CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 154 results for author: <span class="mathjax">Hong, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Hong%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hong, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hong%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hong, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hong%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hong%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hong%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hong%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hong%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02059">arXiv:2407.02059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02059">pdf</a>, <a href="https://arxiv.org/format/2407.02059">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Unconventional p-wave and finite-momentum superconductivity induced by altermagnetism through the formation of Bogoliubov Fermi surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">SeungBeom Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+M+J">Moon Jip Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kyoung-Min Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02059v1-abstract-short" style="display: inline;"> Altermagnet is an exotic class of magnetic materials wherein the Fermi surface exhibits a momentum-dependent spin-splitting while maintaining a net zero magnetization. Previous studies have shown that this distinctive spin-splitting can induce chiral p-wave superconductors or Fulde-Ferrell superconducting states carrying finite momentum. However, the underlying mechanisms of such unconventional su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02059v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02059v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02059v1-abstract-full" style="display: none;"> Altermagnet is an exotic class of magnetic materials wherein the Fermi surface exhibits a momentum-dependent spin-splitting while maintaining a net zero magnetization. Previous studies have shown that this distinctive spin-splitting can induce chiral p-wave superconductors or Fulde-Ferrell superconducting states carrying finite momentum. However, the underlying mechanisms of such unconventional superconductivities remain incompletely understood. Here, we propose that the formation of the Bogoliubov Fermi surface through the exchange field can play a significant role in such phenomena. Through a systematic self-consistent mean-field analysis on the extended attractive Hubbard model combined with the d-wave spin-splitting induced by the exchange field, as observed in RuO2, we demonstrate that the formation of the Bogoliubov Fermi surface suppresses conventional spin-singlet superconducting states with s-wave characteristics. In contrast, the chiral p-wave state maintains a fully gapped spectrum without the Fermi surface, thereby becoming the ground state in the strong field regime. In the intermediate regime, we find that the Fulde-Ferrell state becomes the predominant state through the optimization of available channels for Cooper pairing. Moreover, we illustrate how the prevalence of the chiral p-wave and Fulde-Ferrell states over the s-wave state changes under the variation of the field strength or chemical potential. Our findings provide valuable insights into potential pathways for realizing sought-after topological p-wave superconductivity and finite momentum pairing facilitated by altermagnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02059v1-abstract-full').style.display = 'none'; document.getElementById('2407.02059v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, (Supplementary file is included in published version)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07561">arXiv:2405.07561</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.07561">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Crystal Structure-Based Multioutput Property Prediction of Lithium Manganese Nickel Oxide using EfficientNet-B0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+C+S">Chee Sien Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Madika%2C+B">Benediktus Madika</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeom%2C+J">Jiwon Yeom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+Y">Youngwoo Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seungbum Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07561v1-abstract-short" style="display: inline;"> Here, we present an EfficientNet-B0-based model to directly predict multiple properties of lithium manganese nickel oxides (LMNO) using their crystal structure images. The model is supposed to predict the energy above the convex hull, bandgap energy, crystal systems, and crystal space groups of LMNOs. In the last layer of the model, a linear function is used to predict the bandgap energy and energ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07561v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07561v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07561v1-abstract-full" style="display: none;"> Here, we present an EfficientNet-B0-based model to directly predict multiple properties of lithium manganese nickel oxides (LMNO) using their crystal structure images. The model is supposed to predict the energy above the convex hull, bandgap energy, crystal systems, and crystal space groups of LMNOs. In the last layer of the model, a linear function is used to predict the bandgap energy and energy above the convex hull, while a SoftMax function is used to classify the crystal systems and crystal space groups. In the test set, the percentages of coefficient of determination (R2) scores are 97.73% and 96.50% for the bandgap energy and energy above the convex hull predictions, respectively, while the percentages of accuracy are 99.45% and 99.27% for the crystal system and crystal space group classifications, respectively. The class saliency maps explain that the model pays more attention to the shape of the crystal lattices and gradients around the lattice region occupied by the larger ions. This work provides new insight into using an intelligent model to directly relate the crystal structures of LMNO materials with their properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07561v1-abstract-full').style.display = 'none'; document.getElementById('2405.07561v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08908">arXiv:2403.08908</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08908">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202311287">10.1002/adfm.202311287 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrically Tunable Spin Exchange Splitting in Graphene Hybrid Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+D">Dongwon Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hyeonbeom Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S+J">Sung Ju Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sehwan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+Y">Yeongju Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Youngkuk Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sungkyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suh%2C+D">Dongseok Suh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+S">Woo Seok Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08908v1-abstract-short" style="display: inline;"> Graphene, with spin and valley degrees of freedom, fosters unexpected physical and chemical properties for the realization of next-generation quantum devices. However, the spin symmetry of graphene is rather robustly protected, hampering manipulation of the spin degrees of freedom for the application of spintronic devices such as electric gate tunable spin filters. We demonstrate that a hybrid het&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08908v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08908v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08908v1-abstract-full" style="display: none;"> Graphene, with spin and valley degrees of freedom, fosters unexpected physical and chemical properties for the realization of next-generation quantum devices. However, the spin symmetry of graphene is rather robustly protected, hampering manipulation of the spin degrees of freedom for the application of spintronic devices such as electric gate tunable spin filters. We demonstrate that a hybrid heterostructure composed of graphene and LaCoO3 epitaxial thin film exhibits an electrically tunable spin exchange splitting. The large and adjustable spin exchange splitting of 155.9 - 306.5 meV was obtained by the characteristic shifts in both the spin symmetry broken quantum Hall states and the Shubnikov-de-Haas oscillations. Strong hybridization induced charge transfer across the hybrid heterointerface has been identified for the observed spin exchange splitting. The substantial and facile controllability of the spin exchange splitting provides an opportunity for spintronics applications with the electrically-tunable spin polarization in hybrid heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08908v1-abstract-full').style.display = 'none'; document.getElementById('2403.08908v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Funct. Mater. 34, 2311287 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01300">arXiv:2401.01300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01300">pdf</a>, <a href="https://arxiv.org/format/2401.01300">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c01208">10.1021/acs.nanolett.3c01208 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Engineering the strain and interlayer excitons of 2D materials via lithographically engraved hexagonal boron nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hsieh%2C+Y">Yu-Chiang Hsieh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zhen-You Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fung%2C+S">Shin-Ji Fung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+W">Wen-Shin Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Chin Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Siang-Ping Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+S">Sheng-Zhu Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chiu-Hua Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+Y">Yang-Hao Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi-Chun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Chung-Lin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+T">Tse-Ming Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01300v1-abstract-short" style="display: inline;"> Strain engineering has quickly emerged as a viable option to modify the electronic, optical and magnetic properties of 2D materials. However, it remains challenging to arbitrarily control the strain. Here we show that by creating atomically-flat surface nanostructures in hexagonal boron nitride, we achieve an arbitrary on-chip control of both the strain distribution and magnitude on high-quality m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01300v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01300v1-abstract-full" style="display: none;"> Strain engineering has quickly emerged as a viable option to modify the electronic, optical and magnetic properties of 2D materials. However, it remains challenging to arbitrarily control the strain. Here we show that by creating atomically-flat surface nanostructures in hexagonal boron nitride, we achieve an arbitrary on-chip control of both the strain distribution and magnitude on high-quality molybdenum disulfide. The phonon and exciton emissions are shown to vary in accordance with our strain field designs, enabling us to write and draw any photoluminescence color image in a single chip. Moreover, our strain engineering offers a powerful means to significantly and controllably alter the strengths and energies of interlayer excitons at room temperature. This method can be easily extended to other material systems and offers a promise for functional excitonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01300v1-abstract-full').style.display = 'none'; document.getElementById('2401.01300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 23, 7244-7251 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12798">arXiv:2312.12798</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.12798">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effect of Resonant Acoustic Powder Mixing on Delay Time of W-KClO4-BaCrO4 Mixtures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kwon%2C+K">Kyungmin Kwon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+S">Seunghwan Ryu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joo%2C+S">Soyun Joo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Youngjoon Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baek%2C+D">Donghyeon Baek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+M">Moonsoo Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D">Dongwon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seungbum Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12798v1-abstract-short" style="display: inline;"> This study investigates the impact of resonant acoustic powder mixing on the delay time of the W-KClO4-BaCrO4 (WKB) mixture and its potential implications for powder and material synthesis. Through thermal analysis, an inverse linear relationship was found between thermal conductivity and delay time, allowing us to use thermal conductivity as a reliable proxy for the delay time. By comparing the t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12798v1-abstract-full').style.display = 'inline'; document.getElementById('2312.12798v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12798v1-abstract-full" style="display: none;"> This study investigates the impact of resonant acoustic powder mixing on the delay time of the W-KClO4-BaCrO4 (WKB) mixture and its potential implications for powder and material synthesis. Through thermal analysis, an inverse linear relationship was found between thermal conductivity and delay time, allowing us to use thermal conductivity as a reliable proxy for the delay time. By comparing the thermal conductivity of WKB mixtures mixed manually and using acoustic powder mixer, we found that acoustic powder mixing resulted in minimal deviations in thermal conductivity, proving more uniform mixing. Furthermore, DSC analysis and Sestak-Berggren modeling demonstrated consistent reaction dynamics with a constant activation energy as the reaction progressed in samples mixed using acoustic waves. These findings underscore the critical role of uniform powder mixing in enhancing the thermodynamic quality of the WKB mixture and emphasize the importance of developing novel methods for powder and material synthesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12798v1-abstract-full').style.display = 'none'; document.getElementById('2312.12798v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15753">arXiv:2309.15753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.15753">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Optical detection of bond-dependent and frustrated spin in the two-dimensional cobalt-based honeycomb antiferromagnet Cu3Co2SbO6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+B">Baekjune Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+U">Uksam Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+T+S">Taek Sun Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+S">Seunghyeon Noh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gye-Hyeon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+U">UiHyeon Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+M">Miju Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jin-Hyun Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M">Minjae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+G">GwangCheol Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">Sehwan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+H">Hyesung Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seokjo Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duong%2C+N+X">Nguyen Xuan Duong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+H">Tae Heon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yongsoo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Sungkyun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ok%2C+J+M">Jong Mok Ok</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoo%2C+J">Jung-Woo Yoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J+H">Jae Hoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+C">Changhee Sohn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15753v1-abstract-short" style="display: inline;"> Two-dimensional honeycomb antiferromagnet becomes an important class of materials as it can provide a route to Kitaev quantum spin liquid, characterized by massive quantum entanglement and fractional excitations. The signatures of its proximity to Kitaev quantum spin liquid in the honeycomb antiferromagnet includes anisotropic bond-dependent magnetic responses and persistent fluctuation by frustra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15753v1-abstract-full').style.display = 'inline'; document.getElementById('2309.15753v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15753v1-abstract-full" style="display: none;"> Two-dimensional honeycomb antiferromagnet becomes an important class of materials as it can provide a route to Kitaev quantum spin liquid, characterized by massive quantum entanglement and fractional excitations. The signatures of its proximity to Kitaev quantum spin liquid in the honeycomb antiferromagnet includes anisotropic bond-dependent magnetic responses and persistent fluctuation by frustration in paramagnetic regime. Here, we propose Cu3Co2SbO6 heterostructures as an intriguing honeycomb antiferromagnet for quantum spin liquid, wherein bond-dependent and frustrated spins interact with optical excitons. This system exhibits antiferromagnetism at 16 K with different spin-flip magnetic fields between a bond-parallel and bond-perpendicular directions, aligning more closely with the generalized Heisenberg-Kitaev than the XXZ model. Optical spectroscopy reveals a strong excitonic transition coupled to the antiferromagnetism, enabling optical detection of its spin states. Particularly, such spin-exciton coupling presents anisotropic responses between bond-parallel and bond-perpendicular magnetic field as well as a finite spin-spin correlation function around 40 K, higher than twice its N茅el temperature. The characteristic temperature that remains barely changed even under strong magnetic fields highlights the robustness of the spin-fluctuation region. Our results demonstrate Cu3Co2SbO6 as a unique candidate for the quantum spin liquid phase, where the spin Hamiltonian and quasiparticle excitations can be probed and potentially controlled by light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15753v1-abstract-full').style.display = 'none'; document.getElementById('2309.15753v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02079">arXiv:2308.02079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.02079">pdf</a>, <a href="https://arxiv.org/format/2308.02079">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.100603">10.1103/PhysRevLett.132.100603 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Model-based Optimization of Superconducting Qubit Readout </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Opremcak%2C+A">Alex Opremcak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khezri%2C+M">Mostafa Khezri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sank%2C+D">Daniel Sank</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Satzinger%2C+K+J">Kevin J. Satzinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Sabrina Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Erickson%2C+C">Catherine Erickson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lester%2C+B+J">Brian J. Lester</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+K+C">Kevin C. Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Korotkov%2C+A+N">Alexander N. Korotkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kelly%2C+J">Julian Kelly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zijun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klimov%2C+P+V">Paul V. Klimov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02079v2-abstract-short" style="display: inline;"> Measurement is an essential component of quantum algorithms, and for superconducting qubits it is often the most error prone. Here, we demonstrate model-based readout optimization achieving low measurement errors while avoiding detrimental side-effects. For simultaneous and mid-circuit measurements across 17 qubits, we observe 1.5% error per qubit with a 500ns end-to-end duration and minimal exces&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02079v2-abstract-full').style.display = 'inline'; document.getElementById('2308.02079v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02079v2-abstract-full" style="display: none;"> Measurement is an essential component of quantum algorithms, and for superconducting qubits it is often the most error prone. Here, we demonstrate model-based readout optimization achieving low measurement errors while avoiding detrimental side-effects. For simultaneous and mid-circuit measurements across 17 qubits, we observe 1.5% error per qubit with a 500ns end-to-end duration and minimal excess reset error from residual resonator photons. We also suppress measurement-induced state transitions achieving a leakage rate limited by natural heating. This technique can scale to hundreds of qubits and be used to enhance the performance of error-correcting codes and near-term applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02079v2-abstract-full').style.display = 'none'; document.getElementById('2308.02079v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03864">arXiv:2305.03864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.03864">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Revisiting contrast mechanism of lateral piezoresponse force microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jaegyu Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+S">Seongwoo Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeom%2C+J">Jiwon Yeom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eom%2C+S">Seongmun Eom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seungbum Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03864v1-abstract-short" style="display: inline;"> Piezoresponse force microscopy (PFM) has been widely used for nanoscale analysis of piezoelectric properties and ferroelectric domains. Although PFM is useful because of its simple and nondestructive features, PFM measurements can be obscured by non-piezoelectric effects that could affect the PFM signals or lead to ferroelectric-like behaviors in non-ferroelectric materials. Many researches have a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03864v1-abstract-full').style.display = 'inline'; document.getElementById('2305.03864v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03864v1-abstract-full" style="display: none;"> Piezoresponse force microscopy (PFM) has been widely used for nanoscale analysis of piezoelectric properties and ferroelectric domains. Although PFM is useful because of its simple and nondestructive features, PFM measurements can be obscured by non-piezoelectric effects that could affect the PFM signals or lead to ferroelectric-like behaviors in non-ferroelectric materials. Many researches have addressed related technical issues, but they have primarily focused on vertical PFM. Here, we investigate significant discrepancies of lateral PFM signals between the trace and the retrace scans, which are proportional to the scan angle and the cantilever lateral tilting discrepancy. The discrepancies of PFM signals are analyzed based on intrinsic and extrinsic components, including out-of-plane piezoresponse, electrostatic force, and other factors. Our research will contribute to the accurate PFM measurements for visualization of ferroelectric in-plane polarization distributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03864v1-abstract-full').style.display = 'none'; document.getElementById('2305.03864v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02904">arXiv:2305.02904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.02904">pdf</a>, <a href="https://arxiv.org/format/2305.02904">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Quantum Enhanced Probes of Magnetic Circular Dichroism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+C">Chengyun Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marvinney%2C+C+E">Claire E. Marvinney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seongjin Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feldman%2C+M">Matthew Feldman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pai%2C+Y">Yun-Yi Pai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chilcote%2C+M">Michael Chilcote</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rabinowitz%2C+J">Joshua Rabinowitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pooser%2C+R+C">Raphael C. Pooser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marino%2C+A">Alberto Marino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lawrie%2C+B+J">Benjamin J. Lawrie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02904v1-abstract-short" style="display: inline;"> Magneto-optical microscopies, including optical measurements of magnetic circular dichroism, are increasingly ubiquitous tools for probing spin-orbit coupling, charge-carrier g-factors, and chiral excitations in matter, but the minimum detectable signal in classical magnetic circular dichroism measurements is fundamentally limited by the shot-noise limit of the optical readout field. Here, we use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02904v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02904v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02904v1-abstract-full" style="display: none;"> Magneto-optical microscopies, including optical measurements of magnetic circular dichroism, are increasingly ubiquitous tools for probing spin-orbit coupling, charge-carrier g-factors, and chiral excitations in matter, but the minimum detectable signal in classical magnetic circular dichroism measurements is fundamentally limited by the shot-noise limit of the optical readout field. Here, we use a two-mode squeezed light source to improve the minimum detectable signal in magnetic circular dichroism measurements by 3 dB compared with state-of-the-art classical measurements, even with relatively lossy samples like terbium gallium garnet. We also identify additional opportunities for improvement in quantum-enhanced magneto-optical microscopies, and we demonstrate the importance of these approaches for environmentally sensitive materials and for low temperature measurements where increased optical power can introduce unacceptable thermal perturbations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02904v1-abstract-full').style.display = 'none'; document.getElementById('2305.02904v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06954">arXiv:2304.06954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06954">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c04425">10.1021/acs.nanolett.2c04425 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrical transport properties driven by unique bonding configuration in gamma-GeSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+J">Jeongsu Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Joonho Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sung%2C+D">Dongchul Sung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J+H">Jong Hyuk Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+J">Joong-Eon Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sol Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Jinsub Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C">Chaewoon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bae%2C+H">Heesun Bae</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Im%2C+S">Seongil Im</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+K">Kibog Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+Y+J">Young Jai Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Suklyun Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kwanpyo Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06954v1-abstract-short" style="display: inline;"> Group-IV monochalcogenides have recently shown great potential for their thermoelectric, ferroelectric, and other intriguing properties. The electrical properties of group-IV monochalcogenides exhibit a strong dependence on the chalcogen type. For example, GeTe exhibits high doping concentration, whereas S/Se-based chalcogenides are semiconductors with sizable bandgaps. Here, we investigate the el&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06954v1-abstract-full').style.display = 'inline'; document.getElementById('2304.06954v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06954v1-abstract-full" style="display: none;"> Group-IV monochalcogenides have recently shown great potential for their thermoelectric, ferroelectric, and other intriguing properties. The electrical properties of group-IV monochalcogenides exhibit a strong dependence on the chalcogen type. For example, GeTe exhibits high doping concentration, whereas S/Se-based chalcogenides are semiconductors with sizable bandgaps. Here, we investigate the electrical and thermoelectric properties of gamma-GeSe, a recently identified polymorph of GeSe. gamma-GeSe exhibits high electrical conductivity (~106 S/m) and a relatively low Seebeck coefficient (9.4 uV/K at room temperature) owing to its high p-doping level (5x1021 cm-3), which is in stark contrast to other known GeSe polymorphs. Elemental analysis and first-principles calculations confirm that the abundant formation of Ge vacancies leads to the high p-doping concentration. The magnetoresistance measurements also reveal weak-antilocalization because of spin-orbit coupling in the crystal. Our results demonstrate that gamma-GeSe is a unique polymorph in which the modified local bonding configuration leads to substantially different physical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06954v1-abstract-full').style.display = 'none'; document.getElementById('2304.06954v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04609">arXiv:2304.04609</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.04609">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Inverse design of artificial skins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhiguang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+M">Minkun Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Shenda Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Junli Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+S">Sai Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+H">Huifeng Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morin%2C+J+D">James D. Morin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+K">Ke Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+N+X">Nicholas X. Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C+F">Chuan Fei Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04609v1-abstract-short" style="display: inline;"> Mimicking the perceptual functions of human cutaneous mechanoreceptors, artificial skins or flexible pressure sensors can transduce tactile stimuli to quantitative electrical signals. Conventional methods to design such devices follow a forward structure-to-property routine based on trial-and-error experiments/simulations, which take months or longer to determine one solution valid for one specifi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04609v1-abstract-full').style.display = 'inline'; document.getElementById('2304.04609v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04609v1-abstract-full" style="display: none;"> Mimicking the perceptual functions of human cutaneous mechanoreceptors, artificial skins or flexible pressure sensors can transduce tactile stimuli to quantitative electrical signals. Conventional methods to design such devices follow a forward structure-to-property routine based on trial-and-error experiments/simulations, which take months or longer to determine one solution valid for one specific material. Target-oriented inverse design that shows far higher output efficiency has proven effective in other fields, but is still absent for artificial skins because of the difficulties in acquiring big data. Here, we report a property-to-structure inverse design of artificial skins based on small dataset machine learning, exhibiting a comprehensive efficiency at least four orders of magnitude higher than the conventional routine. The inverse routine can predict hundreds of solutions that overcome the intrinsic signal saturation problem for linear response in hours, and the solutions are valid to a variety of materials. Our results demonstrate that the inverse design allowed by small dataset is an efficient and powerful tool to target multifarious applications of artificial skins, which can potentially advance the fields of intelligent robots, advanced healthcare, and human-machine interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04609v1-abstract-full').style.display = 'none'; document.getElementById('2304.04609v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04792">arXiv:2303.04792</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.04792">pdf</a>, <a href="https://arxiv.org/format/2303.04792">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06505-7">10.1038/s41586-023-06505-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement-induced entanglement and teleportation on a noisy quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hoke%2C+J+C">Jesse C. Hoke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ippoliti%2C+M">Matteo Ippoliti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burger%2C+T">Tim Burger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bushnell%2C+N">Nicholas Bushnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zijun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiaro%2C+B">Ben Chiaro</a> , et al. (138 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04792v2-abstract-short" style="display: inline;"> Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the &#34;arrow of time&#34; that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04792v2-abstract-full').style.display = 'inline'; document.getElementById('2303.04792v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04792v2-abstract-full" style="display: none;"> Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the &#34;arrow of time&#34; that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04792v2-abstract-full').style.display = 'none'; document.getElementById('2303.04792v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 622, 481-486 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.05374">arXiv:2301.05374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.05374">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Effect of Annealing Temperature on Minimum Domain Size of Ferroelectric Hafnia </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yun%2C+S">Seokjung Yun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+M">Myungsoo Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+M">Min-Ho Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">Taeho Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+S">Seongwoo Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+M+H">Min Hyuk Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeon%2C+S">Sanghun Jeon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+Y">Yang-Kyu Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seungbum Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.05374v1-abstract-short" style="display: inline;"> Here, we optimized the annealing temperature of HZO/TiN thin film heterostructure via multiscale analysis of remnant polarization, crystallographic phase, minimum ferroelectric domain size, and average grain size. We found that the remnant polarization was closely related to the relative amount of the orthorhombic phase whereas the minimum domain size was to the relative amount of the monoclinic p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05374v1-abstract-full').style.display = 'inline'; document.getElementById('2301.05374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.05374v1-abstract-full" style="display: none;"> Here, we optimized the annealing temperature of HZO/TiN thin film heterostructure via multiscale analysis of remnant polarization, crystallographic phase, minimum ferroelectric domain size, and average grain size. We found that the remnant polarization was closely related to the relative amount of the orthorhombic phase whereas the minimum domain size was to the relative amount of the monoclinic phase. The minimum domain size was obtained at the annealing temperature of 500$^\cird$C while the optimum remnant polarization and capacitance at the annealing temperature of 600$^\circ$C. We conclude that the minimum domain size is more important than the sheer magnitude of remnant polarization considering the retention and fatigue of switchable polarization in nanoscale ferroelectric devices. Our results are expected to contribute to the development of ultra-low-power logic transistors and next-generation non-volatile memory devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05374v1-abstract-full').style.display = 'none'; document.getElementById('2301.05374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 11 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12082">arXiv:2212.12082</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.12082">pdf</a>, <a href="https://arxiv.org/format/2212.12082">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c02898">10.1021/acs.nanolett.3c02898 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Delamination-assisted ultrafast wrinkle formation in a freestanding film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Yifan Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zong%2C+A">Alfred Zong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kogar%2C+A">Anshul Kogar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Di Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S+S">Seung Sae Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Freelon%2C+B">Byron Freelon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rohwer%2C+T">Timm Rohwer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gedik%2C+N">Nuh Gedik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12082v1-abstract-short" style="display: inline;"> The ability to synthesize and control two-dimensional (2D) crystals creates numerous opportunities for studying emergent states of matter and their novel functionalities. Freestanding films provide a particularly versatile platform for materials engineering in 2D thanks to additional structural motifs not found in films adhered to a flat substrate. A ubiquitous example is wrinkles, yet little is k&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12082v1-abstract-full').style.display = 'inline'; document.getElementById('2212.12082v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12082v1-abstract-full" style="display: none;"> The ability to synthesize and control two-dimensional (2D) crystals creates numerous opportunities for studying emergent states of matter and their novel functionalities. Freestanding films provide a particularly versatile platform for materials engineering in 2D thanks to additional structural motifs not found in films adhered to a flat substrate. A ubiquitous example is wrinkles, yet little is known about how they can develop over as fast as a few picoseconds due to a lack of experimental probes to visualize their dynamics in real time at the nanoscopic scale. Here, we use ultrafast electron diffraction to directly observe light-activated wrinkling formation in a freestanding La$_{2/3}$Ca$_{1/3}$MnO$_3$ film. Via a ``lock-in&#39;&#39; analysis of a single mode of oscillation in the diffraction peak position, intensity, and width, we are able to quantitatively reconstruct how wrinkles develop at the picosecond timescale. Contrary to the common assumption of a fixed boundary condition for freestanding films, we found that wrinkle development is associated with ultrafast delamination at the contact point between the film boundary and the underlying substrate, avoiding a strain build-up in the film. Not only does our work provide a generic protocol to quantify wrinkling dynamics in freestanding films, it also highlights the importance of film-substrate interaction for determining the properties of freestanding structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12082v1-abstract-full').style.display = 'none'; document.getElementById('2212.12082v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 15 figures, including supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 23, 10772 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10255">arXiv:2210.10255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.10255">pdf</a>, <a href="https://arxiv.org/format/2210.10255">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Non-Abelian braiding of graph vertices in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I">Ilya Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Sabrina Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morvan%2C+A">Alexis Morvan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Opremcak%2C+A">Alex Opremcak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+R">Richard Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bacon%2C+D">Dave Bacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckley%2C+B+B">Bob B. Buckley</a> , et al. (144 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10255v2-abstract-short" style="display: inline;"> Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10255v2-abstract-full').style.display = 'inline'; document.getElementById('2210.10255v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10255v2-abstract-full" style="display: none;"> Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10255v2-abstract-full').style.display = 'none'; document.getElementById('2210.10255v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.07757">arXiv:2209.07757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.07757">pdf</a>, <a href="https://arxiv.org/format/2209.07757">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0127375">10.1063/5.0127375 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Readout of a quantum processor with high dynamic range Josephson parametric amplifiers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=White%2C+T+C">T. C. White</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Opremcak%2C+A">Alex Opremcak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sterling%2C+G">George Sterling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Korotkov%2C+A">Alexander Korotkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sank%2C+D">Daniel Sank</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burger%2C+T">Tim Burger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bushnell%2C+N">Nicholas Bushnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zijun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiaro%2C+B">Ben Chiaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cogan%2C+J">Josh Cogan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+R">Roberto Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crook%2C+A+L">Alexander L. Crook</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Curtin%2C+B">Ben Curtin</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.07757v2-abstract-short" style="display: inline;"> We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the 50 $惟$ environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07757v2-abstract-full').style.display = 'inline'; document.getElementById('2209.07757v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.07757v2-abstract-full" style="display: none;"> We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the 50 $惟$ environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmark these devices, providing a calibration for readout power, an estimate of amplifier added noise, and a platform for comparison against standard impedance matched parametric amplifiers with a single dc-SQUID. We find that the high power rf-SQUID array design has no adverse effect on system noise, readout fidelity, or qubit dephasing, and we estimate an upper bound on amplifier added noise at 1.6 times the quantum limit. Lastly, amplifiers with this design show no degradation in readout fidelity due to gain compression, which can occur in multi-tone multiplexed readout with traditional JPAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07757v2-abstract-full').style.display = 'none'; document.getElementById('2209.07757v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 122, 014001 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.03651">arXiv:2209.03651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.03651">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Correlating Nanoscale Structure with Electrochemical Property of Solid Electrolyte Interphases in Solid-State Battery Electrodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+J">Jimin Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+G">Gun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hongjun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Sujung Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+D+O">Dong Ok Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K+M">Kwang Man Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Byon%2C+H+R">Hye Ryung Byon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Young-Gi Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seungbum Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.03651v1-abstract-short" style="display: inline;"> Here, we correlate the nanoscale morphology and chemical composition of solid electrolyte interphases (SEI) with the electrochemical property of graphite-based composite electrodes. Using electrochemical strain microscopy (ESM) and X-ray photoelectron spectroscopy (XPS), changes of chemical composition and morphology (Li and F distribution) in SEI layers on the electrodes as a function of solid el&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.03651v1-abstract-full').style.display = 'inline'; document.getElementById('2209.03651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.03651v1-abstract-full" style="display: none;"> Here, we correlate the nanoscale morphology and chemical composition of solid electrolyte interphases (SEI) with the electrochemical property of graphite-based composite electrodes. Using electrochemical strain microscopy (ESM) and X-ray photoelectron spectroscopy (XPS), changes of chemical composition and morphology (Li and F distribution) in SEI layers on the electrodes as a function of solid electrolyte contents are analyzed. As a result, we find a strong correlation between morphological variations on the electrode, Li and F distribution in SEI layer, and Coulomb efficiency. This correlation determines the optimum composition of the composite electrode surface that can maximize the physical and chemical uniformity of the solid electrolyte on the electrode, which is a key parameter to increase electrochemical performance in solid-state batteries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.03651v1-abstract-full').style.display = 'none'; document.getElementById('2209.03651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11373">arXiv:2208.11373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.11373">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Switchable tribology of ferroelectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+S">Seongwoo Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaponenko%2C+I">Iaroslav Gaponenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cordero-Edwards%2C+K">Kumara Cordero-Edwards</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barcel%C3%B3-Mercader%2C+J">Jordi Barcel贸-Mercader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arias%2C+I">Irene Arias</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lichtensteiger%2C+C">C茅line Lichtensteiger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeom%2C+J">Jiwon Yeom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Musy%2C+L">Lo茂c Musy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hyunji Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Catalan%2C+G">Gustau Catalan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paruch%2C+P">Patrycja Paruch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seungbum Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11373v1-abstract-short" style="display: inline;"> Artificially induced asymmetric tribological properties of ferroelectrics offer an alternative route to visualize and control ferroelectric domains. Here, we observe the switchable friction and wear behavior of ferroelectrics using a nanoscale scanning probe where down domains having lower friction coefficient than up domains can be used as smart masks as they show slower wear rate than up domains&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11373v1-abstract-full').style.display = 'inline'; document.getElementById('2208.11373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11373v1-abstract-full" style="display: none;"> Artificially induced asymmetric tribological properties of ferroelectrics offer an alternative route to visualize and control ferroelectric domains. Here, we observe the switchable friction and wear behavior of ferroelectrics using a nanoscale scanning probe where down domains having lower friction coefficient than up domains can be used as smart masks as they show slower wear rate than up domains. This asymmetry is enabled by flexoelectrically coupled polarization in the up and down domains under a sufficiently high contact force. Moreover, we determine that this polarization-sensitive tribological asymmetry is universal across ferroelectrics with different chemical composition and crystalline symmetry. Finally, using this switchable tribology and multi-pass patterning with a domain-based dynamic smart mask, we demonstrate three-dimensional nanostructuring exploiting the asymmetric wear rates of up and down domains, which can, furthermore, be scaled up to technologically relevant (mm-cm) size. These findings establish that ferroelectrics are electrically tunable tribological materials at the nanoscale for versatile applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11373v1-abstract-full').style.display = 'none'; document.getElementById('2208.11373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">72 pages, 33 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05254">arXiv:2206.05254</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.05254">pdf</a>, <a href="https://arxiv.org/format/2206.05254">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05348-y">10.1038/s41586-022-05348-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Formation of robust bound states of interacting microwave photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Morvan%2C+A">Alexis Morvan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neill%2C+C">Charles Neill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petukhov%2C+A">Andre Petukhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bacon%2C+D">Dave Bacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basso%2C+J">Joao Basso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burger%2C+T">Tim Burger</a> , et al. (125 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05254v3-abstract-short" style="display: inline;"> Systems of correlated particles appear in many fields of science and represent some of the most intractable puzzles in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the 3-body problem and acceptable theory for strongly cor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05254v3-abstract-full').style.display = 'inline'; document.getElementById('2206.05254v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05254v3-abstract-full" style="display: none;"> Systems of correlated particles appear in many fields of science and represent some of the most intractable puzzles in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the 3-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multi-particle bound states. In a ring of 24 superconducting qubits, we develop a high fidelity parameterizable fSim gate that we use to implement the periodic quantum circuit of the spin-1/2 XXZ model, an archetypal model of interaction. By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons. We devise a phase sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the common wisdom that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05254v3-abstract-full').style.display = 'none'; document.getElementById('2206.05254v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages + 15 pages supplements</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 612, 240-245 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.02773">arXiv:2205.02773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.02773">pdf</a>, <a href="https://arxiv.org/format/2205.02773">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.7566/JPSJ.91.084003">10.7566/JPSJ.91.084003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tensor network calculation of the logarithmic correction exponent in the XY model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seongpyo Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D">Dong-Hee Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.02773v2-abstract-short" style="display: inline;"> We study the logarithmic correction to the scaling of the first Lee-Yang (LY) zero in the classical $XY$ model on square lattices by using tensor renormalization group methods. In comparing the higher-order tensor renormalization group (HOTRG) and the loop-optimized tensor network renormalization (LoopTNR), we find that the entanglement filtering in LoopTNR is crucial to gaining high accuracy for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02773v2-abstract-full').style.display = 'inline'; document.getElementById('2205.02773v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.02773v2-abstract-full" style="display: none;"> We study the logarithmic correction to the scaling of the first Lee-Yang (LY) zero in the classical $XY$ model on square lattices by using tensor renormalization group methods. In comparing the higher-order tensor renormalization group (HOTRG) and the loop-optimized tensor network renormalization (LoopTNR), we find that the entanglement filtering in LoopTNR is crucial to gaining high accuracy for the characterization of the logarithmic correction, while HOTRG still proposes approximate bounds for the zero location associated with two different bond-merging algorithms of the higher-order singular value decomposition and the oblique projectors. Using the LoopTNR data computed up to the system size of $L=1024$ in the $L \times L$ lattices, we estimate the logarithmic correction exponent $r = -0.0643(9)$ from the extrapolation of the finite-size effective exponent, which is comparable to the renormalization group prediction of $r = -1/16$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02773v2-abstract-full').style.display = 'none'; document.getElementById('2205.02773v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Soc. Jpn. 91, 084003 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01167">arXiv:2205.01167</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01167">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> 3D Convolutional Neural Networks for Dendrite Segmentation Using Fine-Tuning and Hyperparameter Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=James%2C+J">Jim James</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pruyne%2C+N">Nathan Pruyne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stan%2C+T">Tiberiu Stan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schwarting%2C+M">Marcus Schwarting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeom%2C+J">Jiwon Yeom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seungbum Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voorhees%2C+P">Peter Voorhees</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blaiszik%2C+B">Ben Blaiszik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Foster%2C+I">Ian Foster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01167v1-abstract-short" style="display: inline;"> Dendritic microstructures are ubiquitous in nature and are the primary solidification morphologies in metallic materials. Techniques such as x-ray computed tomography (XCT) have provided new insights into dendritic phase transformation phenomena. However, manual identification of dendritic morphologies in microscopy data can be both labor intensive and potentially ambiguous. The analysis of 3D dat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01167v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01167v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01167v1-abstract-full" style="display: none;"> Dendritic microstructures are ubiquitous in nature and are the primary solidification morphologies in metallic materials. Techniques such as x-ray computed tomography (XCT) have provided new insights into dendritic phase transformation phenomena. However, manual identification of dendritic morphologies in microscopy data can be both labor intensive and potentially ambiguous. The analysis of 3D datasets is particularly challenging due to their large sizes (terabytes) and the presence of artifacts scattered within the imaged volumes. In this study, we trained 3D convolutional neural networks (CNNs) to segment 3D datasets. Three CNN architectures were investigated, including a new 3D version of FCDense. We show that using hyperparameter optimization (HPO) and fine-tuning techniques, both 2D and 3D CNN architectures can be trained to outperform the previous state of the art. The 3D U-Net architecture trained in this study produced the best segmentations according to quantitative metrics (pixel-wise accuracy of 99.84% and a boundary displacement error of 0.58 pixels), while 3D FCDense produced the smoothest boundaries and best segmentations according to visual inspection. The trained 3D CNNs are able to segment entire 852 x 852 x 250 voxel 3D volumes in only ~60 seconds, thus hastening the progress towards a deeper understanding of phase transformation phenomena such as dendritic solidification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01167v1-abstract-full').style.display = 'none'; document.getElementById('2205.01167v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11372">arXiv:2204.11372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.11372">pdf</a>, <a href="https://arxiv.org/format/2204.11372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abq5769">10.1126/science.abq5769 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise-resilient Edge Modes on a Chain of Superconducting Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sonner%2C+M">Michael Sonner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+M+Y">Murphy Yuezhen Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+W">Kenneth W. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Foxen%2C+B">Brooks Foxen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aleiner%2C+I">Igor Aleiner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bacon%2C+D">Dave Bacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basso%2C+J">Joao Basso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bushnell%2C+N">Nicholas Bushnell</a> , et al. (103 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11372v2-abstract-short" style="display: inline;"> Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $\mathbb{Z}_2$ parity symmetry. Remarkably, we find that any multi-qub&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11372v2-abstract-full').style.display = 'inline'; document.getElementById('2204.11372v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11372v2-abstract-full" style="display: none;"> Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $\mathbb{Z}_2$ parity symmetry. Remarkably, we find that any multi-qubit Pauli operator overlapping with the MEMs exhibits a uniform late-time decay rate comparable to single-qubit relaxation rates, irrespective of its size or composition. This characteristic allows us to accurately reconstruct the exponentially localized spatial profiles of the MEMs. Furthermore, the MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism. Our work elucidates the complex interplay between noise and symmetry-protected edge modes in a solid-state environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11372v2-abstract-full').style.display = 'none'; document.getElementById('2204.11372v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 378, 785 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09188">arXiv:2201.09188</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.09188">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.17.L061001">10.1103/PhysRevApplied.17.L061001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface charge writing and non-volatile control of superconductivity in LaAlO3/KTaO3(111) heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Siyuan Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yanqiu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yishuai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yanwu Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09188v1-abstract-short" style="display: inline;"> The oxide interface between LaAlO3 and KTaO3(111) can host an electron gas that condenses into superconductivity at low temperatures. In this work, we demonstrate a local and non-volatile control of this electron gas using a biased conducting atomic force microscope tip. By scanning the tip, charges can be accumulated on the surface of LaAlO3, which subsequently tune the conduction of the buried L&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09188v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09188v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09188v1-abstract-full" style="display: none;"> The oxide interface between LaAlO3 and KTaO3(111) can host an electron gas that condenses into superconductivity at low temperatures. In this work, we demonstrate a local and non-volatile control of this electron gas using a biased conducting atomic force microscope tip. By scanning the tip, charges can be accumulated on the surface of LaAlO3, which subsequently tune the conduction of the buried LaAlO3/KTaO3(111) interface largely, varying from conducting (superconducting) to insulating states. The tuning effects are stable for &gt; 20 h at room temperature. The maximum modulation of carrier density is &gt; 8 times 10^13/cm^2. This result suggests a new model system in which rewritable superconducting, normal, and insulating states can be flexibly defined in the same material on demand. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09188v1-abstract-full').style.display = 'none'; document.getElementById('2201.09188v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages in total. 4 figures in the main text, plus 3 supplementary figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev.. Applied 17, L061001 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.00990">arXiv:2201.00990</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.00990">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aba5511">10.1126/science.aba5511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional superconductivity at the surfaces of KTaO3 gated with ionic liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+T">Tianshuang Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Miaocong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xikang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+L">Lele Ju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Siyuan Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yanqiu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+Q">Qian Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhu-An Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yanwu Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.00990v1-abstract-short" style="display: inline;"> The recent observation of superconductivity at the interfaces between KTaO3 and EuO (or LaAlO3) offers a new example of emergent phenomena at oxide interfaces. This superconductivity exhibits an unusual strong dependence on the crystalline orientation of KTaO3 and its superconducting transition temperature Tc is nearly one order of magnitude higher than that of the seminal LaAlO3/SrTiO3 interface.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00990v1-abstract-full').style.display = 'inline'; document.getElementById('2201.00990v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.00990v1-abstract-full" style="display: none;"> The recent observation of superconductivity at the interfaces between KTaO3 and EuO (or LaAlO3) offers a new example of emergent phenomena at oxide interfaces. This superconductivity exhibits an unusual strong dependence on the crystalline orientation of KTaO3 and its superconducting transition temperature Tc is nearly one order of magnitude higher than that of the seminal LaAlO3/SrTiO3 interface. To understand its mechanism, it is crucial to address if the formation of oxide interfaces is indispensable for the presence of superconductivity. Here, by exploiting ionic liquid (IL) gating, we obtain superconductivity at KTaO3 (111) and (110) surfaces with Tc up to 2.0 K and 1.0 K, respectively. This oxide-interface-free superconductivity gives a clear experimental evidence that the essential physics of KTaO3 interface superconductivity lies in the KTaO3 surfaces doped with electrons. Moreover, the ability to control superconductivity at surfaces with IL provides a simple way to study the intrinsic superconductivity in KTaO3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00990v1-abstract-full').style.display = 'none'; document.getElementById('2201.00990v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages in total. 4 figures in the maix text. 6 figures in the Suppemental Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 8, eabn4273 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.05339">arXiv:2112.05339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.05339">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Visualization of reaction chemistry in W-KClO4-BaCrO4 delay mixtures via a Sestak-Berggren model based isoconversional method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Youngjoon Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Soyeon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joo%2C+S">Soyun Joo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+C">Chungik Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H">Hojun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liow%2C+C+H">Chi Hao Liow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+M+S">Moon Soo Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baek%2C+D+H">Dong Hyeon Baek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seungbum Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.05339v1-abstract-short" style="display: inline;"> The combustion delay mixture of tungsten (W), potassium perchlorate (KClO4), and barium chromate (BaCrO4), also known as the WKB mixture, has long been considered to be an integral part of military-grade ammunition. Despite its long history, however, their progressive reaction dynamics remains a question mark, especially due to the complex nature of their combustion reaction. As opposed to a one-s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05339v1-abstract-full').style.display = 'inline'; document.getElementById('2112.05339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.05339v1-abstract-full" style="display: none;"> The combustion delay mixture of tungsten (W), potassium perchlorate (KClO4), and barium chromate (BaCrO4), also known as the WKB mixture, has long been considered to be an integral part of military-grade ammunition. Despite its long history, however, their progressive reaction dynamics remains a question mark, especially due to the complex nature of their combustion reaction. As opposed to a one-step oxidation commonly observed in conventional combustions, the WKB mixture is associated with a multibody reaction between its solid-state components. To this end, the emergence of three combustion peaks, which we corresponded with disparate chemical reactions, was observed using thermogravimetric analysis on two separate WKB mixtures with differing mixture ratios. We applied the stepwise isoconversional method on each of the peaks to match the combustion chemistry it represents to the Sestak-Berggren model and computed the conceptual activation energy. Further plotting the logarithmic pre-exponential factor as a function of the reaction progress, we demonstrate a method of using the plot as an intuitive tool to understand the dynamics of individual reactions that compose multi-step chemical reactions. Our study provides a systematic approach in visualizing the reaction chemistry, thereby strengthening the analytical arsenal against reaction dynamics of combustion compounds in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05339v1-abstract-full').style.display = 'none'; document.getElementById('2112.05339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.11662">arXiv:2111.11662</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.11662">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.024516">10.1103/PhysRevB.105.024516 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of high-temperature superconductivity at the interface of two Mott insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+L">Lele Ju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+T">Tianshuang Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongran Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+C">Chuanyu Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Siyuan Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jie Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+H">He Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yanwu Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.11662v1-abstract-short" style="display: inline;"> Interfacial superconductivity has manifested itself in various types of heterostructures: band insulator-band insulator, band insulator-Mott insulator, and Mott insulator-metal. We report the observation of high-temperature superconductivity (HTS) in a complementary and long expected type of heterostructures, which consists of two Mott insulators, La2CuO4 (LCO) and PrBa2Cu3O7 (PBCO). By carefully&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11662v1-abstract-full').style.display = 'inline'; document.getElementById('2111.11662v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.11662v1-abstract-full" style="display: none;"> Interfacial superconductivity has manifested itself in various types of heterostructures: band insulator-band insulator, band insulator-Mott insulator, and Mott insulator-metal. We report the observation of high-temperature superconductivity (HTS) in a complementary and long expected type of heterostructures, which consists of two Mott insulators, La2CuO4 (LCO) and PrBa2Cu3O7 (PBCO). By carefully controlling oxidization condition and selectively doping CuO2 planes with Fe atoms, which suppress superconductivity, we found that the superconductivity arises at the LCO side and is confined within no more than two unit cells (about 2.6 nm) near the interface. A phenomenon of overcome the Fe barrier will show up if excess oxygen is present during growth. Some possible mechanisms for the interfacial HTS have been discussed, and we attribute it to the redistribution of oxygen. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11662v1-abstract-full').style.display = 'none'; document.getElementById('2111.11662v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures; and Supplementary Materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 024516 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13571">arXiv:2107.13571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.13571">pdf</a>, <a href="https://arxiv.org/format/2107.13571">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-04257-w">10.1038/s41586-021-04257-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Time-Crystalline Eigenstate Order on a Quantum Processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ippoliti%2C+M">Matteo Ippoliti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quintana%2C+C">Chris Quintana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greene%2C+A">Ami Greene</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zijun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gross%2C+J">Jonathan Gross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basso%2C+J">Joao Basso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bushnell%2C+N">Nicholas Bushnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiaro%2C+B">Benjamin Chiaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+R">Roberto Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Courtney%2C+W">William Courtney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Debroy%2C+D">Dripto Debroy</a> , et al. (80 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13571v2-abstract-short" style="display: inline;"> Quantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC). Concretely, dyn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13571v2-abstract-full').style.display = 'inline'; document.getElementById('2107.13571v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13571v2-abstract-full" style="display: none;"> Quantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC). Concretely, dynamical phases can be defined in periodically driven many-body localized systems via the concept of eigenstate order. In eigenstate-ordered phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, wherein few select states can mask typical behavior. Here we implement a continuous family of tunable CPHASE gates on an array of superconducting qubits to experimentally observe an eigenstate-ordered DTC. We demonstrate the characteristic spatiotemporal response of a DTC for generic initial states. Our work employs a time-reversal protocol that discriminates external decoherence from intrinsic thermalization, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. In addition, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13571v2-abstract-full').style.display = 'none'; document.getElementById('2107.13571v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 601, 531 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.06719">arXiv:2107.06719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.06719">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsanm.1c00969">10.1021/acsanm.1c00969 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identification of Collapsed Carbon Nanotubes in High-Strength Fibres Spun from Compositionally Polydisperse Aerogels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vila%2C+M">Maria Vila</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seungki Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Seunggyu Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mikhalchan%2C+A">Anastasiia Mikhalchan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ku%2C+B">Bon-Cheol Ku</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+J+Y">Jun Yeon Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vilatela%2C+J+J">Juan J. Vilatela</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.06719v1-abstract-short" style="display: inline;"> Carbon Nanotubes (CNTs) of sufficiently large diameter and a few layers self-collapse into flat ribbons at atmospheric pressure, forming bundles of stacked CNTs that maximize packing and thus CNT interaction. Their improved stress transfer by shear makes collapsed CNTs ideal building blocks in macroscopic fibers of CNTs with high-performance longitudinal properties, particularly high tensile prope&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06719v1-abstract-full').style.display = 'inline'; document.getElementById('2107.06719v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.06719v1-abstract-full" style="display: none;"> Carbon Nanotubes (CNTs) of sufficiently large diameter and a few layers self-collapse into flat ribbons at atmospheric pressure, forming bundles of stacked CNTs that maximize packing and thus CNT interaction. Their improved stress transfer by shear makes collapsed CNTs ideal building blocks in macroscopic fibers of CNTs with high-performance longitudinal properties, particularly high tensile properties as reinforcing fibres. This work introduces cross-sectional transmission electron microscopy of FIB-milled samples as a way to univocally identify collapsed CNTs and to determine the full population of different CNTs in macroscopic fibers produced by spinning from floating catalyst chemical vapour deposition. We show that close proximity in bundles is a major driver for collapse and that CNT stoutness (number of layers/diameter), which dominates the collapse onset, is controlled by the growth promotor. Despite differences in decomposition route, different C precursors lead to similar distributions of the ratio layers/diameter. The synthesis conditions in this study give a maximum fraction of collapsed CNTs of 70$\%$ when using selenium as promotor, corresponding to an average of $0.25 layer/nm$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06719v1-abstract-full').style.display = 'none'; document.getElementById('2107.06719v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05460">arXiv:2106.05460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.05460">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin-Orbit Torque Engineering in 尾-W/CoFeB Heterostructures via Ta and V Alloying at Interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G+W">Gyu Won Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cuong%2C+D+D">Do Duc Cuong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y+J">Yong Jin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cha%2C+I+H">In Ho Cha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T">Taehyun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M+H">Min Hyeok Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+O">OukJae Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baik%2C+H">Hionsuck Baik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S+C">Soon Cheol Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhim%2C+S+H">Sonny H. Rhim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y+K">Young Keun Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05460v1-abstract-short" style="display: inline;"> Spin-orbit torque manifested as an accumulated spin-polarized moment at nonmagnetic normal metal, and ferromagnet interfaces is a promising magnetization switching mechanism for spintronic devices. To fully exploit this in practice, materials with a high spin Hall angle, i.e., a charge-to-spin conversion efficiency, are indispensable. To date, very few approaches have been made to devise new nonma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05460v1-abstract-full').style.display = 'inline'; document.getElementById('2106.05460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05460v1-abstract-full" style="display: none;"> Spin-orbit torque manifested as an accumulated spin-polarized moment at nonmagnetic normal metal, and ferromagnet interfaces is a promising magnetization switching mechanism for spintronic devices. To fully exploit this in practice, materials with a high spin Hall angle, i.e., a charge-to-spin conversion efficiency, are indispensable. To date, very few approaches have been made to devise new nonmagnetic metal alloys. Moreover, new materials need to be compatible with semiconductor processing. Here we introduce W-Ta and W-V alloys and deploy them at the interface between $尾$-W/CoFeB layers. First, spin Hall conductivities of W-Ta and W-V structures with various compositions are carried out by first-principles band calculations, which predict the spin Hall conductivity of the W-V alloy is improved from $-0.82 \times 10^3$ S/cm that of W to $-1.98 \times 10^3$ S/cm. Subsequently, heterostructure fabrication and spin-orbit torque properties are characterized experimentally. By alloying $尾$-W with V at a concentration of 20 at%, we observe a large enhancement of the absolute value of spin Hall conductivity of up to $-(2.77 \pm 0.31) \times 10^3$ S/cm. By employing X-ray diffraction and scanning transmission electron microscopy, we further explain the enhancement of spin-orbit torque efficiency is stemmed from W-V alloy between W and CoFeB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05460v1-abstract-full').style.display = 'none'; document.getElementById('2106.05460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.01180">arXiv:2104.01180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.01180">pdf</a>, <a href="https://arxiv.org/format/2104.01180">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abi8378">10.1126/science.abi8378 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Realizing topologically ordered states on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Satzinger%2C+K+J">K. J. Satzinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+A">A. Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knapp%2C+C">C. Knapp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Newman%2C+M">M. Newman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+C">C. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quintana%2C+C">C. Quintana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+X">X. Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dunsworth%2C+A">A. Dunsworth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gidney%2C+C">C. Gidney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aleiner%2C+I">I. Aleiner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">F. Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">K. Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">J. Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">R. Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">J. C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barends%2C+R">R. Barends</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Basso%2C+J">J. Basso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">A. Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bilmes%2C+A">A. Bilmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">M. Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckley%2C+B+B">B. B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buell%2C+D+A">D. A. Buell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burkett%2C+B">B. Burkett</a> , et al. (73 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.01180v1-abstract-short" style="display: inline;"> The discovery of topological order has revolutionized the understanding of quantum matter in modern physics and provided the theoretical foundation for many quantum error correcting codes. Realizing topologically ordered states has proven to be extremely challenging in both condensed matter and synthetic quantum systems. Here, we prepare the ground state of the toric code Hamiltonian using an effi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01180v1-abstract-full').style.display = 'inline'; document.getElementById('2104.01180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.01180v1-abstract-full" style="display: none;"> The discovery of topological order has revolutionized the understanding of quantum matter in modern physics and provided the theoretical foundation for many quantum error correcting codes. Realizing topologically ordered states has proven to be extremely challenging in both condensed matter and synthetic quantum systems. Here, we prepare the ground state of the toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor. We measure a topological entanglement entropy near the expected value of $\ln2$, and simulate anyon interferometry to extract the braiding statistics of the emergent excitations. Furthermore, we investigate key aspects of the surface code, including logical state injection and the decay of the non-local order parameter. Our results demonstrate the potential for quantum processors to provide key insights into topological quantum matter and quantum error correction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01180v1-abstract-full').style.display = 'none'; document.getElementById('2104.01180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages 4 figures, plus supplementary materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 374, 1237-1241 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.03008">arXiv:2102.03008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.03008">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsanm.0c03463">10.1021/acsanm.0c03463 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry-Driven Spin-Wave Gap Modulation in Nanolayered SrRuO3/SrTiO3 Heterostructures: Implications for Spintronic Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+S+G">Seung Gyo Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hyeonbeom Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S+J">Sung Ju Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suh%2C+D">Dongseok Suh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W+S">Woo Seok Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.03008v1-abstract-short" style="display: inline;"> A strong correlation between magnetic interaction and topological symmetries leads to unconventional magneto-transport behavior. Weyl fermions induce topologically protected spin-momentum locking, which is closely related to spin-wave gap formation in magnetic crystals. Ferromagnetic SrRuO3, regarded as a strong candidate for Weyl semimetal, inherently possesses a nonzero spin-wave gap owing to it&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03008v1-abstract-full').style.display = 'inline'; document.getElementById('2102.03008v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.03008v1-abstract-full" style="display: none;"> A strong correlation between magnetic interaction and topological symmetries leads to unconventional magneto-transport behavior. Weyl fermions induce topologically protected spin-momentum locking, which is closely related to spin-wave gap formation in magnetic crystals. Ferromagnetic SrRuO3, regarded as a strong candidate for Weyl semimetal, inherently possesses a nonzero spin-wave gap owing to its strong magnetic anisotropy. In this paper, we propose a method to control the spin-wave dynamics by nanolayer designing of the SrRuO3/SrTiO3 superlattices. In particular, the six-unit-cell-thick SrRuO3 layers within the superlattices undergo a phase transition in crystalline symmetry from orthorhombic to tetragonal, as the thickness of the SrTiO3 layers is modulated with atomic-scale precision. Consequently, the magnetic anisotropy, anomalous Hall conductivity, and spin-wave gap could be systematically manipulated. Such customization of magnetic anisotropy via nanoscale heterostructuring offers a novel control knob to tailor the magnon excitation energy for future spintronic applications, including magnon waveguides and filters. Our nanolayer approach unveils the important correlation between the tunable lattice degrees of freedom and spin dynamics in topologically non-trivial magnetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03008v1-abstract-full').style.display = 'none'; document.getElementById('2102.03008v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 page</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08870">arXiv:2101.08870</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08870">pdf</a>, <a href="https://arxiv.org/format/2101.08870">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abg5029">10.1126/science.abg5029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Information Scrambling in Computationally Complex Quantum Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roushan%2C+P">Pedram Roushan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quintana%2C+C">Chris Quintana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandra%2C+S">Salvatore Mandra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marshall%2C+J">Jeffrey Marshall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neill%2C+C">Charles Neill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barends%2C+R">Rami Barends</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boixo%2C+S">Sergio Boixo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bushnell%2C+N">Nicholas Bushnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zijun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiaro%2C+B">Benjamin Chiaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+R">Roberto Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Courtney%2C+W">William Courtney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Demura%2C+S">Sean Demura</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08870v1-abstract-short" style="display: inline;"> Interaction in quantum systems can spread initially localized quantum information into the many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is the key to resolving various conundrums in physics. Here, by measuring the time-dependent evolution and fluctuation of out-of-time-order correlators, we experimentally investigate the dynamics of quantum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08870v1-abstract-full').style.display = 'inline'; document.getElementById('2101.08870v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08870v1-abstract-full" style="display: none;"> Interaction in quantum systems can spread initially localized quantum information into the many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is the key to resolving various conundrums in physics. Here, by measuring the time-dependent evolution and fluctuation of out-of-time-order correlators, we experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor. We engineer quantum circuits that distinguish the two mechanisms associated with quantum scrambling, operator spreading and operator entanglement, and experimentally observe their respective signatures. We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate. These results open the path to studying complex and practically relevant physical observables with near-term quantum processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08870v1-abstract-full').style.display = 'none'; document.getElementById('2101.08870v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 374, 1479 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08437">arXiv:2101.08437</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08437">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Growth, Electronic Structure and Superconductivity of Ultrathin Epitaxial CoSi2 Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yuan Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D">Ding Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Peng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+H">Hang Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+T">Tian Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+G">Guo-Wei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hua-Li Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Z">Zhi-Guang Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan-Qiu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Si-Yuan Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yan-Wu Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huan-Hua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+C">Chao Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+X">Xin Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+H">Hui-Qiu Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08437v6-abstract-short" style="display: inline;"> We report growth, electronic structure and superconductivity of ultrathin epitaxial CoSi2 films on Si(111). At low coverages, preferred islands with 2, 5 and 6 monolayers height develop, which agrees well with the surface energy calculation. We observe clear quantum well states as a result of electronic confinement and their dispersion agrees well with density functional theory calculations, indic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08437v6-abstract-full').style.display = 'inline'; document.getElementById('2101.08437v6-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08437v6-abstract-full" style="display: none;"> We report growth, electronic structure and superconductivity of ultrathin epitaxial CoSi2 films on Si(111). At low coverages, preferred islands with 2, 5 and 6 monolayers height develop, which agrees well with the surface energy calculation. We observe clear quantum well states as a result of electronic confinement and their dispersion agrees well with density functional theory calculations, indicating weak correlation effect despite strong contributions from Co 3d electrons. Ex-situ transport measurements show that superconductivity persists down to at least 10 monolayers, with reduced Tc but largely enhanced upper critical field. Our study opens up the opportunity to study the interplay between quantum confinement, interfacial symmetry breaking and superconductivity in an epitaxial silicide film, which is technologically relevant in microelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08437v6-abstract-full').style.display = 'none'; document.getElementById('2101.08437v6-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.08526">arXiv:2011.08526</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.08526">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.026802">10.1103/PhysRevLett.126.026802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of two-dimensional superconductivity at the LaAlO3/KTaO3(110) heterointerface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongran Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yanqiu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xiaoxin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hekang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Meng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Siyuan Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+T">Tianshuang Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+H">He Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yi Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jirong Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yanwu Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.08526v1-abstract-short" style="display: inline;"> We report on the observation of a Tc ~0.9 K superconductivity at the interface between LaAlO3 film and the 5d transition-metal oxide KTaO3(110) single crystal. The interface shows a large anisotropy of the upper critical field, and its superconducting transition is consistent with a Berezinskii-Kosterlitz-Thouless transition. Both facts suggest that the superconductivity is two-dimensional (2D) in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08526v1-abstract-full').style.display = 'inline'; document.getElementById('2011.08526v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.08526v1-abstract-full" style="display: none;"> We report on the observation of a Tc ~0.9 K superconductivity at the interface between LaAlO3 film and the 5d transition-metal oxide KTaO3(110) single crystal. The interface shows a large anisotropy of the upper critical field, and its superconducting transition is consistent with a Berezinskii-Kosterlitz-Thouless transition. Both facts suggest that the superconductivity is two-dimensional (2D) in nature. The carrier density measured at 5 K is ~7 time 10^13 cm-2. The superconducting layer thickness and coherence length are estimated to be ~8 and ~30 nm, respectively. Our result provides a new platform for the study of 2D superconductivity at oxide interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08526v1-abstract-full').style.display = 'none'; document.getElementById('2011.08526v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures for main text; plus 6 pages, 8 figures for supplemental materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 026802 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.01484">arXiv:2010.01484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.01484">pdf</a>, <a href="https://arxiv.org/ps/2010.01484">ps</a>, <a href="https://arxiv.org/format/2010.01484">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.054004">10.1103/PhysRevApplied.15.054004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unified Framework for Charge-Spin Interconversion in Spin-Orbit Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sayed%2C+S">Shehrin Sayed</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seokmin Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xiaoxi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caretta%2C+L">Lucas Caretta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Everhardt%2C+A+S">Arnoud S. Everhardt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramesh%2C+R">Ramamoorthy Ramesh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salahuddin%2C+S">Sayeef Salahuddin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Datta%2C+S">Supriyo Datta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.01484v2-abstract-short" style="display: inline;"> Materials with spin-orbit coupling are of great interest for various spintronics applications due to the efficient electrical generation and detection of spin-polarized electrons. Over the past decade, many materials have been studied, including topological insulators, transition metals, Kondo insulators, semimetals, semiconductors, and oxides; however, there is no unifying physical framework for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01484v2-abstract-full').style.display = 'inline'; document.getElementById('2010.01484v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.01484v2-abstract-full" style="display: none;"> Materials with spin-orbit coupling are of great interest for various spintronics applications due to the efficient electrical generation and detection of spin-polarized electrons. Over the past decade, many materials have been studied, including topological insulators, transition metals, Kondo insulators, semimetals, semiconductors, and oxides; however, there is no unifying physical framework for understanding the physics and therefore designing a material system and devices with the desired properties. We present a model that binds together the experimental data observed on the wide variety of materials in a unified manner. We show that in a material with a given spin-momentum locking, the density of states plays a crucial role in determining the charge-spin interconversion efficiency, and a simple inverse relationship can be obtained. Remarkably, experimental data obtained over the last decade on many different materials closely follow such an inverse relationship. We further deduce two figure-of-merits of great current interest: the spin-orbit torque (SOT) efficiency (for the direct effect) and the inverse Rashba-Edelstein effect length (for the inverse effect), which statistically show good agreement with the existing experimental data on wide varieties of materials. Especially, we identify a scaling law for the SOT efficiency with respect to the carrier concentration in the sample, which agrees with existing data. Such an agreement is intriguing since our transport model includes only Fermi surface contributions and fundamentally different from the conventional views of the SOT efficiency that includes contributions from all the occupied states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01484v2-abstract-full').style.display = 'none'; document.getElementById('2010.01484v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 15, 054004 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14470">arXiv:2009.14470</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.14470">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.softx.2021.100663">10.1016/j.softx.2021.100663 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> EZFF: Python Library for Multi-Objective Parameterization and Uncertainty Quantification of Interatomic Forcefields for Molecular Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krishnamoorthy%2C+A">Aravind Krishnamoorthy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+A">Ankit Mishra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamal%2C+D">Deepak Kamal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Sungwook Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nomura%2C+K">Ken-ichi Nomura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+S">Subodh Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakano%2C+A">Aiichiro Nakano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kalia%2C+R">Rajiv Kalia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramprasad%2C+R">Rampi Ramprasad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vashishta%2C+P">Priya Vashishta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14470v1-abstract-short" style="display: inline;"> Parameterization of interatomic forcefields is a necessary first step in performing molecular dynamics simulations. This is a non-trivial global optimization problem involving quantification of multiple empirical variables against one or more properties. We present EZFF, a lightweight Python library for parameterization of several types of interatomic forcefields implemented in several molecular d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14470v1-abstract-full').style.display = 'inline'; document.getElementById('2009.14470v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14470v1-abstract-full" style="display: none;"> Parameterization of interatomic forcefields is a necessary first step in performing molecular dynamics simulations. This is a non-trivial global optimization problem involving quantification of multiple empirical variables against one or more properties. We present EZFF, a lightweight Python library for parameterization of several types of interatomic forcefields implemented in several molecular dynamics engines against multiple objectives using genetic-algorithm-based global optimization methods. The EZFF scheme provides unique functionality such as the parameterization of hybrid forcefields composed of multiple forcefield interactions as well as built-in quantification of uncertainty in forcefield parameters and can be easily extended to other forcefield functional forms as well as MD engines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14470v1-abstract-full').style.display = 'none'; document.getElementById('2009.14470v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SoftwareX 13, 100663 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11427">arXiv:2009.11427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.11427">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.0c04787">10.1021/acs.nanolett.0c04787 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant strain gradient elasticity in SrTiO3 membranes: bending versus stretching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Harbola%2C+V">Varun Harbola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crossley%2C+S">Samuel Crossley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S+S">Seung Sae Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Di Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birkholzer%2C+Y+A">Yorick A. Birkholzer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hikita%2C+Y">Yasuyuki Hikita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11427v1-abstract-short" style="display: inline;"> Young&#39;s modulus determines the mechanical loads required to elastically stretch a material, and also, the loads required to bend it, given that bending stretches one surface while compressing the opposite one. Flexoelectric materials have the additional property of becoming electrically polarized when bent. While numerous studies have characterized this flexoelectric coupling, its impact on the me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11427v1-abstract-full').style.display = 'inline'; document.getElementById('2009.11427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11427v1-abstract-full" style="display: none;"> Young&#39;s modulus determines the mechanical loads required to elastically stretch a material, and also, the loads required to bend it, given that bending stretches one surface while compressing the opposite one. Flexoelectric materials have the additional property of becoming electrically polarized when bent. While numerous studies have characterized this flexoelectric coupling, its impact on the mechanical response, due to the energy cost of polarization upon bending, is largely unexplored. This intriguing contribution of strain gradient elasticity is expected to become visible at small length scales where strain gradients are geometrically enhanced, especially in high permittivity insulators. Here we present nano-mechanical measurements of freely suspended SrTiO3 membrane drumheads. We observe a striking non-monotonic thickness dependence of Young&#39;s modulus upon small deflections. Furthermore, the modulus inferred from a predominantly bending deformation is three times larger than that of a predominantly stretching deformation for membranes thinner than 20 nm. In this regime we extract a giant strain gradient elastic coupling of ~2.2e-6 N, which could be used in new operational regimes of nano-electro-mechanics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11427v1-abstract-full').style.display = 'none'; document.getElementById('2009.11427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.06212">arXiv:2009.06212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.06212">pdf</a>, <a href="https://arxiv.org/format/2009.06212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.1c01410">10.1021/acs.jpcc.1c01410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> General, Strong Impurity-Strength Dependence of Quasiparticle Interference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seung-Ju Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lihm%2C+J">Jae-Mo Lihm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+C">Cheol-Hwan Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.06212v2-abstract-short" style="display: inline;"> Quasiparticle interference (QPI) patterns in momentum space are often assumed to be independent of the strength of the impurity potential when compared with other quantities, such as the joint density of states. Here, using the $T$-matrix theory, we show that this assumption breaks down completely even in the simplest case of a single-site impurity on the square lattice with an $s$ orbital per sit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06212v2-abstract-full').style.display = 'inline'; document.getElementById('2009.06212v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.06212v2-abstract-full" style="display: none;"> Quasiparticle interference (QPI) patterns in momentum space are often assumed to be independent of the strength of the impurity potential when compared with other quantities, such as the joint density of states. Here, using the $T$-matrix theory, we show that this assumption breaks down completely even in the simplest case of a single-site impurity on the square lattice with an $s$ orbital per site. Then, we predict from first-principles, a very rich, impurity-strength-dependent structure in the QPI pattern of TaAs, an archetype Weyl semimetal. This study thus demonstrates that the consideration of the details of the scattering impurity including the impurity strength is essential for interpreting Fourier-transform scanning tunneling spectroscopy experiments in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06212v2-abstract-full').style.display = 'none'; document.getElementById('2009.06212v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main manuscript: 8 pages, 6 figures, Supplementary Information: 3 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. C 2021, 125, 13, 7488~7494 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.03449">arXiv:2007.03449</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.03449">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic Behavior of Excitons in Single Crystal 伪-SnS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+V+L">Van Long Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cuong%2C+D+D">Do Duc Cuong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+H+T">Hoang Tung Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+X+A">Xuan Au Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Bogyu Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kyujin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Wonjun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S+C">Soon Cheol Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+J">Tae Jung Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y+D">Young Dong Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.03449v1-abstract-short" style="display: inline;"> We investigate analytically the anisotropic dielectric properties of single crystal 伪-SnS near the fundamental absorption edge by considering atomic orbitals. Most striking is the excitonic feature in the armchair- (b-) axis direction, which is particularly prominent at low temperatures. To determine the origin of this anisotropy, we perform first-principles calculations using the GW0 Bethe-Salpet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03449v1-abstract-full').style.display = 'inline'; document.getElementById('2007.03449v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.03449v1-abstract-full" style="display: none;"> We investigate analytically the anisotropic dielectric properties of single crystal 伪-SnS near the fundamental absorption edge by considering atomic orbitals. Most striking is the excitonic feature in the armchair- (b-) axis direction, which is particularly prominent at low temperatures. To determine the origin of this anisotropy, we perform first-principles calculations using the GW0 Bethe-Salpeter equation (BSE) including the electron-hole interaction. The results show that the anisotropic dielectric characteristics are a direct result of the natural anisotropy of p orbitals. In particular, this dominant excitonic feature originates from the py orbital at the saddle point in the 螕-Y region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03449v1-abstract-full').style.display = 'none'; document.getElementById('2007.03449v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.00117">arXiv:2007.00117</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.00117">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.0c03263">10.1021/acs.nanolett.0c03263 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Growth kinetics and atomistic mechanisms of native oxidation of ZrS$_x$Se$_{2-x}$ and MoS$_2$ crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+S+S">Seong Soon Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+A">Akshay Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Liqiu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+S+C">Subodh C. Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Sungwook Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krishnamoorthy%2C+A">Aravind Krishnamoorthy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sales%2C+M+G">Maria Gabriela Sales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oliver%2C+S+M">Sean M. Oliver</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fox%2C+J">Joshua Fox</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cavalero%2C+R+L">Randal L. Cavalero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Snyder%2C+D+W">David W. Snyder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vora%2C+P+M">Patrick M. Vora</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McDonnell%2C+S+J">Stephen J. McDonnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vashishta%2C+P">Priya Vashishta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kalia%2C+R+K">Rajiv K. Kalia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakano%2C+A">Aiichiro Nakano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaramillo%2C+R">Rafael Jaramillo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.00117v3-abstract-short" style="display: inline;"> A thorough understanding of native oxides is essential for designing semiconductor devices. Here we report a study of the rate and mechanisms of spontaneous oxidation of bulk single crystals of ZrS$_x$Se$_{2-x}$ alloys and MoS$_2$. ZrS$_x$Se$_{2-x}$ alloys oxidize rapidly, and the oxidation rate increases with Se content. Oxidation of basal surfaces is initiated by favorable O$_2$ adsorption and p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00117v3-abstract-full').style.display = 'inline'; document.getElementById('2007.00117v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.00117v3-abstract-full" style="display: none;"> A thorough understanding of native oxides is essential for designing semiconductor devices. Here we report a study of the rate and mechanisms of spontaneous oxidation of bulk single crystals of ZrS$_x$Se$_{2-x}$ alloys and MoS$_2$. ZrS$_x$Se$_{2-x}$ alloys oxidize rapidly, and the oxidation rate increases with Se content. Oxidation of basal surfaces is initiated by favorable O$_2$ adsorption and proceeds by a mechanism of Zr-O bond switching, that collapses the van der Waals gaps, and is facilitated by progressive redox transitions of the chalcogen. The rate-limiting process is the formation and out-diffusion of SO$_2$. In contrast, MoS$_2$ basal surfaces are stable due to unfavorable oxygen adsorption. Our results provide insight and quantitative guidance for designing and processing semiconductor devices based on ZrS$_x$Se$_{2-x}$ and MoS$_2$, and identify the atomistic-scale mechanisms of bonding and phase transformations in layered materials with competing anions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00117v3-abstract-full').style.display = 'none'; document.getElementById('2007.00117v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.02209">arXiv:2006.02209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.02209">pdf</a>, <a href="https://arxiv.org/format/2006.02209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.075403">10.1103/PhysRevMaterials.4.075403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manifestation of the thermoelectric properties in Ge-based halide perovskites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jong%2C+U">Un-Gi Jong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+C">Chol-Jun Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kye%2C+Y">Yun-Hyok Kye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Song-Nam Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hyon-Gyong Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.02209v1-abstract-short" style="display: inline;"> In spite of intensive studies on the chalcogenides as conventional thermoelectrics, it remains a challenge to find a proper material with high electrical but low thermal conductivities. In this work, we introduced a new class of thermoelectrics, Ge-based inorganic halide perovskites \ce{CsGeX3} (X = I, Br, Cl), which were already known as a promising candidate for photovoltaic applications. By per&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02209v1-abstract-full').style.display = 'inline'; document.getElementById('2006.02209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.02209v1-abstract-full" style="display: none;"> In spite of intensive studies on the chalcogenides as conventional thermoelectrics, it remains a challenge to find a proper material with high electrical but low thermal conductivities. In this work, we introduced a new class of thermoelectrics, Ge-based inorganic halide perovskites \ce{CsGeX3} (X = I, Br, Cl), which were already known as a promising candidate for photovoltaic applications. By performing the lattice-dynamics calculations and solving the Boltzmann transport equation, we revealed that these perovskites have ultralow thermal conductivities below 0.18 W m$^{-1}$ K$^{-1}$ while very high carrier mobilities above 860 cm$^2$ V$^{-1}$ s$^{-1}$, being much superior to the conventional thermoelectrics of chalcogenides. These results highlight the way of searching high-performance and low-cost thermoelectrics based on inorganic halide perovskites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02209v1-abstract-full').style.display = 'none'; document.getElementById('2006.02209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 075403 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.09101">arXiv:2005.09101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.09101">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Strain-Induced Room-Temperature Ferroelectricity in SrTiO$_3$ Membranes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Ruijuan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jiawei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barnard%2C+E+S">Edward S. Barnard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S+S">Seung Sae Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+P">Prastuti Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+E+K">Ed K. Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jansen%2C+T">Thies Jansen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harbola%2C+V">Varun Harbola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+J">Jun Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B+Y">Bai Yang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crossley%2C+S">Sam Crossley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Di Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">Harold Y. Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.09101v1-abstract-short" style="display: inline;"> Advances in complex oxide heteroepitaxy have highlighted the enormous potential of utilizing strain engineering via lattice mismatch to control ferroelectricity in thin-film heterostructures. This approach, however, lacks the ability to produce large and continuously variable strain states, thus limiting the potential for designing and tuning the desired properties of ferroelectric films. Here, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09101v1-abstract-full').style.display = 'inline'; document.getElementById('2005.09101v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.09101v1-abstract-full" style="display: none;"> Advances in complex oxide heteroepitaxy have highlighted the enormous potential of utilizing strain engineering via lattice mismatch to control ferroelectricity in thin-film heterostructures. This approach, however, lacks the ability to produce large and continuously variable strain states, thus limiting the potential for designing and tuning the desired properties of ferroelectric films. Here, we observe and explore dynamic strain-induced ferroelectricity in SrTiO$_3$ by laminating freestanding oxide films onto a stretchable polymer substrate. Using a combination of scanning probe microscopy, optical second harmonic generation measurements, and atomistic modeling, we demonstrate robust room-temperature ferroelectricity in SrTiO$_3$ with 2.0% uniaxial tensile strain, corroborated by the notable features of 180掳 ferroelectric domains and an extrapolated transition temperature of 400 K. Our work reveals the enormous potential of employing oxide membranes to create and enhance ferroelectricity in environmentally benign lead-free oxides, which hold great promise for applications ranging from non-volatile memories and microwave electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09101v1-abstract-full').style.display = 'none'; document.getElementById('2005.09101v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 11, 3141 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.13390">arXiv:2003.13390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.13390">pdf</a>, <a href="https://arxiv.org/format/2003.13390">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Molecular dynamics study of the effect of moisture and porosity on thermal conductivity of tobermorite 14 脜 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Song-Nam Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+C">Chol-Jun Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ri%2C+K">Kum-Chol Ri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J">Ju-Myong Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ri%2C+B">Byong-Hyok Ri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.13390v1-abstract-short" style="display: inline;"> The effect of moisture and porosity on thermal conductivity of tobermorite 14 脜~as the major component of cement paste is studied by using molecular dynamics simulation with ClayFF potential. The calculated results show that the thermal conductivity increases monotonically as the moisture content by mass within the interior pores increases and the slope of the linear fitting function decreases as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13390v1-abstract-full').style.display = 'inline'; document.getElementById('2003.13390v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.13390v1-abstract-full" style="display: none;"> The effect of moisture and porosity on thermal conductivity of tobermorite 14 脜~as the major component of cement paste is studied by using molecular dynamics simulation with ClayFF potential. The calculated results show that the thermal conductivity increases monotonically as the moisture content by mass within the interior pores increases and the slope of the linear fitting function decreases as the porosity increases. Meanwhile, the normalized thermal conductivity is found to increase exponentially as increasing the moisture content by volume. Phonon density of states of porous and moist tobermorite 14 脜~is used to explain the contribution of individual atoms and molecules to the thermal properties. The results can be potentially used to design higher thermal insulating materials with cement and concrete for energy saving buildings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13390v1-abstract-full').style.display = 'none'; document.getElementById('2003.13390v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.11634">arXiv:2001.11634</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.11634">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/aa6f6a">10.1088/1361-648X/aa6f6a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ryou%2C+J">Junga Ryou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Jinwoo Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gunn Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Suklyun Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.11634v1-abstract-short" style="display: inline;"> Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionaliz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11634v1-abstract-full').style.display = 'inline'; document.getElementById('2001.11634v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.11634v1-abstract-full" style="display: none;"> Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the 螕 point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11634v1-abstract-full').style.display = 'none'; document.getElementById('2001.11634v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter, 29, 245301 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.01464">arXiv:2001.01464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.01464">pdf</a>, <a href="https://arxiv.org/ps/2001.01464">ps</a>, <a href="https://arxiv.org/format/2001.01464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.214436">10.1103/PhysRevB.101.214436 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced voltage-controlled magnetic anisotropy via magneto-elasticity in FePt/MgO(001) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qurat-ul-ain"> Qurat-ul-ain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Odkhuu%2C+D">Dorj Odkhuu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhim%2C+S+H">S. H. Rhim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S+C">Soon Cheol Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.01464v1-abstract-short" style="display: inline;"> The interplay between magneto-electricity (ME) and magneto-elasticity (MEL) is studied in the context of voltage-controlled magnetic anisotropy (VCMA). Strain plays more than a role of changing lattice constant but that of the internal electric field in the heterostructure. As a prototype, FePt/MgO(001) is visited, where the behavior of two interfaces are drastically different: one exhibits switch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01464v1-abstract-full').style.display = 'inline'; document.getElementById('2001.01464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.01464v1-abstract-full" style="display: none;"> The interplay between magneto-electricity (ME) and magneto-elasticity (MEL) is studied in the context of voltage-controlled magnetic anisotropy (VCMA). Strain plays more than a role of changing lattice constant but that of the internal electric field in the heterostructure. As a prototype, FePt/MgO(001) is visited, where the behavior of two interfaces are drastically different: one exhibits switching the other does not. Whether an external electric field ($E_{ext}$) is present or not, we found VCMA coefficient larger than 1 pJ/V$\cdot$m, as a consequence of the rearrangement of $d$ orbitals with $m=\pm1$ and $\pm2$ in response to an external electric field. In addition, magneto-crystalline anisotropy (MA) is analyzed with strain taken into account, where non-linear feature is presented only accountable by invoking second-order MEL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01464v1-abstract-full').style.display = 'none'; document.getElementById('2001.01464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 214436 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.00970">arXiv:1912.00970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.00970">pdf</a>, <a href="https://arxiv.org/format/1912.00970">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.055003">10.1103/PhysRevMaterials.4.055003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $\sqrt{2}$$\times$$\sqrt{2}R45^\circ$ surface reconstruction and electronic structure of BaSnO$_3$ film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soltani%2C+S">Shoresh Soltani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Sungyun Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Bongju Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+D">Donghan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jun%2C+J+K">Jong Keun Jun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+B">Byungmin Sohn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+T+W">Tae Won Noh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Char%2C+K">Kookrin Char</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C">Changyoung Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.00970v2-abstract-short" style="display: inline;"> We studied surface and electronic structures of barium stannate (BaSnO$_3$) thin-film by low energy electron diffraction (LEED), and angle-resolved photoemission spectroscopy (ARPES) techniques. BaSnO$_3$/Ba$_{0.96}$La$_{0.04}$SnO$_3$/SrTiO$_3$ (10 nm/100 nm/0.5 mm) samples were grown using pulsed-laser deposition (PLD) method and were \emph{ex-situ} transferred from PLD chamber to ultra-high vacu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.00970v2-abstract-full').style.display = 'inline'; document.getElementById('1912.00970v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.00970v2-abstract-full" style="display: none;"> We studied surface and electronic structures of barium stannate (BaSnO$_3$) thin-film by low energy electron diffraction (LEED), and angle-resolved photoemission spectroscopy (ARPES) techniques. BaSnO$_3$/Ba$_{0.96}$La$_{0.04}$SnO$_3$/SrTiO$_3$ (10 nm/100 nm/0.5 mm) samples were grown using pulsed-laser deposition (PLD) method and were \emph{ex-situ} transferred from PLD chamber to ultra-high vacuum (UHV) chambers for annealing, LEED and ARPES studies. UHV annealing starting from 300$^{\circ}$C up to 550$^{\circ}$C, followed by LEED and ARPES measurements show 1$\times$1 surfaces with non-dispersive energy-momentum bands. The 1$\times$1 surface reconstructs into a $\sqrt{2}$$\times$$\sqrt{2}R45^\circ$ one at the annealing temperature of 700$^{\circ}$C where the ARPES data shows clear dispersive bands with valence band maximum located around 3.3 eV below Fermi level. While the $\sqrt{2}$$\times$$\sqrt{2}R45^\circ$ surface reconstruction is stable under further UHV annealing, it is reversed to 1$\times$1 surface by annealing the sample in 400 mTorr oxygen at 600$^{\circ}$C. Another UHV annealing at 600$^{\circ}$C followed by LEED and ARPES measurements, suggests that LEED $\sqrt{2}$$\times$$\sqrt{2}R45^\circ$ surface reconstruction and ARPES dispersive bands are reproduced. Our results provide a better picture of electronic structure of BaSnO$_3$ surface and are suggestive of role of oxygen vacancies in the reversible $\sqrt{2}$$\times$$\sqrt{2}R45^\circ$ surface reconstruction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.00970v2-abstract-full').style.display = 'none'; document.getElementById('1912.00970v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 055003 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.09508">arXiv:1909.09508</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.09508">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Measurement Anomaly of Step Width in Calibration Grating using Atomic Force Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+G">Gun Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+Y">Yoon-Young Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+D+J">Dean J. Miller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+H">Hanwook Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=No%2C+K">Kwangsoo No</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seungbum Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.09508v1-abstract-short" style="display: inline;"> We imaged the topography of a silicon grating with atomic force microscopy (AFM) using different scan parameters to probe the effect of pixel pitch on resolution. We found variations in the measured step height and profile of the grating depending on scan parameters, with measured step width decreasing from 1300 to 108 nm and step height increasing from 172 to 184 nm when a pixel pitch in the scan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09508v1-abstract-full').style.display = 'inline'; document.getElementById('1909.09508v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.09508v1-abstract-full" style="display: none;"> We imaged the topography of a silicon grating with atomic force microscopy (AFM) using different scan parameters to probe the effect of pixel pitch on resolution. We found variations in the measured step height and profile of the grating depending on scan parameters, with measured step width decreasing from 1300 to 108 nm and step height increasing from 172 to 184 nm when a pixel pitch in the scan axis decreased from 625 nm to 3.91 nm. In order to resolve the measurement anomaly of step width, we compared these values with step width and height of the same grating measured using scanning electron microscopy (SEM). The values obtained from SEM imaging were 187.3 nm +/- 6.2 nm and 116 nm +/- 10.4 nm, which were in good agreement with AFM data using a 3.91 nm of pixel pitch. We think that we need at least four pixels over the step width to avoid the measurement anomaly induced by the stick-slip or dragging of the tip. Our findings that RMS roughness varied less than 1 nm and converged at the value of 77.6 nm for any pixel pitch suggest that the RMS roughness is relatively insensitive to the pixel pitch. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09508v1-abstract-full').style.display = 'none'; document.getElementById('1909.09508v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.02419">arXiv:1909.02419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.02419">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale characterization of the impact of beverages on the enamel surface of human teeth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Panpan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+C">Chungik Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hongjun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen-Glasser%2C+M">Melodie Chen-Glasser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+G">Gun Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jetybayeva%2C+A">Albina Jetybayeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeom%2C+J">Jiwon Yeom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+J">Jeongjae Ryu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seungbum Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.02419v1-abstract-short" style="display: inline;"> Here we quantitatively evaluate the early stages of mechanical and morphological changes of polished human enamel surfaces induced by soft drinks using atomic force microscopy. With an increase of the immersion time in soft drinks, we found a significant increase of surface roughness (Ra) and a considerable decrease of elastic modulus (E) of the enamel. The prismatic structure of enamel was clearl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02419v1-abstract-full').style.display = 'inline'; document.getElementById('1909.02419v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.02419v1-abstract-full" style="display: none;"> Here we quantitatively evaluate the early stages of mechanical and morphological changes of polished human enamel surfaces induced by soft drinks using atomic force microscopy. With an increase of the immersion time in soft drinks, we found a significant increase of surface roughness (Ra) and a considerable decrease of elastic modulus (E) of the enamel. The prismatic structure of enamel was clearly observed after a one-hour immersion in Coca-Cola, which shows its strong erosion effect. A high surface roughness of enamel results in a high chance of cavities due to easier bacterial adhesion on rougher surface, while a drastic deterioration of the mechanical properties of the enamel weakens its protection property. Our findings show the variation of enamel surface at the very beginning stage of etching process by acidic drinks, which can also be applicable to the etching mechanism of enamel surface by other sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02419v1-abstract-full').style.display = 'none'; document.getElementById('1909.02419v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.00789">arXiv:1909.00789</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.00789">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Visualization of Ion Channels in Membranes using Electrochemical Strain Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Suran Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+C">Chungik Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hongjun Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yuanyuan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lanza%2C+M">Mario Lanza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=No%2C+K">Kwangsoo No</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seungbum Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.00789v2-abstract-short" style="display: inline;"> Polymer composite electrolytes of Nafion and phosphotungstic acid (PWA) are fabricated and analyzed using electrochemical strain microscopy (ESM) and conductive atomic force microscopy (C-AFM) to visualize hydrophilic ion channels near the surface, which are composed of water and sulfonic acid groups. The results indicate that the fibrillar objects in ESM image, without significant changes in topo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.00789v2-abstract-full').style.display = 'inline'; document.getElementById('1909.00789v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.00789v2-abstract-full" style="display: none;"> Polymer composite electrolytes of Nafion and phosphotungstic acid (PWA) are fabricated and analyzed using electrochemical strain microscopy (ESM) and conductive atomic force microscopy (C-AFM) to visualize hydrophilic ion channels near the surface, which are composed of water and sulfonic acid groups. The results indicate that the fibrillar objects in ESM image, without significant changes in topography, are hydrophilic ion channels and additional ion channels formed by interaction between PWA and sulfonic groups in Nafion. In this study, the buried ion channels lying under the surface are probed as well as the inlet and outlet of the channels on the surface through combined use of ESM and C-AFM. The results further enhance the understanding of ionic conduction in composite polymer electrolytes in various fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.00789v2-abstract-full').style.display = 'none'; document.getElementById('1909.00789v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.04825">arXiv:1908.04825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.04825">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-Assembled Room Temperature Multiferroic BiFeO3-LiFe5O8 Nanocomposites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+Y">Yogesh Sharma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+R">Radhe Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Collins%2C+L">Liam Collins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Q">Qiang Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivelev%2C+A+V">Anton V. Ivelev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hermann%2C+R+P">Raphael P. Hermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cooper%2C+V+R">Valentino R. Cooper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=KC%2C+S">Santosh KC</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivanov%2C+I+N">Ilia N. Ivanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katiyar%2C+R+S">Ram S. Katiyar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kalinin%2C+S+V">Sergei V. Kalinin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H+N">Ho Nyung Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Seungbum Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ward%2C+T+Z">Thomas Z. Ward</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.04825v1-abstract-short" style="display: inline;"> Multiferroic materials have driven significant research interest due to their promising technological potential. Developing new room-temperature multiferroics and understanding their fundamental properties are important to reveal unanticipated physical phenomena and potential applications. Here, a new room temperature multiferroic nanocomposite comprised of an ordered ferrimagnetic spinel LiFe5O8&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.04825v1-abstract-full').style.display = 'inline'; document.getElementById('1908.04825v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.04825v1-abstract-full" style="display: none;"> Multiferroic materials have driven significant research interest due to their promising technological potential. Developing new room-temperature multiferroics and understanding their fundamental properties are important to reveal unanticipated physical phenomena and potential applications. Here, a new room temperature multiferroic nanocomposite comprised of an ordered ferrimagnetic spinel LiFe5O8 (LFO) and a ferroelectric perovskite BiFeO3 (BFO) is presented. We observed that lithium (Li)-doping in BFO favors the formation of LFO spinel as a secondary phase during the synthesis of LixBi1-xFeO3 nanoceramics. Multimodal functional and chemical imaging methods are used to map the relationship between doping-induced phase separation and local ferroic properties in both the BFO-LFO composite ceramics and self-assembled nanocomposite thin films. The energetics of phase separation in Li doped BFO and the formation of BFO-LFO composites is supported by first principles calculations. These findings shed light on Li-ion role in the formation of a functionally important room temperature multiferroic and open a new approach in the synthesis of light element doped nanocomposites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.04825v1-abstract-full').style.display = 'none'; document.getElementById('1908.04825v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hong%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hong%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hong%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hong%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hong%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10