CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 1,428 results for author: <span class="mathjax">Liu, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Liu%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Liu%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+J&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18045">arXiv:2411.18045</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18045">pdf</a>, <a href="https://arxiv.org/ps/2411.18045">ps</a>, <a href="https://arxiv.org/format/2411.18045">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.174448">10.1103/PhysRevB.110.174448 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural and magnetic characterization of CeTa$_7$O$_{19}$ and YbTa$_7$O$_{19}$ with two-dimensional pseudospin-1/2 triangular lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+F">Feihao Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+S">Songnan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolesnikov%2C+A+I">Alexander I. Kolesnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stone%2C+M+B">Matthew B. Stone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jiale Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+D">Daye Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+C">Chenglin Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+B">Bingxian Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gui%2C+X">Xuejuan Gui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhongcen Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinchen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Juanjuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hongxia Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengxin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+P">Peng Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18045v1-abstract-short" style="display: inline;"> Triangular lattice antiferromagnets are prototypes for frustrated magnetism and may potentially realize novel quantum magnetic states such as a quantum spin liquid ground state. A recent work suggests NdTa$_7$O$_{19}$ with rare-earth triangular lattice is a quantum spin liquid candidate and highlights the large family of rare-earth heptatantalates as a framework for quantum magnetism investigation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18045v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18045v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18045v1-abstract-full" style="display: none;"> Triangular lattice antiferromagnets are prototypes for frustrated magnetism and may potentially realize novel quantum magnetic states such as a quantum spin liquid ground state. A recent work suggests NdTa$_7$O$_{19}$ with rare-earth triangular lattice is a quantum spin liquid candidate and highlights the large family of rare-earth heptatantalates as a framework for quantum magnetism investigation. In this paper, we report the structural and magnetic characterization of CeTa$_7$O$_{19}$ and YbTa$_7$O$_{19}$. Both compounds are isostructural to NdTa$_7$O$_{19}$ with no detectable structural disorder. For CeTa$_7$O$_{19}$, the crystal field energy levels and parameters are determined by inelastic neutron scattering measurements. Based on the crystal field result, the magnetic susceptibility data could be well fitted and explained, which reveals that CeTa$_7$O$_{19}$ is a highly anisotropic Ising triangular-lattice antiferromagnet ($g_z$/$g_{xy}$$\sim$3) with very weak exchange interaction (J$\sim$0.22~K). For YbTa$_7$O$_{19}$, millimeter sized single crystals could be grown. The anisotropic magnetization and electron spin resonance data show that YbTa$_7$O$_{19}$ has a contrasting in-plane magnetic anisotropy with $g_z$/$g_{xy}$$\sim$0.67 similar as that of YbMgGaO$_4$. The above results indicate that CeTa$_7$O$_{19}$ and YbTa$_7$O$_{19}$ with pseudospin-1/2 ground states might either be quantum spin liquid candidate materials or find applications in adiabatic demagnetization refrigeration due to the weak exchange interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18045v1-abstract-full').style.display = 'none'; document.getElementById('2411.18045v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110(2024)174448 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17493">arXiv:2411.17493</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17493">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Ubiquitous van der Waals altermagnetism with sliding/moire ferroelectricity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+Y">Yuxuan Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Menghao Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17493v1-abstract-short" style="display: inline;"> According to the recent studies on sliding/moire ferroelectricity, most 2D van der Waals nonferroelectric monolayers can become ferroelectric via multilayer stacking. In this paper we propose that similar strategy can be used to induce desirable van der Waals altermagnetism with symmetry-compensated collinear magnetic orders and non-relativistic spin splitting. Our first-principles calculations sh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17493v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17493v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17493v1-abstract-full" style="display: none;"> According to the recent studies on sliding/moire ferroelectricity, most 2D van der Waals nonferroelectric monolayers can become ferroelectric via multilayer stacking. In this paper we propose that similar strategy can be used to induce desirable van der Waals altermagnetism with symmetry-compensated collinear magnetic orders and non-relativistic spin splitting. Our first-principles calculations show the pervasive co-existence of sliding ferroelectricity and altermagnetism in a series of magnetic multilayers with anti-parallel stacking configurations. Upon a twist angle in bilayers, moire ferroelectricity can be combined with altermagnetism, while some untwisted bilayers exhibit pseudo-altermagnetism with zero net magnetizations and non-relativistic spin splittings coupled with sliding ferroelectricity. Our study significantly expands the scope of altermagnetism, and its combination with sliding/moire ferroelectricity brings in new physics as well as promising applications, which should stimulate further experimental efforts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17493v1-abstract-full').style.display = 'none'; document.getElementById('2411.17493v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15333">arXiv:2411.15333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15333">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Unconventional gapping behavior in a kagome superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">Eun Sang Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ratkovski%2C+D">Danilo Ratkovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%BCscher%2C+B">Bernhard L眉scher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bangura%2C+A">Ali Bangura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15333v1-abstract-short" style="display: inline;"> Determining the types of superconducting order in quantum materials is a challenge, especially when multiple degrees of freedom, such as bands or orbitals, contribute to the fermiology and when superconductivity competes, intertwines, or coexists with other symmetry-breaking orders. Here, we study the Kagome-lattice superconductor CsV3Sb5, in which multiband superconductivity coexists with a charg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15333v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15333v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15333v1-abstract-full" style="display: none;"> Determining the types of superconducting order in quantum materials is a challenge, especially when multiple degrees of freedom, such as bands or orbitals, contribute to the fermiology and when superconductivity competes, intertwines, or coexists with other symmetry-breaking orders. Here, we study the Kagome-lattice superconductor CsV3Sb5, in which multiband superconductivity coexists with a charge order that substantially reduces the compound&#39;s space group symmetries. Through a combination of thermodynamic as well as electrical and thermal transport measurements, we uncover two superconducting regimes with distinct transport and thermodynamic characteristics, while finding no evidence for a phase transition separating them. Thermodynamic measurements reveal substantial quasiparticle weight in a high-temperature regime. At lower temperatures, this weight is removed via the formation of a second gap. The two regimes are sharply distinguished by a pronounced enhancement of the upper critical field at low temperatures and by a switch in the anisotropy of the longitudinal thermal conductivity as a function of in-plane magnetic field orientation. We argue that the band with a gap opening at lower temperatures continues to host low-energy quasiparticles, possibly due to a nodal structure of the gap. Taken together, our results present evidence for band-selective superconductivity with remarkable decoupling of the (two) superconducting gaps. The commonly employed multiband scenario, whereby superconductivity emerges in a primary band and is then induced in other bands appears to fail in this unconventional kagome superconductor. Instead, band-selective superconducting pairing is a paradigm that seems to unify seemingly contradicting results in this intensely studied family of materials and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15333v1-abstract-full').style.display = 'none'; document.getElementById('2411.15333v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Physics (2024); in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13898">arXiv:2411.13898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13898">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Discovery of an Antiferromagnetic Topological Nodal-line Kondo Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D+F">D. F. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y+F">Y. F. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H+Y">H. Y. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+Y">J. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+T+P">T. P. Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+Y+Y">Y. Y. Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y+H">Y. H. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+D">D. Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+M+H">M. H. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J+J">J. J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+H">Q. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+F+Q">F. Q. Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiagarajan%2C+B">B. Thiagarajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+C">C. Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">M. Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D+H">D. H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">N. B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louat%2C+A">A. Louat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">C. Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+D">D. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+T+-">T. -L. Lee</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13898v1-abstract-short" style="display: inline;"> The symbiosis of strong interactions, flat bands, topology and symmetry has led to the discovery of exotic phases of matter, including fractional Chern insulators, correlated moir茅 topological superconductors, and Dirac and Weyl semimetals. Correlated metals, such as those present in Kondo lattices, rely on the screening of local moments by a sea of non-magnetic conduction electrons. Here, we repo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13898v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13898v1-abstract-full" style="display: none;"> The symbiosis of strong interactions, flat bands, topology and symmetry has led to the discovery of exotic phases of matter, including fractional Chern insulators, correlated moir茅 topological superconductors, and Dirac and Weyl semimetals. Correlated metals, such as those present in Kondo lattices, rely on the screening of local moments by a sea of non-magnetic conduction electrons. Here, we report on a unique topological Kondo lattice compound, CeCo2P2, where the Kondo effect - whose existence under the magnetic Co phase is protected by PT symmetry - coexists with antiferromagnetic order emerging from the flat bands associated with the Co atoms. Remarkably, this is the only known Kondo lattice compound where magnetic order occurs in non-heavy electrons, and puzzlingly, at a temperature significantly higher than that of the Kondo effect. Furthermore, at low temperatures, the emergence of the Kondo effect, in conjunction with a glide-mirror-z symmetry, results in a nodal line protected by bulk topology near the Fermi energy. These unusual properties, arising from the interplay between itinerant and correlated electrons from different constituent elements, lead to novel quantum phases beyond the celebrated topological Kondo insulators and Weyl Kondo semimetals. CeCo2P2 thus provides an ideal platform for investigating narrow bands, topology, magnetism, and the Kondo effect in strongly correlated electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13898v1-abstract-full').style.display = 'none'; document.getElementById('2411.13898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11359">arXiv:2411.11359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11359">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Thickness-dependent Topological Phases and Flat Bands in Rhombohedral Multilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+H+B">H. B. Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sui%2C+X">X. Sui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S+H">S. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+M+Z">M. Z. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">H. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Q">Q. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Q. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+M">M. Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+F+Y">F. Y. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M+X">M. X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+P">J. P. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z+B">Z. B. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z+J">Z. J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+L">Y. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K+H">K. H. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+K">Z. K. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11359v2-abstract-short" style="display: inline;"> Rhombohedral multilayer graphene has emerged as an extraordinary platform for investigating exotic quantum states, such as superconductivity and fractional quantum anomalous Hall effects, mainly due to the existence of topological surface flatbands. Despite extensive research efforts, a systematic spectroscopic investigation on the evolution of its electronic structure from thin layers to bulk rem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11359v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11359v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11359v2-abstract-full" style="display: none;"> Rhombohedral multilayer graphene has emerged as an extraordinary platform for investigating exotic quantum states, such as superconductivity and fractional quantum anomalous Hall effects, mainly due to the existence of topological surface flatbands. Despite extensive research efforts, a systematic spectroscopic investigation on the evolution of its electronic structure from thin layers to bulk remains elusive. Using state-of-the-art angle-resolved photoemission spectroscopy with submicron spatial resolution, we directly probe and trace the thickness evolution of the topological electronic structures of rhombohedral multilayer graphene. As the layer number increases, the gapped subbands transform into the 3D Dirac nodes that spirals in the momentum space; while the flatbands are constantly observed around Fermi level, and eventually evolve into the topological drumhead surface states. This unique thickness-dependent topological phase transition can be well captured by the 3D generalization of 1D Su-Schrieffer-Heeger chain in thin layers, to the topological Dirac nodal spiral semimetal in the bulk limit. Our findings establish a solid foundation for exploring the exotic quantum phases with nontrivial topology and correlation effects in rhombohedral multilayer graphene. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11359v2-abstract-full').style.display = 'none'; document.getElementById('2411.11359v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, under review. A note added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10911">arXiv:2411.10911</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10911">pdf</a>, <a href="https://arxiv.org/format/2411.10911">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Constructing accurate machine-learned potentials and performing highly efficient atomistic simulations to predict structural and thermal properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junlan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Q">Qian Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Mengshu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jun Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10911v1-abstract-short" style="display: inline;"> The $\text{Cu}_7\text{P}\text{S}_6$ compound has garnered significant attention due to its potential in thermoelectric applications. In this study, we introduce a neuroevolution potential (NEP), trained on a dataset generated from ab initio molecular dynamics (AIMD) simulations, using the moment tensor potential (MTP) as a reference. The low root mean square errors (RMSEs) for total energy and ato&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10911v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10911v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10911v1-abstract-full" style="display: none;"> The $\text{Cu}_7\text{P}\text{S}_6$ compound has garnered significant attention due to its potential in thermoelectric applications. In this study, we introduce a neuroevolution potential (NEP), trained on a dataset generated from ab initio molecular dynamics (AIMD) simulations, using the moment tensor potential (MTP) as a reference. The low root mean square errors (RMSEs) for total energy and atomic forces demonstrate the high accuracy and transferability of both the MTP and NEP. We further calculate the phonon density of states (DOS) and radial distribution function (RDF) using both machine learning potentials, comparing the results to density functional theory (DFT) calculations. While the MTP potential offers slightly higher accuracy, the NEP achieves a remarkable 41-fold increase in computational speed. These findings provide detailed microscopic insights into the dynamics and rapid Cu-ion diffusion, paving the way for future studies on Cu-based solid electrolytes and their applications in energy devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10911v1-abstract-full').style.display = 'none'; document.getElementById('2411.10911v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10777">arXiv:2411.10777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10777">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Prolonging Carrier Lifetime in P-type 4H-SiC Epilayer by Thermal Oxidation and Hydrogen Annealing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Ruijun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Mingkun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guoliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yujian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jia Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Z">Ziqian Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Ye Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+P">Peng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shaoxiong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuning Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+D">Dingqu Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaping Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+J">Jiafa Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+R">Rongdun Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Feng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10777v1-abstract-short" style="display: inline;"> A minority carrier lifetime of 25.46 $渭$s in a P-type 4H-SiC epilayer has been attained through sequential thermal oxidation and hydrogen annealing. Thermal oxidation can enhance the minority carrier lifetime in the 4H-SiC epilayer by reducing carbon vacancies. However, this process also generates carbon clusters with limited diffusivity and contributes to the enlargement of surface pits on the 4H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10777v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10777v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10777v1-abstract-full" style="display: none;"> A minority carrier lifetime of 25.46 $渭$s in a P-type 4H-SiC epilayer has been attained through sequential thermal oxidation and hydrogen annealing. Thermal oxidation can enhance the minority carrier lifetime in the 4H-SiC epilayer by reducing carbon vacancies. However, this process also generates carbon clusters with limited diffusivity and contributes to the enlargement of surface pits on the 4H-SiC. High-temperature hydrogen annealing effectively reduces stacking fault and dislocation density. Moreover, electron spin resonance analysis indicates a significant reduction in carbon vacancy defects after hydrogen annealing. The mechanisms of the elimination of carbon vacancies by hydrogen annealing include the decomposition of carbon clusters formed during thermal oxidation and the low-pressure selective etching by hydrogen, which increases the carbon content on the 4H-SiC surface and facilitates carbon diffusion. Consequently, the combination of thermal oxidation and hydrogen annealing eliminates carbon vacancies more effectively, substantially enhancing the minority carrier lifetime in P-type 4H-SiC. This improvement is advantageous for the application of high-voltage SiC bipolar devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10777v1-abstract-full').style.display = 'none'; document.getElementById('2411.10777v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08108">arXiv:2411.08108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08108">pdf</a>, <a href="https://arxiv.org/format/2411.08108">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Universal Moir茅-Model-Building Method without Fitting: Application to Twisted MoTe$_2$ and WSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+H">Hanqi Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiaxuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+W">Wangqian Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Z">Ziyue Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+X">Xi Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Quansheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jiabin Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08108v1-abstract-short" style="display: inline;"> We develop a comprehensive method to construct analytical continuum models for moir茅 systems directly from first-principle calculations without any parameter fitting. The core idea of this method is to interpret the terms in the continuum model as a basis, allowing us to determine model parameters as coefficients of this basis through Gram-Schmidt orthogonalization. We apply our method to twisted&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08108v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08108v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08108v1-abstract-full" style="display: none;"> We develop a comprehensive method to construct analytical continuum models for moir茅 systems directly from first-principle calculations without any parameter fitting. The core idea of this method is to interpret the terms in the continuum model as a basis, allowing us to determine model parameters as coefficients of this basis through Gram-Schmidt orthogonalization. We apply our method to twisted MoTe$_2$ and WSe$_2$ with twist angles ranging from 2.13$^\circ$ to 3.89$^\circ$, producing continuum models that exhibit excellent agreement with both energy bands and wavefunctions obtained from first-principles calculations. We further propose a strategy to integrate out the higher-energy degrees of freedom to reduce the number of the parameters in the model without sacrificing the accuracy for low-energy bands. Our findings reveal that decreasing twist angles typically need an increasing number of harmonics in the moir茅 potentials to accurately replicate first-principles results. We provide parameter values for all derived continuum models, facilitating further robust many-body calculations. Our approach is general and applicable to any commensurate moir茅 materials accessible by first-principles calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08108v1-abstract-full').style.display = 'none'; document.getElementById('2411.08108v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14+47 pages, 5+8 figures, 20 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07657">arXiv:2411.07657</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07657">pdf</a>, <a href="https://arxiv.org/format/2411.07657">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Skin-topological effect in two-dimensional nonreciprocal topological superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+M">Ming Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jie Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07657v1-abstract-short" style="display: inline;"> We investigate the interplay between non-Hermitian skin effect (NHSE) and topological properties in two-dimensional topological superconductor. Two kinds of non-Hermiticity are considered. The first is the spin-independent non-reciprocal hopping, which respects particle-hole symmetry (PHS) and dictates the bulk as well as topological edge modes localize at opposite corners, manifested as the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07657v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07657v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07657v1-abstract-full" style="display: none;"> We investigate the interplay between non-Hermitian skin effect (NHSE) and topological properties in two-dimensional topological superconductor. Two kinds of non-Hermiticity are considered. The first is the spin-independent non-reciprocal hopping, which respects particle-hole symmetry (PHS) and dictates the bulk as well as topological edge modes localize at opposite corners, manifested as the $Z_2$ NHSE protected by PHS. The direction of the localization can be conveniently characterized by the sign of the winding numbers. The other is the spin-dependent non-reciprocal hopping, where the NHSE is protected by time-reversal symmetry (TRS). The Kramers doublets are localized at opposite corners, namely the TRS protected $Z_2$ NHSE. When apply an external magnetic field, its internal symmetry changes from the symplectic class into the orthogonal class, eliminating the NHSE for the states in the spectrum continuum. For the zero energy states which are isolated, the NHSE still has its effects despite the orthogonality. For the spin-independent case, edge states can be effectively tuned by the direction of Zeeman field, where at certain directions the zero-energy edge state can be free of NHSE and uniformly distributed. Our work paves the way for the study of the interplay between topology and non-Hermiticity in superconducting systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07657v1-abstract-full').style.display = 'none'; document.getElementById('2411.07657v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06758">arXiv:2411.06758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06758">pdf</a>, <a href="https://arxiv.org/format/2411.06758">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2520-9">10.1007/s11433-024-2520-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Edge supercurrent in Josephson junctions based on topological materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+J">Junjie Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chui-Zhen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">Juntao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jie Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">Ke He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Q">Qing-Feng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06758v1-abstract-short" style="display: inline;"> The interplay between novel topological states and superconductivity has garnered substantial interest due to its potential for topological quantum computing. The Josephson effect serves as a useful probe for edge superconductivity in these hybrid topological materials. In Josephson junctions based on topological materials, supercurrents exhibit unique quantum interference patterns, including the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06758v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06758v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06758v1-abstract-full" style="display: none;"> The interplay between novel topological states and superconductivity has garnered substantial interest due to its potential for topological quantum computing. The Josephson effect serves as a useful probe for edge superconductivity in these hybrid topological materials. In Josephson junctions based on topological materials, supercurrents exhibit unique quantum interference patterns, including the conventional Fraunhofer oscillations, the $桅_0$-periodic oscillation, and the $2桅_0$-periodic oscillation in response to the external magnetic field ($桅_0 = h/2e$ is the flux quantum, $h$ the Planck constant, and $e$ the electron charge). These interference patterns stem from varied Andreev reflection mechanisms and the associated current density profiles. This review seeks to comprehensively examine the theoretical and experimental advancements in understanding the quantum interference patterns of edge supercurrents in Josephson junctions based on quantum spin Hall, quantum Hall, and quantum anomalous Hall systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06758v1-abstract-full').style.display = 'none'; document.getElementById('2411.06758v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China- Phys. Mech. Astron. 68,227401 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03664">arXiv:2411.03664</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03664">pdf</a>, <a href="https://arxiv.org/format/2411.03664">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A Predictive First-Principles Framework of Chiral Charge Density Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+S">Sen Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiu%2C+W">Wei-Chi Chiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+T">Tao Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Naizhou Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yilin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+J">Jinyang Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yahyavi%2C+M">Mohammad Yahyavi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+Y">Yuanjun Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Q">Qiange Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+P">Peiyuan Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Cheng-Long Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Su-Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Q">Qiong Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+W">Wei-bo Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03664v1-abstract-short" style="display: inline;"> Implementing and tuning chirality is fundamental in physics, chemistry, and material science. Chiral charge density waves (CDWs), where chirality arises from correlated charge orders, are attracting intense interest due to their exotic transport and optical properties. However, a general framework for predicting chiral CDW materials is lacking, primarily because the underlying mechanisms remain el&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03664v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03664v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03664v1-abstract-full" style="display: none;"> Implementing and tuning chirality is fundamental in physics, chemistry, and material science. Chiral charge density waves (CDWs), where chirality arises from correlated charge orders, are attracting intense interest due to their exotic transport and optical properties. However, a general framework for predicting chiral CDW materials is lacking, primarily because the underlying mechanisms remain elusive. Here, we address this challenge by developing the first comprehensive predictive framework, systematically identifying chiral CDW materials via first-principles calculations. The key lies in the previously overlooked phase difference of the CDW Q-vectors between layers, which is linked to opposite collective atomic displacements across different layers. This phase difference induces a spiral arrangement of the Q-vectors, ultimately giving rise to a chiral structure in real space. We validate our framework by applying it to the kagome lattice AV$_{3}$Sb$_{5}$ (A = K, Rb, Cs), successfully predicting emergent structural chirality. To demonstrate the generality of our approach, we extend it to predict chiral CDWs in the triangular-lattice NbSe$_{2}$. Beyond material predictions, our theory uncovers a universal and unprecedented Hall effect in chiral CDW materials, occurring without external magnetic fields or intrinsic magnetization. Our experiments on CsV$_{3}$Sb$_{5}$ confirm this prediction, observing a unique signature where the Hall conductivity&#39;s sign reverses when the input current is reversed, a phenomenon distinct from known Hall effects. Our findings elucidate the mechanisms behind chiral CDWs and open new avenues for discovering materials with unconventional quantum properties, with potential applications in next-generation electronic and spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03664v1-abstract-full').style.display = 'none'; document.getElementById('2411.03664v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02834">arXiv:2411.02834</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02834">pdf</a>, <a href="https://arxiv.org/format/2411.02834">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Utilizing a machine-learned potential to explore enhanced radiation tolerance in the MoNbTaVW high-entropy alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiahui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Byggmastar%2C+J">Jesper Byggmastar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Z">Zheyong Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+B">Bing Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+P">Ping Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Yanjing Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02834v1-abstract-short" style="display: inline;"> High-entropy alloys (HEAs) based on tungsten (W) have emerged as promising candidates for plasma-facing components in future fusion reactors, owing to their excellent irradiation resistance. In this study, we construct an efficient machine-learned interatomic potential for the MoNbTaVW quinary system. This potential achieves computational speeds comparable to the embedded-atom method (EAM) potenti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02834v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02834v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02834v1-abstract-full" style="display: none;"> High-entropy alloys (HEAs) based on tungsten (W) have emerged as promising candidates for plasma-facing components in future fusion reactors, owing to their excellent irradiation resistance. In this study, we construct an efficient machine-learned interatomic potential for the MoNbTaVW quinary system. This potential achieves computational speeds comparable to the embedded-atom method (EAM) potential, allowing us to conduct a comprehensive investigation of the primary radiation damage through molecular dynamics simulations. Threshold displacement energies (TDEs) in the MoNbTaVW HEA are investigated and compared with pure metals. A series of displacement cascade simulations at primary knock-on atom energies ranging from 10 to 150 keV reveal significant differences in defect generation and clustering between MoNbTaVW HEA and pure W. In HEAs, we observe more surviving Frenkel pairs (FPs) but fewer and smaller interstitial clusters compared to W, indicating superior radiation tolerance. We propose extended damage models to quantify the radiation dose in the MoNbTaVW HEA, and suggest that one reason for their enhanced resistance is subcascade splitting, which reduces the formation of interstitial clusters. Our findings provide critical insights into the fundamental irradiation resistance mechanisms in refractory body-centered cubic alloys, offering guidance for the design of future radiation-tolerant materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02834v1-abstract-full').style.display = 'none'; document.getElementById('2411.02834v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01733">arXiv:2411.01733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01733">pdf</a>, <a href="https://arxiv.org/ps/2411.01733">ps</a>, <a href="https://arxiv.org/format/2411.01733">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Dependence of Electrostatic Patch Force Evaluation on the Lateral Resolution of Kelvin Probe Force Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+K">Kun Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+P">Pengshun Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinquan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+H">Hang Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zebing Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01733v1-abstract-short" style="display: inline;"> Kelvin Probe Force Microscopy (KPFM) is widely used to measure the surface potential on samples, from which electrostatic patch force can be calculated. However, since the KPFM measurements represent a weighted average of local potentials on the sample, the accuracy of the evaluation critically depends on the precision and lateral resolution of the method. In this paper, we investigate the influen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01733v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01733v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01733v1-abstract-full" style="display: none;"> Kelvin Probe Force Microscopy (KPFM) is widely used to measure the surface potential on samples, from which electrostatic patch force can be calculated. However, since the KPFM measurements represent a weighted average of local potentials on the sample, the accuracy of the evaluation critically depends on the precision and lateral resolution of the method. In this paper, we investigate the influence of this averaging effect on patch force estimations using both analytic and numerical methods. First, we derive the correlation functions of patch potential and establish the formulas for calculating the electrostatic patch forces in the parallel-plate geometry, with and without consideration of the KPFM measurement effect. Thus, an analytic method is established to determine the accuracy of patch force evaluation when the statistical parameters of the patch potential and the lateral resolution of the KPFM are given. Second, numerical simulations are employed to explore the dependence of estimated patch forces on the KPFM&#39;s lateral resolution under more realistic conditions. Both analytic and numerical results show a similar dependence of the patch force estimation on the patch characteristic size, potential fluctuation and the lateral resolution of the KPFM. It is also found that the underestimation of the patch force becomes less sensitive to the KPFM&#39;s resolution as the separation between plates increases. The results of this study could provide useful guidance for the accurate evaluation of electrostatic patch forces using KPFM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01733v1-abstract-full').style.display = 'none'; document.getElementById('2411.01733v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01160">arXiv:2411.01160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01160">pdf</a>, <a href="https://arxiv.org/ps/2411.01160">ps</a>, <a href="https://arxiv.org/format/2411.01160">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.195418">10.1103/PhysRevB.109.195418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Longitudinal and transverse mobilities of $n$-type monolayer transition metal dichalcogenides in the presence of proximity-induced interactions at low temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">J. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+W">W. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y+M">Y. M. Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+L">L. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H+W">H. W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+Duppen%2C+B">B. Van Duppen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Milo%C5%A1evi%C4%87%2C+M+V">M. V. Milo拧evi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peeters%2C+F+M">F. M. Peeters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01160v1-abstract-short" style="display: inline;"> We present a detailed theoretical investigation on the electronic transport properties of $n$-type monolayer (ML) transition metal dichalcogenides (TMDs) at low temperature in the presence of proximity-induced interactions such as Rashba spin-orbit coupling (RSOC) and the exchange interaction. The electronic band structure is calculated by solving the Schr枚dinger equation with a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01160v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01160v1-abstract-full" style="display: none;"> We present a detailed theoretical investigation on the electronic transport properties of $n$-type monolayer (ML) transition metal dichalcogenides (TMDs) at low temperature in the presence of proximity-induced interactions such as Rashba spin-orbit coupling (RSOC) and the exchange interaction. The electronic band structure is calculated by solving the Schr枚dinger equation with a $\mathbf{k}\cdot\mathbf{p}$ Hamiltonian, and the electric screening induced by electron-electron interaction is evaluated under a standard random phase approximation approach. In particular, the longitudinal and transverse or Hall mobilities are calculated by using a momentum-balance equation derived from a semi-classical Boltzmann equation, where the electron-impurity interaction is considered as the principal scattering center at low temperature. The obtained results show that the RSOC can induce the in-plane spin components for spin-split subbands in different valleys, while the exchange interaction can lift the energy degeneracy for electrons in different valleys. The opposite signs of Berry curvatures in the two valleys would introduce opposite directions of Lorentz force on valley electrons. As a result, the transverse currents from nondegenerate valleys can no longer be canceled out so that the transverse current or Hall mobility can be observed. Interestingly, we find that at a fixed effective Zeeman field, the lowest spin-split conduction subband in ML-TMDs can be tuned from one in the $K&#39;$-valley to one in the $K$-valley by varying the Rashba parameter. The occupation of electrons in different valleys also varies with changing carrier density. Therefore, we can change the magnitude and direction of the Hall current by varying the Rashba parameter, effective Zeeman field, and carrier density by, e.g., the presence of a ferromagnetic substrate and/or applying a gate voltage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01160v1-abstract-full').style.display = 'none'; document.getElementById('2411.01160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 195418 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00302">arXiv:2411.00302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00302">pdf</a>, <a href="https://arxiv.org/format/2411.00302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Two plaquette-singlet phases in the Shastry-Sutherland compound SrCu2(BO3)2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+K">Kefan Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zhanlong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+P">Pengtao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaoyu Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chengchen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Juanjuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Bosen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+W">Wenshan Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Z">Zhiyuan Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+W">Weiqiang Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00302v1-abstract-short" style="display: inline;"> The nature of the high-pressure plaquette-singlet (PS) phase of SrCu$_2$(BO$_3$)$_2$ remains enigmatic. In this work, we revisit the high-pressure $^{11}$B NMR study and identify two distinct coexisting gapped PS states within the NMR spectra. In addition to the previously reported full-plaquette phase, a second PS phase is discerned, characterized by a slightly lower resonance frequency and large&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00302v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00302v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00302v1-abstract-full" style="display: none;"> The nature of the high-pressure plaquette-singlet (PS) phase of SrCu$_2$(BO$_3$)$_2$ remains enigmatic. In this work, we revisit the high-pressure $^{11}$B NMR study and identify two distinct coexisting gapped PS states within the NMR spectra. In addition to the previously reported full-plaquette phase, a second PS phase is discerned, characterized by a slightly lower resonance frequency and larger spin-lattice relaxation rates in its ordered phase. Notably, this second phase exhibits enhanced spin fluctuations in its precursor liquid state above the transition temperature. The volume fraction of this phase increases significantly with pressure, reaching approximately 70\% at 2.65~GPa. Furthermore, at 2.4~GPa, a field-induced quantum phase transition from the PS phase to an antiferromagnetic phase is observed around 5.5~T, with a scaling behavior of $1/T_1 \sim T^{0.6}$ near the transition field. This behavior suggests a continuous or nearly continuous nature for the field-induced transition. Our findings provide experimental evidence for the long-sought empty-plaquette singlet phase in SrCu$_2$(BO$_3$)$_2$ within the framework of the Shastry-Sutherland model, thus establishing a promising platform for future studies of deconfined quantum criticality in this model system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00302v1-abstract-full').style.display = 'none'; document.getElementById('2411.00302v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19668">arXiv:2410.19668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19668">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Observation of Quantum Criticality Class Crossover at the LaAlO$_3$/KTaO$_3$ (111) Interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jia Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+L">Long Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zha%2C+J">Junkun Zha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Fei Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+X">Xiaofang Zhai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19668v1-abstract-short" style="display: inline;"> In two-dimensional (2D) limit, the quantum fluctuation is significantly enhanced which could induce a quantum phase transition. Investigating the quantum criticality is an effective approach to elucidate the underlying physics of 2D superconductivity. Here we report the observation of different universality classes of quantum criticality at the superconducting LaAlO$_3$/KTaO$_3$ (111) interface, i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19668v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19668v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19668v1-abstract-full" style="display: none;"> In two-dimensional (2D) limit, the quantum fluctuation is significantly enhanced which could induce a quantum phase transition. Investigating the quantum criticality is an effective approach to elucidate the underlying physics of 2D superconductivity. Here we report the observation of different universality classes of quantum criticality at the superconducting LaAlO$_3$/KTaO$_3$ (111) interface, i.e. the normal quantum Griffiths singularity (QGS) and the anomalous QGS. The switch of the quantum criticality class is observed from the normal QGS in a low $T_c$ sample with weaker spin-orbit coupling (SOC) to the anomalous QGS in a high $T_c$ sample with stronger SOC. Moreover, owing to the remarkable SOC strength, the high $T_c$ sample exhibits an unprecedentedly enhanced quantum fluctuation at an unusually elevated temperature approaching the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature $T_{BKT}$. This work provides comprehensive recognition of the different quantum criticality classes in the same superconducting LaAlO$_3$/KTaO$_3$ (111) system, which deepens the understanding of the superconducting mechanism of interfacial superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19668v1-abstract-full').style.display = 'none'; document.getElementById('2410.19668v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18017">arXiv:2410.18017</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18017">pdf</a>, <a href="https://arxiv.org/format/2410.18017">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Selective excitation of work-generating cycles in nonreciprocal living solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chao%2C+Y">Yu-Chen Chao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gokhale%2C+S">Shreyas Gokhale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+L">Lisa Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hastewell%2C+A">Alasdair Hastewell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bacanu%2C+A">Alexandru Bacanu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yuchao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Junang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinghui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H">Hyunseok Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dunkel%2C+J">Jorn Dunkel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fakhri%2C+N">Nikta Fakhri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18017v1-abstract-short" style="display: inline;"> Emergent nonreciprocity in active matter drives the formation of self-organized states that transcend the behaviors of equilibrium systems. Integrating experiments, theory and simulations, we demonstrate that active solids composed of living starfish embryos spontaneously transition between stable fluctuating and oscillatory steady states. The nonequilibrium steady states arise from two distinct c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18017v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18017v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18017v1-abstract-full" style="display: none;"> Emergent nonreciprocity in active matter drives the formation of self-organized states that transcend the behaviors of equilibrium systems. Integrating experiments, theory and simulations, we demonstrate that active solids composed of living starfish embryos spontaneously transition between stable fluctuating and oscillatory steady states. The nonequilibrium steady states arise from two distinct chiral symmetry breaking mechanisms at the microscopic scale: the spinning of individual embryos resulting in a macroscopic odd elastic response, and the precession of their rotation axis, leading to active gyroelasticity. In the oscillatory state, we observe long-wavelength optical vibrational modes that can be excited through mechanical perturbations. Strikingly, these excitable nonreciprocal solids exhibit nonequilibrium work generation without cycling protocols, due to coupled vibrational modes. Our work introduces a novel class of tunable nonequilibrium processes, offering a framework for designing and controlling soft robotic swarms and adaptive active materials, while opening new possibilities for harnessing nonreciprocal interactions in engineered systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18017v1-abstract-full').style.display = 'none'; document.getElementById('2410.18017v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17652">arXiv:2410.17652</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17652">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Liquid Metal Printed Superconducting Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+W">Wendi Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rao%2C+W">Wei Rao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jing Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17652v1-abstract-short" style="display: inline;"> Since the discovery of superconductor one hundred years ago, tremendous theoretical and technological progresses have been achieved. The zero resistance and complete diamagnetism of superconducting materials promise many possibilities in diverse fields. However, the complexity and expensive manufacturing costs associated with the time-consuming superconductor fabrication process may retard their p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17652v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17652v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17652v1-abstract-full" style="display: none;"> Since the discovery of superconductor one hundred years ago, tremendous theoretical and technological progresses have been achieved. The zero resistance and complete diamagnetism of superconducting materials promise many possibilities in diverse fields. However, the complexity and expensive manufacturing costs associated with the time-consuming superconductor fabrication process may retard their practices in a large extent. Here, via liquid metal printing we proposed to quickly fabricate superconducting electronics which can work at the prescribed cryogenic temperatures. By way of the room temperature fluidity of liquid metal composite inks, such one-step printing allows to pattern various superconducting circuits on the desired substrate. As the first-ever conceptual trial, the most easily available gallium-based liquid alloy inks were particularly adopted to composite with copper particles to achieve superconductivity under specific temperatures around 6.4K. Further, a series of liquid metal alloy and particles loaded composites were screened out and comparatively interpreted regarding their superconducting properties and potential values as printable inks in fabricating superconducting devices. The cost-effective feature and straightforward adaptability of the fabrication principle were evaluated. This work suggests an easy-going way for fabricating ending user superconducting devices, which may warrant more promising investigations and practices in the coming time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17652v1-abstract-full').style.display = 'none'; document.getElementById('2410.17652v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17014">arXiv:2410.17014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17014">pdf</a>, <a href="https://arxiv.org/format/2410.17014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantifying the non-Abelian property of Andreev bound states in inhomogeneous Majorana nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yijia Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jie Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17014v1-abstract-short" style="display: inline;"> Non-Abelian braiding is a key property of Majorana zero modes (MZMs) that can be utilized for topological quantum computation. However, the presence of trivial Andreev bound states (ABSs) in topological superconductors can hinder the non-Abelian braiding of MZMs. We systematically investigate the braiding properties of ABSs induced by various inhomogeneous potentials in nanowires and quantify the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17014v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17014v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17014v1-abstract-full" style="display: none;"> Non-Abelian braiding is a key property of Majorana zero modes (MZMs) that can be utilized for topological quantum computation. However, the presence of trivial Andreev bound states (ABSs) in topological superconductors can hinder the non-Abelian braiding of MZMs. We systematically investigate the braiding properties of ABSs induced by various inhomogeneous potentials in nanowires and quantify the main obstacles to non-Abelian braiding. We find that if a trivial ABSs is present at zero energy with a tiny energy fluctuation, their non-Abelian braiding property can be sustained for a longer braiding time cost, since the undesired dynamic phase is suppressed. Under certain conditions, the non-Abelian braiding of ABSs can even surpass that of MZMs in realistic systems, suggesting that ABSs might also be suitable for topological quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17014v1-abstract-full').style.display = 'none'; document.getElementById('2410.17014v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16610">arXiv:2410.16610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16610">pdf</a>, <a href="https://arxiv.org/format/2410.16610">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Unraveling the interplay of electron-phonon coupling, pseudogap, and superconductivity in CsCa$_2$Fe$_4$As$_4$F$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qi-Yi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bai-Zhuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J">Jiao-Jiao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bo Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hai-Yun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+Y">Yu-Xia Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jun He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Guang-Han Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+J">Jian-Qiao Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16610v1-abstract-short" style="display: inline;"> The quasiparticle relaxation dynamics of the iron-based superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ ($T_c$ $\sim$ 29 K) were investigated using ultrafast optical spectroscopy. A pseudogap ($螖_{PG}$ $\approx$ 3.3 meV) was observed to open below $T^{\ast}$ $\approx$ 60 K, prior to the emergence of a superconducting gap ($螖$ $\approx$ 6.6 meV). At high excitation fluence, a coherent $A_{1g}$ phonon mode&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16610v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16610v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16610v1-abstract-full" style="display: none;"> The quasiparticle relaxation dynamics of the iron-based superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ ($T_c$ $\sim$ 29 K) were investigated using ultrafast optical spectroscopy. A pseudogap ($螖_{PG}$ $\approx$ 3.3 meV) was observed to open below $T^{\ast}$ $\approx$ 60 K, prior to the emergence of a superconducting gap ($螖$ $\approx$ 6.6 meV). At high excitation fluence, a coherent $A_{1g}$ phonon mode at 5.49 THz was identified, exhibiting deviations from anharmonic behavior below $T_c$. The electron-phonon coupling constant for this mode was estimated to be $位_{A_{1g}}$ $\approx$ 0.225 $\pm$ 0.02. These results provide insights into the interplay between the electron-phonon interactions, pseudogap, and the superconducting pairing mechanism in CsCa$_2$Fe$_4$As$_4$F$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16610v1-abstract-full').style.display = 'none'; document.getElementById('2410.16610v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14542">arXiv:2410.14542</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14542">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> La$_2$O$_3$Mn$_2$Se$_2$: a correlated insulating layered d-wave altermagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+C">Chao-Chun Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaoyin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hatt%2C+S">Sabrina Hatt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huai%2C+X">Xudong Huai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Birender Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kyung-Mo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandes%2C+R+M">Rafael M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cardon%2C+P">Paul Cardon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+T+T">Thao T. Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frandsen%2C+B+M">Benjamin M. Frandsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burch%2C+K+S">Kenneth S. Burch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+F">Feng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+H">Huiwen Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14542v1-abstract-short" style="display: inline;"> Altermagnets represent a new class of magnetic phases without net magnetization that are invariant under a combination of rotation and time reversal. Unlike conventional collinear antiferromagnets (AFM), altermagnets could lead to new correlated states and important material properties deriving from their non-relativistic spin-split band structure. Indeed, they are the magnetic analogue of unconve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14542v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14542v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14542v1-abstract-full" style="display: none;"> Altermagnets represent a new class of magnetic phases without net magnetization that are invariant under a combination of rotation and time reversal. Unlike conventional collinear antiferromagnets (AFM), altermagnets could lead to new correlated states and important material properties deriving from their non-relativistic spin-split band structure. Indeed, they are the magnetic analogue of unconventional superconductors and can yield spin polarized electrical currents in the absence of external magnetic fields, making them promising candidates for next-generation spintronics. Here, we report altermagnetism in the correlated insulator, magnetically-ordered tetragonal oxychalcogenide, La$_2$O$_3$Mn$_2$Se$_2$. Symmetry analysis reveals a $\mathit{d}_{x^2 - y^2}$-wave type spin momentum locking, which is supported by density functional theory (DFT) calculations. Magnetic measurements confirm the AFM transition below $\sim$166 K while neutron pair distribution function analysis reveals a 2D short-range magnetic order that persists above the N茅el temperature. Single crystals are grown and characterized using X-ray diffraction, optical and electron microscopy, and microRaman spectroscopy to confirm the crystal structure, stoichiometry, and uniformity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14542v1-abstract-full').style.display = 'none'; document.getElementById('2410.14542v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14196">arXiv:2410.14196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14196">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c01542">10.1021/acs.nanolett.4c01542 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-Confined Tunable Ferromagnetism on the Surface of a van der Waals Antiferromagnet NaCrTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yidian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+X">Xian Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junjie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Runzhe Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenxuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+K">Kaiyi Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jieyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Houke Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yiheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plumb%2C+N+C">Nicolas C. Plumb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+S">Sailong Ju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+M">Ming Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiangang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaolong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lexian Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14196v1-abstract-short" style="display: inline;"> The surface of three-dimensional materials provides an ideal and versatile platform to explore quantum-confined physics. Here, we systematically investigate the electronic structure of Na-intercalated CrTe2, a van der Waals antiferromagnet, using angle-resolved photoemission spectroscopy and ab-initio calculations. The measured band structure deviates from the calculation of bulk NaCrTe2 but agree&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14196v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14196v1-abstract-full" style="display: none;"> The surface of three-dimensional materials provides an ideal and versatile platform to explore quantum-confined physics. Here, we systematically investigate the electronic structure of Na-intercalated CrTe2, a van der Waals antiferromagnet, using angle-resolved photoemission spectroscopy and ab-initio calculations. The measured band structure deviates from the calculation of bulk NaCrTe2 but agrees with that of ferromagnetic monolayer CrTe2. Consistently, we observe an unexpected exchange splitting of the band dispersions, persisting well above the N茅el temperature of bulk NaCrTe2. We argue that NaCrTe2 features a quantum-confined 2D ferromagnetic state in the topmost surface layer due to strong ferromagnetic correlation in the CrTe2 layer. Moreover, the exchange splitting and the critical temperature can be controlled by surface doping of alkali-metal atoms, suggesting a feasible tunability of the surface ferromagnetism. Our work not only presents a simple platform to explore tunable 2D ferromagnetism but also provides important insights into the quantum-confined low-dimensional magnetic states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14196v1-abstract-full').style.display = 'none'; document.getElementById('2410.14196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 24, 9832-9838 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07213">arXiv:2410.07213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07213">pdf</a>, <a href="https://arxiv.org/format/2410.07213">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A Substructure Perturbation Method for Systematic Design of Mechanical Metamaterials with Programmed Functionalities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiakun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taylor%2C+A">Adam Taylor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fulco%2C+S">Sage Fulco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pande%2C+S+S">Sumukh S. Pande</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turner%2C+K+T">Kevin T. Turner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07213v1-abstract-short" style="display: inline;"> Mechanical metamaterials utilize geometry to achieve exceptional mechanical properties, including those not typically possible for traditional materials. To achieve these properties, it is necessary to identify the proper structures and geometries, which is often a non-trivial and computationally expensive process. Here, we propose a Substructure Perturbation Method (SSPM) for systematic design an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07213v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07213v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07213v1-abstract-full" style="display: none;"> Mechanical metamaterials utilize geometry to achieve exceptional mechanical properties, including those not typically possible for traditional materials. To achieve these properties, it is necessary to identify the proper structures and geometries, which is often a non-trivial and computationally expensive process. Here, we propose a Substructure Perturbation Method (SSPM) for systematic design and search of these materials with programmed deformation modes. We present the theoretical fundamentals and computational algorithms of the SSPM, along with four design problems to investigate the effect and performance of the SSPM. Results reveal the necessity of analyzing multiple substructures simultaneously in obtaining successful designs, and its effectiveness in speeding up numerical processes. In one design case, SSPM is shown to be effectively two orders of magnitude faster than another state-of-art approach while using less computational resources. We also show an experimental validation where the fabricated prototypes can grasp objects respectively by undergoing programmed deformations under corresponding inputs. The proposed SSPM provides new fundamentals and strategies for the design of mechanical metamaterials with advanced functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07213v1-abstract-full').style.display = 'none'; document.getElementById('2410.07213v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06980">arXiv:2410.06980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06980">pdf</a>, <a href="https://arxiv.org/format/2410.06980">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Electric Field Driven Domain Wall Dynamics in BaTiO3 Nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jialun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D">David Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suzana%2C+A+F">Ana F. Suzana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leake%2C+S+J">Steven J. Leake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robinson%2C+I+K">Ian K. Robinson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06980v1-abstract-short" style="display: inline;"> We report a detailed investigation into the response of single BaTiO3 (BTO) nanocrystals under applied electric fields (E-field) using Bragg Coherent Diffraction Imaging (BCDI). Our study reveals pronounced domain wall migration and expansion of a sample measure in situ under applied electric field. The changes are most prominent at the surface of the nanocrystal, where the lack of external strain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06980v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06980v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06980v1-abstract-full" style="display: none;"> We report a detailed investigation into the response of single BaTiO3 (BTO) nanocrystals under applied electric fields (E-field) using Bragg Coherent Diffraction Imaging (BCDI). Our study reveals pronounced domain wall migration and expansion of a sample measure in situ under applied electric field. The changes are most prominent at the surface of the nanocrystal, where the lack of external strain allows greater domain wall mobility. The observed domain shifts are correlated to the strength and orientation of the applied E-field, following a side-by-side domain model from Suzana et al. Notably, we identified a critical voltage threshold at +10 V, which leads to irreversible structural changes, suggesting plastic deformation. The findings highlight how surface effects and intrinsic defects contribute to the enhanced dielectric properties of BTO at the nanoscale, in contrast to bulk materials, where strain limits domain mobility. These findings deepen our understanding of nanoscale dielectric behaviour and inform the design of advanced nanoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06980v1-abstract-full').style.display = 'none'; document.getElementById('2410.06980v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01955">arXiv:2410.01955</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01955">pdf</a>, <a href="https://arxiv.org/format/2410.01955">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Quantum-data-driven dynamical transition in quantum learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bingzhi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+Q">Quntao Zhuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01955v1-abstract-short" style="display: inline;"> Quantum circuits are an essential ingredient of quantum information processing. Parameterized quantum circuits optimized under a specific cost function -- quantum neural networks (QNNs) -- provide a paradigm for achieving quantum advantage in the near term. Understanding QNN training dynamics is crucial for optimizing their performance. In terms of supervised learning tasks such as classification&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01955v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01955v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01955v1-abstract-full" style="display: none;"> Quantum circuits are an essential ingredient of quantum information processing. Parameterized quantum circuits optimized under a specific cost function -- quantum neural networks (QNNs) -- provide a paradigm for achieving quantum advantage in the near term. Understanding QNN training dynamics is crucial for optimizing their performance. In terms of supervised learning tasks such as classification and regression for large datasets, the role of quantum data in QNN training dynamics remains unclear. We reveal a quantum-data-driven dynamical transition, where the target value and data determine the polynomial or exponential convergence of the training. We analytically derive the complete classification of fixed points from the dynamical equation and reveal a comprehensive `phase diagram&#39; featuring seven distinct dynamics. These dynamics originate from a bifurcation transition with multiple codimensions induced by training data, extending the transcritical bifurcation in simple optimization tasks. Furthermore, perturbative analyses identify an exponential convergence class and a polynomial convergence class among the seven dynamics. We provide a non-perturbative theory to explain the transition via generalized restricted Haar ensemble. The analytical results are confirmed with numerical simulations of QNN training and experimental verification on IBM quantum devices. As the QNN training dynamics is determined by the choice of the target value, our findings provide guidance on constructing the cost function to optimize the speed of convergence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01955v1-abstract-full').style.display = 'none'; document.getElementById('2410.01955v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14+30 pages, 25 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00768">arXiv:2410.00768</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00768">pdf</a>, <a href="https://arxiv.org/format/2410.00768">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High Mobility SiGe/Ge 2DHG Heterostructure Quantum Wells for Semiconductor Hole Spin Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+Z">Zhenzhen Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zonghu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yuchen Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+G">Gang Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hai-Ou Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+J">Jiale Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yiwen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinbiao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+G">Guo-Ping Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Junfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jun Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+T">Tianchun Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Guilei Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00768v1-abstract-short" style="display: inline;"> Strong spin-orbit coupling and relatively weak hyperfine interactions make germanium hole spin qubits a promising candidate for semiconductor quantum processors. The two-dimensional hole gas structure of strained Ge quantum wells serves as the primary material platform for spin hole qubits.A low disorder material environment is essential for this process. In this work, we fabricated a Ge/SiGe hete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00768v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00768v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00768v1-abstract-full" style="display: none;"> Strong spin-orbit coupling and relatively weak hyperfine interactions make germanium hole spin qubits a promising candidate for semiconductor quantum processors. The two-dimensional hole gas structure of strained Ge quantum wells serves as the primary material platform for spin hole qubits.A low disorder material environment is essential for this process. In this work, we fabricated a Ge/SiGe heterojunction with a 60 nm buried quantum well layer on a Si substrate using reduced pressure chemical vapor deposition technology. At a temperature of 16 mK, when the carrier density is 1.87*10^11/cm2, we obtained a mobility as high as 308.64*10^4cm2/Vs. Concurrently, double quantum dot and planar germanium coupling with microwave cavities were also successfully achieved.This fully demonstrates that this structure can be used for the preparation of higher-performance hole spin qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00768v1-abstract-full').style.display = 'none'; document.getElementById('2410.00768v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20312">arXiv:2409.20312</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20312">pdf</a>, <a href="https://arxiv.org/format/2409.20312">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Spin Excitations of High Spin Iron(II) in Metal-Organic Chains on Metal and Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jung-Ching Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chahib%2C+O">Outhmane Chahib</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rothenb%C3%BChler%2C+S">Simon Rothenb眉hler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%A4ner%2C+R">Robert H盲ner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Decurtins%2C+S">Silvio Decurtins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aschauer%2C+U">Ulrich Aschauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shi-Xia Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyer%2C+E">Ernst Meyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pawlak%2C+R">R茅my Pawlak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20312v1-abstract-short" style="display: inline;"> Many-body interactions in metal-organic frameworks are fundamental for emergent quantum physics. Unlike their solution counterpart, magnetization at surfaces in low-dimensional analogues is strongly influenced by magnetic anisotropy induced by the substrate and still not well understood. Here, we use on-surface coordination chemistry to synthesize on Ag(111) and superconducting Pb(111) an iron-bas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20312v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20312v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20312v1-abstract-full" style="display: none;"> Many-body interactions in metal-organic frameworks are fundamental for emergent quantum physics. Unlike their solution counterpart, magnetization at surfaces in low-dimensional analogues is strongly influenced by magnetic anisotropy induced by the substrate and still not well understood. Here, we use on-surface coordination chemistry to synthesize on Ag(111) and superconducting Pb(111) an iron-based spin chain by using pyrene-4,5,9,10-tetraone precursors as ligands. Using low-temperature scanning probe microscopy, we compare their structures and low-energy spin excitations of coordinated Fe atoms with high S = 2 spin-state. Although the chain and coordination centers are identical on both substrates, the long-range spin-spin coupling due to a superexchange through the ligand observed on Ag is absent on Pb(111). We ascribe this reduction of spin-spin interactions on Pb to the depletion of electronic states around the Fermi level in the Pb(111) superconductor as compared to silver. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20312v1-abstract-full').style.display = 'none'; document.getElementById('2409.20312v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20029">arXiv:2409.20029</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20029">pdf</a>, <a href="https://arxiv.org/format/2409.20029">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Efficient Optimization of Variational Autoregressive Networks with Natural Gradient </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Ying Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20029v1-abstract-short" style="display: inline;"> Estimating free energy is a fundamental problem in statistical mechanics. Recently, machine-learning-based methods, particularly the variational autoregressive networks (VANs), have been proposed to minimize variational free energy and to approximate the Boltzmann distribution. VAN enjoys notable advantages, including exact computation of the normalized joint distribution and fast unbiased samplin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20029v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20029v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20029v1-abstract-full" style="display: none;"> Estimating free energy is a fundamental problem in statistical mechanics. Recently, machine-learning-based methods, particularly the variational autoregressive networks (VANs), have been proposed to minimize variational free energy and to approximate the Boltzmann distribution. VAN enjoys notable advantages, including exact computation of the normalized joint distribution and fast unbiased sampling, which are critical features often missing in Markov chain Monte Carlo algorithms. However, VAN also faces significant computational challenges. These include difficulties in the optimization of variational free energy in a complicated parameter space and slow convergence of learning. In this work, we introduce an optimization technique based on natural gradients to the VAN framework, namely ng-VAN, to enhance the learning efficiency and accuracy of the conventional VAN. The method has computational complexity cubic in the batch size rather than in the number of model parameters, hence it can be efficiently implemented for a large VAN model. We carried out extensive numerical experiments on the Sherrington-Kirkpatrick model and spin glasses on random graphs and illustrated that compared with the conventional VAN, ng-VAN significantly improves the accuracy in estimating free energy and converges much faster with shorter learning time. This allows extending the VAN framework&#39;s applicability to challenging statistical mechanics problems that were previously not accessible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20029v1-abstract-full').style.display = 'none'; document.getElementById('2409.20029v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19607">arXiv:2409.19607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19607">pdf</a>, <a href="https://arxiv.org/ps/2409.19607">ps</a>, <a href="https://arxiv.org/format/2409.19607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> On the Nonlinear Excitation of Phononic Frequency Combs in Molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">Hongbin Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+H">Hongqiang Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+C">Congsen Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Z">Zhaoyang Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinlei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+G">Guangru Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ganesan%2C+A">Adarsh Ganesan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Zengxiu Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19607v1-abstract-short" style="display: inline;"> The mechanical analog of optical frequency combs, phononic frequency combs (PFCs), has recently been demonstrated in mechanical resonators via nonlinear coupling among multiple phonon modes. However, for exciting phononic combs in molecules, the requisite strong nonlinear couplings need not be readily present. To overcome this limitation, this paper introduces an alternative route for the generati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19607v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19607v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19607v1-abstract-full" style="display: none;"> The mechanical analog of optical frequency combs, phononic frequency combs (PFCs), has recently been demonstrated in mechanical resonators via nonlinear coupling among multiple phonon modes. However, for exciting phononic combs in molecules, the requisite strong nonlinear couplings need not be readily present. To overcome this limitation, this paper introduces an alternative route for the generation of phononic combs in polar molecules. Theoretically, we investigated the radiation and phononic spectra generated from CO molecule possessing relatively large permanent dipole moment with density matrix formalism. By considering rovibronic excitation of the ground-state CO molecule while avoiding the electronic excitation, the contribution of the permanent dipole moment and electric dipole polarizability to the creation of PFCs is demonstrated and distinguished. The finding could motivate the possible extension of combs to molecular systems to offer new avenues in molecular sciences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19607v1-abstract-full').style.display = 'none'; document.getElementById('2409.19607v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14843">arXiv:2409.14843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14843">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Creation of independently controllable and long lifetime polar skyrmion textures in ferroelectric-metallic heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+F">Fei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+J">Jianhua Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hongfang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yiwei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jianwei Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianyi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Linjie Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Mengjun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaoyue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Wenpeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Weijin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yue Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14843v1-abstract-short" style="display: inline;"> Topological textures like vortices, labyrinths and skyrmions formed in ferroic materials have attracted extensive interests during the past decade for their fundamental physics, intriguing topology, and technological prospects. So far, polar skyrmions remain scarce in ferroelectrics as they require a delicate balance between various dipolar interactions. Here, we report that PbTiO3 thin films in a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14843v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14843v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14843v1-abstract-full" style="display: none;"> Topological textures like vortices, labyrinths and skyrmions formed in ferroic materials have attracted extensive interests during the past decade for their fundamental physics, intriguing topology, and technological prospects. So far, polar skyrmions remain scarce in ferroelectrics as they require a delicate balance between various dipolar interactions. Here, we report that PbTiO3 thin films in a metallic contact undergo a topological phase transition and stabilize a broad family of skyrmion-like textures (e.g., skyrmion bubbles, multiple 蟺-twist target skyrmions, and skyrmion bags) with independent controllability, analogous to those reported in magnetic systems. Weakly-interacted skyrmion arrays with a density over 300 Gb/inch2 are successfully written, erased and read-out by local electrical and mechanical stimuli of a scanning probe. Interestingly, in contrast to the relatively short lifetime &lt;20 hours of the skyrmion bubbles, the multiple 蟺-twist target skyrmions and skyrmion bags show topology-enhanced stability with lifetime over two weeks. Experimental and theoretical analysis implies the heterostructures carry electric Dzyaloshinskii-Moriya interaction mediated by oxygen octahedral tiltings. Our results demonstrate ferroelectric-metallic heterostructures as fertile playground for topological states and emergent phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14843v1-abstract-full').style.display = 'none'; document.getElementById('2409.14843v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14658">arXiv:2409.14658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14658">pdf</a>, <a href="https://arxiv.org/format/2409.14658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Beyond-mean-field studies of Wigner crystal transitions in various interacting two-dimensional systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Z">Zhongqing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianpeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14658v2-abstract-short" style="display: inline;"> In this work, we theoretically study Wigner crystal (WC) transitions in various interacting two-dimensional electron gas (2DEG) models, including both conventional 2DEG model and ``$n$-order&#34; Dirac fermion models with energy-momentum dispersion $E_{\mathbf{k}} \sim k^n$, with $n$ being positive integer. A general ``$GW$+RPA&#34; framework to treat single-particle spectra and ground-state energies in 2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14658v2-abstract-full').style.display = 'inline'; document.getElementById('2409.14658v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14658v2-abstract-full" style="display: none;"> In this work, we theoretically study Wigner crystal (WC) transitions in various interacting two-dimensional electron gas (2DEG) models, including both conventional 2DEG model and ``$n$-order&#34; Dirac fermion models with energy-momentum dispersion $E_{\mathbf{k}} \sim k^n$, with $n$ being positive integer. A general ``$GW$+RPA&#34; framework to treat single-particle spectra and ground-state energies in 2D systems has been developed. Within such a framework, we first calculate the single-particle excitation spectra of a conventional 2DEG system with $GW$ approximation for both Wigner-crystal state and Fermi-liquid (FL) state, in which the frequency dependent dielectric function is treated using a multiple-plasma-pole approach. Then, the correlation energy with random phase approximation (RPA) is further calculated based on the $GW$ single-particle spectra. By comparing the total energies of WC and FL states, our $GW$+RPA approach gives a critical Wigner-Seitz radius $r_s^*\sim 19.2$ for the WC transition in conventional 2DEG system. We then apply such $GW$+RPA method to single-flavor $n$-order Dirac fermion models, unveiling the unique single-particle excitation spectra in these models. We further find that charge fluctuations would de-stabilize the presumable WC states, including both topologically trivial and nontrivial WC states. Our method can be readily applied to other interacting 2D systems described by continuum models such as moir茅 superlattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14658v2-abstract-full').style.display = 'none'; document.getElementById('2409.14658v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages + 4 figures in main text, 11 pages + 13 figures in Supplemental Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13504">arXiv:2409.13504</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13504">pdf</a>, <a href="https://arxiv.org/format/2409.13504">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.176401">10.1103/PhysRevLett.133.176401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of altermagnetic spin splitting character in rutile oxide RuO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiayu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+J">Jie Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tongrui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jishan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+S">Shufan Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yuming Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+L">Liwei Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Meng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chihao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Jianyang Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Q">Qi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+M">Mao Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengtai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Zhicheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Siyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yanwu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yilin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+S">Shan Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Jinsheng Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+D">Dawei Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13504v2-abstract-short" style="display: inline;"> Rutile RuO$_2$ has been posited as a potential $d$-wave altermagnetism candidate, with a predicted significant spin splitting up to 1.4 eV. Despite accumulating theoretical predictions and transport measurements, direct spectroscopic observation of spin splitting has remained elusive. Here, we employ spin- and angle-resolved photoemission spectroscopy to investigate the band structures and spin po&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13504v2-abstract-full').style.display = 'inline'; document.getElementById('2409.13504v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13504v2-abstract-full" style="display: none;"> Rutile RuO$_2$ has been posited as a potential $d$-wave altermagnetism candidate, with a predicted significant spin splitting up to 1.4 eV. Despite accumulating theoretical predictions and transport measurements, direct spectroscopic observation of spin splitting has remained elusive. Here, we employ spin- and angle-resolved photoemission spectroscopy to investigate the band structures and spin polarization of thin-film and single-crystal RuO$_2$. Contrary to expectations of altermagnetism, our analysis indicates that RuO$_2$&#39;s electronic structure aligns with those predicted under non-magnetic conditions, exhibiting no evidence of the hypothesized spin splitting. Additionally, we observe significant in-plane spin polarization of the low-lying bulk bands, which is antisymmetric about the high-symmetry plane and contrary to the $d$-wave spin texture due to time-reversal symmetry breaking in altermagnetism. These findings definitively challenge the altermagnetic order previously proposed for rutile RuO$_2$, prompting a reevaluation of its magnetic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13504v2-abstract-full').style.display = 'none'; document.getElementById('2409.13504v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Published in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 176401 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11023">arXiv:2409.11023</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.11023">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Probing band topology in ABAB and ABBA stacked twisted double bilayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jundong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Y">Yalong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+J">Jinwei Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+Y">Yanbang Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+L">Luojun Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Quansheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+D">Dongxia Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G">Guangyu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11023v1-abstract-short" style="display: inline;"> Twisted graphene moire superlattice has been demonstrated as an exotic platform for investigating correlated states and nontrivial topology. Among the moire family, twisted double bilayer graphene (TDBG) is a tunable flat band system expected to show stacking-dependent topological properties. However, electron correlations and the band topology are usually intertwined in the flat band limit, rende&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11023v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11023v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11023v1-abstract-full" style="display: none;"> Twisted graphene moire superlattice has been demonstrated as an exotic platform for investigating correlated states and nontrivial topology. Among the moire family, twisted double bilayer graphene (TDBG) is a tunable flat band system expected to show stacking-dependent topological properties. However, electron correlations and the band topology are usually intertwined in the flat band limit, rendering the unique topological property due to stacking still elusive. Focusing on a large-angle TDBG with weak electron correlations, here we probe the Landau level (LL) spectra in two differently stacked TDBG, i.e. ABBA- and ABAB-TDBG, to unveil their distinct topological properties. For ABBA-TDBG, we observe non-trivial topology at zero electric displacement filed, evident from both the emergence of Chern bands from half fillings and the closure of gap at CNP above a critical magnetic field. For ABAB-TDBG, by contrast, we find that the moire band is topologically trivial, supported by the absence of LLs from half fillings and the persistence of the gap at CNP above the critical magnetic fields. In addition, we also observe an evolution of the trivial-to-nontrivial topological transition at finite D fields, confirmed by the emerged Landau fans originating from quarter filling v = 1. Our result demonstrates, for the first time, the unique stacking-dependent topology in TDBG, offering a promising avenue for future investigations on topological states in correlated systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11023v1-abstract-full').style.display = 'none'; document.getElementById('2409.11023v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09718">arXiv:2409.09718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09718">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Evolution of structure, magnetism, and electronic/thermal-transports of Ti(Cr)-substituted Fe2CrV all-d-metal Heusler ferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Y">Yiting Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Q">Qingqi Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+M">Meng Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junyan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jinying Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yibo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Q">Qiusa Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Binbin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H">Hongxiang Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Enke Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09718v1-abstract-short" style="display: inline;"> All-d-metal full-Heusler alloys possess superior mechanical properties and high spin polarization, which would play an important role in spintronic applications. Despite this, their electrical and thermal transport properties have not been comprehensively investigated till now. In this work, we present an analysis on the evolution of structural, magnetic and transport properties of Cr- and Ti-subs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09718v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09718v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09718v1-abstract-full" style="display: none;"> All-d-metal full-Heusler alloys possess superior mechanical properties and high spin polarization, which would play an important role in spintronic applications. Despite this, their electrical and thermal transport properties have not been comprehensively investigated till now. In this work, we present an analysis on the evolution of structural, magnetic and transport properties of Cr- and Ti-substituted Fe2CrV all-d-metal Heusler alloys by combining theoretical calculations and experiments. Both series of alloys crystallize in Hg2CuTi-type structure. With increasing Ti doping, the calculated total magnetic moments of Fe50Cr25V25-xTix decrease linearly. The experimental saturation magnetization is highly consistent with theoretical calculations and Slater-Pauling rule when x &lt; 4, indicating the highly ordered atomic occupation. The magnetization and Curie temperature can be significantly tuned by altering spin polarizations and exchange interactions. The introduction of the foreign atom, Ti, results in a linear increase in residual resistivity, while electron-phonon scattering keeps relatively constant. The maximum values for electrical and thermal transport properties are observed in the stoichiometric Fe2CrV composition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09718v1-abstract-full').style.display = 'none'; document.getElementById('2409.09718v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figs and 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09712">arXiv:2409.09712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09712">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological Nodal Chains and Transverse Transports in Ferromagnetic Centrosymmetric Semimetal FeIn2S4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junyan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yibo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+X">Xuebin Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jinying Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+M">Meng Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Binbin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H">Hongxiang Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shouguo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">Baogen Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09712v1-abstract-short" style="display: inline;"> Nodal chain semimetals protected by nonsymmorphic symmetries are distinct from Dirac and Weyl semimetals, featuring unconventional topological surface states and resulting in anomalous magnetotransport properties. Here, we reveal that the ferromagnetic FeIn2S4 is a suitable nodal chain candidate in theory. Centrosymmetric FeIn2S4 with nonsymmorphic symmetries shows half-metallicity and clean band-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09712v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09712v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09712v1-abstract-full" style="display: none;"> Nodal chain semimetals protected by nonsymmorphic symmetries are distinct from Dirac and Weyl semimetals, featuring unconventional topological surface states and resulting in anomalous magnetotransport properties. Here, we reveal that the ferromagnetic FeIn2S4 is a suitable nodal chain candidate in theory. Centrosymmetric FeIn2S4 with nonsymmorphic symmetries shows half-metallicity and clean band-crossings with hourglass-type dispersion tracing out nodal lines. Owing to glide mirror symmetries, the nontrivial nodal loops form nodal chain, which is associated with the perpendicular glide mirror planes. These nodal chains are robust against spin-orbital interaction, giving rise to the coexistence of drumhead-type surface states and closed surface Fermi arcs. Moreover, the nodal loops protected by nonsymmorphic symmetry contribute to large anomalous Hall conductivity and the anomalous Nernst conductivity. Our results provide a platform to explore the intriguing topological state and transverse transport properties in magnetic system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09712v1-abstract-full').style.display = 'none'; document.getElementById('2409.09712v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 figs and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09709">arXiv:2409.09709</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09709">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Scaling the topological transport based on an effective Weyl model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jinying Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+M">Meng Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junyan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Binbin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+H">Hongxiang Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenqing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">Baogen Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09709v1-abstract-short" style="display: inline;"> Magnetic topological semimetals are increasingly fueling interests in exotic electronic-thermal physics including thermoelectrics and spintronics. To control the transports of topological carriers in such materials becomes a central issue. However, the topological bands in real materials are normally intricate, leaving obstacles to understand the transports in a physically clear way. Parallel to t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09709v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09709v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09709v1-abstract-full" style="display: none;"> Magnetic topological semimetals are increasingly fueling interests in exotic electronic-thermal physics including thermoelectrics and spintronics. To control the transports of topological carriers in such materials becomes a central issue. However, the topological bands in real materials are normally intricate, leaving obstacles to understand the transports in a physically clear way. Parallel to the renowned effective two-band model in magnetic field scale for semiconductors, here, an effective Weyl-band model in temperature scale was developed with pure Weyl state and a few meaningful parameters for topological semimetals. Based on the model, a universal scaling was established and subsequently verified by reported experimental transports. The essential sign regularity of anomalous Hall and Nernst transports was revealed with connection to chiralities of Weyl nodes and carrier types. Upon a double-Weyl model, a concept of Berry-curvature ferrimagnetic structure, as an analogy to the real-space magnetic structure, was further proposed and well described the emerging sign reversal of Nernst thermoelectric transports in temperature scale. Our study offers a convenient tool for scaling the Weyl-fermion-related transport physics, and promotes the modulations and applications of magnetic topological materials in future topological quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09709v1-abstract-full').style.display = 'none'; document.getElementById('2409.09709v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Five figs</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09698">arXiv:2409.09698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09698">pdf</a>, <a href="https://arxiv.org/format/2409.09698">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Robust Coulomb Gap and Varied-temperature Study of Epitaxial 1T&#39;-WSe$_2$ Monolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Mengli Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zong%2C+J">Junyu Zong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X">Xuedong Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Q">Qinghao Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+F">Fan Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Q">Qichao Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+S">Shaoen Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xiaodong Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaili Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Can Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Fang-Sen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Li Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09698v1-abstract-short" style="display: inline;"> The transition metal dichalcogenides (TMDCs) with a 1T&#39; structural phase are predicted to be two-dimensional topological insulators at zero temperature. Although the quantized edge conductance of 1T&#39;-WTe$_2$ has been confirmed to survive up to 100 K, this temperature is still relatively low for industrial applications. Addressing the limited studies on temperature effects in 1T&#39;-TMDCs, our researc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09698v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09698v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09698v1-abstract-full" style="display: none;"> The transition metal dichalcogenides (TMDCs) with a 1T&#39; structural phase are predicted to be two-dimensional topological insulators at zero temperature. Although the quantized edge conductance of 1T&#39;-WTe$_2$ has been confirmed to survive up to 100 K, this temperature is still relatively low for industrial applications. Addressing the limited studies on temperature effects in 1T&#39;-TMDCs, our research focuses on the electronic and crystal properties of the epitaxial 1T&#39;-WSe$_2$ monolayers grown on bilayer graphene (BLG) and SrTiO$_3$(100) substrates at various temperatures. For the 1T&#39;-WSe$_2$ grown on BLG, we observed a significant thermal expansion effect on its band structures with a thermal expansion coefficient of $\sim$60$\times$10$^{-6}$ K$^{-1}$. In contrast, the 1T&#39;-WSe$_2$ grown on SrTiO$_3$(100) exhibits minimal changes with varied temperatures due to the enhanced strain exerted by the substrate. Besides, A significant Coulomb gap (CG) was observed pinned at the Fermi level in the angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS). The CG was founded to decrease with increasing temperatures, and can persist up to 200 K for 1T&#39;-WSe$_2$/BLG, consistent with our Monte Carlo simulations. The robustness of the CG and the positive fundamental gap endow the epitaxial 1T&#39;-WSe$_2$ monolayers with huge potential for realizing the quantum spin Hall devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09698v1-abstract-full').style.display = 'none'; document.getElementById('2409.09698v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09587">arXiv:2409.09587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09587">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Electrical detection in two-terminal perpendicularly magnetized devices via geometric anomalous Nernst effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiuming Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+B">Bin Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+H">Hua Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanghui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yifan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yujie Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yuzhen Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Qi Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+L">Liyang Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Cheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09587v1-abstract-short" style="display: inline;"> The non-uniform current distribution arisen from either current crowding effect or hot spot effect provides a method to tailor the interaction between thermal gradient and electron transport in magnetically ordered systems. Here we apply the device structural engineering to realize an in-plane inhomogeneous temperature distribution within the conduction channel, and the resulting geometric anomalo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09587v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09587v1-abstract-full" style="display: none;"> The non-uniform current distribution arisen from either current crowding effect or hot spot effect provides a method to tailor the interaction between thermal gradient and electron transport in magnetically ordered systems. Here we apply the device structural engineering to realize an in-plane inhomogeneous temperature distribution within the conduction channel, and the resulting geometric anomalous Nernst effect (GANE) gives rise to a non-zero 2nd -harmonic resistance whose polarity corresponds to the out-of-plane magnetization of Co/Pt multi-layer thin film, and its amplitude is linearly proportional to the applied current. By optimizing the aspect ratio of convex-shaped device, the effective temperature gradient can reach up to 0.3 K/$渭$m along the y-direction, leading to a GANE signal of 28.3 $渭$V. Moreover, we demonstrate electrical write and read operations in the perpendicularly-magnetized Co/Pt-based spin-orbit torque device with a simple two-terminal structure. Our results unveil a new pathway to utilize thermoelectric effects for constructing high-density magnetic memories <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09587v1-abstract-full').style.display = 'none'; document.getElementById('2409.09587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08683">arXiv:2409.08683</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08683">pdf</a>, <a href="https://arxiv.org/format/2409.08683">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Large-scale simulations of vortex Majorana zero modes in topological crystalline insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+C+Y">Chun Yu Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yujun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08683v2-abstract-short" style="display: inline;"> Topological crystalline insulators are known to support multiple Majorana zero modes (MZMs) at a single vortex, their hybridization is forbidden by a magnetic mirror symmetry $M_T$. Due to the limited energy resolution of scanning tunneling microscopes and the very small energy spacing of trivial bound states, it remains challenging to directly probe and demonstrate the existence of multiple MZMs.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08683v2-abstract-full').style.display = 'inline'; document.getElementById('2409.08683v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08683v2-abstract-full" style="display: none;"> Topological crystalline insulators are known to support multiple Majorana zero modes (MZMs) at a single vortex, their hybridization is forbidden by a magnetic mirror symmetry $M_T$. Due to the limited energy resolution of scanning tunneling microscopes and the very small energy spacing of trivial bound states, it remains challenging to directly probe and demonstrate the existence of multiple MZMs. In this work, we propose to demonstrate the existence of MZMs by studying the hybridization of multiple MZMs in a symmetry breaking field. The different responses of trivial bound states and MZMs can be inferred from their spatial distribution in the vortex. However, the theoretical simulations are very demanding since it requires an extremely large system in real space. By utilizing the kernel polynomial method, we can efficiently simulate large lattices with over $10^8$ orbitals to compute the local density of states which bridges the gap between theoretical studies based on minimal models and experimental measurements. We show that the spatial distribution of MZMs and trivial vortex bound states indeed differs drastically in tilted magnetic fields. The zero-bias peak elongates when the magnetic field preserves $M_T$, while it splits when $M_T$ is broken, giving rise to an anisotropic magnetic response. Since the bulk of SnTe are metallic, we also study the robustness of MZMs against the bulk states, and clarify when can the MZMs produce a pronounced anisotropic magnetic response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08683v2-abstract-full').style.display = 'none'; document.getElementById('2409.08683v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The related experimental measurements and theoretical simulations have been published in Nature 633, 71 (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07595">arXiv:2409.07595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07595">pdf</a>, <a href="https://arxiv.org/format/2409.07595">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Low temperature ferroelectric state in strontium titanate microcrystals using in situ multi-reflection Bragg coherent X-ray diffraction imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+D">David Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ha%2C+S+S">Sung Soo Ha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S">Sungwook Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jialun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Treuherz%2C+D">Daniel Treuherz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+N">Nan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+Z">Zheyi An</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ngo%2C+H+M">Hieu Minh Ngo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nawaz%2C+M+M">Muhammad Mahmood Nawaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suzana%2C+A+F">Ana F. Suzana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Longlong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nisbet%2C+G">Gareth Nisbet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Porter%2C+D+G">Daniel G. Porter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hyunjung Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robinson%2C+I+K">Ian K. Robinson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07595v1-abstract-short" style="display: inline;"> Strontium titanate is a classic quantum paraelectric oxide material that has been widely studied in bulk and thin films. It exhibits a well-known cubic-to-tetragonal antiferrodistortive phase transition at 105 K, characterized by the rotation of oxygen octahedra. A possible second phase transition at lower temperature is suppressed by quantum fluctuations, preventing the onset of ferroelectric ord&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07595v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07595v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07595v1-abstract-full" style="display: none;"> Strontium titanate is a classic quantum paraelectric oxide material that has been widely studied in bulk and thin films. It exhibits a well-known cubic-to-tetragonal antiferrodistortive phase transition at 105 K, characterized by the rotation of oxygen octahedra. A possible second phase transition at lower temperature is suppressed by quantum fluctuations, preventing the onset of ferroelectric order. However, recent studies have shown that ferroelectric order can be established at low temperatures by inducing strain and other means. Here, we used in situ multi-reflection Bragg coherent X-ray diffraction imaging to measure the strain and rotation tensors for two strontium titanate microcrystals at low temperature. We observe strains induced by dislocations and inclusion-like impurities in the microcrystals. Based on radial magnitude plots, these strains increase in magnitude and spread as the temperature decreases. Pearson&#39;s correlation heatmaps show a structural transition at 50 K, which we associate with the formation of a low-temperature ferroelectric phase in the presence of strain. We do not observe any change in local strains associated with the tetragonal phase transition at 105 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07595v1-abstract-full').style.display = 'none'; document.getElementById('2409.07595v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 19 figures. Zenodo link will be active once published in a peer-reviewed journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04800">arXiv:2409.04800</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04800">pdf</a>, <a href="https://arxiv.org/ps/2409.04800">ps</a>, <a href="https://arxiv.org/format/2409.04800">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jacs.4c04910">10.1021/jacs.4c04910 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FePd2Te2: An Anisotropic Two-Dimensional Ferromagnet with One-Dimensional Fe Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+B">Bingxian Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geng%2C+Y">Yanyan Geng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hengning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jianhui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shang%2C+C">Chenglin Shang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Manyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+S">Shuo Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jiale Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+F">Feihao Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gui%2C+X">Xuejuan Gui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jinchen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Juanjuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+D">Daye Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hongxia Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+J">Jianfei Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hongliang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+L">Lijie Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+M">Mingliang Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhihai Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+G">Guolin Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+P">Peng Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04800v1-abstract-short" style="display: inline;"> Two-dimensional (2D) magnets have attracted significant attentions in recent years due to their importance in the research on both fundamental physics and spintronic applications. Here, we report the discovery of a new ternary compound FePd2Te2. It features a layered quasi-2D crystal structure with one-dimensional Fe zigzag chains extending along the b-axis in the cleavage plane. Single crystals o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04800v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04800v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04800v1-abstract-full" style="display: none;"> Two-dimensional (2D) magnets have attracted significant attentions in recent years due to their importance in the research on both fundamental physics and spintronic applications. Here, we report the discovery of a new ternary compound FePd2Te2. It features a layered quasi-2D crystal structure with one-dimensional Fe zigzag chains extending along the b-axis in the cleavage plane. Single crystals of FePd2Te2 with centimeter-size could be grown. Density functional theory calculations, mechanical exfoliation and atomic force microscopy on these crystals reveal that they are 2D materialsthat can be thinned down to 5 nm. Magnetic characterization shows that FePd2Te2 is an easy-plane ferromagnet with Tc 183 K and strong in-plane uniaxial magnetic anisotropy. Magnetoresistance and anomalous Hall effect demonstrate that ferromagnetism could maintain in FePd2Te2 flakes with large coercivity. A crystal twinning effect is observed by scanning tunneling microscopy which makes the Fe chains right-angle bent in the cleavage plane and creates an intriguing spin texture. Our results show that FePd2Te2 is a correlated anisotropic 2D magnets that may attract multidisciplinary research interests. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04800v1-abstract-full').style.display = 'none'; document.getElementById('2409.04800v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J.Am.Chem.Soc.2024,146,21546-21554 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02325">arXiv:2409.02325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02325">pdf</a>, <a href="https://arxiv.org/format/2409.02325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Defect Landscape Engineering to Tune Skyrmion-Antiskyrmion Systems in FeGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiangteng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoell%2C+R">Ryan Schoell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X+S">Xiyue S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hongbin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venuti%2C+M+B">M. B. Venuti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paik%2C+H">Hanjong Paik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muller%2C+D+A">David A. Muller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+T">Tzu-Ming Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hattar%2C+K">Khalid Hattar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eley%2C+S">Serena Eley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02325v1-abstract-short" style="display: inline;"> A promising architecture for next-generation, low energy spintronic devices uses skyrmions -- nanoscale whirlpools of magnetic moment -- as information carriers. Notably, schemes for racetrack memory have been proposed in which skyrmions and antiskyrmions, their antiparticle, serve as the logical bits 1 and 0. However, major challenges exist to designing skyrmion-antiskyrmion based computing. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02325v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02325v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02325v1-abstract-full" style="display: none;"> A promising architecture for next-generation, low energy spintronic devices uses skyrmions -- nanoscale whirlpools of magnetic moment -- as information carriers. Notably, schemes for racetrack memory have been proposed in which skyrmions and antiskyrmions, their antiparticle, serve as the logical bits 1 and 0. However, major challenges exist to designing skyrmion-antiskyrmion based computing. The presence of both particles in one material is often mutually exclusive such that few systems have been identified in which they coexist, and in these systems their appearance is stochastic rather than deterministic. Here, we create a tunable skyrmion-antiskyrmion system in FeGe films through ion-irradiation and annealing, and detail the structural properties of the films under these various conditions. Specifically, we irradiate epitaxial B20-phase FeGe films with 2.8 MeV Au$^{4+}$ ions, showing evidence that the amorphized regions preferentially host antiskyrmions at densities controlled by the irradiation fluence. In this work, we focus on a subsequent, systematic electron diffraction study with in-situ annealing, demonstrating the ability to recrystallize controllable fractions of the material at temperatures ranging from approximately 150$^{\circ}$ C to 250$^{\circ}$ C, enabling further tunability of skyrmion/antiskyrmion populations. We describe the crystallization kinetics using the Johnson-Mehl-Avrami-Kolmogorov model, finding that growth of crystalline grains is consistent with diffusion-controlled one-to-two dimensional growth with a decreasing nucleation rate. The procedures developed here can be applied towards creation of skyrmion-antiskyrmion systems for energy-efficient, high-density data storage, spin wave emission produced by skyrmion-antiskyrmion pair annihilation, and more generally testbeds for research on skyrmion-antiskyrmion liquids and crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02325v1-abstract-full').style.display = 'none'; document.getElementById('2409.02325v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01982">arXiv:2409.01982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01982">pdf</a>, <a href="https://arxiv.org/format/2409.01982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Chemical tuning of quantum spin-electric coupling in molecular nanomagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vaganov%2C+M+V">Mikhail V. Vaganov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suaud%2C+N">Nicolas Suaud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lambert%2C+F">Francois Lambert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cahier%2C+B">Benjamin Cahier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herrero%2C+C">Christian Herrero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guillot%2C+R">Regis Guillot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barra%2C+A">Anne-Laure Barra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guihery%2C+N">Nathalie Guihery</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mallah%2C+T">Talal Mallah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ardavan%2C+A">Arzhang Ardavan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junjie Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01982v1-abstract-short" style="display: inline;"> Controlling quantum spins using electric rather than magnetic fields promises significant architectural advantages for developing quantum technologies. In this context, spins in molecular nanomagnets offer tunability of spin-electric couplings (SEC) by rational chemical design. Here we demonstrate systematic control of SECs in a family of Mn(II)-containing molecules via chemical engineering. The t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01982v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01982v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01982v1-abstract-full" style="display: none;"> Controlling quantum spins using electric rather than magnetic fields promises significant architectural advantages for developing quantum technologies. In this context, spins in molecular nanomagnets offer tunability of spin-electric couplings (SEC) by rational chemical design. Here we demonstrate systematic control of SECs in a family of Mn(II)-containing molecules via chemical engineering. The trigonal bipyramidal (tbp) molecular structure with C3 symmetry leads to a significant molecular electric dipole moment that is directly connected to its magnetic anisotropy. The interplay between these two features gives rise to significant experimentally observed SECs, which can be rationalised by wavefunction theoretical calculations. Our findings guide strategies for the development of electrically controllable molecular spin qubits for quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01982v1-abstract-full').style.display = 'none'; document.getElementById('2409.01982v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01123">arXiv:2409.01123</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01123">pdf</a>, <a href="https://arxiv.org/format/2409.01123">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Variation of Electron-electron interaction in pyrochlore structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jianyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Ji Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+M">Mingjun Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haider%2C+W">Waqas Haider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nomura%2C+Y">Yusuke Nomura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+H">Ho-Kin Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01123v1-abstract-short" style="display: inline;"> We conduct a comprehensive \textit{ab initio} investigation of electron-electron interactions within the pyrochlore structures of R$_2$Ru$_2$O$_7$, R$_2$Ir$_2$O$_7$, Ca$_2$Ru$_2$O$_7$, and Cd$_2$Ru$_2$O$_7$, where R denotes a rare-earth element. Utilizing a multiorbital Hubbard model, we systematically explore the effects of various rare-earth elements and applied high pressure on the correlation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01123v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01123v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01123v1-abstract-full" style="display: none;"> We conduct a comprehensive \textit{ab initio} investigation of electron-electron interactions within the pyrochlore structures of R$_2$Ru$_2$O$_7$, R$_2$Ir$_2$O$_7$, Ca$_2$Ru$_2$O$_7$, and Cd$_2$Ru$_2$O$_7$, where R denotes a rare-earth element. Utilizing a multiorbital Hubbard model, we systematically explore the effects of various rare-earth elements and applied high pressure on the correlation strength in these compounds. Our calculations on the Coulomb interaction parameter $U$ and the bandwidth $W$ reveal that the chemical pressure for R$_2$Ru$_2$O$_7$ and R$_2$Ir$_2$O$_7$ leads to an unusual increase in $U/W$ ratio, hence, increase in correlation strength. Contrary to conventional understanding of bandwidth control, our study identifies that the Hubbard $U$ is more influential than the bandwidth $W$ behind the metal-insulator landscape of R$_2$Ru$_2$O$_7$ and R$_2$Ir$_2$O$_7$, leading to an interaction-controlled metal-insulator transition. We also find unexpected behavior in physical pressure. Whereas physical pressure leads to a decrease in the correlation strength $U/W$ as usual in R$_2$Ru$_2$O$_7$, the effect is notably small in Ca$_2$Ru$_2$O$_7$ and Cd$_2$Ru$_2$O$_7$, which provides an important clue to understanding unusual pressure-induced metal-insulator transition observed experimentally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01123v1-abstract-full').style.display = 'none'; document.getElementById('2409.01123v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16103">arXiv:2408.16103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16103">pdf</a>, <a href="https://arxiv.org/format/2408.16103">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Orbital magnetoelectric coupling of three dimensional Chern insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xin Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+R">Renwen Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianpeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16103v2-abstract-short" style="display: inline;"> Orbital magnetoelectric effect is closely related to the band topology of bulk crystalline insulators. Typical examples include the half quantized Chern-Simons orbital magnetoelectric coupling in three dimensional (3D) axion insulators and topological insulators, which are the hallmarks of their nontrivial bulk band topology. While the Chern-Simons coupling is well defined only for insulators with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16103v2-abstract-full').style.display = 'inline'; document.getElementById('2408.16103v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16103v2-abstract-full" style="display: none;"> Orbital magnetoelectric effect is closely related to the band topology of bulk crystalline insulators. Typical examples include the half quantized Chern-Simons orbital magnetoelectric coupling in three dimensional (3D) axion insulators and topological insulators, which are the hallmarks of their nontrivial bulk band topology. While the Chern-Simons coupling is well defined only for insulators with zero Chern number, the orbital magnetoelectric effects in 3D Chern insulators with nonzero (layer) Chern numbers are still open questions. In this work, we propose a never-mentioned quantization rule for the layer-resolved orbital magnetoelectric response in 3D Chern insulators, the gradient of which is exactly quantized in unit of $e^2/h$. By theoretical analysis and numerical simulations, we demonstrate that the quantized orbital magnetoelectric response remains robust for various types of interlayer hoppings and stackings, even against disorder and lack of symmetries. We argue that the robustness has a topological origin and protected by layer Chern number. It is thus promising to observe the proposed quantized orbital magnetoelectric response in a slab of 3D Chern insulator thanks to recent experimental developments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16103v2-abstract-full').style.display = 'none'; document.getElementById('2408.16103v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main text: 5 pages, 1 figure and 5 tables; SI: 15 pages, 5 figures and 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15770">arXiv:2408.15770</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15770">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unprecedented Enhancement of Piezoelectricity in Wurtzite Nitride Semiconductors via Thermal Annealing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mondal%2C+S">Shubham Mondal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanim%2C+M+M+H">Md Mehedi Hasan Tanim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baucom%2C+G">Garrett Baucom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dabas%2C+S+S">Shaurya S. Dabas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+J">Jinghan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaddam%2C+V">Venkateswarlu Gaddam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiangnan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ross%2C+A">Aiden Ross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Long-Qing Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Honggyu Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tabrizian%2C+R">Roozbeh Tabrizian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+Z">Zetian Mi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15770v1-abstract-short" style="display: inline;"> The incorporation of rare-earth elements in wurtzite nitride semiconductors, e.g., scandium alloyed aluminum nitride (ScAlN), promises dramatically enhanced piezoelectric responses, critical to a broad range of acoustic, electronic, photonic, and quantum devices and applications. Experimentally, however, the measured piezoelectric responses of nitride semiconductors are far below what theory has p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15770v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15770v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15770v1-abstract-full" style="display: none;"> The incorporation of rare-earth elements in wurtzite nitride semiconductors, e.g., scandium alloyed aluminum nitride (ScAlN), promises dramatically enhanced piezoelectric responses, critical to a broad range of acoustic, electronic, photonic, and quantum devices and applications. Experimentally, however, the measured piezoelectric responses of nitride semiconductors are far below what theory has predicted. Here, we show that the use of a simple, scalable, post-growth thermal annealing process can dramatically boost the piezoelectric response of ScAlN thin films. We achieve a remarkable 3.5-fold increase in the piezoelectric modulus, d33 for 30% Sc content ScAlN, from 12.3 pC/N in the as-grown state to 45.5 pC/N, which is eight times larger than that of AlN. The enhancement in piezoelectricity has been unambiguously confirmed by three separate measurement techniques. Such a dramatic enhancement of d33 has been shown to impact the effective electromechanical coupling coefficient kt2 : increasing it from 13.8% to 76.2%, which matches the highest reported values in millimeter thick lithium niobate films but is achieved in a 100 nm ScAlN with a 10,000 fold reduction in thickness, thus promising extreme frequency scaling opportunities for bulk acoustic wave resonators for beyond 5G applications. By utilizing a range of material characterization techniques, we have elucidated the underlying mechanisms for the dramatically enhanced piezoelectric responses, including improved structural quality at the macroscopic scale, more homogeneous and ordered distribution of domain structures at the mesoscopic scale, and the reduction of lattice parameter ratio (c/a) for the wurtzite crystal structure at the atomic scale. Overall, the findings present a simple yet highly effective pathway that can be extended to other material families to further enhance their piezo responses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15770v1-abstract-full').style.display = 'none'; document.getElementById('2408.15770v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12509">arXiv:2408.12509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12509">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Commensurate and Incommensurate Chern Insulators in Magic-angle Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zaizhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jingxin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+B">Bo Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Z">Zuo Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xiaoxia Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Q">Qing Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D">Donghua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zhida Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xiaobo Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12509v1-abstract-short" style="display: inline;"> The interplay between strong electron-electron interaction and symmetry breaking can have profound influence on the topological properties of materials. In magic angle twisted bilayer graphene (MATBG), the flat band with a single SU(4) flavor associated with the spin and valley degrees of freedom gains non-zero Chern number when C2z symmetry or C2zT symmetry is broken. Electron-electron interactio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12509v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12509v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12509v1-abstract-full" style="display: none;"> The interplay between strong electron-electron interaction and symmetry breaking can have profound influence on the topological properties of materials. In magic angle twisted bilayer graphene (MATBG), the flat band with a single SU(4) flavor associated with the spin and valley degrees of freedom gains non-zero Chern number when C2z symmetry or C2zT symmetry is broken. Electron-electron interaction can further lift the SU(4) degeneracy, leading to the Chern insulator states. Here we report a complete sequence of zero-field Chern insulators at all odd integer fillings (v = +-1, +-3) with different chirality (C = 1 or -1) in hBN aligned MATBG which structurally breaks C2z symmetry. The Chern states at hole fillings (v = -1, -3), which are firstly observed in this work, host an opposite chirality compared with the electron filling scenario. By slightly doping the v = +-3 states, we have observed new correlated insulating states at incommensurate moir茅 fillings which is highly suggested to be intrinsic Wigner crystals according to our theoretical calculations. Remarkably, we have observed prominent Streda-formula violation around v = -3 state. By doping the Chern gap at v = -3 with notable number of electrons at finite magnetic field, the Hall resistance Ryx robustly quantizes to ~ h/e2 whereas longitudinal resistance Rxx vanishes, indicating that the chemical potential is pinned within a Chern gap, forming an incommensurate Chern insulator. By providing the first experimental observation of zero-field Chern insulators in the flat valence band, our work fills up the overall topological framework of MATBG with broken C2z symmetry. Our findings also demonstrate that doped topological flat band is an ideal platform to investigate exotic incommensurate correlated topological states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12509v1-abstract-full').style.display = 'none'; document.getElementById('2408.12509v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages. 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12504">arXiv:2408.12504</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12504">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> All-Electrical Layer-Spintronics in Altermagnetic Bilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+R">Rui Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+L">Lin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ong%2C+W">Wee-Liat Ong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+P">Pin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+S">Chit Siong Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ang%2C+Y+S">Yee Sin Ang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12504v2-abstract-short" style="display: inline;"> Electrical manipulation of spin-polarized current is highly desirable yet tremendously challenging in developing ultracompact spintronic device technology. Here we propose a scheme to realize the all-electrical manipulation of spin-polarized current in an altermagnetic bilayer. Such a bilayer system can host layer-spin locking, in which one layer hosts a spin-polarized current while the other laye&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12504v2-abstract-full').style.display = 'inline'; document.getElementById('2408.12504v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12504v2-abstract-full" style="display: none;"> Electrical manipulation of spin-polarized current is highly desirable yet tremendously challenging in developing ultracompact spintronic device technology. Here we propose a scheme to realize the all-electrical manipulation of spin-polarized current in an altermagnetic bilayer. Such a bilayer system can host layer-spin locking, in which one layer hosts a spin-polarized current while the other layer hosts a current with opposite spin polarization. An out-of-plane electric field breaks the layer degeneracy, leading to a gate-tunable spin-polarized current whose polarization can be fully reversed upon flipping the polarity of the electric field. Using first-principles calculations, we show that CrS bilayer with C-type antiferromagnetic exchange interaction exhibits a hidden layer-spin locking mechanism that enables the spin polarization of the transport current to be electrically manipulated via the layer degree of freedom. We demonstrate that sign-reversible spin polarization as high as 87% can be achieved at room temperature. This work presents the pioneering concept of layer-spintronics which synergizes altermagnetism and bilayer stacking to achieve efficient electrical control of spin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12504v2-abstract-full').style.display = 'none'; document.getElementById('2408.12504v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11299">arXiv:2408.11299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11299">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.21.024021">10.1103/PhysRevApplied.21.024021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Substrate-induced spin-torque-like signal in spin-torque ferromagnetic resonance measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Dingsong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hetian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+G">Guiping Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+Y">Yahong Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chenye Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yuhan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jingchun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skowro%C5%84ski%2C+W">Witold Skowro艅ski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Pu Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+D">Di Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nan%2C+T">Tianxiang Nan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11299v1-abstract-short" style="display: inline;"> Oxide thin films and interfaces with strong spin-orbit coupling have recently shown exceptionally high charge-to-spin conversion, making them potential spin-source materials for spintronics. Epitaxial strain engineering using oxide substrates with different lattice constants and symmetries has emerged as a mean to further enhance charge-to-spin conversion. However, high relative permittivity and d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11299v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11299v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11299v1-abstract-full" style="display: none;"> Oxide thin films and interfaces with strong spin-orbit coupling have recently shown exceptionally high charge-to-spin conversion, making them potential spin-source materials for spintronics. Epitaxial strain engineering using oxide substrates with different lattice constants and symmetries has emerged as a mean to further enhance charge-to-spin conversion. However, high relative permittivity and dielectric loss of commonly used oxide substrates, such as SrTiO3, can cause significant current shunting in substrates at high frequency, which may strongly affect spin-torque measurement and potentially result in an inaccurate estimation of charge-to-spin conversion efficiency. In this study, we systematically evaluate the influence of various oxide substrates for the widely-used spin-torque ferromagnetic resonance (ST-FMR) measurement. Surprisingly, we observed substantial spin-torque signals in samples comprising only ferromagnetic metal on oxide substrates with high relative permittivity (e.g., SrTiO3 and KTaO3), where negligible signal should be initially expected. Notably, this unexpected signal shows a strong correlation with the capacitive reactance of oxide substrates and the leakage radio frequency (RF) current within the substrate. By revising the conventional ST-FMR analysis model, we attribute this phenomenon to a 90-degree phase difference between the RF current flowing in the metal layer and in the substrate. We suggest that extra attention should be paid during the ST-FMR measurements, as this artifact could dominate over the real spin-orbit torque signal from high-resistivity spin-source materials grown on substrate with high relative permittivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11299v1-abstract-full').style.display = 'none'; document.getElementById('2408.11299v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10032">arXiv:2408.10032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10032">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tunable interfacial Rashba spin-orbit coupling in asymmetric Al$_x$In$_{1-x}$Sb/InSb/CdTe quantum well heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+H">Hanzhi Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhi%2C+Z">Zhenghang Zhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yuyang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiuming Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+P">Puyang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+S">Shan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+C">Chenjia Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Qi Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Lu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yifan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yujie Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+R">Renchao Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10032v1-abstract-short" style="display: inline;"> The manipulation of Rashba-type spin-orbit coupling (SOC) in molecular beam epitaxy-grown Al$_x$In$_{1-x}$Sb/InSb/CdTe quantum well heterostructures is reported. The effective band bending provides robust two-dimensional quantum confinement, while the unidirectional built-in electric field from the asymmetric hetero-interfaces results in pronounced Rashba SOC strength. By tuning the Al concentrati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10032v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10032v1-abstract-full" style="display: none;"> The manipulation of Rashba-type spin-orbit coupling (SOC) in molecular beam epitaxy-grown Al$_x$In$_{1-x}$Sb/InSb/CdTe quantum well heterostructures is reported. The effective band bending provides robust two-dimensional quantum confinement, while the unidirectional built-in electric field from the asymmetric hetero-interfaces results in pronounced Rashba SOC strength. By tuning the Al concentration in the top Al$_x$In$_{1-x}$Sb barrier layer, the optimal structure with $x = 0.15$ shows the largest Rashba coefficient of 0.23 eV-Angstrom. and the highest low-temperature electron mobility of 4400 cm$^2$/Vs . Quantitative investigations of the weak anti-localization effect further confirm the dominant D&#39;yakonov-Perel (DP) spin relaxation mechanism during charge-to-spin conversion. These findings highlight the significance of quantum well engineering in shaping magneto-resistance responses, and narrow bandgap semiconductor-based heterostructures may offer a reliable platform for energy-efficient spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10032v1-abstract-full').style.display = 'none'; document.getElementById('2408.10032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Liu%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+J&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10