T}_{\rm c}$ reaches its first maximum of 1.2 K at $\sim$5 GPa. Then the ${\it T}_{\rm c}$ is suppressed by pressure and cannot be detected around 10 GPa, manifesting as a superconducting dome. Remarkably, upon further increasing pressure above $\sim$13 GPa, another superconducting dome shows up, with the maximum ${\it T}_{\rm c}$ of 0.6 K and ending pressure at $\sim$36 GPa. The variation of ${\it T}_{\rm c}$ displays a clear double-dome shape in the superconducting phase diagram. Our work demonstrates the similarity between CsTi$_3$Bi$_5$ and CsV$_3$Sb$_5$, providing valuable insights into the rich physics of these novel kagome metals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10129v1-abstract-full').style.display = 'none'; document.getElementById('2308.10129v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.08331">arXiv:2308.08331</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.08331">pdf</a>, <a href="https://arxiv.org/format/2308.08331">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Discovery and regulation of chiral magnetic solitons: Exact solution from Landau-Lifshitz-Gilbert equation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin-Wei Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhan-Ying Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Z">Zhimin Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jing%2C+G">Guangyin Jing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wen-Li Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.08331v1-abstract-short" style="display: inline;"> The Landau-Lifshitz-Gilbert (LLG) equation has emerged as a fundamental and indispensable framework within the realm of magnetism. However, solving the LLG equation, encompassing full nonlinearity amidst intricate complexities, presents formidable challenges. In this context, we develop a precise mapping through geometric representation, establishing a direct linkage between the LLG equation and a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08331v1-abstract-full').style.display = 'inline'; document.getElementById('2308.08331v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.08331v1-abstract-full" style="display: none;"> The Landau-Lifshitz-Gilbert (LLG) equation has emerged as a fundamental and indispensable framework within the realm of magnetism. However, solving the LLG equation, encompassing full nonlinearity amidst intricate complexities, presents formidable challenges. In this context, we develop a precise mapping through geometric representation, establishing a direct linkage between the LLG equation and an integrable generalized nonlinear Schr枚dinger equation. This novel mapping provides accessibility towards acquiring a great number of exact spatiotemporal solutions. Notably, exact chiral magnetic solitons, critical for stability and controllability in propagation with and without damping effects are discovered. Our formulation provides exact solutions for the long-standing fully nonlinear problem, facilitating practical control through spin current injection in magnetic memory applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08331v1-abstract-full').style.display = 'none'; document.getElementById('2308.08331v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main text:5 pages, 4 figures, supplementary materials:5 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.16451">arXiv:2307.16451</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.16451">pdf</a>, <a href="https://arxiv.org/format/2307.16451">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.134431">10.1103/PhysRevB.109.134431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Persistent spin dynamics in magnetically ordered honeycomb cobalt oxides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+P">Ping Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xianghong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Weiliang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yue Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koda%2C+A">Akihiro Koda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Zhenhong Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">Wu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+W">Wenhai Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamiyama%2C+T">Takashi Kamiyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.16451v1-abstract-short" style="display: inline;"> In the quest to find quantum spin liquids, layered cobalt oxides Na2Co2TeO6 and Na3Co2SbO6 have been proposed as promising candidates for approximating the Kitaev honeycomb model. Yet, their suitability has been thrown into question due to observed long-range magnetic order at low temperatures and indications of easy-plane, rather than Kitaev-type, spin anisotropy. Here we use muon spin relaxation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16451v1-abstract-full').style.display = 'inline'; document.getElementById('2307.16451v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.16451v1-abstract-full" style="display: none;"> In the quest to find quantum spin liquids, layered cobalt oxides Na2Co2TeO6 and Na3Co2SbO6 have been proposed as promising candidates for approximating the Kitaev honeycomb model. Yet, their suitability has been thrown into question due to observed long-range magnetic order at low temperatures and indications of easy-plane, rather than Kitaev-type, spin anisotropy. Here we use muon spin relaxation to reveal an unexpected picture: contrary to the anticipated static nature of the long-range order, the systems show prevalent spin dynamics with spatially uneven distribution and varied correlation times. This underlines that the magnetic ground states cannot be solely described by the long-range order, suggesting a significant role of quantum fluctuations. Our findings not only shed new light on the complex physics of these systems but also underscore the need for a refined approach in the search for realizable quantum spin liquids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16451v1-abstract-full').style.display = 'none'; document.getElementById('2307.16451v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 134431 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00471">arXiv:2307.00471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.00471">pdf</a>, <a href="https://arxiv.org/format/2307.00471">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.014414">10.1103/PhysRevB.109.014414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unveiling Stable One-dimensional Magnetic Solitons in Magnetic Bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin-Wei Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhan-Ying Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Z">Zhimin Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jing%2C+G">Guangyin Jing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wen-Li Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00471v1-abstract-short" style="display: inline;"> We propose a novel model which efficiently describes the magnetization dynamics in a magnetic bilayer system. By applying a particular gauge transformation to the Landau-Lifshitz-Gilbert (LLG) equation, we successfully convert the model into an exactly integrable framework. Thus the obtained analytical solutions allows us to predict a 1D magnetic soliton pair existed by tunning the thickness of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00471v1-abstract-full').style.display = 'inline'; document.getElementById('2307.00471v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00471v1-abstract-full" style="display: none;"> We propose a novel model which efficiently describes the magnetization dynamics in a magnetic bilayer system. By applying a particular gauge transformation to the Landau-Lifshitz-Gilbert (LLG) equation, we successfully convert the model into an exactly integrable framework. Thus the obtained analytical solutions allows us to predict a 1D magnetic soliton pair existed by tunning the thickness of the spacing layer between the two ferrimagnetic layers. The decoupling-unlocking-locking transition of soliton motion is determined at various interaction intensitiy. Our results have implications for the manipulation of magnetic solitons and the design of magnetic soliton-based logic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00471v1-abstract-full').style.display = 'none'; document.getElementById('2307.00471v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 014414 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13288">arXiv:2304.13288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.13288">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c03206">10.1021/acs.nanolett.2c03206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable Magnetic Properties in Sr$_2$FeReO$_6$ Double-Perovskite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z+T">Z. T. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">H. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Z. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+X">X. Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C+J">C. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+Z+S">Z. S. Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+S+W">S. W. Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+K">K. Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Omar%2C+G+J">G. J. Omar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K+X">K. X. Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ariando%2C+A">A. Ariando</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13288v1-abstract-short" style="display: inline;"> Double-perovskite oxides have attracted recent attention due to their attractive functionalities and application potential. In this paper, we demonstrate the effect of dual controls, i.e., the deposition pressure of oxygen (P$_O2$) and lattice mismatch ($蔚$), on tuning magnetic properties in epitaxial double-perovskite Sr$_2$FeReO$_6$ films. In a nearly-lattice-matched Sr$_2$FeReO$_6$/SrTiO$_3$ fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13288v1-abstract-full').style.display = 'inline'; document.getElementById('2304.13288v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13288v1-abstract-full" style="display: none;"> Double-perovskite oxides have attracted recent attention due to their attractive functionalities and application potential. In this paper, we demonstrate the effect of dual controls, i.e., the deposition pressure of oxygen (P$_O2$) and lattice mismatch ($蔚$), on tuning magnetic properties in epitaxial double-perovskite Sr$_2$FeReO$_6$ films. In a nearly-lattice-matched Sr$_2$FeReO$_6$/SrTiO$_3$ film, the ferrimagnetic-to-paramagnetic phase transition occurs when P$_O2$ is reduced to 30 mTorr, probably due to the formation of Re$^{4+}$ ions that replace the stoichiometric Re$^{5+}$ to cause disorders of $B$-site ions. On the other hand, a large compressive strain or tensile strain shifts this critical P$_O2$ to below 1 mTorr or above 40 mTorr, respectively. The observations could be attributed to the modulation of $B$-site ordering by epitaxial strain through affecting elemental valence. Our results provide a feasible way to expand the functional tunability of magnetic double-perovskite oxides that hold great promise for spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13288v1-abstract-full').style.display = 'none'; document.getElementById('2304.13288v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text 18 pages, 5 figures; Supplementary information 8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 22, 9900 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01713">arXiv:2304.01713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01713">pdf</a>, <a href="https://arxiv.org/format/2304.01713">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.085135">10.1103/PhysRevB.108.085135 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Abundant surface-semimetal phases in three-dimensional obstructed atomic insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">Xianyong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhuo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+X">Xuewei Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+D">Da-Shuai Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiaozhi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01713v2-abstract-short" style="display: inline;"> Three-dimensional obstructed atomic insulators (OAIs) are characterized by the appearance of floating surface states (FSSs) at specific surfaces. Benefiting from this feature, our study here shows the presence of abundant surface-semimetal phases in 3D OAIs. The symmetries of obstructed Wannier charge centers ensure the degeneracy of such FSSs at high-symmetry points or invariant lines in the surf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01713v2-abstract-full').style.display = 'inline'; document.getElementById('2304.01713v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01713v2-abstract-full" style="display: none;"> Three-dimensional obstructed atomic insulators (OAIs) are characterized by the appearance of floating surface states (FSSs) at specific surfaces. Benefiting from this feature, our study here shows the presence of abundant surface-semimetal phases in 3D OAIs. The symmetries of obstructed Wannier charge centers ensure the degeneracy of such FSSs at high-symmetry points or invariant lines in the surface Brillouin zone. Utilizing topological quantum chemistry theory, we identify a carbon allotrope with a body-centered tetragonal structure, named bct-C20, as an ideal candidate for realizing different kinds of surface-semimetal phases. For the (001)surface of bct-C20, there are four in-gap FSSs, and these four FSSs form two kinds of surface Dirac cones, i.e., topological Dirac cones with linear dispersion and symmetry-enforced quadratic Dirac cones. The band topology of a surface Dirac cone is captured by the effective surface Hamiltonian and the emergence of hinge states. Moreover, the existence of the surface-nodal-line state is also discussed. This work reports an approach to obtain d-dimensional semimetal phases from the surface states of (d + 1)-dimensional systems, which is of great significance for the studies in revealing topological states and their practical applications in high-dimensional crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01713v2-abstract-full').style.display = 'none'; document.getElementById('2304.01713v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.12484">arXiv:2302.12484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.12484">pdf</a>, <a href="https://arxiv.org/format/2302.12484">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Strain-driven phonon topological phase transition impedes thermal transport in titanium monoxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+D">Da-shuai Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">Xianyong Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+X">Xuewei Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xiaolong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.12484v2-abstract-short" style="display: inline;"> Topological phonon states in crystalline materials have attracted significant research interests due to their importance for fundamental physical phenomena, yet their implication on phonon thermal transport remains largely unexplored. Here, we use density functional theory calculations and symmetry analyses to explore topological phonon phase transitions under uniaxial strains and their tuning eff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12484v2-abstract-full').style.display = 'inline'; document.getElementById('2302.12484v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.12484v2-abstract-full" style="display: none;"> Topological phonon states in crystalline materials have attracted significant research interests due to their importance for fundamental physical phenomena, yet their implication on phonon thermal transport remains largely unexplored. Here, we use density functional theory calculations and symmetry analyses to explore topological phonon phase transitions under uniaxial strains and their tuning effects on thermal transport in titanium monoxide (TiO). Our calculation shows that application of 10% tension significantly diminishes lattice thermal conductivity of TiO by 77% and 66% along the a and c axes, respectively, at room temperature. This suppression is found to result largely from the breaking of symmetry protected degeneracy of acoustic branches, which induces a substantial enhancement of phonon scattering phase space due to the easier fulfillment of scattering selection rules. Our study provides evidence for the importance of phononic band topology in modulating thermal conductivity and offers a promising route towards controlling solid-state heat transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12484v2-abstract-full').style.display = 'none'; document.getElementById('2302.12484v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07322">arXiv:2212.07322</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07322">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Evidence for gapless quantum spin liquid in a honeycomb lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+C">Chengpeng Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+D">Dongzhe Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chengcheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaobo Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+B">Bin Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">Tong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiyan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07322v2-abstract-short" style="display: inline;"> One main theme in current condensed matter physics is the search of quantum spin liquid (QSL), an exotic magnetic state with strongly-fluctuating and highly-entangled spins down to zero temperature without static order. However, there is no consensus on the existence of a QSL ground state in any real material so far. The disorders and competing exchange interactions may prevent the formation of an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07322v2-abstract-full').style.display = 'inline'; document.getElementById('2212.07322v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07322v2-abstract-full" style="display: none;"> One main theme in current condensed matter physics is the search of quantum spin liquid (QSL), an exotic magnetic state with strongly-fluctuating and highly-entangled spins down to zero temperature without static order. However, there is no consensus on the existence of a QSL ground state in any real material so far. The disorders and competing exchange interactions may prevent the formation of an ideal QSL state on frustrated spin lattices. Here we report systematic heat transport measurements on a honeycomb-lattice compound BaCo2(AsO4)2, which manifests magnetic order in zero field. In a narrow field range after the magnetic order is nearly suppressed by an in-plane field, in both perpendicular and parallel to the zigzag direction, a finite residual linear term of thermal conductivity is clearly observed, which is attributed to the mobile fractionalized spinon excitations. This provides smoking-gun evidence for a gapless QSL state in BaCo2(AsO4)2. We discuss the underlying physics to form this exotic gapless QSL state in Co2+ honeycomb lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07322v2-abstract-full').style.display = 'none'; document.getElementById('2212.07322v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16957">arXiv:2211.16957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.16957">pdf</a>, <a href="https://arxiv.org/format/2211.16957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.146702">10.1103/PhysRevLett.131.146702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Triple-q order in Na$_2$Co$_2$TeO$_6$ from proximity to hidden-SU(2)-symmetric point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kr%C3%BCger%2C+W+G+F">Wilhelm G. F. Kr眉ger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wenjie Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xianghong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janssen%2C+L">Lukas Janssen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16957v2-abstract-short" style="display: inline;"> In extended Heisenberg-Kitaev-Gamma-type spin models, hidden-SU(2)-symmetric points are isolated points in parameter space that can be mapped to pure Heisenberg models via nontrivial duality transformations. Such points generically feature quantum degeneracy between conventional single-q and exotic multi-q states. We argue that recent single-crystal inelastic neutron scattering data place the hone&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16957v2-abstract-full').style.display = 'inline'; document.getElementById('2211.16957v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16957v2-abstract-full" style="display: none;"> In extended Heisenberg-Kitaev-Gamma-type spin models, hidden-SU(2)-symmetric points are isolated points in parameter space that can be mapped to pure Heisenberg models via nontrivial duality transformations. Such points generically feature quantum degeneracy between conventional single-q and exotic multi-q states. We argue that recent single-crystal inelastic neutron scattering data place the honeycomb magnet Na$_2$Co$_2$TeO$_6$ in proximity to such a hidden-SU(2)-symmetric point. The low-temperature order is identified as a triple-q state arising from the N茅el antiferromagnet with staggered magnetization in the out-of-plane direction via a 4-sublattice duality transformation. This state naturally explains various distinctive features of the magnetic excitation spectrum, including its surprisingly high symmetry and the dispersive low-energy and flat high-energy bands. Our result demonstrates the importance of bond-dependent exchange interactions in cobaltates, and illustrates the intriguing magnetic behavior resulting from them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16957v2-abstract-full').style.display = 'none'; document.getElementById('2211.16957v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+14 pages, 3+10 figures; v2: exact diagonalization calculations added, elucidating proximity of Na$_2$Co$_2$TeO$_6$ to Kitaev quantum spin liquid</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 146702 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09753">arXiv:2209.09753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09753">pdf</a>, <a href="https://arxiv.org/format/2209.09753">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c04651">10.1021/acs.nanolett.2c04651 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Floquet Engineering of Nonequilibrium Valley-Polarized Quantum Anomalous Hall Effect with Tunable Chern Number </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+F">Fangyang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+J">Junjie Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhuo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jing Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">Tingyong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Rui Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09753v2-abstract-short" style="display: inline;"> Numerous attempts have been made so far to explore the quantum anomalous Hall effect (QAHE), but the ultralow observed temperature strongly hinders its practical applications. Hence, it is of great interest to go beyond the existing paradigm of QAHE. Here, we propose that Floquet engineering offers a strategy to realize the QAHE via hybridization of Floquet-Bloch bands. Based on first-principles c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09753v2-abstract-full').style.display = 'inline'; document.getElementById('2209.09753v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09753v2-abstract-full" style="display: none;"> Numerous attempts have been made so far to explore the quantum anomalous Hall effect (QAHE), but the ultralow observed temperature strongly hinders its practical applications. Hence, it is of great interest to go beyond the existing paradigm of QAHE. Here, we propose that Floquet engineering offers a strategy to realize the QAHE via hybridization of Floquet-Bloch bands. Based on first-principles calculations and Floquet theorem, we unveil that nonequilibrium valley-polarized QAHE (VP-QAHE), independent of magnetic orders, is widely present in ferromagnetic and nonmagnetic members of two-dimensional family materials $M$Si$_2$$Z_4$ ($M$ = Mo, W, V; $Z$ = N, P, As) by irradiating circularly polarized light (CPL). Remarkably, by tuning the frequency, intensity, and handedness of incident CPL, the Chern number of VP-QAHE is highly tunable and up to $\mathcal{C}=\pm 4$. We reveal that such Chern number tunable VP-QAHE attributes to light-induced trigonal warping and multiple band inversion at different valleys. The valley-resolved chiral edge states and quantized plateau of Hall conductance, which facilitates the experimental measurement, are visible inside the global band gap. Our work not only establishes Floquet Engineering of nonequilibrium VP-QAHE with tunable Chern number in realistic materials, but also provides a promising avenue to explore emergent topological phases under light irradiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09753v2-abstract-full').style.display = 'none'; document.getElementById('2209.09753v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.10645">arXiv:2208.10645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.10645">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.024415">10.1103/PhysRevB.107.024415 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of spontaneous time-reversal symmetry breaking and ferromagnetism in superconducting NiBi3 single crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jingyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Farhang%2C+C">Camron Farhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+D">Di Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaofeng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xiangde Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+J">Jing Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.10645v2-abstract-short" style="display: inline;"> Recent experiments have pointed to a chiral p-wave-like superconductivity in epitaxial Bi/Ni bilayers that are spontaneously time-reversal symmetry breaking (TRSB), making it a promising platform for exploring physics useful for topologically protected quantum computing. Quite intriguingly, evidence has emerged that in non-epitaxial Bi/Ni bilayers, superconductivity arises due to the formation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10645v2-abstract-full').style.display = 'inline'; document.getElementById('2208.10645v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.10645v2-abstract-full" style="display: none;"> Recent experiments have pointed to a chiral p-wave-like superconductivity in epitaxial Bi/Ni bilayers that are spontaneously time-reversal symmetry breaking (TRSB), making it a promising platform for exploring physics useful for topologically protected quantum computing. Quite intriguingly, evidence has emerged that in non-epitaxial Bi/Ni bilayers, superconductivity arises due to the formation of NiBi3, which has been reported to host coexisting ferromagnetic and superconducting orders at the surface. We perform high resolution surface magneto-optic Kerr effect (SMOKE) measurements using a Sagnac interferometer on single crystal NiBi3 and find no sign of any spontaneous Kerr signal except for contributions from trapped vortices. This strongly indicates the absence of TRSB in NiBi3, whether due to TRSB in the superconducting state or any coexisting ferromagnetism, and we conclude that the superconductivity found in non-epitaxial Bi/Ni is distinctively different from that in epitaxial Bi/Ni. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10645v2-abstract-full').style.display = 'none'; document.getElementById('2208.10645v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted version at Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 024415 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.04474">arXiv:2208.04474</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.04474">pdf</a>, <a href="https://arxiv.org/format/2208.04474">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.245117">10.1103/PhysRevB.106.245117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge excitations across a superconductor-insulator transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaodong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuhai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mondaini%2C+R">Rubem Mondaini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rigol%2C+M">Marcos Rigol</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.04474v2-abstract-short" style="display: inline;"> We study the superconductor-insulator transition (SIT) in the ground state of the attractive honeycomb Hubbard model in the presence of a staggered potential (a mass term), using a combination of unbiased computational methods, namely, exact diagonalization and quantum Monte Carlo simulations. We probe the nature of the lowest-energy charge excitations across the SIT and show that they are bosonic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04474v2-abstract-full').style.display = 'inline'; document.getElementById('2208.04474v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.04474v2-abstract-full" style="display: none;"> We study the superconductor-insulator transition (SIT) in the ground state of the attractive honeycomb Hubbard model in the presence of a staggered potential (a mass term), using a combination of unbiased computational methods, namely, exact diagonalization and quantum Monte Carlo simulations. We probe the nature of the lowest-energy charge excitations across the SIT and show that they are bosonic, as inferred (and shown in the strongly interacting regime) in a previous study of the same model in the square lattice. Increasing the strength of the staggered potential leads to a crossover in which bosonic low-energy excitations give way to fermionic ones within the insulating phase. We also show that the SIT belongs to the 3$d$-XY universality class, like in its square lattice counterpart. The robustness of our results in these two lattice geometries supports the expectation that our findings are universal for SITs in clean systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04474v2-abstract-full').style.display = 'none'; document.getElementById('2208.04474v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures - as published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 245117 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.00884">arXiv:2203.00884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.00884">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2053-1583/ac9b6e">10.1088/2053-1583/ac9b6e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong and tunable magnetoelectric coupling in 2D trilayer heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Hara%2C+A">Andrew O&#39;Hara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu-Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+S">Shixuan Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pantelides%2C+S+T">Sokrates T. Pantelides</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.00884v2-abstract-short" style="display: inline;"> The quest for electric-field control of nanoscale magnetic states such as skyrmions, which would impact the field of spintronics, has led to a challenging search for multiferroic materials or structures with strong magnetoelectric coupling and efficient electric-field control. Here we report a theoretical prediction that such phenomena can be realized in two-dimensional (2D) bilayer FE/PMM and tri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00884v2-abstract-full').style.display = 'inline'; document.getElementById('2203.00884v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.00884v2-abstract-full" style="display: none;"> The quest for electric-field control of nanoscale magnetic states such as skyrmions, which would impact the field of spintronics, has led to a challenging search for multiferroic materials or structures with strong magnetoelectric coupling and efficient electric-field control. Here we report a theoretical prediction that such phenomena can be realized in two-dimensional (2D) bilayer FE/PMM and trilayer FE/PMM/FE heterostructures (two-terminal and three-terminal devices), where FE is a 2D ferroelectric and PMM is a polar magnetic metal with strong spin-orbit coupling. Such a PMM has strong Dzyaloshinskii-Moriya interactions (DMI) that can generate skyrmions, while the FE can generate strong magnetoelectric coupling through polarization-polarization interactions. In trilayer heterostructures, contact to the metallic PMM layer enables multiple polarization configurations for electric-field control of skyrmions. We report density-functional-theory calculations for particular material choices that demonstrate the effectiveness of these arrangements, with the key driver being the polarization-polarization interactions between the PMM and FE layers. The present findings provide a method to achieve strong magnetoelectric coupling in the 2D limit and a new perspective for the design of related spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00884v2-abstract-full').style.display = 'none'; document.getElementById('2203.00884v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.08256">arXiv:2201.08256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.08256">pdf</a>, <a href="https://arxiv.org/format/2201.08256">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43246-022-00289-5">10.1038/s43246-022-00289-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence of two types of short-range order in SiGeSn medium-entropy alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaochen Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shunda Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tianshu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.08256v1-abstract-short" style="display: inline;"> Short-range chemical order (SRO) has been recently demonstrated to play a decisive role in modulating a wide range of physical properties in medium-entropy alloy (MEA) and high-entropy alloy (HEA). The enormous configurational space of these alloys implies multiple forms of SRO are likely to develop concurrently but such structural diversity has not been reported. Here we show, through extensive {&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.08256v1-abstract-full').style.display = 'inline'; document.getElementById('2201.08256v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.08256v1-abstract-full" style="display: none;"> Short-range chemical order (SRO) has been recently demonstrated to play a decisive role in modulating a wide range of physical properties in medium-entropy alloy (MEA) and high-entropy alloy (HEA). The enormous configurational space of these alloys implies multiple forms of SRO are likely to develop concurrently but such structural diversity has not been reported. Here we show, through extensive {\em ab initio}-based sampling study, that SiGeSn medium-entropy alloys spontaneously develop two distinct forms of SRO. Remarkably, the two types of SROs, which carry different energies, distinct degrees of local ordering, and dissimilar electronic structures, are found to co-exist in a wide range of compositions of SiGeSn alloys. The co-existence of two SROs is rationalized through their virtual degeneracy of thermodynamic stability, due to the subtle balance in the change of enthalpy and configurational entropy upon the transformation between the two SROs. Such co-existence of SROs thus suggests an inherent structural heterogeneity, a diffuse electronic structure, and a new route for band engineering in SiGeSn MEA. More generally, our finding indicates the possible ubiquity of the co-existence of multiple forms of SRO in a broad range of MEAs and HEAs, which has profound implications on their diverse physical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.08256v1-abstract-full').style.display = 'none'; document.getElementById('2201.08256v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04963">arXiv:2201.04963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.04963">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Icosahedral quasicrystal enhanced nucleation in commercially pure Ni processed by selective laser melting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Galera-Rueda%2C+C">C. Galera-Rueda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">X. Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=LLorca%2C+J">J. LLorca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=P%C3%A9rez-Prado%2C+M+T">M. T. P茅rez-Prado</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04963v1-abstract-short" style="display: inline;"> This work provides unambiguous evidence for the occurrence of icosahedral quasicrystal (iQC) enhanced nucleation during selective laser melting of gas atomized commercially-pure Ni powders. This solidification mechanism, which has only been recently reported in a few alloys and has to date never been observed in pure metals, consists on the solidification of grains of the primary phase on the face&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04963v1-abstract-full').style.display = 'inline'; document.getElementById('2201.04963v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04963v1-abstract-full" style="display: none;"> This work provides unambiguous evidence for the occurrence of icosahedral quasicrystal (iQC) enhanced nucleation during selective laser melting of gas atomized commercially-pure Ni powders. This solidification mechanism, which has only been recently reported in a few alloys and has to date never been observed in pure metals, consists on the solidification of grains of the primary phase on the facets of iQCs formed due to the presence of icosahedral short range order in the liquid. The occurrence of iQC enhanced nucleation has been inferred from the observation in the SLM processed pure Ni samples of an excess fraction of partially incoherent twin boundaries and of clusters of twinned grain pairs sharing common &lt;110&gt; five-fold symmetry axes. This work further evidences that additive manufacturing methods may constitute an invaluable tool for investigating the fundamentals of solidification and for the design of unprecedented grain boundary networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04963v1-abstract-full').style.display = 'none'; document.getElementById('2201.04963v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scripta Materialia, 211, 114512, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.12449">arXiv:2110.12449</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.12449">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-021-00400-y">10.1038/s41535-021-00400-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photoinduced anisotropic lattice dynamic response and domain formation in thermoelectric SnSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Lijun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Junjie Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aryal%2C+N">Niraj Aryal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xilian Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedurin%2C+M">Mikhail Fedurin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babzien%2C+M">Marcus Babzien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kupfer%2C+R">Rotem Kupfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palmer%2C+M">Mark Palmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrovic%2C+C">Cedomir Petrovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+W">Weiguo Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+M+P+M">Mark P. M. Dean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robinson%2C+I">Ian Robinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+J">Jing Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yimei Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.12449v1-abstract-short" style="display: inline;"> Identifying and understanding the mechanisms behind strong phonon-phonon scattering in condensed matter systems is critical to maximizing the efficiency of thermoelectric devices. To date, the leading method to address this has been to meticulously survey the full phonon dispersion of the material in order to isolate modes with anomalously large linewidth and temperature-dependence. Here we combin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12449v1-abstract-full').style.display = 'inline'; document.getElementById('2110.12449v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.12449v1-abstract-full" style="display: none;"> Identifying and understanding the mechanisms behind strong phonon-phonon scattering in condensed matter systems is critical to maximizing the efficiency of thermoelectric devices. To date, the leading method to address this has been to meticulously survey the full phonon dispersion of the material in order to isolate modes with anomalously large linewidth and temperature-dependence. Here we combine quantitative MeV ultrafast electron diffraction (UED) analysis with Monte Carlo based dynamic diffraction simulation and first-principles calculations to directly unveil the soft, anharmonic lattice distortions of model thermoelectric material SnSe. A small single-crystal sample is photoexcited with ultrafast optical pulses and the soft, anharmonic lattice distortions are isolated using MeV-UED as those associated with long relaxation time and large displacements. We reveal that these modes have interlayer shear strain character, induced mainly by c-axis atomic displacements, resulting in domain formation in the transient state. These findings provide an innovative approach to identify mechanisms for ultralow and anisotropic thermal conductivity and a promising route to optimizing thermoelectric devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12449v1-abstract-full').style.display = 'none'; document.getElementById('2110.12449v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 6, 97 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.07076">arXiv:2110.07076</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.07076">pdf</a>, <a href="https://arxiv.org/format/2110.07076">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41524-022-00800-z">10.1038/s41524-022-00800-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust and tunable Weyl phases by coherent infrared phonons in ZrTe$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aryal%2C+N">Niraj Aryal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xilian Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Mengkun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsvelik%2C+A+M">A. M. Tsvelik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+W">Weiguo Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.07076v1-abstract-short" style="display: inline;"> Ultrafast optical control of the structural and electronic properties of various quantum materials has recently sparked great interest. In particular, photoinduced quantum phase transition between distinct topological phases has been considered as a promising route to realize ultrafast topological quantum computers. Here we use first-principles and effective Hamiltonian methods to show that in ZrT&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07076v1-abstract-full').style.display = 'inline'; document.getElementById('2110.07076v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.07076v1-abstract-full" style="display: none;"> Ultrafast optical control of the structural and electronic properties of various quantum materials has recently sparked great interest. In particular, photoinduced quantum phase transition between distinct topological phases has been considered as a promising route to realize ultrafast topological quantum computers. Here we use first-principles and effective Hamiltonian methods to show that in ZrTe$_5$, a layered topological material, lattice distortions corresponding to all three types of zone-center infrared optical phonon modes can drive the system from the strong or weak topological insulating phase to a Weyl semimetal by breaking the global inversion symmetry. Thus achieved Weyl phases are robust, highly tunable and one of the cleanest ones due to the proximity of the Weyl points to the Fermi level and a lack of other carriers. We further show that the amount of infrared-mode pumping necessary to induce such Weyl phases can be reduced if used in conjunction with an A$_g$ Raman-mode pumping that first drives the system to the Dirac semimetal state. We also find that Berry curvature dipole moment (BCDM), induced by the dynamical inversion symmetry breaking, gives rise to various nonlinear effects that oscillate with the amplitude of the phonon modes. These nonlinear effects present a novel switch for controlling the Weyltronics enabled quantum system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07076v1-abstract-full').style.display = 'none'; document.getElementById('2110.07076v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Comput Mater 8, 113 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.13717">arXiv:2109.13717</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.13717">pdf</a>, <a href="https://arxiv.org/format/2109.13717">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.147401">10.1103/PhysRevLett.127.147401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimentally Detecting Quantized Zak Phases without Chiral Symmetry in Photonic Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Z">Zhi-Qiang Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Longhi%2C+S">Stefano Longhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiao-Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">Wen-Hao Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Y">Yu-Xuan Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Li Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+R">Ruo-Jing Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+L">Lu-Feng Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.13717v1-abstract-short" style="display: inline;"> Symmetries play a major role in identifying topological phases of matter and in establishing a direct connection between protected edge states and topological bulk invariants via the bulk-boundary correspondence. One-dimensional lattices are deemed to be protected by chiral symmetry, exhibiting quantized Zak phases and protected edge states, but not for all cases. Here, we experimentally realize a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13717v1-abstract-full').style.display = 'inline'; document.getElementById('2109.13717v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.13717v1-abstract-full" style="display: none;"> Symmetries play a major role in identifying topological phases of matter and in establishing a direct connection between protected edge states and topological bulk invariants via the bulk-boundary correspondence. One-dimensional lattices are deemed to be protected by chiral symmetry, exhibiting quantized Zak phases and protected edge states, but not for all cases. Here, we experimentally realize an extended Su-Schrieffer-Heeger model with broken chiral symmetry by engineering one-dimensional zigzag photonic lattices, where the long-range hopping breaks chiral symmetry but ensures the existence of inversion symmetry. By the averaged mean displacement method, we detect topological invariants directly in the bulk through the continuous-time quantum walk of photons. Our results demonstrate that inversion symmetry protects the quantized Zak phase, but edge states can disappear in the topological nontrivial phase, thus breaking the conventional bulk-boundary correspondence. Our photonic lattice provides a useful platform to study the interplay among topological phases, symmetries, and the bulk-boundary correspondence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13717v1-abstract-full').style.display = 'none'; document.getElementById('2109.13717v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, 53 references, 1 supplemental materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 147401 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08880">arXiv:2107.08880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.08880">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Computational diffraction reveals long-range strains, disorder and crystalline domains in atomic scale simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boulle%2C+A">Alexandre Boulle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chartier%2C+A">Alain Chartier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Debelle%2C+A">Aur茅lien Debelle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crocombette%2C+J">Jean-Paul Crocombette</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08880v1-abstract-short" style="display: inline;"> Atomic scale simulations are a key element of modern science in that they allow to understand, and even predict, complex physical or chemical phenomena on the basis of the fundamental laws of nature. Among the different existing atomic scale simulation approaches, molecular dynamics (MD) has imposed itself as the method of choice to model the behavior of the structure of materials under the action&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08880v1-abstract-full').style.display = 'inline'; document.getElementById('2107.08880v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08880v1-abstract-full" style="display: none;"> Atomic scale simulations are a key element of modern science in that they allow to understand, and even predict, complex physical or chemical phenomena on the basis of the fundamental laws of nature. Among the different existing atomic scale simulation approaches, molecular dynamics (MD) has imposed itself as the method of choice to model the behavior of the structure of materials under the action of external stimuli, say temperature, strain or stress, irradiation, etc. Despite the widespread use of MD in condensed matter science, some basic material characteristics remain difficult to determine. This is for instance the case of the long-range strain tensor in heavily disordered materials, or the quantification of rotated crystalline domains lacking clearly defined boundaries. In this work, we introduce computational diffraction as a fast and reliable structural characterization tool of atomic scale simulation cells. As compared to usual direct-space methods, computational diffraction operates in the reciprocal-space and is therefore highly sensitive to long-range spatial correlations. With the example of defective UO2, it is demonstrated that the homogeneous strain tensor, the heterogeneous strain tensor, the disorder, as well as rotated crystallites are straightforwardly and unambiguously determined. Computational diffraction can be applied to any type of atomic scale simulation and can be performed in real time, in parallel with other analysis tools. In experimental workflows, diffraction and microscopy are almost systematically used together in order to benefit from their complementarity. Computational diffraction, used together with computational microscopy, can potentially play a major role in the future of atomic scale simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08880v1-abstract-full').style.display = 'none'; document.getElementById('2107.08880v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13148">arXiv:2106.13148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.13148">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Subcellular Processes">q-bio.SC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abh2929">10.1126/sciadv.abh2929 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Membraneless organelles formed by liquid-liquid phase separation increase bacterial fitness </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Ji-Eun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schaefer%2C+C">Charley Schaefer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xinwei Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wollman%2C+A+J+M">Adam J. M. Wollman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Payne-Dwyer%2C+A+L">Alex L. Payne-Dwyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+T">Tian Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaowei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yingxing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McLeish%2C+T+C+B">Tom C. B. McLeish</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leake%2C+M+C">Mark C. Leake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+F">Fan Bai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13148v1-abstract-short" style="display: inline;"> Liquid-liquid phase separation is emerging as a crucial phenomenon in several fundamental cell processes. A range of eukaryotic systems exhibit liquid condensates. However, their function in bacteria, which in general lack membrane-bound compartments, remains less clear. Here, we used high-resolution optical microscopy to observe single bacterial aggresomes, nanostructured intracellular assemblies&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13148v1-abstract-full').style.display = 'inline'; document.getElementById('2106.13148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13148v1-abstract-full" style="display: none;"> Liquid-liquid phase separation is emerging as a crucial phenomenon in several fundamental cell processes. A range of eukaryotic systems exhibit liquid condensates. However, their function in bacteria, which in general lack membrane-bound compartments, remains less clear. Here, we used high-resolution optical microscopy to observe single bacterial aggresomes, nanostructured intracellular assemblies of proteins, to undercover their role in cell stress. We find that proteins inside aggresomes are mobile and undergo dynamic turnover, consistent with a liquid state. Our observations are in quantitative agreement with phase-separated liquid droplet formation driven by interacting proteins under thermal equilibrium that nucleate following diffusive collisions in the cytoplasm. We have discovered aggresomes in multiple species of bacteria, and show that these emergent, metastable liquid-structured protein assemblies increase bacterial fitness by enabling cells to tolerate environmental stresses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13148v1-abstract-full').style.display = 'none'; document.getElementById('2106.13148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci Adv. 2021 Oct 22;7(43):eabh2929 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.07987">arXiv:2106.07987</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.07987">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/38/6/066801">10.1088/0256-307X/38/6/066801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Database Construction for Two-Dimensional Material-Substrate Interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xian-Li Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+J">Jinbo Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yan-Fang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jia-Tao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu-Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+S">Shixuan Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.07987v1-abstract-short" style="display: inline;"> The interfacial structures and interactions of two-dimensional (2D) materials on solid substrates are of fundamental importance for the fabrication and application of 2D materials. However, selection of a suitable solid substrate to grow 2D material, determination and control of the 2D material-substrate interface remain a big challenge due to the large diversity of possible configurations. Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07987v1-abstract-full').style.display = 'inline'; document.getElementById('2106.07987v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.07987v1-abstract-full" style="display: none;"> The interfacial structures and interactions of two-dimensional (2D) materials on solid substrates are of fundamental importance for the fabrication and application of 2D materials. However, selection of a suitable solid substrate to grow 2D material, determination and control of the 2D material-substrate interface remain a big challenge due to the large diversity of possible configurations. Here, we propose a computational framework to select an appropriate substrate for epitaxial growth of 2D material and to predict possible 2D material-substrate interface structures and orientations using density functional theory calculations performed for all non-equivalent atomic structures satisfying the symmetry constraints. The approach was validated by the correct prediction of three experimentally reported 2D material-substrate interface systems with only the given information of two parent materials. Several possible interface configurations are also proposed based on this approach. We therefore construct a database that contains these interface systems and has been continuously expanding. This database serves as preliminary guidance for epitaxial growth and stabilization of new materials in experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07987v1-abstract-full').style.display = 'none'; document.getElementById('2106.07987v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 2021, 38: 066801 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.05202">arXiv:2105.05202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.05202">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202007870">10.1002/adma.202007870 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analysis of external and internal disorder to understand band-like transport in n-type organic semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stoeckel%2C+M">Marc-Antoine Stoeckel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olivier%2C+Y">Yoann Olivier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gobbi%2C+M">Marco Gobbi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dudenko%2C+D">Dmytro Dudenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemaur%2C+V">Vincent Lemaur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zbiri%2C+M">Mohamed Zbiri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guilbert%2C+A+A+Y">Anne A. Y. Guilbert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%27Avino%2C+G">Gabriele D&#39;Avino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liscio%2C+F">Fabiola Liscio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Migliori%2C+A">Andrea Migliori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ortolani%2C+L">Luca Ortolani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Demitri%2C+N">Nicola Demitri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+Y">Young-Gyun Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liscio%2C+A">Andrea Liscio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nardi%2C+M">Marco-Vittorio Nardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pasquali%2C+L">Luca Pasquali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Razzari%2C+L">Luca Razzari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beljonne%2C+D">David Beljonne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samori%2C+P">Paolo Samori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orgiu%2C+E">Emanuele Orgiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.05202v1-abstract-short" style="display: inline;"> Charge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both internal and external (i.e. related to the interactions with the dielectric layer), especially for n-type materials. Internal dynamic disorder stems from large thermal fluctuations both in intermolecular transfer integrals and (molecular) site energies in weakly interacting van der Waals&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.05202v1-abstract-full').style.display = 'inline'; document.getElementById('2105.05202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.05202v1-abstract-full" style="display: none;"> Charge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both internal and external (i.e. related to the interactions with the dielectric layer), especially for n-type materials. Internal dynamic disorder stems from large thermal fluctuations both in intermolecular transfer integrals and (molecular) site energies in weakly interacting van der Waals solids and sources transient localization of the charge carriers. The molecular vibrations that drive transient localization typically operate at low-frequency (&lt; a-few-hundred cm-1), which renders it difficult to assess them experimentally. Hitherto, this has prevented the identification of clear molecular design rules to control and reduce dynamic disorder. In addition, the disorder can also be external, being controlled by the gate insulator dielectric properties. Here we report on a comprehensive study of charge transport in two closely related n-type molecular organic semiconductors using a combination of temperature-dependent inelastic neutron scattering and photoelectron spectroscopy corroborated by electrical measurements, theory and simulations. We provide unambiguous evidence that ad hoc molecular design enables to free the electron charge carriers from both internal and external disorder to ultimately reach band-like electron transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.05202v1-abstract-full').style.display = 'none'; document.getElementById('2105.05202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:1909.05344</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. 33 (2021) 2007870 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.03418">arXiv:2105.03418</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.03418">pdf</a>, <a href="https://arxiv.org/format/2105.03418">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning Hamiltonian Monte Carlo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Foreman%2C+S">Sam Foreman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiao-Yong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osborn%2C+J+C">James C. Osborn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.03418v1-abstract-short" style="display: inline;"> We generalize the Hamiltonian Monte Carlo algorithm with a stack of neural network layers and evaluate its ability to sample from different topologies in a two dimensional lattice gauge theory. We demonstrate that our model is able to successfully mix between modes of different topologies, significantly reducing the computational cost required to generated independent gauge field configurations. O&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03418v1-abstract-full').style.display = 'inline'; document.getElementById('2105.03418v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.03418v1-abstract-full" style="display: none;"> We generalize the Hamiltonian Monte Carlo algorithm with a stack of neural network layers and evaluate its ability to sample from different topologies in a two dimensional lattice gauge theory. We demonstrate that our model is able to successfully mix between modes of different topologies, significantly reducing the computational cost required to generated independent gauge field configurations. Our implementation is available at https://github.com/saforem2/l2hmc-qcd . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03418v1-abstract-full').style.display = 'none'; document.getElementById('2105.03418v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures, Published as a workshop paper at ICLR 2021 SimDL Workshop</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.14262">arXiv:2104.14262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.14262">pdf</a>, <a href="https://arxiv.org/ps/2104.14262">ps</a>, <a href="https://arxiv.org/format/2104.14262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0055435">10.1063/5.0055435 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bulk-Sensitive Spin-Resolved Resonant Electron Energy-Loss Spectroscopy (SR-rEELS): Observation of Element- and Spin-Selective Bulk Plasmons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kimura%2C+S">Shin-ichi Kimura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawabata%2C+T">Taishi Kawabata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsumoto%2C+H">Hiroki Matsumoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohta%2C+Y">Yu Ohta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshizumi%2C+A">Ayuki Yoshizumi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshida%2C+Y">Yuto Yoshida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamashita%2C+T">Takumi Yamashita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+H">Hiroshi Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohtsubo%2C+Y">Yoshiyuki Ohtsubo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamamoto%2C+N">Naoto Yamamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiuguang Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.14262v2-abstract-short" style="display: inline;"> We have developed a spin-resolved resonant electron energy-loss spectroscopy (SR-rEELS) in the primary energy of 0.3--1.5 keV, which corresponds to the core excitations of $2p$-$3d$ absorption of transition metals and $3d$-$4f$ absorption of rare-earths, with the energy resolution of about 100~meV using a spin-polarized electron source as a GaAs/GaAsP strained superlattice photocathode. Element- a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14262v2-abstract-full').style.display = 'inline'; document.getElementById('2104.14262v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.14262v2-abstract-full" style="display: none;"> We have developed a spin-resolved resonant electron energy-loss spectroscopy (SR-rEELS) in the primary energy of 0.3--1.5 keV, which corresponds to the core excitations of $2p$-$3d$ absorption of transition metals and $3d$-$4f$ absorption of rare-earths, with the energy resolution of about 100~meV using a spin-polarized electron source as a GaAs/GaAsP strained superlattice photocathode. Element- and spin-selective carrier and valence plasmons can be observed using the resonance enhancement of core absorptions and electron spin polarization. Furthermore, bulk-sensitive EELS spectra can be obtained because the primary energy corresponds to the mean free path of 1--10~nm. The methodology is expected to provide us novel information of elementary excitations by resonant inelastic x-ray scattering and resonant photoelectron spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14262v2-abstract-full').style.display = 'none'; document.getElementById('2104.14262v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 92, 093103 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02991">arXiv:2010.02991</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.02991">pdf</a>, <a href="https://arxiv.org/format/2010.02991">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.0c18483">10.1021/acsami.0c18483 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Short-range order in GeSn alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+B">Boxiao Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shunda Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaochen Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jifeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tianshu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02991v2-abstract-short" style="display: inline;"> Group IV alloys have been long viewed as homogeneous random solid solutions since they were first perceived as Si-compatible, direct-band-gap semiconductors 30 years ago. Such a perception underlies the understanding, interpretation and prediction of alloys&#39; properties. However, as the race to create scalable and tunable device materials enters a composition domain far beyond alloys&#39; equilibrium s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02991v2-abstract-full').style.display = 'inline'; document.getElementById('2010.02991v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02991v2-abstract-full" style="display: none;"> Group IV alloys have been long viewed as homogeneous random solid solutions since they were first perceived as Si-compatible, direct-band-gap semiconductors 30 years ago. Such a perception underlies the understanding, interpretation and prediction of alloys&#39; properties. However, as the race to create scalable and tunable device materials enters a composition domain far beyond alloys&#39; equilibrium solubility, a fundamental question emerges as to how random these alloys truly are. Here we show, by combining statistical sampling and large-scale ab initio calculations, that GeSn alloy, a promising group IV alloy for mid-infrared technology, exhibits a clear, short-range order for solute atoms within its entire composition range. Such short-range order is further found to substantially affect the electronic properties of GeSn. We demonstrate the proper inclusion of this short-range order through canonical sampling can lead to a significant improvement over previous predictions on alloy&#39;s band gaps, by showing an excellent agreement with experiments within the entire studied composition range. Our finding thus not only calls for an important revision of current structural model for group IV alloy, but also suggests short-range order may generically exist in different types of alloys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02991v2-abstract-full').style.display = 'none'; document.getElementById('2010.02991v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.00860">arXiv:2007.00860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.00860">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Enhanced graphitic domains of unreduced graphene oxide and the interplay of hydration behaviour and catalytic activity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Foller%2C+T">Tobias Foller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Daiyan%2C+R">Rahman Daiyan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaoheng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leverett%2C+J">Joshua Leverett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hangyel Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Webster%2C+R">Richard Webster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yap%2C+J+E">Jeaniffer E. Yap</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+X">Xinyue Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rawal%2C+A">Aditya Rawal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeSilva%2C+K+K+H">K. Kanishka H. DeSilva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshimura%2C+M">Masamichi Yoshimura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bustamante%2C+H">Heriberto Bustamante</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+S+L+Y">Shery L. Y. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+P">Priyank Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+Y">Yi You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+G+H">Gwan Hyoung Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amal%2C+R">Rose Amal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joshi%2C+R">Rakesh Joshi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.00860v5-abstract-short" style="display: inline;"> Previous studies indicate that the properties of graphene oxide (GO) can be significantly improved by enhancing its graphitic domain size through thermal diffusion and clustering of functional groups. Remarkably, this transition takes place below the decomposition temperature of the functional groups and thus allows fine-tuning of graphitic domains without compromising with the functionality of GO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00860v5-abstract-full').style.display = 'inline'; document.getElementById('2007.00860v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.00860v5-abstract-full" style="display: none;"> Previous studies indicate that the properties of graphene oxide (GO) can be significantly improved by enhancing its graphitic domain size through thermal diffusion and clustering of functional groups. Remarkably, this transition takes place below the decomposition temperature of the functional groups and thus allows fine-tuning of graphitic domains without compromising with the functionality of GO. By studying the transformation of GO under mild thermal treatment, we directly observe this size enhancement of graphitic domains from originally 40 nm2 to 200 nm2 through an extensive transmission electron microscopy (TEM) study. Additionally, we confirm the integrity of the functional groups during this process by comprehensive chemical analysis. A closer look into the process confirms the theoretically predicted relevance for the room temperature stability of GO. We further investigate the influence of enlarged graphitic domains on the hydration behaviour of GO and catalytic performance of single-atom catalysts supported by GO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00860v5-abstract-full').style.display = 'none'; document.getElementById('2007.00860v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.07963">arXiv:2006.07963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.07963">pdf</a>, <a href="https://arxiv.org/format/2006.07963">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Protecting Quantum Superposition and Entanglement with Photonic Higher-Order Topological Crystalline Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+B">Bi-Ye Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yong-Heng Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y">Yi-Jun Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hong-Fei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Z">Zhi-Qiang Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Z">Zhen Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiao-Yun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mei%2C+F">Feng Mei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Suotang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+M">Ming-Hui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.07963v1-abstract-short" style="display: inline;"> Higher-order topological insulator, as a newly found non-trivial material and structure, possesses a topological phase beyond the bulk-boundary correspondence. Here, we present an experimental observation of photonic higher-order topological crystalline insulator and its topological protection to quantum superposition and entanglement in a two-dimensional lattice. By freely writing the insulator s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07963v1-abstract-full').style.display = 'inline'; document.getElementById('2006.07963v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.07963v1-abstract-full" style="display: none;"> Higher-order topological insulator, as a newly found non-trivial material and structure, possesses a topological phase beyond the bulk-boundary correspondence. Here, we present an experimental observation of photonic higher-order topological crystalline insulator and its topological protection to quantum superposition and entanglement in a two-dimensional lattice. By freely writing the insulator structure with femtosecond laser and directly measuring evolution dynamics with single-photon imaging techniques, we are able to observe the distinct features of the topological corner states in C_4 and C_2 photonic lattice symmetry. Especially, we propose and experimentally identify the topological corner states by exciting the photonic lattice with single-photon superposition state, and we examine the protection impact of topology on quantum entanglement for entangled photon states. The single-photon dynamics and the protected entanglement reveal an intrinsic topological protection mechanism isolating multi-partite quantum states from diffusion-induced decoherence. The higher-order topological crystalline insulator, built-in superposition state generation, heralded single-photon imaging and quantum entanglement demonstrated here link topology, material, and quantum physics, opening the door to wide investigations of higher-order topology and applications of topological enhancement in genuine quantum regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07963v1-abstract-full').style.display = 'none'; document.getElementById('2006.07963v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 6 figures in main text, 16 figures in Supplementary Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.13385">arXiv:2005.13385</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.13385">pdf</a>, <a href="https://arxiv.org/format/2005.13385">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Shining Light on Quantum Transport in Fractal Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiao-Yun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiao-Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dan-Yang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+C+M">C. Morais Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.13385v1-abstract-short" style="display: inline;"> Fractals are fascinating structures, not only for their aesthetic appeal, but also because they allow for the investigation of physical properties in non-integer dimensions. In these unconventional systems, a myriad of intrinsic features might come into play, such as the fractal dimension, the spectral dimension, or the fractal geometry. Despite abundant theoretical and numerical studies, experime&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13385v1-abstract-full').style.display = 'inline'; document.getElementById('2005.13385v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.13385v1-abstract-full" style="display: none;"> Fractals are fascinating structures, not only for their aesthetic appeal, but also because they allow for the investigation of physical properties in non-integer dimensions. In these unconventional systems, a myriad of intrinsic features might come into play, such as the fractal dimension, the spectral dimension, or the fractal geometry. Despite abundant theoretical and numerical studies, experiments in fractal networks remain elusive. Here, we experimentally investigate quantum transport in fractal networks by performing continuous-time quantum walks in fractal photonic lattices with incremental propagation lengths. Photons act as the walkers and evolve in the lattices after being injected into one initial site. We unveil the transport properties through the photon evolution pattern at different propagation lengths and the analysis of the variance and the P&#39;olya number, which are calculated based on the probability distribution of the patterns. Contrarily to classical fractals, we observe anomalous transport governed solely by the fractal dimension. In addition, the critical point at which there is a transition from normal to anomalous transport is highly dependent on the fractal geometry. Our experiment allows the verification of physical laws in a quantitative manner and reveals the transport dynamics with unprecedented detail, thus opening a path to the understanding of more complex quantum phenomena governed by fractality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13385v1-abstract-full').style.display = 'none'; document.getElementById('2005.13385v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 21 figures, comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.04161">arXiv:2005.04161</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.04161">pdf</a>, <a href="https://arxiv.org/format/2005.04161">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.014453">10.1103/PhysRevB.102.014453 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrical detection of magnon-photon interaction via auxiliary spin wave mode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+P">Peng-Chao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+J+W">J. W. Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gui%2C+Y+S">Y. S. Gui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+J+Q">John Q. Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xiaofeng Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C+-">C. -M. Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.04161v1-abstract-short" style="display: inline;"> We report on the electrical detection of a hybrid magnon-photon system, which is comprised of a magnetic sample coupled to a planar cavity. While the uniform Kittel mode has the largest coupling strength among all the magnon modes, it only generates a modest voltage signal by means of inverse spin-Hall effect. We have found that the generated voltage can be significantly enhanced by introducing a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04161v1-abstract-full').style.display = 'inline'; document.getElementById('2005.04161v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.04161v1-abstract-full" style="display: none;"> We report on the electrical detection of a hybrid magnon-photon system, which is comprised of a magnetic sample coupled to a planar cavity. While the uniform Kittel mode has the largest coupling strength among all the magnon modes, it only generates a modest voltage signal by means of inverse spin-Hall effect. We have found that the generated voltage can be significantly enhanced by introducing a higher order magnon mode, which possesses a much higher spin pumping efficiency and furthermore, it is nearly degenerated with the Kittel mode. The experimental results can be explained by our theoretical model, and suggest that the use of an auxiliary magnon mode can realize the configuration of a magnon-photon system with both strong coupling and large spin current. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04161v1-abstract-full').style.display = 'none'; document.getElementById('2005.04161v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 014453 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.13326">arXiv:2004.13326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.13326">pdf</a>, <a href="https://arxiv.org/format/2004.13326">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.016401">10.1103/PhysRevLett.126.016401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological phase transition and phonon-space Dirac topology surfaces in ZrTe$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aryal%2C+N">Niraj Aryal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xilian Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Q. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsvelik%2C+A+M">A. M. Tsvelik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+W">Weiguo Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.13326v1-abstract-short" style="display: inline;"> We use first-principles methods to reveal that in ZrTe$_5$, a layered van der Waals material like graphite, atomic displacements corresponding to five of the six zone-center A$_g$ (symmetry-preserving) phonon modes can drive a topological phase transition from strong to weak topological insulator with a Dirac semimetal state emerging at the transition, giving rise to a Dirac topology surface in th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.13326v1-abstract-full').style.display = 'inline'; document.getElementById('2004.13326v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.13326v1-abstract-full" style="display: none;"> We use first-principles methods to reveal that in ZrTe$_5$, a layered van der Waals material like graphite, atomic displacements corresponding to five of the six zone-center A$_g$ (symmetry-preserving) phonon modes can drive a topological phase transition from strong to weak topological insulator with a Dirac semimetal state emerging at the transition, giving rise to a Dirac topology surface in the multi-dimensional space formed by the A$_g$ phonon modes. This implies that the topological phase transition in ZrTe$_5$ can be realized with many different settings of external stimuli that are capable of penetrating through the phonon-space Dirac surface without breaking the crystallographic symmetry. Furthermore, we predict that domains with effective mass of opposite signs can be created by laser pumping and will host Weyl modes of opposite chirality propagating along the domain boundaries. Studying phonon-space topology surfaces provides a new route to understanding and utilizing the exotic physical properties of ZrTe$_5$ and related quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.13326v1-abstract-full').style.display = 'none'; document.getElementById('2004.13326v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 016401 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.09258">arXiv:2002.09258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.09258">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jnucmat.2021.153308">10.1016/j.jnucmat.2021.153308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparison of neutron and ion irradiation induced lattice parameter changes in Ni, Cu and MgO single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boulle%2C+A">Alexandre Boulle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourcoit%2C+J">J茅r么me Bourcoit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Debelle%2C+A">Aur茅lien Debelle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.09258v1-abstract-short" style="display: inline;"> Data available in the literature of lattice parameter changes in Ni, Cu and MgO single crystals irradiated in neutron reactors are tentatively reproduced using ad hoc ion irradiation experiments. The nature and energy of the ions were selected so that their weighted average recoil spectrum matches at best that of the neutron flux inside the reactor. The ion fluence was calculated to obtain similar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09258v1-abstract-full').style.display = 'inline'; document.getElementById('2002.09258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.09258v1-abstract-full" style="display: none;"> Data available in the literature of lattice parameter changes in Ni, Cu and MgO single crystals irradiated in neutron reactors are tentatively reproduced using ad hoc ion irradiation experiments. The nature and energy of the ions were selected so that their weighted average recoil spectrum matches at best that of the neutron flux inside the reactor. The ion fluence was calculated to obtain similar, average displacements per atom (dpa) levels. The lattice parameters of the irradiated samples were determined using X-ray diffraction. We show that, for the metals, it is not possible to reproduce the neutron data, essentially because the dpa levels are low and the irradiated, damaged volume is small. On the contrary, for MgO, a very close lattice parameter change is obtained, providing that the irradiation temperature is significantly increased (1000 K) with respect to that in the reactor (300 K). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09258v1-abstract-full').style.display = 'none'; document.getElementById('2002.09258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.07896">arXiv:2002.07896</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.07896">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.100304">10.1103/PhysRevB.101.100304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Concurrent probing of electron-lattice dephasing induced by photoexcitation in 1T-TaSeTe using ultrafast electron diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Junjie Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+K">Kai Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Lijun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Renkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jie Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">Xiaozhe Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xijie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huixia Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">Robert J. Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robinson%2C+I+K">Ian K. Robinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xilian Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+W">Weiguo Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yimei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+J">Jing Tao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.07896v1-abstract-short" style="display: inline;"> It has been technically challenging to concurrently probe the electrons and the lattices in materials during non-equilibrium processes, allowing their correlations to be determined. Here, in a single set of ultrafast electron diffraction patterns taken on the charge-density-wave (CDW) material 1T-TaSeTe, we discover a temporal shift in the diffraction intensity measurements as a function of scatte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07896v1-abstract-full').style.display = 'inline'; document.getElementById('2002.07896v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.07896v1-abstract-full" style="display: none;"> It has been technically challenging to concurrently probe the electrons and the lattices in materials during non-equilibrium processes, allowing their correlations to be determined. Here, in a single set of ultrafast electron diffraction patterns taken on the charge-density-wave (CDW) material 1T-TaSeTe, we discover a temporal shift in the diffraction intensity measurements as a function of scattering angle. With the help of dynamic models and theoretical calculations, we show that the ultrafast electrons probe both the valence-electron and lattice dynamic processes, resulting in the temporal shift measurements. Our results demonstrate unambiguously that the CDW is not merely a result of the periodic lattice deformation ever-present in 1T-TaSeTe but has significant electronic origin. This method demonstrates a novel approach for studying many quantum effects that arise from electron-lattice dephasing in molecules and crystals for next-generation devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07896v1-abstract-full').style.display = 'none'; document.getElementById('2002.07896v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages and 4 figures in main text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.11034">arXiv:2001.11034</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.11034">pdf</a>, <a href="https://arxiv.org/format/2001.11034">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.064304">10.1103/PhysRevB.103.064304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observing Movement of Dirac Cones from Single-Photon Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yong-Heng Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y">Yi-Jun Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhan-Ming Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+W">Wen-Hao Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+W">Wen-Hao Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Hang Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.11034v1-abstract-short" style="display: inline;"> Graphene with honeycomb structure, being critically important in understanding physics of matter, exhibits exceptionally unusual half-integer quantum Hall effect and unconventional electronic spectrum with quantum relativistic phenomena. Particularly, graphene-like structure can be used for realizing topological insulator which inspires an intrinsic topological protection mechanism with strong imm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11034v1-abstract-full').style.display = 'inline'; document.getElementById('2001.11034v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.11034v1-abstract-full" style="display: none;"> Graphene with honeycomb structure, being critically important in understanding physics of matter, exhibits exceptionally unusual half-integer quantum Hall effect and unconventional electronic spectrum with quantum relativistic phenomena. Particularly, graphene-like structure can be used for realizing topological insulator which inspires an intrinsic topological protection mechanism with strong immunity for maintaining coherence of quantum information. These various peculiar physics arise from the unique properties of Dirac cones which show high hole degeneracy, massless charge carriers and linear intersection of bands. Experimental observation of Dirac cones conventionally focuses on the energy-momentum space with bulk measurement. Recently, the wave function and band structure have been mapped into the real-space in photonic system, and made flexible control possible. Here, we demonstrate a direct observation of the movement of Dirac cones from single-photon dynamics in photonic graphene under different biaxial strains. Sharing the same spirit of wave-particle nature in quantum mechanics, we identify the movement of Dirac cones by dynamically detecting the edge modes and extracting the diffusing distance of the packets with accumulation and statistics on individual single-particle registrations. Our results of observing movement of Dirac cones from single-photon dynamics, together with the method of direct observation in real space by mapping the band structure defined in momentum space, pave the way to understand a variety of artificial structures in quantum regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11034v1-abstract-full').style.display = 'none'; document.getElementById('2001.11034v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, Comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 064304 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.00268">arXiv:2001.00268</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.00268">pdf</a>, <a href="https://arxiv.org/format/2001.00268">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Direct Observation of Quantum Percolation Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Z">Zhen Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+B">Bing-Hong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+H">Hao Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+L">Lu-Feng Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiao-Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiao-Yun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Z">Zhi-Qiang Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.00268v1-abstract-short" style="display: inline;"> Percolation, describing critical behaviors of phase transition in a geometrical context, prompts wide investigations in natural and social networks as a fundamental model. The introduction of quantum-intrinsic interference and tunneling brings percolation into quantum regime with more fascinating phenomena and unique features, which, however, hasn&#39;t been experimentally explored yet. Here we presen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00268v1-abstract-full').style.display = 'inline'; document.getElementById('2001.00268v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.00268v1-abstract-full" style="display: none;"> Percolation, describing critical behaviors of phase transition in a geometrical context, prompts wide investigations in natural and social networks as a fundamental model. The introduction of quantum-intrinsic interference and tunneling brings percolation into quantum regime with more fascinating phenomena and unique features, which, however, hasn&#39;t been experimentally explored yet. Here we present an experimental demonstration of quantum transport in hexagonal percolation lattices by successfully mapping such large-scale porous structures into a photonic chip using femtosecond laser direct writing techniques. A quantum percolation threshold of 80% is observed in the prototyped laser-written lattices with up to 1,600 waveguides, which is significantly larger than the classical counterpart of 63%. We also investigate the spatial confinement by localization parameters and exhibit the transition from ballistic to diffusive propagation with the decrease of the occupation probability. Direct observation of quantum percolation may deepen the understanding of the relation among materials, quantum transport, geometric quenching, disorder and localization, and inspire applications for quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00268v1-abstract-full').style.display = 'none'; document.getElementById('2001.00268v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures, 1 table, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.09174">arXiv:1911.09174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.09174">pdf</a>, <a href="https://arxiv.org/format/1911.09174">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Observation of Magic Angle and Wall State in Twisted Bilayer Photonic Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+Y">Yi-Jun Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yong-Heng Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Z">Zhi-Qiang Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Fang-Wei Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+X">Xian-Min Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.09174v1-abstract-short" style="display: inline;"> Graphene, a one-layer honeycomb lattice of carbon atoms, exhibits unconventional phenomena and attracts much interest since its discovery. Recently, an unexpected Mott-like insulator state induced by moir茅 pattern and a superconducting state are observed in magic-angle-twisted bilayer graphene, especially, without correlations between electrons, which gives more hints for the understanding and inv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.09174v1-abstract-full').style.display = 'inline'; document.getElementById('1911.09174v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.09174v1-abstract-full" style="display: none;"> Graphene, a one-layer honeycomb lattice of carbon atoms, exhibits unconventional phenomena and attracts much interest since its discovery. Recently, an unexpected Mott-like insulator state induced by moir茅 pattern and a superconducting state are observed in magic-angle-twisted bilayer graphene, especially, without correlations between electrons, which gives more hints for the understanding and investigation of strongly correlated phenomena. The photon as boson, behaving differently with fermion, can also retrieve the unconventional phenomena of graphene, such as the bearded edge state which is even never been observed in graphene due to the unstability. Here, we present a direct observation of magic angle and wall state in twisted bilayer photonic graphene. We successfully observe the strong localization and rapid diffusion of photon at the regions with AA and AB stacking order around the magic angle, respectively. Most importantly, we find a wall state showing the photon distribution distinctly separate at the regions with AA and AB/BA stacking order in the lowest-energy band. The mechanism underlying the wall states may help to understand the existence of both Mott-like insulating state and superconducting state in magic-angle twisted bilayer graphene. The accessibility of magic angle in twisted bilayer photonic graphene adds the boson behavior into graphene superlattice and the observation of wall state will also deep the understanding of matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.09174v1-abstract-full').style.display = 'none'; document.getElementById('1911.09174v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures, Comments welcome</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jin%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jin%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jin%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10