CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;39 of 39 results for author: <span class="mathjax">Vranic, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Vranic%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Vranic, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Vranic%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Vranic, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06744">arXiv:2502.06744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.06744">pdf</a>, <a href="https://arxiv.org/format/2502.06744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Betatron radiation emitted during the direct laser acceleration of electrons in underdense plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Babjak%2C+R">Robert Babjak</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06744v1-abstract-short" style="display: inline;"> Relativistic laser pulses can accelerate electrons up to energies of several GeV during the interaction with gaseous targets through the direct laser acceleration (DLA) mechanism. While the electrons are accelerated to high energies, they oscillate transversely to the laser propagation direction, emitting radiation. We demonstrate using particle-in-cell (PIC) simulations that the high accelerated&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06744v1-abstract-full').style.display = 'inline'; document.getElementById('2502.06744v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06744v1-abstract-full" style="display: none;"> Relativistic laser pulses can accelerate electrons up to energies of several GeV during the interaction with gaseous targets through the direct laser acceleration (DLA) mechanism. While the electrons are accelerated to high energies, they oscillate transversely to the laser propagation direction, emitting radiation. We demonstrate using particle-in-cell (PIC) simulations that the high accelerated electron charge enables DLA sources to emit $\sim 10^{10}~\rm{photons}/0.1\%\rm{BW}$ at energies of hundreds MeV when interacting with multi-petawatt laser pulses. We provide an analytical estimate of the expected critical frequency for the DLA betatron spectrum which is in strong agreement with PIC simulations. We also show that using gas jets of low density ($\sim 10^{19}~\rm{cm^{-3}}$) is beneficial for the brightness of the source, since low plasma density produces collimated radiation. If the laser pulse is focused to an optimal spot size that results in the highest cut-off energies, conversion efficiency from laser to radiation can reach up to a few percent, which makes the DLA a promising high-brilliance source of gamma-ray radiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06744v1-abstract-full').style.display = 'none'; document.getElementById('2502.06744v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 7 figures, submitted to PPCF</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17517">arXiv:2411.17517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17517">pdf</a>, <a href="https://arxiv.org/format/2411.17517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Variational Quantum Simulation of the Fokker-Planck Equation applied to Quantum Radiation Reaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+%C3%93">脫scar Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Gamiz%2C+L+I+I">Lucas I. I帽igo Gamiz</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17517v1-abstract-short" style="display: inline;"> Near-future experiments with Petawatt class lasers are expected to produce a high flux of gamma-ray photons and electron-positron pairs through Strong Field Quantum Electrodynamical processes. Simulations of the expected regime of laser-matter interaction are computationally intensive due to the disparity of the spatial and temporal scales and because quantum and classical descriptions need to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17517v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17517v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17517v1-abstract-full" style="display: none;"> Near-future experiments with Petawatt class lasers are expected to produce a high flux of gamma-ray photons and electron-positron pairs through Strong Field Quantum Electrodynamical processes. Simulations of the expected regime of laser-matter interaction are computationally intensive due to the disparity of the spatial and temporal scales and because quantum and classical descriptions need to be accounted for simultaneously (classical for collective effects and quantum for nearly-instantaneous events of hard photon emission and pair creation). A typical configuration for experiments is a scattering of an electron and a laser beam which can be mapped to an equivalent problem with constant magnetic field. We study the stochastic cooling of an electron beam in a strong constant uniform magnetic field, both its particle distribution functions and their energy momenta. We start by obtaining approximate closed-form analytical solutions to the relevant observables. Then, we apply the quantum-hybrid Variational Quantum Imaginary Time Evolution to the Fokker-Planck equation describing this process, and compare against theory and results from Particle-In-Cell simulations and classical Partial Differential Equation solvers, showing good agreement. This work will be useful as a first step towards quantum simulation of plasma physics scenarios where diffusion processes are important, in particular in strong electromagnetic fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17517v1-abstract-full').style.display = 'none'; document.getElementById('2411.17517v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17455">arXiv:2411.17455</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17455">pdf</a>, <a href="https://arxiv.org/format/2411.17455">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Improved Bethe-Heitler positron creation and retention by combining direct laser acceleration and solid target interaction within a gas jet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gamiz%2C+L+I+I">Lucas I. I帽igo Gamiz</a>, <a href="/search/physics?searchtype=author&amp;query=Babjak%2C+R">Robert Babjak</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+B">Bertrand Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Vrani%C4%87%2C+M">Marija Vrani膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17455v1-abstract-short" style="display: inline;"> The next generation of Petawatt-class lasers presents the opportunity to study positron production and acceleration experimentally, in an all-optical setting. Several configurations were proposed to produce and accelerate positrons in a single laser stage. However, these configurations have yielded limited positron beam quality and low particle count. This paper presents methods for improving the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17455v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17455v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17455v1-abstract-full" style="display: none;"> The next generation of Petawatt-class lasers presents the opportunity to study positron production and acceleration experimentally, in an all-optical setting. Several configurations were proposed to produce and accelerate positrons in a single laser stage. However, these configurations have yielded limited positron beam quality and low particle count. This paper presents methods for improving the injection and retention of positrons obtained via Bethe-Heitler pair production and accelerated using direct laser acceleration (DLA) in a plasma channel. The work first introduces a semi-analytical model which predicts laser energy depletion in this highly nonlinear regime. We demonstrate through PIC simulations that accelerated electrons can induce charge inversion within the channel, leading to positron trapping and acceleration. We investigate how laser focusing position, channel wall density, target foil position and target thickness influence positron creation and retention. Our configuration can achieve an 8-fold increase in positron retention compared to previous studies and a higher number of positrons produced overall. This work establishes a robust, single-stage approach for obtaining positron beams, opening new avenues for experiments with Petawatt-class lasers and potential applications in electron-positron collisions and QED cascades. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17455v1-abstract-full').style.display = 'none'; document.getElementById('2411.17455v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10702">arXiv:2406.10702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.10702">pdf</a>, <a href="https://arxiv.org/format/2406.10702">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ad7280">10.1088/1367-2630/ad7280 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct laser acceleration in varying plasma density profiles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Babjak%2C+R">Robert Babjak</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+B">Bertrand Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Krus%2C+M">Miroslav Krus</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10702v1-abstract-short" style="display: inline;"> Direct laser acceleration has proven to be an efficient source of high-charge electron bunches and high brilliance X-rays. However, an analytical description of the acceleration in the interaction with varying plasma density targets is still missing. Here, we provide an analytical estimate of the maximum energies that electrons can achieve in such a case. We demonstrate that the maximum energy dep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10702v1-abstract-full').style.display = 'inline'; document.getElementById('2406.10702v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10702v1-abstract-full" style="display: none;"> Direct laser acceleration has proven to be an efficient source of high-charge electron bunches and high brilliance X-rays. However, an analytical description of the acceleration in the interaction with varying plasma density targets is still missing. Here, we provide an analytical estimate of the maximum energies that electrons can achieve in such a case. We demonstrate that the maximum energy depends on the local electron properties at the moment when the electron fulfills the resonant condition at the beginning of the acceleration. This knowledge enables density shaping for various purposes. One application is to decrease the required acceleration distance which has important implications for multi-petawatt laser experiments, where strong laser depletion could play a crucial role. Another use for density tailoring is to achieve acceleration beyond the radiation reaction limit. We derive the energy scaling law that is valid for arbitrary density profile that varies slowly compared with the betatron period. Our results can be applied to electron heating in exponential preplasma of thin foils, ablating plasma plumes, or gas jets with long-scale ramp-up. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10702v1-abstract-full').style.display = 'none'; document.getElementById('2406.10702v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20930">arXiv:2405.20930</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20930">pdf</a>, <a href="https://arxiv.org/format/2405.20930">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct Laser Acceleration of Bethe-Heitler positrons in laser-channel interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+B">Bertrand Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Babjak%2C+R">Robert Babjak</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20930v1-abstract-short" style="display: inline;"> Positron creation and acceleration is one of the major challenges for constructing future lepton colliders. On the one hand, conventional technology can provide a solution, but at a prohibitive cost and scale. On the other hand, alternative, reduced-scale ideas for positron beam generation could bring this dream closer to reality. Here we propose a novel plasma-based positron acceleration method u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20930v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20930v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20930v1-abstract-full" style="display: none;"> Positron creation and acceleration is one of the major challenges for constructing future lepton colliders. On the one hand, conventional technology can provide a solution, but at a prohibitive cost and scale. On the other hand, alternative, reduced-scale ideas for positron beam generation could bring this dream closer to reality. Here we propose a novel plasma-based positron acceleration method using a powerful laser propagating through a dense and narrow plasma channel. A large amount of electrons is injected within the channel during laser propagation. This electron loading creates static fields in the plasma, enabling positrons to be guided transversely while they directly gain energy from the laser field itself. Within this context, we present a theoretical model to describe how the laser injects the electrons and estimate the beam-loaded effective electron density. We validate our theoretical predictions through Quasi-3D PIC simulations and demonstrate the robustness of this guiding and direct laser acceleration process for positrons. Our approach could pave the way for testing this new positron acceleration scheme at ELI-Beamlines, showcasing unprecedentedly high average energy gain rate of a few TeV/m. The fireball jet produced contains GeV-level electrons, positrons, and x-rays, opening the path towards potential laboratory astrophysics experiments using these beams. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20930v1-abstract-full').style.display = 'none'; document.getElementById('2405.20930v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.14561">arXiv:2402.14561</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.14561">pdf</a>, <a href="https://arxiv.org/format/2402.14561">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.109.065204">10.1103/PhysRevE.109.065204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct laser acceleration: A model for the electron injection from the walls of a cylindrical guiding structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Valenta%2C+P">P. Valenta</a>, <a href="/search/physics?searchtype=author&amp;query=Maslarova%2C+D">D. Maslarova</a>, <a href="/search/physics?searchtype=author&amp;query=Babjak%2C+R">R. Babjak</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+B">B. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Bulanov%2C+S+V">S. V. Bulanov</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">M. Vranic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.14561v2-abstract-short" style="display: inline;"> We use analytical methods and particle-in-cell simulation to investigate the origin of electrons accelerated by the process of direct laser acceleration driven by high-power laser pulses in preformed narrow cylindrical plasma channels. The simulation shows that the majority of accelerated electrons are originally located along the interface between the channel wall and the channel interior. The an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14561v2-abstract-full').style.display = 'inline'; document.getElementById('2402.14561v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.14561v2-abstract-full" style="display: none;"> We use analytical methods and particle-in-cell simulation to investigate the origin of electrons accelerated by the process of direct laser acceleration driven by high-power laser pulses in preformed narrow cylindrical plasma channels. The simulation shows that the majority of accelerated electrons are originally located along the interface between the channel wall and the channel interior. The analytical model based on the electron hydrodynamics illustrates the underlying physical mechanism of the release of electrons from the channel wall when irradiated by an intense laser, the subsequent electron dynamics, and the corresponding evolution of the channel density profile. The quantitative predictions of the total charge of released electrons and the average electron density inside the channel are validated by comparison with the simulation results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.14561v2-abstract-full').style.display = 'none'; document.getElementById('2402.14561v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 109, 065204 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08026">arXiv:2402.08026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08026">pdf</a>, <a href="https://arxiv.org/format/2402.08026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ad3be4">10.1088/1367-2630/ad3be4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Influence of Laser Focusing Conditions on the Direct Laser Acceleration of Electrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+H">H. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Tangtartharakul%2C+K">K. Tangtartharakul</a>, <a href="/search/physics?searchtype=author&amp;query=Babjak%2C+R">R. Babjak</a>, <a href="/search/physics?searchtype=author&amp;query=Yeh%2C+I">I-L. Yeh</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+F">F. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Campbell%2C+P+T">P. T. Campbell</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Y">Y. Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Nilson%2C+P+M">P. M. Nilson</a>, <a href="/search/physics?searchtype=author&amp;query=Russell%2C+B+K">B. K. Russell</a>, <a href="/search/physics?searchtype=author&amp;query=Shaw%2C+J+L">J. L. Shaw</a>, <a href="/search/physics?searchtype=author&amp;query=Thomas%2C+A+G+R">A. G. R. Thomas</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">M. Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Arefiev%2C+A+V">A. V. Arefiev</a>, <a href="/search/physics?searchtype=author&amp;query=Willingale%2C+L">L. Willingale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08026v1-abstract-short" style="display: inline;"> Direct Laser Acceleration (DLA) of electrons during a high-energy, picosecond laser interaction with an underdense plasma has been demonstrated to be substantially enhanced by controlling the laser focusing geometry. Experiments using the OMEGA EP facility measured electrons accelerated to maximum energies exceeding 120 times the ponderomotive energy under certain laser focusing, pulse energy, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08026v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08026v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08026v1-abstract-full" style="display: none;"> Direct Laser Acceleration (DLA) of electrons during a high-energy, picosecond laser interaction with an underdense plasma has been demonstrated to be substantially enhanced by controlling the laser focusing geometry. Experiments using the OMEGA EP facility measured electrons accelerated to maximum energies exceeding 120 times the ponderomotive energy under certain laser focusing, pulse energy, and plasma density conditions. Two-dimensional particle-in-cell simulations show that the laser focusing conditions alter the laser field evolution, channel fields generation, and electron oscillation, all of which contribute to the final electron energies. The optimal laser focusing condition occurs when the transverse oscillation amplitude of the accelerated electron in the channel fields matches the laser beam width, resulting in efficient energy gain. Through this observation, a simple model was developed to calculate the optimal laser focal spot size in more general conditions and is validated by experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08026v1-abstract-full').style.display = 'none'; document.getElementById('2402.08026v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04501">arXiv:2402.04501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04501">pdf</a>, <a href="https://arxiv.org/format/2402.04501">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Multiplicity of electron- and photon-seeded electromagnetic showers at multi-petawatt laser facilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pouyez%2C+M">M. Pouyez</a>, <a href="/search/physics?searchtype=author&amp;query=Mironov%2C+A+A">A. A. Mironov</a>, <a href="/search/physics?searchtype=author&amp;query=Grismayer%2C+T">T. Grismayer</a>, <a href="/search/physics?searchtype=author&amp;query=Mercuri-Baron%2C+A">A. Mercuri-Baron</a>, <a href="/search/physics?searchtype=author&amp;query=Perez%2C+F">F. Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">M. Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Riconda%2C+C">C. Riconda</a>, <a href="/search/physics?searchtype=author&amp;query=Grech%2C+M">M. Grech</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04501v1-abstract-short" style="display: inline;"> Electromagnetic showers developing from the collision of an ultra-intense laser pulse with a beam of high-energy electrons or photons are investigated under conditions relevant to future experiments on multi-petawatt laser facilities. A semi-analytical model is derived that predicts the shower multiplicity, i.e. the number of pairs produced per incident seed particle (electron or gamma photon). Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04501v1-abstract-full').style.display = 'inline'; document.getElementById('2402.04501v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04501v1-abstract-full" style="display: none;"> Electromagnetic showers developing from the collision of an ultra-intense laser pulse with a beam of high-energy electrons or photons are investigated under conditions relevant to future experiments on multi-petawatt laser facilities. A semi-analytical model is derived that predicts the shower multiplicity, i.e. the number of pairs produced per incident seed particle (electron or gamma photon). The model is benchmarked against particle-in-cell simulations and shown to be accurate over a wide range of seed particle energies (100 MeV - 40 GeV), laser relativistic field strengths ($10 &lt; a_0 &lt; 1000$), and quantum parameter $蠂_0$ (ranging from 1 to 40). It is shown that, for experiments expected in the next decade, only the first generations of pairs contribute to the shower while multiplicities larger than unity are predicted. Guidelines for forthcoming experiments are discussed considering laser facilities such as Apollon and ELI Beamlines. The difference between electron- and photon seeding and the influence of the laser pulse duration are investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04501v1-abstract-full').style.display = 'none'; document.getElementById('2402.04501v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13840">arXiv:2310.13840</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13840">pdf</a>, <a href="https://arxiv.org/format/2310.13840">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Phase Control of Nonlinear Breit-Wheeler Pair Creation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barbosa%2C+B">B. Barbosa</a>, <a href="/search/physics?searchtype=author&amp;query=Palastro%2C+J+P">J. P. Palastro</a>, <a href="/search/physics?searchtype=author&amp;query=Ramsey%2C+D">D. Ramsey</a>, <a href="/search/physics?searchtype=author&amp;query=Weichman%2C+K">K. Weichman</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">M. Vranic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13840v1-abstract-short" style="display: inline;"> Electron-positron pair creation occurs throughout the universe in the environments of extreme astrophysical objects, such as pulsar magnetospheres and black hole accretion disks. The difficulty of emulating these environments in the laboratory has motivated the use of ultrahigh-intensity laser pulses for pair creation. Here we show that the phase offset between a laser pulse and its second harmoni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13840v1-abstract-full').style.display = 'inline'; document.getElementById('2310.13840v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13840v1-abstract-full" style="display: none;"> Electron-positron pair creation occurs throughout the universe in the environments of extreme astrophysical objects, such as pulsar magnetospheres and black hole accretion disks. The difficulty of emulating these environments in the laboratory has motivated the use of ultrahigh-intensity laser pulses for pair creation. Here we show that the phase offset between a laser pulse and its second harmonic can be used to control the relative transverse motion of electrons and positrons created in the nonlinear Breit-Wheeler process. Analytic theory and particle-in-cell simulations of a head-on collision between a two-color laser pulse and electron beam predict that with an appropriate phase offset, the electrons will drift in one direction and the positrons in the other. The resulting current may provide a collective signature of nonlinear Breit-Wheeler, while the spatial separation resulting from the relative motion may facilitate isolation of positrons for subsequent applications or detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13840v1-abstract-full').style.display = 'none'; document.getElementById('2310.13840v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05535">arXiv:2310.05535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.05535">pdf</a>, <a href="https://arxiv.org/format/2310.05535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/AAC55212.2022.10822963">10.1109/AAC55212.2022.10822963 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Commissioning and first measurements of the initial X-ray and 纬-ray detectors at FACET-II </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Claveria%2C+P+S+M">P. San Miguel Claveria</a>, <a href="/search/physics?searchtype=author&amp;query=Storey%2C+D">D. Storey</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+J">G. J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Piazza%2C+A">A. Di Piazza</a>, <a href="/search/physics?searchtype=author&amp;query=Ekerfelt%2C+H">H. Ekerfelt</a>, <a href="/search/physics?searchtype=author&amp;query=Gessner%2C+S">S. Gessner</a>, <a href="/search/physics?searchtype=author&amp;query=Gerstmayr%2C+E">E. Gerstmayr</a>, <a href="/search/physics?searchtype=author&amp;query=Grismayer%2C+T">T. Grismayer</a>, <a href="/search/physics?searchtype=author&amp;query=Hogan%2C+M">M. Hogan</a>, <a href="/search/physics?searchtype=author&amp;query=Joshi%2C+C">C. Joshi</a>, <a href="/search/physics?searchtype=author&amp;query=Keitel%2C+C+H">C. H. Keitel</a>, <a href="/search/physics?searchtype=author&amp;query=Knetsch%2C+A">A. Knetsch</a>, <a href="/search/physics?searchtype=author&amp;query=Litos%2C+M">M. Litos</a>, <a href="/search/physics?searchtype=author&amp;query=Matheron%2C+A">A. Matheron</a>, <a href="/search/physics?searchtype=author&amp;query=Marsh%2C+K">K. Marsh</a>, <a href="/search/physics?searchtype=author&amp;query=Meuren%2C+S">S. Meuren</a>, <a href="/search/physics?searchtype=author&amp;query=O%27Shea%2C+B">B. O&#39;Shea</a>, <a href="/search/physics?searchtype=author&amp;query=Reis%2C+D+A">D. A. Reis</a>, <a href="/search/physics?searchtype=author&amp;query=Tamburini%2C+M">M. Tamburini</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">M. Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">J. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zakharova%2C+V">V. Zakharova</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Corde%2C+S">S. Corde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05535v1-abstract-short" style="display: inline;"> The upgraded Facility for Advanced Accelerator Experimental Tests (FACET-II) at SLAC National Accelerator Laboratory has been designed to deliver ultra-relativistic electron and positron beams with unprecedented parameters, especially in terms of high peak current and low emittance. For most of the foreseen experimental campaigns hosted at this facility, the high energy radiation produced by these&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05535v1-abstract-full').style.display = 'inline'; document.getElementById('2310.05535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05535v1-abstract-full" style="display: none;"> The upgraded Facility for Advanced Accelerator Experimental Tests (FACET-II) at SLAC National Accelerator Laboratory has been designed to deliver ultra-relativistic electron and positron beams with unprecedented parameters, especially in terms of high peak current and low emittance. For most of the foreseen experimental campaigns hosted at this facility, the high energy radiation produced by these beams at the Interaction Point will be a valuable diagnostic to assess the different physical processes under study. This article describes the X-ray and 纬-ray detectors installed for the initial phase of FACET-II. Furthermore, experimental measurements obtained with these detectors during the first commissioning and user runs are presented and discussed, illustrating the working principles and potential applications of these detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05535v1-abstract-full').style.display = 'none'; document.getElementById('2310.05535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the Advanced Accelerator Concepts (AAC) Workshop 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2022 IEEE Advanced Accelerator Concepts Workshop (AAC), Long Island, NY, USA, 2022, pp. 1-6 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05141">arXiv:2309.05141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05141">pdf</a>, <a href="https://arxiv.org/format/2309.05141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Magnetic field generation in laser-solid interactions at strong-field QED relevant intensities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Russell%2C+B+K">Brandon K. Russell</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Campbell%2C+P+T">Paul T. Campbell</a>, <a href="/search/physics?searchtype=author&amp;query=Thomas%2C+A+G+R">Alexander G. R. Thomas</a>, <a href="/search/physics?searchtype=author&amp;query=Schoeffler%2C+K+M">Kevin M. Schoeffler</a>, <a href="/search/physics?searchtype=author&amp;query=Uzdensky%2C+D+A">Dmitri A. Uzdensky</a>, <a href="/search/physics?searchtype=author&amp;query=Willingale%2C+L">Louise Willingale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05141v1-abstract-short" style="display: inline;"> Magnetic field generation in ultra-intense laser-solid interactions is studied over a range of laser intensities relevant to next-generation laser facilities ($a_0 = 50-500$) using 2D particle-in-cell simulations. It is found that fields on the order of 0.1 MT (1 GigaGauss) may be generated by relativistic electrons traveling along the surface of the target. However a significant fraction of the e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05141v1-abstract-full').style.display = 'inline'; document.getElementById('2309.05141v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05141v1-abstract-full" style="display: none;"> Magnetic field generation in ultra-intense laser-solid interactions is studied over a range of laser intensities relevant to next-generation laser facilities ($a_0 = 50-500$) using 2D particle-in-cell simulations. It is found that fields on the order of 0.1 MT (1 GigaGauss) may be generated by relativistic electrons traveling along the surface of the target. However a significant fraction of the energy budget is converted to high-energy photons, ~38% at $a_0=500$, greatly reducing the available energy for field generation. A model for the evolution of the target-surface fields and their scaling with $a_0$ is developed using laser parameters and assumed values for the average radial electron velocity and reflectivity. The model and empirical scaling allow for the estimation of field strengths on the next generation of laser facilities, a necessary component to the proposal of any future magnetized experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05141v1-abstract-full').style.display = 'none'; document.getElementById('2309.05141v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04258">arXiv:2309.04258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.04258">pdf</a>, <a href="https://arxiv.org/format/2309.04258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Radiation-dominated injection of positrons generated by the nonlinear Breit-Wheeler process into a plasma channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Maslarova%2C+D">Dominika Maslarova</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+B">Bertrand Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04258v1-abstract-short" style="display: inline;"> Plasma acceleration is considered a prospective technology for building a compact multi-TeV electron-positron collider in the future. The challenge of this endeavor is greater for positrons than for the electrons because usually the self-generated fields from laser-plasma interaction are not well-suited for positron focusing and on-axis guiding. In addition, an external positron source is required&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04258v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04258v1-abstract-full" style="display: none;"> Plasma acceleration is considered a prospective technology for building a compact multi-TeV electron-positron collider in the future. The challenge of this endeavor is greater for positrons than for the electrons because usually the self-generated fields from laser-plasma interaction are not well-suited for positron focusing and on-axis guiding. In addition, an external positron source is required, while electrons are naturally available in the plasma. Here, we study electron-positron pair generation by an orthogonal collision of a multi-PW laser pulse and a GeV electron beam by the nonlinear Breit-Wheeler process. We studied conditions favorable for positron deflection in the direction of the laser pulse propagation, which favors injection into the plasma for further acceleration. We demonstrate using the OSIRIS particle-in-cell framework that the radiation reaction triggered by ultra-high laser intensity plays a crucial role in the positron injection. It provides a suppression of the initial transverse momentum gained by the positrons from the Breit-Wheeler process. For the parameters used in this work, the intensity of at least 2.2x1023 W/cm2 is needed in order to inject more than 1% of positrons created. Above this threshold, the percentage of injected positrons rapidly increases with intensity. Moreover, subsequent direct laser acceleration of positrons in a plasma channel, using the same laser pulse that created them, can ensure a boost of the final positron energy by a factor of two. The positron focusing and guiding on the axis is provided by significant electron beam loading that changes the internal structure of the channel fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04258v1-abstract-full').style.display = 'none'; document.getElementById('2309.04258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.09348">arXiv:2308.09348</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.09348">pdf</a>, <a href="https://arxiv.org/format/2308.09348">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/ad2975">10.1088/1361-6587/ad2975 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> QScatter: Numerical Framework for Fast Prediction of Particle Distributions in Electron-Laser Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+%C3%93">脫scar Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.09348v2-abstract-short" style="display: inline;"> The new generation of multi-PetaWatt laser facilities will allow tests of Strong Field QED, as well as provide an opportunity for novel photon and lepton sources. The first experiments are planned to study the (nearly) head-on scattering of intense, focused laser pulses with either relativistic electron beams or high-energy photon sources. In this work, we present a numerical framework that can pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09348v2-abstract-full').style.display = 'inline'; document.getElementById('2308.09348v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.09348v2-abstract-full" style="display: none;"> The new generation of multi-PetaWatt laser facilities will allow tests of Strong Field QED, as well as provide an opportunity for novel photon and lepton sources. The first experiments are planned to study the (nearly) head-on scattering of intense, focused laser pulses with either relativistic electron beams or high-energy photon sources. In this work, we present a numerical framework that can provide fast predictions of the asymptotic particle and photon distributions after the scattering. The works presented in this manuscript includes multiple features such as spatial and temporal misalignment between the laser and the scattering beam, broadband electron beams, and beam divergence. The expected mean energy, energy spread, divergence or other observables are calculated by combining an analytical description and numerical integration. This method can provide results within minutes on a personal computer, which would otherwise require full-scale 3D QED-PIC simulations using thousands of cores. The model, which has been compiled into an open-source code QScatter, may be used to support the analysis of large-size data sets from high-repetition rate experiments, leveraging its speed for optimization or reconstruction of experimental parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09348v2-abstract-full').style.display = 'none'; document.getElementById('2308.09348v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.04843">arXiv:2307.04843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.04843">pdf</a>, <a href="https://arxiv.org/ps/2307.04843">ps</a>, <a href="https://arxiv.org/format/2307.04843">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Analytic pulse technique for computational electromagnetics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Weichman%2C+K">K. Weichman</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+K+G">K. G. Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Malaca%2C+B">B. Malaca</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+W+B">W. B. Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Pierce%2C+J+R">J. R. Pierce</a>, <a href="/search/physics?searchtype=author&amp;query=Ramsey%2C+D">D. Ramsey</a>, <a href="/search/physics?searchtype=author&amp;query=Vieira%2C+J">J. Vieira</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">M. Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Palastro%2C+J+P">J. P. Palastro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.04843v1-abstract-short" style="display: inline;"> Numerical modeling of electromagnetic waves is an important tool for understanding the interaction of light and matter, and lies at the core of computational electromagnetics. Traditional approaches to injecting and evolving electromagnetic waves, however, can be prohibitively expensive and complex for emerging problems of interest and can restrict the comparisons that can be made between simulati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04843v1-abstract-full').style.display = 'inline'; document.getElementById('2307.04843v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.04843v1-abstract-full" style="display: none;"> Numerical modeling of electromagnetic waves is an important tool for understanding the interaction of light and matter, and lies at the core of computational electromagnetics. Traditional approaches to injecting and evolving electromagnetic waves, however, can be prohibitively expensive and complex for emerging problems of interest and can restrict the comparisons that can be made between simulation and theory. As an alternative, we demonstrate that electromagnetic waves can be incorporated analytically by decomposing the physics equations into analytic and computational parts. In particle-in-cell simulation of laser--plasma interaction, for example, treating the laser pulse analytically enables direct examination of the validity of approximate solutions to Maxwell&#39;s equations including Laguerre--Gaussian beams, allows lower-dimensional simulations to capture 3-D--like focusing, and facilitates the modeling of novel space--time structured laser pulses such as the flying focus. The flexibility and new routes to computational savings introduced by this analytic pulse technique are expected to enable new simulation directions and significantly reduce computational cost in existing areas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04843v1-abstract-full').style.display = 'none'; document.getElementById('2307.04843v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16706">arXiv:2306.16706</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16706">pdf</a>, <a href="https://arxiv.org/format/2306.16706">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Parametric study of the polarization dependence of nonlinear Breit-Wheeler pair creation process using two laser pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qian%2C+Q">Qian Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Seipt%2C+D">Daniel Seipt</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Grismayer%2C+T+E">Thomas E. Grismayer</a>, <a href="/search/physics?searchtype=author&amp;query=Blackburn%2C+T+G">Tom G. Blackburn</a>, <a href="/search/physics?searchtype=author&amp;query=Ridgers%2C+C+P">Christopher P. Ridgers</a>, <a href="/search/physics?searchtype=author&amp;query=Thomas%2C+A+G+R">Alexander G. R. Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16706v2-abstract-short" style="display: inline;"> With the rapid development of high-power petawatt class lasers worldwide, exploring physics in the strong field QED regime will become one of the frontiers for laser-plasma interactions research. Particle-in-cell codes, including quantum emission processes, are powerful tools for predicting and analyzing future experiments where the physics of relativistic plasma is strongly affected by strong-fie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16706v2-abstract-full').style.display = 'inline'; document.getElementById('2306.16706v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16706v2-abstract-full" style="display: none;"> With the rapid development of high-power petawatt class lasers worldwide, exploring physics in the strong field QED regime will become one of the frontiers for laser-plasma interactions research. Particle-in-cell codes, including quantum emission processes, are powerful tools for predicting and analyzing future experiments where the physics of relativistic plasma is strongly affected by strong-field QED processes. The spin/polarization dependence of these quantum processes has been of recent interest. In this article, we perform a parametric study of the interaction of two laser pulses with an ultrarelativistic electron beam. The first pulse is optimized to generate high-energy photons by nonlinear Compton scattering and efficiently decelerate the electron beam through quantum radiation reaction. The second pulse is optimized to generate electron-positron pairs by nonlinear Breit-Wheeler decay of the photons with the maximum polarization dependence. This may be experimentally realized as a verification of the strong field QED framework, including the spin/polarization rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16706v2-abstract-full').style.display = 'none'; document.getElementById('2306.16706v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00573">arXiv:2305.00573</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00573">pdf</a>, <a href="https://arxiv.org/format/2305.00573">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/09/P09022">10.1088/1748-0221/18/09/P09022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Beam Delivery and Beamstrahlung Considerations for Ultra-High Energy Linear Colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barklow%2C+T">Tim Barklow</a>, <a href="/search/physics?searchtype=author&amp;query=Gessner%2C+S">Spencer Gessner</a>, <a href="/search/physics?searchtype=author&amp;query=Hogan%2C+M">Mark Hogan</a>, <a href="/search/physics?searchtype=author&amp;query=Ng%2C+C">Cho-Kuen Ng</a>, <a href="/search/physics?searchtype=author&amp;query=Peskin%2C+M">Michael Peskin</a>, <a href="/search/physics?searchtype=author&amp;query=Raubenheimer%2C+T">Tor Raubenheimer</a>, <a href="/search/physics?searchtype=author&amp;query=White%2C+G">Glen White</a>, <a href="/search/physics?searchtype=author&amp;query=Adli%2C+E">Erik Adli</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+J">Gevy Jiawei Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Lindstrom%2C+C+A">Carl A. Lindstrom</a>, <a href="/search/physics?searchtype=author&amp;query=Sjobak%2C+K">Kyrre Sjobak</a>, <a href="/search/physics?searchtype=author&amp;query=Barber%2C+S">Sam Barber</a>, <a href="/search/physics?searchtype=author&amp;query=Geddes%2C+C">Cameron Geddes</a>, <a href="/search/physics?searchtype=author&amp;query=Formenti%2C+A">Arianna Formenti</a>, <a href="/search/physics?searchtype=author&amp;query=Lehe%2C+R">Remi Lehe</a>, <a href="/search/physics?searchtype=author&amp;query=Schroeder%2C+C">Carl Schroeder</a>, <a href="/search/physics?searchtype=author&amp;query=Terzani%2C+D">Davide Terzani</a>, <a href="/search/physics?searchtype=author&amp;query=van+Tilborg%2C+J">Jeroen van Tilborg</a>, <a href="/search/physics?searchtype=author&amp;query=Vay%2C+J">Jean-Luc Vay</a>, <a href="/search/physics?searchtype=author&amp;query=Zoni%2C+E">Edoardo Zoni</a>, <a href="/search/physics?searchtype=author&amp;query=Doss%2C+C">Chris Doss</a>, <a href="/search/physics?searchtype=author&amp;query=Litos%2C+M">Michael Litos</a>, <a href="/search/physics?searchtype=author&amp;query=Lobach%2C+I">Ihar Lobach</a>, <a href="/search/physics?searchtype=author&amp;query=Power%2C+J">John Power</a>, <a href="/search/physics?searchtype=author&amp;query=Swiatlowski%2C+M">Maximilian Swiatlowski</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00573v2-abstract-short" style="display: inline;"> As part of the Snowmass&#39;21 community planning excercise, the Advanced Accelerator Concepts (AAC) community proposed future linear colliders with center-of-mass energies up to 15 TeV and luminosities up to 50$\times10^{34}$ cm$^{-2}$s$^{-1}$ in a compact footprint. In addition to being compact, these machines must also be energy efficient. We identify two challenges that must be addressed in the de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00573v2-abstract-full').style.display = 'inline'; document.getElementById('2305.00573v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00573v2-abstract-full" style="display: none;"> As part of the Snowmass&#39;21 community planning excercise, the Advanced Accelerator Concepts (AAC) community proposed future linear colliders with center-of-mass energies up to 15 TeV and luminosities up to 50$\times10^{34}$ cm$^{-2}$s$^{-1}$ in a compact footprint. In addition to being compact, these machines must also be energy efficient. We identify two challenges that must be addressed in the design of these machines. First, the Beam Delivery System (BDS) must not add significant length to the accelerator complex. Second, beam parameters must be chosen to mitigate beamstrahlung effects and maximize the luminosity-per-power of the machine. In this paper, we review advances in plasma lens technology that will help to reduce the length of the BDS system and we detail new Particle-in-Cell simulation studies that will provide insight into beamstrahlung mitigation techniques. We apply our analysis to both $e^+e^-$ and $纬纬$ colliders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00573v2-abstract-full').style.display = 'none'; document.getElementById('2305.00573v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10469">arXiv:2304.10469</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.10469">pdf</a>, <a href="https://arxiv.org/format/2304.10469">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct laser acceleration in underdense plasmas with multi-PW lasers: a path to high-charge, GeV-class electron bunches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Babjak%2C+R">R. Babjak</a>, <a href="/search/physics?searchtype=author&amp;query=Willingale%2C+L">L. Willingale</a>, <a href="/search/physics?searchtype=author&amp;query=Arefiev%2C+A">A. Arefiev</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">M. Vranic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10469v2-abstract-short" style="display: inline;"> The direct laser acceleration (DLA) of electrons in underdense plasmas can provide 100s of nC of electrons accelerated to near-GeV energies using currently available lasers. Here we demonstrate the key role of electron transverse displacement in the acceleration and use it to analytically predict the expected maximum electron energies. The energy scaling is shown to be in agreement with full-scale&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10469v2-abstract-full').style.display = 'inline'; document.getElementById('2304.10469v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10469v2-abstract-full" style="display: none;"> The direct laser acceleration (DLA) of electrons in underdense plasmas can provide 100s of nC of electrons accelerated to near-GeV energies using currently available lasers. Here we demonstrate the key role of electron transverse displacement in the acceleration and use it to analytically predict the expected maximum electron energies. The energy scaling is shown to be in agreement with full-scale quasi-3D particle-in-cell (PIC) simulations of a laser pulse propagating through a preformed guiding channel and can be directly used for optimizing DLA in near-future laser facilities. The strategy towards optimizing DLA through matched laser focusing is presented for a wide range of plasma densities paired with current and near-future laser technology. Electron energies in excess of 10 GeV are accessible for lasers at $I\sim 10^{21}~\mathrm{W/cm^2}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10469v2-abstract-full').style.display = 'none'; document.getElementById('2304.10469v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.08186">arXiv:2301.08186</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.08186">pdf</a>, <a href="https://arxiv.org/format/2301.08186">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.107.055213">10.1103/PhysRevE.107.055213 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charged particle beam transport in a flying focus pulse with orbital angular momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Formanek%2C+M">Martin Formanek</a>, <a href="/search/physics?searchtype=author&amp;query=Palastro%2C+J+P">John P. Palastro</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Ramsey%2C+D">Dillon Ramsey</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Piazza%2C+A">Antonino Di Piazza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.08186v2-abstract-short" style="display: inline;"> We demonstrate the capability of Flying Focus (FF) laser pulses with $\ell = 1$ orbital angular momentum (OAM) to transversely confine ultra-relativistic charged particle bunches over macroscopic distances while maintaining a tight bunch radius. A FF pulse with $\ell = 1$ OAM creates a radial ponderomotive barrier that constrains the transverse motion of particles and travels with the bunch over e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08186v2-abstract-full').style.display = 'inline'; document.getElementById('2301.08186v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.08186v2-abstract-full" style="display: none;"> We demonstrate the capability of Flying Focus (FF) laser pulses with $\ell = 1$ orbital angular momentum (OAM) to transversely confine ultra-relativistic charged particle bunches over macroscopic distances while maintaining a tight bunch radius. A FF pulse with $\ell = 1$ OAM creates a radial ponderomotive barrier that constrains the transverse motion of particles and travels with the bunch over extended distances. As compared to freely propagating bunches, which quickly diverge due to their initial momentum spread, the particles co-traveling with the ponderomotive barrier slowly oscillate around the laser pulse axis within the spot size of the pulse. This can be achieved at FF pulse energies that are orders of magnitude lower than required by Gaussian or Bessel pulses with OAM. The ponderomotive trapping is further enhanced by radiative cooling of the bunch resulting from rapid oscillations of the charged particles in the laser field. This cooling decreases the mean square radius and emittance of the bunch during propagation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08186v2-abstract-full').style.display = 'none'; document.getElementById('2301.08186v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 107, 055213 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07947">arXiv:2210.07947</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.07947">pdf</a>, <a href="https://arxiv.org/format/2210.07947">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.107.013513">10.1103/PhysRevA.107.013513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exact solutions for the electromagnetic fields of a flying focus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ramsey%2C+D">D. Ramsey</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Piazza%2C+A">A. Di Piazza</a>, <a href="/search/physics?searchtype=author&amp;query=Formanek%2C+M">M. Formanek</a>, <a href="/search/physics?searchtype=author&amp;query=Franke%2C+P">P. Franke</a>, <a href="/search/physics?searchtype=author&amp;query=Froula%2C+D+H">D. H. Froula</a>, <a href="/search/physics?searchtype=author&amp;query=Malaca%2C+B">B. Malaca</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+W+B">W. B. Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Pierce%2C+J+R">J. R. Pierce</a>, <a href="/search/physics?searchtype=author&amp;query=Simpson%2C+T+T">T. T. Simpson</a>, <a href="/search/physics?searchtype=author&amp;query=Vieira%2C+J">J. Vieira</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">M. Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Weichman%2C+K">K. Weichman</a>, <a href="/search/physics?searchtype=author&amp;query=Palastro%2C+J+P">J. P. Palastro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07947v2-abstract-short" style="display: inline;"> The intensity peak of a &#34;flying focus&#34; travels at a programmable velocity over many Rayleigh ranges while maintaining a near-constant profile. Assessing the extent to which these features can enhance laser-based applications requires an accurate description of the electromagnetic fields. Here we present exact analytical solutions to Maxwell&#39;s equations for the electromagnetic fields of a constant-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07947v2-abstract-full').style.display = 'inline'; document.getElementById('2210.07947v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07947v2-abstract-full" style="display: none;"> The intensity peak of a &#34;flying focus&#34; travels at a programmable velocity over many Rayleigh ranges while maintaining a near-constant profile. Assessing the extent to which these features can enhance laser-based applications requires an accurate description of the electromagnetic fields. Here we present exact analytical solutions to Maxwell&#39;s equations for the electromagnetic fields of a constant-velocity flying focus, generalized for arbitrary polarization and orbital angular momentum. The approach combines the complex source-point method, which transforms multipole solutions into beam-like solutions, with the Lorentz invariance of Maxwell&#39;s equations. Propagating the fields backward in space reveals the space-time profile that an optical assembly must produce to realize these fields in the laboratory. Comparisons with simpler paraxial solutions provide conditions for their reliable use when modeling a flying focus. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07947v2-abstract-full').style.display = 'none'; document.getElementById('2210.07947v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08728">arXiv:2207.08728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.08728">pdf</a>, <a href="https://arxiv.org/format/2207.08728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.26.011301">10.1103/PhysRevAccelBeams.26.011301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Creation and direct laser acceleration of positrons in a single stage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+B">B. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Barbosa%2C+B">B. Barbosa</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">M. Vranic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08728v3-abstract-short" style="display: inline;"> Relativistic positron beams are required for fundamental research in nonlinear strong field QED, plasma physics, and laboratory astrophysics. Positrons are difficult to create and manipulate due to their short lifetime, and their energy gain is limited by the accelerator size in conventional facilities. Alternative compact accelerator concepts in plasmas are becoming more and more mature for elect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08728v3-abstract-full').style.display = 'inline'; document.getElementById('2207.08728v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08728v3-abstract-full" style="display: none;"> Relativistic positron beams are required for fundamental research in nonlinear strong field QED, plasma physics, and laboratory astrophysics. Positrons are difficult to create and manipulate due to their short lifetime, and their energy gain is limited by the accelerator size in conventional facilities. Alternative compact accelerator concepts in plasmas are becoming more and more mature for electrons, but positron generation and acceleration remain an outstanding challenge. Here we propose a new setup where we can generate, inject and accelerate them in a single stage during the propagation of an intense laser in a plasma channel. The positrons are created from a laser-electron collision at 90 degrees, where the injection and guiding are made possible by an 800 nC electron beam loading which reverses the sign of the background electrostatic field. We obtain a 20 fC positron beam, with GeV-level central energy within 0.5 mm of plasma. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08728v3-abstract-full').style.display = 'none'; document.getElementById('2207.08728v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.01877">arXiv:2106.01877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.01877">pdf</a>, <a href="https://arxiv.org/ps/2106.01877">ps</a>, <a href="https://arxiv.org/format/2106.01877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac2e83">10.1088/1367-2630/ac2e83 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimal laser focusing for positron production in laser-electron scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+%C3%93">脫scar Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.01877v1-abstract-short" style="display: inline;"> Laser-electron beam collisions that aim to generate electron-positron pairs require laser intensities $I \gtrsim 10^{21} ~\textrm{W/cm}^2$, which can be obtained by focusing a 1-PW optical laser to a spot smaller than 10 $~渭$m. Spatial synchronization is a challenge, because of the Poynting instability that can be a concern both for the interacting electron beam (if laser-generated) and the scatte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01877v1-abstract-full').style.display = 'inline'; document.getElementById('2106.01877v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.01877v1-abstract-full" style="display: none;"> Laser-electron beam collisions that aim to generate electron-positron pairs require laser intensities $I \gtrsim 10^{21} ~\textrm{W/cm}^2$, which can be obtained by focusing a 1-PW optical laser to a spot smaller than 10 $~渭$m. Spatial synchronization is a challenge, because of the Poynting instability that can be a concern both for the interacting electron beam (if laser-generated) and the scattering laser. One strategy to overcome this problem is to use an electron beam coming from an accelerator (e.g. the planned E-320 experiment at FACET-II). Even using a stable accelerator beam, the plane wave approximation is too simplistic to describe the laser-electron scattering. This work extends analytical scaling laws for pair production, previously derived for the case of a plane wave and a short electron beam. We consider a focused laser beam colliding with electron beams of different shapes and sizes. The results take the spatial and temporal synchronization of the interaction into account, can be extended to arbitrary beam shapes, and prescribe the optimization strategies for near-future experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01877v1-abstract-full').style.display = 'none'; document.getElementById('2106.01877v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.01376">arXiv:2011.01376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.01376">pdf</a>, <a href="https://arxiv.org/ps/2011.01376">ps</a>, <a href="https://arxiv.org/format/2011.01376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rsta.2020.0039">10.1098/rsta.2020.0039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collisionless shock acceleration in the corona of an inertial confinement fusion pellet with possible application to ion fast ignition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Boella%2C+E">E. Boella</a>, <a href="/search/physics?searchtype=author&amp;query=Bingham%2C+R">R. Bingham</a>, <a href="/search/physics?searchtype=author&amp;query=Cairns%2C+R+A">R. A. Cairns</a>, <a href="/search/physics?searchtype=author&amp;query=Norreys%2C+P">P. Norreys</a>, <a href="/search/physics?searchtype=author&amp;query=Trines%2C+R">R. Trines</a>, <a href="/search/physics?searchtype=author&amp;query=Scott%2C+R">R. Scott</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">M. Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Shukla%2C+N">N. Shukla</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+L+O">L. O. Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.01376v1-abstract-short" style="display: inline;"> Two-dimensional Particle-In-Cell simulations are used to explore collisionless shock acceleration in the corona plasma surrounding the compressed core of an inertial confinement fusion pellet. We show that an intense laser pulse interacting with the long scale-length plasma corona is able to launch a collisionless shock around the critical density. The nonlinear wave travels up-ramp through the pl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01376v1-abstract-full').style.display = 'inline'; document.getElementById('2011.01376v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.01376v1-abstract-full" style="display: none;"> Two-dimensional Particle-In-Cell simulations are used to explore collisionless shock acceleration in the corona plasma surrounding the compressed core of an inertial confinement fusion pellet. We show that an intense laser pulse interacting with the long scale-length plasma corona is able to launch a collisionless shock around the critical density. The nonlinear wave travels up-ramp through the plasma reflecting and accelerating the background ions. Our results suggest that protons with characteristics suitable for ion fast ignition may be achieved in this way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01376v1-abstract-full').style.display = 'none'; document.getElementById('2011.01376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07774">arXiv:2007.07774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07774">pdf</a>, <a href="https://arxiv.org/format/2007.07774">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aba653">10.1088/1367-2630/aba653 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scaling laws for direct laser acceleration in a radiation-reaction dominated regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jirka%2C+M">M. Jirka</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">M. Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Grismayer%2C+T">T. Grismayer</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+L+O">L. O. Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07774v1-abstract-short" style="display: inline;"> We study electron acceleration within a sub-critical plasma channel irradiated by an ultra-intense laser pulse ($a_0&gt;100$ or $I&gt;10^{22}~\mathrm{W/cm^2}$). In this regime, radiation reaction significantly alters the electron dynamics. This has an effect not only on the maximum attainable electron energy but also on the phase-matching process between betatron motion and electron oscillations in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07774v1-abstract-full').style.display = 'inline'; document.getElementById('2007.07774v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07774v1-abstract-full" style="display: none;"> We study electron acceleration within a sub-critical plasma channel irradiated by an ultra-intense laser pulse ($a_0&gt;100$ or $I&gt;10^{22}~\mathrm{W/cm^2}$). In this regime, radiation reaction significantly alters the electron dynamics. This has an effect not only on the maximum attainable electron energy but also on the phase-matching process between betatron motion and electron oscillations in the laser field. Our study encompasses analytical description, test-particle calculations and 2-dimensional particle-in-cell simulations. We show single-stage electron acceleration to multi-GeV energies within a 0.5 mm-long channel and provide guidelines how to obtain energies beyond 10 GeV using optimal initial configurations. We present the required conditions in a form of explicit analytical scaling laws that can be applied to plan the future electron acceleration experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07774v1-abstract-full').style.display = 'none'; document.getElementById('2007.07774v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 22, 083058 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07556">arXiv:2007.07556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07556">pdf</a>, <a href="https://arxiv.org/format/2007.07556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcp.2021.110367">10.1016/j.jcp.2021.110367 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accurately simulating nine-dimensional phase space of relativistic particles in strong fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+F">Fei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Decyk%2C+V+K">Viktor K. Decyk</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+K+G">Kyle G. Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Tableman%2C+A">Adam Tableman</a>, <a href="/search/physics?searchtype=author&amp;query=Tsung%2C+F+S">Frank S. Tsung</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Fonseca%2C+R+A">Ricardo A. Fonseca</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+W+B">Warren B. Mori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07556v3-abstract-short" style="display: inline;"> Next-generation high-power lasers that can be focused to intensities exceeding 10^23 W/cm^2 are enabling new physics and applications. The physics of how these lasers interact with matter is highly nonlinear, relativistic, and can involve lowest-order quantum effects. The current tool of choice for modeling these interactions is the particle-in-cell (PIC) method. In strong fields, the motion of ch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07556v3-abstract-full').style.display = 'inline'; document.getElementById('2007.07556v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07556v3-abstract-full" style="display: none;"> Next-generation high-power lasers that can be focused to intensities exceeding 10^23 W/cm^2 are enabling new physics and applications. The physics of how these lasers interact with matter is highly nonlinear, relativistic, and can involve lowest-order quantum effects. The current tool of choice for modeling these interactions is the particle-in-cell (PIC) method. In strong fields, the motion of charged particles and their spin is affected by radiation reaction. Standard PIC codes usually use Boris or its variants to advance the particles, which requires very small time steps in the strong-field regime to obtain accurate results. In addition, some problems require tracking the spin of particles, which creates a 9D particle phase space (x, u, s). Therefore, numerical algorithms that enable high-fidelity modeling of the 9D phase space in the strong-field regime are desired. We present a new 9D phase space particle pusher based on analytical solutions to the position, momentum and spin advance from the Lorentz force, together with the semi-classical form of RR in the Landau-Lifshitz equation and spin evolution given by the Bargmann-Michel-Telegdi equation. These analytical solutions are obtained by assuming a locally uniform and constant electromagnetic field during a time step. The solutions provide the 9D phase space advance in terms of a particle&#39;s proper time, and a mapping is used to determine the proper time step for each particle from the simulation time step. Due to the analytical integration, the constraint on the time step needed to resolve trajectories in ultra-high fields can be greatly reduced. We present single-particle simulations and full PIC simulations to show that the proposed particle pusher can greatly improve the accuracy of particle trajectories in 9D phase space for given laser fields. A discussion on the numerical efficiency of the proposed pusher is also provided. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07556v3-abstract-full').style.display = 'none'; document.getElementById('2007.07556v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05641">arXiv:1902.05641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.05641">pdf</a>, <a href="https://arxiv.org/ps/1902.05641">ps</a>, <a href="https://arxiv.org/format/1902.05641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Suitability and robustness of triangular nanostructured targets for proton acceleration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+M">Manuel Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Flores-Arias%2C+M+T">M. T. Flores-Arias</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05641v1-abstract-short" style="display: inline;"> Ion acceleration in the MeV range can be routinely achieved with table-top laser technology. One of the current challenges is to improve the energy coupling from the laser to the proton beam without increasing the laser peak power. Introducing nanostructures at the front target surface was shown to be beneficial for an efficient transfer of energy to the electrons. In this manuscript, we study by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05641v1-abstract-full').style.display = 'inline'; document.getElementById('1902.05641v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05641v1-abstract-full" style="display: none;"> Ion acceleration in the MeV range can be routinely achieved with table-top laser technology. One of the current challenges is to improve the energy coupling from the laser to the proton beam without increasing the laser peak power. Introducing nanostructures at the front target surface was shown to be beneficial for an efficient transfer of energy to the electrons. In this manuscript, we study by using full-scale three-dimensional particle-in-cell simulations and finite laser pulses, the process when a proposed optimal target with triangular nanostructure (previously found to allow 97% laser energy absorption) is used . We demonstrate that the absorbed laser energy does not depend on the dimensionality in the range of parameters presented. We also present an analytical model for laser absorption that includes deviations from the ideal conditions. This is supported by a numerical parameter study that establishes the tolerance with respect to the nanostructure size, use of different ion species, existence of preplasma, etc. We found that altering the target thickness or using different ions does not affect the absorption, but it does affect the energy redistribution among the different plasma species. The optimal configuration ($h = 1~位,~ w = 0.7~ 位$) is robust with respect to the target fabrication errors. However, high contrast laser pulses are required, because a pre-plasma layer with a thickness on the order of 0.5 lambda is enough to lower the laser absorption by more than a 10% in a non-optimal scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05641v1-abstract-full').style.display = 'none'; document.getElementById('1902.05641v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05427">arXiv:1902.05427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.05427">pdf</a>, <a href="https://arxiv.org/format/1902.05427">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/aaa36c">10.1088/1361-6587/aaa36c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extremely intense laser-based electron acceleration in a plasma channel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Fonseca%2C+R+A">Ricardo A. Fonseca</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+L+O">Luis O. Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05427v1-abstract-short" style="display: inline;"> Laser pulses of extreme intensities ($I&gt;10^{22}~ \mathrm{W/cm^2}$) are about to become available in the laboratory. The prepulse of such a laser can induce a plasma expansion that generates a low-density channel in near-critical gas jets. We present a study of channel formation and subsequent direct laser acceleration of electrons within the pre-formed channel. Radiation reaction affects the accel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05427v1-abstract-full').style.display = 'inline'; document.getElementById('1902.05427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05427v1-abstract-full" style="display: none;"> Laser pulses of extreme intensities ($I&gt;10^{22}~ \mathrm{W/cm^2}$) are about to become available in the laboratory. The prepulse of such a laser can induce a plasma expansion that generates a low-density channel in near-critical gas jets. We present a study of channel formation and subsequent direct laser acceleration of electrons within the pre-formed channel. Radiation reaction affects the acceleration in several ways. It first interferes with the motion of the return current on the channel walls. In addition, it reduces the radial expelling efficiency of the transverse ponderomotive force, leading to the radiative trapping of particles near the channel axis. These particles then interact with the peak laser intensity and can attain multi-GeV energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05427v1-abstract-full').style.display = 'none'; document.getElementById('1902.05427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Plasma Phys. Control. Fusion 60, 034002 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.04344">arXiv:1902.04344</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.04344">pdf</a>, <a href="https://arxiv.org/format/1902.04344">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5090992">10.1063/1.5090992 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Are we ready to transfer optical light to gamma-rays? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Grismayer%2C+T">Thomas Grismayer</a>, <a href="/search/physics?searchtype=author&amp;query=Meuren%2C+S">Sebastian Meuren</a>, <a href="/search/physics?searchtype=author&amp;query=Fonseca%2C+R+A">Ricardo A. Fonseca</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+L+O">Luis O. Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.04344v2-abstract-short" style="display: inline;"> Scattering relativistic electrons with optical lasers can result in a significant frequency upshift for the photons, potentially producing $纬$-rays. This is what linear Compton scattering taught us. Ultra-intense lasers offer nowadays a new paradigm where multi-photon absorption effects come into play. These effects can result in higher harmonics, higher yields and also electron-positron pairs. Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04344v2-abstract-full').style.display = 'inline'; document.getElementById('1902.04344v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.04344v2-abstract-full" style="display: none;"> Scattering relativistic electrons with optical lasers can result in a significant frequency upshift for the photons, potentially producing $纬$-rays. This is what linear Compton scattering taught us. Ultra-intense lasers offer nowadays a new paradigm where multi-photon absorption effects come into play. These effects can result in higher harmonics, higher yields and also electron-positron pairs. This article intends to discriminate the different laser scenarios that have been proposed over the past years as well as to give scaling laws for future experiments. The energy conversion from laser or particles to high-frequency photons is addressed for both the well-known counter propagating electron beam-laser interaction and for Quantum-electrodynamics cascades triggered by various lasers. Constructing bright and energetic gamma-ray sources in controlled conditions is within an ace of seeing the light of day. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.04344v2-abstract-full').style.display = 'none'; document.getElementById('1902.04344v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.00208">arXiv:1807.00208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.00208">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1080/00051144.2018.1468162">10.1080/00051144.2018.1468162 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploratory Analysis of Pairwise Interactions in Online Social Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Humski%2C+L">Luka Humski</a>, <a href="/search/physics?searchtype=author&amp;query=Pintar%2C+D">Damir Pintar</a>, <a href="/search/physics?searchtype=author&amp;query=Vrani%C4%87%2C+M">Mihaela Vrani膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.00208v1-abstract-short" style="display: inline;"> In the last few decades sociologists were trying to explain human behaviour by analysing social networks, which requires access to data about interpersonal relationships. This represented a big obstacle in this research field until the emergence of online social networks (OSNs), which vastly facilitated the process of collecting such data. Nowadays, by crawling public profiles on OSNs, it is possi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00208v1-abstract-full').style.display = 'inline'; document.getElementById('1807.00208v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.00208v1-abstract-full" style="display: none;"> In the last few decades sociologists were trying to explain human behaviour by analysing social networks, which requires access to data about interpersonal relationships. This represented a big obstacle in this research field until the emergence of online social networks (OSNs), which vastly facilitated the process of collecting such data. Nowadays, by crawling public profiles on OSNs, it is possible to build a social graph where &#34;friends&#34; on OSN become represented as connected nodes. OSN connection does not necessarily indicate a close real-life relationship, but using OSN interaction records may reveal real-life relationship intensities, a topic which inspired a number of recent researches. Still, published research currently lacks an extensive exploratory analysis of OSN interaction records, i.e. a comprehensive overview of users&#39; interaction via different ways of OSN interaction. In this paper we provide such an overview by leveraging results of conducted extensive social experiment which managed to collect records for over 3,200 Facebook users interacting with over 1,400,000 of their friends. Our exploratory analysis focuses on extracting population distributions and correlation parameters for 13 interaction parameters, providing valuable insight in online social network interaction for future researches aimed at this field of study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00208v1-abstract-full').style.display = 'none'; document.getElementById('1807.00208v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Journal Article published 2 Oct 2017 in Automatika volume 58 issue 4 on pages 422 to 428</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 91D30 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.07220">arXiv:1710.07220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.07220">pdf</a>, <a href="https://arxiv.org/format/1710.07220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-GeV electron-positron beam generation from laser-electron scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Klimo%2C+O">Ondrej Klimo</a>, <a href="/search/physics?searchtype=author&amp;query=Korn%2C+G">Georg Korn</a>, <a href="/search/physics?searchtype=author&amp;query=Weber%2C+S">Stefan Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.07220v1-abstract-short" style="display: inline;"> The new generation of laser facilities is expected to deliver short (10 fs - 100 fs) laser pulses with 10 - 100 PW of peak power. This opens an opportunity to study matter at extreme intensities in the laboratory and provides access to new physics. Here we propose to scatter GeV-class electron beams from laser-plasma accelerators with a multi-PW laser at normal incidence. In this configuration, on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07220v1-abstract-full').style.display = 'inline'; document.getElementById('1710.07220v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.07220v1-abstract-full" style="display: none;"> The new generation of laser facilities is expected to deliver short (10 fs - 100 fs) laser pulses with 10 - 100 PW of peak power. This opens an opportunity to study matter at extreme intensities in the laboratory and provides access to new physics. Here we propose to scatter GeV-class electron beams from laser-plasma accelerators with a multi-PW laser at normal incidence. In this configuration, one can both create and accelerate electron-positron pairs. The new particles are generated in the laser focus and gain relativistic momentum in the direction of laser propagation. Short focal length is an advantage, as it allows the particles to be ejected from the focal region with a net energy gain in vacuum. Electron-positron beams obtained in this setup have a low divergence, are quasi-neutral and spatially separated from the initial electron beam. The pairs attain multi-GeV energies which are not limited by the maximum energy of the initial electron beam. We present an analytical model for the expected energy cutoff, supported by 2D and 3D particle-in-cell simulations. The experimental implications, such as the sensitivity to temporal synchronisation and laser duration is assessed to provide guidance for the future experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07220v1-abstract-full').style.display = 'none'; document.getElementById('1710.07220v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.02492">arXiv:1708.02492</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.02492">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Collimated protons accelerated from an overdense gas jet irradiated by a 1 micron wavelength high-intensity short-pulse laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+N">S. N. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">M. Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Gangolf%2C+T">T. Gangolf</a>, <a href="/search/physics?searchtype=author&amp;query=Boella%2C+E">E. Boella</a>, <a href="/search/physics?searchtype=author&amp;query=Antici%2C+P">P. Antici</a>, <a href="/search/physics?searchtype=author&amp;query=Bailly-Grandvaux%2C+M">M. Bailly-Grandvaux</a>, <a href="/search/physics?searchtype=author&amp;query=Loiseau%2C+P">P. Loiseau</a>, <a href="/search/physics?searchtype=author&amp;query=P%C3%A9pin%2C+H">H. P茅pin</a>, <a href="/search/physics?searchtype=author&amp;query=Revet%2C+G">G. Revet</a>, <a href="/search/physics?searchtype=author&amp;query=Santos%2C+J+J">J. J. Santos</a>, <a href="/search/physics?searchtype=author&amp;query=Schroer%2C+A+M">A. M. Schroer</a>, <a href="/search/physics?searchtype=author&amp;query=Starodubtsev%2C+M">M. Starodubtsev</a>, <a href="/search/physics?searchtype=author&amp;query=Willi%2C+O">O. Willi</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+L+O">L. O. Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Humi%C3%A8res%2C+E+d">E. d Humi猫res</a>, <a href="/search/physics?searchtype=author&amp;query=Fuchs%2C+J">J. Fuchs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.02492v1-abstract-short" style="display: inline;"> We have investigated proton acceleration in the forward direction from a near-critical density hydrogen gas jet target irradiated by a high intensity (10^18 W/cm^2), short-pulse (5 ps) laser with wavelength of 1.054 micron. We observe the signature of shock acceleration driven by the laser pulse, leading to monoenergetic proton beams with small divergence in addition to the commonly used electron-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.02492v1-abstract-full').style.display = 'inline'; document.getElementById('1708.02492v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.02492v1-abstract-full" style="display: none;"> We have investigated proton acceleration in the forward direction from a near-critical density hydrogen gas jet target irradiated by a high intensity (10^18 W/cm^2), short-pulse (5 ps) laser with wavelength of 1.054 micron. We observe the signature of shock acceleration driven by the laser pulse, leading to monoenergetic proton beams with small divergence in addition to the commonly used electron-sheath driven proton acceleration. The proton energies we obtained are modest (~MeV), but prospects for improvement are offered through tailoring the gas jet density profile. Also, we observe that this mechanism is very robust in producing those beams and thus can be considered as a future candidate in laser-driven ion sources driven by the upcoming next generation of multi-PW near-infrared lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.02492v1-abstract-full').style.display = 'none'; document.getElementById('1708.02492v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.02209">arXiv:1612.02209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.02209">pdf</a>, <a href="https://arxiv.org/format/1612.02209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/aa5f7e">10.1088/1367-2630/aa5f7e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Table-top laser-based proton acceleration in nanostructured targets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Blanco%2C+M">M. Blanco</a>, <a href="/search/physics?searchtype=author&amp;query=Flores-Arias%2C+M+T">M. T. Flores-Arias</a>, <a href="/search/physics?searchtype=author&amp;query=Ruiz%2C+C">C. Ruiz</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">M. Vranic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.02209v1-abstract-short" style="display: inline;"> The interaction of ultrashort, high intensity laser pulses with thin foil targets leads to ion acceleration on the target rear surface. To make this ion source useful for applications, it is important to optimize the transfer of energy from the laser into the accelerated ions. One of the most promising ways to achieve this consists in engineering the target front by introducing periodic nanostruct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.02209v1-abstract-full').style.display = 'inline'; document.getElementById('1612.02209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.02209v1-abstract-full" style="display: none;"> The interaction of ultrashort, high intensity laser pulses with thin foil targets leads to ion acceleration on the target rear surface. To make this ion source useful for applications, it is important to optimize the transfer of energy from the laser into the accelerated ions. One of the most promising ways to achieve this consists in engineering the target front by introducing periodic nanostructures. In this paper, the effect of these structures on ion acceleration is studied analytically and with multi-dimensional particle-in-cell simulations. We assessed the role of the structure shape, size, and the angle of laser incidence for obtaining the efficient energy transfer. Local control of electron trajectories is exploited to maximise the energy delivered into the target. Based on our numerical simulations, we propose a precise range of parameters for fabrication of nanostructured targets, which can increase the energy of the accelerated ions without requiring a higher laser intensity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.02209v1-abstract-full').style.display = 'none'; document.getElementById('1612.02209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.08081">arXiv:1609.08081</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.08081">pdf</a>, <a href="https://arxiv.org/format/1609.08081">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0741-3335/59/1/014040">10.1088/0741-3335/59/1/014040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron - positron cascades in multiple-laser optical traps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Grismayer%2C+T">Thomas Grismayer</a>, <a href="/search/physics?searchtype=author&amp;query=Fonseca%2C+R+A">Ricardo A. Fonseca</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+L+O">Luis O. Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.08081v1-abstract-short" style="display: inline;"> We present an analytical and numerical study of multiple-laser QED cascades induced with linearly polarised laser pulses. We analyse different polarisation orientations and propose a configuration that maximises the cascade multiplicity and favours the laser absorption. We generalise the analytical estimate for the cascade growth rate previously calculated in the field of two colliding linearly po&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.08081v1-abstract-full').style.display = 'inline'; document.getElementById('1609.08081v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.08081v1-abstract-full" style="display: none;"> We present an analytical and numerical study of multiple-laser QED cascades induced with linearly polarised laser pulses. We analyse different polarisation orientations and propose a configuration that maximises the cascade multiplicity and favours the laser absorption. We generalise the analytical estimate for the cascade growth rate previously calculated in the field of two colliding linearly polarised laser pulses and account for multiple laser interaction. The estimate is verified by a comprehensive numerical study of four-laser QED cascades across a range of different laser intensities with QED PIC module of OSIRIS. We show that by using four linearly polarised 30 fs laser pulses, one can convert more than 50 % of the total energy to gamma-rays already at laser intensity $I\simeq10^{24}\ \mathrm{W/cm^2}$. In this configuration, the laser conversion efficiency is higher compared with the case with two colliding lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.08081v1-abstract-full').style.display = 'none'; document.getElementById('1609.08081v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.05174">arXiv:1512.05174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.05174">pdf</a>, <a href="https://arxiv.org/format/1512.05174">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4950841">10.1063/1.4950841 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laser absorption via QED cascades in counter propagating laser pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grismayer%2C+T">Thomas Grismayer</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Martins%2C+J+L">Joana L. Martins</a>, <a href="/search/physics?searchtype=author&amp;query=Fonseca%2C+R+A">Ricardo A. Fonseca</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+L+O">Luis O. Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.05174v1-abstract-short" style="display: inline;"> A model for laser light absorption in electron-positron plasmas self-consistently created via QED cascades is described. The laser energy is mainly absorbed due to hard photon emission via nonlinear Compton scattering. The degree of absorption depends on the laser intensity and the pulse duration. The QED cascades are studied with multi-dimensional particle-in-cell simulations complemented by a QE&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05174v1-abstract-full').style.display = 'inline'; document.getElementById('1512.05174v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.05174v1-abstract-full" style="display: none;"> A model for laser light absorption in electron-positron plasmas self-consistently created via QED cascades is described. The laser energy is mainly absorbed due to hard photon emission via nonlinear Compton scattering. The degree of absorption depends on the laser intensity and the pulse duration. The QED cascades are studied with multi-dimensional particle-in-cell simulations complemented by a QED module and a macro-particle merging algorithm that allows to handle the exponential growth of the number of particles. Results range from moderate-intensity regimes ($\sim$ 10 PW) where the laser absorption is negligible, to extreme intensities (&gt; 100 PW) where the degree of absorption reaches 80%. Our study demonstrates good agreement between the analytical model and simulations. The expected properties of the hard photon emission and the generated pair-plasma are investigated, and the experimental signatures for near-future laser facilities are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05174v1-abstract-full').style.display = 'none'; document.getElementById('1512.05174v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.07503">arXiv:1511.07503</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.07503">pdf</a>, <a href="https://arxiv.org/format/1511.07503">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.95.023210">10.1103/PhysRevE.95.023210 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Seeded QED cascades in counter propagating laser pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grismayer%2C+T">Thomas Grismayer</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Martins%2C+J+L">Joana L Martins</a>, <a href="/search/physics?searchtype=author&amp;query=Fonseca%2C+R">Ricardo Fonseca</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+L+O">Lu铆s O Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.07503v3-abstract-short" style="display: inline;"> The growth rates of seeded QED cascades in counter propagating lasers are calculated with first principles 2D/3D QED-PIC simulations. The dependence of the growth rate on laser polarization and intensity are compared with analytical models that support the findings of the simulations. The models provide an insight regarding the qualitative trend of the cascade growth when the intensity of the lase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.07503v3-abstract-full').style.display = 'inline'; document.getElementById('1511.07503v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.07503v3-abstract-full" style="display: none;"> The growth rates of seeded QED cascades in counter propagating lasers are calculated with first principles 2D/3D QED-PIC simulations. The dependence of the growth rate on laser polarization and intensity are compared with analytical models that support the findings of the simulations. The models provide an insight regarding the qualitative trend of the cascade growth when the intensity of the laser field is varied. A discussion about the cascade&#39;s threshold is included, based on the analytical and numerical results. These results show that relativistic pair plasmas and efficient conversion from laser photons to gamma rays can be observed with the typical intensities planned to operate on future ultra-intense laser facilities such as ELI or VULCAN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.07503v3-abstract-full').style.display = 'none'; document.getElementById('1511.07503v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 95, 023210 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.04406">arXiv:1511.04406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.04406">pdf</a>, <a href="https://arxiv.org/format/1511.04406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/18/7/073035">10.1088/1367-2630/18/7/073035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum radiation reaction in head-on laser-electron beam interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Grismayer%2C+T">Thomas Grismayer</a>, <a href="/search/physics?searchtype=author&amp;query=Fonseca%2C+R+A">Ricardo A. Fonseca</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+L+O">Luis O. Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.04406v2-abstract-short" style="display: inline;"> In this paper, we investigate the evolution of the energy spread and the divergence of electron beams while they interact with different laser pulses at intensities where quantum effects and radiation reaction are of relevance. The interaction is modeled with a QED-PIC code and the results are compared with those obtained with a standard PIC code with the addition of a classical radiation reaction&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04406v2-abstract-full').style.display = 'inline'; document.getElementById('1511.04406v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.04406v2-abstract-full" style="display: none;"> In this paper, we investigate the evolution of the energy spread and the divergence of electron beams while they interact with different laser pulses at intensities where quantum effects and radiation reaction are of relevance. The interaction is modeled with a QED-PIC code and the results are compared with those obtained with a standard PIC code with the addition of a classical radiation reaction module and with theoretical predictions. While classical radiation reaction is a continuous process, in QED, radiation emission is stochastic. The two pictures reconcile in the limit when the emitted photons energy is small compared to the energy of the emitting electrons. The energy spread of the electron distribution function always tends to decrease with classical radiation reaction, whereas the stochastic QED emission can also enlarge it. These two tendencies compete in the QED-dominated regime. Our analysis, supported by the QED module, reveals an upper limit to the maximal attainable energy spread due to stochasticity that depends on laser intensity and the electron beam average energy. Beyond this limit, the energy spread decreases. These findings are verified for different laser pulse lengths ranging from short ~ 30 fs pulses presently available to the long ~ 150 fs pulses expected in the near-future laser facilities, and compared with a theoretical model. Our results also show that near future experiments will be able to probe this transition and to demonstrate the competition between enhanced QED induced energy spread and energy spectrum narrowing from classical radiation reaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04406v2-abstract-full').style.display = 'none'; document.getElementById('1511.04406v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 18 (2016) 073035 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.08607">arXiv:1507.08607</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.08607">pdf</a>, <a href="https://arxiv.org/format/1507.08607">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0741-3335/58/1/014035">10.1088/0741-3335/58/1/014035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modelling radiation emission in the transition from the classical to the quantum regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Martins%2C+J+L">J. L. Martins</a>, <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">M. Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Grismayer%2C+T">T. Grismayer</a>, <a href="/search/physics?searchtype=author&amp;query=Vieira%2C+J">J. Vieira</a>, <a href="/search/physics?searchtype=author&amp;query=Fonseca%2C+R+A">R. A. Fonseca</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+L+O">L. O. Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.08607v1-abstract-short" style="display: inline;"> An emissivity formula is derived using the generalised Fermi-Weizacker-Williams method of virtual photons which accounts for the recoil the charged particle experiences as it emits radiation. It is found that through this derivation the formula obtained by Sokolov et al using QED perturbation theory is recovered. The corrected emissivity formula is applied to nonlinear Thomson scattering scenarios&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.08607v1-abstract-full').style.display = 'inline'; document.getElementById('1507.08607v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.08607v1-abstract-full" style="display: none;"> An emissivity formula is derived using the generalised Fermi-Weizacker-Williams method of virtual photons which accounts for the recoil the charged particle experiences as it emits radiation. It is found that through this derivation the formula obtained by Sokolov et al using QED perturbation theory is recovered. The corrected emissivity formula is applied to nonlinear Thomson scattering scenarios in the transition from the classical to the quantum regime, for small values of the nonlinear quantum parameter 蠂. Good agreement is found between this method and a QED probabilistic approach for scenarios where both are valid. In addition, signatures of the quantum corrections are identified and explored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.08607v1-abstract-full').style.display = 'none'; document.getElementById('1507.08607v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, submitted for publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.02432">arXiv:1502.02432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.02432">pdf</a>, <a href="https://arxiv.org/format/1502.02432">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2016.04.002">10.1016/j.cpc.2016.04.002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Classical Radiation Reaction in Particle-In-Cell Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Martins%2C+J+L">Joana L. Martins</a>, <a href="/search/physics?searchtype=author&amp;query=Fonseca%2C+R+A">Ricardo A. Fonseca</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+L+O">Luis O. Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.02432v3-abstract-short" style="display: inline;"> Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to includ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.02432v3-abstract-full').style.display = 'inline'; document.getElementById('1502.02432v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.02432v3-abstract-full" style="display: none;"> Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to include radiation reaction in PIC codes. We have compared several models for the calculation of the radiation reaction force, with the goal of implementing an algorithm for classical radiation reaction in the Osiris framework, a state-of-the-art PIC code. The results of the different models are compared with standard analytical results, and the relevance/advantages of each model are discussed. Numerical issues relevant to PIC codes such as resolution requirements, application of radiation reaction to macro particles and computational cost are also addressed. The Landau and Lifshitz reduced model is chosen for implementation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.02432v3-abstract-full').style.display = 'none'; document.getElementById('1502.02432v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.2248">arXiv:1411.2248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.2248">pdf</a>, <a href="https://arxiv.org/format/1411.2248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cpc.2015.01.020">10.1016/j.cpc.2015.01.020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Particle Merging Algorithm for PIC Codes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Grismayer%2C+T">Thomas Grismayer</a>, <a href="/search/physics?searchtype=author&amp;query=Martins%2C+J+L">Joana L. Martins</a>, <a href="/search/physics?searchtype=author&amp;query=Fonseca%2C+R+A">Ricardo A. Fonseca</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+L+O">Luis O. Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.2248v1-abstract-short" style="display: inline;"> Particle-in-cell merging algorithms aim to resample dynamically the six-dimensional phase space occupied by particles without distorting substantially the physical description of the system. Whereas various approaches have been proposed in previous works, none of them seemed to be able to conserve fully charge, momentum, energy and their associated distributions. We describe here an alternative al&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.2248v1-abstract-full').style.display = 'inline'; document.getElementById('1411.2248v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.2248v1-abstract-full" style="display: none;"> Particle-in-cell merging algorithms aim to resample dynamically the six-dimensional phase space occupied by particles without distorting substantially the physical description of the system. Whereas various approaches have been proposed in previous works, none of them seemed to be able to conserve fully charge, momentum, energy and their associated distributions. We describe here an alternative algorithm based on the coalescence of N massive or massless particles, considered to be close enough in phase space, into two new macro-particles. The local conservation of charge, momentum and energy are ensured by the resolution of a system of scalar equations. Various simulation comparisons have been carried out with and without the merging algorithm, from classical plasma physics problems to extreme scenarios where quantum electrodynamics is taken into account, showing in addition to the conservation of local quantities, the good reproducibility of the particle distributions. In case where the number of particles ought to increase exponentially in the simulation box, the dynamical merging permits a considerable speedup, and significant memory savings that otherwise would make the simulations impossible to perform. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.2248v1-abstract-full').style.display = 'none'; document.getElementById('1411.2248v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commput. Phys. Commun. 191, 65-73 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.0766">arXiv:1306.0766</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.0766">pdf</a>, <a href="https://arxiv.org/format/1306.0766">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.134801">10.1103/PhysRevLett.113.134801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Full-scale ab initio 3D PIC simulations of an all-optical radiation reaction configuration at $10^{21}\mathrm{W/cm^2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vranic%2C+M">Marija Vranic</a>, <a href="/search/physics?searchtype=author&amp;query=Martins%2C+J+L">Joana L. Martins</a>, <a href="/search/physics?searchtype=author&amp;query=Vieira%2C+J">Jorge Vieira</a>, <a href="/search/physics?searchtype=author&amp;query=Fonseca%2C+R+A">Ricardo A. Fonseca</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+L+O">Luis O. Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.0766v1-abstract-short" style="display: inline;"> Using full-scale 3D particle-in-cell simulations we show that the radiation reaction dominated regime can be reached in an all optical configuration through the collision of a $\sim$1 GeV laser wakefield accelerated (LWFA) electron bunch with a counter propagating laser pulse. In this configuration radiation reaction significantly reduces the energy of the particle bunch, thus providing clear expe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0766v1-abstract-full').style.display = 'inline'; document.getElementById('1306.0766v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.0766v1-abstract-full" style="display: none;"> Using full-scale 3D particle-in-cell simulations we show that the radiation reaction dominated regime can be reached in an all optical configuration through the collision of a $\sim$1 GeV laser wakefield accelerated (LWFA) electron bunch with a counter propagating laser pulse. In this configuration radiation reaction significantly reduces the energy of the particle bunch, thus providing clear experimental signatures for the process with currently available lasers. We also show that the transition between classical and quantum radiation reaction could be investigated in the same configuration with laser intensities of $10^{24}\mathrm{W/cm^2}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0766v1-abstract-full').style.display = 'none'; document.getElementById('1306.0766v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 113, 134801 (2014) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10