CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 76 results for author: <span class="mathjax">Arefiev, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Arefiev%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Arefiev, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Arefiev%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Arefiev, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Arefiev%2C+A&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Arefiev%2C+A&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Arefiev%2C+A&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03135">arXiv:2410.03135</a> <span> [<a href="https://arxiv.org/pdf/2410.03135">pdf</a>, <a href="https://arxiv.org/format/2410.03135">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> High-resolution direct phase control in the spectral domain in ultrashort pulse lasers for pulse-shaping applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Buczek%2C+S+M">Sean M Buczek</a>, <a href="/search/physics?searchtype=author&query=Collins%2C+G+W">Gilbert W Collins</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a>, <a href="/search/physics?searchtype=author&query=Manuel%2C+M+J">Mario J Manuel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03135v2-abstract-short" style="display: inline;"> Ultrafast laser systems, those with a pulse duration on the order of picoseconds or less, have enabled advancements in a wide variety of fields. Of particular interest to this work, these laser systems are the key component to many High Energy Density (HED) physics experiments. Despite this, previous studies on the shape of the laser pulse within the HED community have focused primarily on pulse d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03135v2-abstract-full').style.display = 'inline'; document.getElementById('2410.03135v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03135v2-abstract-full" style="display: none;"> Ultrafast laser systems, those with a pulse duration on the order of picoseconds or less, have enabled advancements in a wide variety of fields. Of particular interest to this work, these laser systems are the key component to many High Energy Density (HED) physics experiments. Despite this, previous studies on the shape of the laser pulse within the HED community have focused primarily on pulse duration due to the relationship between pulse duration and peak intensity, while leaving the femtosecond scale structure of the pulse shape largely unstudied. To broaden the variety of potential pulses available for study, a method of reliably adjusting the pulse shape at the femtosecond scale using sub-nanometer resolution Direct Phase Control has been developed. This paper examines the capabilities of this new method compared to more commonplace dispersion-based pulse shaping methods. It also will detail the capabilities of the core algorithm driving this technique when used in conjunction with the WIZZLER and DAZZLER instruments that are common in high intensity laser labs. Finally, some discussion is given to possible applications on how the Direct Phase Control pulse shaping technique will be implemented in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03135v2-abstract-full').style.display = 'none'; document.getElementById('2410.03135v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, 3 of these figures contain subfigures such that 11 image (png) files are used</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16506">arXiv:2409.16506</a> <span> [<a href="https://arxiv.org/pdf/2409.16506">pdf</a>, <a href="https://arxiv.org/format/2409.16506">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Collimated $纬$-ray emission enabled by efficient direct laser acceleration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tangtartharakul%2C+K">Kavin Tangtartharakul</a>, <a href="/search/physics?searchtype=author&query=Fauvel%2C+G">Gaetan Fauvel</a>, <a href="/search/physics?searchtype=author&query=Meir%2C+T">Talia Meir</a>, <a href="/search/physics?searchtype=author&query=Condamine%2C+F">Florian Condamine</a>, <a href="/search/physics?searchtype=author&query=Weber%2C+S">Stefan Weber</a>, <a href="/search/physics?searchtype=author&query=Pomerantz%2C+I">Ishay Pomerantz</a>, <a href="/search/physics?searchtype=author&query=Manuel%2C+M">Mario Manuel</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16506v2-abstract-short" style="display: inline;"> We investigate the mechanisms responsible for single-lobed versus double-lobed angular distributions of emitted $纬$-rays in laser-irradiated plasmas, focusing on how direct laser acceleration (DLA) shapes the emission profile. Using test-particle calculations, we show that the efficiency of DLA plays a central role. In the inefficient DLA regime, electrons rapidly gain and lose energy within a sin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16506v2-abstract-full').style.display = 'inline'; document.getElementById('2409.16506v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16506v2-abstract-full" style="display: none;"> We investigate the mechanisms responsible for single-lobed versus double-lobed angular distributions of emitted $纬$-rays in laser-irradiated plasmas, focusing on how direct laser acceleration (DLA) shapes the emission profile. Using test-particle calculations, we show that the efficiency of DLA plays a central role. In the inefficient DLA regime, electrons rapidly gain and lose energy within a single laser cycle, resulting in a double-lobed emission profile heavily influenced by laser fields. In contrast, in the efficient DLA regime, electrons steadily accumulate energy over multiple laser cycles, achieving much higher energies and emitting orders of magnitude more energy. This emission is intensely collimated and results in single-lobed profiles dominated by quasi-static azimuthal magnetic fields in the plasma. Particle-in-cell simulations demonstrate that lower-density targets create favorable conditions for some electrons to enter the efficient DLA regime. These electrons can dominate the emission, transforming the overall profile from double-lobed to single-lobed, even though inefficient DLA electrons remain present. These findings provide valuable insights for optimizing laser-driven $纬$-ray sources for applications requiring high-intensity, well-collimated beams. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16506v2-abstract-full').style.display = 'none'; document.getElementById('2409.16506v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version has recently been accepted to the New Journal of Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04489">arXiv:2406.04489</a> <span> [<a href="https://arxiv.org/pdf/2406.04489">pdf</a>, <a href="https://arxiv.org/format/2406.04489">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Efficient backward x-ray emission in a finite-length plasma irradiated by a laser pulse of ps duration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yeh%2C+I">I-Lin Yeh</a>, <a href="/search/physics?searchtype=author&query=Tangtartharakul%2C+K">Kavin Tangtartharakul</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+H">Hongmei Tang</a>, <a href="/search/physics?searchtype=author&query=Willingale%2C+L">Louise Willingale</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04489v1-abstract-short" style="display: inline;"> Motivated by experiments employing ps-long, kilojoule laser pulses, we examined x-ray emission in a finite-length underdense plasma irradiated by such a pulse using two dimensional particle-in-cell simulations. We found that, in addition to the expected forward emission, the plasma also efficiently emits in the backward direction. Our simulations reveal that the backward emission occurs when the l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04489v1-abstract-full').style.display = 'inline'; document.getElementById('2406.04489v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04489v1-abstract-full" style="display: none;"> Motivated by experiments employing ps-long, kilojoule laser pulses, we examined x-ray emission in a finite-length underdense plasma irradiated by such a pulse using two dimensional particle-in-cell simulations. We found that, in addition to the expected forward emission, the plasma also efficiently emits in the backward direction. Our simulations reveal that the backward emission occurs when the laser exits the plasma. The longitudinal plasma electric field generated by the laser at the density down-ramp turns around some of the laser-accelerated electrons and re-accelerates them in the backward direction. As the electrons collide with the laser, they emit hard x-rays. The energy conversion efficiency is comparable to that for the forward emission, but the effective source size is smaller. We show that the ps laser duration is required for achieving a spatial overlap between the laser and the backward energetic electrons. At peak laser intensity of $1.4\times 10^{20}~\rm{W/cm^2}$, backward emitted photons (energies above 100~keV and $10^{\circ}$ divergence angle) account for $2 \times 10^{-5}$ of the incident laser energy. This conversion efficiency is three times higher than that for similarly selected forward emitted photons. The source size of the backward photons ($5~\rm{渭m}$) is three times smaller than the source size of the forward photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04489v1-abstract-full').style.display = 'none'; document.getElementById('2406.04489v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17852">arXiv:2405.17852</a> <span> [<a href="https://arxiv.org/pdf/2405.17852">pdf</a>, <a href="https://arxiv.org/format/2405.17852">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2422-2">10.1007/s11433-024-2422-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Advances in laser-plasma interactions using intense vortex laser beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yin Shi</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiaomei Zhang</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+B">Baifei Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17852v1-abstract-short" style="display: inline;"> Low-intensity light beams carrying Orbital Angular Momentum (OAM), commonly known as vortex beams, have garnered significant attention due to promising applications in areas ranging from optical trapping to communication. In recent years, there has been a surge in global research exploring the potential of high-intensity vortex laser beams and specifically their interactions with plasmas. This pap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17852v1-abstract-full').style.display = 'inline'; document.getElementById('2405.17852v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17852v1-abstract-full" style="display: none;"> Low-intensity light beams carrying Orbital Angular Momentum (OAM), commonly known as vortex beams, have garnered significant attention due to promising applications in areas ranging from optical trapping to communication. In recent years, there has been a surge in global research exploring the potential of high-intensity vortex laser beams and specifically their interactions with plasmas. This paper provides a comprehensive review of recent advances in this area. Compared to conventional laser beams, intense vortex beams exhibit unique properties such as twisted phase fronts, OAM delivery, hollow intensity distribution, and spatially isolated longitudinal fields. These distinct characteristics give rise to a multitude of rich phenomena, profoundly influencing laser-plasma interactions and offering diverse applications. The paper also discusses future prospects and identifies promising general research areas involving vortex beams. These areas include low-divergence particle acceleration, instability suppression, high-energy photon delivery with OAM, and the generation of strong magnetic fields. With growing scientific interest and application potential, the study of intense vortex lasers is poised for rapid development in the coming years. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17852v1-abstract-full').style.display = 'none'; document.getElementById('2405.17852v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SCIENCE CHINA Physics, Mechanics & Astronomy (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08026">arXiv:2402.08026</a> <span> [<a href="https://arxiv.org/pdf/2402.08026">pdf</a>, <a href="https://arxiv.org/format/2402.08026">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ad3be4">10.1088/1367-2630/ad3be4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Influence of Laser Focusing Conditions on the Direct Laser Acceleration of Electrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+H">H. Tang</a>, <a href="/search/physics?searchtype=author&query=Tangtartharakul%2C+K">K. Tangtartharakul</a>, <a href="/search/physics?searchtype=author&query=Babjak%2C+R">R. Babjak</a>, <a href="/search/physics?searchtype=author&query=Yeh%2C+I">I-L. Yeh</a>, <a href="/search/physics?searchtype=author&query=Albert%2C+F">F. Albert</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&query=Campbell%2C+P+T">P. T. Campbell</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Y. Ma</a>, <a href="/search/physics?searchtype=author&query=Nilson%2C+P+M">P. M. Nilson</a>, <a href="/search/physics?searchtype=author&query=Russell%2C+B+K">B. K. Russell</a>, <a href="/search/physics?searchtype=author&query=Shaw%2C+J+L">J. L. Shaw</a>, <a href="/search/physics?searchtype=author&query=Thomas%2C+A+G+R">A. G. R. Thomas</a>, <a href="/search/physics?searchtype=author&query=Vranic%2C+M">M. Vranic</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a>, <a href="/search/physics?searchtype=author&query=Willingale%2C+L">L. Willingale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08026v1-abstract-short" style="display: inline;"> Direct Laser Acceleration (DLA) of electrons during a high-energy, picosecond laser interaction with an underdense plasma has been demonstrated to be substantially enhanced by controlling the laser focusing geometry. Experiments using the OMEGA EP facility measured electrons accelerated to maximum energies exceeding 120 times the ponderomotive energy under certain laser focusing, pulse energy, and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08026v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08026v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08026v1-abstract-full" style="display: none;"> Direct Laser Acceleration (DLA) of electrons during a high-energy, picosecond laser interaction with an underdense plasma has been demonstrated to be substantially enhanced by controlling the laser focusing geometry. Experiments using the OMEGA EP facility measured electrons accelerated to maximum energies exceeding 120 times the ponderomotive energy under certain laser focusing, pulse energy, and plasma density conditions. Two-dimensional particle-in-cell simulations show that the laser focusing conditions alter the laser field evolution, channel fields generation, and electron oscillation, all of which contribute to the final electron energies. The optimal laser focusing condition occurs when the transverse oscillation amplitude of the accelerated electron in the channel fields matches the laser beam width, resulting in efficient energy gain. Through this observation, a simple model was developed to calculate the optimal laser focal spot size in more general conditions and is validated by experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08026v1-abstract-full').style.display = 'none'; document.getElementById('2402.08026v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15298">arXiv:2312.15298</a> <span> [<a href="https://arxiv.org/pdf/2312.15298">pdf</a>, <a href="https://arxiv.org/format/2312.15298">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Generation of 10 kT Axial Magnetic Fields Using Multiple Conventional Laser Beams: A Sensitivity Study for kJ PW-Class Laser Facilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hao%2C+J+X">Jue Xuan Hao</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+X">Xiang Tang</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a>, <a href="/search/physics?searchtype=author&query=Kingham%2C+R+J">Robert J. Kingham</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+P">Ping Zhu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yin Shi</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+J">Jian Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15298v2-abstract-short" style="display: inline;"> Strong multi-kilotesla magnetic fields have various applications in high-energy density science and laboratory astrophysics, but they are not readily available. In our previous work [Y. Shi et al., Phys. Rev. Lett. 130, 155101 (2023)], we developed a novel approach for generating such fields using multiple conventional laser beams with a twist in the pointing direction. This method is particularly… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15298v2-abstract-full').style.display = 'inline'; document.getElementById('2312.15298v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15298v2-abstract-full" style="display: none;"> Strong multi-kilotesla magnetic fields have various applications in high-energy density science and laboratory astrophysics, but they are not readily available. In our previous work [Y. Shi et al., Phys. Rev. Lett. 130, 155101 (2023)], we developed a novel approach for generating such fields using multiple conventional laser beams with a twist in the pointing direction. This method is particularly well-suited for multi-kilojoule petawatt-class laser systems like SG-II UP, which are designed with multiple linearly polarized beamlets. Utilizing three-dimensional kinetic particle-in-cell simulations, we examine critical factors for a proof-of-principle experiment, such as laser polarization, relative pulse delay, phase offset, pointing stability, and target configuration, and their impact on magnetic field generation. Our general conclusion is that the approach is very robust and can be realized under a wide range of laser parameters and plasma conditions. We also provide an in-depth analysis of the axial magnetic field configuration, azimuthal electron current, and electron and ion orbital angular momentum densities. Supported by a simple model, our analysis shows that the axial magnetic field decays due to the expansion of hot electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15298v2-abstract-full').style.display = 'none'; document.getElementById('2312.15298v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06046">arXiv:2312.06046</a> <span> [<a href="https://arxiv.org/pdf/2312.06046">pdf</a>, <a href="https://arxiv.org/format/2312.06046">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Electron energy gain due to a laser frequency modulation experienced by electron during betatron motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a>, <a href="/search/physics?searchtype=author&query=Yeh%2C+I">I-Lin Yeh</a>, <a href="/search/physics?searchtype=author&query=Willingale%2C+L">Louise Willingale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06046v1-abstract-short" style="display: inline;"> Direct laser acceleration of electrons is an important energy deposition mechanism for laser-irradiated plasmas that is particularly effective at relativistic laser intensities in the presence of quasi-static laser-driven plasma electric and magnetic fields. These radial electric and azimuthal magnetic fields provide transverse electron confinement by inducing betatron oscillations of forward-movi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06046v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06046v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06046v1-abstract-full" style="display: none;"> Direct laser acceleration of electrons is an important energy deposition mechanism for laser-irradiated plasmas that is particularly effective at relativistic laser intensities in the presence of quasi-static laser-driven plasma electric and magnetic fields. These radial electric and azimuthal magnetic fields provide transverse electron confinement by inducing betatron oscillations of forward-moving electrons undergoing laser acceleration. Electrons are said to experience a betatron resonance when the frequency of betatron oscillations matches the average frequency of the laser field oscillations at the electron position. In this paper, we show that the modulation of the laser frequency caused by the betatron oscillation can be another important mechanism for net energy gain that is qualitatively different from the betatron resonance. Specifically, we show that the frequency modulation experienced by the electron can lead to net energy gain in the regime where the laser field performs three oscillations per betatron oscillation. There is no net energy gain in this regime without the modulation because the energy gain is fully compensated by the energy loss. The modulation slows down the laser oscillation near transverse stopping points, increasing the time interval during which the electron gains energy and making it possible to achieve net energy gain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06046v1-abstract-full').style.display = 'none'; document.getElementById('2312.06046v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05356">arXiv:2311.05356</a> <span> [<a href="https://arxiv.org/pdf/2311.05356">pdf</a>, <a href="https://arxiv.org/format/2311.05356">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Compact in-vacuum gamma-ray spectrometer for high-repetition rate PW-class laser-matter interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fauvel%2C+G">G. Fauvel</a>, <a href="/search/physics?searchtype=author&query=Tangtartharakul%2C+K">K. Tangtartharakul</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">A. Arefiev</a>, <a href="/search/physics?searchtype=author&query=De+Chant%2C+J">J. De Chant</a>, <a href="/search/physics?searchtype=author&query=Hakimi%2C+S">S. Hakimi</a>, <a href="/search/physics?searchtype=author&query=Klimo%2C+O">O. Klimo</a>, <a href="/search/physics?searchtype=author&query=Manuel%2C+M">M. Manuel</a>, <a href="/search/physics?searchtype=author&query=McIlvenny%2C+A">A. McIlvenny</a>, <a href="/search/physics?searchtype=author&query=Nakamura%2C+K">K. Nakamura</a>, <a href="/search/physics?searchtype=author&query=Obst-Huebl%2C+L">L. Obst-Huebl</a>, <a href="/search/physics?searchtype=author&query=Rubovic%2C+P">P. Rubovic</a>, <a href="/search/physics?searchtype=author&query=Weber%2C+S">S. Weber</a>, <a href="/search/physics?searchtype=author&query=Condamine%2C+F+P">F. P. Condamine</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05356v3-abstract-short" style="display: inline;"> With the advent of high repetition rate laser facilities, novel diagnostic tools compatible with these advanced specifications are required. This paper presents the design of an active gamma-ray spectrometer intended for these high repetition rate experiments, with particular emphasis on functionality within a PW level laser-plasma interaction chamber's extreme conditions. The spectrometer uses st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05356v3-abstract-full').style.display = 'inline'; document.getElementById('2311.05356v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05356v3-abstract-full" style="display: none;"> With the advent of high repetition rate laser facilities, novel diagnostic tools compatible with these advanced specifications are required. This paper presents the design of an active gamma-ray spectrometer intended for these high repetition rate experiments, with particular emphasis on functionality within a PW level laser-plasma interaction chamber's extreme conditions. The spectrometer uses stacked scintillators to accommodate a broad range of gamma-ray energies, demonstrating its adaptability for various experimental setups. Additionally, it has been engineered to maintain compactness, electromagnetic pulse resistance, and ISO-5 cleanliness requirements while ensuring high sensitivity. The spectrometer has been tested in real conditions inside the PW-class level interaction chamber at the BELLA center, LBNL. The paper also outlines the calibration process thanks to a $^{60}$Co radioactive source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05356v3-abstract-full').style.display = 'none'; document.getElementById('2311.05356v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.06193">arXiv:2309.06193</a> <span> [<a href="https://arxiv.org/pdf/2309.06193">pdf</a>, <a href="https://arxiv.org/format/2309.06193">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Space-time structured plasma waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Palastro%2C+J+P">J. P. Palastro</a>, <a href="/search/physics?searchtype=author&query=Miller%2C+K+G">K. G. Miller</a>, <a href="/search/physics?searchtype=author&query=Follett%2C+R+K">R. K. Follett</a>, <a href="/search/physics?searchtype=author&query=Ramsey%2C+D">D. Ramsey</a>, <a href="/search/physics?searchtype=author&query=Weichman%2C+K">K. Weichman</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a>, <a href="/search/physics?searchtype=author&query=Froula%2C+D+H">D. H. Froula</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.06193v2-abstract-short" style="display: inline;"> Electrostatic waves play a critical role in nearly every branch of plasma physics from fusion to advanced accelerators, to astro, solar, and ionospheric physics. The properties of planar electrostatic waves are fully determined by the plasma conditions, such as density, temperature, ionization state, or details of the distribution functions. Here we demonstrate that electrostatic wavepackets struc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06193v2-abstract-full').style.display = 'inline'; document.getElementById('2309.06193v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.06193v2-abstract-full" style="display: none;"> Electrostatic waves play a critical role in nearly every branch of plasma physics from fusion to advanced accelerators, to astro, solar, and ionospheric physics. The properties of planar electrostatic waves are fully determined by the plasma conditions, such as density, temperature, ionization state, or details of the distribution functions. Here we demonstrate that electrostatic wavepackets structured with space-time correlations can have properties that are independent of the plasma conditions. For instance, an appropriately structured electrostatic wavepacket can travel at any group velocity, even backward with respect to its phase fronts, while maintaining a localized energy density. These linear, propagation-invariant wavepackets can be constructed with or without orbital angular momentum by superposing natural modes of the plasma and can be ponderomotively excited by space-time structured laser pulses like the flying focus. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06193v2-abstract-full').style.display = 'none'; document.getElementById('2309.06193v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13487">arXiv:2307.13487</a> <span> [<a href="https://arxiv.org/pdf/2307.13487">pdf</a>, <a href="https://arxiv.org/format/2307.13487">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Positron generation and acceleration in a self-organized photon collider enabled by an ultra-intense laser pulse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sugimoto%2C+K">K. Sugimoto</a>, <a href="/search/physics?searchtype=author&query=He%2C+Y">Y. He</a>, <a href="/search/physics?searchtype=author&query=Iwata%2C+N">N. Iwata</a>, <a href="/search/physics?searchtype=author&query=Yeh%2C+I">I-L. Yeh</a>, <a href="/search/physics?searchtype=author&query=Tangtartharakul%2C+K">K. Tangtartharakul</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">A. Arefiev</a>, <a href="/search/physics?searchtype=author&query=Sentoku%2C+Y">Y. Sentoku</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13487v1-abstract-short" style="display: inline;"> We discovered a simple regime where a near-critical plasma irradiated by a laser of experimentally available intensity can self-organize to produce positrons and accelerate them to ultra-relativistic energies. The laser pulse piles up electrons at its leading edge, producing a strong longitudinal plasma electric field. The field creates a moving gamma-ray collider that generates positrons via the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13487v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13487v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13487v1-abstract-full" style="display: none;"> We discovered a simple regime where a near-critical plasma irradiated by a laser of experimentally available intensity can self-organize to produce positrons and accelerate them to ultra-relativistic energies. The laser pulse piles up electrons at its leading edge, producing a strong longitudinal plasma electric field. The field creates a moving gamma-ray collider that generates positrons via the linear Breit-Wheeler process -- annihilation of two gamma-rays into an electron-positron pair. At the same time, the plasma field, rather than the laser, serves as an accelerator for the positrons. The discovery of positron acceleration was enabled by a first-of-its-kind kinetic simulation that generates pairs via photon-photon collisions. Using available laser intensities of $10^{22}$$\ $$\rm W/cm^2$, the discovered regime can generate a GeV positron beam with divergence angle of $\sim10^{\circ}$ and total charge of 0.1$\ $pC. The result paves the way to experimental observation of the linear Breit-Wheeler process and to applications requiring positron beams. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13487v1-abstract-full').style.display = 'none'; document.getElementById('2307.13487v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10469">arXiv:2304.10469</a> <span> [<a href="https://arxiv.org/pdf/2304.10469">pdf</a>, <a href="https://arxiv.org/format/2304.10469">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct laser acceleration in underdense plasmas with multi-PW lasers: a path to high-charge, GeV-class electron bunches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Babjak%2C+R">R. Babjak</a>, <a href="/search/physics?searchtype=author&query=Willingale%2C+L">L. Willingale</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">A. Arefiev</a>, <a href="/search/physics?searchtype=author&query=Vranic%2C+M">M. Vranic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10469v2-abstract-short" style="display: inline;"> The direct laser acceleration (DLA) of electrons in underdense plasmas can provide 100s of nC of electrons accelerated to near-GeV energies using currently available lasers. Here we demonstrate the key role of electron transverse displacement in the acceleration and use it to analytically predict the expected maximum electron energies. The energy scaling is shown to be in agreement with full-scale… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10469v2-abstract-full').style.display = 'inline'; document.getElementById('2304.10469v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10469v2-abstract-full" style="display: none;"> The direct laser acceleration (DLA) of electrons in underdense plasmas can provide 100s of nC of electrons accelerated to near-GeV energies using currently available lasers. Here we demonstrate the key role of electron transverse displacement in the acceleration and use it to analytically predict the expected maximum electron energies. The energy scaling is shown to be in agreement with full-scale quasi-3D particle-in-cell (PIC) simulations of a laser pulse propagating through a preformed guiding channel and can be directly used for optimizing DLA in near-future laser facilities. The strategy towards optimizing DLA through matched laser focusing is presented for a wide range of plasma densities paired with current and near-future laser technology. Electron energies in excess of 10 GeV are accessible for lasers at $I\sim 10^{21}~\mathrm{W/cm^2}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10469v2-abstract-full').style.display = 'none'; document.getElementById('2304.10469v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.11519">arXiv:2303.11519</a> <span> [<a href="https://arxiv.org/pdf/2303.11519">pdf</a>, <a href="https://arxiv.org/format/2303.11519">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.155101">10.1103/PhysRevLett.130.155101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient generation of axial magnetic field by multiple laser beams with twisted pointing directions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yin Shi</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+J+X">Jue Xuan Hao</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+J">Jian Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.11519v1-abstract-short" style="display: inline;"> Strong laser-driven magnetic fields are crucial for high-energy-density physics and laboratory astrophysics research, but generation of axial multi-kT fields remains a challenge. The difficulty comes from the inability of a conventional linearly polarized laser beam to induce the required azimuthal current or, equivalently, angular momentum (AM). We show that several laser beams can overcome this… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11519v1-abstract-full').style.display = 'inline'; document.getElementById('2303.11519v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.11519v1-abstract-full" style="display: none;"> Strong laser-driven magnetic fields are crucial for high-energy-density physics and laboratory astrophysics research, but generation of axial multi-kT fields remains a challenge. The difficulty comes from the inability of a conventional linearly polarized laser beam to induce the required azimuthal current or, equivalently, angular momentum (AM). We show that several laser beams can overcome this difficulty. Our three-dimensional kinetic simulations demonstrate that a twist in their pointing directions {enables them to carry orbital AM and transfer it to the plasma, thus generating a hot electron population carrying AM needed to sustain the magnetic field.} The resulting multi-kT field occupies a volume that is tens of thousands of cubic microns and it persists on a ps time scale. The mechanism can be realized for a wide range of laser intensities and pulse durations. Our scheme is well-suited for implementation using {multi-kJ PW-class lasers, because, by design, they have multiple beamlets and because the scheme requires only linear-polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11519v1-abstract-full').style.display = 'none'; document.getElementById('2303.11519v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01630">arXiv:2211.01630</a> <span> [<a href="https://arxiv.org/pdf/2211.01630">pdf</a>, <a href="https://arxiv.org/format/2211.01630">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Twisted plasma waves driven by twisted ponderomotive force </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yin Shi</a>, <a href="/search/physics?searchtype=author&query=Blackman%2C+D+R">D. R. Blackman</a>, <a href="/search/physics?searchtype=author&query=Kingham%2C+R+J">R. J. Kingham</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01630v1-abstract-short" style="display: inline;"> We present results of twisted plasma waves driven by twisted ponderomotive force. With beating of two, co-propagating, Laguerre-Gaussian (LG) orbital angular momentum (OAM) laser pulses with different frequencies and also different twist indices, we can get twisted ponderomotive force. Three-dimensional particle-in-cell simulations are used to demonstrate the twisted plasma waves driven by lasers.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01630v1-abstract-full').style.display = 'inline'; document.getElementById('2211.01630v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01630v1-abstract-full" style="display: none;"> We present results of twisted plasma waves driven by twisted ponderomotive force. With beating of two, co-propagating, Laguerre-Gaussian (LG) orbital angular momentum (OAM) laser pulses with different frequencies and also different twist indices, we can get twisted ponderomotive force. Three-dimensional particle-in-cell simulations are used to demonstrate the twisted plasma waves driven by lasers. The twisted plasma waves have an electron density perturbation with a helical rotating structure. Different from the predictions of the linear fluid theory, the simulation results show a nonlinear rotating current and a static axial magnetic field. Along with the rotating current is the axial OAM carried by particles in the twisted plasma waves. Detailed theoretical analysis of twisted plasma waves is given too. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01630v1-abstract-full').style.display = 'none'; document.getElementById('2211.01630v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JUSTC2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01622">arXiv:2211.01622</a> <span> [<a href="https://arxiv.org/pdf/2211.01622">pdf</a>, <a href="https://arxiv.org/format/2211.01622">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Electron pulse train accelerated by a linearly polarized Laguerre-Gaussian laser beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yin Shi</a>, <a href="/search/physics?searchtype=author&query=Blackman%2C+D+R">David R Blackman</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+P">Ping Zhu</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01622v1-abstract-short" style="display: inline;"> A linearly polarized Laguerre-Gaussian (LP-LG) laser beam with a twist index $l = -1$ has field structure that fundamentally differs from the field structure of a conventional linearly polarized Gaussian beam. Close to the axis of the LP-LG beam, the longitudinal electric and magnetic fields dominate over the transverse components. This structure offers an attractive opportunity to accelerate elec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01622v1-abstract-full').style.display = 'inline'; document.getElementById('2211.01622v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01622v1-abstract-full" style="display: none;"> A linearly polarized Laguerre-Gaussian (LP-LG) laser beam with a twist index $l = -1$ has field structure that fundamentally differs from the field structure of a conventional linearly polarized Gaussian beam. Close to the axis of the LP-LG beam, the longitudinal electric and magnetic fields dominate over the transverse components. This structure offers an attractive opportunity to accelerate electrons in vacuum. It is shown, using three dimensional particle-in-cell simulations, that this scenario can be realized by reflecting an LP-LG laser off a plasma with a sharp density gradient. The simulations indicate that a 600~TW LP-LG laser beam effectively injects electrons into the beam during the reflection. The electrons that are injected close to the laser axis experience a prolonged longitudinal acceleration by the longitudinal laser electric field. The electrons form distinct monoenergetic bunches with a small divergence angle. The energy in the most energetic bunch is 0.29 GeV. The bunch charge is 6~pC and its duration is $\sim 270$~as. The divergence angle is just \dg{0.57} (10~mrad). By using a linearly polarized rather than a circularly polarized Laguerre-Gausian beam, our scheme makes it easier to demonstrate the electron acceleration experimentally at a high-power laser facility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01622v1-abstract-full').style.display = 'none'; document.getElementById('2211.01622v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> HPL 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07015">arXiv:2202.07015</a> <span> [<a href="https://arxiv.org/pdf/2202.07015">pdf</a>, <a href="https://arxiv.org/ps/2202.07015">ps</a>, <a href="https://arxiv.org/format/2202.07015">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Underdense relativistically thermal plasma produced by magnetically assisted direct laser acceleration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Weichman%2C+K">K. Weichman</a>, <a href="/search/physics?searchtype=author&query=Palastro%2C+J+P">J. P. Palastro</a>, <a href="/search/physics?searchtype=author&query=Robinson%2C+A+P+L">A. P. L. Robinson</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07015v1-abstract-short" style="display: inline;"> We introduce the first approach to volumetrically generate relativistically thermal plasma at gas-jet--accessible density. Using fully kinetic simulations and theory, we demonstrate that two stages of direct laser acceleration driven by two laser pulses in an applied magnetic field can heat a significant plasma volume to multi-MeV average energy. The highest-momentum feature is 2D-isotropic, persi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07015v1-abstract-full').style.display = 'inline'; document.getElementById('2202.07015v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07015v1-abstract-full" style="display: none;"> We introduce the first approach to volumetrically generate relativistically thermal plasma at gas-jet--accessible density. Using fully kinetic simulations and theory, we demonstrate that two stages of direct laser acceleration driven by two laser pulses in an applied magnetic field can heat a significant plasma volume to multi-MeV average energy. The highest-momentum feature is 2D-isotropic, persists after the interaction, and includes the majority of electrons, enabling experimental access to bulk-relativistic, high-energy-density plasma in an optically diagnosable regime for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07015v1-abstract-full').style.display = 'none'; document.getElementById('2202.07015v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.13553">arXiv:2109.13553</a> <span> [<a href="https://arxiv.org/pdf/2109.13553">pdf</a>, <a href="https://arxiv.org/format/2109.13553">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/ac318d">10.1088/1361-6587/ac318d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron Acceleration Using Twisted Laser Wavefronts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yin Shi</a>, <a href="/search/physics?searchtype=author&query=Blackman%2C+D">David Blackman</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.13553v1-abstract-short" style="display: inline;"> Using plasma mirror injection we demonstrate, both analytically and numerically, that a circularly polarized helical laser pulse can accelerate highly collimated dense bunches of electrons to several hundred MeV using currently available laser systems. The circular-polarized helical (Laguerre-Gaussian) beam has a unique field structure where the transverse fields have helix-like wave-fronts which… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13553v1-abstract-full').style.display = 'inline'; document.getElementById('2109.13553v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.13553v1-abstract-full" style="display: none;"> Using plasma mirror injection we demonstrate, both analytically and numerically, that a circularly polarized helical laser pulse can accelerate highly collimated dense bunches of electrons to several hundred MeV using currently available laser systems. The circular-polarized helical (Laguerre-Gaussian) beam has a unique field structure where the transverse fields have helix-like wave-fronts which tend to zero on-axis where, at focus, there are large on-axis longitudinal magnetic and electric fields. The acceleration of electrons by this type of laser pulse is analysed as a function of radial mode number and it is shown that the radial mode number has a profound effect on electron acceleration close to the laser axis.Using three-dimensional particle-in-cell simulations a circular-polarized helical laser beam with power of 0.6 PW is shown to produce several dense attosecond bunches. The bunch nearest the peak of the laser envelope has an energy of 0.47 GeV with spread as narrow as 10\%, a charge of 26 pC with duration of $\sim 400$ as, and a very low divergence of 20 mrad}. The confinement by longitudinal magnetic fields in the near-axis region allows the longitudinal electric fields to accelerate the electrons over a long period after the initial reflection. Both the longitudinal E and B fields are shown to be essential for electron acceleration in this scheme. This opens up new paths towards attosecond electron beams, or attosecond radiation, at many laser facilities around the world. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13553v1-abstract-full').style.display = 'none'; document.getElementById('2109.13553v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.02662">arXiv:2106.02662</a> <span> [<a href="https://arxiv.org/pdf/2106.02662">pdf</a>, <a href="https://arxiv.org/format/2106.02662">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac22e7">10.1088/1367-2630/ac22e7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relativistically transparent magnetic filaments: scaling laws, initial results and prospects for strong-field QED studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rinderknecht%2C+H+G">H. G. Rinderknecht</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">T. Wang</a>, <a href="/search/physics?searchtype=author&query=Garcia%2C+A+L">A. Laso Garcia</a>, <a href="/search/physics?searchtype=author&query=Bruhaug%2C+G">G. Bruhaug</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+M+S">M. S. Wei</a>, <a href="/search/physics?searchtype=author&query=Quevedo%2C+H+J">H. J. Quevedo</a>, <a href="/search/physics?searchtype=author&query=Ditmire%2C+T">T. Ditmire</a>, <a href="/search/physics?searchtype=author&query=Williams%2C+J">J. Williams</a>, <a href="/search/physics?searchtype=author&query=Haid%2C+A">A. Haid</a>, <a href="/search/physics?searchtype=author&query=Doria%2C+D">D. Doria</a>, <a href="/search/physics?searchtype=author&query=Spohr%2C+K">K. Spohr</a>, <a href="/search/physics?searchtype=author&query=Toncian%2C+T">T. Toncian</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">A. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.02662v1-abstract-short" style="display: inline;"> Relativistic transparency enables volumetric laser interaction with overdense plasmas and direct laser acceleration of electrons to relativistic velocities. The dense electron current generates a magnetic filament with field strength of the order of the laser amplitude ($>$10$^5$ T). The magnetic filament traps the electrons radially, enabling efficient acceleration and conversion of laser energy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02662v1-abstract-full').style.display = 'inline'; document.getElementById('2106.02662v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.02662v1-abstract-full" style="display: none;"> Relativistic transparency enables volumetric laser interaction with overdense plasmas and direct laser acceleration of electrons to relativistic velocities. The dense electron current generates a magnetic filament with field strength of the order of the laser amplitude ($>$10$^5$ T). The magnetic filament traps the electrons radially, enabling efficient acceleration and conversion of laser energy into MeV photons by electron oscillations in the filament. The use of microstructured targets stabilizes the hosing instabilities associated with relativistically transparent interactions, resulting in robust and repeatable production of this phenomenon. Analytical scaling laws are derived to describe the radiated photon spectrum and energy from the magnetic filament phenomenon in terms of the laser intensity, focal radius, pulse duration, and the plasma density. These scaling laws are compared to 3-D particle-in-cell (PIC) simulations, demonstrating agreement over two regimes of focal radius. Preliminary experiments to study this phenomenon at moderate intensity ($a_0 \sim 30$) were performed on the Texas Petawatt Laser. Experimental signatures of the magnetic filament phenomenon are observed in the electron and photon spectra recorded in a subset of these experiments that is consistent with the experimental design, analytical scaling and 3-D PIC simulations. Implications for future experimental campaigns are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02662v1-abstract-full').style.display = 'none'; document.getElementById('2106.02662v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to New Journal of Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06592">arXiv:2105.06592</a> <span> [<a href="https://arxiv.org/pdf/2105.06592">pdf</a>, <a href="https://arxiv.org/format/2105.06592">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.234801">10.1103/PhysRevLett.126.234801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of ultra-relativistic monoenergetic electron bunches via a synergistic interaction of longitudinal electric and magnetic fields of a twisted laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yin Shi</a>, <a href="/search/physics?searchtype=author&query=Blackman%2C+D">David Blackman</a>, <a href="/search/physics?searchtype=author&query=Stutman%2C+D">Dan Stutman</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06592v1-abstract-short" style="display: inline;"> We use 3D simulations to demonstrate that high-quality ultra-relativistic electron bunches can be generated upon reflection of a twisted laser beam off a plasma mirror. The unique topology of the beam with a twist index $|l| = 1$ creates an accelerating structure dominated by longitudinal laser electric and magnetic fields in the near-axis region. We show that the magnetic field is essential for c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06592v1-abstract-full').style.display = 'inline'; document.getElementById('2105.06592v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06592v1-abstract-full" style="display: none;"> We use 3D simulations to demonstrate that high-quality ultra-relativistic electron bunches can be generated upon reflection of a twisted laser beam off a plasma mirror. The unique topology of the beam with a twist index $|l| = 1$ creates an accelerating structure dominated by longitudinal laser electric and magnetic fields in the near-axis region. We show that the magnetic field is essential for creating a train of dense mono-energetic bunches. For a 6.8~PW laser, the energy reaches 1.6~GeV with a spread of 5.5\%. The bunch duration is 320 as, its charge is 60~pC and density is $\sim 10^{27}$~m$^{-3}$. The results are confirmed by an analytical model for the electron energy gain. These results enable development of novel laser-driven accelerators at multi-PW laser facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06592v1-abstract-full').style.display = 'none'; document.getElementById('2105.06592v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.07251">arXiv:2104.07251</a> <span> [<a href="https://arxiv.org/pdf/2104.07251">pdf</a>, <a href="https://arxiv.org/format/2104.07251">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.104.045206">10.1103/PhysRevE.104.045206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of simulation dimensionality on laser-driven electron acceleration and photon emission in hollow micro-channel targets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/physics?searchtype=author&query=Blackman%2C+D">David Blackman</a>, <a href="/search/physics?searchtype=author&query=Chin%2C+K">Katherine Chin</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.07251v1-abstract-short" style="display: inline;"> Using two-dimensional (2D) and three-dimensional (3D) kinetic simulations, we examine the impact of simulation dimensionality on the laser-driven electron acceleration and the emission of collimated $纬$-ray beams from hollow micro-channel targets. We demonstrate that the dimensionality of the simulations considerably influences the results of electron acceleration and photon generation owing to th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07251v1-abstract-full').style.display = 'inline'; document.getElementById('2104.07251v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.07251v1-abstract-full" style="display: none;"> Using two-dimensional (2D) and three-dimensional (3D) kinetic simulations, we examine the impact of simulation dimensionality on the laser-driven electron acceleration and the emission of collimated $纬$-ray beams from hollow micro-channel targets. We demonstrate that the dimensionality of the simulations considerably influences the results of electron acceleration and photon generation owing to the variation of laser phase velocity in different geometries. In a 3D simulation with a cylindrical geometry, the acceleration process of electrons terminates early due to the higher phase velocity of the propagating laser fields; in contrast, 2D simulations with planar geometry tend to have prolonged electron acceleration and thus produce much more energetic electrons. The photon beam generated in the 3D setup is found to be more diverged accompanied with a lower conversion efficiency. Our work concludes that the 2D simulation can qualitatively reproduce the features in 3D simulation, but for quantitative evaluations and reliable predictions to facilitate experiment designs, 3D modelling is strongly recommended. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07251v1-abstract-full').style.display = 'none'; document.getElementById('2104.07251v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.09099">arXiv:2103.09099</a> <span> [<a href="https://arxiv.org/pdf/2103.09099">pdf</a>, <a href="https://arxiv.org/format/2103.09099">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/ac2e3e">10.1088/1361-6587/ac2e3e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron-positron pair production in the collision of real photon beams with wide energy distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Esnault%2C+L">L Esnault</a>, <a href="/search/physics?searchtype=author&query=d%27Humi%C3%A8res%2C+E">E d'Humi猫res</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">A Arefiev</a>, <a href="/search/physics?searchtype=author&query=Ribeyre%2C+X">X Ribeyre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.09099v1-abstract-short" style="display: inline;"> The creation of an electron-positron pair in the collision of two real photons, namely the linear Breit-Wheeler process, has never been detected directly in the laboratory since its prediction in 1934 despite its fundamental importance in quantum electrodynamics and astrophysics. In the last few years, several experimental setup have been proposed to observe this process in the laboratory, relying… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09099v1-abstract-full').style.display = 'inline'; document.getElementById('2103.09099v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.09099v1-abstract-full" style="display: none;"> The creation of an electron-positron pair in the collision of two real photons, namely the linear Breit-Wheeler process, has never been detected directly in the laboratory since its prediction in 1934 despite its fundamental importance in quantum electrodynamics and astrophysics. In the last few years, several experimental setup have been proposed to observe this process in the laboratory, relying either on thermal radiation, Bremsstrahlung, linear or multiphoton inverse Compton scattering photons sources created by lasers or by the mean of a lepton collider coupled with lasers. In these propositions, the influence of the photons' energy distribution on the total number of produced pairs has been taken into account with an analytical model only for two of these cases. We hereafter develop a general and original, semi-analytical model to estimate the influence of the photons energy distribution on the total number of pairs produced by the collision of two such photon beams, and give optimum energy parameters for some of the proposed experimental configurations. Our results shows that the production of optimum Bremsstrahlung and linear inverse Compton sources are, only from energy distribution considerations, already reachable in today's facilities. Despite its less interesting energy distribution features for the LBW pair production, the photon sources generated via multiphoton inverse Compton scattering by the propagation of a laser in a micro-channel can also be interesting, thank to the high collision luminosity that could eventually be reached by such configurations. These results then gives important insights for the design of experiments intended to detect linear Breit-Wheeler produced positrons in the laboratory for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09099v1-abstract-full').style.display = 'none'; document.getElementById('2103.09099v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.10983">arXiv:2102.10983</a> <span> [<a href="https://arxiv.org/pdf/2102.10983">pdf</a>, <a href="https://arxiv.org/format/2102.10983">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcp.2021.110233">10.1016/j.jcp.2021.110233 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Particle integrator for particle-in-cell simulations of ultra-high intensity laser-plasma interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tangtartharakul%2C+K">Kavin Tangtartharakul</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+G">Guangye Chen</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.10983v1-abstract-short" style="display: inline;"> Particle-in-cell codes are the most widely used simulation tools for kinetic studies of ultra-intense laser-plasma interactions. Using the motion of a single electron in a plane electromagnetic wave as a benchmark problem, we show surprising deterioration of the numerical accuracy of the PIC algorithm with increasing normalized wave amplitude for typical time-step and grid sizes. Two significant s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.10983v1-abstract-full').style.display = 'inline'; document.getElementById('2102.10983v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.10983v1-abstract-full" style="display: none;"> Particle-in-cell codes are the most widely used simulation tools for kinetic studies of ultra-intense laser-plasma interactions. Using the motion of a single electron in a plane electromagnetic wave as a benchmark problem, we show surprising deterioration of the numerical accuracy of the PIC algorithm with increasing normalized wave amplitude for typical time-step and grid sizes. Two significant sources of errors are identified: strong acceleration near stopping points and the temporal field interpolation. We propose adaptive electron sub-cycling coupled with a third order temporal interpolation of the magnetic field and electric field as an efficient remedy that dramatically improves the accuracy of the particle integrator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.10983v1-abstract-full').style.display = 'none'; document.getElementById('2102.10983v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.07211">arXiv:2101.07211</a> <span> [<a href="https://arxiv.org/pdf/2101.07211">pdf</a>, <a href="https://arxiv.org/format/2101.07211">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Towards the Optimisation of Direct Laser Acceleration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hussein%2C+A+E">A. E. Hussein</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a>, <a href="/search/physics?searchtype=author&query=Batson%2C+T">T. Batson</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&query=Craxton%2C+R+S">R. S. Craxton</a>, <a href="/search/physics?searchtype=author&query=Davies%2C+A+S">A. S. Davies</a>, <a href="/search/physics?searchtype=author&query=Froula%2C+D+H">D. H. Froula</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Z">Z. Gong</a>, <a href="/search/physics?searchtype=author&query=Haberberger%2C+D">D. Haberberger</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Y. Ma</a>, <a href="/search/physics?searchtype=author&query=Nilson%2C+P+M">P. M. Nilson</a>, <a href="/search/physics?searchtype=author&query=Theobald%2C+W">W. Theobald</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">T. Wang</a>, <a href="/search/physics?searchtype=author&query=Weichman%2C+K">K. Weichman</a>, <a href="/search/physics?searchtype=author&query=Williams%2C+G+J">G. J. Williams</a>, <a href="/search/physics?searchtype=author&query=Willingale%2C+L">L. Willingale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.07211v1-abstract-short" style="display: inline;"> Experimental measurements using the OMEGA EP laser facility demonstrated direct laser acceleration (DLA) of electron beams to (505 $\pm$ 75) MeV with (140 $\pm$ 30)~nC of charge from a low-density plasma target using a 400 J, picosecond duration pulse. Similar trends of electron energy with target density are also observed in self-consistent two-dimensional particle-in-cell simulations. The intens… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07211v1-abstract-full').style.display = 'inline'; document.getElementById('2101.07211v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.07211v1-abstract-full" style="display: none;"> Experimental measurements using the OMEGA EP laser facility demonstrated direct laser acceleration (DLA) of electron beams to (505 $\pm$ 75) MeV with (140 $\pm$ 30)~nC of charge from a low-density plasma target using a 400 J, picosecond duration pulse. Similar trends of electron energy with target density are also observed in self-consistent two-dimensional particle-in-cell simulations. The intensity of the laser pulse is sufficiently large that the electrons are rapidly expelled from along the laser pulse propagation axis to form a channel. The dominant acceleration mechanism is confirmed to be DLA and the effect of quasi-static channel fields on energetic electron dynamics is examined. A strong channel magnetic field, self-generated by the accelerated electrons, is found to play a comparable role to the transverse electric channel field in defining the boundary of electron motion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07211v1-abstract-full').style.display = 'none'; document.getElementById('2101.07211v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14583">arXiv:2010.14583</a> <span> [<a href="https://arxiv.org/pdf/2010.14583">pdf</a>, <a href="https://arxiv.org/format/2010.14583">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Dominance of $纬$-$纬$ electron-positron pair creation in a plasma driven by high-intensity lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=He%2C+Y">Y. He</a>, <a href="/search/physics?searchtype=author&query=Blackburn%2C+T+G">T. G. Blackburn</a>, <a href="/search/physics?searchtype=author&query=Toncian%2C+T">T. Toncian</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14583v2-abstract-short" style="display: inline;"> Creation of electrons and positrons from light alone is a basic prediction of quantum electrodynamics, but yet to be observed. Here we show that it is possible to create ${>}10^8$ positrons by dual laser irradiation of a structured plasma target, at intensities of $2 \times 10^{22} \mathrm{W}\mathrm{cm}^{-2}$. In contrast to previous work, the pair creation is primarily driven by the linear Breit-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14583v2-abstract-full').style.display = 'inline'; document.getElementById('2010.14583v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14583v2-abstract-full" style="display: none;"> Creation of electrons and positrons from light alone is a basic prediction of quantum electrodynamics, but yet to be observed. Here we show that it is possible to create ${>}10^8$ positrons by dual laser irradiation of a structured plasma target, at intensities of $2 \times 10^{22} \mathrm{W}\mathrm{cm}^{-2}$. In contrast to previous work, the pair creation is primarily driven by the linear Breit-Wheeler process ($纬纬\to e^+ e^-$), not the nonlinear process assumed to be dominant at high intensity, because of the high density of $纬$ rays emitted inside the target. The favorable scaling with laser intensity of the linear process prompts reconsideration of its neglect in simulation studies, but also permits positron jet formation at intensities that are already experimentally feasible. Simulations show that the positrons, confined by a quasistatic plasma magnetic field, may be accelerated by the lasers to energies $> 200$ MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14583v2-abstract-full').style.display = 'none'; document.getElementById('2010.14583v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.03942">arXiv:2009.03942</a> <span> [<a href="https://arxiv.org/pdf/2009.03942">pdf</a>, <a href="https://arxiv.org/format/2009.03942">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0027466">10.1063/5.0027466 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sign reversal in magnetic field amplification by relativistic laser-driven microtube implosions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Weichman%2C+K">K. Weichman</a>, <a href="/search/physics?searchtype=author&query=Murakami%2C+M">M. Murakami</a>, <a href="/search/physics?searchtype=author&query=Robinson%2C+A+P+L">A. P. L. Robinson</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.03942v1-abstract-short" style="display: inline;"> We demonstrate and explain the surprising phenomenon of sign reversal in magnetic field amplification by the laser-driven implosion of a structured target. Relativistically intense laser pulses incident on the outer surface of a microtube target consisting of thin opaque shell surrounding a $渭$m-scale cylindrical void drive an initial ion implosion and later explosion capable of generating and sub… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03942v1-abstract-full').style.display = 'inline'; document.getElementById('2009.03942v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.03942v1-abstract-full" style="display: none;"> We demonstrate and explain the surprising phenomenon of sign reversal in magnetic field amplification by the laser-driven implosion of a structured target. Relativistically intense laser pulses incident on the outer surface of a microtube target consisting of thin opaque shell surrounding a $渭$m-scale cylindrical void drive an initial ion implosion and later explosion capable of generating and subsequently amplifying strong magnetic fields. While the magnetic field generation is enhanced and spatially smoothed by the application of a kilotesla-level seed field, the sign of the generated field does not always follow the sign of the seed field. One unexpected consequence of the amplification process is a reversal in the sign of the amplified magnetic field when, for example, the target outer cross section is changed from square to circular. Using 2D particle-in-cell simulations, we demonstrate that sign reversal is linked to the stability of the surface magnetic field of opposite sign from the seed which arises at the target inner surface during laser irradiation. The stability of the surface magnetic field and consequently the sign of the final amplified field depends sensitively on the target, laser, and seed magnetic field conditions, which could be leveraged to make laser-driven microtube implosions an attractive platform for the study of magnetic fields in high energy density plasma in regimes where sign reversal either is or is not desired. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03942v1-abstract-full').style.display = 'none'; document.getElementById('2009.03942v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.00828">arXiv:2009.00828</a> <span> [<a href="https://arxiv.org/pdf/2009.00828">pdf</a>, <a href="https://arxiv.org/ps/2009.00828">ps</a>, <a href="https://arxiv.org/format/2009.00828">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Generation of megatesla magnetic fields by intense-laser-driven microtube implosions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Murakami%2C+M">M. Murakami</a>, <a href="/search/physics?searchtype=author&query=Honrubia%2C+J+J">J. J. Honrubia</a>, <a href="/search/physics?searchtype=author&query=Weichman%2C+K">K. Weichman</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a>, <a href="/search/physics?searchtype=author&query=Bulanov%2C+S+V">S. V. Bulanov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.00828v1-abstract-short" style="display: inline;"> A microtube implosion driven by ultraintense laser pulses is used to produce ultrahigh magnetic fields. Due to the laser-produced hot electrons with energies of mega-electron volts, cold ions in the inner wall surface implode towards the central axis. By pre-seeding uniform magnetic fields on the kilotesla order, the Lorenz force induces the Larmor gyromotion of the imploding ions and electrons. D… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.00828v1-abstract-full').style.display = 'inline'; document.getElementById('2009.00828v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.00828v1-abstract-full" style="display: none;"> A microtube implosion driven by ultraintense laser pulses is used to produce ultrahigh magnetic fields. Due to the laser-produced hot electrons with energies of mega-electron volts, cold ions in the inner wall surface implode towards the central axis. By pre-seeding uniform magnetic fields on the kilotesla order, the Lorenz force induces the Larmor gyromotion of the imploding ions and electrons. Due to the resultant collective motion of relativistic charged particles around the central axis, strong spin current densities of ~ peta-ampere/cm2 are produced with a few tens of nm size, generating megatesla-order magnetic fields. The underlying physics and important scaling are revealed by particle simulations and a simple analytical model. The concept holds promise to open new frontiers in many branches of fundamental physics and applications in terms of ultrahigh magnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.00828v1-abstract-full').style.display = 'none'; document.getElementById('2009.00828v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.02920">arXiv:2008.02920</a> <span> [<a href="https://arxiv.org/pdf/2008.02920">pdf</a>, <a href="https://arxiv.org/format/2008.02920">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.103.023209">10.1103/PhysRevE.103.023209 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emission of electromagnetic waves as a stopping mechanism for nonlinear collisionless ionization waves in a high-$尾$ regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mao%2C+H">Haotian Mao</a>, <a href="/search/physics?searchtype=author&query=Weichman%2C+K">Kathleen Weichman</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Z">Zheng Gong</a>, <a href="/search/physics?searchtype=author&query=Ditmire%2C+T">Todd Ditmire</a>, <a href="/search/physics?searchtype=author&query=Quevedo%2C+H">Hernan Quevedo</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.02920v3-abstract-short" style="display: inline;"> A high energy density plasma embedded in a neutral gas is able to launch an outward-propagating nonlinear electrostatic ionization wave that traps energetic electrons. The trapping maintains a strong sheath electric field, enabling rapid and long-lasting wave propagation aided by field ionization. Using 1D3V kinetic simulations, we examine the propagation of the ionization wave in the presence of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.02920v3-abstract-full').style.display = 'inline'; document.getElementById('2008.02920v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.02920v3-abstract-full" style="display: none;"> A high energy density plasma embedded in a neutral gas is able to launch an outward-propagating nonlinear electrostatic ionization wave that traps energetic electrons. The trapping maintains a strong sheath electric field, enabling rapid and long-lasting wave propagation aided by field ionization. Using 1D3V kinetic simulations, we examine the propagation of the ionization wave in the presence of a transverse MG-level magnetic field with the objective to identify qualitative changes in a regime where the initial thermal pressure of the plasma exceeds the pressure of the magnetic field ($尾>1$). Our key finding is that the magnetic field stops the propagation by causing the energetic electrons sustaining the wave to lose their energy by emitting an electromagnetic wave. The emission is accompanied by the magnetic field expulsion from the plasma and an increased electron loss from the trapping wave structure. The described effect provides a mechanism mitigating rapid plasma expansion for those applications that involve an embedded plasma, such as high-flux neutron production from laser-irradiated deuterium gas jets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.02920v3-abstract-full').style.display = 'none'; document.getElementById('2008.02920v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 103, 023209 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.08677">arXiv:2007.08677</a> <span> [<a href="https://arxiv.org/pdf/2007.08677">pdf</a>, <a href="https://arxiv.org/format/2007.08677">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/abc496">10.1088/1367-2630/abc496 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong surface magnetic field generation in relativistic short pulse laser-plasma interaction with an applied seed magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Weichman%2C+K">Kathleen Weichman</a>, <a href="/search/physics?searchtype=author&query=Robinson%2C+A+P+L">Alexander P. L. Robinson</a>, <a href="/search/physics?searchtype=author&query=Murakami%2C+M">Masakatsu Murakami</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">Alexey V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.08677v1-abstract-short" style="display: inline;"> While plasma often behaves diamagnetically, we demonstrate that the laser irradiation of a thin opaque target with an embedded target-transverse seed magnetic field $B_\mathrm{seed}$ can trigger the generation of an order-of-magnitude stronger magnetic field with opposite sign at the target surface. Strong surface field generation occurs when the laser pulse is relativistically intense and results… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08677v1-abstract-full').style.display = 'inline'; document.getElementById('2007.08677v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.08677v1-abstract-full" style="display: none;"> While plasma often behaves diamagnetically, we demonstrate that the laser irradiation of a thin opaque target with an embedded target-transverse seed magnetic field $B_\mathrm{seed}$ can trigger the generation of an order-of-magnitude stronger magnetic field with opposite sign at the target surface. Strong surface field generation occurs when the laser pulse is relativistically intense and results from the currents associated with the cyclotron rotation of laser-heated electrons transiting through the target and the compensating current of cold electrons. We derive a predictive scaling for this surface field generation, $B_\mathrm{gen} \sim - 2 蟺B_\mathrm{seed} 螖x/位_0$, where $螖x$ is the target thickness and $位_0$ is the laser wavelength, and conduct 1D and 2D particle-in-cell simulations to confirm its applicability over a wide range of conditions. We additionally demonstrate that both the seed and surface-generated magnetic fields can have a strong impact on application-relevant plasma dynamics, for example substantially altering the overall expansion and ion acceleration from a $渭$m-thick laser-irradiated target with a kilotesla-level seed magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08677v1-abstract-full').style.display = 'none'; document.getElementById('2007.08677v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.12435">arXiv:2005.12435</a> <span> [<a href="https://arxiv.org/pdf/2005.12435">pdf</a>, <a href="https://arxiv.org/format/2005.12435">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0008018">10.1063/5.0008018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Birefringence in thermally anisotropic relativistic plasmas and its impact on laser-plasma interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">A. Arefiev</a>, <a href="/search/physics?searchtype=author&query=Stark%2C+D">D. Stark</a>, <a href="/search/physics?searchtype=author&query=Toncian%2C+T">T. Toncian</a>, <a href="/search/physics?searchtype=author&query=Murakami%2C+M">M. Murakami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.12435v2-abstract-short" style="display: inline;"> One of the paradigm-shifting phenomena triggered in laser-plasma interactions at relativistic intensities is the so-called relativistic transparency. As the electrons become heated by the laser to relativistic energies, the plasma becomes transparent to the laser light even though the plasma density is sufficiently high to reflect the laser pulse in the non-relativistic case. This paper highlights… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12435v2-abstract-full').style.display = 'inline'; document.getElementById('2005.12435v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.12435v2-abstract-full" style="display: none;"> One of the paradigm-shifting phenomena triggered in laser-plasma interactions at relativistic intensities is the so-called relativistic transparency. As the electrons become heated by the laser to relativistic energies, the plasma becomes transparent to the laser light even though the plasma density is sufficiently high to reflect the laser pulse in the non-relativistic case. This paper highlights the impact that relativistic transparency can have on laser-matter interactions by focusing on a collective phenomenon that is associated with the onset of relativistic transparency: plasma birefringence in thermally anisotropic relativistic plasmas. The optical properties of such a system become dependent on the polarization of light, and this can serve as the basis for plasma-based optical devices or novel diagnostic capabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12435v2-abstract-full').style.display = 'none'; document.getElementById('2005.12435v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.01409">arXiv:2005.01409</a> <span> [<a href="https://arxiv.org/pdf/2005.01409">pdf</a>, <a href="https://arxiv.org/ps/2005.01409">ps</a>, <a href="https://arxiv.org/format/2005.01409">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Quantum anti-quenching of radiation from laser-driven structured plasma channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mackenroth%2C+F">F. Mackenroth</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Z">Z. Gong</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.01409v1-abstract-short" style="display: inline;"> We demonstrate that in the interaction of a high-power laser pulse with a structured solid-density plasma-channel, clear quantum signatures of stochastic radiation emission manifest, disclosing a novel avenue to studying the quantized nature of photon emission. In contrast to earlier findings we observe that the total radiated energy for very short interaction times, achieved by studying thin plas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.01409v1-abstract-full').style.display = 'inline'; document.getElementById('2005.01409v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.01409v1-abstract-full" style="display: none;"> We demonstrate that in the interaction of a high-power laser pulse with a structured solid-density plasma-channel, clear quantum signatures of stochastic radiation emission manifest, disclosing a novel avenue to studying the quantized nature of photon emission. In contrast to earlier findings we observe that the total radiated energy for very short interaction times, achieved by studying thin plasma channel targets, is significantly larger in a quantum radiation model as compared to a calculation including classical radiation reaction, i.e., we observe quantum anti-quenching. By means of a detailed analytical analysis and a refined test particle model, corroborated by a full kinetic plasma simulation, we demonstrate that this counter-intuitive behavior is due to the constant supply of energy to the setup through the driving laser. We comment on an experimental realization of the proposed setup, feasible at upcoming high-intensity laser facilities, since the required thin targets can be manufactured and the driving laser pulses provided with existing technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.01409v1-abstract-full').style.display = 'none'; document.getElementById('2005.01409v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.00320">arXiv:2003.00320</a> <span> [<a href="https://arxiv.org/pdf/2003.00320">pdf</a>, <a href="https://arxiv.org/format/2003.00320">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Electron confinement by laser-driven azimuthal magnetic fields during direct laser acceleration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Z">Zheng Gong</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.00320v2-abstract-short" style="display: inline;"> A laser-driven azimuthal plasma magnetic field is known to facilitate electron energy gain from the irradiating laser pulse. The enhancement is due to changes in the orientation between the laser electric field and electron velocity caused by magnetic field deflections. Transverse electron confinement is critical for realizing this concept experimentally. We find that the phase velocity of the las… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00320v2-abstract-full').style.display = 'inline'; document.getElementById('2003.00320v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.00320v2-abstract-full" style="display: none;"> A laser-driven azimuthal plasma magnetic field is known to facilitate electron energy gain from the irradiating laser pulse. The enhancement is due to changes in the orientation between the laser electric field and electron velocity caused by magnetic field deflections. Transverse electron confinement is critical for realizing this concept experimentally. We find that the phase velocity of the laser pulse has a profound impact on the transverse size of electron trajectories. The transverse size remains constant below a threshold energy that depends on the degree of the superluminosity and it increases with the electron energy above the threshold. This increase can cause electron losses in tightly focused laser pulses. We show using 3D particle-in-cell simulations that the electron energy gain can be significantly increased by increasing laser power at fixed intensity due to the increased electron confinement. This finding makes a strong case for designing experiments at multi-PW laser facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00320v2-abstract-full').style.display = 'none'; document.getElementById('2003.00320v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.06117">arXiv:2001.06117</a> <span> [<a href="https://arxiv.org/pdf/2001.06117">pdf</a>, <a href="https://arxiv.org/ps/2001.06117">ps</a>, <a href="https://arxiv.org/format/2001.06117">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Generation of focusing ion beams by magnetized electron sheath acceleration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Weichman%2C+K">K. Weichman</a>, <a href="/search/physics?searchtype=author&query=Santos%2C+J+J">J. J. Santos</a>, <a href="/search/physics?searchtype=author&query=Fujioka%2C+S">S. Fujioka</a>, <a href="/search/physics?searchtype=author&query=Toncian%2C+T">T. Toncian</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.06117v1-abstract-short" style="display: inline;"> We present the first 3D particle-in-cell simulations of laser driven sheath-based ion acceleration in a kilotesla-level applied magnetic field. The applied magnetic field creates two distinct stages in the acceleration process associated with the time-evolving magnetization of the hot electron sheath and results in a focusing, magnetic field-directed ion source of multiple species with strongly en… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06117v1-abstract-full').style.display = 'inline'; document.getElementById('2001.06117v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.06117v1-abstract-full" style="display: none;"> We present the first 3D particle-in-cell simulations of laser driven sheath-based ion acceleration in a kilotesla-level applied magnetic field. The applied magnetic field creates two distinct stages in the acceleration process associated with the time-evolving magnetization of the hot electron sheath and results in a focusing, magnetic field-directed ion source of multiple species with strongly enhanced energy and number. The benefits of adding the magnetic field are downplayed in 2D simulations, which strongly suggests the feasibility of observing magnetic field effects under experimentally relevant conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06117v1-abstract-full').style.display = 'none'; document.getElementById('2001.06117v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.06115">arXiv:2001.06115</a> <span> [<a href="https://arxiv.org/pdf/2001.06115">pdf</a>, <a href="https://arxiv.org/format/2001.06115">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ab9ce8">10.1088/1367-2630/ab9ce8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic field amplification in a laser-irradiated thin foil by return current electrons carrying orbital angular momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Y. Shi</a>, <a href="/search/physics?searchtype=author&query=Weichman%2C+K">K. Weichman</a>, <a href="/search/physics?searchtype=author&query=Kingham%2C+R+J">R. J. Kingham</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.06115v1-abstract-short" style="display: inline;"> Magnetized high energy density physics offers new opportunities for observing magnetic field-related physics for the first time in the laser-plasma context. We focus on one such phenomenon, which is the ability of a laser-irradiated magnetized plasma to amplify a seed magnetic field. We performed a series of fully kinetic 3D simulations of magnetic field amplification by a picosecond-scale relativ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06115v1-abstract-full').style.display = 'inline'; document.getElementById('2001.06115v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.06115v1-abstract-full" style="display: none;"> Magnetized high energy density physics offers new opportunities for observing magnetic field-related physics for the first time in the laser-plasma context. We focus on one such phenomenon, which is the ability of a laser-irradiated magnetized plasma to amplify a seed magnetic field. We performed a series of fully kinetic 3D simulations of magnetic field amplification by a picosecond-scale relativistic laser pulse of intensity $4.2\times 10^{18}$ W/cm$^2$ incident on a thin foil. We observe axial magnetic field amplification from an initial 0.1 kT seed to 1.5 kT over a volume of several cubic microns, persisting hundreds of femtoseconds longer than the laser pulse duration. The magnetic field amplification is driven by electrons in the return current gaining favorable orbital angular momentum from the seed magnetic field. This mechanism is robust to laser polarization and delivers order-of-magnitude amplification over a range of simulation parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.06115v1-abstract-full').style.display = 'none'; document.getElementById('2001.06115v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.00957">arXiv:2001.00957</a> <span> [<a href="https://arxiv.org/pdf/2001.00957">pdf</a>, <a href="https://arxiv.org/format/2001.00957">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5144449">10.1063/1.5144449 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relativistic Plasma Physics in Supercritical Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+P">P. Zhang</a>, <a href="/search/physics?searchtype=author&query=Bulanov%2C+S+S">S. S. Bulanov</a>, <a href="/search/physics?searchtype=author&query=Seipt%2C+D">D. Seipt</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a>, <a href="/search/physics?searchtype=author&query=Thomas%2C+A+G+R">A. G. R. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.00957v2-abstract-short" style="display: inline;"> Since the invention of chirped pulse amplification, which was recognized by a Nobel prize in physics in 2018, there has been a continuing increase in available laser intensity. Combined with advances in our understanding of the kinetics of relativistic plasma, studies of laser-plasma interactions are entering a new regime where the physics of relativistic plasmas is strongly affected by strong-fie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00957v2-abstract-full').style.display = 'inline'; document.getElementById('2001.00957v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.00957v2-abstract-full" style="display: none;"> Since the invention of chirped pulse amplification, which was recognized by a Nobel prize in physics in 2018, there has been a continuing increase in available laser intensity. Combined with advances in our understanding of the kinetics of relativistic plasma, studies of laser-plasma interactions are entering a new regime where the physics of relativistic plasmas is strongly affected by strong-field quantum electrodynamics (QED) processes, including hard photon emission and electron-positron ($e^+$-$e^-$) pair production. This coupling of quantum emission processes and relativistic collective particle dynamics can result in dramatically new plasma physics phenomena, such as the generation of dense $e^+$-$e^-$ pair plasma from near vacuum, complete laser energy absorption by QED processes or the stopping of an ultrarelativistic electron beam, which could penetrate a cm of lead, by a hair's breadth of laser light. In addition to being of fundamental interest, it is crucial to study this new regime to understand the next generation of ultra-high intensity laser-matter experiments and their resulting applications, such as high energy ion, electron, positron, and photon sources for fundamental physics studies, medical radiotherapy, and next generation radiography for homeland security and industry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00957v2-abstract-full').style.display = 'none'; document.getElementById('2001.00957v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited perspective article; 17 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Plasmas 27, 050601 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.12638">arXiv:1912.12638</a> <span> [<a href="https://arxiv.org/pdf/1912.12638">pdf</a>, <a href="https://arxiv.org/format/1912.12638">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Technical Design Report for the PANDA Endcap Disc DIRC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Panda+Collaboration"> Panda Collaboration</a>, <a href="/search/physics?searchtype=author&query=Davi%2C+F">F. Davi</a>, <a href="/search/physics?searchtype=author&query=Erni%2C+W">W. Erni</a>, <a href="/search/physics?searchtype=author&query=Krusche%2C+B">B. Krusche</a>, <a href="/search/physics?searchtype=author&query=Steinacher%2C+M">M. Steinacher</a>, <a href="/search/physics?searchtype=author&query=Walford%2C+N">N. Walford</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">H. Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Z. Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+B">B. Liu</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+X">X. Shen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">C. Wang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+J">J. Zhao</a>, <a href="/search/physics?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/physics?searchtype=author&query=Erlen%2C+T">T. Erlen</a>, <a href="/search/physics?searchtype=author&query=Feldbauer%2C+F">F. Feldbauer</a>, <a href="/search/physics?searchtype=author&query=Fink%2C+M">M. Fink</a>, <a href="/search/physics?searchtype=author&query=Freudenreich%2C+V">V. Freudenreich</a>, <a href="/search/physics?searchtype=author&query=Fritsch%2C+M">M. Fritsch</a>, <a href="/search/physics?searchtype=author&query=Heinsius%2C+F+H">F. H. Heinsius</a>, <a href="/search/physics?searchtype=author&query=Held%2C+T">T. Held</a>, <a href="/search/physics?searchtype=author&query=Holtmann%2C+T">T. Holtmann</a>, <a href="/search/physics?searchtype=author&query=Keshk%2C+I">I. Keshk</a>, <a href="/search/physics?searchtype=author&query=Koch%2C+H">H. Koch</a>, <a href="/search/physics?searchtype=author&query=Kopf%2C+B">B. Kopf</a>, <a href="/search/physics?searchtype=author&query=Kuhlmann%2C+M">M. Kuhlmann</a> , et al. (441 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.12638v1-abstract-short" style="display: inline;"> PANDA (anti-Proton ANnihiliation at DArmstadt) is planned to be one of the four main experiments at the future international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. It is going to address fundamental questions of hadron physics and quantum chromodynamics using cooled antiproton beams with a high intensity and and momenta between 1.5 and 15 GeV/c.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12638v1-abstract-full').style.display = 'inline'; document.getElementById('1912.12638v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.12638v1-abstract-full" style="display: none;"> PANDA (anti-Proton ANnihiliation at DArmstadt) is planned to be one of the four main experiments at the future international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. It is going to address fundamental questions of hadron physics and quantum chromodynamics using cooled antiproton beams with a high intensity and and momenta between 1.5 and 15 GeV/c. PANDA is designed to reach a maximum luminosity of 2x10^32 cm^2 s. Most of the physics programs require an excellent particle identification (PID). The PID of hadronic states at the forward endcap of the target spectrometer will be done by a fast and compact Cherenkov detector that uses the detection of internally reflected Cherenkov light (DIRC) principle. It is designed to cover the polar angle range from 5掳 to 22掳 and to provide a separation power for the separation of charged pions and kaons up to 3 standard deviations (s.d.) for particle momenta up to 4 GeV/c in order to cover the important particle phase space. This document describes the technical design and the expected performance of the novel PANDA Disc DIRC detector that has not been used in any other high energy physics experiment (HEP) before. The performance has been studied with Monte-Carlo simulations and various beam tests at DESY and CERN. The final design meets all PANDA requirements and guarantees suffcient safety margins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.12638v1-abstract-full').style.display = 'none'; document.getElementById('1912.12638v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">TDR for Panda/Fair to be published</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.02196">arXiv:1910.02196</a> <span> [<a href="https://arxiv.org/pdf/1910.02196">pdf</a>, <a href="https://arxiv.org/format/1910.02196">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.101.043201">10.1103/PhysRevE.101.043201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy gain by laser-accelerated electrons in a strong magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">A. Arefiev</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Z">Z. Gong</a>, <a href="/search/physics?searchtype=author&query=Robinson%2C+A+P+L">A. P. L. Robinson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.02196v1-abstract-short" style="display: inline;"> The manuscript deals with electron acceleration by a laser pulse in a plasma with a static uniform magnetic field $B_*$. The laser pulse propagates perpendicular to the magnetic field lines with the polarization chosen such that $({\bf{E}}_{laser} \cdot {\bf{B}}_*) = 0$. The focus of the work is on the electrons with an appreciable initial transverse momentum that are unable to gain significant en… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02196v1-abstract-full').style.display = 'inline'; document.getElementById('1910.02196v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.02196v1-abstract-full" style="display: none;"> The manuscript deals with electron acceleration by a laser pulse in a plasma with a static uniform magnetic field $B_*$. The laser pulse propagates perpendicular to the magnetic field lines with the polarization chosen such that $({\bf{E}}_{laser} \cdot {\bf{B}}_*) = 0$. The focus of the work is on the electrons with an appreciable initial transverse momentum that are unable to gain significant energy from the laser in the absence of the magnetic field due to strong dephasing. It is shown that the magnetic field can initiate an energy increase by rotating such an electron, so that its momentum becomes directed forward. The energy gain continues well beyond this turning point where the dephasing drops to a very small value. In contrast to the case of purely vacuum acceleration, the electron experiences a rapid energy increases with the analytically derived maximum energy gain dependent on the strength of the magnetic field and the phase velocity of the wave. The energy enhancement by the magnetic field can be useful at high laser amplitudes, $a_0 \gg 1$, where the acceleration similar to that in the vacuum is unable to produce energetic electrons over just tens of microns. A strong magnetic field helps leverage an increase in $a_0$ without a significant increase in the interaction length. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02196v1-abstract-full').style.display = 'none'; document.getElementById('1910.02196v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 101, 043201 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.08709">arXiv:1909.08709</a> <span> [<a href="https://arxiv.org/pdf/1909.08709">pdf</a>, <a href="https://arxiv.org/format/1909.08709">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5115993">10.1063/1.5115993 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extreme Nonlinear Dynamics in Vacuum Laser Acceleration with a Crossed Beam Configuration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Robinson%2C+A+P+L">Alexander P. L. Robinson</a>, <a href="/search/physics?searchtype=author&query=Tangtartharakul%2C+K">Kavin Tangtartharakul</a>, <a href="/search/physics?searchtype=author&query=Weichman%2C+K">Kathleen Weichman</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">Alexey V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.08709v1-abstract-short" style="display: inline;"> A relatively simple model problem where a single electron moves in two relativistically-strong obliquely intersecting plane wave-packets is studied using a number of different numerical solvers. It is shown that, in general, even the most advanced solvers are unable to obtain converged solutions for more than about 100 fs in contrast to the single plane-wave problem, and that some basic metrics of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08709v1-abstract-full').style.display = 'inline'; document.getElementById('1909.08709v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.08709v1-abstract-full" style="display: none;"> A relatively simple model problem where a single electron moves in two relativistically-strong obliquely intersecting plane wave-packets is studied using a number of different numerical solvers. It is shown that, in general, even the most advanced solvers are unable to obtain converged solutions for more than about 100 fs in contrast to the single plane-wave problem, and that some basic metrics of the orbit show enormous sensitivity to the initial conditions. At a bare minimum this indicates an unusual degree of non-linearity, and may well indicate that the dynamics of this system are chaotic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08709v1-abstract-full').style.display = 'none'; document.getElementById('1909.08709v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.06467">arXiv:1908.06467</a> <span> [<a href="https://arxiv.org/pdf/1908.06467">pdf</a>, <a href="https://arxiv.org/format/1908.06467">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.13.054024">10.1103/PhysRevApplied.13.054024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collimated gamma-ray beams from structured laser-irradiated targets -- how to increase the efficiency without increasing the laser intensity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jansen%2C+O">O. Jansen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">T. Wang</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Z">Z. Gong</a>, <a href="/search/physics?searchtype=author&query=Ribeyre%2C+X">X. Ribeyre</a>, <a href="/search/physics?searchtype=author&query=d%27Humi%C3%A8res%2C+E">E. d'Humi猫res</a>, <a href="/search/physics?searchtype=author&query=Stutman%2C+D">D. Stutman</a>, <a href="/search/physics?searchtype=author&query=Toncian%2C+T">T. Toncian</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">A. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.06467v1-abstract-short" style="display: inline;"> Using three-dimensional kinetic simulations, we examine the emission of collimated gamma-ray beams from structured laser-irradiated targets with a pre-filled cylindrical channel. The channel guides the incident laser pulse, enabling generation of a slowly evolving azimuthal plasma magnetic field that serves two key functions: to enhance laser-driven electron acceleration and to induce emission of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.06467v1-abstract-full').style.display = 'inline'; document.getElementById('1908.06467v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.06467v1-abstract-full" style="display: none;"> Using three-dimensional kinetic simulations, we examine the emission of collimated gamma-ray beams from structured laser-irradiated targets with a pre-filled cylindrical channel. The channel guides the incident laser pulse, enabling generation of a slowly evolving azimuthal plasma magnetic field that serves two key functions: to enhance laser-driven electron acceleration and to induce emission of gamma-rays by the energetic electrons. Our main finding is that the conversion efficiency of the laser energy into a beam of gamma-rays ($5^{\circ}$ opening angle) can be significantly increased without increasing the laser intensity by utilizing channels with an optimal density. The conversion efficiency into multi-MeV photons increases roughly linearly with the incident laser power $P$, as we increase $P$ from 1 PW to 4 PW while keeping the laser peak intensity fixed at $5 \times 10^{22}$ W/cm$^2$. This scaling is achieved by using an optimal range of plasma densities in the channel between 10 and $20 n_{cr}$, where $n_{cr}$ is the classical cutoff density for electromagnetic waves. The corresponding number of photons scales as $P^2$. One application that directly benefits from such a strong scaling is the pair production via two-photon collisions, with the number of generated pairs increasing as $P^4$ at fixed laser intensity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.06467v1-abstract-full').style.display = 'none'; document.getElementById('1908.06467v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 13, 054024 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.11975">arXiv:1906.11975</a> <span> [<a href="https://arxiv.org/pdf/1906.11975">pdf</a>, <a href="https://arxiv.org/ps/1906.11975">ps</a>, <a href="https://arxiv.org/format/1906.11975">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Laser reflection as a catalyst for direct laser acceleration in multipicosecond laser-plasma interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Weichman%2C+K">Kathleen Weichman</a>, <a href="/search/physics?searchtype=author&query=Robinson%2C+A+P+L">Alexander P. L. Robinson</a>, <a href="/search/physics?searchtype=author&query=Beg%2C+F+N">Farhat N. Beg</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">Alexey V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.11975v3-abstract-short" style="display: inline;"> We demonstrate that laser reflection acts as a catalyst for superponderomotive electron production in the preplasma formed by relativistic multipicosecond lasers incident on solid density targets. In 1D particle-in-cell simulations, high energy electron production proceeds via two stages of direct laser acceleration, an initial stochastic backward stage, and a final non-stochastic forward stage. T… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11975v3-abstract-full').style.display = 'inline'; document.getElementById('1906.11975v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.11975v3-abstract-full" style="display: none;"> We demonstrate that laser reflection acts as a catalyst for superponderomotive electron production in the preplasma formed by relativistic multipicosecond lasers incident on solid density targets. In 1D particle-in-cell simulations, high energy electron production proceeds via two stages of direct laser acceleration, an initial stochastic backward stage, and a final non-stochastic forward stage. The initial stochastic stage, driven by the reflected laser pulse, provides the pre-acceleration needed to enable the final stage to be non-stochastic. Energy gain in the electrostatic potential, which has been frequently considered to enhance stochastic heating, is only of secondary importance. The mechanism underlying the production of high energy electrons by laser pulses incident on solid density targets is of direct relevance to applications involving multipicosecond laser-plasma interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.11975v3-abstract-full').style.display = 'none'; document.getElementById('1906.11975v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.02152">arXiv:1905.02152</a> <span> [<a href="https://arxiv.org/pdf/1905.02152">pdf</a>, <a href="https://arxiv.org/format/1905.02152">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Strong energy enhancement in a laser-driven plasma-based accelerator through stochastic friction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gong%2C+Z">Z. Gong</a>, <a href="/search/physics?searchtype=author&query=Mackenroth%2C+F">F. Mackenroth</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+X+Q">X. Q. Yan</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.02152v1-abstract-short" style="display: inline;"> Conventionally, friction is understood as an efficient dissipation mechanism depleting a physical system of energy as an unavoidable feature of any realistic device involving moving parts, e.g., in mechanical brakes. In this work, we demonstrate that this intuitive picture loses validity in nonlinear quantum electrodynamics, exemplified in a scenario where spatially random friction counter-intuiti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02152v1-abstract-full').style.display = 'inline'; document.getElementById('1905.02152v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.02152v1-abstract-full" style="display: none;"> Conventionally, friction is understood as an efficient dissipation mechanism depleting a physical system of energy as an unavoidable feature of any realistic device involving moving parts, e.g., in mechanical brakes. In this work, we demonstrate that this intuitive picture loses validity in nonlinear quantum electrodynamics, exemplified in a scenario where spatially random friction counter-intuitively results in a highly directional energy flow. This peculiar behavior is caused by radiation friction, i.e., the energy loss of an accelerated charge due to the emission of radiation. We demonstrate analytically and numerically how radiation friction can enhance the performance of a specific class of laser-driven particle accelerators. We find the unexpected directional energy boost to be due to the particles' energy being reduced through friction whence the driving laser can accelerate them more efficiently. In a quantitative case we find the energy of the laser-accelerated particles to be enhanced by orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02152v1-abstract-full').style.display = 'none'; document.getElementById('1905.02152v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.13218">arXiv:1904.13218</a> <span> [<a href="https://arxiv.org/pdf/1904.13218">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Laser-Plasma Interactions Enabled by Emerging Technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Palastro%2C+J+P">J. P. Palastro</a>, <a href="/search/physics?searchtype=author&query=Albert%2C+F">F. Albert</a>, <a href="/search/physics?searchtype=author&query=Albright%2C+B">B. Albright</a>, <a href="/search/physics?searchtype=author&query=Antonsen%2C+T+M">T. M. Antonsen Jr.</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">A. Arefiev</a>, <a href="/search/physics?searchtype=author&query=Bates%2C+J">J. Bates</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+R">R. Berger</a>, <a href="/search/physics?searchtype=author&query=Bromage%2C+J">J. Bromage</a>, <a href="/search/physics?searchtype=author&query=Campbell%2C+M">M. Campbell</a>, <a href="/search/physics?searchtype=author&query=Chapman%2C+T">T. Chapman</a>, <a href="/search/physics?searchtype=author&query=Chowdhury%2C+E">E. Chowdhury</a>, <a href="/search/physics?searchtype=author&query=Cola%C3%AFtis%2C+A">A. Cola茂tis</a>, <a href="/search/physics?searchtype=author&query=Dorrer%2C+C">C. Dorrer</a>, <a href="/search/physics?searchtype=author&query=Esarey%2C+E">E. Esarey</a>, <a href="/search/physics?searchtype=author&query=Fi%C3%BAza%2C+F">F. Fi煤za</a>, <a href="/search/physics?searchtype=author&query=Fisch%2C+N">N. Fisch</a>, <a href="/search/physics?searchtype=author&query=Follett%2C+R">R. Follett</a>, <a href="/search/physics?searchtype=author&query=Froula%2C+D">D. Froula</a>, <a href="/search/physics?searchtype=author&query=Glenzer%2C+S">S. Glenzer</a>, <a href="/search/physics?searchtype=author&query=Gordon%2C+D">D. Gordon</a>, <a href="/search/physics?searchtype=author&query=Haberberger%2C+D">D. Haberberger</a>, <a href="/search/physics?searchtype=author&query=Hegelich%2C+B+M">B. M. Hegelich</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+T">T. Jones</a>, <a href="/search/physics?searchtype=author&query=Kaganovich%2C+D">D. Kaganovich</a>, <a href="/search/physics?searchtype=author&query=Krushelnick%2C+K">K. Krushelnick</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.13218v1-abstract-short" style="display: inline;"> An overview from the past and an outlook for the future of fundamental laser-plasma interactions research enabled by emerging laser systems. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.13218v1-abstract-full" style="display: none;"> An overview from the past and an outlook for the future of fundamental laser-plasma interactions research enabled by emerging laser systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.13218v1-abstract-full').style.display = 'none'; document.getElementById('1904.13218v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.09428">arXiv:1901.09428</a> <span> [<a href="https://arxiv.org/pdf/1901.09428">pdf</a>, <a href="https://arxiv.org/format/1901.09428">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/ab2499">10.1088/1361-6587/ab2499 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of ion dynamics on laser-driven electron acceleration and gamma-ray emission in structured targets at ultra-high laser intensities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+T">T. Wang</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Z">Z. Gong</a>, <a href="/search/physics?searchtype=author&query=Chin%2C+K">K. Chin</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.09428v2-abstract-short" style="display: inline;"> We examine the impact of the ion dynamics on laser-driven electron acceleration in an initially empty channel irradiated by an ultra-high intensity laser pulse with $I > 10^{22}$ W/cm$^2$. The negative charge of the accelerated electrons inside the channel generates a quasi-static transverse electric field that causes gradual ion expansion into the channel. Once the ions fill the channel, the pinc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.09428v2-abstract-full').style.display = 'inline'; document.getElementById('1901.09428v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.09428v2-abstract-full" style="display: none;"> We examine the impact of the ion dynamics on laser-driven electron acceleration in an initially empty channel irradiated by an ultra-high intensity laser pulse with $I > 10^{22}$ W/cm$^2$. The negative charge of the accelerated electrons inside the channel generates a quasi-static transverse electric field that causes gradual ion expansion into the channel. Once the ions fill the channel, the pinching force from the quasi-static magnetic field generated by the accelerated electrons becomes uncompensated due to the reduction of the quasi-static transverse electric field. As a result there are two distinct populations of accelerated electrons: those that accelerate ahead of the expanding ion front while moving predominantly forward and those that accelerate in the presence of the ions in the channel while performing strong transverse oscillations. The ions diminish the role of the longitudinal laser electric field, making the transverse electric field the dominant contributor to the electron energy. The ion expansion also has a profound impact on the gamma-ray emission, causing it to become volumetrically distributed while reducing the total emitted energy. We formulate a criterion for the laser pulse duration that must be satisfied in order to minimize the undesired effect from the ions and to allow the electrons to remain highly collimated. \textcolor{black}{We demonstrate the predictive capability of this criterion by applying it to assess the impact of a given pre-pulse on ion expansion. Our results provide a} guideline for future experiments at multi-PW laser facilities with ultra-high intensities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.09428v2-abstract-full').style.display = 'none'; document.getElementById('1901.09428v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 figures, 14 pages,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.07965">arXiv:1901.07965</a> <span> [<a href="https://arxiv.org/pdf/1901.07965">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.22.093401">10.1103/PhysRevAccelBeams.22.093401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiation rebound and Quantum Splash in Electron-Laser Collision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gong%2C+Z">Z. Gong</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+R+H">R. H. Hu</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+J+Q">J. Q. Yu</a>, <a href="/search/physics?searchtype=author&query=Shou%2C+Y+R">Y. R. Shou</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+X+Q">X. Q. Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.07965v2-abstract-short" style="display: inline;"> The radiation reaction (RR) is expected to play a critical role in light-matter interactions at extreme intensity. Utilizing the theoretical analyses and three-dimensional (3D) numerical simulations, we demonstrate that electron reflection, induced by the RR in a head-on collision with an intense laser pulse, can provide pronounced signatures to discern the classical and quantum RR. In the classic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.07965v2-abstract-full').style.display = 'inline'; document.getElementById('1901.07965v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.07965v2-abstract-full" style="display: none;"> The radiation reaction (RR) is expected to play a critical role in light-matter interactions at extreme intensity. Utilizing the theoretical analyses and three-dimensional (3D) numerical simulations, we demonstrate that electron reflection, induced by the RR in a head-on collision with an intense laser pulse, can provide pronounced signatures to discern the classical and quantum RR. In the classical regime, there is a precipitous threshold of laser intensity to achieve the whole electron bunch rebound. However, this threshold becomes a gradual transition in the quantum regime, where the electron bunch is quasi-isotropically scattered by the laser pulse and this process resembles a water splash. Leveraged on the derived dependence of classical radiation rebound on the parameters of laser pulses and electron bunches, a practical detecting method is proposed to distinguish the quantum discrete recoil and classical continuous RR force. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.07965v2-abstract-full').style.display = 'none'; document.getElementById('1901.07965v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Accel. Beams 22, 093401 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.05209">arXiv:1812.05209</a> <span> [<a href="https://arxiv.org/pdf/1812.05209">pdf</a>, <a href="https://arxiv.org/format/1812.05209">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5110407">10.1063/1.5110407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct laser acceleration of electrons by tightly focused laser pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tianhong Wang</a>, <a href="/search/physics?searchtype=author&query=Khudik%2C+V">Vladimir Khudik</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a>, <a href="/search/physics?searchtype=author&query=Shvets%2C+G">Gennady Shvets</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.05209v1-abstract-short" style="display: inline;"> We present an analytical theory that reveals the importance of the longitudinal laser electric field in the resonant acceleration of relativistic electrons by the tightly confined laser beam. It is shown that this field always counterworks to the laser transverse component and effectively decreases the final energy gain of electrons through direct laser acceleration mechanism. This effect is demon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05209v1-abstract-full').style.display = 'inline'; document.getElementById('1812.05209v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.05209v1-abstract-full" style="display: none;"> We present an analytical theory that reveals the importance of the longitudinal laser electric field in the resonant acceleration of relativistic electrons by the tightly confined laser beam. It is shown that this field always counterworks to the laser transverse component and effectively decreases the final energy gain of electrons through direct laser acceleration mechanism. This effect is demonstrated by carrying out the particle-in-cell simulations in the setup where the wakefield in the plasma bubble is compensated by the longitudinal laser electric field experienced by the accelerated electrons. The derived scalings and estimates are in good agreement with numerical simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05209v1-abstract-full').style.display = 'none'; document.getElementById('1812.05209v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.00425">arXiv:1811.00425</a> <span> [<a href="https://arxiv.org/pdf/1811.00425">pdf</a>, <a href="https://arxiv.org/format/1811.00425">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.102.013206">10.1103/PhysRevE.102.013206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Forward sliding-swing acceleration: electron acceleration by high-intensity lasers in strong plasma magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gong%2C+Z">Z. Gong</a>, <a href="/search/physics?searchtype=author&query=Mackenroth%2C+F">F. Mackenroth</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">T. Wang</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+X+Q">X. Q. Yan</a>, <a href="/search/physics?searchtype=author&query=Toncian%2C+T">T. Toncian</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.00425v3-abstract-short" style="display: inline;"> A high-intensity laser beam propagating through a dense plasma drives a strong current that robustly sustains a strong quasi-static Mega Tesla-level azimuthal magnetic field. The transverse laser field efficiently accelerates electrons in the presence of such a field that confines the transverse motion and deflects the electrons in the forward direction, establishing the novel forward-sliding swin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00425v3-abstract-full').style.display = 'inline'; document.getElementById('1811.00425v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.00425v3-abstract-full" style="display: none;"> A high-intensity laser beam propagating through a dense plasma drives a strong current that robustly sustains a strong quasi-static Mega Tesla-level azimuthal magnetic field. The transverse laser field efficiently accelerates electrons in the presence of such a field that confines the transverse motion and deflects the electrons in the forward direction, establishing the novel forward-sliding swing acceleration mechanism. Its advantage is a threshold rather than resonant behavior, accelerating electrons to high energies for sufficiently strong laser-driven currents. We study the electrons' dynamics by a simplified model analytically, specifically deriving simple relations between the current, the particles' initial transverse momenta and the laser's field strength classifying the energy gain. We confirm the model's predictions by numerical simulations, indicating Mega ampere-level threshold currents and energy gains two orders of magnitude higher than achievable without the magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00425v3-abstract-full').style.display = 'none'; document.getElementById('1811.00425v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Letter: 6 pages, 3 figures; Supplemental Material: 5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 102, 013206 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.02398">arXiv:1810.02398</a> <span> [<a href="https://arxiv.org/pdf/1810.02398">pdf</a>, <a href="https://arxiv.org/format/1810.02398">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.98.053202">10.1103/PhysRevE.98.053202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-angle Deflection of the Energetic Electrons by a Voluminous Magnetic Structure in Near-normal Intense Laser-plasma Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Peebles%2C+J">J. Peebles</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">S. Zhang</a>, <a href="/search/physics?searchtype=author&query=McGuffey%2C+C">C. McGuffey</a>, <a href="/search/physics?searchtype=author&query=Spinks%2C+M">M. Spinks</a>, <a href="/search/physics?searchtype=author&query=Gordon%2C+J">J. Gordon</a>, <a href="/search/physics?searchtype=author&query=Gaul%2C+E+W">E. W. Gaul</a>, <a href="/search/physics?searchtype=author&query=Dyer%2C+G">G. Dyer</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&query=Donovan%2C+M+E">M. E. Donovan</a>, <a href="/search/physics?searchtype=author&query=Ditmire%2C+T">T. Ditmire</a>, <a href="/search/physics?searchtype=author&query=Park%2C+J">J. Park</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&query=McLean%2C+H+S">H. S. McLean</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+M+S">M. S. Wei</a>, <a href="/search/physics?searchtype=author&query=Krasheninnikov%2C+S+I">S. I. Krasheninnikov</a>, <a href="/search/physics?searchtype=author&query=Beg%2C+F+N">F. N. Beg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.02398v1-abstract-short" style="display: inline;"> The physics governing electron acceleration by a relativistically intense laser are not confined to the critical density surface, they also pervade the sub-critical plasma in front of the target. Here, particles can gain many times the ponderomotive energy from the overlying laser, and strong fields can grow. Experiments using a high contrast laser and a prescribed laser pre-pulse demonstrate that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02398v1-abstract-full').style.display = 'inline'; document.getElementById('1810.02398v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.02398v1-abstract-full" style="display: none;"> The physics governing electron acceleration by a relativistically intense laser are not confined to the critical density surface, they also pervade the sub-critical plasma in front of the target. Here, particles can gain many times the ponderomotive energy from the overlying laser, and strong fields can grow. Experiments using a high contrast laser and a prescribed laser pre-pulse demonstrate that development of the pre-plasma has an unexpectedly strong effect on the most energetic, super-ponderomotive electrons. Presented 2D particle-in-cell simulations reveal how strong, voluminous magnetic structures that evolve in the pre-plasma impact high energy electrons more significantly than low energy ones for longer pulse durations and how the common practice of tilting the target to a modest incidence angle can be enough to initiate strong deflection. The implications are that multiple angular spectral measurements are necessary to prevent misleading conclusions from past and future experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.02398v1-abstract-full').style.display = 'none'; document.getElementById('1810.02398v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 98, 053202 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.00474">arXiv:1810.00474</a> <span> [<a href="https://arxiv.org/pdf/1810.00474">pdf</a>, <a href="https://arxiv.org/format/1810.00474">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5066109">10.1063/1.5066109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimized setups for detection of Megatesla-level magnetic fields through Faraday rotation of XFEL beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/physics?searchtype=author&query=Toncian%2C+T">Toma Toncian</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+M">Mingsheng Wei</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.00474v1-abstract-short" style="display: inline;"> A solid density target irradiated by a high-intensity laser pulse can become relativistically transparent, which then allows it to sustain an extremely strong laser-driven longitudinal electron current. The current generates a filament with a slowly-varying MT-level azimuthal magnetic field that has been shown to prompt efficient emission of multi-MeV photons in the form of a collimated beam requi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00474v1-abstract-full').style.display = 'inline'; document.getElementById('1810.00474v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.00474v1-abstract-full" style="display: none;"> A solid density target irradiated by a high-intensity laser pulse can become relativistically transparent, which then allows it to sustain an extremely strong laser-driven longitudinal electron current. The current generates a filament with a slowly-varying MT-level azimuthal magnetic field that has been shown to prompt efficient emission of multi-MeV photons in the form of a collimated beam required for multiple applications. This work examines the feasibility of using an x-ray beam from the European XFEL for the detection of the magnetic field via the Faraday rotation. Post-processed 3D particle-in-cell simulations show that, even though the relativistic transparency dramatically reduces the rotation in a uniform target, the detrimental effect can be successfully reversed by employing a structured target containing a channel to achieve a rotation angle of $10^{-4}$ rad. The channel must be relativistically transparent with an electron density that is lower than the near-solid density in the bulk. The detection setup has been optimized by varying the channel radius and the focusing of the laser pulse driving the magnetic field. We predict that the Faraday rotation can produce $10^3$ photons with polarization orthogonal to the polarization of the incoming 100 fs long probe beam with $5 \times 10^{12}$ x-ray photons. Based on the calculated rotation angle, the polarization purity must be much better than $10^{-8}$ in order to detect the signal above the noise level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00474v1-abstract-full').style.display = 'none'; document.getElementById('1810.00474v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.08269">arXiv:1808.08269</a> <span> [<a href="https://arxiv.org/pdf/1808.08269">pdf</a>, <a href="https://arxiv.org/format/1808.08269">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aae034">10.1088/1367-2630/aae034 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Unexpected Role of Evolving Longitudinal Electric Fields in Generating Energetic Electrons in Relativistically Transparent Plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Willingale%2C+L">L. Willingale</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a>, <a href="/search/physics?searchtype=author&query=Williams%2C+G+J">G. J. Williams</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&query=Dollar%2C+F">F. Dollar</a>, <a href="/search/physics?searchtype=author&query=Hazi%2C+A+U">A. U. Hazi</a>, <a href="/search/physics?searchtype=author&query=Maksimchuk%2C+A">A. Maksimchuk</a>, <a href="/search/physics?searchtype=author&query=Manuel%2C+M+J+-">M. J. -E. Manuel</a>, <a href="/search/physics?searchtype=author&query=Marley%2C+E">E. Marley</a>, <a href="/search/physics?searchtype=author&query=Nazarov%2C+W">W. Nazarov</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+T+Z">T. Z. Zhao</a>, <a href="/search/physics?searchtype=author&query=Zulick%2C+C">C. Zulick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.08269v1-abstract-short" style="display: inline;"> Superponderomotive-energy electrons are observed experimentally from the interaction of an intense laser pulse with a relativistically transparent target. For a relativistically transparent target, kinetic modeling shows that the generation of energetic electrons is dominated by energy transfer within the main, classically overdense, plasma volume. The laser pulse produces a narrowing, funnel-like… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08269v1-abstract-full').style.display = 'inline'; document.getElementById('1808.08269v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.08269v1-abstract-full" style="display: none;"> Superponderomotive-energy electrons are observed experimentally from the interaction of an intense laser pulse with a relativistically transparent target. For a relativistically transparent target, kinetic modeling shows that the generation of energetic electrons is dominated by energy transfer within the main, classically overdense, plasma volume. The laser pulse produces a narrowing, funnel-like channel inside the plasma volume that generates a field structure responsible for the electron heating. The field structure combines a slowly evolving azimuthal magnetic field, generated by a strong laser-driven longitudinal electron current, and, unexpectedly, a strong propagating longitudinal electric field, generated by reflections off the walls of the funnel-like channel. The magnetic field assists electron heating by the transverse electric field of the laser pulse through deflections, whereas the longitudinal electric field directly accelerates the electrons in the forward direction. The longitudinal electric field produced by reflections is 30 times stronger than that in the incoming laser beam and the resulting direct laser acceleration contributes roughly one third of the energy transferred by the transverse electric field of the laser pulse to electrons of the super-ponderomotive tail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08269v1-abstract-full').style.display = 'none'; document.getElementById('1808.08269v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.08075">arXiv:1807.08075</a> <span> [<a href="https://arxiv.org/pdf/1807.08075">pdf</a>, <a href="https://arxiv.org/format/1807.08075">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/aaf94b">10.1088/1361-6587/aaf94b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Highly collimated electron acceleration by longitudinal laser fields in a hollow-core target </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gong%2C+Z">Z. Gong</a>, <a href="/search/physics?searchtype=author&query=Robinson%2C+A+P+L">A. P. L. Robinson</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+X+Q">X. Q. Yan</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.08075v1-abstract-short" style="display: inline;"> The substantial angular divergence of electron beams produced by direct laser acceleration is often considered as an inherent negative feature of the mechanism. The divergence however arises primarily because the standard approach relies on transverse electron oscillations and their interplay with the transverse electric fields of the laser pulse. We propose a conceptually different approach to di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08075v1-abstract-full').style.display = 'inline'; document.getElementById('1807.08075v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.08075v1-abstract-full" style="display: none;"> The substantial angular divergence of electron beams produced by direct laser acceleration is often considered as an inherent negative feature of the mechanism. The divergence however arises primarily because the standard approach relies on transverse electron oscillations and their interplay with the transverse electric fields of the laser pulse. We propose a conceptually different approach to direct laser acceleration that leverages longitudinal laser electric fields that are present in a tightly focused laser beam. A structured hollow-core target is used to enhance the longitudinal fields and maintain them over a distance much longer than the Rayleigh length by guiding the laser pulse. Electrons are injected by the transverse laser electric field into the channel and then they are accelerated forward by the pulse, creating an electron current. The forces from electric and magnetic fields of this electron population compensate each other, creating a favorable configuration without a strong restoring force. We use two-dimensional particle-in-cell simulations to demonstrate that a low divergence energetic electron beam with an opening angle of less than 5$^\circ$ can be generated in this configuration. Most of the energy is transferred to the electrons by the longitudinal laser electric field and, given a sufficient acceleration distance, super-ponderomotive energies can be realized without sacrificing the collimation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.08075v1-abstract-full').style.display = 'none'; document.getElementById('1807.08075v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.07629">arXiv:1807.07629</a> <span> [<a href="https://arxiv.org/pdf/1807.07629">pdf</a>, <a href="https://arxiv.org/format/1807.07629">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.L042031">10.1103/PhysRevResearch.4.L042031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy-chirp compensation of laser-driven ion beams enabled by structured targets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gong%2C+Z">Z. Gong</a>, <a href="/search/physics?searchtype=author&query=Bulanov%2C+S+S">S. S. Bulanov</a>, <a href="/search/physics?searchtype=author&query=Toncian%2C+T">T. Toncian</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A+V">A. V. Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.07629v3-abstract-short" style="display: inline;"> We show using 3D simulations that the challenge of generating dense mono-energetic laser-driven ion beams with low angular divergence can be overcome by utilizing structured targets with a relativistically transparent channel and an overdense wall. In contrast to a uniform target that produces a chirped ion beam, the target structure facilitates formation of a dense electron bunch whose longitudin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07629v3-abstract-full').style.display = 'inline'; document.getElementById('1807.07629v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.07629v3-abstract-full" style="display: none;"> We show using 3D simulations that the challenge of generating dense mono-energetic laser-driven ion beams with low angular divergence can be overcome by utilizing structured targets with a relativistically transparent channel and an overdense wall. In contrast to a uniform target that produces a chirped ion beam, the target structure facilitates formation of a dense electron bunch whose longitudinal electric field reverses the energy chirp. This approach works in conjunction with existing acceleration mechanisms, augmenting the ion spectra. For example, our 3D simulations predict a significant improvement for a 2 PW laser pulse with a peak intensity of $5 \times 10^{22}$ W/cm$^2$. The simulations show a mono-energetic proton peak in a highly desirable energy range of 200 MeV with an unprecedented charge of several nC and relatively low divergence that is below 10$^{\circ}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07629v3-abstract-full').style.display = 'none'; document.getElementById('1807.07629v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, L042031 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.09237">arXiv:1712.09237</a> <span> [<a href="https://arxiv.org/pdf/1712.09237">pdf</a>, <a href="https://arxiv.org/format/1712.09237">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/aab222">10.1088/1361-6587/aab222 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jansen%2C+O">Oliver Jansen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/physics?searchtype=author&query=Stark%2C+D">David Stark</a>, <a href="/search/physics?searchtype=author&query=Toncian%2C+T">Toma Toncian</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.09237v2-abstract-short" style="display: inline;"> The ability of an intense laser pulse to propagate in a classically over-critical plasma through the phenomenon of relativistic transparency is shown to facilitate the generation of strong plasma magnetic fields. Particle-in-cell simulations demonstrate that these fields significantly enhance the radiation rates of the laser-irradiated electrons, and furthermore they collimate the emission so that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09237v2-abstract-full').style.display = 'inline'; document.getElementById('1712.09237v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.09237v2-abstract-full" style="display: none;"> The ability of an intense laser pulse to propagate in a classically over-critical plasma through the phenomenon of relativistic transparency is shown to facilitate the generation of strong plasma magnetic fields. Particle-in-cell simulations demonstrate that these fields significantly enhance the radiation rates of the laser-irradiated electrons, and furthermore they collimate the emission so that a directed and dense beam of multi-MeV gamma-rays is achievable. This capability can be exploited for electron-positron pair production via the linear Breit-Wheeler process by colliding two such dense beams. Presented simulations show that more than $10^3$ pairs can be produced in such a setup, and the directionality of the positrons can be controlled by the angle of incidence between the beams. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09237v2-abstract-full').style.display = 'none'; document.getElementById('1712.09237v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Arefiev%2C+A&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Arefiev%2C+A&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Arefiev%2C+A&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>