CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 302 results for author: <span class="mathjax">Shi, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Shi%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Shi, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Shi%2C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Shi, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16145">arXiv:2502.16145</a> <span> [<a href="https://arxiv.org/pdf/2502.16145">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Valley resolved dynamics of phonon bottleneck in semiconductor molybdenum ditelluride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhong Wang</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yijie Shi</a>, <a href="/search/physics?searchtype=author&query=Pan%2C+Y">Yu Pan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Min Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xi Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+X">Xiangyu Zhu</a>, <a href="/search/physics?searchtype=author&query=Hua%2C+F">Fuyong Hua</a>, <a href="/search/physics?searchtype=author&query=You%2C+Q">Qian You</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+C">Chunlong Hu</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Junjie He</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+Y">Yu Ye</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+W">Wenxi Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16145v1-abstract-short" style="display: inline;"> Semiconductor molybdenum ditelluride (2H-MoTe2) possess multiple valleys in the band structure, enriching its physical properties and potentials in applications. The understanding of its multivalley nature of fundamental processes involving population and relaxation of carriers and phonons is still evolving; particularly, the possible phonon bottleneck has not yet been addressed. Here, we investig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16145v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16145v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16145v1-abstract-full" style="display: none;"> Semiconductor molybdenum ditelluride (2H-MoTe2) possess multiple valleys in the band structure, enriching its physical properties and potentials in applications. The understanding of its multivalley nature of fundamental processes involving population and relaxation of carriers and phonons is still evolving; particularly, the possible phonon bottleneck has not yet been addressed. Here, we investigate the carrier intra- and intervalley scattering and the phonon dynamics in different valleys in photoexcited few-layer 2H-MoTe2, by using the time resolved measurements of optical absorption and electron diffraction, together with the density functional theory calculation and molecular dynamics simulation. The pathways and timescales of carrier relaxation, accompanied with the emissions of optical phonons at the Brillouin zone center and acoustic phonons at the zone border are revealed. We present a couple of approaches to estimate the population of different phonon modes based on the results of optical and electron diffraction measurements, hence quantitatively identify the occurrences of phonon bottleneck located in different valleys. Our findings make possible to construct a comprehensive picture of the complex interactions between carriers and phonons in 2H-MoTe2 with the valley degree of freedom resolved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16145v1-abstract-full').style.display = 'none'; document.getElementById('2502.16145v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 17 figures (including Supplementary Information)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16036">arXiv:2502.16036</a> <span> [<a href="https://arxiv.org/pdf/2502.16036">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> AI Models Still Lag Behind Traditional Numerical Models in Predicting Sudden-Turning Typhoons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+D">Daosheng Xu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Zebin Lu</a>, <a href="/search/physics?searchtype=author&query=Leung%2C+J+C">Jeremy Cheuk-Hin Leung</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+D">Dingchi Zhao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yi Li</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yang Shi</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+B">Bin Chen</a>, <a href="/search/physics?searchtype=author&query=Nie%2C+G">Gaozhen Nie</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+N">Naigeng Wu</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+X">Xiangjun Tian</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yi Yang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shaoqing Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+B">Banglin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16036v1-abstract-short" style="display: inline;"> Given the interpretability, accuracy, and stability of numerical weather prediction (NWP) models, current operational weather forecasting relies heavily on the NWP approach. In the past two years, the rapid development of Artificial Intelligence (AI) has provided an alternative solution for medium-range (1-10 days) weather forecasting. Bi et al. (2023) (hereafter Bi23) introduced the first AI-base… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16036v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16036v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16036v1-abstract-full" style="display: none;"> Given the interpretability, accuracy, and stability of numerical weather prediction (NWP) models, current operational weather forecasting relies heavily on the NWP approach. In the past two years, the rapid development of Artificial Intelligence (AI) has provided an alternative solution for medium-range (1-10 days) weather forecasting. Bi et al. (2023) (hereafter Bi23) introduced the first AI-based weather prediction (AIWP) model in China, named Pangu-Weather, which offers fast prediction without compromising accuracy. In their work, Bi23 made notable claims regarding its effectiveness in extreme weather predictions. However, this claim lacks persuasiveness because the extreme nature of the two tropical cyclones (TCs) examples presented in Bi23, namely Typhoon Kong-rey and Typhoon Yutu, stems primarily from their intensities rather than their moving paths. Their claim may mislead into another meaning which is that Pangu-Weather works well in predicting unusual typhoon paths, which was not explicitly analyzed. Here, we reassess Pangu-Weather's ability to predict extreme TC trajectories from 2020-2024. Results reveal that while Pangu-Weather overall outperforms NWP models in predicting tropical cyclone (TC) tracks, it falls short in accurately predicting the rarely observed sudden-turning tracks, such as Typhoon Khanun in 2023. We argue that current AIWP models still lag behind traditional NWP models in predicting such rare extreme events in medium-range forecasts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16036v1-abstract-full').style.display = 'none'; document.getElementById('2502.16036v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06458">arXiv:2502.06458</a> <span> [<a href="https://arxiv.org/pdf/2502.06458">pdf</a>, <a href="https://arxiv.org/ps/2502.06458">ps</a>, <a href="https://arxiv.org/format/2502.06458">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="History and Philosophy of Physics">physics.hist-ph</span> </div> </div> <p class="title is-5 mathjax"> Chien-Shiung Wu as the experimental pioneer in quantum entanglement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yu Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06458v1-abstract-short" style="display: inline;"> Advised by Prof. Chen Ning Yang, we review the early pioneering work by Chien-Shiung Wu on entangled photons created from the electron-positron annihilation. This paper formed a basis of the author's speech at International Symposium Commemorating 110th Birth Anniversary of Chien-Shiung Wu, and of a few articles on the subject in Chinese. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06458v1-abstract-full" style="display: none;"> Advised by Prof. Chen Ning Yang, we review the early pioneering work by Chien-Shiung Wu on entangled photons created from the electron-positron annihilation. This paper formed a basis of the author's speech at International Symposium Commemorating 110th Birth Anniversary of Chien-Shiung Wu, and of a few articles on the subject in Chinese. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06458v1-abstract-full').style.display = 'none'; document.getElementById('2502.06458v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04745">arXiv:2502.04745</a> <span> [<a href="https://arxiv.org/pdf/2502.04745">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Overview of EXL-50 Research Progress and Future Plan </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuejiang Shi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yumin Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+B">Bing Liu</a>, <a href="/search/physics?searchtype=author&query=Song%2C+X">Xianming Song</a>, <a href="/search/physics?searchtype=author&query=Song%2C+S">Shaodong Song</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+X">Xinchen Jiang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+D">Dong Guo</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+D">Di Luo</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+X">Xiang Gu</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+T">Tiantian Sun</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+X">Xianli Huang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhi Li</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+L">Lili Dong</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xueyun Wang</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+G">Gang Yin</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Mingyuan Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wenjun Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+H">Hanyue Zhao</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+H">Huasheng Xie</a>, <a href="/search/physics?searchtype=author&query=Yong"> Yong</a>, <a href="/search/physics?searchtype=author&query=Liu"> Liu</a>, <a href="/search/physics?searchtype=author&query=Qi%2C+D">Dongkai Qi</a>, <a href="/search/physics?searchtype=author&query=Xing%2C+B">Bo Xing</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+J">Jiangbo Ding</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+C">Chao Wu</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04745v1-abstract-short" style="display: inline;"> XuanLong-50 (EXL-50) is the first medium-size spherical torus (ST) in China, with the toroidal field at major radius at 50 cm around 0.5T. CS-free and non-inductive current drive via electron cyclotron resonance heating (ECRH) was the main physics research issue for EXL-50. Discharges with plasma currents of 50 kA - 180 kA were routinely obtained in EXL-50, with the current flattop sustained for u… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04745v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04745v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04745v1-abstract-full" style="display: none;"> XuanLong-50 (EXL-50) is the first medium-size spherical torus (ST) in China, with the toroidal field at major radius at 50 cm around 0.5T. CS-free and non-inductive current drive via electron cyclotron resonance heating (ECRH) was the main physics research issue for EXL-50. Discharges with plasma currents of 50 kA - 180 kA were routinely obtained in EXL-50, with the current flattop sustained for up to or beyond 2 s. The current drive effectiveness on EXL-50 was as high as 1 A/W for low-density discharges using 28GHz ECRH alone for heating power less than 200 kW. The plasma current reached Ip>80 kA for high-density (5*10e18m-2) discharges with 150 kW 28GHz ECRH. Higher performance discharge (Ip of about 120 kA and core density of about 1*10e19m-3) was achieved with 150 kW 50GHz ECRH. The plasma current in EXL-50 was mainly carried by the energetic electrons.Multi-fluid equilibrium model has been successfully applied to reconstruct the magnetic flux surface and the measured plasma parameters of the EXL-50 equilibrium. The physics mechanisms for the solenoid-free ECRH current drive and the energetic electrons has also been investigated. Preliminary experimental results show that 100 kW of lower hybrid current drive (LHCD) waves can drive 20 kA of plasma current. Several boron injection systems were installed and tested in EXL-50, including B2H6 gas puffing, boron powder injection, boron pellet injection. The research plan of EXL-50U, which is the upgrade machine of EXL-50, is also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04745v1-abstract-full').style.display = 'none'; document.getElementById('2502.04745v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.03567">arXiv:2502.03567</a> <span> [<a href="https://arxiv.org/pdf/2502.03567">pdf</a>, <a href="https://arxiv.org/format/2502.03567">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Information-optimal mixing at low Reynolds number </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cocconi%2C+L">Luca Cocconi</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yihong Shi</a>, <a href="/search/physics?searchtype=author&query=Vilfan%2C+A">Andrej Vilfan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.03567v1-abstract-short" style="display: inline;"> Mutual information between particle positions before and after mixing provides a universal assumption-free measure of mixing efficiency at low Reynolds number which accounts for the kinematic reversibility of the Stokes equation. For a generic planar shear flow with time-dependent shear rate, we derive a compact expression for the mutual information as a nonlinear functional of the shearing protoc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03567v1-abstract-full').style.display = 'inline'; document.getElementById('2502.03567v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.03567v1-abstract-full" style="display: none;"> Mutual information between particle positions before and after mixing provides a universal assumption-free measure of mixing efficiency at low Reynolds number which accounts for the kinematic reversibility of the Stokes equation. For a generic planar shear flow with time-dependent shear rate, we derive a compact expression for the mutual information as a nonlinear functional of the shearing protocol and solve the associated extremisation problem exactly to determine the optimal control under both linear and non-linear constraints, specifically total shear and total dissipation per unit volume. Remarkably, optimal protocols turn out to be universal and time-reversal symmetric in both cases. Our results establish a minimum energetic cost of erasing information through mixing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.03567v1-abstract-full').style.display = 'none'; document.getElementById('2502.03567v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02137">arXiv:2502.02137</a> <span> [<a href="https://arxiv.org/pdf/2502.02137">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Undamped Soliton-like Domain Wall Motion in Sliding Ferroelectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yubai Shi</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+Y">Yuxiang Gao</a>, <a href="/search/physics?searchtype=author&query=He%2C+R">Ri He</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Hua Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+B">Binwen Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+Z">Zhicheng Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02137v2-abstract-short" style="display: inline;"> Sliding ferroelectricity in bilayer van der Waals materials exhibits ultrafast switching speed and fatigue resistance during the polarization switching, offering an avenue for the design of memories and neuromorphic devices. The unique polarization switching behavior originates from the distinct characteristics of domain wall (DW), which possesses broader width and faster motion compared to conven… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02137v2-abstract-full').style.display = 'inline'; document.getElementById('2502.02137v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02137v2-abstract-full" style="display: none;"> Sliding ferroelectricity in bilayer van der Waals materials exhibits ultrafast switching speed and fatigue resistance during the polarization switching, offering an avenue for the design of memories and neuromorphic devices. The unique polarization switching behavior originates from the distinct characteristics of domain wall (DW), which possesses broader width and faster motion compared to conventional ferroelectrics. Herein, using machine-learning-assisted molecular dynamics simulations and field theory analysis, we predict an undamped soliton-like DW motion in sliding ferroelectrics. It is found that the DW in sliding ferroelectric bilayer 3R-MoS2 exhibits uniformly accelerated motion under an external field, with its velocity ultimately reaches the relativistic-like limit due to continuous acceleration. Remarkably, the DW velocity remains constant even after the external field removal, completely deviating from the velocity breakdown observed in conventional ferroelectrics. This work provides opportunities for applications of sliding ferroelectrics in memory devices based on DW engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02137v2-abstract-full').style.display = 'none'; document.getElementById('2502.02137v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04713">arXiv:2501.04713</a> <span> [<a href="https://arxiv.org/pdf/2501.04713">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Cavity Plasmon: Enhanced Luminescence Effect on InGaN Light Emitting Diodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuyin Li</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+J">Jing Zhou</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+Z">Ziwen Yan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xianfei Zhang</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zili Xie</a>, <a href="/search/physics?searchtype=author&query=Xiu%2C+X">Xiangqian Xiu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D">Dunjun Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+B">Bin Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+H">Hong Zhao</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yi Shi</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Y">Youdou Zheng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+P">Peng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04713v1-abstract-short" style="display: inline;"> We fabricated polygonal nanoholes in the top p-GaN layer of the InGaN/GaN light-emitting diode, followed by the deposition of Au/Al metal thin film within the nanoholes to create metal microcavities, thereby constructing the surface plasmon structure. The findings indicate that with increased current injection, the light output of the LEDs rose by 46%, accompanied by a shift of the gain peak posit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04713v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04713v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04713v1-abstract-full" style="display: none;"> We fabricated polygonal nanoholes in the top p-GaN layer of the InGaN/GaN light-emitting diode, followed by the deposition of Au/Al metal thin film within the nanoholes to create metal microcavities, thereby constructing the surface plasmon structure. The findings indicate that with increased current injection, the light output of the LEDs rose by 46%, accompanied by a shift of the gain peak position towards the plasmon resonance energy. The maximum enhancement factor increases to 2.38 as the coupling distance decreases from 60 nm to 30 nm. Interestingly, time-resolved photoluminescence data showed that the spontaneous emission decay time lengthened due to the plasmon coupling, suggesting the presence of a new plasmon coupling mechanism. Finite-Difference Time-Domain simulation results show that the electric field is localized at certain locations around the metal microcavity, generating a new type of shape-sensitive plasmon, named Cavity Plasmon here. This intense localization leads to a longer lifetime and enhances the recombination efficiency of excitons. We discuss several unique properties of the cavity plasmon generated by the polygonal metal microcavity with several specific angular shapes. The results demonstrate that the cavity plasmon generated by the polygonal metal microcavity is a highly promising technique for enhancing the light emission performance of of relevant semiconductor optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04713v1-abstract-full').style.display = 'none'; document.getElementById('2501.04713v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures. arXiv admin note: substantial text overlap with arXiv:2104.00849</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 78-05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00714">arXiv:2501.00714</a> <span> [<a href="https://arxiv.org/pdf/2501.00714">pdf</a>, <a href="https://arxiv.org/format/2501.00714">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Extracting Interaction Kernels for Many-Particle Systems by a Two-Phase Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yangxuan Shi</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+W">Wuyue Yang</a>, <a href="/search/physics?searchtype=author&query=Hong%2C+L">Liu Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00714v1-abstract-short" style="display: inline;"> This paper presents a two-phase method for learning interaction kernels of stochastic many-particle systems. After transforming stochastic trajectories of every particle into the particle density function by the kernel density estimation method, the first phase of our approach combines importance sampling with an adaptive threshold strategy to identify key terms in the kernel function, while the s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00714v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00714v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00714v1-abstract-full" style="display: none;"> This paper presents a two-phase method for learning interaction kernels of stochastic many-particle systems. After transforming stochastic trajectories of every particle into the particle density function by the kernel density estimation method, the first phase of our approach combines importance sampling with an adaptive threshold strategy to identify key terms in the kernel function, while the second phase uses the whole dataset to refine the coefficients. During the implementation of our method, the mean-field equation plays a key role in reformulating the task of extracting the interaction kernels into a learnable regression problem. We demonstrate the outstanding performance of our approach through extensive numerical examples, including interacting particle systems with a cubic potential, power-law repulsion-attraction potential, piecewise linear potential, as well as a two-dimensional radially symmetric potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00714v1-abstract-full').style.display = 'none'; document.getElementById('2501.00714v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00455">arXiv:2501.00455</a> <span> [<a href="https://arxiv.org/pdf/2501.00455">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhanced optical performance of GaN Micro-light-emitting diodes with a single porous layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yan%2C+Z">Ziwen Yan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xianfei Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuyin Li</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zili Xie</a>, <a href="/search/physics?searchtype=author&query=Xiu%2C+X">Xiangqian Xiu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D">Dunjun Chen</a>, <a href="/search/physics?searchtype=author&query=Han%2C+P">Ping Han</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yi Shi</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Y">Youdou Zheng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+P">Peng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00455v1-abstract-short" style="display: inline;"> High-efficiency micro-light-emitting diodes (Micro-LEDs) are key devices for next-generation display technology. However, when the mesa size is reduced to around tens of micrometers or less, the luminous efficiency is constrained by the "efficiency-on-size effect". This work details the fabrication of gallium nitride (GaN) based Micro-LEDs with various mesa shapes and a single porous layer under t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00455v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00455v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00455v1-abstract-full" style="display: none;"> High-efficiency micro-light-emitting diodes (Micro-LEDs) are key devices for next-generation display technology. However, when the mesa size is reduced to around tens of micrometers or less, the luminous efficiency is constrained by the "efficiency-on-size effect". This work details the fabrication of gallium nitride (GaN) based Micro-LEDs with various mesa shapes and a single porous layer under the active region. A modified green LED epitaxial structure with different doped n-GaN layers combined with electrochemical etching created the porous layer. The strong light confinement achieved by the porous layer and the polygonal mesa greatly enhances spontaneous emission. The luminous intensity of the Micro-LEDs with the porous layer is approximately 22 times greater than those Micro-LEDs without the porous layer. A significant reduction in minimum full width at half maximum (FWHM) was observed in polygonal devices, suggesting a change in the luminescence mechanism. The influence of varying device geometry on emission performance was investigated. Experimental results reveal that, unlike circular porous Micro-LEDs, square and hexagonal porous Micro-LEDs exhibit more pronounced resonant emission, which provides a new technological approach for the further development of high-performance Micro-LEDs and lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00455v1-abstract-full').style.display = 'none'; document.getElementById('2501.00455v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 78-05 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00336">arXiv:2501.00336</a> <span> [<a href="https://arxiv.org/pdf/2501.00336">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Study on the efficiency droop in high-quality GaN material under high photoexcitation intensity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+P">Peng Chen</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zili Xie</a>, <a href="/search/physics?searchtype=author&query=Xiu%2C+X">Xiangqian Xiu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D">Dunjun Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+B">Bin Liu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+H">Hong Zhao</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yi Shi</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Y">Youdou Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00336v1-abstract-short" style="display: inline;"> III-V nitride semiconductors, represented by GaN, have attracted significant research attention. Driven by the growing interest in smart micro-displays, there is a strong desire to achieve enhanced light output from even smaller light-emitting diode (LED) chips. However, the most perplexing phenomenon and the most significant challenge in the study of emission properties under high-injection condi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00336v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00336v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00336v1-abstract-full" style="display: none;"> III-V nitride semiconductors, represented by GaN, have attracted significant research attention. Driven by the growing interest in smart micro-displays, there is a strong desire to achieve enhanced light output from even smaller light-emitting diode (LED) chips. However, the most perplexing phenomenon and the most significant challenge in the study of emission properties under high-injection conditions in GaN has always been efficiency droop for decades, where LEDs exhibit a substantial loss in efficiency at high driving currents. In this paper, we present our study on the intrinsic emission properties of high-quality GaN material based on the density of states and the principles of momentum conservation. Our theoretical calculations reveal a momentum distribution mismatch between the non-equilibrium excess electrons and holes, which becomes more significant as the carrier concentration increases. Our excitation-dependent photoluminescence measurements conducted at 6 K exhibited a clear droop for all exciton recombinations, but droop-free for phonon-assisted recombination due to phonons compensating for the momentum mismatch. These findings indicate that the momentum distribution mismatch between the non-equilibrium excess electrons and holes is one of the intrinsic causes of the efficiency droop, which originates from the intrinsic band properties of GaN. These results suggest that proper active region design aimed at reducing this mismatch will contribute to the development of ultra-highly efficient lighting devices in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00336v1-abstract-full').style.display = 'none'; document.getElementById('2501.00336v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 78-10 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.19171">arXiv:2412.19171</a> <span> [<a href="https://arxiv.org/pdf/2412.19171">pdf</a>, <a href="https://arxiv.org/ps/2412.19171">ps</a>, <a href="https://arxiv.org/format/2412.19171">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> High-Precision Schottky Diagnostics for Low-SNR Betatron Tune Measurement in Ramping Synchrotrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sun%2C+P">Peihan Sun</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Manzhou Zhang</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+R">Renxian Yuan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+D">Deming Li</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+J">Jian Dong</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Ying Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.19171v1-abstract-short" style="display: inline;"> This paper presents a novel Schottky diagnostics-based method for real-time betatron tune measurement in ramping synchrotrons, exemplified by the Shanghai Advanced Proton Therapy (SAPT) facility. The proposed approach achieves high precision under challenging conditions, including low frequency resolution and signal-to-noise ratios (SNR) as low as -15 dB within the bandwidth of a narrowband detect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19171v1-abstract-full').style.display = 'inline'; document.getElementById('2412.19171v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.19171v1-abstract-full" style="display: none;"> This paper presents a novel Schottky diagnostics-based method for real-time betatron tune measurement in ramping synchrotrons, exemplified by the Shanghai Advanced Proton Therapy (SAPT) facility. The proposed approach achieves high precision under challenging conditions, including low frequency resolution and signal-to-noise ratios (SNR) as low as -15 dB within the bandwidth of a narrowband detector. By employing Short-Time Fourier Transform (STFT) analysis with automatically optimized time windows, the method effectively addresses the rapid increase in revolution frequency from 4 MHz to 7.5 MHz over 0.35 seconds, assuming constant beam properties within each window. Monte Carlo macro-particle simulations are employed to generate Schottky signals, which are subsequently combined with real noise collected from an analog-to-digital converter to emulate practical conditions. The betatron tune measurement procedure integrates longitudinal signal exclusion, spectrum smoothing, and spectral multiplication to reliably extract transverse Schottky spectra buried in noise, to enable precise betatron tune determination. Experimental results demonstrate that the proposed method surpasses existing approaches in precision, accuracy, and robustness, while meeting stringent design requirements. This innovative approach addresses key limitations of Schottky diagnostics for betatron tune measurement in ramping synchrotrons, providing a foundation for applications such as proton therapy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19171v1-abstract-full').style.display = 'none'; document.getElementById('2412.19171v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00879">arXiv:2412.00879</a> <span> [<a href="https://arxiv.org/pdf/2412.00879">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Brownian spin-locking effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiao Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+P">Peiyang Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Mei Li</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuzhi Shi</a>, <a href="/search/physics?searchtype=author&query=Hasman%2C+E">Erez Hasman</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+B">Bo Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xianfeng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00879v1-abstract-short" style="display: inline;"> Brownian systems are characterized by spatiotemporal disorder, which arises from the erratic motion of particles driven by thermal fluctuations. When light interacts with such systems, it typically produces unpolarized and uncorrelated fields. Here, we report the observation of a large-scale spin-locking effect of light within a Brownian medium. In an observation direction perpendicular to the inc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00879v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00879v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00879v1-abstract-full" style="display: none;"> Brownian systems are characterized by spatiotemporal disorder, which arises from the erratic motion of particles driven by thermal fluctuations. When light interacts with such systems, it typically produces unpolarized and uncorrelated fields. Here, we report the observation of a large-scale spin-locking effect of light within a Brownian medium. In an observation direction perpendicular to the incident wave momentum, scattering naturally divides into two diffusion regions, each associated with an opposite spin from the Brownian nanoparticles. This effect arises from the intrinsic spin-orbit interactions of scattering from individual nanoparticles, which ubiquitously generate radiative spin fields that propagate through the Brownian medium with multiple incoherent scattering. It offers a novel experimental platform for exploring macroscale spin behaviors of diffused light, with potential applications in precision metrology for measuring various nanoparticle properties. Our findings may inspire the study of analogous phenomena for different waves from novel spin-orbit interactions in complex disordered systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00879v1-abstract-full').style.display = 'none'; document.getElementById('2412.00879v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages, 20 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17480">arXiv:2411.17480</a> <span> [<a href="https://arxiv.org/pdf/2411.17480">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultra-low-loss slow-light thin-film lithium-niobate optical modulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+C">Chenlei Li</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Jianghao He</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Ming Zhang</a>, <a href="/search/physics?searchtype=author&query=Tong%2C+Y">Yeyu Tong</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Weixi Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Siyuan Wang</a>, <a href="/search/physics?searchtype=author&query=Song%2C+L">Lijia Song</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hongxuan Liu</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+H">Hengzhen Cao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Liu Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yaocheng Shi</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+D">Daoxin Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17480v1-abstract-short" style="display: inline;"> Electro-optic modulators for next-generation optical interconnects require low loss-efficiency products, compact footprints, high modulation efficiency, broad bandwidths, and low losses. Here we propose and demonstrate a low-loss high-efficiency thin-film lithium-niobate Mach Zehnder modulator enabled by a novel ultralow-loss slow-light structure based on apodized gratings in cascade. The present… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17480v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17480v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17480v1-abstract-full" style="display: none;"> Electro-optic modulators for next-generation optical interconnects require low loss-efficiency products, compact footprints, high modulation efficiency, broad bandwidths, and low losses. Here we propose and demonstrate a low-loss high-efficiency thin-film lithium-niobate Mach Zehnder modulator enabled by a novel ultralow-loss slow-light structure based on apodized gratings in cascade. The present loss-engineered slow-light structure achieves excess losses as low as 0.6 dB/mm experimentally, which is tens of times lower than conventional slow-light structures, and a high modulation bandwidth up to 320GHz in theory is achieved with optimally-designed capacitively-loaded traveling-wave electrodes. Experimentally, the fabricated slow-light modulator with a 2.8-mm-long modulation region has an ultra-low loss-efficiency product of 7.4 VdB and a flat electro-optic response up to 67 GHz, enabling 100-Gbps on-off keying with high ERs of 4.5 dB at a low driving voltage of 2Vpp, while 200-Gbps PAM4 and 150-Gbps PAM8 signals are also generated to show great promise for advanced modulation formats. In particular, it has also achieved the highest figure-of-merit(FOM) of 182 for high-speed optical modulation , including the bit rate, the extinction ratio normalized with respective to Vpp, the modulation efficiency. The outstanding performance of the present apodized-grating-based slow-light modulator shows great potential and paves the way for developing high-speed optical interconnects for both data-centers and high-performance computing systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17480v1-abstract-full').style.display = 'none'; document.getElementById('2411.17480v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16581">arXiv:2411.16581</a> <span> [<a href="https://arxiv.org/pdf/2411.16581">pdf</a>, <a href="https://arxiv.org/format/2411.16581">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Methods for energy dispersive x-ray spectroscopy with photon-counting and deconvolution techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Forte%2C+A">Alessandro Forte</a>, <a href="/search/physics?searchtype=author&query=Gawne%2C+T">Thomas Gawne</a>, <a href="/search/physics?searchtype=author&query=Humphries%2C+O+S">Oliver S. Humphries</a>, <a href="/search/physics?searchtype=author&query=Campbell%2C+T">Thomas Campbell</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuanfeng Shi</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16581v2-abstract-short" style="display: inline;"> Spectroscopic techniques are essential for studying material properties, but the small cross-sections of some methods may result in low signal-to-noise ratios (SNRs) in the collected spectra. In this article we present methods, based on combining Bragg spectroscopy with photon counting and deconvolution algorithms, which increase the SNRs, making the spectra better suited to further analysis. We a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16581v2-abstract-full').style.display = 'inline'; document.getElementById('2411.16581v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16581v2-abstract-full" style="display: none;"> Spectroscopic techniques are essential for studying material properties, but the small cross-sections of some methods may result in low signal-to-noise ratios (SNRs) in the collected spectra. In this article we present methods, based on combining Bragg spectroscopy with photon counting and deconvolution algorithms, which increase the SNRs, making the spectra better suited to further analysis. We aim to provide a comprehensive guide for constructing spectra from camera images. The efficacy of these methods is validated on synthetic and experimental data, the latter coming from the field of high-energy density (HED) science, where x-ray spectroscopy is essential for the understanding of materials under extreme thermodynamic conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16581v2-abstract-full').style.display = 'none'; document.getElementById('2411.16581v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16039">arXiv:2411.16039</a> <span> [<a href="https://arxiv.org/pdf/2411.16039">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Label-Free Intraoperative Mean-Transition-Time Image Generation Using Statistical Gating and Deep Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yan Shi</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+D">Denghui Zhao</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+J">Jingyi Yu</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+W">Wei Ni</a>, <a href="/search/physics?searchtype=author&query=Li%2C+P">Pengcheng Li</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+Y">Yun Gu</a>, <a href="/search/physics?searchtype=author&query=Miao%2C+P">Peng Miao</a>, <a href="/search/physics?searchtype=author&query=Tong%2C+S">Shanbao Tong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16039v1-abstract-short" style="display: inline;"> It is of paramount importance to visualize blood dynamics intraoperatively, as this enables the accurate diagnosis of intraoperative conditions and facilitates informed surgical decision-making. Indocyanine green (ICG) fluorescence imaging represents the gold standard for the assessment of blood flow and the identification of vascular structures. However, it has several disadvantages, including ti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16039v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16039v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16039v1-abstract-full" style="display: none;"> It is of paramount importance to visualize blood dynamics intraoperatively, as this enables the accurate diagnosis of intraoperative conditions and facilitates informed surgical decision-making. Indocyanine green (ICG) fluorescence imaging represents the gold standard for the assessment of blood flow and the identification of vascular structures. However, it has several disadvantages, including time-consuming data acquisition, mandatory waiting periods, potential allergic reactions, and complex operations. Laser speckle contrast imaging (LSCI) provides an alternative for label-free assessment of blood flow; however, it lacks the necessary information for distinguishing arteries from veins and determining blood flow direction. Such information may be inferred from a Mean Transition Time (MTT) image derived from fluorescence imaging. In order to address these challenges, we propose the implementation of a Mixed Attention Dense UNet (MA-DenseUNet), which will be used to generate synthetic MTT images based on statistically gated deep tissue contrast and white light images. The proposed method provides clear delineation of vasculature, differentiation of arteries and veins, decoding of blood flow direction, and a reduction in imaging time by a minimum of 97.69%. This study demonstrates the potential of deep learning to optimize intraoperative optical imaging techniques, thereby providing faster and more efficient label-free surgical guidance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16039v1-abstract-full').style.display = 'none'; document.getElementById('2411.16039v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12417">arXiv:2411.12417</a> <span> [<a href="https://arxiv.org/pdf/2411.12417">pdf</a>, <a href="https://arxiv.org/format/2411.12417">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Variational learning of integrated quantum photonic circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+C">Chengran Yang</a>, <a href="/search/physics?searchtype=author&query=Mok%2C+W">Wai-Keong Mok</a>, <a href="/search/physics?searchtype=author&query=Wan%2C+L">Lingxiao Wan</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+H">Hong Cai</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Q">Qiang Li</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+F">Feng Gao</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+X">Xianshu Luo</a>, <a href="/search/physics?searchtype=author&query=Lo%2C+G">Guo-Qiang Lo</a>, <a href="/search/physics?searchtype=author&query=Chin%2C+L+K">Lip Ket Chin</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuzhi Shi</a>, <a href="/search/physics?searchtype=author&query=Thompson%2C+J">Jayne Thompson</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+M">Mile Gu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+A+Q">Ai Qun Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12417v1-abstract-short" style="display: inline;"> Integrated photonic circuits play a crucial role in implementing quantum information processing in the noisy intermediate-scale quantum (NISQ) era. Variational learning is a promising avenue that leverages classical optimization techniques to enhance quantum advantages on NISQ devices. However, most variational algorithms are circuit-model-based and encounter challenges when implemented on integra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12417v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12417v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12417v1-abstract-full" style="display: none;"> Integrated photonic circuits play a crucial role in implementing quantum information processing in the noisy intermediate-scale quantum (NISQ) era. Variational learning is a promising avenue that leverages classical optimization techniques to enhance quantum advantages on NISQ devices. However, most variational algorithms are circuit-model-based and encounter challenges when implemented on integrated photonic circuits, because they involve explicit decomposition of large quantum circuits into sequences of basic entangled gates, leading to an exponential decay of success probability due to the non-deterministic nature of photonic entangling gates. Here, we present a variational learning approach for designing quantum photonic circuits, which directly incorporates post-selection and elementary photonic elements into the training process. The complicated circuit is treated as a single nonlinear logical operator, and a unified design is discovered for it through variational learning. Engineering an integrated photonic chip with automated control, we adjust and optimize the internal parameters of the chip in real time for task-specific cost functions. We utilize a simple case of designing photonic circuits for a single ancilla CNOT gate with improved success rate to illustrate how our proposed approach works, and then apply the approach in the first demonstration of quantum stochastic simulation using integrated photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12417v1-abstract-full').style.display = 'none'; document.getElementById('2411.12417v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11348">arXiv:2411.11348</a> <span> [<a href="https://arxiv.org/pdf/2411.11348">pdf</a>, <a href="https://arxiv.org/format/2411.11348">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Modeling Multivariable High-resolution 3D Urban Microclimate Using Localized Fourier Neural Operator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qin%2C+S">Shaoxiang Qin</a>, <a href="/search/physics?searchtype=author&query=Zhan%2C+D">Dongxue Zhan</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+D">Dingyang Geng</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+W">Wenhui Peng</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+G">Geng Tian</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yurong Shi</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+N">Naiping Gao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xue Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L+L">Liangzhu Leon Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11348v1-abstract-short" style="display: inline;"> Accurate urban microclimate analysis with wind velocity and temperature is vital for energy-efficient urban planning, supporting carbon reduction, enhancing public health and comfort, and advancing the low-altitude economy. However, traditional computational fluid dynamics (CFD) simulations that couple velocity and temperature are computationally expensive. Recent machine learning advancements off… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11348v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11348v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11348v1-abstract-full" style="display: none;"> Accurate urban microclimate analysis with wind velocity and temperature is vital for energy-efficient urban planning, supporting carbon reduction, enhancing public health and comfort, and advancing the low-altitude economy. However, traditional computational fluid dynamics (CFD) simulations that couple velocity and temperature are computationally expensive. Recent machine learning advancements offer promising alternatives for accelerating urban microclimate simulations. The Fourier neural operator (FNO) has shown efficiency and accuracy in predicting single-variable velocity magnitudes in urban wind fields. Yet, for multivariable high-resolution 3D urban microclimate prediction, FNO faces three key limitations: blurry output quality, high GPU memory demand, and substantial data requirements. To address these issues, we propose a novel localized Fourier neural operator (Local-FNO) model that employs local training, geometry encoding, and patch overlapping. Local-FNO provides accurate predictions for rapidly changing turbulence in urban microclimate over 60 seconds, four times the average turbulence integral time scale, with an average error of 0.35 m/s in velocity and 0.30 掳C in temperature. It also accurately captures turbulent heat flux represented by the velocity-temperature correlation. In a 2 km by 2 km domain, Local-FNO resolves turbulence patterns down to a 10 m resolution. It provides high-resolution predictions with 150 million feature dimensions on a single 32 GB GPU at nearly 50 times the speed of a CFD solver. Compared to FNO, Local-FNO achieves a 23.9% reduction in prediction error and a 47.3% improvement in turbulent fluctuation correlation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11348v1-abstract-full').style.display = 'none'; document.getElementById('2411.11348v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06663">arXiv:2411.06663</a> <span> [<a href="https://arxiv.org/pdf/2411.06663">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> All-On-chip Reconfigurable Structured Light Generator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+W">Weike Zhao</a>, <a href="/search/physics?searchtype=author&query=Yi%2C+X">Xiaolin Yi</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jieshan Huang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+R">Ruoran Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jianwei Wang</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yaocheng Shi</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yungui Ma</a>, <a href="/search/physics?searchtype=author&query=Forbes%2C+A">Andrew Forbes</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+D">Daoxin Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06663v1-abstract-short" style="display: inline;"> Structured light carrying angular momentum, such as spin angular momentum (SAM) and orbital angular momentum (OAM), has been at the core of new science and applications, driving the need for compact on-chip sources. While many static on-chip solutions have been demonstrated, as well as on-chip sources of free-space modes, no architecture that is fully reconfigurable in all angular momentum states… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06663v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06663v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06663v1-abstract-full" style="display: none;"> Structured light carrying angular momentum, such as spin angular momentum (SAM) and orbital angular momentum (OAM), has been at the core of new science and applications, driving the need for compact on-chip sources. While many static on-chip solutions have been demonstrated, as well as on-chip sources of free-space modes, no architecture that is fully reconfigurable in all angular momentum states and all on-chip has so far been possible. Here we report the first all-on-chip structured light generator for the creation of both scalar and vectorial angular momentum beams, facilitated through a silicon-on-insulator (SOI) chip with a silica mode multiplexer (silica chip). We selectively stimulate six linearly-polarized (LP) modes of the silica multimode bus waveguide, precisely controlling the modal powers and phases with the SOI chip. This allows us to tailor arbitrary superpositions of the mode set thus synthesizing common cylindrical vector vortex beams as well as OAM beams of controlled spin and topological charge. Our compact structured light generator exhibits high switching speed and operates across the telecom band, paving the way for applications such as optical communication and integrated quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06663v1-abstract-full').style.display = 'none'; document.getElementById('2411.06663v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04665">arXiv:2411.04665</a> <span> [<a href="https://arxiv.org/pdf/2411.04665">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> PZT Optical Memristors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+C">Chenlei Li</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Hongyan Yu</a>, <a href="/search/physics?searchtype=author&query=Shu%2C+T">Tao Shu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yueyang Zhang</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+C">Chengfeng Wen</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+H">Hengzhen Cao</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+J">Jin Xie</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hanwen Li</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Z">Zixu Xu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+G">Gong Zhang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+Z">Zejie Yu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Huan Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Liu Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yaocheng Shi</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+F">Feng Qiu</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+D">Daoxin Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04665v4-abstract-short" style="display: inline;"> Optical memristors represent a monumental leap in the fusion of photonics and electronics, heralding a new era of applications from neuromorphic computing to artificial intelligence. However, current technologies are hindered by complex fabrication, limited endurance, high optical loss or low modulation depth. For the first time, we reveal optical non-volatility in thin-film Lead Zirconate Titanat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04665v4-abstract-full').style.display = 'inline'; document.getElementById('2411.04665v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04665v4-abstract-full" style="display: none;"> Optical memristors represent a monumental leap in the fusion of photonics and electronics, heralding a new era of applications from neuromorphic computing to artificial intelligence. However, current technologies are hindered by complex fabrication, limited endurance, high optical loss or low modulation depth. For the first time, we reveal optical non-volatility in thin-film Lead Zirconate Titanate (PZT) by electrically manipulating the ferroelectric domains to control the refractive index, providing a brand-new routine for optical memristors. The developed PZT optical memristors offer unprecedented advantages more than exceptional performance metrics like low loss of <2 dB/cm, high precision exceeding 6-bits, large modulation depth with an index change as large as 4.6x10-3. Additionally, these devices offer impressive stability, maintaining minimal wavelength variation for over three weeks and enduring more than 10,000 cycles, and require a mere 0.8 pJ of energy for non-volatile operation. The wafer-scale sol-gel fabrication process also ensures compatible with standardized mass fabrication processes and high scalability for photonic integration. Specially, these devices also demonstrate unique functional duality: setting above a threshold voltage enables non-volatile behaviors, below this threshold allows volatile high-speed optical modulation. This marks the first-ever optical memristor capable of performing high-speed (48 Gbps) and energy-efficient (450 fJ/bit) signal processing and non-volatile retention on a single platform, and is also the inaugural demonstration of scalable functional systems. The PZT optical memristors developed here facilitate the realization of novel paradigms for high-speed and energy-efficient optical interconnects, programmable PICs, quantum computing, neural networks, in-memory computing and brain-like architecture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04665v4-abstract-full').style.display = 'none'; document.getElementById('2411.04665v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00473">arXiv:2411.00473</a> <span> [<a href="https://arxiv.org/pdf/2411.00473">pdf</a>, <a href="https://arxiv.org/format/2411.00473">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Synergistic Interplay of Large Language Model and Digital Twin for Autonomous Optical Networks: Field Demonstrations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Song%2C+Y">Yuchen Song</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yao Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+A">Anni Zhou</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yan Shi</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+S">Shikui Shen</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+X">Xiongyan Tang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jin Li</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Min Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Danshi Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00473v1-abstract-short" style="display: inline;"> The development of large language models (LLM) has revolutionized various fields and is anticipated to drive the advancement of autonomous systems. In the context of autonomous optical networks, creating a high-level cognitive agent in the control layer remains a challenge. However, LLM is primarily developed for natural language processing tasks, rendering them less effective in predicting the ph… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00473v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00473v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00473v1-abstract-full" style="display: none;"> The development of large language models (LLM) has revolutionized various fields and is anticipated to drive the advancement of autonomous systems. In the context of autonomous optical networks, creating a high-level cognitive agent in the control layer remains a challenge. However, LLM is primarily developed for natural language processing tasks, rendering them less effective in predicting the physical dynamics of optical communications. Moreover, optical networks demand rigorous stability, where direct deployment of strategies generated from LLM poses safety concerns. In this paper, a digital twin (DT)-enhanced LLM scheme is proposed to facilitate autonomous optical networks. By leveraging monitoring data and advanced models, the DT of optical networks can accurately characterize their physical dynamics, furnishing LLMs with dynamic-updated information for reliable decision-making. Prior to deployment, the generated strategies from LLM can be pre-verified in the DT platform, which also provides feedback to the LLM for further refinement of strategies. The synergistic interplay between DT and LLM for autonomous optical networks is demonstrated through three scenarios: performance optimization under dynamic loadings in an experimental C+L-band long-haul transmission link, protection switching for device upgrading in a field-deployed six-node mesh network, and performance recovery after fiber cuts in a field-deployed C+L-band transmission link. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00473v1-abstract-full').style.display = 'none'; document.getElementById('2411.00473v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages,6 figures; Accepted by IEEE Communications Magazine, Open call</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21809">arXiv:2410.21809</a> <span> [<a href="https://arxiv.org/pdf/2410.21809">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> First-in-human spinal cord tumor imaging with fast adaptive focus tracking robotic-OCT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=He%2C+B">Bin He</a>, <a href="/search/physics?searchtype=author&query=Ying%2C+Y">Yuzhe Ying</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yejiong Shi</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+Z">Zhe Meng</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+Z">Zichen Yin</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhengyu Chen</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Z">Zhangwei Hu</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+R">Ruizhi Xue</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+L">Linkai Jing</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yang Lu</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Z">Zhenxing Sun</a>, <a href="/search/physics?searchtype=author&query=Man%2C+W">Weitao Man</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y">Youtu Wu</a>, <a href="/search/physics?searchtype=author&query=Lei%2C+D">Dan Lei</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+N">Ning Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+G">Guihuai Wang</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+P">Ping Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21809v2-abstract-short" style="display: inline;"> Current surgical procedures for spinal cord tumors lack in vivo high-resolution, high-speed multifunctional imaging systems, posing challenges for precise tumor resection and intraoperative decision-making. This study introduces the Fast Adaptive Focus Tracking Robotic Optical Coherence Tomography (FACT-ROCT) system,designed to overcome these obstacles by providing real-time, artifact-free multifu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21809v2-abstract-full').style.display = 'inline'; document.getElementById('2410.21809v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21809v2-abstract-full" style="display: none;"> Current surgical procedures for spinal cord tumors lack in vivo high-resolution, high-speed multifunctional imaging systems, posing challenges for precise tumor resection and intraoperative decision-making. This study introduces the Fast Adaptive Focus Tracking Robotic Optical Coherence Tomography (FACT-ROCT) system,designed to overcome these obstacles by providing real-time, artifact-free multifunctional imaging of spinal cord tumors during surgery. By integrating cross-scanning, adaptive focus tracking and robotics, the system addresses motion artifacts and resolution degradation from tissue movement, achieving wide-area, high-resolution imaging. We conducted intraoperative imaging on 21 patients, including 13 with spinal gliomas and 8 with other tumors. This study marks the first demonstration of OCT in situ imaging of human spinal cord tumors, providing micrometer-scale in vivo structural images and demonstrating FACT-ROCT's potential to differentiate various tumor types in real-time. Analysis of the attenuation coefficients of spinal gliomas revealed increased heterogeneity with higher malignancy grades. So, we proposed the standard deviation of the attenuation coefficient as a physical marker, achieving over 90% accuracy in distinguishing high- from low-grade gliomas intraoperatively at a threshold. FACT-ROCT even enabled extensive in vivo microvascular imaging of spinal cord tumors, covering 70 mm * 13 mm * 10 mm within 2 minutes. Quantitative vascular tortuosity comparisons confirmed greater tortuosity in higher-grade tumors. The ability to perform extensive vascular imaging and real-time tumor grading during surgery provides critical information for surgical strategy, such as minimizing intraoperative bleeding and optimizing tumor resection while preserving functional tissue. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21809v2-abstract-full').style.display = 'none'; document.getElementById('2410.21809v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19016">arXiv:2410.19016</a> <span> [<a href="https://arxiv.org/pdf/2410.19016">pdf</a>, <a href="https://arxiv.org/format/2410.19016">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Neutrinoless Double Beta Decay Sensitivity of the XLZD Rare Event Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XLZD+Collaboration"> XLZD Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/physics?searchtype=author&query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a> , et al. (419 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19016v1-abstract-short" style="display: inline;"> The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19016v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19016v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19016v1-abstract-full" style="display: none;"> The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials, such an experiment will also be able to competitively search for neutrinoless double beta decay in $^{136}$Xe using a natural-abundance xenon target. XLZD can reach a 3$蟽$ discovery potential half-life of 5.7$\times$10$^{27}$ yr (and a 90% CL exclusion of 1.3$\times$10$^{28}$ yr) with 10 years of data taking, corresponding to a Majorana mass range of 7.3-31.3 meV (4.8-20.5 meV). XLZD will thus exclude the inverted neutrino mass ordering parameter space and will start to probe the normal ordering region for most of the nuclear matrix elements commonly considered by the community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19016v1-abstract-full').style.display = 'none'; document.getElementById('2410.19016v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17137">arXiv:2410.17137</a> <span> [<a href="https://arxiv.org/pdf/2410.17137">pdf</a>, <a href="https://arxiv.org/format/2410.17137">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The XLZD Design Book: Towards the Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XLZD+Collaboration"> XLZD Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/physics?searchtype=author&query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a> , et al. (419 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17137v1-abstract-short" style="display: inline;"> This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time projection chamber technology of the current-generati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17137v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17137v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17137v1-abstract-full" style="display: none;"> This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time projection chamber technology of the current-generation experiments, LZ and XENONnT. A baseline design and opportunities for further optimization of the individual detector components are discussed. The experiment envisaged here has the capability to explore parameter space for Weakly Interacting Massive Particle (WIMP) dark matter down to the neutrino fog, with a 3$蟽$ evidence potential for the spin-independent WIMP-nucleon cross sections as low as $3\times10^{-49}\rm cm^2$ (at 40 GeV/c$^2$ WIMP mass). The observatory is also projected to have a 3$蟽$ observation potential of neutrinoless double-beta decay of $^{136}$Xe at a half-life of up to $5.7\times 10^{27}$ years. Additionally, it is sensitive to astrophysical neutrinos from the atmosphere, sun, and galactic supernovae. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17137v1-abstract-full').style.display = 'none'; document.getElementById('2410.17137v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13202">arXiv:2410.13202</a> <span> [<a href="https://arxiv.org/pdf/2410.13202">pdf</a>, <a href="https://arxiv.org/format/2410.13202">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Anatomy of Thermally Interplayed Spin-Orbit Torque Driven Antiferromagnetic Switching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cai%2C+W">Wenlong Cai</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zanhong Chen</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuzhang Shi</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+D">Daoqian Zhu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+G">Guang Yang</a>, <a href="/search/physics?searchtype=author&query=Du%2C+A">Ao Du</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+S">Shiyang Lu</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+K">Kaihua Cao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hongxi Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+K">Kewen Shi</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+W">Weisheng Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13202v1-abstract-short" style="display: inline;"> Current-induced antiferromagnetic (AFM) switching remains critical in spintronics, yet the interplay between thermal effects and spin torques still lacks clear clarification. Here we experimentally investigate the thermally interplayed spin-orbit torque induced AFM switching in magnetic tunnel junctions via pulse-width dependent reversal and time-resolved measurements. By introducing the Langevin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13202v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13202v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13202v1-abstract-full" style="display: none;"> Current-induced antiferromagnetic (AFM) switching remains critical in spintronics, yet the interplay between thermal effects and spin torques still lacks clear clarification. Here we experimentally investigate the thermally interplayed spin-orbit torque induced AFM switching in magnetic tunnel junctions via pulse-width dependent reversal and time-resolved measurements. By introducing the Langevin random field into the AFM precession equation, we establish a novel AFM switching model that anatomically explains the experimental observations. Our findings elucidate the currentinduced AFM switching mechanism and offer significant promise for advancements in spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13202v1-abstract-full').style.display = 'none'; document.getElementById('2410.13202v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10118">arXiv:2410.10118</a> <span> [<a href="https://arxiv.org/pdf/2410.10118">pdf</a>, <a href="https://arxiv.org/format/2410.10118">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ren%2C+Y">Yuxuan Ren</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+D">Dihan Zheng</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">Chang Liu</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+P">Peiran Jin</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yu Shi</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">Lin Huang</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Jiyan He</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+S">Shengjie Luo</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+T">Tao Qin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+T">Tie-Yan Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10118v1-abstract-short" style="display: inline;"> In recent years, machine learning has demonstrated impressive capability in handling molecular science tasks. To support various molecular properties at scale, machine learning models are trained in the multi-task learning paradigm. Nevertheless, data of different molecular properties are often not aligned: some quantities, e.g. equilibrium structure, demand more cost to compute than others, e.g.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10118v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10118v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10118v1-abstract-full" style="display: none;"> In recent years, machine learning has demonstrated impressive capability in handling molecular science tasks. To support various molecular properties at scale, machine learning models are trained in the multi-task learning paradigm. Nevertheless, data of different molecular properties are often not aligned: some quantities, e.g. equilibrium structure, demand more cost to compute than others, e.g. energy, so their data are often generated by cheaper computational methods at the cost of lower accuracy, which cannot be directly overcome through multi-task learning. Moreover, it is not straightforward to leverage abundant data of other tasks to benefit a particular task. To handle such data heterogeneity challenges, we exploit the specialty of molecular tasks that there are physical laws connecting them, and design consistency training approaches that allow different tasks to exchange information directly so as to improve one another. Particularly, we demonstrate that the more accurate energy data can improve the accuracy of structure prediction. We also find that consistency training can directly leverage force and off-equilibrium structure data to improve structure prediction, demonstrating a broad capability for integrating heterogeneous data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10118v1-abstract-full').style.display = 'none'; document.getElementById('2410.10118v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published as a conference paper at NeurIPS 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05155">arXiv:2410.05155</a> <span> [<a href="https://arxiv.org/pdf/2410.05155">pdf</a>, <a href="https://arxiv.org/format/2410.05155">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Formation of Anisotropic Polarons in Antimony Selenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yijie Shi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xi Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhong Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Hua%2C+F">Fuyong Hua</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C">Chao Chen</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+C">Chunlong Hu</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiang Tang</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+W">Wenxi Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05155v1-abstract-short" style="display: inline;"> Antimony Selenide (Sb$_2$Se$_3$) is an attractive candidate of photovoltaics with not yet satisfying efficiency. Beside defects, polaron formation originated from lattice distortion was proposed to account for trapping free carriers, and the subsequent photoexcitation dynamics and optoelectronic properties, but such a mechanism is still lack of structural observations. Here we directly track the p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05155v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05155v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05155v1-abstract-full" style="display: none;"> Antimony Selenide (Sb$_2$Se$_3$) is an attractive candidate of photovoltaics with not yet satisfying efficiency. Beside defects, polaron formation originated from lattice distortion was proposed to account for trapping free carriers, and the subsequent photoexcitation dynamics and optoelectronic properties, but such a mechanism is still lack of structural observations. Here we directly track the pathways of carrier and lattice evolutions after photoexcitation through optical and electron diffraction pump-probe methods, revealing the temporal correlations between dynamics of both degrees of freedom. The observed opposite separation changes of Se2-Sb2 and Sb2-Sb1 atom pairs in a few picoseconds, and the intermediate state induced by local structural distortions lasting several tens of picoseconds, coinciding with the optical phonons population and coupling, and the trapping process of carriers, respectively, together with the analyses of modulation on diffuse scattering by the atomic displacement fields of polaron model, indicate the formation of anisotropic polarons with large size. Our findings provide carrier and structural information for helping the elucidation of polaron scenario in Sb2Se3, and probably in materials with anisotropic structure and soft lattice which are popular in developing novel optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05155v1-abstract-full').style.display = 'none'; document.getElementById('2410.05155v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03838">arXiv:2410.03838</a> <span> [<a href="https://arxiv.org/pdf/2410.03838">pdf</a>, <a href="https://arxiv.org/format/2410.03838">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Andress%2C+J">Joseph Andress</a>, <a href="/search/physics?searchtype=author&query=Engel%2C+A">Alexander Engel</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuan Shi</a>, <a href="/search/physics?searchtype=author&query=Parker%2C+S">Scott Parker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03838v1-abstract-short" style="display: inline;"> We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations (ODEs), which may be generated from partial differential equations in plasma physics. We map a dynamical system to a Hamiltonian form, where the Hamiltonian matrix is a function of dynamical variables. To advance in time, we measure expectation values from the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03838v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03838v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03838v1-abstract-full" style="display: none;"> We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations (ODEs), which may be generated from partial differential equations in plasma physics. We map a dynamical system to a Hamiltonian form, where the Hamiltonian matrix is a function of dynamical variables. To advance in time, we measure expectation values from the previous time step, and evaluate the Hamiltonian function classically, which introduces stochasticity into the dynamics. We then perform standard quantum Hamiltonian simulation over a short time, using the evaluated constant Hamiltonian matrix. This approach requires evolving an ensemble of quantum states, which are consumed each step to measure required observables. We apply this approach to the classic logistic and Lorenz systems, in both integrable and chaotic regimes. Out analysis shows that solutions' accuracy is influenced by both the stochastic sampling rate and the nature of the dynamical system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03838v1-abstract-full').style.display = 'none'; document.getElementById('2410.03838v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, under consideration for publication in J. Plasma Phys</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00755">arXiv:2410.00755</a> <span> [<a href="https://arxiv.org/pdf/2410.00755">pdf</a>, <a href="https://arxiv.org/format/2410.00755">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Model-independent searches of new physics in DARWIN with a semi-supervised deep learning pipeline </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&query=Barberio%2C+E">E. Barberio</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bell%2C+N+F">N. F. Bell</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boehm%2C+C">C. Boehm</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Braun%2C+R">R. Braun</a> , et al. (209 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00755v1-abstract-short" style="display: inline;"> We present a novel deep learning pipeline to perform a model-independent, likelihood-free search for anomalous (i.e., non-background) events in the proposed next generation multi-ton scale liquid Xenon-based direct detection experiment, DARWIN. We train an anomaly detector comprising a variational autoencoder and a classifier on extensive, high-dimensional simulated detector response data and cons… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00755v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00755v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00755v1-abstract-full" style="display: none;"> We present a novel deep learning pipeline to perform a model-independent, likelihood-free search for anomalous (i.e., non-background) events in the proposed next generation multi-ton scale liquid Xenon-based direct detection experiment, DARWIN. We train an anomaly detector comprising a variational autoencoder and a classifier on extensive, high-dimensional simulated detector response data and construct a one-dimensional anomaly score optimised to reject the background only hypothesis in the presence of an excess of non-background-like events. We benchmark the procedure with a sensitivity study that determines its power to reject the background-only hypothesis in the presence of an injected WIMP dark matter signal, outperforming the classical, likelihood-based background rejection test. We show that our neural networks learn relevant energy features of the events from low-level, high-dimensional detector outputs, without the need to compress this data into lower-dimensional observables, thus reducing computational effort and information loss. For the future, our approach lays the foundation for an efficient end-to-end pipeline that eliminates the need for many of the corrections and cuts that are traditionally part of the analysis chain, with the potential of achieving higher accuracy and significant reduction of analysis time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00755v1-abstract-full').style.display = 'none'; document.getElementById('2410.00755v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 Figures, 3 Tables, 23 Pages (incl. references)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16485">arXiv:2409.16485</a> <span> [<a href="https://arxiv.org/pdf/2409.16485">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Characterization of Coulomb Interactions in Electron Transport through a Single Hetero-Helicene Molecular Junction Using Scanning Tunneling Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yueqing Shi</a>, <a href="/search/physics?searchtype=author&query=Bi%2C+L">Liya Bi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zihao Wang</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+K">Kangkai Liang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Ji-Kun Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiao-Ye Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wan-Lu Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shaowei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16485v1-abstract-short" style="display: inline;"> Characterization of the structural and electron transport properties of single chiral molecules provides critical insights into the interplay between their electronic structure and electrochemical environments, providing broader implications given the significance of molecular chirality in chiroptical applications and pharmaceutical sciences. Here, we examined the topographic and electronic featur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16485v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16485v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16485v1-abstract-full" style="display: none;"> Characterization of the structural and electron transport properties of single chiral molecules provides critical insights into the interplay between their electronic structure and electrochemical environments, providing broader implications given the significance of molecular chirality in chiroptical applications and pharmaceutical sciences. Here, we examined the topographic and electronic features of a recently developed chiral molecule, B,N-embedded double hetero[7]helicene, at the edge of Cu(100) supported NaCl thin film with scanning tunneling microscopy and spectroscopy. An electron transport energy gap of 3.2 eV is measured, which is significantly larger than the energy difference between the highest occupied and the lowest unoccupied molecular orbitals given by theoretical calculations or optical measurements. Through first principles calculations, we demonstrated that this energy discrepancy results from the Coulomb interaction between the tunneling electron and the molecule's electrons. This occurs in electron transport processes when the molecule is well decoupled from the electrodes by the insulating decoupling layers, leading to a temporary ionization of the molecule during electron tunneling. Beyond revealing properties concerning a specific molecule, our findings underscore the key role of Coulomb interactions in modulating electron transport in molecular junctions, providing insights into the interpretation of scanning tunneling spectroscopy features of molecules decoupled by insulating layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16485v1-abstract-full').style.display = 'none'; document.getElementById('2409.16485v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04591">arXiv:2409.04591</a> <span> [<a href="https://arxiv.org/pdf/2409.04591">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Operating a Multi-Level Molecular Dimer Switch through Precise Tip-Molecule Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yueqing Shi</a>, <a href="/search/physics?searchtype=author&query=Quan%2C+W">Weike Quan</a>, <a href="/search/physics?searchtype=author&query=Bi%2C+L">Liya Bi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zihao Wang</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+K">Kangkai Liang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+H">Hao Zhou</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+Z">Zhiyuan Yin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wan-Lu Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shaowei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04591v3-abstract-short" style="display: inline;"> Controlling structural transitions between molecular configurations is crucial for advancing functional molecular electronics. While reversible switching of bistable two-state molecules has been achieved, creating molecular systems that can be controllably switched between multiple configurations often requires complex synthetic methods, presenting a much greater challenge. In this study, we showc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04591v3-abstract-full').style.display = 'inline'; document.getElementById('2409.04591v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04591v3-abstract-full" style="display: none;"> Controlling structural transitions between molecular configurations is crucial for advancing functional molecular electronics. While reversible switching of bistable two-state molecules has been achieved, creating molecular systems that can be controllably switched between multiple configurations often requires complex synthetic methods, presenting a much greater challenge. In this study, we showcase a straightforward yet effective strategy to create and control transitions between multiple molecular structural states by forming a surface-bound molecular dimer. Using low-temperature scanning tunneling microscopy, we induce and characterize the structural transitions of a pyrrolidine dimer on a Cu(100) surface. The intermolecular interactions open new energy transfer channels, enabling the excitation through pathways that were inaccessible in monomers. The occupation of different molecular states is highly sensitive to both the energy of the tunneling electrons and the interaction with the STM tip. By precisely adjusting the tip-molecule distance, we can select the most probable structural configuration based on sample bias, thereby achieving on-demand control of this molecular dimer switch. This work highlights an approach that leverages both intermolecular and molecule-environment interactions to create and control an artificially fabricated molecular device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04591v3-abstract-full').style.display = 'none'; document.getElementById('2409.04591v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03195">arXiv:2409.03195</a> <span> [<a href="https://arxiv.org/pdf/2409.03195">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Nano-Scale Manipulation of Single-Molecule Conformational Transition Through Vibrational Excitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Quan%2C+W">Weike Quan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zihao Wang</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yueqing Shi</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+K">Kangkai Liang</a>, <a href="/search/physics?searchtype=author&query=Bi%2C+L">Liya Bi</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+H">Hao Zhou</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+Z">Zhiyuan Yin</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wanlu Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shaowei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03195v3-abstract-short" style="display: inline;"> On-demand control of molecular actions is essential for realizing single-molecule functional devices. Such a control can be achieved by manipulating interactions between individual molecules and their nanoscale environment. In this study, we manipulate the conformational transition of a single pyrrolidine molecule on a Cu(100) surface by exciting its vibra-tions with tunneling electrons using scan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03195v3-abstract-full').style.display = 'inline'; document.getElementById('2409.03195v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03195v3-abstract-full" style="display: none;"> On-demand control of molecular actions is essential for realizing single-molecule functional devices. Such a control can be achieved by manipulating interactions between individual molecules and their nanoscale environment. In this study, we manipulate the conformational transition of a single pyrrolidine molecule on a Cu(100) surface by exciting its vibra-tions with tunneling electrons using scanning tunneling microscopy. Multiple transition pathways between two structural states are identified to be driven by distinct vibrational modes, whose corresponding nuclear motions are determined by density functional theory calculations. Tip-induced van der Waals forces and intermolecular interactions enable precise tuning of molecule-environment interactions, allowing modulation of vibrational energies, alteration of transition probabilities, and selection of the lowest energy transition pathway. This work reveals how external force fields in a tunable nanocavity can modulate molecular conformational transitions, offering an approach to deliberately engineer molecule-environment interactions for specific molecular functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03195v3-abstract-full').style.display = 'none'; document.getElementById('2409.03195v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08938">arXiv:2408.08938</a> <span> [<a href="https://arxiv.org/pdf/2408.08938">pdf</a>, <a href="https://arxiv.org/format/2408.08938">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> </div> <p class="title is-5 mathjax"> How a simple pendulum inside a running elevator oscillates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+M">Mingyuan Shi</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yu Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08938v1-abstract-short" style="display: inline;"> We propose to effectively realize a time-dependent gravitational acceleration by using a running elevator, so that a simple pendulum inside it effectively becomes one with a time-dependent gravitational acceleration. We did such an experiment using a realistic elevator, and analyzed the data. The acceleration of an elevator is much smaller than the gravitational acceleration, and is time-dependent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08938v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08938v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08938v1-abstract-full" style="display: none;"> We propose to effectively realize a time-dependent gravitational acceleration by using a running elevator, so that a simple pendulum inside it effectively becomes one with a time-dependent gravitational acceleration. We did such an experiment using a realistic elevator, and analyzed the data. The acceleration of an elevator is much smaller than the gravitational acceleration, and is time-dependent only when the elevator starts and stops. However, we have managed to establish the effect on the oscillation of the pendulum. The effect becomes pronounced if the simple pendulum is put in a container vertically accelerating, and the acceleration is time-dependent, while its magnitude is comparable with that of the gravitational acceleration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08938v1-abstract-full').style.display = 'none'; document.getElementById('2408.08938v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07077">arXiv:2408.07077</a> <span> [<a href="https://arxiv.org/pdf/2408.07077">pdf</a>, <a href="https://arxiv.org/format/2408.07077">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> </div> <p class="title is-5 mathjax"> Measuring the acceleration of an elevator by using the apparent weight of an object inside it </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+M">Mingyuan Shi</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yu Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07077v1-abstract-short" style="display: inline;"> An accelerating elevator changes the apparent weight of any object inside it from the original weight, as measured inside the elevator, because the acceleration causes an inertial force on it. For any object in a running elevator, the variation of the acceleration of the elevator causes the variation of the apparent weight of the object. We have studied the time dependence of the apparent weight o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07077v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07077v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07077v1-abstract-full" style="display: none;"> An accelerating elevator changes the apparent weight of any object inside it from the original weight, as measured inside the elevator, because the acceleration causes an inertial force on it. For any object in a running elevator, the variation of the acceleration of the elevator causes the variation of the apparent weight of the object. We have studied the time dependence of the apparent weight of the object and thus the acceleration of the elevator. For chosen initial and final floors, we measured the apparent weight of an object by using an electronic scale inside the elevator, and shot the readings of the scale and a watch during the movement of the elevator. Then we analyzed the data collected from the recorded video. If the initial and final floors are exchanged, the variations of the weight and acceleration are, respectively, same in magnitudes and opposite in signs. The experiments indicate that for the elevator to go directly from a floor to another, the process consists of periods with variable acceleration, constant acceleration, uniform motion, variable deceleration, constant deceleration and variable deceleration consecutively. If there are pauses during the movement, each pause causes an additional process consisting of periods with deceleration, stop and acceleration, replacing the original period of constant motion. Depending on the distance to the destination, the elevator reduces or diminishes the periods of constant acceleration and uniform motion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07077v1-abstract-full').style.display = 'none'; document.getElementById('2408.07077v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">English translation of a Chinese article published in Physics Teaching (a journal of Chinese Physical Society)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Teaching (Chinese) 44 (5), 71-77,80 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00092">arXiv:2408.00092</a> <span> [<a href="https://arxiv.org/pdf/2408.00092">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> CT-based Anomaly Detection of Liver Tumors Using Generative Diffusion Prior </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yongyi Shi</a>, <a href="/search/physics?searchtype=author&query=Niu%2C+C">Chuang Niu</a>, <a href="/search/physics?searchtype=author&query=Simpson%2C+A+L">Amber L. Simpson</a>, <a href="/search/physics?searchtype=author&query=De+Man%2C+B">Bruno De Man</a>, <a href="/search/physics?searchtype=author&query=Do%2C+R">Richard Do</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+G">Ge Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00092v2-abstract-short" style="display: inline;"> CT is a main modality for imaging liver diseases, valuable in detecting and localizing liver tumors. Traditional anomaly detection methods analyze reconstructed images to identify pathological structures. However, these methods may produce suboptimal results, overlooking subtle differences among various tissue types. To address this challenge, here we employ generative diffusion prior to inpaint t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00092v2-abstract-full').style.display = 'inline'; document.getElementById('2408.00092v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00092v2-abstract-full" style="display: none;"> CT is a main modality for imaging liver diseases, valuable in detecting and localizing liver tumors. Traditional anomaly detection methods analyze reconstructed images to identify pathological structures. However, these methods may produce suboptimal results, overlooking subtle differences among various tissue types. To address this challenge, here we employ generative diffusion prior to inpaint the liver as the reference facilitating anomaly detection. Specifically, we use an adaptive threshold to extract a mask of abnormal regions, which are then inpainted using a diffusion prior to calculating an anomaly score based on the discrepancy between the original CT image and the inpainted counterpart. Our methodology has been tested on two liver CT datasets, demonstrating a significant improvement in detection accuracy, with a 7.9% boost in the area under the curve (AUC) compared to the state-of-the-art. This performance gain underscores the potential of our approach to refine the radiological assessment of liver diseases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00092v2-abstract-full').style.display = 'none'; document.getElementById('2408.00092v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17976">arXiv:2407.17976</a> <span> [<a href="https://arxiv.org/pdf/2407.17976">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.ads0157">10.1126/sciadv.ads0157 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of robust intrinsic C points generation with magneto-optical bound states in the continuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lv%2C+W">Wenjing Lv</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+H">Haoye Qin</a>, <a href="/search/physics?searchtype=author&query=Su%2C+Z">Zengping Su</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chengzhi Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jiongpeng Huang</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuzhi Shi</a>, <a href="/search/physics?searchtype=author&query=Li%2C+B">Bo Li</a>, <a href="/search/physics?searchtype=author&query=Genevet%2C+P">Patrice Genevet</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Q">Qinghua Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17976v1-abstract-short" style="display: inline;"> C points, characterized by circular polarization in momentum space, play crucial roles in chiral wave manipulations. However, conventional approaches of achieving intrinsic C points using photonic crystals with broken symmetries suffer from low Q factor and are highly sensitive to structural geometry, rendering them fragile and susceptible to perturbations and disorders. In this letter, we report… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17976v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17976v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17976v1-abstract-full" style="display: none;"> C points, characterized by circular polarization in momentum space, play crucial roles in chiral wave manipulations. However, conventional approaches of achieving intrinsic C points using photonic crystals with broken symmetries suffer from low Q factor and are highly sensitive to structural geometry, rendering them fragile and susceptible to perturbations and disorders. In this letter, we report the realization of magneto-optical (MO) bound states in the continuum (BICs) using a symmetry-preserved planar photonic crystal, achieving intrinsic at-螕 C points that are robust against variation in structural geometry and external magnetic field. MO coupling between two dipole modes induces Zeeman splitting of the eigenfrequencies, leading to MO BICs and quasi-BICs with circular eigenstates for high-Q chiral responses. Furthermore, switchable C point handedness and circular dichroism are enabled by reversing the magnetic field. These findings unveil a new type of BICs with circular eigenstates and on-demand control of C points, paving the way for advanced chiral wave manipulation with enhanced light-matter interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17976v1-abstract-full').style.display = 'none'; document.getElementById('2407.17976v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14014">arXiv:2407.14014</a> <span> [<a href="https://arxiv.org/pdf/2407.14014">pdf</a>, <a href="https://arxiv.org/format/2407.14014">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Asymmetric interaction preference induces cooperation in human-agent hybrid game </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jia%2C+D">Danyang Jia</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+X">Xiangfeng Dai</a>, <a href="/search/physics?searchtype=author&query=Xing%2C+J">Junliang Xing</a>, <a href="/search/physics?searchtype=author&query=Tao%2C+P">Pin Tao</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuanchun Shi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhen Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14014v1-abstract-short" style="display: inline;"> With the development of artificial intelligence, human beings are increasingly interested in human-agent collaboration, which generates a series of problems about the relationship between agents and humans, such as trust and cooperation. This inevitably induces the inherent human characteristic that there are subjective interaction preferences for different groups, especially in human-agent hybrid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14014v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14014v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14014v1-abstract-full" style="display: none;"> With the development of artificial intelligence, human beings are increasingly interested in human-agent collaboration, which generates a series of problems about the relationship between agents and humans, such as trust and cooperation. This inevitably induces the inherent human characteristic that there are subjective interaction preferences for different groups, especially in human-agent hybrid systems where human-human interaction, agent-agent interaction, and human-agent interaction coexist. However, understanding how individual interaction preferences affect the cooperation of the system remains a major challenge. Therefore, this paper proposes a human-agent hybrid prisoner's dilemma game system under the framework of evolutionary game. In spatial networks, the most significant difference between agents and humans is the flexibility of decision, where humans have higher adaptive capabilities, follow link dynamics, and adopt free decision rules, which enable them to choose different strategies for different neighbors. However, agents follow node dynamics and adopt consistent decision rules, applying the same strategy to different neighbors. We give the subjective preferences of any individual to different groups, involving the interaction preferences between homogeneous groups and heterogeneous groups respectively. The simulation results show that both human and agent have asymmetric interaction preferences for groups with different identities, which can significantly improve the cooperative behavior of the system. In the hybrid system, human groups show more stable prosocial behavior. Agent groups can form highly cooperative clusters under the condition of strong interaction preference for human groups. In addition, giving agents the ability to identify opponents can effectively alleviate the interaction dilemma of agents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14014v1-abstract-full').style.display = 'none'; document.getElementById('2407.14014v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span> [<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13209">arXiv:2406.13209</a> <span> [<a href="https://arxiv.org/pdf/2406.13209">pdf</a>, <a href="https://arxiv.org/format/2406.13209">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Diffusion Model-based FOD Restoration from High Distortion in dMRI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+S">Shuo Huang</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+L">Lujia Zhong</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yonggang Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13209v1-abstract-short" style="display: inline;"> Fiber orientation distributions (FODs) is a popular model to represent the diffusion MRI (dMRI) data. However, imaging artifacts such as susceptibility-induced distortion in dMRI can cause signal loss and lead to the corrupted reconstruction of FODs, which prohibits successful fiber tracking and connectivity analysis in affected brain regions such as the brain stem. Generative models, such as the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13209v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13209v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13209v1-abstract-full" style="display: none;"> Fiber orientation distributions (FODs) is a popular model to represent the diffusion MRI (dMRI) data. However, imaging artifacts such as susceptibility-induced distortion in dMRI can cause signal loss and lead to the corrupted reconstruction of FODs, which prohibits successful fiber tracking and connectivity analysis in affected brain regions such as the brain stem. Generative models, such as the diffusion models, have been successfully applied in various image restoration tasks. However, their application on FOD images poses unique challenges since FODs are 4-dimensional data represented by spherical harmonics (SPHARM) with the 4-th dimension exhibiting order-related dependency. In this paper, we propose a novel diffusion model for FOD restoration that can recover the signal loss caused by distortion artifacts. We use volume-order encoding to enhance the ability of the diffusion model to generate individual FOD volumes at all SPHARM orders. Moreover, we add cross-attention features extracted across all SPHARM orders in generating every individual FOD volume to capture the order-related dependency across FOD volumes. We also condition the diffusion model with low-distortion FODs surrounding high-distortion areas to maintain the geometric coherence of the generated FODs. We trained and tested our model using data from the UK Biobank (n = 1315). On a test set with ground truth (n = 43), we demonstrate the high accuracy of the generated FODs in terms of root mean square errors of FOD volumes and angular errors of FOD peaks. We also apply our method to a test set with large distortion in the brain stem area (n = 1172) and demonstrate the efficacy of our method in restoring the FOD integrity and, hence, greatly improving tractography performance in affected brain regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13209v1-abstract-full').style.display = 'none'; document.getElementById('2406.13209v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13003">arXiv:2406.13003</a> <span> [<a href="https://arxiv.org/pdf/2406.13003">pdf</a>, <a href="https://arxiv.org/format/2406.13003">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S0022377824001326">10.1017/S0022377824001326 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating nonlinear optical processes on a superconducting quantum device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuan Shi</a>, <a href="/search/physics?searchtype=author&query=Evert%2C+B">Bram Evert</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A+F">Amy F. Brown</a>, <a href="/search/physics?searchtype=author&query=Tripathi%2C+V">Vinay Tripathi</a>, <a href="/search/physics?searchtype=author&query=Sete%2C+E+A">Eyob A. Sete</a>, <a href="/search/physics?searchtype=author&query=Geyko%2C+V">Vasily Geyko</a>, <a href="/search/physics?searchtype=author&query=Cho%2C+Y">Yujin Cho</a>, <a href="/search/physics?searchtype=author&query=DuBois%2C+J+L">Jonathan L DuBois</a>, <a href="/search/physics?searchtype=author&query=Lidar%2C+D">Daniel Lidar</a>, <a href="/search/physics?searchtype=author&query=Joseph%2C+I">Ilon Joseph</a>, <a href="/search/physics?searchtype=author&query=Reagor%2C+M">Matt Reagor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13003v2-abstract-short" style="display: inline;"> Simulating plasma physics on quantum computers is difficult because most problems of interest are nonlinear, but quantum computers are not naturally suitable for nonlinear operations. In weakly nonlinear regimes, plasma problems can be modeled as wave-wave interactions. In this paper, we develop a quantization approach to convert nonlinear wave-wave interaction problems to Hamiltonian simulation p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13003v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13003v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13003v2-abstract-full" style="display: none;"> Simulating plasma physics on quantum computers is difficult because most problems of interest are nonlinear, but quantum computers are not naturally suitable for nonlinear operations. In weakly nonlinear regimes, plasma problems can be modeled as wave-wave interactions. In this paper, we develop a quantization approach to convert nonlinear wave-wave interaction problems to Hamiltonian simulation problems. We demonstrate our approach using two qubits on a superconducting device. Unlike a photonic device, a superconducting device does not naturally have the desired interactions in its native Hamiltonian. Nevertheless, Hamiltonian simulations can still be performed by decomposing required unitary operations into native gates. To improve experimental results, we employ a range of error mitigation techniques. Apart from readout error mitigation, we use randomized compilation to transform undiagnosed coherent errors into well-behaved stochastic Pauli channels. Moreover, to compensate for stochastic noise, we rescale exponentially decaying probability amplitudes using rates measured from cycle benchmarking. We carefully consider how different choices of product-formula algorithms affect the overall error and show how a trade-off can be made to best utilize limited quantum resources. This study provides an example of how plasma problems may be solved on near-term quantum computing platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13003v2-abstract-full').style.display = 'none'; document.getElementById('2406.13003v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Plasma Phys. 90 (2024) 805900602 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07064">arXiv:2406.07064</a> <span> [<a href="https://arxiv.org/pdf/2406.07064">pdf</a>, <a href="https://arxiv.org/format/2406.07064">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Modeling fibrous tissue in vascular fluid-structure interaction: a morphology-based pipeline and biomechanical significance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sun%2C+Y">Yujie Sun</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jiayi Huang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Q">Qingshuang Lu</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+X">Xinhai Yue</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+X">Xuanming Huang</a>, <a href="/search/physics?searchtype=author&query=He%2C+W">Wei He</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yun Shi</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Ju Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07064v2-abstract-short" style="display: inline;"> We propose a suite of technologies for analyzing the interaction between anisotropic arterial walls and blood flow for subject-specific geometries. Utilizing an established lumen modeling strategy, we present a comprehensive pipeline for generating the thick-walled artery models. Through a specialized mesh generation procedure, we obtain the meshes for the arterial lumen and wall with mesh continu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07064v2-abstract-full').style.display = 'inline'; document.getElementById('2406.07064v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07064v2-abstract-full" style="display: none;"> We propose a suite of technologies for analyzing the interaction between anisotropic arterial walls and blood flow for subject-specific geometries. Utilizing an established lumen modeling strategy, we present a comprehensive pipeline for generating the thick-walled artery models. Through a specialized mesh generation procedure, we obtain the meshes for the arterial lumen and wall with mesh continuity across the interface ensured. Exploiting the centerline information, a series of procedures is introduced for generating local basis vectors within the arterial wall. The procedures are tailored to handle thick-walled and, in particular, aneurysmatic tissues in which the basis vectors may exhibit transmural variations. Additionally, we propose methods to accurately identify the centerline in multi-branched vessels and bifurcating regions. The developed fiber generation method is evaluated against the strategy using linear elastic analysis, demonstrating that the proposed approach yields satisfactory fiber definitions in the considered benchmark. Finally, we examine the impact of anisotropic arterial wall models on the vascular fluid-structure interaction analysis through numerical examples. For comparison purposes, the neo-Hookean model is considered. The first case involves an idealized curved geometry, while the second case studies an image-based abdominal aorta model. The numerical results reveal that the deformation and stress distribution are critically related to the constitutive model of the wall, while the hemodynamic factors are less sensitive to the wall model. This work paves the way for more accurate image-based vascular modeling and enhances the prediction of arterial behavior under physiologically realistic conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07064v2-abstract-full').style.display = 'none'; document.getElementById('2406.07064v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03876">arXiv:2406.03876</a> <span> [<a href="https://arxiv.org/pdf/2406.03876">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Time-resolved optical assessment of exciton formation in mixed two-dimensional perovskite films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jianan Wang</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yijie Shi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xi Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhong Wang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+X">Xiangyu Zhu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+C">Chunlong Hu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zonghao Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+W">Wenxi Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03876v1-abstract-short" style="display: inline;"> We report the observation of exciton formation from the cooled band-edge carriers in mixed two-dimensional hybrid organic-inorganic perovskites using femtosecond transient absorption spectroscopy. By monitoring the changes of bleach signal upon excitations with various photon energy, we are able to extract the values of exciton binding energy and the occupancies of carriers of free and bound state… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03876v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03876v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03876v1-abstract-full" style="display: none;"> We report the observation of exciton formation from the cooled band-edge carriers in mixed two-dimensional hybrid organic-inorganic perovskites using femtosecond transient absorption spectroscopy. By monitoring the changes of bleach signal upon excitations with various photon energy, we are able to extract the values of exciton binding energy and the occupancies of carriers of free and bound states for each two-dimensional phase. We also confirm the existence of Mahan exciton when injected carrier density is above the Mott criterion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03876v1-abstract-full').style.display = 'none'; document.getElementById('2406.03876v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 15 pages, 4 figures. Supplementary Information: 16 pages, 16 figures, 10 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03798">arXiv:2406.03798</a> <span> [<a href="https://arxiv.org/pdf/2406.03798">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Optical biomarker of metabolism for breast tumor diagnosis: Insights from subcellular dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yin%2C+Z">Zichen Yin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shuwei Zhang</a>, <a href="/search/physics?searchtype=author&query=He%2C+B">Bin He</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H">Houpu Yang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhengyu Chen</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Z">Zhangwei Hu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yejiong Shi</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+R">Ruizhi Xue</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+P">Panqi Yang</a>, <a href="/search/physics?searchtype=author&query=Ying%2C+Y">Yuzhe Ying</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chengming Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shu Wang</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+P">Ping Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03798v1-abstract-short" style="display: inline;"> Label-free metabolic dynamics contrast is highly appealing but difficult to achieve in biomedical imaging. Interference offers a highly sensitive mechanism for capturing the metabolic dynamics of the subcellular scatterers. However, traditional interference detection methods fail to isolate pure metabolic dynamics, as the dynamic signals are coupled with scatterer reflectivity and other uncontroll… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03798v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03798v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03798v1-abstract-full" style="display: none;"> Label-free metabolic dynamics contrast is highly appealing but difficult to achieve in biomedical imaging. Interference offers a highly sensitive mechanism for capturing the metabolic dynamics of the subcellular scatterers. However, traditional interference detection methods fail to isolate pure metabolic dynamics, as the dynamic signals are coupled with scatterer reflectivity and other uncontrollable imaging factors. Here, we demonstrate active phase modulation-assisted dynamic full-field optical coherence tomography (APMD-FFOCT) that decouples and quantifies the metabolic dynamics by adding a reference movement for all interferential scatterers. This novel technique enables imaging and dynamic analysis of subcellular structures along with their changes during the apoptotic process in tumor tissues. Furthermore, the nucleus-to-cytoplasm dynamic intensity ratio could serve as an optical biomarker for breast tumor grading, enhancing intraoperative diagnosis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03798v1-abstract-full').style.display = 'none'; document.getElementById('2406.03798v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17860">arXiv:2405.17860</a> <span> [<a href="https://arxiv.org/pdf/2405.17860">pdf</a>, <a href="https://arxiv.org/format/2405.17860">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1137/ad83aa">10.1088/1674-1137/ad83aa <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prediction of Energy Resolution in the JUNO Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&query=Adamowicz%2C+K">Kai Adamowicz</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">Marco Beretta</a>, <a href="/search/physics?searchtype=author&query=Bergnoli%2C+A">Antonio Bergnoli</a>, <a href="/search/physics?searchtype=author&query=Bick%2C+D">Daniel Bick</a> , et al. (629 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17860v2-abstract-short" style="display: inline;"> This paper presents an energy resolution study of the JUNO experiment, incorporating the latest knowledge acquired during the detector construction phase. The determination of neutrino mass ordering in JUNO requires an exceptional energy resolution better than 3\% at 1~MeV. To achieve this ambitious goal, significant efforts have been undertaken in the design and production of the key components o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17860v2-abstract-full').style.display = 'inline'; document.getElementById('2405.17860v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17860v2-abstract-full" style="display: none;"> This paper presents an energy resolution study of the JUNO experiment, incorporating the latest knowledge acquired during the detector construction phase. The determination of neutrino mass ordering in JUNO requires an exceptional energy resolution better than 3\% at 1~MeV. To achieve this ambitious goal, significant efforts have been undertaken in the design and production of the key components of the JUNO detector. Various factors affecting the detection of inverse beta decay signals have an impact on the energy resolution, extending beyond the statistical fluctuations of the detected number of photons, such as the properties of the liquid scintillator, performance of photomultiplier tubes, and the energy reconstruction algorithm. To account for these effects, a full JUNO simulation and reconstruction approach is employed. This enables the modeling of all relevant effects and the evaluation of associated inputs to accurately estimate the energy resolution. The results of study reveal an energy resolution of 2.95\% at 1~MeV. Furthermore, this study assesses the contribution of major effects to the overall energy resolution budget. This analysis serves as a reference for interpreting future measurements of energy resolution during JUNO data collection. Moreover, it provides a guideline for comprehending the energy resolution characteristics of liquid scintillator-based detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17860v2-abstract-full').style.display = 'none'; document.getElementById('2405.17860v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Phys. C 49 013003 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17852">arXiv:2405.17852</a> <span> [<a href="https://arxiv.org/pdf/2405.17852">pdf</a>, <a href="https://arxiv.org/format/2405.17852">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2422-2">10.1007/s11433-024-2422-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Advances in laser-plasma interactions using intense vortex laser beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yin Shi</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiaomei Zhang</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">Alexey Arefiev</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+B">Baifei Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17852v1-abstract-short" style="display: inline;"> Low-intensity light beams carrying Orbital Angular Momentum (OAM), commonly known as vortex beams, have garnered significant attention due to promising applications in areas ranging from optical trapping to communication. In recent years, there has been a surge in global research exploring the potential of high-intensity vortex laser beams and specifically their interactions with plasmas. This pap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17852v1-abstract-full').style.display = 'inline'; document.getElementById('2405.17852v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17852v1-abstract-full" style="display: none;"> Low-intensity light beams carrying Orbital Angular Momentum (OAM), commonly known as vortex beams, have garnered significant attention due to promising applications in areas ranging from optical trapping to communication. In recent years, there has been a surge in global research exploring the potential of high-intensity vortex laser beams and specifically their interactions with plasmas. This paper provides a comprehensive review of recent advances in this area. Compared to conventional laser beams, intense vortex beams exhibit unique properties such as twisted phase fronts, OAM delivery, hollow intensity distribution, and spatially isolated longitudinal fields. These distinct characteristics give rise to a multitude of rich phenomena, profoundly influencing laser-plasma interactions and offering diverse applications. The paper also discusses future prospects and identifies promising general research areas involving vortex beams. These areas include low-divergence particle acceleration, instability suppression, high-energy photon delivery with OAM, and the generation of strong magnetic fields. With growing scientific interest and application potential, the study of intense vortex lasers is poised for rapid development in the coming years. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17852v1-abstract-full').style.display = 'none'; document.getElementById('2405.17852v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SCIENCE CHINA Physics, Mechanics & Astronomy (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08531">arXiv:2405.08531</a> <span> [<a href="https://arxiv.org/pdf/2405.08531">pdf</a>, <a href="https://arxiv.org/format/2405.08531">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2024.109239">10.1016/j.cpc.2024.109239 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The TDHF code Sky3D version 1.2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abhishek"> Abhishek</a>, <a href="/search/physics?searchtype=author&query=Stevenson%2C+P">Paul Stevenson</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yue Shi</a>, <a href="/search/physics?searchtype=author&query=Y%C3%BCksel%2C+E">Esra Y眉ksel</a>, <a href="/search/physics?searchtype=author&query=Umar%2C+S">Sait Umar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08531v1-abstract-short" style="display: inline;"> The Sky3D code has been widely used to describe nuclear ground states, collective vibrational excitations, and heavy-ion collisions. The approach is based on Skyrme forces or related energy density functionals. The static and dynamic equations are solved on a three-dimensional grid, and pairing is been implemented in the BCS approximation. This updated version of the code aims to facilitate the ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08531v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08531v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08531v1-abstract-full" style="display: none;"> The Sky3D code has been widely used to describe nuclear ground states, collective vibrational excitations, and heavy-ion collisions. The approach is based on Skyrme forces or related energy density functionals. The static and dynamic equations are solved on a three-dimensional grid, and pairing is been implemented in the BCS approximation. This updated version of the code aims to facilitate the calculation of nuclear strength functions in the regime of linear response theory, while retaining all existing functionality and use cases. The strength functions are benchmarked against available RPA codes, and the user has the freedom of choice when selecting the nature of external excitation (from monopole to hexadecapole and more). Some utility programs are also provided that calculate the strength function from the time-dependent output of the dynamic calculations of the Sky3D code. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08531v1-abstract-full').style.display = 'none'; document.getElementById('2405.08531v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Expanded version of New Version Announcement as published in Computer Physics Communications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06250">arXiv:2405.06250</a> <span> [<a href="https://arxiv.org/pdf/2405.06250">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Robust field-free switching using large unconventional spin-orbit torque in an all-van der Waals heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yiyang Zhang</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+X">Xiaolin Ren</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+R">Ruizi Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zehan Chen</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+X">Xuezhao Wu</a>, <a href="/search/physics?searchtype=author&query=Pang%2C+J">Jie Pang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&query=Lan%2C+G">Guibin Lan</a>, <a href="/search/physics?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/physics?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+Q">Qiming Shao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06250v2-abstract-short" style="display: inline;"> The emerging all-van der Waals (vdW) magnetic heterostructure provides a new platform to control the magnetization by the electric field beyond the traditional spintronics devices. One promising strategy is using unconventional spin-orbit torque (SOT) exerted by the out-of-plane polarized spin current to enable deterministic magnetization switching and enhance the switching efficiency. However, in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06250v2-abstract-full').style.display = 'inline'; document.getElementById('2405.06250v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06250v2-abstract-full" style="display: none;"> The emerging all-van der Waals (vdW) magnetic heterostructure provides a new platform to control the magnetization by the electric field beyond the traditional spintronics devices. One promising strategy is using unconventional spin-orbit torque (SOT) exerted by the out-of-plane polarized spin current to enable deterministic magnetization switching and enhance the switching efficiency. However, in all-vdW heterostructures, large unconventional SOT remains elusive and the robustness of the field-free switching against external magnetic field hasn't been examined, which hinder further applications. Here we demonstrate the field-free switching in an all-vdW heterostructure combining a type-II Weyl semimetal TaIrTe4 and above-room-temperature ferromagnet Fe3GaTe2. The fully field-free switching can be achieved at 2.56 x 10^10 A per m2 at 300K and a large SOT effective field efficiency of the out-of-plane polarized spin current generated by TaIrTe4 is determined to be 0.37. Moreover, we find that the switching polarity cannot be changed until the external in-plane magnetic field reaches 252mT, indicating a robust switching against the magnetic field. The numerical simulation suggests the large unconventional SOT reduces the switching current density and enhances the robustness of the switching. Our work shows that all-vdW heterostructures are promising candidates for future highly efficient and stable SOT-based devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06250v2-abstract-full').style.display = 'none'; document.getElementById('2405.06250v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, accepted by Advanced Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04240">arXiv:2405.04240</a> <span> [<a href="https://arxiv.org/pdf/2405.04240">pdf</a>, <a href="https://arxiv.org/format/2405.04240">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0217826">10.1063/5.0217826 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring relaxation dynamics in warm dense plasmas by tailoring non-thermal electron distributions with a free electron laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuanfeng Shi</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+S">Shenyuan Ren</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+H">Hyun-kyung Chung</a>, <a href="/search/physics?searchtype=author&query=Wark%2C+J+S">Justin S. Wark</a>, <a href="/search/physics?searchtype=author&query=Vinko%2C+S+M">Sam M. Vinko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04240v5-abstract-short" style="display: inline;"> Knowing the characteristic relaxation time of free electrons in a dense plasma is crucial to our understanding of plasma equilibration and transport. However, experimental investigations of electron relaxation dynamics have been hindered by the ultra-fast, sub-femtosecond time scales on which these interactions typically take place. Here we propose a novel approach that uses x-rays from a free ele… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04240v5-abstract-full').style.display = 'inline'; document.getElementById('2405.04240v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04240v5-abstract-full" style="display: none;"> Knowing the characteristic relaxation time of free electrons in a dense plasma is crucial to our understanding of plasma equilibration and transport. However, experimental investigations of electron relaxation dynamics have been hindered by the ultra-fast, sub-femtosecond time scales on which these interactions typically take place. Here we propose a novel approach that uses x-rays from a free electron laser to generate well-defined non-thermal electron distributions, which can then be tracked via emission spectroscopy from radiative recombination as they thermalize. Collisional radiative simulations reveal how this method can enable the measurement of electron relaxation time scales {\it in situ}, shedding light on the applicability and accuracy of the Coulomb Logarithm framework for modelling collisions in dense plasmas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04240v5-abstract-full').style.display = 'none'; document.getElementById('2405.04240v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.19641">arXiv:2404.19641</a> <span> [<a href="https://arxiv.org/pdf/2404.19641">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Fast and label-free 3D virtual H&E histology via active modulation-assisted dynamic full-field OCT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yin%2C+Z">Zichen Yin</a>, <a href="/search/physics?searchtype=author&query=He%2C+B">Bin He</a>, <a href="/search/physics?searchtype=author&query=Ying%2C+Y">Yuzhe Ying</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shuwei Zhang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+P">Panqi Yang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhengyu Chen</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Z">Zhangwei Hu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yejiong Shi</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+R">Ruizhi Xue</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chengming Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shu Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+G">Guihuai Wang</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+P">Ping Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.19641v1-abstract-short" style="display: inline;"> Pathological features are the gold standard for tumor diagnosis, guiding treatment and prognosis. However, standard histopathological process is labor-intensive and time-consuming, while frozen sections have lower accuracy. Dynamic full-field optical coherence tomography (D-FFOCT) offers rapid histologic information by measuring the subcellular dynamics of fresh, unprocessed tissues. However, D-FF… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19641v1-abstract-full').style.display = 'inline'; document.getElementById('2404.19641v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.19641v1-abstract-full" style="display: none;"> Pathological features are the gold standard for tumor diagnosis, guiding treatment and prognosis. However, standard histopathological process is labor-intensive and time-consuming, while frozen sections have lower accuracy. Dynamic full-field optical coherence tomography (D-FFOCT) offers rapid histologic information by measuring the subcellular dynamics of fresh, unprocessed tissues. However, D-FFOCT images suffer from abrupt shifts in hue and brightness, which is confusing for pathologists and diminish their interpretability and reliability. Here, we present active phase modulation-assisted D-FFOCT (APMD-FFOCT) to improve the imaging stability and enhance the contrast of static tissues. This enables us to further employ an unsupervised deep learning to convert APMD-FFOCT images into virtual hematoxylin and eosin (H&E) stained images for the first time. Three-dimensional (3D) virtual H&E-stained images have been obtained at a scanning rate of 1 frame per second, as demonstrated in cancer diagnosis for human central nervous system and breast. The results prove that this new method will play a unique and important role in intraoperative histology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19641v1-abstract-full').style.display = 'none'; document.getElementById('2404.19641v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10587">arXiv:2404.10587</a> <span> [<a href="https://arxiv.org/pdf/2404.10587">pdf</a>, <a href="https://arxiv.org/format/2404.10587">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Polarized Adding Method of Discrete Ordinate Approximation for Ultraviolet-Visible and Near-Infrared Radiative Transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wu%2C+K">Kun Wu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+F">Feng Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wenwen Li</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+F">Fengzi Bao</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yi-ning Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10587v1-abstract-short" style="display: inline;"> The polarization characteristics of atmospheric scattering are important and should not be ignored in radiative transfer simulations. In this study, a new vector radiative transfer model called the polarized adding method of discrete ordinate approximation (POLDDA) is proposed for use in remote sensing applications for ultraviolet-visible and near-infrared spectra. The single-layer radiative trans… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10587v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10587v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10587v1-abstract-full" style="display: none;"> The polarization characteristics of atmospheric scattering are important and should not be ignored in radiative transfer simulations. In this study, a new vector radiative transfer model called the polarized adding method of discrete ordinate approximation (POLDDA) is proposed for use in remote sensing applications for ultraviolet-visible and near-infrared spectra. The single-layer radiative transfer process and inhomogeneous multi-layer connection are solved using the discrete ordinate method (DOM) and adding methods, respectively. By combining the advantages of DOM and the adding method, the Stokes vector (including the I-, Q-, U-, and V-components) calculated using the new method conforms to the results of PolRadtran/RT3, whether in a Rayleigh scattering atmosphere or the water cloud case. Moreover, the relative root-mean-square error (RMSE) values of the Stokes vector for the test cases between MYSTIC and the new method or RT3 prove the accuracy of the proposed method. Meanwhile, the new method has a higher computational efficiency than RT3, particularly for an atmosphere with a large scattering optical depth. Unlike RT3, the computation time of the proposed method does not increase with the optical depth of each layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10587v1-abstract-full').style.display = 'none'; document.getElementById('2404.10587v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02416">arXiv:2404.02416</a> <span> [<a href="https://arxiv.org/pdf/2404.02416">pdf</a>, <a href="https://arxiv.org/format/2404.02416">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Atomic evolution of hydrogen intercalation wave dynamics in palladium nanocrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lee%2C+D">Daewon Lee</a>, <a href="/search/physics?searchtype=author&query=Oaks-Leaf%2C+S">Sam Oaks-Leaf</a>, <a href="/search/physics?searchtype=author&query=Betzler%2C+S+B">Sophia B. Betzler</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yifeng Shi</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+S">Siyu Zhou</a>, <a href="/search/physics?searchtype=author&query=Ophus%2C+C">Colin Ophus</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Lin-Wang Wang</a>, <a href="/search/physics?searchtype=author&query=Asta%2C+M">Mark Asta</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+Y">Younan Xia</a>, <a href="/search/physics?searchtype=author&query=Limmer%2C+D+T">David T. Limmer</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+H">Haimei Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02416v2-abstract-short" style="display: inline;"> Solute-intercalation-induced phase separation creates spatial heterogeneities in host materials, a phenomenon ubiquitous in batteries, hydrogen storage, and other energy devices. Despite many efforts, probing intercalation processes at the atomic scale has been a significant challenge. We study hydrogen (de)intercalation in palladium nanocrystals as a model system and achieve atomic-resolution ima… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02416v2-abstract-full').style.display = 'inline'; document.getElementById('2404.02416v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02416v2-abstract-full" style="display: none;"> Solute-intercalation-induced phase separation creates spatial heterogeneities in host materials, a phenomenon ubiquitous in batteries, hydrogen storage, and other energy devices. Despite many efforts, probing intercalation processes at the atomic scale has been a significant challenge. We study hydrogen (de)intercalation in palladium nanocrystals as a model system and achieve atomic-resolution imaging of hydrogen intercalation wave dynamics by utilizing liquid-phase transmission electron microscopy. Our observations reveal that intercalation wave mechanisms, instead of shrinking-core mechanisms, prevail at ambient temperature for palladium nanocubes ranging from ~60 nm down to ~10 nm. We uncover the atomic evolution of hydrogen intercalation wave transitioning from non-planar and inclined boundaries to those closely aligned with {100} planes. Our kinetic Monte Carlo simulations demonstrate the observed intercalation wave dynamics correspond to sorption pathways minimizing the lattice mismatch strain at the phase boundary. Unveiling the atomic intercalation pathways holds profound implications for engineering intercalation-mediated devices and advancements in energy sciences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02416v2-abstract-full').style.display = 'none'; document.getElementById('2404.02416v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, plus Methods, Extended Data, and Supplementary Notes</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&query=Shi%2C+Y&start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>