CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 166 results for author: <span class="mathjax">Zheng, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Zheng%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zheng, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zheng%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zheng, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zheng%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16554">arXiv:2502.16554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.16554">pdf</a>, <a href="https://arxiv.org/ps/2502.16554">ps</a>, <a href="https://arxiv.org/format/2502.16554">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Room temperature mass sensing based on nonlinear optomechanical dynamics: membrane-in-the-middle versus suspended membrane </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jiawei Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jinlian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yangzheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Mart%C4%B1nez%2C+L+J">Luis J. Mart谋nez</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+B">Bing He</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Q">Qing Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16554v1-abstract-short" style="display: inline;"> How to weigh something as precise as possible is a constant endeavor for human being, and mass sensing has been essential to scientific research and many other aspects of modern society. In this work, we explore a special approach to mass sensing, which is purely based on the classical nonlinear dynamics of cavity optomechanical systems. We consider two types of systems, the mechanical resonator a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16554v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16554v1-abstract-full" style="display: none;"> How to weigh something as precise as possible is a constant endeavor for human being, and mass sensing has been essential to scientific research and many other aspects of modern society. In this work, we explore a special approach to mass sensing, which is purely based on the classical nonlinear dynamics of cavity optomechanical systems. We consider two types of systems, the mechanical resonator as a suspended membrane inside optical cavity or as a larger movable membrane that separates the optical cavity into two parts. Under a driving laser field with two tones satisfying a specific frequency condition, both systems enter a special dynamical pattern correlating the mechanical oscillation and the sidebands of oscillatory cavity field. After adding the nano-particle, which has its mass 未m to be measured, to the mechanical membrane as the detector, the cavity field sidebands will exhibit detectable changes, so that the tiny mass 未m can be deduced from the measured sideband intensities. For the latter system with a membrane in the middle, one can apply an additional single-tone laser field to magnify the modified sidebands much further, achieving an ultra-high sensitivity (未m/m) \sim 10^{-11} ($m$ is the mass of the membrane), even given a moderate mechanical quality factor. The operation range of the sensors is very wide, covering 7 or 8 orders of magnitudes. Moreover, a particular advantage of this type of mass sensors comes from the robustness of the realized dynamical pattern against thermal noise, and it enables such mass sensors to work well at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16554v1-abstract-full').style.display = 'none'; document.getElementById('2502.16554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05410">arXiv:2502.05410</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.05410">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Reconfigurable nonlinear optical computing device for retina-inspired computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hua%2C+X">Xiayang Hua</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jiyuan Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+P">Peiyuan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+H">Hualong Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+X">Xiangwei Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Z">Zhibiao Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+C">Changzheng Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+B">Bing Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+Y">Yanjun Han</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jian Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hongtao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+L">Lin Gan</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Y">Yi Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Lai Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05410v1-abstract-short" style="display: inline;"> Optical neural networks are at the forefront of computational innovation, utilizing photons as the primary carriers of information and employing optical components for computation. However, the fundamental nonlinear optical device in the neural networks is barely satisfied because of its high energy threshold and poor reconfigurability. This paper proposes and demonstrates an optical sigmoid-type&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05410v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05410v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05410v1-abstract-full" style="display: none;"> Optical neural networks are at the forefront of computational innovation, utilizing photons as the primary carriers of information and employing optical components for computation. However, the fundamental nonlinear optical device in the neural networks is barely satisfied because of its high energy threshold and poor reconfigurability. This paper proposes and demonstrates an optical sigmoid-type nonlinear computation mode of Vertical-Cavity Surface-Emitting Lasers (VCSELs) biased beneath the threshold. The device is programmable by simply adjusting the injection current. The device exhibits sigmoid-type nonlinear performance at a low input optical power ranging from merely 3-250 渭W. The tuning sensitivity of the device to the programming current density can be as large as 15 渭W*mm2/mA. Deep neural network architecture based on such device has been proposed and demonstrated by simulation on recognizing hand-writing digital dataset, and a 97.3% accuracy has been achieved. A step further, the nonlinear reconfigurability is found to be highly useful to enhance the adaptability of the networks, which is demonstrated by significantly improving the recognition accuracy by 41.76%, 19.2%, and 25.89% of low-contrast hand-writing digital images under high exposure, low exposure, and high random noise respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05410v1-abstract-full').style.display = 'none'; document.getElementById('2502.05410v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09548">arXiv:2501.09548</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.09548">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Resolution enhancement in quantitative phase microscopy: a review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mico%2C+V">Vicente Mico</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Juanjuan Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia%2C+J">Javier Garcia</a>, <a href="/search/physics?searchtype=author&amp;query=Zalevsky%2C+Z">Zeev Zalevsky</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+P">Peng Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09548v1-abstract-short" style="display: inline;"> Quantitative phase microscopy (QPM), a technique combining phase imaging and microscopy, enables visualization of the 3D topography in reflective samples, as well as the inner structure or refractive index distribution of transparent and translucent samples. Similar to other imaging modalities, QPM is constrained by the conflict between numerical aperture (NA) and field of view (FOV): an imaging s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09548v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09548v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09548v1-abstract-full" style="display: none;"> Quantitative phase microscopy (QPM), a technique combining phase imaging and microscopy, enables visualization of the 3D topography in reflective samples, as well as the inner structure or refractive index distribution of transparent and translucent samples. Similar to other imaging modalities, QPM is constrained by the conflict between numerical aperture (NA) and field of view (FOV): an imaging system with a low NA has to be employed to maintain a large FOV. This fact severely limits the resolution in QPM up to being the illumination wavelength. Consequently, finer structures of samples cannot be resolved by using modest NA objectives in QPM. Aimed to that, many approaches, such as oblique illumination, structured illumination, and speckle illumination (just to cite a few), have been proposed to improve the spatial resolution (or the space bandwidth product) in phase microscopy by restricting other degrees of freedom (mostly time). This paper aims to provide an up to date review on the resolution enhancement approaches in QPM, discussing the pros and cons of each technique as well as the confusion on resolution definition claims on QPM and other coherent microscopy methods. Through this survey, we will review the most appealing and useful techniques for superresolution in coherent microscopy, working with and without lenses and with special attention to QPM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09548v1-abstract-full').style.display = 'none'; document.getElementById('2501.09548v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09030">arXiv:2501.09030</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.09030">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Determination and evaluation of the critical liquid nitrogen for superconducting levitator based on a novel temperature-weight coupling measurement device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pang%2C+P">Peng Pang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jun Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Xian%2C+C">Chenling Xian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09030v1-abstract-short" style="display: inline;"> Liquid nitrogen (LN2) is the only cooling medium for the high-temperature superconducting (HTS) bulks in the superconducting levitator, which is the heart of the maglev train, to reach working state. The detection and determination of the critical LN2 content are crucial for reliable operation of the HTS maglev train. However, the related intelligent detection model and technology is lack in the c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09030v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09030v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09030v1-abstract-full" style="display: none;"> Liquid nitrogen (LN2) is the only cooling medium for the high-temperature superconducting (HTS) bulks in the superconducting levitator, which is the heart of the maglev train, to reach working state. The detection and determination of the critical LN2 content are crucial for reliable operation of the HTS maglev train. However, the related intelligent detection model and technology is lack in the combination filed of the cryogenic environment and maglev application, and there is no existing method to detect the LN2 content in superconducting levitator. This paper proposes to employ multisensor fusion framework to fuse and enhance the accuracy of critical LN2 content testing. Four temperature sensors were deployed inside superconducting levitator to measure the temperature change during the LN2 content changing from 100 % to 0. It was first obtained that the critical LN2 content in the superconducting levitator is 4%. To accurately monitor the critical LN2 content in the superconducting levitator, a matrix-weighted information fusion Kalman filter algorithm was used. Compared with the previous single sensor method, the testing accuracy of the multisensor fusion method can be improved by 5.6%. The work can provide a preliminary research foundation for the online monitoring and fault diagnosis of HTS maglev train. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09030v1-abstract-full').style.display = 'none'; document.getElementById('2501.09030v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01050">arXiv:2501.01050</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.01050">pdf</a>, <a href="https://arxiv.org/format/2501.01050">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Spatial Correlation Unifies Nonequilibrium Response Theory for Arbitrary Markov Jump Processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jiming Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Z">Zhiyue Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01050v2-abstract-short" style="display: inline;"> Understanding how systems respond to external perturbations is a fundamental challenge in physics, particularly for non-equilibrium and non-stationary processes. The fluctuation-dissipation theorem provides a complete framework for near-equilibrium systems, and various bounds are recently reported for specific non-equilibrium regimes. Here, we present an exact response equality for arbitrary Marko&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01050v2-abstract-full').style.display = 'inline'; document.getElementById('2501.01050v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01050v2-abstract-full" style="display: none;"> Understanding how systems respond to external perturbations is a fundamental challenge in physics, particularly for non-equilibrium and non-stationary processes. The fluctuation-dissipation theorem provides a complete framework for near-equilibrium systems, and various bounds are recently reported for specific non-equilibrium regimes. Here, we present an exact response equality for arbitrary Markov processes that decompose system response into spatial correlations of local dynamical events. This decomposition reveals that response properties are encoded in correlations between transitions and dwelling times across the network, providing a natural generalization of the fluctuation-dissipation theorem to generic non-equilibrium processes. Our theory unifies existing response bounds, extends them to time-dependent processes, and reveals fundamental monotonicity properties of the tightness of multi-parameter response inequalities. Beyond its theoretical significance, this framework enables efficient numerical evaluation of response properties from sampling unperturbed trajectory, offering significant advantages over traditional finite-difference approaches for estimating response properties of complex networks and biological systems far from equilibrium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01050v2-abstract-full').style.display = 'none'; document.getElementById('2501.01050v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04108">arXiv:2412.04108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04108">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Terahertz-driven Two-Dimensional Mapping for Electron Temporal Profile Measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+X">Xie He</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jiaqi Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+D">Dace Su</a>, <a href="/search/physics?searchtype=author&amp;query=Ying%2C+J">Jianwei Ying</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+L">Lufei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xuan%2C+H">Hongwen Xuan</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+J">Jingui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+P">Peng Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Matlis%2C+N+H">Nicholas H. Matlis</a>, <a href="/search/physics?searchtype=author&amp;query=Kartner%2C+F+X">Franz X. Kartner</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Dongfang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+L">Liejia Qian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04108v1-abstract-short" style="display: inline;"> The precision measurement of real-time electron temporal profiles is crucial for advancing electron and X-ray devices used in ultrafast imaging and spectroscopy. While high temporal resolution and large temporal window can be achieved separately using different technologies, real-time measurement enabling simultaneous high resolution and large window remains challenging. Here, we present the first&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04108v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04108v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04108v1-abstract-full" style="display: none;"> The precision measurement of real-time electron temporal profiles is crucial for advancing electron and X-ray devices used in ultrafast imaging and spectroscopy. While high temporal resolution and large temporal window can be achieved separately using different technologies, real-time measurement enabling simultaneous high resolution and large window remains challenging. Here, we present the first THz-driven sampling electron oscilloscope capable of measuring electron pulses with high temporal resolution and a scalable, large temporal window simultaneously. The transient THz electric field induces temporal electron streaking in the vertical axis, while extended interaction along the horizontal axis leads to a propagation-induced time delay, enabling electron beam sampling with sub-cycle THz wave. This allows real-time femtosecond electron measurement with a tens-of-picosecond window, surpassing previous THz-based techniques by an order of magnitude. The measurement capability is further enhanced through projection imaging, deflection cavity tilting, and shorted antenna utilization, resulting in signal spatial magnification, extended temporal window, and increased field strength. The technique holds promise for a wide range of applications and opens new opportunities in ultrafast science and accelerator technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04108v1-abstract-full').style.display = 'none'; document.getElementById('2412.04108v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00699">arXiv:2412.00699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00699">pdf</a>, <a href="https://arxiv.org/format/2412.00699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> A one-dimensional mixing model for the impact of ablative Rayleigh-Taylor instability on compression dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dongxue Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+T">Tao Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+Q">Qing Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+R">Rui Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00699v2-abstract-short" style="display: inline;"> A one-dimensional mixing model, incorporating the effects of laser ablation and initial perturbations, is developed to study the influence of ablative Rayleigh-Taylor instability on compression dynamics. The length of the mixing region is determined with the buoyancy-drag model[arXiv:2411.12392v2 (2024)]. The mixing effect on laser ablation is mainly described with an additional heat source which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00699v2-abstract-full').style.display = 'inline'; document.getElementById('2412.00699v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00699v2-abstract-full" style="display: none;"> A one-dimensional mixing model, incorporating the effects of laser ablation and initial perturbations, is developed to study the influence of ablative Rayleigh-Taylor instability on compression dynamics. The length of the mixing region is determined with the buoyancy-drag model[arXiv:2411.12392v2 (2024)]. The mixing effect on laser ablation is mainly described with an additional heat source which depends on turbulent kinetic energy and initial perturbation level through a free multiplier. The model is integrated into a one-dimensional radiation hydrodynamics code and validated against two-dimensional planar simulations. The further application of our model to spherical implosion simulations reveals that the model can give reasonable predictions of implosion degradation due to mixing, such as lowered shell compression, reduced stagnation pressure, and decreased areal density, etc. It is found that the time interval between the convergence of the main shock and stagnation may offer an estimate of mixing level in single-shot experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00699v2-abstract-full').style.display = 'none'; document.getElementById('2412.00699v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16741">arXiv:2411.16741</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16741">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> On the Hidden Transient Interphase in Metal Anodes: Dynamic Precipitation Controls Electrochemical Interfaces in Batteries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fuller%2C+S+T">Stephen T. Fuller</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J+-+K">J. -X. Kent Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16741v1-abstract-short" style="display: inline;"> The Solid-Electrolyte Interphase, SEI, formed on a battery electrode has been a central area of research for decades. This thin, complex layer profoundly impacts the electrochemical deposition morphology and stability of the metal in battery anodes. Departing from conventional approaches, we investigate metal dissolution, the reverse reaction of deposition, in battery environments using a state-of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16741v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16741v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16741v1-abstract-full" style="display: none;"> The Solid-Electrolyte Interphase, SEI, formed on a battery electrode has been a central area of research for decades. This thin, complex layer profoundly impacts the electrochemical deposition morphology and stability of the metal in battery anodes. Departing from conventional approaches, we investigate metal dissolution, the reverse reaction of deposition, in battery environments using a state-of-the-art electroanalytical system combining a rotating-disk electrode and in-operando visualization. Our key finding is the presence of a Transient Solid-Electrolyte Interphase, T-SEI, that forms during fast discharging at high dissolution rates. We attribute T-SEI formation to transient local supersaturation and resultant electrolyte salt deposition. The T-SEI fundamentally alters the dissolution kinetics at the electrochemical interface, leading to a self-limiting morphological evolution and eventually yielding a flat, clean surface. Unlike a classical SEI formed due to electrolyte decomposition, the T-SEI is fully relaxable upon removal of the enforced dissolution current. The formation of T-SEI, surprisingly, plays a critical role in the subsequent electrodeposition. When the metal is redeposited on a fully relaxed T-SEI surface, the morphology is remarkably different from that deposited on pristine or low-rate discharged metal electrodes. Electron backscatter diffraction analysis suggests a homoepitaxial relationship with the original grains in the electrode. This is in stark contrast to the isolated, particulate nuclei seen on standard metal electrodes without T-SEI formation. Our findings provide important insights into the electrochemical kinetics at the metal-electrolyte interface, particularly in concentrated or water-in-salt electrolytes that are close to the salt saturation limit. The results suggest a new dimension for electrochemical engineering in batteries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16741v1-abstract-full').style.display = 'none'; document.getElementById('2411.16741v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12392">arXiv:2411.12392</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12392">pdf</a>, <a href="https://arxiv.org/format/2411.12392">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> A buoyancy-drag model with a time-varying drag coefficient for evaluating bubble front penetration depth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dongxue Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+T">Tao Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+Q">Qing Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+R">Rui Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12392v2-abstract-short" style="display: inline;"> To evaluate and control bubble front penetration depth ${{h}_{B}}$ induced by ablative Rayleigh-Taylor instability (ARTI) from a weakly nonlinear phase to a self-similar phase, we first propose an improved buoyancy-drag (BD) model with a time-varying drag coefficient. The coefficient incorporates the influence of multiple physical mechanisms, including non-steady ablation, preheating, and other me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12392v2-abstract-full').style.display = 'inline'; document.getElementById('2411.12392v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12392v2-abstract-full" style="display: none;"> To evaluate and control bubble front penetration depth ${{h}_{B}}$ induced by ablative Rayleigh-Taylor instability (ARTI) from a weakly nonlinear phase to a self-similar phase, we first propose an improved buoyancy-drag (BD) model with a time-varying drag coefficient. The coefficient incorporates the influence of multiple physical mechanisms, including non-steady ablation, preheating, and other mechanisms during this phase. The model is validated through simulations under various conditions, demonstrating improved accuracy compared to the classical BD model and the self-similar growth. Furthermore, the model suggests controlling ${{h}_{B}}$ by suppressing the &#34;most dangerous mode&#34;, which is influenced by initial perturbations and ablative acceleration history, thus offering novel insights for target manufacturing and pulse optimization near the ignition threshold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12392v2-abstract-full').style.display = 'none'; document.getElementById('2411.12392v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08911">arXiv:2411.08911</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08911">pdf</a>, <a href="https://arxiv.org/format/2411.08911">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> A Message Passing Neural Network Surrogate Model for Bond-Associated Peridynamic Material Correspondence Formulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+X">Xuan Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q">Qijun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+N+H">Nicholas H. Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+R+J">Richy J. Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shaofan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08911v1-abstract-short" style="display: inline;"> Peridynamics is a non-local continuum mechanics theory that offers unique advantages for modeling problems involving discontinuities and complex deformations. Within the peridynamic framework, various formulations exist, among which the material correspondence formulation stands out for its ability to directly incorporate traditional continuum material models, making it highly applicable to a rang&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08911v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08911v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08911v1-abstract-full" style="display: none;"> Peridynamics is a non-local continuum mechanics theory that offers unique advantages for modeling problems involving discontinuities and complex deformations. Within the peridynamic framework, various formulations exist, among which the material correspondence formulation stands out for its ability to directly incorporate traditional continuum material models, making it highly applicable to a range of engineering challenges. A notable advancement in this area is the bond-associated correspondence model, which not only resolves issues of material instability but also achieves high computational accuracy. However, the bond-associated model typically requires higher computational costs than FEA, which can limit its practical application. To address this computational challenge, we propose a novel surrogate model based on a message-passing neural network (MPNN) specifically designed for the bond-associated peridynamic material correspondence formulation. Leveraging the similarities between graph structure and the neighborhood connectivity inherent to peridynamics, we construct an MPNN that can transfers domain knowledge from peridynamics into a computational graph and shorten the computation time via GPU acceleration. Unlike conventional graph neural networks that focus on node features, our model emphasizes edge-based features, capturing the essential material point interactions in the formulation. A key advantage of this neural network approach is its flexibility: it does not require fixed neighborhood connectivity, making it adaptable across diverse configurations and scalable for complex systems. Furthermore, the model inherently possesses translational and rotational invariance, enabling it to maintain physical objectivity: a critical requirement for accurate mechanical modeling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08911v1-abstract-full').style.display = 'none'; document.getElementById('2411.08911v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2410.00934</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03198">arXiv:2411.03198</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03198">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Reconfigurable SWCNT ferroelectric field-effect transistor arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rhee%2C+D">Dongjoon Rhee</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K">Kwan-Ho Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jeffrey Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+S">Seunguk Song</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+L">Lian-Mao Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Olsson%2C+R+H">Roy H. Olsson III</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+J">Joohoon Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Jariwala%2C+D">Deep Jariwala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03198v1-abstract-short" style="display: inline;"> Reconfigurable devices have garnered significant attention for alleviating the scaling requirements of conventional CMOS technology, as they require fewer components to construct circuits with similar function. Prior works required continuous voltage application for programming gate terminal(s) in addition to the primary gate terminal, which undermines the advantages of reconfigurable devices in r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03198v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03198v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03198v1-abstract-full" style="display: none;"> Reconfigurable devices have garnered significant attention for alleviating the scaling requirements of conventional CMOS technology, as they require fewer components to construct circuits with similar function. Prior works required continuous voltage application for programming gate terminal(s) in addition to the primary gate terminal, which undermines the advantages of reconfigurable devices in realizing compact and power-efficient integrated circuits. Here, we realize reconfigurable devices based on a single-gate field-effect transistor (FET) architecture by integrating semiconducting channels consisting of a monolayer film of highly aligned SWCNTs with a ferroelectric AlScN gate dielectric, all compatible with CMOS back-end-of-line (BEOL) processing. We demonstrated these SWCNT ferroelectric FETs (FeFETs) in a centimeter-scale array (~1 cm^2) comprising ~735 devices, with high spatial uniformity in device characteristics across the array. The devices exhibited ambipolar transfer characteristics with high on-state currents and current on/off ratios exceeding 10^5, demonstrating an excellent balance between electron and hole conduction (~270 渭A/渭m at a drain voltage of 3 V. When functioning as a non-volatile memory, the SWCNT FeFETs demonstrated large memory windows of 0.26 V/nm and 0.08 V/nm in the hole and electron conduction regions, respectively, combined with excellent retention behavior for up to 10^4 s. Repeated reconfiguration between p-FET and n-FET modes was also enabled by switching the spontaneous polarization in AlScN and operating the transistor within a voltage range below the coercive voltage. We revealed through circuit simulations that reconfigurable SWCNT transistors can realize ternary content-addressable memory (TCAM) with far fewer devices compared to circuits based on silicon CMOS technology or based on resistive non-volatile devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03198v1-abstract-full').style.display = 'none'; document.getElementById('2411.03198v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 16 figures (5 main and 11 supplementary figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12460">arXiv:2410.12460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12460">pdf</a>, <a href="https://arxiv.org/format/2410.12460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient generation of divergent and collimated hot electrons via a novel multi-beam two-plasmon decay and stimulated Raman scattering mechanism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meng%2C+K+Y">K. Y. Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+Z+H">Z. H. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+C">C. Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+L">L. Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+F+X">F. X. Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+R">R. Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">J. Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12460v2-abstract-short" style="display: inline;"> In inertial confinement fusion (ICF) implosions, the preheating risks associated with hot electrons generated by laser plasma instabilities (LPI) are contingent upon the angular characteristics of these hot electrons for a given total energy. Using particle-in-cell simulations, we reveal a novel multi-beam collaborative mechanism of two-plasmon decay (TPD) and stimulated Raman scattering (SRS), an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12460v2-abstract-full').style.display = 'inline'; document.getElementById('2410.12460v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12460v2-abstract-full" style="display: none;"> In inertial confinement fusion (ICF) implosions, the preheating risks associated with hot electrons generated by laser plasma instabilities (LPI) are contingent upon the angular characteristics of these hot electrons for a given total energy. Using particle-in-cell simulations, we reveal a novel multi-beam collaborative mechanism of two-plasmon decay (TPD) and stimulated Raman scattering (SRS), and investigate the angular variations of hot electrons generated from this shared TPD-SRS (STS) instability driven collectively by dual laser beams with varying incident angles $胃_{in}$ ($24^\circ$ to $55^\circ$ at the incident plane) for typical ICF conditions. In the simulations with $胃_{in}\gtrsim44^\circ$, STS emerges as the dominant mechanism responsible for hot electron generation, leading to a wide angular distribution of hot electrons that exhibit both pronounced divergent and collimated components. The common Langmuir wave associated with STS plays a crucial role in accelerating both components.By properly modeling the STS common wave gains, we establish scaling relations between these gains and the energies of collimated and divergent hot electrons. These relations reveal that the divergent hot electrons are more sensitive to variations in gain compared to the collimated electrons. Additionally, the calculated gains qualitatively predict the asymmetry in hot electron angular distributions when the density gradients deviate from the bisector of the laser beams. Our findings offers insights for hot electron generation with multiple beams, potentially complementing previous experiments that underscore the critical role of overlapped intensity from symmetric beams within the same cone and the dominance of dual-beam coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12460v2-abstract-full').style.display = 'none'; document.getElementById('2410.12460v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03274">arXiv:2410.03274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03274">pdf</a>, <a href="https://arxiv.org/format/2410.03274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Performance assessment of the HERD calorimeter with a photo-diode read-out system for high-energy electron beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adriani%2C+O">O. Adriani</a>, <a href="/search/physics?searchtype=author&amp;query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+M">M. Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+T">T. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Barbanera%2C+M">M. Barbanera</a>, <a href="/search/physics?searchtype=author&amp;query=Berti%2C+E">E. Berti</a>, <a href="/search/physics?searchtype=author&amp;query=Betti%2C+P">P. Betti</a>, <a href="/search/physics?searchtype=author&amp;query=Bigongiari%2C+G">G. Bigongiari</a>, <a href="/search/physics?searchtype=author&amp;query=Bongi%2C+M">M. Bongi</a>, <a href="/search/physics?searchtype=author&amp;query=Bonvicini%2C+V">V. Bonvicini</a>, <a href="/search/physics?searchtype=author&amp;query=Bottai%2C+S">S. Bottai</a>, <a href="/search/physics?searchtype=author&amp;query=Cagnoli%2C+I">I. Cagnoli</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+W">W. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Casaus%2C+J">J. Casaus</a>, <a href="/search/physics?searchtype=author&amp;query=Cerasole%2C+D">D. Cerasole</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Z. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+X">X. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Alessandro%2C+R">R. D&#39;Alessandro</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Venere%2C+L">L. Di Venere</a>, <a href="/search/physics?searchtype=author&amp;query=Diaz%2C+C">C. Diaz</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+Y">Y. Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Detti%2C+S">S. Detti</a>, <a href="/search/physics?searchtype=author&amp;query=Duranti%2C+M">M. Duranti</a> , et al. (41 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03274v1-abstract-short" style="display: inline;"> The measurement of cosmic rays at energies exceeding 100 TeV per nucleon is crucial for enhancing the understanding of high-energy particle propagation and acceleration models in the Galaxy. HERD is a space-borne calorimetric experiment that aims to extend the current direct measurements of cosmic rays to unexplored energies. The payload is scheduled to be installed on the Chinese Space Station in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03274v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03274v1-abstract-full" style="display: none;"> The measurement of cosmic rays at energies exceeding 100 TeV per nucleon is crucial for enhancing the understanding of high-energy particle propagation and acceleration models in the Galaxy. HERD is a space-borne calorimetric experiment that aims to extend the current direct measurements of cosmic rays to unexplored energies. The payload is scheduled to be installed on the Chinese Space Station in 2027. The primary peculiarity of the instrument is its capability to measure particles coming from all directions, with the main detector being a deep, homogeneous, 3D calorimeter. The active elements are read out using two independent systems: one based on wavelength shifter fibers coupled to CMOS cameras, and the other based on photo-diodes read-out with custom front-end electronics. A large calorimeter prototype was tested in 2023 during an extensive beam test campaign at CERN. In this paper, the performance of the calorimeter for high-energy electron beams, as obtained from the photo-diode system data, is presented. The prototype demonstrated excellent performance, e.g., an energy resolution better than 1% for electrons at 250 GeV. A comparison between beam test data and Monte Carlo simulation data is also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03274v1-abstract-full').style.display = 'none'; document.getElementById('2410.03274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14742">arXiv:2409.14742</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14742">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Active control of excitonic strong coupling and electroluminescence in electrically driven plasmonic nanocavities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Junsheng Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+R">Ruoxue Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Krasavin%2C+A+V">Alexey V. Krasavin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhenxin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+Y">Yuanjia Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+L">Longhua Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Linjun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+X">Xin Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+D">Daoxin Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Zayats%2C+A+V">Anatoly V. Zayats</a>, <a href="/search/physics?searchtype=author&amp;query=Tong%2C+L">Limin Tong</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Pan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14742v1-abstract-short" style="display: inline;"> Enhancement and active control of light-matter interactions at the atomic scale is important for developing next-generation nanophotonic and quantum optical devices. Here, we demonstrate electric control of both excitonic strong coupling and electroluminescence by integrating semiconductor monolayers into a nanometer gap of electrically driven nanocube-on-mirror plasmonic nanocavities. Particularl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14742v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14742v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14742v1-abstract-full" style="display: none;"> Enhancement and active control of light-matter interactions at the atomic scale is important for developing next-generation nanophotonic and quantum optical devices. Here, we demonstrate electric control of both excitonic strong coupling and electroluminescence by integrating semiconductor monolayers into a nanometer gap of electrically driven nanocube-on-mirror plasmonic nanocavities. Particularly, in a strongly-coupled system of nanocavity plasmons and WSe2 excitons, the ultra-strong electric field generated in the nanocavity gap enables a reversible modulation of the Rabi splitting between ~102 and 80 meV with a bias below 2.5 V. In the quantum tunnelling regime, by injecting carriers into a nanocavity-integrated WS2 monolayer, bias-controlled spectrally tunable electroluminescence from charged or neutral excitons is achieved with an external quantum efficiency reaching ~3.5%. These results underline practical approaches to electric control of atomic-scale light-matter interactions for applications including nanoscale light sources, ultrafast electro-optic modulation, quantum information processing and sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14742v1-abstract-full').style.display = 'none'; document.getElementById('2409.14742v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14699">arXiv:2409.14699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14699">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Laboratorial radiative shocks with multiple parameters and first quantifying verifications to core-collapse supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jianhua Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zhenghua Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+T">Tianming Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+Y">Yunfeng Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Kuang%2C+L">Longyu Kuang</a>, <a href="/search/physics?searchtype=author&amp;query=Jing%2C+L">Longfei Jing</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Z">Zhiwei Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Liling Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jinhua Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+P">Pin Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuxue Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhiyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yang Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Z">Zhibing He</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+P">Ping Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+D">Dong Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jiamin Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zongqing Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yongkun Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14699v1-abstract-short" style="display: inline;"> We present experiments to reproduce the characteristics of core-collapse supernovae with different stellar masses and initial explosion energies in the laboratory. In the experiments, shocks are driven in 1.2 atm and 1.9 atm xenon gas by laser with energy from 1600J to 2800J on the SGIII prototype laser facility. The average shock velocities and shocked densities are obtained from experiments. Exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14699v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14699v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14699v1-abstract-full" style="display: none;"> We present experiments to reproduce the characteristics of core-collapse supernovae with different stellar masses and initial explosion energies in the laboratory. In the experiments, shocks are driven in 1.2 atm and 1.9 atm xenon gas by laser with energy from 1600J to 2800J on the SGIII prototype laser facility. The average shock velocities and shocked densities are obtained from experiments. Experimental results reveal that higher laser energy and lower Xe gas density led to higher shock velocity, and lower Xe gas initial density has a higher compression. Modeling of the experiments using the 2D radiation hydrodynamic codes Icefire shows excellent agreement with the experimental results and gives the temperature. These results will contribute to time-domain astrophysical systems, such as gravitational supernovae, where a strong radiative shock propagates outward from the center of the star after the core collapses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14699v1-abstract-full').style.display = 'none'; document.getElementById('2409.14699v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, 1 supplement (8 pages, 3 figures, 2 tables), accepted for publication in Science Bulletin</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02207">arXiv:2407.02207</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02207">pdf</a>, <a href="https://arxiv.org/format/2407.02207">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.22.054011">10.1103/PhysRevApplied.22.054011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Global calibration of large-scale photonic integrated circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jin-Hao Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Qin-Qin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+L">Lan-Tian Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yu-Yang Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiao-Ye Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+X">Xi-Feng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02207v3-abstract-short" style="display: inline;"> The growing maturity of photonic integrated circuit (PIC) fabrication technology enables the high integration of an increasing number of optical components onto a single chip. With the incremental circuit complexity, the calibration of active phase shifters in a large-scale PIC becomes a crucially important issue. The traditional one-by-one calibration techniques encounter significant hurdles with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02207v3-abstract-full').style.display = 'inline'; document.getElementById('2407.02207v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02207v3-abstract-full" style="display: none;"> The growing maturity of photonic integrated circuit (PIC) fabrication technology enables the high integration of an increasing number of optical components onto a single chip. With the incremental circuit complexity, the calibration of active phase shifters in a large-scale PIC becomes a crucially important issue. The traditional one-by-one calibration techniques encounter significant hurdles with the propagation of calibration errors, and achieving the decoupling of all phase shifters for independent calibration is not straightforward. To address this issue, we propose a global calibration approach for large-scale PIC. Our method utilizes a custom network to simultaneously learn the nonlinear phase-current relations for all thermo-optic phase shifters on the PIC by minimizing the negative likelihood of the measurement datasets. Moreover, the reflectivities of all static beam splitter components can also be synchronizedly extracted using this calibration method. As an example, a quantum walk PIC with a circuit depth of 12 is calibrated, and a programmable discrete-time quantum walk is experimentally demonstrated. These results will greatly benefit the applications of large-scale PICs in photonic quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02207v3-abstract-full').style.display = 'none'; document.getElementById('2407.02207v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 22, 054011 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17797">arXiv:2406.17797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17797">pdf</a>, <a href="https://arxiv.org/format/2406.17797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feng%2C+S">Shikun Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jiaxin Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+Y">Yinjun Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yanwen Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+F">Fengfeng Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+W">Wei-Ying Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+Y">Yanyan Lan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17797v1-abstract-short" style="display: inline;"> Molecular representation learning is pivotal for various molecular property prediction tasks related to drug discovery. Robust and accurate benchmarks are essential for refining and validating current methods. Existing molecular property benchmarks derived from wet experiments, however, face limitations such as data volume constraints, unbalanced label distribution, and noisy labels. To address th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17797v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17797v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17797v1-abstract-full" style="display: none;"> Molecular representation learning is pivotal for various molecular property prediction tasks related to drug discovery. Robust and accurate benchmarks are essential for refining and validating current methods. Existing molecular property benchmarks derived from wet experiments, however, face limitations such as data volume constraints, unbalanced label distribution, and noisy labels. To address these issues, we construct a large-scale and precise molecular representation dataset of approximately 140,000 small molecules, meticulously designed to capture an extensive array of chemical, physical, and biological properties, derived through a robust computational ligand-target binding analysis pipeline. We conduct extensive experiments on various deep learning models, demonstrating that our dataset offers significant physicochemical interpretability to guide model development and design. Notably, the dataset&#39;s properties are linked to binding affinity metrics, providing additional insights into model performance in drug-target interaction tasks. We believe this dataset will serve as a more accurate and reliable benchmark for molecular representation learning, thereby expediting progress in the field of artificial intelligence-driven drug discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17797v1-abstract-full').style.display = 'none'; document.getElementById('2406.17797v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05982">arXiv:2406.05982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05982">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10334-024-01182-7">10.1007/s10334-024-01182-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Artificial Intelligence for Neuro MRI Acquisition: A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Hongjia Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+G">Guanhua Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Ziyu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Haoxiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jialan Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yuxin Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X">Xiaozhi Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+C">Congyu Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+H">Huihui Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Q">Qiyuan Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05982v1-abstract-short" style="display: inline;"> Magnetic resonance imaging (MRI) has significantly benefited from the resurgence of artificial intelligence (AI). By leveraging AI&#39;s capabilities in large-scale optimization and pattern recognition, innovative methods are transforming the MRI acquisition workflow, including planning, sequence design, and correction of acquisition artifacts. These emerging algorithms demonstrate substantial potenti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05982v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05982v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05982v1-abstract-full" style="display: none;"> Magnetic resonance imaging (MRI) has significantly benefited from the resurgence of artificial intelligence (AI). By leveraging AI&#39;s capabilities in large-scale optimization and pattern recognition, innovative methods are transforming the MRI acquisition workflow, including planning, sequence design, and correction of acquisition artifacts. These emerging algorithms demonstrate substantial potential in enhancing the efficiency and throughput of acquisition steps. This review discusses several pivotal AI-based methods in neuro MRI acquisition, focusing on their technological advances, impact on clinical practice, and potential risks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05982v1-abstract-full').style.display = 'none'; document.getElementById('2406.05982v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Magn Reson Mater Phy (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04593">arXiv:2406.04593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04593">pdf</a>, <a href="https://arxiv.org/format/2406.04593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> SynAsk: Unleashing the Power of Large Language Models in Organic Synthesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chonghuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Q">Qianghua Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+B">Biwei Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Haopeng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+X">Xiao Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+H">Hao Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jiajun Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+K">Kuangbiao Liao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04593v2-abstract-short" style="display: inline;"> The field of natural language processing (NLP) has witnessed a transformative shift with the emergence of large language models (LLMs), revolutionizing various language tasks and applications, and the integration of LLM into specialized domains enhances their capabilities for domain-specific applications. Notably, NLP has made significant strides in organic chemistry, particularly in predicting sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04593v2-abstract-full').style.display = 'inline'; document.getElementById('2406.04593v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04593v2-abstract-full" style="display: none;"> The field of natural language processing (NLP) has witnessed a transformative shift with the emergence of large language models (LLMs), revolutionizing various language tasks and applications, and the integration of LLM into specialized domains enhances their capabilities for domain-specific applications. Notably, NLP has made significant strides in organic chemistry, particularly in predicting synthetic tasks, paving the way for the development of LLMs tailored to the organic chemistry field. In this work, we introduce SynAsk, a comprehensive organic chemistry domain-specific LLM platform developed by AIChemEco Inc. By finetuning an LLM with domain-specific data and integrating it with a chain of thought approach, SynAsk seamlessly accesses our knowledge base and advanced chemistry tools in a question-and-answer format. This includes functionalities such as a basic chemistry knowledge base, molecular information retrieval, reaction performance prediction, retrosynthesis prediction, chemical literature acquisition, and more. This novel methodology synergizes fine-tuning techniques with external resource integration, resulting in an organic chemistry-specific model poised to facilitate research and discovery in the field. Accessible via http://synask.aichemeco.com, SynAsk represents a significant advancement in leveraging NLP for synthetic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04593v2-abstract-full').style.display = 'none'; document.getElementById('2406.04593v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02008">arXiv:2406.02008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02008">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> High-Performance Ferroelectric Field-Effect Transistors with Ultra-High Current and Carrier Densities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Song%2C+S">Seunguk Song</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K">Kwan-Ho Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Keneipp%2C+R">Rachael Keneipp</a>, <a href="/search/physics?searchtype=author&amp;query=Trainor%2C+N">Nicholas Trainor</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chen Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jeffrey Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Redwing%2C+J+M">Joan M. Redwing</a>, <a href="/search/physics?searchtype=author&amp;query=Drndi%C4%87%2C+M">Marija Drndi膰</a>, <a href="/search/physics?searchtype=author&amp;query=Olsson%2C+R+H">Roy H. Olsson III</a>, <a href="/search/physics?searchtype=author&amp;query=Jariwala%2C+D">Deep Jariwala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02008v1-abstract-short" style="display: inline;"> Ferroelectric field-effect transistors (FeFET) with two-dimensional (2D) semiconductor channels are promising low-power, embedded non-volatile memory (NVM) candidates for next-generation in-memory computing. However, the performance of FeFETs can be limited by a charge imbalance between the ferroelectric layer and the channel, and for low-dimensional semiconductors, also by a high contact resistan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02008v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02008v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02008v1-abstract-full" style="display: none;"> Ferroelectric field-effect transistors (FeFET) with two-dimensional (2D) semiconductor channels are promising low-power, embedded non-volatile memory (NVM) candidates for next-generation in-memory computing. However, the performance of FeFETs can be limited by a charge imbalance between the ferroelectric layer and the channel, and for low-dimensional semiconductors, also by a high contact resistance between the metal electrodes and the channel. Here, we report a significant enhancement in performance of contact-engineered FeFETs with a 2D MoS2 channel and a ferroelectric Al0.68Sc0.32N (AlScN) gate dielectric. Replacing Ti with In contact electrodes results in a fivefold increase in on-state current (~120 uA/um at 1 V) and on-to-off ratio (~2*10^7) in the FeFETs. In addition, the high carrier concentration in the MoS2 channel during the on-state (&gt; 10^14 cm^-2) facilitates the observation of a metal-to-insulator phase transition in monolayer MoS2 permitting observation of high field effect mobility (&gt; 100 cm^2V^-1s^-1) at cryogenic temperatures. Our work and devices broaden the potential of FeFETs and provides a unique platform to implement high-carrier-density transport in a 2D channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02008v1-abstract-full').style.display = 'none'; document.getElementById('2406.02008v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 5 main figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07187">arXiv:2405.07187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.07187">pdf</a>, <a href="https://arxiv.org/ps/2405.07187">ps</a>, <a href="https://arxiv.org/format/2405.07187">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Two-Plasmon-Decay Instability Stimulated by a Normal- and Large-Angle-Incidence Laser Pair </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lian%2C+C+-">C. -W. Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+Y">Y. Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+R">R. Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+S+-">S. -H. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+C">C. Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L+-">L. -F. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y+-">Y. -K. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">J. Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07187v1-abstract-short" style="display: inline;"> The two-plasmon-decay instability (TPD) is a critical target preheating risk in direct-drive inertial confinement fusion. In this paper, TPD collectively driven by a normal-incidence laser beam (Beam-N) and a large-angle-incidence laser beam (Beam-L) is investigated via particle-in-cell simulations. Significant TPD growth is found able to develop in this regime at previously unexpected low laser i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07187v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07187v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07187v1-abstract-full" style="display: none;"> The two-plasmon-decay instability (TPD) is a critical target preheating risk in direct-drive inertial confinement fusion. In this paper, TPD collectively driven by a normal-incidence laser beam (Beam-N) and a large-angle-incidence laser beam (Beam-L) is investigated via particle-in-cell simulations. Significant TPD growth is found able to develop in this regime at previously unexpected low laser intensities if the intensity of Beam-L exceeds the large-angle-incidence threshold. Both beams contribute to the growth of TPD in a &#34;seed-amplification&#34; manner where the absolute instability driven by Beam-L provides the seeds that get convectively amplified by Beam-N, making TPD energetically important and causing significant pump depletion and hot electron generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07187v1-abstract-full').style.display = 'none'; document.getElementById('2405.07187v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15642">arXiv:2404.15642</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15642">pdf</a>, <a href="https://arxiv.org/format/2404.15642">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-generated magnetic field in three-dimensional ablative Rayleigh-Taylor instability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">Dehua Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">Xian Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Tao%2C+T">Tao Tao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+R">Rui Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+D">De-Jun Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15642v1-abstract-short" style="display: inline;"> The self-generated magnetic field in three-dimensional (3D) single-mode ablative Rayleigh-Taylor instabilities (ARTI) relevant to the acceleration phase of a direct-drive inertial confinement fusion (ICF) implosion is investigated. It is found that stronger magnetic fields up to a few thousands of T can be generated by 3D ARTI than by its two-dimensional (2D) counterpart. The Nernst effects signif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15642v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15642v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15642v1-abstract-full" style="display: none;"> The self-generated magnetic field in three-dimensional (3D) single-mode ablative Rayleigh-Taylor instabilities (ARTI) relevant to the acceleration phase of a direct-drive inertial confinement fusion (ICF) implosion is investigated. It is found that stronger magnetic fields up to a few thousands of T can be generated by 3D ARTI than by its two-dimensional (2D) counterpart. The Nernst effects significantly alter the magnetic fields convection and amplify the magnetic fields. The scaling law for the magnetic flux obtained in the 2D simulations performs reasonably well in the 3D cases. While the magnetic field significantly accelerates the bubble growth in the short-wavelength 2D modes through modifying the heat fluxes, the magnetic field mostly accelerates the spike growth but has little influence on the bubble growth in 3D ARTI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15642v1-abstract-full').style.display = 'none'; document.getElementById('2404.15642v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12361">arXiv:2403.12361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.12361">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-State, Ultra-thin, BEOL-Compatible AlScN Ferroelectric Diodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K">Kwan-Ho Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+Z">Zirun Han</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yinuo Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Musavigharavi%2C+P">Pariasadat Musavigharavi</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jeffrey Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Pradhan%2C+D+K">Dhiren K. Pradhan</a>, <a href="/search/physics?searchtype=author&amp;query=Stach%2C+E+A">Eric A. Stach</a>, <a href="/search/physics?searchtype=author&amp;query=Olsson%2C+R+H">Roy H. Olsson III</a>, <a href="/search/physics?searchtype=author&amp;query=Jariwala%2C+D">Deep Jariwala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12361v1-abstract-short" style="display: inline;"> The growth in data generation necessitates efficient data processing technologies to address the von Neumann bottleneck in conventional computer architecture. Memory-driven computing, which integrates non-volatile memory (NVM) devices in a 3D stack, is gaining attention, with CMOS back-end-of-line (BEOL) compatible ferroelectric (FE) diodes being ideal due to their two-terminal design and inherent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12361v1-abstract-full').style.display = 'inline'; document.getElementById('2403.12361v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12361v1-abstract-full" style="display: none;"> The growth in data generation necessitates efficient data processing technologies to address the von Neumann bottleneck in conventional computer architecture. Memory-driven computing, which integrates non-volatile memory (NVM) devices in a 3D stack, is gaining attention, with CMOS back-end-of-line (BEOL) compatible ferroelectric (FE) diodes being ideal due to their two-terminal design and inherently selector-free nature, facilitating high-density crossbar arrays. Here, we demonstrate BEOL-compatible, high-performance FE-diodes scaled to 5, 10, and 20 nm FE Al0.72Sc0.28N/Al0.64Sc0.36N films. Through interlayer (IL) engineering, we show substantial improvements in the ON/OFF ratios (&gt;166 times) and rectification ratios (&gt;176 times) in these scaled devices. The superlative characteristics also enables 5-bit multi-state operation with a stable retention. We also experimentally and theoretically demonstrate the counterintuitive result that the inclusion of an IL can lead to a decrease in the ferroelectric switching voltage of the device. An in-depth analysis into the device transport mechanisms is performed, and our compact model aligns seamlessly with the experimental results. Our results suggest the possibility of using scaled AlxSc1-xN FE-diodes for high performance, low-power, embedded NVM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12361v1-abstract-full').style.display = 'none'; document.getElementById('2403.12361v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10952">arXiv:2403.10952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.10952">pdf</a>, <a href="https://arxiv.org/format/2403.10952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal Non-equilibrium Response Theory Beyond Steady States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jiming Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Z">Zhiyue Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10952v4-abstract-short" style="display: inline;"> Fluctuation-dissipation relations elucidate the response of near-equilibrium systems to environmental changes, with recent advances extending response theory to non-equilibrium steady states. However, a general response theory for systems evolving far from steady states has remained elusive. Using information geometry of stochastic trajectory probabilities, we derive universal thermodynamic bounds&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10952v4-abstract-full').style.display = 'inline'; document.getElementById('2403.10952v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10952v4-abstract-full" style="display: none;"> Fluctuation-dissipation relations elucidate the response of near-equilibrium systems to environmental changes, with recent advances extending response theory to non-equilibrium steady states. However, a general response theory for systems evolving far from steady states has remained elusive. Using information geometry of stochastic trajectory probabilities, we derive universal thermodynamic bounds on both linear and nonlinear responses of Markov systems to environmental changes, applicable across all non-equilibrium regimes. This theory establishes a new paradigm in non-equilibrium statistical mechanics, offering a unified perspective on the responsiveness of non-stationary systems to external control and environmental changes. Applicable to systems ranging from biological sensory processes to engineered responsive materials, our framework paves the way for understanding and designing complex responsiveness in far-from-equilibrium stochastic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10952v4-abstract-full').style.display = 'none'; document.getElementById('2403.10952v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08803">arXiv:2402.08803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08803">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Low-loss multilevel operation using lossy PCM-integrated silicon photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">Rui Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Tara%2C+V">Virat Tara</a>, <a href="/search/physics?searchtype=author&amp;query=Dutta%2C+J">Jayita Dutta</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+Z">Zhuoran Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jiajiu Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Majumdar%2C+A">Arka Majumdar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08803v1-abstract-short" style="display: inline;"> Chalcogenide phase-change materials (PCMs) offer new paradigms for programmable photonic integrated circuits (PICs) thanks to their zero static energy and significant refractive index contrast. However, prototypical PCMs, such as GeSbTe (GST), are lossy in their crystalline phase, albeit transparent in the amorphous state. Moreover, electrically switching PCMs to intermediate states is a stochasti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08803v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08803v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08803v1-abstract-full" style="display: none;"> Chalcogenide phase-change materials (PCMs) offer new paradigms for programmable photonic integrated circuits (PICs) thanks to their zero static energy and significant refractive index contrast. However, prototypical PCMs, such as GeSbTe (GST), are lossy in their crystalline phase, albeit transparent in the amorphous state. Moreover, electrically switching PCMs to intermediate states is a stochastic process, limiting programming accuracy. As a result, achieving both low-loss and deterministic multi-level operation with GST remains challenging. Although low-loss PCMs, such as Sb2S3 and Sb2Se3, have been discovered in recent years, they are much less technologically mature. In this work, we propose a design with multiple GST segments to overcome the challenge of deterministic multilevel operation. GST segments are individually controlled by interleaved silicon PIN diode heaters in a binary but reliable fashion, and multiple levels are encoded in their phase sequence. A 1 x 1 programmable unit with two unequal GST segments is experimentally demonstrated, showcasing four distinct operation levels and negligible thermal crosstalk with only one pair of metal contacts. We then extend the design to 1 x 2 and 2 x 2 programmable units. For the 2 x 2 programmable unit design, we propose a phase-detuned three-waveguide directional coupler structure to mitigate the absorption and radiation loss, showing &lt; -1.2 dB loss and three splitting ratios. Our work provides a new path toward low-loss and multi-level optical switches using lossy PCMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08803v1-abstract-full').style.display = 'none'; document.getElementById('2402.08803v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16544">arXiv:2401.16544</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16544">pdf</a>, <a href="https://arxiv.org/format/2401.16544">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0203335">10.1063/5.0203335 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stochastic Distinguishability of Markovian Trajectories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pagare%2C+A">Asawari Pagare</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhongmin Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jiming Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Z">Zhiyue Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16544v2-abstract-short" style="display: inline;"> The ability to distinguish between stochastic systems based on their trajectories is crucial in thermodynamics, chemistry, and biophysics. The Kullback-Leibler (KL) divergence, $D_{\text{KL}}^{AB}(0,蟿)$, quantifies the distinguishability between the two ensembles of length-$蟿$ trajectories from Markov processes A and B. However, evaluating $D_{\text{KL}}^{AB}(0,蟿)$ from histograms of trajectories&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16544v2-abstract-full').style.display = 'inline'; document.getElementById('2401.16544v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16544v2-abstract-full" style="display: none;"> The ability to distinguish between stochastic systems based on their trajectories is crucial in thermodynamics, chemistry, and biophysics. The Kullback-Leibler (KL) divergence, $D_{\text{KL}}^{AB}(0,蟿)$, quantifies the distinguishability between the two ensembles of length-$蟿$ trajectories from Markov processes A and B. However, evaluating $D_{\text{KL}}^{AB}(0,蟿)$ from histograms of trajectories faces sufficient sampling difficulties, and no theory explicitly reveals what dynamical features contribute to the distinguishability. This letter provides a general formula that decomposes $D_{\text{KL}}^{AB}(0,蟿)$ in space and time for any Markov processes, arbitrarily far from equilibrium or steady state. It circumvents the sampling difficulty of evaluating $D_{\text{KL}}^{AB}(0,蟿)$. Furthermore, it explicitly connects trajectory KL divergence with individual transition events and their waiting time statistics. The results provide insights into understanding distinguishability between Markov processes, leading to new theoretical frameworks for designing biological sensors and optimizing signal transduction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16544v2-abstract-full').style.display = 'none'; document.getElementById('2401.16544v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 7 May 2024; 160 (17): 171101 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11782">arXiv:2401.11782</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.11782">pdf</a>, <a href="https://arxiv.org/format/2401.11782">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.110.024210">10.1103/PhysRevE.110.024210 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temporal Interaction and its Role in the Evolution of Cooperation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+Y">Yujie He</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+T">Tianyu Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+X">Xiao-Jun Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+H">Huawen Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+L">Liukai Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Junjun Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11782v3-abstract-short" style="display: inline;"> This research investigates the impact of dynamic, time-varying interactions on cooperative behaviour in social dilemmas. Traditional research has focused on deterministic rules governing pairwise interactions, yet the impact of interaction frequency and synchronization in groups on cooperation remains underexplored. Addressing this gap, our work introduces two temporal interaction mechanisms to mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11782v3-abstract-full').style.display = 'inline'; document.getElementById('2401.11782v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11782v3-abstract-full" style="display: none;"> This research investigates the impact of dynamic, time-varying interactions on cooperative behaviour in social dilemmas. Traditional research has focused on deterministic rules governing pairwise interactions, yet the impact of interaction frequency and synchronization in groups on cooperation remains underexplored. Addressing this gap, our work introduces two temporal interaction mechanisms to model the stochastic or periodic participation of individuals in public goods games, acknowledging real-life variances due to exogenous temporal factors and geographical time differences. We consider that the interaction state significantly influences both game payoff calculations and the strategy updating process, offering new insights into the emergence and sustainability of cooperation. Our results indicate that maximum game participation frequency is suboptimal under a stochastic interaction mechanism. Instead, an intermediate activation probability maximizes cooperation, suggesting a vital balance between interaction frequency and inactivity security. Furthermore, local synchronization of interactions within specific areas is shown to be beneficial, as time differences hinder the spread of cross-structures but promote the formation of dense cooperative clusters with smoother boundaries. We also note that stronger clustering in networks, larger group sizes and lower noise increase cooperation. This research contributes to understanding the role of node-based temporality and probabilistic interactions in social dilemmas, offering insights into fostering cooperation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11782v3-abstract-full').style.display = 'none'; document.getElementById('2401.11782v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at Physical Review E</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review E (2024), 110, 024210 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15298">arXiv:2312.15298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15298">pdf</a>, <a href="https://arxiv.org/format/2312.15298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Generation of 10 kT Axial Magnetic Fields Using Multiple Conventional Laser Beams: A Sensitivity Study for kJ PW-Class Laser Facilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hao%2C+J+X">Jue Xuan Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+X">Xiang Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Arefiev%2C+A">Alexey Arefiev</a>, <a href="/search/physics?searchtype=author&amp;query=Kingham%2C+R+J">Robert J. Kingham</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+P">Ping Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Y">Yin Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15298v2-abstract-short" style="display: inline;"> Strong multi-kilotesla magnetic fields have various applications in high-energy density science and laboratory astrophysics, but they are not readily available. In our previous work [Y. Shi et al., Phys. Rev. Lett. 130, 155101 (2023)], we developed a novel approach for generating such fields using multiple conventional laser beams with a twist in the pointing direction. This method is particularly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15298v2-abstract-full').style.display = 'inline'; document.getElementById('2312.15298v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15298v2-abstract-full" style="display: none;"> Strong multi-kilotesla magnetic fields have various applications in high-energy density science and laboratory astrophysics, but they are not readily available. In our previous work [Y. Shi et al., Phys. Rev. Lett. 130, 155101 (2023)], we developed a novel approach for generating such fields using multiple conventional laser beams with a twist in the pointing direction. This method is particularly well-suited for multi-kilojoule petawatt-class laser systems like SG-II UP, which are designed with multiple linearly polarized beamlets. Utilizing three-dimensional kinetic particle-in-cell simulations, we examine critical factors for a proof-of-principle experiment, such as laser polarization, relative pulse delay, phase offset, pointing stability, and target configuration, and their impact on magnetic field generation. Our general conclusion is that the approach is very robust and can be realized under a wide range of laser parameters and plasma conditions. We also provide an in-depth analysis of the axial magnetic field configuration, azimuthal electron current, and electron and ion orbital angular momentum densities. Supported by a simple model, our analysis shows that the axial magnetic field decays due to the expansion of hot electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15298v2-abstract-full').style.display = 'none'; document.getElementById('2312.15298v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14956">arXiv:2311.14956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14956">pdf</a>, <a href="https://arxiv.org/format/2311.14956">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Anomalous hot electron generation from two-plasmon decay instability driven by broadband laser pulses with intensity modulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yao%2C+C">C. Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+L">L. Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+R">R. Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">C. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lei%2C+A">A. Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Y-K. Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">J. Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14956v1-abstract-short" style="display: inline;"> We investigate the hot electrons generated from two-plasmon decay (TPD) instability driven by laser pulses with intensity modulated by a frequency $螖蠅_m$. Our primary focus lies on scenarios where $螖蠅_m$ is on the same order of the TPD growth rate $ 纬_0$ ( $螖蠅_m \sim 纬_0$), corresponding to moderate laser frequency bandwidths for TPD mitigation. With $螖蠅_m$ conveniently modeled by a basic two-colo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14956v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14956v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14956v1-abstract-full" style="display: none;"> We investigate the hot electrons generated from two-plasmon decay (TPD) instability driven by laser pulses with intensity modulated by a frequency $螖蠅_m$. Our primary focus lies on scenarios where $螖蠅_m$ is on the same order of the TPD growth rate $ 纬_0$ ( $螖蠅_m \sim 纬_0$), corresponding to moderate laser frequency bandwidths for TPD mitigation. With $螖蠅_m$ conveniently modeled by a basic two-color scheme of the laser wave fields in fully-kinetic particle-in-cell simulations, we demonstrate that the energies of TPD modes and hot electrons exhibit intermittent evolution at the frequency $螖蠅_m$, particularly when $螖蠅_m \sim 纬_0$. With the dynamic TPD behavior, the overall ratio of hot electron energy to the incident laser energy, $f_{hot}$, changes significantly with $螖蠅_m$. While $f_{hot}$ drops notably with increasing $螖蠅_m$ at large $螖蠅_m$ limit as expected, it goes anomalously beyond the hot electron energy ratio for a single-frequency incident laser pulse with the same average intensity when $螖蠅_m$ falls below a specific threshold frequency $螖蠅_c$. We find this threshold frequency primarily depends on $纬_0$ and the collisional damping rate of plasma waves, with relatively lower sensitivity to the density scale length. We develop a scaling model characterizing the relation of $螖蠅_c$ and laser plasma conditions, enabling the potential extention of our findings to more complex and realistic scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14956v1-abstract-full').style.display = 'none'; document.getElementById('2311.14956v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.10497">arXiv:2311.10497</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.10497">pdf</a>, <a href="https://arxiv.org/format/2311.10497">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Characterization of FBK NUV-HD-Cryo SiPMs near LHe temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gu%2C+F">Fengbo Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+J">Junhui Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jiangfeng Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+M">Meiyuenan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y">Yuanning Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+Z">Zhaohua Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lifeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Z">Zhuo Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xiuliang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.10497v3-abstract-short" style="display: inline;"> Five FBK ``NUV-HD-Cryo&#39;&#39; SiPMs have been characterized at 7 K and 10 K, with 405 nm and 530 nm LED light, respectively. The dark current rate (DCR) was measured to be $\sim$ 1 Hz for the $\sim$ 100 mm$^2$-size SiPMs, or 0.01 Hz/mm$^2$, which is $\sim$ 7 orders lower than the DCR at room temperature (RT). Given the tiny DCR at these cryogenic temperatures, we measured the SiPMs&#39; I-V curves with suc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10497v3-abstract-full').style.display = 'inline'; document.getElementById('2311.10497v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.10497v3-abstract-full" style="display: none;"> Five FBK ``NUV-HD-Cryo&#39;&#39; SiPMs have been characterized at 7 K and 10 K, with 405 nm and 530 nm LED light, respectively. The dark current rate (DCR) was measured to be $\sim$ 1 Hz for the $\sim$ 100 mm$^2$-size SiPMs, or 0.01 Hz/mm$^2$, which is $\sim$ 7 orders lower than the DCR at room temperature (RT). Given the tiny DCR at these cryogenic temperatures, we measured the SiPMs&#39; I-V curves with such a method: illuminated the SiPMs with weak light, which differs from the conventional measurements at RT. Then, we measured the photo-detection efficiency (PDE), after-pulse (AP), and cross-talk (CT) with a bias voltage ranging from 6 to 11 V overvoltage (OV). At the OV interval (6 to 11 V), the PDE was between 20\% - 45\%, and the AP and CT were both between $\sim$ 5\% and $\sim$ 20\%. Suppose the bias is $\ge$ 10 V OV, the PDE would be $\ge$ 40\%, and the AP and CT are $\sim$ 20\%. Combining all of the measurements, we are confident that the SiPMs can be equipped as the photosensors on liquid helium detectors, including but not limited to the time projection chambers, which we have proposed in hunting for low-mass dark matter directly and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10497v3-abstract-full').style.display = 'none'; document.getElementById('2311.10497v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08275">arXiv:2311.08275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.08275">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-Volatile Control of Valley Polarized Emission in 2D WSe2-AlScN Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Singh%2C+S">Simrjit Singh</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K">Kwan-Ho Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Jo%2C+K">Kiyoung Jo</a>, <a href="/search/physics?searchtype=author&amp;query=Musavigharavi%2C+P">Pariasadat Musavigharavi</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+B">Bumho Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jeffrey Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Trainor%2C+N">Nicholas Trainor</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chen Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Redwing%2C+J+M">Joan M. Redwing</a>, <a href="/search/physics?searchtype=author&amp;query=Stach%2C+E+A">Eric A Stach</a>, <a href="/search/physics?searchtype=author&amp;query=Olsson%2C+R+H">Roy H Olsson III</a>, <a href="/search/physics?searchtype=author&amp;query=Jariwala%2C+D">Deep Jariwala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08275v1-abstract-short" style="display: inline;"> Achieving robust and electrically controlled valley polarization in monolayer transition metal dichalcogenides (ML-TMDs) is a frontier challenge for realistic valleytronic applications. Theoretical investigations show that integration of 2D materials with ferroelectrics is a promising strategy; however, its experimental demonstration has remained elusive. Here, we fabricate ferroelectric field-eff&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08275v1-abstract-full').style.display = 'inline'; document.getElementById('2311.08275v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08275v1-abstract-full" style="display: none;"> Achieving robust and electrically controlled valley polarization in monolayer transition metal dichalcogenides (ML-TMDs) is a frontier challenge for realistic valleytronic applications. Theoretical investigations show that integration of 2D materials with ferroelectrics is a promising strategy; however, its experimental demonstration has remained elusive. Here, we fabricate ferroelectric field-effect transistors using a ML-WSe2 channel and a AlScN ferroelectric dielectric, and experimentally demonstrate efficient tuning as well as non-volatile control of valley polarization. We measured a large array of transistors and obtained a maximum valley polarization of ~27% at 80 K with stable retention up to 5400 secs. The enhancement in the valley polarization was ascribed to the efficient exciton-to-trion (X-T) conversion and its coupling with an out-of-plane electric field, viz. the quantum-confined Stark effect. This changes the valley depolarization pathway from strong exchange interactions to slow spin-flip intervalley scattering. Our research demonstrates a promising approach for achieving non-volatile control over valley polarization and suggests new design principles for practical valleytronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08275v1-abstract-full').style.display = 'none'; document.getElementById('2311.08275v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript (22 pages and 5 figures), supporting information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12504">arXiv:2310.12504</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12504">pdf</a>, <a href="https://arxiv.org/format/2310.12504">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Conceptual design and progress of transmitting $\sim$ MV DC HV into 4 K LHe detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Z">Zhuo Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+F">Fengbo Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jiangfeng Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+J">Junhui Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y">Yuanning Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+Z">Zhaohua Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+G">Guangpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+M">Meiyuenan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lifeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xiuliang Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+J">Junfeng Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+G">Gang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+S">Shangmao Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12504v1-abstract-short" style="display: inline;"> A dual-phase TPC (Time Projection Chamber) is more advanced in characterizing an event than a single-phase one because it can, in principle, reconstruct the 3D (X-Y-Z) image of the event, while a single-phase detector can only show a 2D (X-Y) picture. As a result, more enriched physics is expected for a dual-phase detector than a single-phase one. However, to build such a detector, DC HV (High Vol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12504v1-abstract-full').style.display = 'inline'; document.getElementById('2310.12504v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12504v1-abstract-full" style="display: none;"> A dual-phase TPC (Time Projection Chamber) is more advanced in characterizing an event than a single-phase one because it can, in principle, reconstruct the 3D (X-Y-Z) image of the event, while a single-phase detector can only show a 2D (X-Y) picture. As a result, more enriched physics is expected for a dual-phase detector than a single-phase one. However, to build such a detector, DC HV (High Voltage) must be delivered into the chamber (to have a static electric field), which is a challenging task, especially for an LHe detector due to the extremely low temperature, $\sim$ 4 K, and the very high voltage, $\sim$ MV (Million Volts). This article introduces a convincing design for transmitting $\sim$ MV DC into a 4 K LHe detector. We also report the progress of manufacturing a 100 kV DC feedthrough capable of working at 4 K. Surprisingly, we realized that the technology we developed here might be a valuable reference to the scientists and engineers aiming to build residential bases on the Moon or Mars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12504v1-abstract-full').style.display = 'none'; document.getElementById('2310.12504v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12496">arXiv:2310.12496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12496">pdf</a>, <a href="https://arxiv.org/format/2310.12496">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjp/s13360-024-05195-y">10.1140/epjp/s13360-024-05195-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A novel nuclear recoil calibration for liquid noble gas detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gu%2C+F">Fengbo Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jiangfeng Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+J">Junhui Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y">Yuanning Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Z">Zhuo Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+M">Meiyuenan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+Z">Zhaohua Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lifeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12496v4-abstract-short" style="display: inline;"> According to many dark matter models, a potential signal registered in a detector would feature a single-scattering nuclear recoil (NR). So, it is crucial to calibrate the detector&#39;s response to NR events. The conventional calibrations implement $\sim$ keV to MeV neutrons, which can be produced by an accelerator, a neutron generator, or a radioactive source. Although the calibrating methods have b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12496v4-abstract-full').style.display = 'inline'; document.getElementById('2310.12496v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12496v4-abstract-full" style="display: none;"> According to many dark matter models, a potential signal registered in a detector would feature a single-scattering nuclear recoil (NR). So, it is crucial to calibrate the detector&#39;s response to NR events. The conventional calibrations implement $\sim$ keV to MeV neutrons, which can be produced by an accelerator, a neutron generator, or a radioactive source. Although the calibrating methods have been widely employed, they could be improved in several ways: (a) the incident neutron energy should be more monoenergetic, (b) the calibrating NR energy should line up with the region of interest (ROI) of the experiment, and (c) the intensity of the beam should be appropriate. In the paper, we introduce a novel NR calibration method for liquid helium detectors, in which a helium beam ($伪$ particles) will be implemented to calibrate the detectors. The helium beam can (i) be tuned precisely to have a jitter of $\lesssim $ 4\% (the $伪$ beam&#39;s kinetic energy is equivalent to the recoil energy in the conventional calibrations with fast neutrons); (ii) have an energy between $\sim$ 100 eV and tens of keV; and (iii) provide a tunable flux from nA to 100 $渭$A, which presents convenience in beam pipe configuration to obtain a $\sim$ 100 Hz events rate so that the events pileup would be ignorable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12496v4-abstract-full').style.display = 'none'; document.getElementById('2310.12496v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. Plus (2024) 139:437 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04474">arXiv:2309.04474</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.04474">pdf</a>, <a href="https://arxiv.org/format/2309.04474">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.492311">10.1364/OE.492311 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weakly supervised learning for pattern classification in serial femtosecond crystallography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+J">Jianan Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Ji Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xihui Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Huai%2C+P">Ping Huai</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jie Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiaofeng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04474v2-abstract-short" style="display: inline;"> Serial femtosecond crystallography at X-ray free electron laser facilities opens a new era for the determination of crystal structure. However, the data processing of those experiments is facing unprecedented challenge, because the total number of diffraction patterns needed to determinate a high-resolution structure is huge. Machine learning methods are very likely to play important roles in deal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04474v2-abstract-full').style.display = 'inline'; document.getElementById('2309.04474v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04474v2-abstract-full" style="display: none;"> Serial femtosecond crystallography at X-ray free electron laser facilities opens a new era for the determination of crystal structure. However, the data processing of those experiments is facing unprecedented challenge, because the total number of diffraction patterns needed to determinate a high-resolution structure is huge. Machine learning methods are very likely to play important roles in dealing with such a large volume of data. Convolutional neural networks have made a great success in the field of pattern classification, however, training of the networks need very large datasets with labels. Th is heavy dependence on labeled datasets will seriously restrict the application of networks, because it is very costly to annotate a large number of diffraction patterns. In this article we present our job on the classification of diffraction pattern by weakly supervised algorithms, with the aim of reducing as much as possible the size of the labeled dataset required for training. Our result shows that weakly supervised methods can significantly reduce the need for the number of labeled patterns while achieving comparable accuracy to fully supervised methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04474v2-abstract-full').style.display = 'none'; document.getElementById('2309.04474v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">$漏$ 2023 Optica Publishing Group. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved. Link for fulltext: https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-20-32909&amp;id=538502</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express 31(20), 32909-32924 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00167">arXiv:2309.00167</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.00167">pdf</a>, <a href="https://arxiv.org/format/2309.00167">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Phonon-Mediated Third-Harmonic Generation in Diamond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jiaoyang Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Khalsa%2C+G">Guru Khalsa</a>, <a href="/search/physics?searchtype=author&amp;query=Moses%2C+J">Jeffrey Moses</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00167v2-abstract-short" style="display: inline;"> We observe strongly anisotropic third-harmonic generation mediated by resonant sum-frequency driving of Raman phonons with THz light, extending light-induced dual control of structural and optical properties in solids. Either strong enhancement or strong suppression of the third harmonic covering six orders of magnitude can be achieved, a result of interference between purely electronic and phonon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00167v2-abstract-full').style.display = 'inline'; document.getElementById('2309.00167v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00167v2-abstract-full" style="display: none;"> We observe strongly anisotropic third-harmonic generation mediated by resonant sum-frequency driving of Raman phonons with THz light, extending light-induced dual control of structural and optical properties in solids. Either strong enhancement or strong suppression of the third harmonic covering six orders of magnitude can be achieved, a result of interference between purely electronic and phonon-mediated contributions to the polarization field. These findings enrich capabilities for tailoring nonlinear optics via phononics and for the spectroscopy of crystalline structural dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00167v2-abstract-full').style.display = 'none'; document.getElementById('2309.00167v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14032">arXiv:2307.14032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14032">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-023-1325-z">10.1007/s11467-023-1325-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Advances of Machine Learning in Materials Science: Ideas and Techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chong%2C+S+S">Sue Sin Chong</a>, <a href="/search/physics?searchtype=author&amp;query=Ng%2C+Y+S">Yi Sheng Ng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hui-Qiong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jin-Cheng Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14032v2-abstract-short" style="display: inline;"> In this big data era, the use of large dataset in conjunction with machine learning (ML) has been increasingly popular in both industry and academia. In recent times, the field of materials science is also undergoing a big data revolution, with large database and repositories appearing everywhere. Traditionally, materials science is a trial-and-error field, in both the computational and experiment&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14032v2-abstract-full').style.display = 'inline'; document.getElementById('2307.14032v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14032v2-abstract-full" style="display: none;"> In this big data era, the use of large dataset in conjunction with machine learning (ML) has been increasingly popular in both industry and academia. In recent times, the field of materials science is also undergoing a big data revolution, with large database and repositories appearing everywhere. Traditionally, materials science is a trial-and-error field, in both the computational and experimental departments. With the advent of machine learning-based techniques, there has been a paradigm shift: materials can now be screened quickly using ML models and even generated based on materials with similar properties; ML has also quietly infiltrated many sub-disciplinary under materials science. However, ML remains relatively new to the field and is expanding its wing quickly. There are a plethora of readily-available big data architectures and abundance of ML models and software; The call to integrate all these elements in a comprehensive research procedure is becoming an important direction of material science research. In this review, we attempt to provide an introduction and reference of ML to materials scientists, covering as much as possible the commonly used methods and applications, and discussing the future possibilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14032v2-abstract-full').style.display = 'none'; document.getElementById('2307.14032v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">60 pages; 22 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Frontiers of Physics, 19(1), 13501 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13852">arXiv:2307.13852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13852">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.2c17513">10.1021/acsami.2c17513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast Fabrication of WS2/Bi2Se3 Heterostructures for High Performance Photodetection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">Fan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jialin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Junsheng Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Tong%2C+Y">Yuanbiao Tong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+H">Huanfeng Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Pan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Linjun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13852v1-abstract-short" style="display: inline;"> Two-dimensional (2D) material heterostructures have attracted considerable attention owing to their interesting and novel physical properties, which expand the possibilities for future optoelectronic, photovoltaic, and nanoelectronic applications. A portable, fast, and deterministic transfer technique is highly needed for the fabrication of heterostructures. Herein, we report a fast half wet poly(&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13852v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13852v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13852v1-abstract-full" style="display: none;"> Two-dimensional (2D) material heterostructures have attracted considerable attention owing to their interesting and novel physical properties, which expand the possibilities for future optoelectronic, photovoltaic, and nanoelectronic applications. A portable, fast, and deterministic transfer technique is highly needed for the fabrication of heterostructures. Herein, we report a fast half wet poly(dimethylsiloxane) (PDMS) transfer process utilizing the change of adhesion energy with the help of micron-sized water droplets. Using this method, a vertical stacking of the WS2/Bi2Se3 heterostructure with a straddling band configuration is successfully assembled on a fluorophlogopite substrate. Thanks to the complementary band gaps and high efficiency of interfacial charge transfer, the photodetector based on the heterostructure exhibits a superior responsivity of 109.9 A/W for a visible incident light at 473 nm and 26.7 A/W for a 1064 nm near-infrared illumination. Such high photoresponsivity of the heterostructure demonstrates that our transfer method not only owns time efficiency but also ensures high quality of the heterointerface. Our study may open new pathways to the fast and massive fabrication of various vertical 2D heterostructures for applications in twistronics/valleytronics and other band engineering devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13852v1-abstract-full').style.display = 'none'; document.getElementById('2307.13852v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Appl Mater Interfaces 15, 10098(2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00736">arXiv:2307.00736</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.00736">pdf</a>, <a href="https://arxiv.org/format/2307.00736">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.492510">10.1364/OE.492510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultra-high Q alumina optical microresonators in the UV and blue bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chengxing He</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yubo Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Waldfried%2C+C">Carlo Waldfried</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+G">Guangcanlan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jun-Fei Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+S">Shu Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+H+X">Hong X. Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00736v2-abstract-short" style="display: inline;"> UV and visible photonics enable applications ranging from spectroscopic sensing to communication and quantum information processing. Photonics structures in these wavelength regimes, however, tend to experience higher loss than their IR counterpart. Particularly in the near-UV band, on-chip optical microresonators have not yet achieved a quality factor beyond 1 million. Here we report ultra-low-lo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00736v2-abstract-full').style.display = 'inline'; document.getElementById('2307.00736v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00736v2-abstract-full" style="display: none;"> UV and visible photonics enable applications ranging from spectroscopic sensing to communication and quantum information processing. Photonics structures in these wavelength regimes, however, tend to experience higher loss than their IR counterpart. Particularly in the near-UV band, on-chip optical microresonators have not yet achieved a quality factor beyond 1 million. Here we report ultra-low-loss photonic waveguides and resonators patterned from alumina thin films prepared by a highly scalable atomic layer deposition process. We demonstrate ultra high Q factor of 1.5$\,\times\,$10$^6$ at 390nm, a record value at UV bands, and 1.9$\,\times\,$10$^6$ at 488.5nm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00736v2-abstract-full').style.display = 'none'; document.getElementById('2307.00736v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express 31 (2023) 33923-33929 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00192">arXiv:2307.00192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.00192">pdf</a>, <a href="https://arxiv.org/ps/2307.00192">ps</a>, <a href="https://arxiv.org/format/2307.00192">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Generation of intense cylindrical vector beams by Faraday effect in plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+Q">Qing Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00192v1-abstract-short" style="display: inline;"> Cylindrical vector (CV) beams, whose polarizations are cylindrically symmetric, have recently been widely applied in high energy density physics such as electron acceleration and intense spatiotemporal optical vortices generation. Thermal-damage-resistant plasma optics are expected to generate intense CV beams. In this work, based on the Faraday effect, we propose a method that can directly conver&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00192v1-abstract-full').style.display = 'inline'; document.getElementById('2307.00192v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00192v1-abstract-full" style="display: none;"> Cylindrical vector (CV) beams, whose polarizations are cylindrically symmetric, have recently been widely applied in high energy density physics such as electron acceleration and intense spatiotemporal optical vortices generation. Thermal-damage-resistant plasma optics are expected to generate intense CV beams. In this work, based on the Faraday effect, we propose a method that can directly convert an intense linearly/circularly polarized Gaussian beam into a CV/vortex beam by setting up an azimuthally distributed axial magnetic field in the plasma. Three-dimensional particle-in-cell simulations demonstrate good conversion efficiency, which offers a new degree of freedom for manipulating high-power laser pulses and paves the way for further studies on ultra-strong vector beams. In addition, our work reveals a new possible source of photon orbital angular momentum related to magnetized plasma in astrophysics and space physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00192v1-abstract-full').style.display = 'none'; document.getElementById('2307.00192v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.04194">arXiv:2306.04194</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.04194">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Surface Saturation Current Densities of Perovskite Thin Films from Suns-Photoluminescence Quantum Yield Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chin%2C+R+L">Robert Lee Chin</a>, <a href="/search/physics?searchtype=author&amp;query=Soufiani%2C+A+M">Arman Mahboubi Soufiani</a>, <a href="/search/physics?searchtype=author&amp;query=Fassl%2C+P">Paul Fassl</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jianghui Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+E">Eunyoung Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Ho-Baillie%2C+A">Anita Ho-Baillie</a>, <a href="/search/physics?searchtype=author&amp;query=Paetzold%2C+U">Ulrich Paetzold</a>, <a href="/search/physics?searchtype=author&amp;query=Trupke%2C+T">Thorsten Trupke</a>, <a href="/search/physics?searchtype=author&amp;query=Hameiri%2C+Z">Ziv Hameiri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.04194v1-abstract-short" style="display: inline;"> We present a simple, yet powerful analysis of Suns-photoluminescence quantum yield measurements that can be used to determine the surface saturation current densities of thin film semiconductors. We apply the method to state-of-the-art polycrystalline perovskite thin films of varying absorber thickness. We show that the non-radiative bimolecular recombination in these samples originates from the s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04194v1-abstract-full').style.display = 'inline'; document.getElementById('2306.04194v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.04194v1-abstract-full" style="display: none;"> We present a simple, yet powerful analysis of Suns-photoluminescence quantum yield measurements that can be used to determine the surface saturation current densities of thin film semiconductors. We apply the method to state-of-the-art polycrystalline perovskite thin films of varying absorber thickness. We show that the non-radiative bimolecular recombination in these samples originates from the surfaces. To the best of our knowledge, this is the first study to demonstrate and quantify non-linear (bimolecular) surface recombination in perovskite thin films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04194v1-abstract-full').style.display = 'none'; document.getElementById('2306.04194v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2306.02222</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.02222">arXiv:2306.02222</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.02222">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Decoupling Bimolecular Recombination Mechanisms in Perovskite Thin Films Using Photoluminescence Quantum Yield </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chin%2C+R+L">Robert Lee Chin</a>, <a href="/search/physics?searchtype=author&amp;query=Soufiani%2C+A+M">Arman Mahboubi Soufiani</a>, <a href="/search/physics?searchtype=author&amp;query=Fassl%2C+P">Paul Fassl</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jianghui Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+E">Eunyoung Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Ho-Baillie%2C+A">Anita Ho-Baillie</a>, <a href="/search/physics?searchtype=author&amp;query=Paetzold%2C+U">Ulrich Paetzold</a>, <a href="/search/physics?searchtype=author&amp;query=Trupke%2C+T">Thorsten Trupke</a>, <a href="/search/physics?searchtype=author&amp;query=Hameiri%2C+Z">Ziv Hameiri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.02222v2-abstract-short" style="display: inline;"> We present a novel analytical model for analysing the spectral photoluminescence quantum yield of non-planar semiconductor thin films. This model considers the escape probability of luminescence and is applied to triple-cation perovskite thin films with a 1-Sun photoluminescence quantum yield approaching 25%. By using our model, we can decouple the internal radiative, external radiative, and non-r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02222v2-abstract-full').style.display = 'inline'; document.getElementById('2306.02222v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.02222v2-abstract-full" style="display: none;"> We present a novel analytical model for analysing the spectral photoluminescence quantum yield of non-planar semiconductor thin films. This model considers the escape probability of luminescence and is applied to triple-cation perovskite thin films with a 1-Sun photoluminescence quantum yield approaching 25%. By using our model, we can decouple the internal radiative, external radiative, and non-radiative bi-molecular recombination coefficients. Unlike other techniques that measure these coefficients separately, our proposed method circumvents experimental uncertainties by avoiding the need for multiple photoluminescence measurement techniques. We validate our model by comparing the extracted implied open-circuit voltage, effective luminescence escape probabilities, absorptivity, and absorption coefficient with values obtained using established methods and found that our results are consistent with previous findings. Next, we compare the implied 1-Sun radiative open-circuit voltage and radiative recombination current obtained from our method with literature values. We then convert the implied open-circuit voltage and implied radiative open-circuit voltage to the injection-dependent apparent-effective and apparent-radiative carrier lifetimes, which allow us to decouple the different recombination coefficients. Using this lifetime analysis, we predict the efficiency losses due to each recombination mechanism. Our proposed analytical model provides a reliable method for analysing the spectral photoluminescence quantum yield of semiconductor thin films, which will facilitate further research into the photovoltaic properties of these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.02222v2-abstract-full').style.display = 'none'; document.getElementById('2306.02222v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 10 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06826">arXiv:2305.06826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.06826">pdf</a>, <a href="https://arxiv.org/format/2305.06826">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Suppressing stimulated Raman side-scattering by vector light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jia%2C+X">Xiaobao Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+Q">Qing Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+R">Rui Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06826v1-abstract-short" style="display: inline;"> Recently, the verification of stimulated Raman side-scattering (SRSS) in different laser inertial confinement fusion ignition schemes poses an underlying risk of SRSS on ignition. In this paper, we propose a method to use the non-uniform polarization nature of vector light to suppress SRSS and give an additional threshold condition determined by the parameter of vector light. For SRSS at 90 degree&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06826v1-abstract-full').style.display = 'inline'; document.getElementById('2305.06826v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06826v1-abstract-full" style="display: none;"> Recently, the verification of stimulated Raman side-scattering (SRSS) in different laser inertial confinement fusion ignition schemes poses an underlying risk of SRSS on ignition. In this paper, we propose a method to use the non-uniform polarization nature of vector light to suppress SRSS and give an additional threshold condition determined by the parameter of vector light. For SRSS at 90 degrees, where the scattered electromagnetic wave travels perpendicular to the density profile, the polarization variation of the pump will change the wave vector of scattered light, thereby reducing the growth length and preventing the scattered electromagnetic wave from growing. This suppressive scheme is verified through three-dimensional particle-in-cell simulations. Our illustrative simulation results demonstrate that for linearly polarized Gaussian light, the SRSS signal occurs in the 90-degree direction fiercely. At the same time, for the vector light, there is few SRSS signal even if the condition dramatically exceeds the threshold. Furthermore, we discuss the impact of vector light on stimulated Raman and Brillouin backscattering, and two-plasma decay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06826v1-abstract-full').style.display = 'none'; document.getElementById('2305.06826v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages,5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06579">arXiv:2304.06579</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06579">pdf</a>, <a href="https://arxiv.org/format/2304.06579">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Acousto-Optic Modulation in Ambient Air </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schr%C3%B6del%2C+Y">Yannick Schr枚del</a>, <a href="/search/physics?searchtype=author&amp;query=Hartmann%2C+C">Claas Hartmann</a>, <a href="/search/physics?searchtype=author&amp;query=Lang%2C+T">Tino Lang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jiaan Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Steudel%2C+M">Max Steudel</a>, <a href="/search/physics?searchtype=author&amp;query=Rutsch%2C+M">Matthias Rutsch</a>, <a href="/search/physics?searchtype=author&amp;query=Salman%2C+S+H">Sarper H. Salman</a>, <a href="/search/physics?searchtype=author&amp;query=Kellert%2C+M">Martin Kellert</a>, <a href="/search/physics?searchtype=author&amp;query=Pergament%2C+M">Mikhail Pergament</a>, <a href="/search/physics?searchtype=author&amp;query=Hahn-Jose%2C+T">Thomas Hahn-Jose</a>, <a href="/search/physics?searchtype=author&amp;query=Suppelt%2C+S">Sven Suppelt</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%B6rsam%2C+J+H">Jan Helge D枚rsam</a>, <a href="/search/physics?searchtype=author&amp;query=Harth%2C+A">Anne Harth</a>, <a href="/search/physics?searchtype=author&amp;query=Leemans%2C+W+P">Wim P. Leemans</a>, <a href="/search/physics?searchtype=author&amp;query=K%C3%A4rtner%2C+F+X">Franz X. K盲rtner</a>, <a href="/search/physics?searchtype=author&amp;query=Hartl%2C+I">Ingmar Hartl</a>, <a href="/search/physics?searchtype=author&amp;query=Kupnik%2C+M">Mario Kupnik</a>, <a href="/search/physics?searchtype=author&amp;query=Heyl%2C+C+M">Christoph M. Heyl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06579v3-abstract-short" style="display: inline;"> Control over intensity, shape, direction, and phase of coherent light is essential in numerous fields, reaching from gravitational wave astronomy over quantum metrology and ultrafast sciences to semi-conductor fabrication. Modern laser optics, however, frequently demands parameter regimes where either the wavelength or the optical power restricts control due to linear absorption, light-induced dam&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06579v3-abstract-full').style.display = 'inline'; document.getElementById('2304.06579v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06579v3-abstract-full" style="display: none;"> Control over intensity, shape, direction, and phase of coherent light is essential in numerous fields, reaching from gravitational wave astronomy over quantum metrology and ultrafast sciences to semi-conductor fabrication. Modern laser optics, however, frequently demands parameter regimes where either the wavelength or the optical power restricts control due to linear absorption, light-induced damage or optical nonlinearity. The properties of solid media, upon which most photonic control schemes rely, impose these limitations. We propose to circumvent these constraints using gaseous media tailored by high-intensity ultrasound waves. We demonstrate a first implementation of this approach by deflecting ultrashort laser pulses using ultrasound waves in ambient air, entirely omitting transmissive solid media. At optical peak powers of 20 GW exceeding previous limits of solid-based acousto-optic modulation by about three orders of magnitude, we reach a deflection efficiency greater than 50% while preserving excellent beam quality. Our approach is not limited to laser pulse deflection via acousto-optic modulation: gas-phase photonic schemes controlled by sonic waves can prospectively be translated to various optical methods, e.g., lenses or waveguides, rendering them effectively invulnerable against damage and opening up new spectral regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06579v3-abstract-full').style.display = 'none'; document.getElementById('2304.06579v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, including 9 pages of main text and 9 pages of Methods and Extended Data, 3 figures, 3 Extended Data figures, 1 Extended Data table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PUBDB-2023-01719 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.11519">arXiv:2303.11519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.11519">pdf</a>, <a href="https://arxiv.org/format/2303.11519">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.155101">10.1103/PhysRevLett.130.155101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient generation of axial magnetic field by multiple laser beams with twisted pointing directions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Y">Yin Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Arefiev%2C+A">Alexey Arefiev</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+J+X">Jue Xuan Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.11519v1-abstract-short" style="display: inline;"> Strong laser-driven magnetic fields are crucial for high-energy-density physics and laboratory astrophysics research, but generation of axial multi-kT fields remains a challenge. The difficulty comes from the inability of a conventional linearly polarized laser beam to induce the required azimuthal current or, equivalently, angular momentum (AM). We show that several laser beams can overcome this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11519v1-abstract-full').style.display = 'inline'; document.getElementById('2303.11519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.11519v1-abstract-full" style="display: none;"> Strong laser-driven magnetic fields are crucial for high-energy-density physics and laboratory astrophysics research, but generation of axial multi-kT fields remains a challenge. The difficulty comes from the inability of a conventional linearly polarized laser beam to induce the required azimuthal current or, equivalently, angular momentum (AM). We show that several laser beams can overcome this difficulty. Our three-dimensional kinetic simulations demonstrate that a twist in their pointing directions {enables them to carry orbital AM and transfer it to the plasma, thus generating a hot electron population carrying AM needed to sustain the magnetic field.} The resulting multi-kT field occupies a volume that is tens of thousands of cubic microns and it persists on a ps time scale. The mechanism can be realized for a wide range of laser intensities and pulse durations. Our scheme is well-suited for implementation using {multi-kJ PW-class lasers, because, by design, they have multiple beamlets and because the scheme requires only linear-polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11519v1-abstract-full').style.display = 'none'; document.getElementById('2303.11519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.02788">arXiv:2301.02788</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.02788">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Design of new helium vessel and tuner for CEPC 650 MHz 2 cell cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mi%2C+Z+H">Z. H. Mi</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z+Q">Z. Q. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Sha%2C+P">P. Sha</a>, <a href="/search/physics?searchtype=author&amp;query=Zhai%2C+J+Y">J. Y. Zhai</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+F+S">F. S. He</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Q">Q. Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B+Q">B. Q. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X+Y">X. Y. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+R+X">R. X. Han</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+F+B">F. B. Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+H+J">H. J. Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.02788v1-abstract-short" style="display: inline;"> CEPC will use 650 MHz cavities for the collider. Each collider cryomodule contains six 650 MHz 2-cell cavities, which is totally new. Therefore, new helium vessel and tuner are designed for the 650 MHz 2-cell cavity. Also, a test cryomodule, which consists of two 650 MHz 2-cell cavities, has begun as the first step to the full scale cryomodule. This paper mainly focuses on the structure design of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02788v1-abstract-full').style.display = 'inline'; document.getElementById('2301.02788v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.02788v1-abstract-full" style="display: none;"> CEPC will use 650 MHz cavities for the collider. Each collider cryomodule contains six 650 MHz 2-cell cavities, which is totally new. Therefore, new helium vessel and tuner are designed for the 650 MHz 2-cell cavity. Also, a test cryomodule, which consists of two 650 MHz 2-cell cavities, has begun as the first step to the full scale cryomodule. This paper mainly focuses on the structure design of Helium vessel and tuner for the 2-cell cavity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02788v1-abstract-full').style.display = 'none'; document.getElementById('2301.02788v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3pages,10figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00468">arXiv:2301.00468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.00468">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39180-3">10.1038/s41467-023-39180-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-volatile electrically programmable integrated photonics with a 5-bit operation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+R">Rui Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+Z">Zhuoran Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Perez%2C+C">Christopher Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+F">Forrest Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Kumari%2C+K">Khushboo Kumari</a>, <a href="/search/physics?searchtype=author&amp;query=Saxena%2C+A">Abhi Saxena</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jiajiu Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Geiger%2C+S+J">Sarah J. Geiger</a>, <a href="/search/physics?searchtype=author&amp;query=Goodson%2C+K+E">Kenneth E. Goodson</a>, <a href="/search/physics?searchtype=author&amp;query=Majumdar%2C+A">Arka Majumdar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00468v1-abstract-short" style="display: inline;"> Scalable programmable photonic integrated circuits (PICs) can potentially transform the current state of classical and quantum optical information processing. However, traditional means of programming, including thermo-optic, free carrier dispersion, and Pockels effect result in either large device footprints or high static energy consumptions, significantly limiting their scalability. While chalc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00468v1-abstract-full').style.display = 'inline'; document.getElementById('2301.00468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00468v1-abstract-full" style="display: none;"> Scalable programmable photonic integrated circuits (PICs) can potentially transform the current state of classical and quantum optical information processing. However, traditional means of programming, including thermo-optic, free carrier dispersion, and Pockels effect result in either large device footprints or high static energy consumptions, significantly limiting their scalability. While chalcogenide-based non-volatile phase-change materials (PCMs) could mitigate these problems thanks to their strong index modulation and zero static power consumption, they often suffer from large absorptive loss, low cyclability, and lack of multilevel operation. Here, we report a wide-bandgap PCM antimony sulfide (Sb2S3)-clad silicon photonic platform simultaneously achieving low loss, high cyclability, and 5-bit operation. We switch Sb2S3 via an on-chip silicon PIN diode heater and demonstrate components with low insertion loss (&lt;1.0 dB), high extinction ratio (&gt;10 dB), and high endurance (&gt;1,600 switching events). Remarkably, we find that Sb2S3 can be programmed into fine intermediate states by applying identical and thermally isolated pulses, providing a unique approach to controllable multilevel operation. Through dynamic pulse control, we achieve on-demand and accurate 5-bit (32 levels) operations, rendering 0.50 +- 0.16 dB contrast per step. Using this multilevel behavior, we further trim random phase error in a balanced Mach-Zehnder interferometer. Our work opens an attractive pathway toward non-volatile large-scale programmable PICs with low-loss and on-demand multi-bit operations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00468v1-abstract-full').style.display = 'none'; document.getElementById('2301.00468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures in main text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04899">arXiv:2211.04899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.04899">pdf</a>, <a href="https://arxiv.org/format/2211.04899">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Generating axial magnetic fields via two plasmon decay driven by a twisted laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ji%2C+Y">Yu Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+C">Chang-Wang Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Y">Yin Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+R">Rui Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+S">Shihui Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+C">Chuang Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04899v1-abstract-short" style="display: inline;"> We propose a new way of axial magnetic fields generation in a non-relativistic laser intensity regime by using a twisted light carrying orbital angular momentum (OAM) to stimulate two-plasmon decay (TPD) in a plasma. The growth of TPD driven by an OAM light in a Laguerre-Gauss (LG) mode is investigated through three dimensional fluid simulations and theory. A theory based on the assumption that th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04899v1-abstract-full').style.display = 'inline'; document.getElementById('2211.04899v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04899v1-abstract-full" style="display: none;"> We propose a new way of axial magnetic fields generation in a non-relativistic laser intensity regime by using a twisted light carrying orbital angular momentum (OAM) to stimulate two-plasmon decay (TPD) in a plasma. The growth of TPD driven by an OAM light in a Laguerre-Gauss (LG) mode is investigated through three dimensional fluid simulations and theory. A theory based on the assumption that the electron plasma waves (EPWs) are locally driven by a number of local plane-wave lasers predicts the maximum growth rate proportional to the peak amplitude of the pump laser field and is verified by the simulations. The OAM conservation during its transportation from the laser to the TPD daughter EWPs is shown by both the theory and the simulations. The theory predicts generation of ~40T axial magnetic fields through the OAM absorption via TPD, which has perspective applications in the field of high energy density physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04899v1-abstract-full').style.display = 'none'; document.getElementById('2211.04899v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12735">arXiv:2210.12735</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.12735">pdf</a>, <a href="https://arxiv.org/format/2210.12735">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/12/P12001">10.1088/1748-0221/17/12/P12001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coating $渭$m TPB on a cylindrical detector and studying the sample films being cooled to LN and LHe temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Jiangfeng Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Ouyang%2C+Z">Zebang Ouyang</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+J">Junhui Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Z">Zhuo Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+Z">Zhaohua Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lifeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12735v3-abstract-short" style="display: inline;"> ALETHEIA is a newly established dark matter direct detection project that aims at hunting for low-mass WIMPs. TPB is widely implemented in liquid helium and argon experiments to shift VUV photons to visible light. We first report that we have successfully coated $\sim 3 ~渭$m TPB on the inner walls of a 10-cm cylindrical PTFE detector; we split the coating process into two steps to have all of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12735v3-abstract-full').style.display = 'inline'; document.getElementById('2210.12735v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12735v3-abstract-full" style="display: none;"> ALETHEIA is a newly established dark matter direct detection project that aims at hunting for low-mass WIMPs. TPB is widely implemented in liquid helium and argon experiments to shift VUV photons to visible light. We first report that we have successfully coated $\sim 3 ~渭$m TPB on the inner walls of a 10-cm cylindrical PTFE detector; we split the coating process into two steps to have all of the surfaces being coated with the same thickness; three independent methods were applied to figure out the thickness of the TPB coating layers, and consistent results were obtained. Second, with an SEM machine, we scanned the surface of TPB coating sample films exposed to different cryogenic temperatures. The first group of sample layers were immersed into a liquid nitrogen dewar for forty hours, the second group samples were cooled to 4.5 K for three hours, and the third group stayed at room temperature after coating. The SEM-scanned images of the sample films barely show any noticeable difference. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12735v3-abstract-full').style.display = 'none'; document.getElementById('2210.12735v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2022 JINST 17 P12001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12131">arXiv:2210.12131</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.12131">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.xcrp.2023.101452">10.1016/j.xcrp.2023.101452 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding The Reversible Electrodeposition of Al in Low-Cost Room Temperature Molten Salts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Garcia-Mendez%2C+R">Regina Garcia-Mendez</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jingxu Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Bock%2C+D+C">David C. Bock</a>, <a href="/search/physics?searchtype=author&amp;query=Jaye%2C+C">Cherno Jaye</a>, <a href="/search/physics?searchtype=author&amp;query=Fischer%2C+D+A">Daniel A. Fischer</a>, <a href="/search/physics?searchtype=author&amp;query=Marschilok%2C+A+C">Amy C. Marschilok</a>, <a href="/search/physics?searchtype=author&amp;query=Takeuchi%2C+K+J">Kenneth J. Takeuchi</a>, <a href="/search/physics?searchtype=author&amp;query=Takeuchi%2C+E+S">Esther S. Takeuchi</a>, <a href="/search/physics?searchtype=author&amp;query=Archer%2C+L+A">Lynden A. Archer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12131v1-abstract-short" style="display: inline;"> Aluminum is the most earth-abundant metal, is trivalent, is inert in ambient humid air, and has a density approximately four-times that of lithium at room temperature. These attributes make it an attractive material for cost-effective, long-duration storage of electrical energy in batteries. Scientific discoveries in the past decade have established that secondary Al batteries can be created by pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12131v1-abstract-full').style.display = 'inline'; document.getElementById('2210.12131v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12131v1-abstract-full" style="display: none;"> Aluminum is the most earth-abundant metal, is trivalent, is inert in ambient humid air, and has a density approximately four-times that of lithium at room temperature. These attributes make it an attractive material for cost-effective, long-duration storage of electrical energy in batteries. Scientific discoveries in the past decade have established that secondary Al batteries can be created by paring an Al anode with a graphite or transition metal oxide cathode, in imidazolium-based, room-temperature ionic-liquid-Aluminum chloride electrolytes. Here we report findings from a systematic study that sheds light on the structural requirements, physicochemical, and transport properties of the ionic liquid electrolytes responsible for the high reversibility of Al battery anodes. We find that the most important interfacial and transport properties of these electrolytes can be achieved in other electrolytes, including ammonium-based molten salts that are available at costs as much as twenty-times lower than the ionic liquid-Aluminum chloride melt. High Al reversibility in ammonium- and imidazolium-based electrolytes is specifically shown to require a critical ratio of the solvation species, where Lewis acidity and beneficial interfacial reactions continuously etch the alumina resistive interfacial layer and form beneficial solid electrolyte interphase at the anode. We report further that successful development of new electrolyte families that support high Al anode reversibility also provides a good platform for detailed studies of the working mechanisms of an intercalation graphite cathode using X-ray absorption spectroscopy. Our findings therefore open new opportunities for developing simple, cost-effective, room-temperature Al batteries that enable long-duration electrical energy storage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12131v1-abstract-full').style.display = 'none'; document.getElementById('2210.12131v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 26 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 101452 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Cell Reports Physical Science 4,101452 June 21 2023 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zheng%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10