CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 60 results for author: <span class="mathjax">Petukhov, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Petukhov%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Petukhov, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Petukhov%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Petukhov, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Petukhov%2C+A&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Petukhov%2C+A&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Petukhov%2C+A&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00973">arXiv:2410.00973</a> <span> [<a href="https://arxiv.org/pdf/2410.00973">pdf</a>, <a href="https://arxiv.org/format/2410.00973">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Multi-site gates for state preparation in quantum simulation of the Bose Hubbard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Praneel%2C+P">Pranjal Praneel</a>, <a href="/search/cond-mat?searchtype=author&query=Kiely%2C+T+G">Thomas G. Kiely</a>, <a href="/search/cond-mat?searchtype=author&query=Mueller%2C+E+J">Erich J. Mueller</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">Andre G. Petukhov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00973v1-abstract-short" style="display: inline;"> We construct a sequence of multi-site gates which transform an easily constructed product state into an approximation to the superfluid ground state of the Bose-Hubbard model. The mapping is exact in the one dimensional hard core limit, and for non-interacting particles in both one and two dimensions. The gate sequence has other applications, such as being used as part of a many-body interferomete… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00973v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00973v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00973v1-abstract-full" style="display: none;"> We construct a sequence of multi-site gates which transform an easily constructed product state into an approximation to the superfluid ground state of the Bose-Hubbard model. The mapping is exact in the one dimensional hard core limit, and for non-interacting particles in both one and two dimensions. The gate sequence has other applications, such as being used as part of a many-body interferometer which probes the existence of doublons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00973v1-abstract-full').style.display = 'none'; document.getElementById('2410.00973v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17385">arXiv:2405.17385</a> <span> [<a href="https://arxiv.org/pdf/2405.17385">pdf</a>, <a href="https://arxiv.org/format/2405.17385">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Thermalization and Criticality on an Analog-Digital Quantum Simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/cond-mat?searchtype=author&query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Motruk%2C+J">Johannes Motruk</a>, <a href="/search/cond-mat?searchtype=author&query=Szasz%2C+A">Aaron Szasz</a>, <a href="/search/cond-mat?searchtype=author&query=Gross%2C+J+A">Jonathan A. Gross</a>, <a href="/search/cond-mat?searchtype=author&query=Schuckert%2C+A">Alexander Schuckert</a>, <a href="/search/cond-mat?searchtype=author&query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yaxing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Forati%2C+E">Ebrahim Forati</a>, <a href="/search/cond-mat?searchtype=author&query=Rossi%2C+D">Dario Rossi</a>, <a href="/search/cond-mat?searchtype=author&query=Kobrin%2C+B">Bryce Kobrin</a>, <a href="/search/cond-mat?searchtype=author&query=Di+Paolo%2C+A">Agustin Di Paolo</a>, <a href="/search/cond-mat?searchtype=author&query=Klots%2C+A+R">Andrey R. Klots</a>, <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I">Ilya Drozdov</a>, <a href="/search/cond-mat?searchtype=author&query=Kurilovich%2C+V+D">Vladislav D. Kurilovich</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A">Andre Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Ioffe%2C+L+B">Lev B. Ioffe</a>, <a href="/search/cond-mat?searchtype=author&query=Elben%2C+A">Andreas Elben</a>, <a href="/search/cond-mat?searchtype=author&query=Rath%2C+A">Aniket Rath</a>, <a href="/search/cond-mat?searchtype=author&query=Vitale%2C+V">Vittorio Vitale</a>, <a href="/search/cond-mat?searchtype=author&query=Vermersch%2C+B">Benoit Vermersch</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Beni%2C+L+A">Laleh Aghababaie Beni</a> , et al. (202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17385v2-abstract-short" style="display: inline;"> Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17385v2-abstract-full').style.display = 'inline'; document.getElementById('2405.17385v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17385v2-abstract-full" style="display: none;"> Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. Emulating a two-dimensional (2D) XY quantum magnet, we leverage a wide range of measurement techniques to study quantum states after ramps from an antiferromagnetic initial state. We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions attributed to the interplay between quantum and classical coarsening of the correlated domains. This interpretation is corroborated by injecting variable energy density into the initial state, which enables studying the effects of the eigenstate thermalization hypothesis (ETH) in targeted parts of the eigenspectrum. Finally, we digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization. These results establish the efficacy of superconducting analog-digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17385v2-abstract-full').style.display = 'none'; document.getElementById('2405.17385v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05637">arXiv:2312.05637</a> <span> [<a href="https://arxiv.org/pdf/2312.05637">pdf</a>, <a href="https://arxiv.org/format/2312.05637">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Microtube self-assembly leads to conformational freezing point depression </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Komarova%2C+T">Tatiana Komarova</a>, <a href="/search/cond-mat?searchtype=author&query=Zinn%2C+T">Thomas Zinn</a>, <a href="/search/cond-mat?searchtype=author&query=Narayanan%2C+T">Theyencheri Narayanan</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+V">Andrei V. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Landman%2C+J">Jasper Landman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05637v1-abstract-short" style="display: inline;"> Concentric microtubes of $尾$-cyclodextrin and SDS grow from the outside in and melt from the inside out, we observe using in situ small angle X-ray scattering. We find that the conformation of the crystalline bilayer affects the saturation concentration, providing an example of a phenomenon we call conformational freezing point depression. We propose a model based on freezing point depression, wel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05637v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05637v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05637v1-abstract-full" style="display: none;"> Concentric microtubes of $尾$-cyclodextrin and SDS grow from the outside in and melt from the inside out, we observe using in situ small angle X-ray scattering. We find that the conformation of the crystalline bilayer affects the saturation concentration, providing an example of a phenomenon we call conformational freezing point depression. We propose a model based on freezing point depression, well known from undergraduate physics, and use it to explain the energetics of this hierarchical system, and giving access to material properties without free parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05637v1-abstract-full').style.display = 'none'; document.getElementById('2312.05637v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.16621">arXiv:2307.16621</a> <span> [<a href="https://arxiv.org/pdf/2307.16621">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Which Ion Dominates Temperature and Pressure Response of Halide Perovskites and Elpasolites? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Muscarella%2C+L+A">Loreta A. Muscarella</a>, <a href="/search/cond-mat?searchtype=author&query=J%C3%B6bsis%2C+H+J">Huygen J. J枚bsis</a>, <a href="/search/cond-mat?searchtype=author&query=Baumgartner%2C+B">Bettina Baumgartner</a>, <a href="/search/cond-mat?searchtype=author&query=Prins%2C+P+T">P. Tim Prins</a>, <a href="/search/cond-mat?searchtype=author&query=Maaskant%2C+D+N">D. Nicolette Maaskant</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+V">Andrei V. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Chernyshov%2C+D">Dmitry Chernyshov</a>, <a href="/search/cond-mat?searchtype=author&query=McMonagle%2C+C+J">Charles J. McMonagle</a>, <a href="/search/cond-mat?searchtype=author&query=Hutter%2C+E+M">Eline M. Hutter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.16621v1-abstract-short" style="display: inline;"> Halide perovskite and elpasolite semiconductors are extensively studied for optoelectronic applications due to their excellent performance together with significant chemical and structural flexibility. However, there is still limited understanding of their basic elastic properties and how they vary with composition and temperature, which is relevant for synthesis and device operation. To address t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16621v1-abstract-full').style.display = 'inline'; document.getElementById('2307.16621v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.16621v1-abstract-full" style="display: none;"> Halide perovskite and elpasolite semiconductors are extensively studied for optoelectronic applications due to their excellent performance together with significant chemical and structural flexibility. However, there is still limited understanding of their basic elastic properties and how they vary with composition and temperature, which is relevant for synthesis and device operation. To address this, we performed temperature- and pressure-dependent synchrotron-based powder X-ray diffraction (XRD). In contrast to previous pressure-dependent XRD studies, our relatively low pressures (ambient to 0.06 GPa) enabled us to investigate the elastic properties of halide perovskites and elpasolites in their ambient crystal structure. We find that halide perovskites and elpasolites show common trends in the bulk modulus and thermal expansivity. Both materials become softer as the halide ionic radius increases from Cl to Br to I, exhibiting higher compressibility and larger thermal expansivity. The mixed-halide compositions show intermediate properties to the pure compounds. Contrary, cations show a minor effect on the elastic properties. Finally, we observe that thermal phase transitions in e.g., MAPbI3 and CsPbCl3 lead to a softening of the lattice, together with negative expansivity for certain crystal axes, already tens of degrees away from the transition temperature. Hence, the range in which the phase transition affects thermal and elastic properties is substantially broader than previously thought. These findings highlight the importance of considering the temperature-dependent elastic properties of these materials, since stress induced during manufacturing or temperature sweeps can significantly impact the stability and performance of the corresponding devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.16621v1-abstract-full').style.display = 'none'; document.getElementById('2307.16621v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04792">arXiv:2303.04792</a> <span> [<a href="https://arxiv.org/pdf/2303.04792">pdf</a>, <a href="https://arxiv.org/format/2303.04792">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06505-7">10.1038/s41586-023-06505-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement-induced entanglement and teleportation on a noisy quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hoke%2C+J+C">Jesse C. Hoke</a>, <a href="/search/cond-mat?searchtype=author&query=Ippoliti%2C+M">Matteo Ippoliti</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&query=Burger%2C+T">Tim Burger</a>, <a href="/search/cond-mat?searchtype=author&query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&query=Bushnell%2C+N">Nicholas Bushnell</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zijun Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Chiaro%2C+B">Ben Chiaro</a> , et al. (138 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04792v2-abstract-short" style="display: inline;"> Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04792v2-abstract-full').style.display = 'inline'; document.getElementById('2303.04792v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04792v2-abstract-full" style="display: none;"> Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04792v2-abstract-full').style.display = 'none'; document.getElementById('2303.04792v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 622, 481-486 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10255">arXiv:2210.10255</a> <span> [<a href="https://arxiv.org/pdf/2210.10255">pdf</a>, <a href="https://arxiv.org/format/2210.10255">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Non-Abelian braiding of graph vertices in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/cond-mat?searchtype=author&query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I">Ilya Drozdov</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+S">Sabrina Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Morvan%2C+A">Alexis Morvan</a>, <a href="/search/cond-mat?searchtype=author&query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Opremcak%2C+A">Alex Opremcak</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Allen%2C+R">Richard Allen</a>, <a href="/search/cond-mat?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Bacon%2C+D">Dave Bacon</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Buckley%2C+B+B">Bob B. Buckley</a> , et al. (144 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10255v2-abstract-short" style="display: inline;"> Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10255v2-abstract-full').style.display = 'inline'; document.getElementById('2210.10255v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10255v2-abstract-full" style="display: none;"> Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10255v2-abstract-full').style.display = 'none'; document.getElementById('2210.10255v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.01740">arXiv:2207.01740</a> <span> [<a href="https://arxiv.org/pdf/2207.01740">pdf</a>, <a href="https://arxiv.org/format/2207.01740">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.19.064066">10.1103/PhysRevApplied.19.064066 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterizing low-frequency qubit noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wudarski%2C+F">Filip Wudarski</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yaxing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Korotkov%2C+A">Alexander Korotkov</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Dykman%2C+M+I">M. I. Dykman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.01740v1-abstract-short" style="display: inline;"> Fluctuations of the qubit frequencies are one of the major problems to overcome on the way to scalable quantum computers. Of particular importance are fluctuations with the correlation time that exceeds the decoherence time due to decay and dephasing by fast processes. The statistics of the fluctuations can be characterized by measuring the correlators of the outcomes of periodically repeated Rams… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01740v1-abstract-full').style.display = 'inline'; document.getElementById('2207.01740v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.01740v1-abstract-full" style="display: none;"> Fluctuations of the qubit frequencies are one of the major problems to overcome on the way to scalable quantum computers. Of particular importance are fluctuations with the correlation time that exceeds the decoherence time due to decay and dephasing by fast processes. The statistics of the fluctuations can be characterized by measuring the correlators of the outcomes of periodically repeated Ramsey measurements. This work suggests a method that allows describing qubit dynamics during repeated measurements in the presence of evolving noise. It made it possible, in particular, to evaluate the two-time correlator for the noise from two-level systems and obtain two- and three-time correlators for a Gaussian noise. The explicit expressions for the correlators are compared with simulations. A significant difference of the three-time correlators for the noise from two-level systems and for a Gaussian noise is demonstrated. Strong broadening of the distribution of the outcomes of Ramsey measurements, with a possible fine structure, is found for the data acquisition time comparable to the noise correlation time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01740v1-abstract-full').style.display = 'none'; document.getElementById('2207.01740v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05254">arXiv:2206.05254</a> <span> [<a href="https://arxiv.org/pdf/2206.05254">pdf</a>, <a href="https://arxiv.org/format/2206.05254">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05348-y">10.1038/s41586-022-05348-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Formation of robust bound states of interacting microwave photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Morvan%2C+A">Alexis Morvan</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Neill%2C+C">Charles Neill</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A">Andre Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Bacon%2C+D">Dave Bacon</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Basso%2C+J">Joao Basso</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&query=Burger%2C+T">Tim Burger</a> , et al. (125 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05254v3-abstract-short" style="display: inline;"> Systems of correlated particles appear in many fields of science and represent some of the most intractable puzzles in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the 3-body problem and acceptable theory for strongly cor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05254v3-abstract-full').style.display = 'inline'; document.getElementById('2206.05254v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05254v3-abstract-full" style="display: none;"> Systems of correlated particles appear in many fields of science and represent some of the most intractable puzzles in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the 3-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multi-particle bound states. In a ring of 24 superconducting qubits, we develop a high fidelity parameterizable fSim gate that we use to implement the periodic quantum circuit of the spin-1/2 XXZ model, an archetypal model of interaction. By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons. We devise a phase sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the common wisdom that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05254v3-abstract-full').style.display = 'none'; document.getElementById('2206.05254v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages + 15 pages supplements</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 612, 240-245 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11372">arXiv:2204.11372</a> <span> [<a href="https://arxiv.org/pdf/2204.11372">pdf</a>, <a href="https://arxiv.org/format/2204.11372">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abq5769">10.1126/science.abq5769 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise-resilient Edge Modes on a Chain of Superconducting Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Sonner%2C+M">Michael Sonner</a>, <a href="/search/cond-mat?searchtype=author&query=Niu%2C+M+Y">Murphy Yuezhen Niu</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K+W">Kenneth W. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Foxen%2C+B">Brooks Foxen</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Aleiner%2C+I">Igor Aleiner</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Bacon%2C+D">Dave Bacon</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Basso%2C+J">Joao Basso</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&query=Bushnell%2C+N">Nicholas Bushnell</a> , et al. (103 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11372v2-abstract-short" style="display: inline;"> Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $\mathbb{Z}_2$ parity symmetry. Remarkably, we find that any multi-qub… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11372v2-abstract-full').style.display = 'inline'; document.getElementById('2204.11372v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11372v2-abstract-full" style="display: none;"> Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $\mathbb{Z}_2$ parity symmetry. Remarkably, we find that any multi-qubit Pauli operator overlapping with the MEMs exhibits a uniform late-time decay rate comparable to single-qubit relaxation rates, irrespective of its size or composition. This characteristic allows us to accurately reconstruct the exponentially localized spatial profiles of the MEMs. Furthermore, the MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism. Our work elucidates the complex interplay between noise and symmetry-protected edge modes in a solid-state environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11372v2-abstract-full').style.display = 'none'; document.getElementById('2204.11372v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 378, 785 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08562">arXiv:2202.08562</a> <span> [<a href="https://arxiv.org/pdf/2202.08562">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Angular X-ray Cross-Correlation Analysis Applied to the Scattering Data in 3D Reciprocal Space from a Single Crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lapkin%2C+D">Dmitry Lapkin</a>, <a href="/search/cond-mat?searchtype=author&query=Shabalin%2C+A">Anatoly Shabalin</a>, <a href="/search/cond-mat?searchtype=author&query=Meijer%2C+J">Janne-Mieke Meijer</a>, <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R">Ruslan Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+V">Andrei V. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08562v1-abstract-short" style="display: inline;"> We propose an application of the Angular X-ray Cross-Correlation Analysis (AXCCA) to the scattered intensity distribution measured in three-dimensional (3D) reciprocal space from a single crystalline sample. Contrary to the conventional application of AXCCA, when averaging over many two-dimensional (2D) diffraction patterns collected from different randomly oriented samples is required, the propos… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08562v1-abstract-full').style.display = 'inline'; document.getElementById('2202.08562v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08562v1-abstract-full" style="display: none;"> We propose an application of the Angular X-ray Cross-Correlation Analysis (AXCCA) to the scattered intensity distribution measured in three-dimensional (3D) reciprocal space from a single crystalline sample. Contrary to the conventional application of AXCCA, when averaging over many two-dimensional (2D) diffraction patterns collected from different randomly oriented samples is required, the proposed approach gives an insight into the structure of a single specimen. This is particularly useful in studies of defect-reach samples that are unlikely to have the same structure. Here, we demonstrate an example of a qualitative structure determination of a colloidal crystal on the simulated as well as experimentally measured 3D scattered intensity distributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08562v1-abstract-full').style.display = 'none'; document.getElementById('2202.08562v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.06139">arXiv:2108.06139</a> <span> [<a href="https://arxiv.org/pdf/2108.06139">pdf</a>, <a href="https://arxiv.org/format/2108.06139">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-assembly of Colloidal Superballs Under Spherical Confinement of a Drying Droplet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Schyck%2C+S+N">Sarah N. Schyck</a>, <a href="/search/cond-mat?searchtype=author&query=Meijer%2C+J">Janne-Mieke Meijer</a>, <a href="/search/cond-mat?searchtype=author&query=Baldauf%2C+L">Lucia Baldauf</a>, <a href="/search/cond-mat?searchtype=author&query=Schall%2C+P">Peter Schall</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+V">Andrei V. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Rossi%2C+L">Laura Rossi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.06139v4-abstract-short" style="display: inline;"> Understanding the relationship between colloidal building block shape and self-assembled material structure is important for the development of novel materials by self-assembly. In this regard, colloidal superballs are unique building blocks because their shape can smoothly transition between spherical and cubic. Assembly of colloidal superballs under spherical confinement results in macroscopic c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06139v4-abstract-full').style.display = 'inline'; document.getElementById('2108.06139v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.06139v4-abstract-full" style="display: none;"> Understanding the relationship between colloidal building block shape and self-assembled material structure is important for the development of novel materials by self-assembly. In this regard, colloidal superballs are unique building blocks because their shape can smoothly transition between spherical and cubic. Assembly of colloidal superballs under spherical confinement results in macroscopic clusters with ordered internal structure. By utilizing Small Angle X-Ray Scattering (SAXS), we probe the internal structure of colloidal superball dispersion droplets during confinement. We observe and identify four distinct drying regimes that arise during compression via evaporating droplets, and we track the development of the assembled macrostructure. As the superballs assemble, we found that they arrange into the predicted paracrystalline, rhombohedral C1-lattice that varies by the constituent superballs' shape. This provides insights in the behavior between confinement and particle shape that can be applied in the development of new functional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06139v4-abstract-full').style.display = 'none'; document.getElementById('2108.06139v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures, supporting info, accepted for publication in JCISOpen</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13571">arXiv:2107.13571</a> <span> [<a href="https://arxiv.org/pdf/2107.13571">pdf</a>, <a href="https://arxiv.org/format/2107.13571">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-04257-w">10.1038/s41586-021-04257-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Time-Crystalline Eigenstate Order on a Quantum Processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Ippoliti%2C+M">Matteo Ippoliti</a>, <a href="/search/cond-mat?searchtype=author&query=Quintana%2C+C">Chris Quintana</a>, <a href="/search/cond-mat?searchtype=author&query=Greene%2C+A">Ami Greene</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zijun Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Gross%2C+J">Jonathan Gross</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Basso%2C+J">Joao Basso</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&query=Bushnell%2C+N">Nicholas Bushnell</a>, <a href="/search/cond-mat?searchtype=author&query=Chiaro%2C+B">Benjamin Chiaro</a>, <a href="/search/cond-mat?searchtype=author&query=Collins%2C+R">Roberto Collins</a>, <a href="/search/cond-mat?searchtype=author&query=Courtney%2C+W">William Courtney</a>, <a href="/search/cond-mat?searchtype=author&query=Debroy%2C+D">Dripto Debroy</a> , et al. (80 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13571v2-abstract-short" style="display: inline;"> Quantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC). Concretely, dyn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13571v2-abstract-full').style.display = 'inline'; document.getElementById('2107.13571v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13571v2-abstract-full" style="display: none;"> Quantum many-body systems display rich phase structure in their low-temperature equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC). Concretely, dynamical phases can be defined in periodically driven many-body localized systems via the concept of eigenstate order. In eigenstate-ordered phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, wherein few select states can mask typical behavior. Here we implement a continuous family of tunable CPHASE gates on an array of superconducting qubits to experimentally observe an eigenstate-ordered DTC. We demonstrate the characteristic spatiotemporal response of a DTC for generic initial states. Our work employs a time-reversal protocol that discriminates external decoherence from intrinsic thermalization, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. In addition, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13571v2-abstract-full').style.display = 'none'; document.getElementById('2107.13571v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 601, 531 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.01180">arXiv:2104.01180</a> <span> [<a href="https://arxiv.org/pdf/2104.01180">pdf</a>, <a href="https://arxiv.org/format/2104.01180">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abi8378">10.1126/science.abi8378 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Realizing topologically ordered states on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Satzinger%2C+K+J">K. J. Satzinger</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Smith%2C+A">A. Smith</a>, <a href="/search/cond-mat?searchtype=author&query=Knapp%2C+C">C. Knapp</a>, <a href="/search/cond-mat?searchtype=author&query=Newman%2C+M">M. Newman</a>, <a href="/search/cond-mat?searchtype=author&query=Jones%2C+C">C. Jones</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Quintana%2C+C">C. Quintana</a>, <a href="/search/cond-mat?searchtype=author&query=Mi%2C+X">X. Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Dunsworth%2C+A">A. Dunsworth</a>, <a href="/search/cond-mat?searchtype=author&query=Gidney%2C+C">C. Gidney</a>, <a href="/search/cond-mat?searchtype=author&query=Aleiner%2C+I">I. Aleiner</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">F. Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">K. Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">J. Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">R. Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">J. C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Barends%2C+R">R. Barends</a>, <a href="/search/cond-mat?searchtype=author&query=Basso%2C+J">J. Basso</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">A. Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bilmes%2C+A">A. Bilmes</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">M. Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Buckley%2C+B+B">B. B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&query=Buell%2C+D+A">D. A. Buell</a>, <a href="/search/cond-mat?searchtype=author&query=Burkett%2C+B">B. Burkett</a> , et al. (73 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.01180v1-abstract-short" style="display: inline;"> The discovery of topological order has revolutionized the understanding of quantum matter in modern physics and provided the theoretical foundation for many quantum error correcting codes. Realizing topologically ordered states has proven to be extremely challenging in both condensed matter and synthetic quantum systems. Here, we prepare the ground state of the toric code Hamiltonian using an effi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01180v1-abstract-full').style.display = 'inline'; document.getElementById('2104.01180v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.01180v1-abstract-full" style="display: none;"> The discovery of topological order has revolutionized the understanding of quantum matter in modern physics and provided the theoretical foundation for many quantum error correcting codes. Realizing topologically ordered states has proven to be extremely challenging in both condensed matter and synthetic quantum systems. Here, we prepare the ground state of the toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor. We measure a topological entanglement entropy near the expected value of $\ln2$, and simulate anyon interferometry to extract the braiding statistics of the emergent excitations. Furthermore, we investigate key aspects of the surface code, including logical state injection and the decay of the non-local order parameter. Our results demonstrate the potential for quantum processors to provide key insights into topological quantum matter and quantum error correction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01180v1-abstract-full').style.display = 'none'; document.getElementById('2104.01180v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages 4 figures, plus supplementary materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 374, 1237-1241 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08870">arXiv:2101.08870</a> <span> [<a href="https://arxiv.org/pdf/2101.08870">pdf</a>, <a href="https://arxiv.org/format/2101.08870">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abg5029">10.1126/science.abg5029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Information Scrambling in Computationally Complex Quantum Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Roushan%2C+P">Pedram Roushan</a>, <a href="/search/cond-mat?searchtype=author&query=Quintana%2C+C">Chris Quintana</a>, <a href="/search/cond-mat?searchtype=author&query=Mandra%2C+S">Salvatore Mandra</a>, <a href="/search/cond-mat?searchtype=author&query=Marshall%2C+J">Jeffrey Marshall</a>, <a href="/search/cond-mat?searchtype=author&query=Neill%2C+C">Charles Neill</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Barends%2C+R">Rami Barends</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Boixo%2C+S">Sergio Boixo</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&query=Bushnell%2C+N">Nicholas Bushnell</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zijun Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Chiaro%2C+B">Benjamin Chiaro</a>, <a href="/search/cond-mat?searchtype=author&query=Collins%2C+R">Roberto Collins</a>, <a href="/search/cond-mat?searchtype=author&query=Courtney%2C+W">William Courtney</a>, <a href="/search/cond-mat?searchtype=author&query=Demura%2C+S">Sean Demura</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08870v1-abstract-short" style="display: inline;"> Interaction in quantum systems can spread initially localized quantum information into the many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is the key to resolving various conundrums in physics. Here, by measuring the time-dependent evolution and fluctuation of out-of-time-order correlators, we experimentally investigate the dynamics of quantum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08870v1-abstract-full').style.display = 'inline'; document.getElementById('2101.08870v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08870v1-abstract-full" style="display: none;"> Interaction in quantum systems can spread initially localized quantum information into the many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is the key to resolving various conundrums in physics. Here, by measuring the time-dependent evolution and fluctuation of out-of-time-order correlators, we experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor. We engineer quantum circuits that distinguish the two mechanisms associated with quantum scrambling, operator spreading and operator entanglement, and experimentally observe their respective signatures. We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate. These results open the path to studying complex and practically relevant physical observables with near-term quantum processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08870v1-abstract-full').style.display = 'none'; document.getElementById('2101.08870v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 374, 1479 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.14244">arXiv:2003.14244</a> <span> [<a href="https://arxiv.org/pdf/2003.14244">pdf</a>, <a href="https://arxiv.org/format/2003.14244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Probing Environmental Spin Polarization with Superconducting Flux Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lanting%2C+T">T. Lanting</a>, <a href="/search/cond-mat?searchtype=author&query=Amin%2C+M+H">M. H. Amin</a>, <a href="/search/cond-mat?searchtype=author&query=Baron%2C+C">C. Baron</a>, <a href="/search/cond-mat?searchtype=author&query=Babcock%2C+M">M. Babcock</a>, <a href="/search/cond-mat?searchtype=author&query=Boschee%2C+J">J. Boschee</a>, <a href="/search/cond-mat?searchtype=author&query=Boixo%2C+S">S. Boixo</a>, <a href="/search/cond-mat?searchtype=author&query=Smelyanskiy%2C+V+N">V. N. Smelyanskiy</a>, <a href="/search/cond-mat?searchtype=author&query=Foygel%2C+M">M. Foygel</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.14244v2-abstract-short" style="display: inline;"> We present measurements of the dynamics of a polarized magnetic environment coupled to the flux degree of freedom of rf-SQUID flux qubits. The qubits are used as both sources of polarizing field and detectors of the environmental polarization. We probe dynamics at timescales from 5 $渭$s to 5 ms and at temperatures between 12.5 and 22 mK. The measured polarization versus temperature provides strong… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.14244v2-abstract-full').style.display = 'inline'; document.getElementById('2003.14244v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.14244v2-abstract-full" style="display: none;"> We present measurements of the dynamics of a polarized magnetic environment coupled to the flux degree of freedom of rf-SQUID flux qubits. The qubits are used as both sources of polarizing field and detectors of the environmental polarization. We probe dynamics at timescales from 5 $渭$s to 5 ms and at temperatures between 12.5 and 22 mK. The measured polarization versus temperature provides strong evidence for a phase transition at a temperature of $5.7\pm 0.3$ mK. Furthermore, the environmental polarization grows initially as $\sqrt{t}$, consistent with spin diffusion dynamics. However, spin diffusion model deviates from data at long timescales, suggesting that a different phenomenon is responsible for the low-frequency behavior. A simple $1/f$ model can fit the data at all time scales but it requires empirical low- and high-frequency cutoffs. We argue that these results are consistent with an environment comprised of random clusters of spins, with fast spin diffusion dynamics within the clusters and slow fluctuations of the total moments of the clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.14244v2-abstract-full').style.display = 'none'; document.getElementById('2003.14244v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.03752">arXiv:1911.03752</a> <span> [<a href="https://arxiv.org/pdf/1911.03752">pdf</a>, <a href="https://arxiv.org/format/1911.03752">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-020-67214-z">10.1038/s41598-020-67214-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtosecond laser produced periodic plasma in a colloidal crystal probed by XFEL radiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mukharamova%2C+N">Nastasia Mukharamova</a>, <a href="/search/cond-mat?searchtype=author&query=Lazarev%2C+S">Sergey Lazarev</a>, <a href="/search/cond-mat?searchtype=author&query=Meijer%2C+J">Janne-Mieke Meijer</a>, <a href="/search/cond-mat?searchtype=author&query=Gorobtsov%2C+O+Y">Oleg Yu. Gorobtsov</a>, <a href="/search/cond-mat?searchtype=author&query=Singer%2C+A">Andrej Singer</a>, <a href="/search/cond-mat?searchtype=author&query=Chollet%2C+M">Matthieu Chollet</a>, <a href="/search/cond-mat?searchtype=author&query=Bussmann%2C+M">Michael Bussmann</a>, <a href="/search/cond-mat?searchtype=author&query=Dzhigaev%2C+D">Dmitry Dzhigaev</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Y">Yiping Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Garten%2C+M">Marco Garten</a>, <a href="/search/cond-mat?searchtype=author&query=Huebl%2C+A">Axel Huebl</a>, <a href="/search/cond-mat?searchtype=author&query=Kluge%2C+T">Thomas Kluge</a>, <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">Ruslan P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Lipp%2C+V">Vladimir Lipp</a>, <a href="/search/cond-mat?searchtype=author&query=Santra%2C+R">Robin Santra</a>, <a href="/search/cond-mat?searchtype=author&query=Sikorski%2C+M">Marcin Sikorski</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+S">Sanghoon Song</a>, <a href="/search/cond-mat?searchtype=author&query=Williams%2C+G">Garth Williams</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+D">Diling Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Ziaja-Motyka%2C+B">Beata Ziaja-Motyka</a>, <a href="/search/cond-mat?searchtype=author&query=Cowan%2C+T">Thomas Cowan</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+V">Andrei V. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.03752v1-abstract-short" style="display: inline;"> With the rapid development of short-pulse intense laser sources, studies of matter under extreme irradiation conditions enter further unexplored regimes. In addition, an application of X-ray Free- Electron Lasers (XFELs), delivering intense femtosecond X-ray pulses allows to investigate sample evolution in IR pump - X-ray probe experiments with an unprecedented time resolution. Here we present the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.03752v1-abstract-full').style.display = 'inline'; document.getElementById('1911.03752v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.03752v1-abstract-full" style="display: none;"> With the rapid development of short-pulse intense laser sources, studies of matter under extreme irradiation conditions enter further unexplored regimes. In addition, an application of X-ray Free- Electron Lasers (XFELs), delivering intense femtosecond X-ray pulses allows to investigate sample evolution in IR pump - X-ray probe experiments with an unprecedented time resolution. Here we present the detailed study of periodic plasma created from the colloidal crystal. Both experimental data and theory modeling show that the periodicity in the sample survives to a large extent the extreme excitation and shock wave propagation inside the colloidal crystal. This feature enables probing the excited crystal, using the powerful Bragg peak analysis, in contrast to the conventional studies of dense plasma created from bulk samples for which probing with Bragg diffraction technique is not possible. X-ray diffraction measurements of excited colloidal crystals may then lead towards a better understanding of matter phase transitions under extreme irradiation conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.03752v1-abstract-full').style.display = 'none'; document.getElementById('1911.03752v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 22 figures, 64 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 10, 10780 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.06024">arXiv:1910.06024</a> <span> [<a href="https://arxiv.org/pdf/1910.06024">pdf</a>, <a href="https://arxiv.org/format/1910.06024">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct measurement of non-local interactions in the many-body localized phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chiaro%2C+B">B. Chiaro</a>, <a href="/search/cond-mat?searchtype=author&query=Neill%2C+C">C. Neill</a>, <a href="/search/cond-mat?searchtype=author&query=Bohrdt%2C+A">A. Bohrdt</a>, <a href="/search/cond-mat?searchtype=author&query=Filippone%2C+M">M. Filippone</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">F. Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">K. Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">R. Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J">J. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Barends%2C+R">R. Barends</a>, <a href="/search/cond-mat?searchtype=author&query=Boixo%2C+S">S. Boixo</a>, <a href="/search/cond-mat?searchtype=author&query=Buell%2C+D">D. Buell</a>, <a href="/search/cond-mat?searchtype=author&query=Burkett%2C+B">B. Burkett</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Collins%2C+R">R. Collins</a>, <a href="/search/cond-mat?searchtype=author&query=Dunsworth%2C+A">A. Dunsworth</a>, <a href="/search/cond-mat?searchtype=author&query=Farhi%2C+E">E. Farhi</a>, <a href="/search/cond-mat?searchtype=author&query=Fowler%2C+A">A. Fowler</a>, <a href="/search/cond-mat?searchtype=author&query=Foxen%2C+B">B. Foxen</a>, <a href="/search/cond-mat?searchtype=author&query=Gidney%2C+C">C. Gidney</a>, <a href="/search/cond-mat?searchtype=author&query=Giustina%2C+M">M. Giustina</a>, <a href="/search/cond-mat?searchtype=author&query=Harrigan%2C+M">M. Harrigan</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+T">T. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Isakov%2C+S">S. Isakov</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.06024v2-abstract-short" style="display: inline;"> The interplay of interactions and strong disorder can lead to an exotic quantum many-body localized (MBL) phase. Beyond the absence of transport, the MBL phase has distinctive signatures, such as slow dephasing and logarithmic entanglement growth; they commonly result in slow and subtle modification of the dynamics, making their measurement challenging. Here, we experimentally characterize these p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.06024v2-abstract-full').style.display = 'inline'; document.getElementById('1910.06024v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.06024v2-abstract-full" style="display: none;"> The interplay of interactions and strong disorder can lead to an exotic quantum many-body localized (MBL) phase. Beyond the absence of transport, the MBL phase has distinctive signatures, such as slow dephasing and logarithmic entanglement growth; they commonly result in slow and subtle modification of the dynamics, making their measurement challenging. Here, we experimentally characterize these properties of the MBL phase in a system of coupled superconducting qubits. By implementing phase sensitive techniques, we map out the structure of local integrals of motion in the MBL phase. Tomographic reconstruction of single and two qubit density matrices allowed us to determine the spatial and temporal entanglement growth between the localized sites. In addition, we study the preservation of entanglement in the MBL phase. The interferometric protocols implemented here measure affirmative correlations and allow us to exclude artifacts due to the imperfect isolation of the system. By measuring elusive MBL quantities, our work highlights the advantages of phase sensitive measurements in studying novel phases of matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.06024v2-abstract-full').style.display = 'none'; document.getElementById('1910.06024v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+28 pages, 5+22 figures, updated version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.06756">arXiv:1901.06756</a> <span> [<a href="https://arxiv.org/pdf/1901.06756">pdf</a>, <a href="https://arxiv.org/format/1901.06756">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Backflow Effect on Spin Diffusion Near Ferromagnet-Superconductor Interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Faiz%2C+M">M. Faiz</a>, <a href="/search/cond-mat?searchtype=author&query=Panguluri%2C+R+P">R. P. Panguluri</a>, <a href="/search/cond-mat?searchtype=author&query=Nadgorny%2C+B">B. Nadgorny</a>, <a href="/search/cond-mat?searchtype=author&query=Balke%2C+B">B. Balke</a>, <a href="/search/cond-mat?searchtype=author&query=Wurmehl%2C+S">S. Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.06756v1-abstract-short" style="display: inline;"> The behavior of spin propagation in metals in various measurement schemes is shown to be qualitatively different than a simple exponential decay - due to the backflow effect on spin diffusion in the presence of interfaces. To probe this effect we utilize the spin sensitivity of an Andreev contact between gold films of variable thickness deposited on top of a spin injector, Co$_{2}$Mn$_{0.5}$Fe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06756v1-abstract-full').style.display = 'inline'; document.getElementById('1901.06756v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.06756v1-abstract-full" style="display: none;"> The behavior of spin propagation in metals in various measurement schemes is shown to be qualitatively different than a simple exponential decay - due to the backflow effect on spin diffusion in the presence of interfaces. To probe this effect we utilize the spin sensitivity of an Andreev contact between gold films of variable thickness deposited on top of a spin injector, Co$_{2}$Mn$_{0.5}$Fe$_{0.5}$Si, with the spin polarization of approximately 45\%, and Nb superconducting tip. While the results are consistent with gradually decaying spin polarization as the film thickness increases, the spin diffusion length in Au found to be 285 nm, is more than two times larger that one would have obtained without taking the backflow effect into account. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.06756v1-abstract-full').style.display = 'none'; document.getElementById('1901.06756v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.00932">arXiv:1807.00932</a> <span> [<a href="https://arxiv.org/pdf/1807.00932">pdf</a>, <a href="https://arxiv.org/format/1807.00932">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Unravelling structural rearrangement of polymer colloidal crystals under dry sintering conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A+V">Alexey V. Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Zaluzhnyy%2C+I+A">Ivan A. Zaluzhnyy</a>, <a href="/search/cond-mat?searchtype=author&query=Mukharamova%2C+N">Nastasia Mukharamova</a>, <a href="/search/cond-mat?searchtype=author&query=Lazarev%2C+S">Sergey Lazarev</a>, <a href="/search/cond-mat?searchtype=author&query=Meijer%2C+J">Janne-Mieke Meijer</a>, <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">Ruslan P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Shabalin%2C+A">Anatoly Shabalin</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+V">Andrei V. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.00932v1-abstract-short" style="display: inline;"> Structural rearrangement of polystyrene colloidal crystals under dry sintering conditions has been revealed by in situ grazing incidence X-ray scattering. Measured diffraction patterns were analysed using distorted wave Born approximation (DWBA) theory and the structural parameters of as-grown colloidal crystals of three different particle sizes were determined for in-plane and out-of-plane direct… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00932v1-abstract-full').style.display = 'inline'; document.getElementById('1807.00932v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.00932v1-abstract-full" style="display: none;"> Structural rearrangement of polystyrene colloidal crystals under dry sintering conditions has been revealed by in situ grazing incidence X-ray scattering. Measured diffraction patterns were analysed using distorted wave Born approximation (DWBA) theory and the structural parameters of as-grown colloidal crystals of three different particle sizes were determined for in-plane and out-of-plane directions in a film. By analysing the temperature evolution of diffraction peak positions, integrated intensities, and widths the detailed scenario of structural rearrangement of crystalline domains at a nanoscale has been revealed, including thermal expansion, particle shape transformation and crystal amorphisation. Based on DWBA analysis we demonstrate that in the process of dry sintering the shape of colloidal particles in a crystal transforms from a sphere to a polyhedron. Our results deepen the understanding of thermal annealing of polymer colloidal crystals as an efficient route to the design of new nano-materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00932v1-abstract-full').style.display = 'none'; document.getElementById('1807.00932v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.05320">arXiv:1711.05320</a> <span> [<a href="https://arxiv.org/pdf/1711.05320">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.2.014406">10.1103/PhysRevMaterials.2.014406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Growth, electrical, structural, and magnetic properties of half-Heusler CoTi$_{1-x}$Fe$_x$Sb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Harrington%2C+S+D">Sean D. Harrington</a>, <a href="/search/cond-mat?searchtype=author&query=Rice%2C+A+D">Anthony D. Rice</a>, <a href="/search/cond-mat?searchtype=author&query=Brown-Heft%2C+T">Tobias Brown-Heft</a>, <a href="/search/cond-mat?searchtype=author&query=Bonef%2C+B">Bastien Bonef</a>, <a href="/search/cond-mat?searchtype=author&query=Sharan%2C+A">Abhishek Sharan</a>, <a href="/search/cond-mat?searchtype=author&query=McFadden%2C+A+P">Anthony P. McFadden</a>, <a href="/search/cond-mat?searchtype=author&query=Logan%2C+J+A">John A. Logan</a>, <a href="/search/cond-mat?searchtype=author&query=Pendharkar%2C+M">Mihir Pendharkar</a>, <a href="/search/cond-mat?searchtype=author&query=Feldman%2C+M+M">Mayer M. Feldman</a>, <a href="/search/cond-mat?searchtype=author&query=Mercan%2C+O">Ozge Mercan</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">Andre G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Janotti%2C+A">Anderson Janotti</a>, <a href="/search/cond-mat?searchtype=author&query=Arslan%2C+L+%C3%87">Leyla 脟olakerol Arslan</a>, <a href="/search/cond-mat?searchtype=author&query=Palmstr%C3%B8m%2C+C+J">Chris J. Palmstr酶m</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.05320v1-abstract-short" style="display: inline;"> Epitaxial thin films of the substitutionally alloyed half-Heusler series CoTi$_{1-x}$Fe$_x$Sb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0$\leq$x$\leq$1.0. The influence of Fe on the structural, electronic, and magnetic properties was studied and compared to that expected from density functional theory. The films are epitaxial and single crystalline, as… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05320v1-abstract-full').style.display = 'inline'; document.getElementById('1711.05320v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.05320v1-abstract-full" style="display: none;"> Epitaxial thin films of the substitutionally alloyed half-Heusler series CoTi$_{1-x}$Fe$_x$Sb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0$\leq$x$\leq$1.0. The influence of Fe on the structural, electronic, and magnetic properties was studied and compared to that expected from density functional theory. The films are epitaxial and single crystalline, as measured by reflection high-energy electron diffraction and X-ray diffraction. Using in-situ X-ray photoelectron spectroscopy, only small changes in the valence band are detected for x$\leq$0.5. For films with x$\geq$0.05, ferromagnetism is observed in SQUID magnetometry with a saturation magnetization that scales linearly with Fe content. A dramatic decrease in the magnetic moment per formula unit occurs when the Fe is substitutionally alloyed on the Co site indicating a strong dependence on the magnetic moment with site occupancy. A crossover from both in-plane and out-of-plane magnetic moments to only in-plane moment occurs for higher concentrations of Fe. Ferromagnetic resonance indicates a transition from weak to strong interaction with a reduction in inhomogeneous broadening as Fe content is increased. Temperature-dependent transport reveals a semiconductor to metal transition with thermally activated behavior for x$\leq$0.5. Anomalous Hall effect and large negative magnetoresistance (up to -18.5% at 100 kOe for x=0.3) are observed for higher Fe content films. Evidence of superparamagnetism for x=0.3 and x=0.2 suggests for moderate levels of Fe, demixing of the CoTi$_{1-x}$Fe$_x$Sb films into Fe rich and Fe deficient regions may be present. Atom probe tomography is used to examine the Fe distribution in a x=0.3 film. Statistical analysis reveals a nonhomogeneous distribution of Fe atoms throughout the film, which is used to explain the observed magnetic and electrical behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05320v1-abstract-full').style.display = 'none'; document.getElementById('1711.05320v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 2, 014406 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.01565">arXiv:1707.01565</a> <span> [<a href="https://arxiv.org/pdf/1707.01565">pdf</a>, <a href="https://arxiv.org/format/1707.01565">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.12693/APhysPolA.133.343">10.12693/APhysPolA.133.343 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiband Electronic Structure of Magnetic Quantum Dots: Numerical Studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Rederth%2C+D">D. Rederth</a>, <a href="/search/cond-mat?searchtype=author&query=Oszwaldowski%2C+R">R. Oszwaldowski</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Pientka%2C+J">J. Pientka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.01565v1-abstract-short" style="display: inline;"> Semiconductor quantum dots (QDs) doped with magnetic impurities have been a focus of continuous research for a couple of decades. A significant effort has been devoted to studies of magnetic polarons (MP) in these nanostructures. These collective states arise through exchange interaction between a carrier confined in a QD and localized spins of the magnetic impurities (typically: Mn). We discuss o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.01565v1-abstract-full').style.display = 'inline'; document.getElementById('1707.01565v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.01565v1-abstract-full" style="display: none;"> Semiconductor quantum dots (QDs) doped with magnetic impurities have been a focus of continuous research for a couple of decades. A significant effort has been devoted to studies of magnetic polarons (MP) in these nanostructures. These collective states arise through exchange interaction between a carrier confined in a QD and localized spins of the magnetic impurities (typically: Mn). We discuss our theoretical description of various MP properties in self-assembled QDs. We present a self-consistent, temperature-dependent approach to MPs formed by a valence band hole. We use the Luttinger-Kohn k.p Hamiltonian to account for the important effects of spin-orbit interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.01565v1-abstract-full').style.display = 'none'; document.getElementById('1707.01565v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.08752">arXiv:1608.08752</a> <span> [<a href="https://arxiv.org/pdf/1608.08752">pdf</a>, <a href="https://arxiv.org/format/1608.08752">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.057702">10.1103/PhysRevLett.118.057702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of classical-quantum crossover of 1/f flux noise and its paramagnetic temperature dependence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Quintana%2C+C+M">C. M. Quintana</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Yu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Sank%2C+D">D. Sank</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=White%2C+T+C">T. C. White</a>, <a href="/search/cond-mat?searchtype=author&query=Kafri%2C+D">Dvir Kafri</a>, <a href="/search/cond-mat?searchtype=author&query=Chiaro%2C+B">B. Chiaro</a>, <a href="/search/cond-mat?searchtype=author&query=Megrant%2C+A">A. Megrant</a>, <a href="/search/cond-mat?searchtype=author&query=Barends%2C+R">R. Barends</a>, <a href="/search/cond-mat?searchtype=author&query=Campbell%2C+B">B. Campbell</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Dunsworth%2C+A">A. Dunsworth</a>, <a href="/search/cond-mat?searchtype=author&query=Fowler%2C+A+G">A. G. Fowler</a>, <a href="/search/cond-mat?searchtype=author&query=Graff%2C+R">R. Graff</a>, <a href="/search/cond-mat?searchtype=author&query=Jeffrey%2C+E">E. Jeffrey</a>, <a href="/search/cond-mat?searchtype=author&query=Kelly%2C+J">J. Kelly</a>, <a href="/search/cond-mat?searchtype=author&query=Lucero%2C+E">E. Lucero</a>, <a href="/search/cond-mat?searchtype=author&query=Mutus%2C+J+Y">J. Y. Mutus</a>, <a href="/search/cond-mat?searchtype=author&query=Neeley%2C+M">M. Neeley</a>, <a href="/search/cond-mat?searchtype=author&query=Neill%2C+C">C. Neill</a>, <a href="/search/cond-mat?searchtype=author&query=O%27Malley%2C+P+J+J">P. J. J. O'Malley</a>, <a href="/search/cond-mat?searchtype=author&query=Roushan%2C+P">P. Roushan</a>, <a href="/search/cond-mat?searchtype=author&query=Shabani%2C+A">A. Shabani</a>, <a href="/search/cond-mat?searchtype=author&query=Smelyanskiy%2C+V+N">V. N. Smelyanskiy</a>, <a href="/search/cond-mat?searchtype=author&query=Vainsencher%2C+A">A. Vainsencher</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.08752v2-abstract-short" style="display: inline;"> By analyzing the dissipative dynamics of a tunable gap flux qubit, we extract both sides of its two-sided environmental flux noise spectral density over a range of frequencies around $2k_BT/h \approx 1\,\rm{GHz}$, allowing for the observation of a classical-quantum crossover. Below the crossover point, the symmetric noise component follows a $1/f$ power law that matches the magnitude of the $1/f$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.08752v2-abstract-full').style.display = 'inline'; document.getElementById('1608.08752v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.08752v2-abstract-full" style="display: none;"> By analyzing the dissipative dynamics of a tunable gap flux qubit, we extract both sides of its two-sided environmental flux noise spectral density over a range of frequencies around $2k_BT/h \approx 1\,\rm{GHz}$, allowing for the observation of a classical-quantum crossover. Below the crossover point, the symmetric noise component follows a $1/f$ power law that matches the magnitude of the $1/f$ noise near $1\,{\rm{Hz}}$. The antisymmetric component displays a 1/T dependence below $100\,\rm{mK}$, providing dynamical evidence for a paramagnetic environment. Extrapolating the two-sided spectrum predicts the linewidth and reorganization energy of incoherent resonant tunneling between flux qubit wells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.08752v2-abstract-full').style.display = 'none'; document.getElementById('1608.08752v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">paper + supplement</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 057702 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.09031">arXiv:1605.09031</a> <span> [<a href="https://arxiv.org/pdf/1605.09031">pdf</a>, <a href="https://arxiv.org/format/1605.09031">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.138002">10.1103/PhysRevLett.117.138002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing three-dimensional structure of individual colloidal crystal grain by coherent x-ray diffractive imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shabalin%2C+A+G">A. G. Shabalin</a>, <a href="/search/cond-mat?searchtype=author&query=Meijer%2C+J+-">J. -M. Meijer</a>, <a href="/search/cond-mat?searchtype=author&query=Dronyak%2C+R">R. Dronyak</a>, <a href="/search/cond-mat?searchtype=author&query=Yefanov%2C+O+M">O. M. Yefanov</a>, <a href="/search/cond-mat?searchtype=author&query=Singer%2C+A">A. Singer</a>, <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">R. P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Lorenz%2C+U">U. Lorenz</a>, <a href="/search/cond-mat?searchtype=author&query=Gorobtsov%2C+O+Y">O. Y. Gorobtsov</a>, <a href="/search/cond-mat?searchtype=author&query=Dzhigaev%2C+D">D. Dzhigaev</a>, <a href="/search/cond-mat?searchtype=author&query=Kalbfleisch%2C+S">S. Kalbfleisch</a>, <a href="/search/cond-mat?searchtype=author&query=Gulden%2C+J">J. Gulden</a>, <a href="/search/cond-mat?searchtype=author&query=Zozulya%2C+A+V">A. V. Zozulya</a>, <a href="/search/cond-mat?searchtype=author&query=Sprung%2C+M">M. Sprung</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+V">A. V. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.09031v1-abstract-short" style="display: inline;"> We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.09031v1-abstract-full').style.display = 'inline'; document.getElementById('1605.09031v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.09031v1-abstract-full" style="display: none;"> We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal grain was reconstructed and positions of individual colloidal particles were resolved. As a result, an exact stacking sequence of hexagonal close-packed layers including planar and linear defects were identified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.09031v1-abstract-full').style.display = 'none'; document.getElementById('1605.09031v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 138002 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.02676">arXiv:1605.02676</a> <span> [<a href="https://arxiv.org/pdf/1605.02676">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nanoassembly of Polydisperse Photonic Crystals based on Binary and Ternary Polymer Opal Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Q">Qibin Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Finlayson%2C+C+E">Chris E. Finlayson</a>, <a href="/search/cond-mat?searchtype=author&query=Schafer%2C+C">Christian Schafer</a>, <a href="/search/cond-mat?searchtype=author&query=Spahn%2C+P">Peter Spahn</a>, <a href="/search/cond-mat?searchtype=author&query=Gallei%2C+M">Markus Gallei</a>, <a href="/search/cond-mat?searchtype=author&query=Herrmann%2C+L">Lars Herrmann</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A">Andrei Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Baumberg%2C+J+J">Jeremy J. Baumberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.02676v1-abstract-short" style="display: inline;"> Ordered binary and ternary photonic crystals, composed of different sized polymer-composite spheres with diameter ratios up to 120%, are generated using bending induced oscillatory shearing (BIOS). This viscoelastic system creates polydisperse equilibrium structures, producing mixed opaline colored films with greatly reduced requirements for particle monodispersity, and very different sphere size… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.02676v1-abstract-full').style.display = 'inline'; document.getElementById('1605.02676v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.02676v1-abstract-full" style="display: none;"> Ordered binary and ternary photonic crystals, composed of different sized polymer-composite spheres with diameter ratios up to 120%, are generated using bending induced oscillatory shearing (BIOS). This viscoelastic system creates polydisperse equilibrium structures, producing mixed opaline colored films with greatly reduced requirements for particle monodispersity, and very different sphere size ratios, compared to other methods of nano-assembly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.02676v1-abstract-full').style.display = 'none'; document.getElementById('1605.02676v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.07700">arXiv:1603.07700</a> <span> [<a href="https://arxiv.org/pdf/1603.07700">pdf</a>, <a href="https://arxiv.org/format/1603.07700">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.93.062703">10.1103/PhysRevA.93.062703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Random walks with thermalizing collisions in bounded regions; physical applications valid from the ballistic to diffusive regimes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Swank%2C+C+M">Christopher M. Swank</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+K">Alexander K. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Golub%2C+R">Robert Golub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.07700v3-abstract-short" style="display: inline;"> The behavior of a spin undergoing Larmor precession in the presence of fluctuating fields is of interest to workers in many fields. The fluctuating fields cause frequency shifts and relaxation which are related to their power spectrum, which can be determined by taking the Fourier transform of the auto-correlation functions of the field fluctuations. Recently we have shown how to calculate these c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.07700v3-abstract-full').style.display = 'inline'; document.getElementById('1603.07700v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.07700v3-abstract-full" style="display: none;"> The behavior of a spin undergoing Larmor precession in the presence of fluctuating fields is of interest to workers in many fields. The fluctuating fields cause frequency shifts and relaxation which are related to their power spectrum, which can be determined by taking the Fourier transform of the auto-correlation functions of the field fluctuations. Recently we have shown how to calculate these correlation functions for all values of mean free path (ballistic to diffusive motion) in finite bounded regions, using the model of persistent continuous time random walks (CTRW) for particles subject to scattering by fixed (frozen) scattering centers so that the speed of the moving particles is not changed by the collisions. In this work we show how scattering with energy exchange from an ensemble of scatterers in thermal equilibrium can be incorporated into the CTRW. We present results for 1,2 and 3 dimensions. The results agree for all these cases contrary to the previously studied 'frozen' models. Our results for the velocity autocorrelation function show a long time tail $\left( \sim t^{-1/2}\right) $, which we also obtain from conventional diffusion theory, with the same power, independent of dimensionality. Our results are valid for any Markovian scattering kernel as well as any kernel based on a scattering cross section $\sim1/v.$ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.07700v3-abstract-full').style.display = 'none'; document.getElementById('1603.07700v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 93, 062703 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.04376">arXiv:1510.04376</a> <span> [<a href="https://arxiv.org/pdf/1510.04376">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.035430">10.1103/PhysRevB.92.035430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time-resolved magnetophotoluminescence studies of magnetic polaron dynamics in type-II quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Barman%2C+B">B. Barman</a>, <a href="/search/cond-mat?searchtype=author&query=Oszwa%C5%82dowski%2C+R">R. Oszwa艂dowski</a>, <a href="/search/cond-mat?searchtype=author&query=Schweidenback%2C+L">L. Schweidenback</a>, <a href="/search/cond-mat?searchtype=author&query=Russ%2C+A+H">A. H. Russ</a>, <a href="/search/cond-mat?searchtype=author&query=Pientka%2C+J+M">J. M. Pientka</a>, <a href="/search/cond-mat?searchtype=author&query=Tsai%2C+Y">Y. Tsai</a>, <a href="/search/cond-mat?searchtype=author&query=Chou%2C+W">W-C. Chou</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+W+C">W. C. Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Murphy%2C+J+R">J. R. Murphy</a>, <a href="/search/cond-mat?searchtype=author&query=Cartwright%2C+A+N">A. N. Cartwright</a>, <a href="/search/cond-mat?searchtype=author&query=Sellers%2C+I+R">I. R. Sellers</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%BDuti%C4%87%2C+I">I. 沤uti膰</a>, <a href="/search/cond-mat?searchtype=author&query=McCombe%2C+B+D">B. D. McCombe</a>, <a href="/search/cond-mat?searchtype=author&query=Petrou%2C+A">A. Petrou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.04376v1-abstract-short" style="display: inline;"> We used continuous wave photoluminescence (cw-PL) and time resolved photoluminescence (TR-PL) spectroscopy to compare the properties of magnetic polarons (MP) in two related spatially indirect II-VI epitaxially grown quantum dot systems. In the ZnTe/(Zn,Mn)Se system the holes are confined in the non-magnetic ZnTe quantum dots (QDs), and the electrons reside in the magnetic (Zn,Mn)Se matrix. On the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04376v1-abstract-full').style.display = 'inline'; document.getElementById('1510.04376v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.04376v1-abstract-full" style="display: none;"> We used continuous wave photoluminescence (cw-PL) and time resolved photoluminescence (TR-PL) spectroscopy to compare the properties of magnetic polarons (MP) in two related spatially indirect II-VI epitaxially grown quantum dot systems. In the ZnTe/(Zn,Mn)Se system the holes are confined in the non-magnetic ZnTe quantum dots (QDs), and the electrons reside in the magnetic (Zn,Mn)Se matrix. On the other hand, in the (Zn,Mn)Te/ZnSe system, the holes are confined in the magnetic (Zn,Mn)Te QDs, while the electrons remain in the surrounding non-magnetic ZnSe matrix. The magnetic polaron formation energies in both systems were measured from the temporal red-shift of the band-edge emission. The magnetic polaron exhibits distinct characteristics depending on the location of the Mn ions. In the ZnTe/(Zn,Mn)Se system the magnetic polaron shows conventional behavior with decreasing with increasing temperature T and increasing magnetic field B. In contrast, in the (Zn,Mn)Te/ZnSe system has unconventional dependence on temperature T and magnetic field B; is weakly dependent on T as well as on B. We discuss a possible origin for such a striking difference in the MP properties in two closely related QD systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.04376v1-abstract-full').style.display = 'none'; document.getElementById('1510.04376v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevB.92.035430(2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.05068">arXiv:1509.05068</a> <span> [<a href="https://arxiv.org/pdf/1509.05068">pdf</a>, <a href="https://arxiv.org/ps/1509.05068">ps</a>, <a href="https://arxiv.org/format/1509.05068">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.155402">10.1103/PhysRevB.92.155402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic ordering in quantum dots: Open vs. closed shells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pientka%2C+J+M">J. M. Pientka</a>, <a href="/search/cond-mat?searchtype=author&query=Oszwa%C5%82dowski%2C+R">R. Oszwa艂dowski</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+J+E">J. E. Han</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%BDuti%C4%87%2C+I">Igor 沤uti膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.05068v1-abstract-short" style="display: inline;"> In magnetically-doped quantum dots changing the carrier occupancy, from open to closed shells, leads to qualitatively different forms of carrier-mediated magnetic ordering. While it is common to study such nanoscale magnets within a mean field approximation, excluding the spin fluctuations can mask important phenomena and lead to spurious thermodynamic phase transitions in small magnetic systems.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.05068v1-abstract-full').style.display = 'inline'; document.getElementById('1509.05068v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.05068v1-abstract-full" style="display: none;"> In magnetically-doped quantum dots changing the carrier occupancy, from open to closed shells, leads to qualitatively different forms of carrier-mediated magnetic ordering. While it is common to study such nanoscale magnets within a mean field approximation, excluding the spin fluctuations can mask important phenomena and lead to spurious thermodynamic phase transitions in small magnetic systems. By employing coarse-grained, variational, and Monte Carlo methods on singly and doubly occupied quantum dots to include spin fluctuations, we evaluate the relevance of the mean field description and distinguish different finite-size scaling in nanoscale magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.05068v1-abstract-full').style.display = 'none'; document.getElementById('1509.05068v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted Physical Review B 13 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.6285">arXiv:1409.6285</a> <span> [<a href="https://arxiv.org/pdf/1409.6285">pdf</a>, <a href="https://arxiv.org/format/1409.6285">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Donor Spin Qubits in Ge-based Phononic Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Smelyanskiy%2C+V+N">V. N. Smelyanskiy</a>, <a href="/search/cond-mat?searchtype=author&query=Hafiychuk%2C+V+V">V. V. Hafiychuk</a>, <a href="/search/cond-mat?searchtype=author&query=Vasko%2C+F+T">F. T. Vasko</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.6285v1-abstract-short" style="display: inline;"> We propose qubits based on shallow donor electron spins in germanium. Spin-orbit interaction for donor spins in germanium is in many orders of magnitude stronger than in silicon. In a uniform bulk material it leads to very short spin lifetimes. However the lifetime increases dramatically when the donor is placed into a quasi-2D phononic crystal and the energy of the Zeeman splitting is tuned to li… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.6285v1-abstract-full').style.display = 'inline'; document.getElementById('1409.6285v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.6285v1-abstract-full" style="display: none;"> We propose qubits based on shallow donor electron spins in germanium. Spin-orbit interaction for donor spins in germanium is in many orders of magnitude stronger than in silicon. In a uniform bulk material it leads to very short spin lifetimes. However the lifetime increases dramatically when the donor is placed into a quasi-2D phononic crystal and the energy of the Zeeman splitting is tuned to lie within a phonon bandgap. In this situation single phonon processes are suppressed by energy conservation. The remaining two-phonon decay channel is very slow. The Zeeman splitting within the gap can be fine tuned to induce a strong, long-range coupling between the spins of remote donors via exchange by virtual phonons. This, in turn, opens a very efficient way to manipulate the quits. We explore various geometries of phononic crystals in order to maximize the coherent qubit-qubit coupling while keeping the decay rate minimal. We find that phononic crystals with unit cell sizes of 100-150 nm are viable candidates for quantum computing applications and suggest several spin-resonance experiments to verify our theoretical predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.6285v1-abstract-full').style.display = 'none'; document.getElementById('1409.6285v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.5530">arXiv:1403.5530</a> <span> [<a href="https://arxiv.org/pdf/1403.5530">pdf</a>, <a href="https://arxiv.org/format/1403.5530">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.90.013407">10.1103/PhysRevA.90.013407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universality of spin-relaxation for spin 1/2 particles diffusing over magnetic field inhomogeneities in the adiabatic regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guigue%2C+M">M. Guigue</a>, <a href="/search/cond-mat?searchtype=author&query=Golub%2C+R">R. Golub</a>, <a href="/search/cond-mat?searchtype=author&query=Pignol%2C+G">G. Pignol</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+K">A. K. Petukhov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.5530v2-abstract-short" style="display: inline;"> We present a theoretical analysis of spin relaxation, for a polarized gas of spin 1/2 particles undergoing restricted adiabatic diffusive motion within a container of arbitrary shape, due to magnetic field inhomogeneities of arbitrary form. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.5530v2-abstract-full" style="display: none;"> We present a theoretical analysis of spin relaxation, for a polarized gas of spin 1/2 particles undergoing restricted adiabatic diffusive motion within a container of arbitrary shape, due to magnetic field inhomogeneities of arbitrary form. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.5530v2-abstract-full').style.display = 'none'; document.getElementById('1403.5530v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 90, 013407 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.0168">arXiv:1212.0168</a> <span> [<a href="https://arxiv.org/pdf/1212.0168">pdf</a>, <a href="https://arxiv.org/ps/1212.0168">ps</a>, <a href="https://arxiv.org/format/1212.0168">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> On the half-metallicity of Co2FeSi Heusler alloy: an experimental and ab initio study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Makinistian%2C+L">L. Makinistian</a>, <a href="/search/cond-mat?searchtype=author&query=Faiz%2C+M+M">Muhammad M. Faiz</a>, <a href="/search/cond-mat?searchtype=author&query=Panguluri%2C+R+P">Raghava P. Panguluri</a>, <a href="/search/cond-mat?searchtype=author&query=Balke%2C+B">B. Balke</a>, <a href="/search/cond-mat?searchtype=author&query=Wurmehl%2C+S">S. Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Albanesi%2C+E+A">E. A. Albanesi</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Nadgorny%2C+B">B. Nadgorny</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.0168v1-abstract-short" style="display: inline;"> Co2FeSi, a Heusler alloy with the highest magnetic moment per unit cell and the highest Curie temperature, has largely been described theoretically as a half-metal. This conclusion, however, disagrees with Point Contact Andreev Reflection (PCAR) spectroscopy measurements, which give much lower values of spin polarization, P. Here, we present the spin polarization measurements of Co2FeSi by the PCA… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.0168v1-abstract-full').style.display = 'inline'; document.getElementById('1212.0168v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.0168v1-abstract-full" style="display: none;"> Co2FeSi, a Heusler alloy with the highest magnetic moment per unit cell and the highest Curie temperature, has largely been described theoretically as a half-metal. This conclusion, however, disagrees with Point Contact Andreev Reflection (PCAR) spectroscopy measurements, which give much lower values of spin polarization, P. Here, we present the spin polarization measurements of Co2FeSi by the PCAR technique, along with a thorough computational exploration, within the DFT and a GGA+U approach, of the Coulomb exchange U-parameters for Co and Fe atoms, taking into account spin-orbit coupling. We find that the orbital contribution (mo) to the total magnetic moment (mT) is significant, since it is at least 3 times greater than the experimental uncertainty of mT. Account of mo radically affects the acceptable values of U. Specifically, we find no values of U that would simultaneously satisfy the experimental values of the magnetic moment and result in the half-metallicity of Co2FeSi. On the other hand, the ranges of U that we report as acceptable are compatible with spin polarization measurements (ours and the ones found in the literature), which all are within approximately 40-60% range. Thus, based on reconciling experimental and computational results, we conclude that: a) spin-orbit coupling cannot be neglected in calculating Co2FeSi magnetic properties, and b) Co2FeSi Heusler alloy is not half-metallic. We believe that our approach can be applied to other Heusler alloys such as Co2FeAl. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.0168v1-abstract-full').style.display = 'none'; document.getElementById('1212.0168v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.8164">arXiv:1210.8164</a> <span> [<a href="https://arxiv.org/pdf/1210.8164">pdf</a>, <a href="https://arxiv.org/ps/1210.8164">ps</a>, <a href="https://arxiv.org/format/1210.8164">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.045307">10.1103/PhysRevB.88.045307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Stark Effect for Li Donor Spins in Si </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pendo%2C+L">Luke Pendo</a>, <a href="/search/cond-mat?searchtype=author&query=Handberg%2C+E+M">E. M. Handberg</a>, <a href="/search/cond-mat?searchtype=author&query=Smelyanskiy%2C+V+N">V. N. Smelyanskiy</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.8164v1-abstract-short" style="display: inline;"> We study the effect of a static electric field on lithium donor spins in silicon. The anisotropy of the effective mass leads to the anisotropy of the quadratic Stark susceptibility, which we determined using the Dalgarno-Lewis exact summation method. The theory is asymptotically exact in the field domain below Li-donor ionization threshold, relevant to the Stark-tuning electron spin resonance expe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.8164v1-abstract-full').style.display = 'inline'; document.getElementById('1210.8164v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.8164v1-abstract-full" style="display: none;"> We study the effect of a static electric field on lithium donor spins in silicon. The anisotropy of the effective mass leads to the anisotropy of the quadratic Stark susceptibility, which we determined using the Dalgarno-Lewis exact summation method. The theory is asymptotically exact in the field domain below Li-donor ionization threshold, relevant to the Stark-tuning electron spin resonance experiments. To obtain the generalized Stark susceptibilities at arbitrary fields, we propose a new variational wave function which reproduces the exact results in the low-field limit. With the calculated susceptibilities at hand, we are able to predict and analyze several important physical effects. First, we observe that the energy level shifts due to the quadratic Stark effect for Li donors in Si are equivalent to, and can be mapped onto, those produced by an external stress. Second, we demonstrate that the Stark effect anisotropy, combined with the unique valley-orbit splitting of a Li donor in Si, spin-orbit interaction and specially tuned external stress, may lead to a very strong modulation of the donor spin $g$-factor by the electric field. Third, we investigate the influence of random strains on the $g$-factor shifts and quantify the random strain limits and requirements to Si material purity necessary to observe the $g$-factor Stark shifts experimentally. Finally, we discuss possible implications of our results for quantum information processing with Li spin qubits in Si. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.8164v1-abstract-full').style.display = 'none'; document.getElementById('1210.8164v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.6422">arXiv:1210.6422</a> <span> [<a href="https://arxiv.org/pdf/1210.6422">pdf</a>, <a href="https://arxiv.org/ps/1210.6422">ps</a>, <a href="https://arxiv.org/format/1210.6422">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.201408">10.1103/PhysRevB.86.201408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin ordering in magnetic quantum dots: From core-halo to Wigner molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Oszwa%C5%82dowski%2C+R">R. Oszwa艂dowski</a>, <a href="/search/cond-mat?searchtype=author&query=Stano%2C+P">P. Stano</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%BDuti%C4%87%2C+I">Igor 沤uti膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.6422v2-abstract-short" style="display: inline;"> The interplay of confinement and Coulomb interactions in quantum dots can lead to strongly correlated phases differing qualitatively from the Fermi liquid behavior. We explore how the presence of magnetic impurities in quantum dots can provide additional opportunities to study correlation effects and the resulting ordering in carrier and impurity spin. By employing exact diagonalization we reveal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.6422v2-abstract-full').style.display = 'inline'; document.getElementById('1210.6422v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.6422v2-abstract-full" style="display: none;"> The interplay of confinement and Coulomb interactions in quantum dots can lead to strongly correlated phases differing qualitatively from the Fermi liquid behavior. We explore how the presence of magnetic impurities in quantum dots can provide additional opportunities to study correlation effects and the resulting ordering in carrier and impurity spin. By employing exact diagonalization we reveal that seemingly simple two-carrier quantum dots lead to a rich phase diagram. We propose experiments to verify our predictions, in particular we discuss interband optical transitions as a function of temperature and magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.6422v2-abstract-full').style.display = 'none'; document.getElementById('1210.6422v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures + 4 pages of auxiliary material; published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 86, 201408(R) (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.1162">arXiv:1210.1162</a> <span> [<a href="https://arxiv.org/pdf/1210.1162">pdf</a>, <a href="https://arxiv.org/ps/1210.1162">ps</a>, <a href="https://arxiv.org/format/1210.1162">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.161403">10.1103/PhysRevB.86.161403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reentrant Formation of Magnetic Polarons in Quantum Dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pientka%2C+J+M">J. M. Pientka</a>, <a href="/search/cond-mat?searchtype=author&query=Oszwa%C5%82dowski%2C+R">R. Oszwa艂dowski</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+J+E">J. E. Han</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%BDuti%C4%87%2C+I">Igor 沤uti膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.1162v1-abstract-short" style="display: inline;"> We propose a model of magnetic polaron formation in semiconductor quantum dots doped with magnetic ions. A wetting layer serves as a reservoir of photo-generated holes, which can be trapped by the adjacent quantum dots. For certain hole densities, the temperature dependence of the magnetization induced by the trapped holes is reentrant: it disappears for some temperature range and reappears at hig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.1162v1-abstract-full').style.display = 'inline'; document.getElementById('1210.1162v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.1162v1-abstract-full" style="display: none;"> We propose a model of magnetic polaron formation in semiconductor quantum dots doped with magnetic ions. A wetting layer serves as a reservoir of photo-generated holes, which can be trapped by the adjacent quantum dots. For certain hole densities, the temperature dependence of the magnetization induced by the trapped holes is reentrant: it disappears for some temperature range and reappears at higher temperatures. We demonstrate that this peculiar effect is not an artifact of the mean field approximation and persists after statistical spin fluctuations are accounted for. We predict fingerprints of reentrant magnetic polarons in photoluminescence spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.1162v1-abstract-full').style.display = 'none'; document.getElementById('1210.1162v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted Physical Review B Rapid Communications 5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 86, 161403(R) (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.1097">arXiv:1206.1097</a> <span> [<a href="https://arxiv.org/pdf/1206.1097">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.064303">10.1103/PhysRevB.86.064303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of colloidal crystals studied by pump-probe experiments at FLASH </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dronyak%2C+R">R. Dronyak</a>, <a href="/search/cond-mat?searchtype=author&query=Gulden%2C+J">J. Gulden</a>, <a href="/search/cond-mat?searchtype=author&query=Yefanov%2C+O+M">O. M. Yefanov</a>, <a href="/search/cond-mat?searchtype=author&query=Singer%2C+A">A. Singer</a>, <a href="/search/cond-mat?searchtype=author&query=Gorniak%2C+T">T. Gorniak</a>, <a href="/search/cond-mat?searchtype=author&query=Senkbeil%2C+T">T. Senkbeil</a>, <a href="/search/cond-mat?searchtype=author&query=Meijer%2C+J+-">J. -M. Meijer</a>, <a href="/search/cond-mat?searchtype=author&query=Al-Shemmary%2C+A">A. Al-Shemmary</a>, <a href="/search/cond-mat?searchtype=author&query=Hallmann%2C+J">J. Hallmann</a>, <a href="/search/cond-mat?searchtype=author&query=Mai%2C+D+D">D. D. Mai</a>, <a href="/search/cond-mat?searchtype=author&query=Reusch%2C+T">T. Reusch</a>, <a href="/search/cond-mat?searchtype=author&query=Dzhigaev%2C+D">D. Dzhigaev</a>, <a href="/search/cond-mat?searchtype=author&query=Kurta%2C+R+P">R. P. Kurta</a>, <a href="/search/cond-mat?searchtype=author&query=Lorenz%2C+U">U. Lorenz</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+V">A. V. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Duesterer%2C+S">S. Duesterer</a>, <a href="/search/cond-mat?searchtype=author&query=Treusch%2C+R">R. Treusch</a>, <a href="/search/cond-mat?searchtype=author&query=Strikhanov%2C+M+N">M. N. Strikhanov</a>, <a href="/search/cond-mat?searchtype=author&query=Weckert%2C+E">E. Weckert</a>, <a href="/search/cond-mat?searchtype=author&query=Mancuso%2C+A+P">A. P. Mancuso</a>, <a href="/search/cond-mat?searchtype=author&query=Salditt%2C+T">T. Salditt</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenhahn%2C+A">A. Rosenhahn</a>, <a href="/search/cond-mat?searchtype=author&query=Vartanyants%2C+I+A">I. A. Vartanyants</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.1097v1-abstract-short" style="display: inline;"> We present a time-resolved infrared (IR) pump and extreme-ultraviolet (XUV) probe diffraction experiment to investigate ultrafast structural dynamics in colloidal crystals with picosecond resolution. The experiment was performed at the FLASH facility at DESY with a fundamental wavelength of 8 nm. In our experiment, the temporal changes of Bragg peaks were analyzed and their frequency components we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.1097v1-abstract-full').style.display = 'inline'; document.getElementById('1206.1097v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.1097v1-abstract-full" style="display: none;"> We present a time-resolved infrared (IR) pump and extreme-ultraviolet (XUV) probe diffraction experiment to investigate ultrafast structural dynamics in colloidal crystals with picosecond resolution. The experiment was performed at the FLASH facility at DESY with a fundamental wavelength of 8 nm. In our experiment, the temporal changes of Bragg peaks were analyzed and their frequency components were calculated using Fourier analysis. Periodic modulations in the colloidal crystal were localized at a frequency of about 4-5 GHz. Based on the Lamb theory, theoretical calculations of vibrations of the isotropic elastic polystyrene spheres of 400 nm in size reveal a 5.07 GHz eigenfrequency of the ground (breathing) mode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.1097v1-abstract-full').style.display = 'none'; document.getElementById('1206.1097v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 86, 064303 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.3145">arXiv:1202.3145</a> <span> [<a href="https://arxiv.org/pdf/1202.3145">pdf</a>, <a href="https://arxiv.org/ps/1202.3145">ps</a>, <a href="https://arxiv.org/format/1202.3145">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.85.155312">10.1103/PhysRevB.85.155312 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic anisotropies of quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Vyborny%2C+K">Karel Vyborny</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+J+E">J. E. Han</a>, <a href="/search/cond-mat?searchtype=author&query=Oszwaldowski%2C+R">Rafal Oszwaldowski</a>, <a href="/search/cond-mat?searchtype=author&query=Zutic%2C+I">Igor Zutic</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.3145v1-abstract-short" style="display: inline;"> Magnetic anisotropies in quantum dots (QDs) doped with magnetic ions are discussed in terms of two frameworks: anisotropic $g$-factors and magnetocrystalline anisotropy energy. It is shown that even a simple model of zinc-blende p-doped QDs displays a rich diagram of magnetic anisotropies in the QD parameter space. Tuning the confinement allows to control magnetic easy axes in QDs in ways not avai… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.3145v1-abstract-full').style.display = 'inline'; document.getElementById('1202.3145v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.3145v1-abstract-full" style="display: none;"> Magnetic anisotropies in quantum dots (QDs) doped with magnetic ions are discussed in terms of two frameworks: anisotropic $g$-factors and magnetocrystalline anisotropy energy. It is shown that even a simple model of zinc-blende p-doped QDs displays a rich diagram of magnetic anisotropies in the QD parameter space. Tuning the confinement allows to control magnetic easy axes in QDs in ways not available for the better-studied bulk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.3145v1-abstract-full').style.display = 'none'; document.getElementById('1202.3145v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to PRB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 85, 155312 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.4817">arXiv:1112.4817</a> <span> [<a href="https://arxiv.org/pdf/1112.4817">pdf</a>, <a href="https://arxiv.org/format/1112.4817">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.010602">10.1103/PhysRevLett.110.010602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Size-independence of statistics for boundary collisions of random walks and its implications for spin-polarized gases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bicout%2C+D+J">Dominique J. Bicout</a>, <a href="/search/cond-mat?searchtype=author&query=Kats%2C+E">Efim Kats</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+K">Alexander K. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Whitney%2C+R+S">Robert S. Whitney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.4817v4-abstract-short" style="display: inline;"> A bounded random walk exhibits strong correlations between collisions with a boundary. For an one-dimensional walk, we obtain the full statistical distribution of the number of such collisions in a time t. In the large t limit, the fluctuations in the number of collisions are found to be size-independent (independent of the distance between boundaries). This occurs for any inter-boundary distance,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.4817v4-abstract-full').style.display = 'inline'; document.getElementById('1112.4817v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.4817v4-abstract-full" style="display: none;"> A bounded random walk exhibits strong correlations between collisions with a boundary. For an one-dimensional walk, we obtain the full statistical distribution of the number of such collisions in a time t. In the large t limit, the fluctuations in the number of collisions are found to be size-independent (independent of the distance between boundaries). This occurs for any inter-boundary distance, including less and greater than the mean-free-path, and means that this boundary effect does not decay with increasing system-size. As an application, we consider spin-polarized gases, such as 3-Helium, in the three-dimensional diffusive regime. The above results mean that the depolarizing effect of rare magnetic-impurities in the container walls is orders of magnitude larger than a Smoluchowski assumption (to neglect correlations) would imply. This could explain why depolarization is so sensitive to the container's treatment with magnetic fields prior to its use. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.4817v4-abstract-full').style.display = 'none'; document.getElementById('1112.4817v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 page manuscript with extra details in appendices (additional 3 pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 110, 010602 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.6432">arXiv:1110.6432</a> <span> [<a href="https://arxiv.org/pdf/1110.6432">pdf</a>, <a href="https://arxiv.org/format/1110.6432">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Comment on "Pressure dependence of wall relaxation in polarized He^3 gaseous cells." by W. Zheng, H. Gao, Q. Ye, and Y.Zhang </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A">A. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Chastagnier%2C+J">J. Chastagnier</a>, <a href="/search/cond-mat?searchtype=author&query=Swank%2C+C+M">C. M. Swank</a>, <a href="/search/cond-mat?searchtype=author&query=Golub%2C+R">R. Golub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.6432v1-abstract-short" style="display: inline;"> The authors have demonstrated a strong linear pressure dependence of the longitudinal relaxation time for He^3 at room and cryogenic temperatures in a given experimental setup. They offer a theoretical explanation of the effect based on diffusion theory in the bulk and an unusual boundary condition. We question the physical basis of the boundary condition and suggest some alternate explanations of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.6432v1-abstract-full').style.display = 'inline'; document.getElementById('1110.6432v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.6432v1-abstract-full" style="display: none;"> The authors have demonstrated a strong linear pressure dependence of the longitudinal relaxation time for He^3 at room and cryogenic temperatures in a given experimental setup. They offer a theoretical explanation of the effect based on diffusion theory in the bulk and an unusual boundary condition. We question the physical basis of the boundary condition and suggest some alternate explanations of the observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.6432v1-abstract-full').style.display = 'none'; document.getElementById('1110.6432v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.4701">arXiv:1108.4701</a> <span> [<a href="https://arxiv.org/pdf/1108.4701">pdf</a>, <a href="https://arxiv.org/format/1108.4701">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Spectral properties of correlation functions of fields with arbitrary position dependence in restricted geometries from the ballistic to the diffusive regimes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Swank%2C+C+M">C. M. Swank</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A">A. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Golub%2C+R">R. Golub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.4701v1-abstract-short" style="display: inline;"> The transition between ballistic and diffusive motion poses difficult problems in several fields of physics. In this work we show how to calculate the spectra of the correlation functions between fields of arbitrary spatial dependence as seen by particles moving through the fields in regions bounded by specularly reflecting walls valid for diffusive and ballistic motion as well as the transition r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.4701v1-abstract-full').style.display = 'inline'; document.getElementById('1108.4701v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.4701v1-abstract-full" style="display: none;"> The transition between ballistic and diffusive motion poses difficult problems in several fields of physics. In this work we show how to calculate the spectra of the correlation functions between fields of arbitrary spatial dependence as seen by particles moving through the fields in regions bounded by specularly reflecting walls valid for diffusive and ballistic motion as well as the transition region in between for motion in 2 and 3 dimensions. Applications to relaxation in nmr are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.4701v1-abstract-full').style.display = 'none'; document.getElementById('1108.4701v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1106.2346">arXiv:1106.2346</a> <span> [<a href="https://arxiv.org/pdf/1106.2346">pdf</a>, <a href="https://arxiv.org/ps/1106.2346">ps</a>, <a href="https://arxiv.org/format/1106.2346">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.106.177201">10.1103/PhysRevLett.106.177201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetism in Closed-shell Quantum Dots: Emergence of Magnetic Bipolarons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Oszwa%C5%82dowski%2C+R">R. Oszwa艂dowski</a>, <a href="/search/cond-mat?searchtype=author&query=%C5%BDuti%C4%87%2C+I">I. 沤uti膰</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1106.2346v1-abstract-short" style="display: inline;"> Similar to atoms and nuclei, semiconductor quantum dots exhibit formation of shells. Predictions of magnetic behavior of the dots are often based on the shell occupancies. Thus, closed-shell quantum dots are assumed to be inherently nonmagnetic. Here, we propose a possibility of magnetism in such dots doped with magnetic impurities. On the example of the system of two interacting fermions, the sim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.2346v1-abstract-full').style.display = 'inline'; document.getElementById('1106.2346v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1106.2346v1-abstract-full" style="display: none;"> Similar to atoms and nuclei, semiconductor quantum dots exhibit formation of shells. Predictions of magnetic behavior of the dots are often based on the shell occupancies. Thus, closed-shell quantum dots are assumed to be inherently nonmagnetic. Here, we propose a possibility of magnetism in such dots doped with magnetic impurities. On the example of the system of two interacting fermions, the simplest embodiment of the closed-shell structure, we demonstrate the emergence of a novel broken-symmetry ground state that is neither spin-singlet nor spin-triplet. We propose experimental tests of our predictions and the magnetic-dot structures to perform them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.2346v1-abstract-full').style.display = 'none'; document.getElementById('1106.2346v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures; http://link.aps.org/doi/10.1103/PhysRevLett.106.177201; minor changes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 106, 177201 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0912.0138">arXiv:0912.0138</a> <span> [<a href="https://arxiv.org/pdf/0912.0138">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.82.195320">10.1103/PhysRevB.82.195320 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust Magnetic Polarons in Type-II (Zn,Mn)Te Quantum Dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sellers%2C+I+R">I. R. Sellers</a>, <a href="/search/cond-mat?searchtype=author&query=Oszwaldowski%2C+R">R. Oszwaldowski</a>, <a href="/search/cond-mat?searchtype=author&query=Whiteside%2C+V+R">V. R. Whiteside</a>, <a href="/search/cond-mat?searchtype=author&query=Eginligil%2C+M">M. Eginligil</a>, <a href="/search/cond-mat?searchtype=author&query=Petrou%2C+A">A. Petrou</a>, <a href="/search/cond-mat?searchtype=author&query=Zutic%2C+I">I. Zutic</a>, <a href="/search/cond-mat?searchtype=author&query=Chou%2C+W">W-C. Chou</a>, <a href="/search/cond-mat?searchtype=author&query=Fan%2C+W+C">W. C. Fan</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=McCombe%2C+B+D">B. D. McCombe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0912.0138v1-abstract-short" style="display: inline;"> We present evidence of magnetic ordering in type-II (Zn, Mn) Te quantum dots. This ordering is attributed to the formation of bound magnetic polarons caused by the exchange interaction between the strongly localized holes and Mn within the dots. In our photoluminescence studies, the magnetic polarons are detected at temperatures up to ~ 200 K, with a binding energy of ~ 40 meV. In addition, thes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.0138v1-abstract-full').style.display = 'inline'; document.getElementById('0912.0138v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0912.0138v1-abstract-full" style="display: none;"> We present evidence of magnetic ordering in type-II (Zn, Mn) Te quantum dots. This ordering is attributed to the formation of bound magnetic polarons caused by the exchange interaction between the strongly localized holes and Mn within the dots. In our photoluminescence studies, the magnetic polarons are detected at temperatures up to ~ 200 K, with a binding energy of ~ 40 meV. In addition, these dots display an unusually small Zeeman shift with applied field (2 meV at 10 T). This behavior is explained by a small and weakly temperature-dependent magnetic susceptibility due to anti-ferromagnetic coupling of the Mn spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.0138v1-abstract-full').style.display = 'none'; document.getElementById('0912.0138v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2009. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0808.1123">arXiv:0808.1123</a> <span> [<a href="https://arxiv.org/pdf/0808.1123">pdf</a>, <a href="https://arxiv.org/format/0808.1123">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.79.165208">10.1103/PhysRevB.79.165208 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ferromagnetism and spin polarized charge carriers in In$_{2}$O$_{3}$ thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Panguluri%2C+R+P">Raghava P. Panguluri</a>, <a href="/search/cond-mat?searchtype=author&query=Kharel%2C+P">P. Kharel</a>, <a href="/search/cond-mat?searchtype=author&query=Sudakar%2C+C">C. Sudakar</a>, <a href="/search/cond-mat?searchtype=author&query=Naik%2C+R">R. Naik</a>, <a href="/search/cond-mat?searchtype=author&query=Suryanarayanan%2C+R">R. Suryanarayanan</a>, <a href="/search/cond-mat?searchtype=author&query=Naik%2C+V+M">V. M. Naik</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Nadgorny%2C+B">B. Nadgorny</a>, <a href="/search/cond-mat?searchtype=author&query=Lawes%2C+G">G. Lawes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0808.1123v1-abstract-short" style="display: inline;"> We present evidence for spin polarized charge carriers in In$_2$O$_3$ films. Both In$_2$O$_3$ and Cr doped In$_2$O$_3$ films exhibit room temperature ferromagnetism after vacuum annealing, with a saturation moment of approximately 0.5 emu/cm$^3$. We used Point Contact Andreev Reflection measurements to directly determine the spin polarization, which was found to be approximately 50$\pm$5% for bo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0808.1123v1-abstract-full').style.display = 'inline'; document.getElementById('0808.1123v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0808.1123v1-abstract-full" style="display: none;"> We present evidence for spin polarized charge carriers in In$_2$O$_3$ films. Both In$_2$O$_3$ and Cr doped In$_2$O$_3$ films exhibit room temperature ferromagnetism after vacuum annealing, with a saturation moment of approximately 0.5 emu/cm$^3$. We used Point Contact Andreev Reflection measurements to directly determine the spin polarization, which was found to be approximately 50$\pm$5% for both compositions. These results are consistent with suggestions that the ferromagnetism observed in certain oxide semiconductors may be carrier mediated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0808.1123v1-abstract-full').style.display = 'none'; document.getElementById('0808.1123v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0807.3928">arXiv:0807.3928</a> <span> [<a href="https://arxiv.org/pdf/0807.3928">pdf</a>, <a href="https://arxiv.org/ps/0807.3928">ps</a>, <a href="https://arxiv.org/format/0807.3928">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Chiral Symmetry and Electron Spin Relaxation of Lithium Donors in Silicon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Smelyanskiy%2C+V+N">V. N. Smelyanskiy</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Tyryshkin%2C+A+M">A. M. Tyryshkin</a>, <a href="/search/cond-mat?searchtype=author&query=Lyon%2C+S+A">S. A. Lyon</a>, <a href="/search/cond-mat?searchtype=author&query=Schenkel%2C+T">T. Schenkel</a>, <a href="/search/cond-mat?searchtype=author&query=Ager%2C+J+W">J. W. Ager</a>, <a href="/search/cond-mat?searchtype=author&query=Haller%2C+E+E">E. E. Haller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0807.3928v1-abstract-short" style="display: inline;"> We report theoretical and experimental studies of the longitudinal electron spin and orbital relaxation time of interstitial Li donors in $^{28}$Si. We predict that despite the near-degeneracy of the ground-state manifold the spin relaxation times are extremely long for the temperatures below 0.3 K. This prediction is based on a new finding of the chiral symmetry of the donor states, which presi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0807.3928v1-abstract-full').style.display = 'inline'; document.getElementById('0807.3928v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0807.3928v1-abstract-full" style="display: none;"> We report theoretical and experimental studies of the longitudinal electron spin and orbital relaxation time of interstitial Li donors in $^{28}$Si. We predict that despite the near-degeneracy of the ground-state manifold the spin relaxation times are extremely long for the temperatures below 0.3 K. This prediction is based on a new finding of the chiral symmetry of the donor states, which presists in the presence of random strains and magnetic fields parallel to one of the cubic axes. Experimentally observed kinetics of magnetization reversal at 2.1 K and 4.5 K are in a very close agreement with the theory. To explain these kinetics we introduced a new mechanism of spin decoherence based on a combination of a small off-site displacement of the Li atom and an umklapp phonon process. Both these factors weakly break chiral symmetry and enable the long-term spin relaxation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0807.3928v1-abstract-full').style.display = 'none'; document.getElementById('0807.3928v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2008. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0806.2590">arXiv:0806.2590</a> <span> [<a href="https://arxiv.org/pdf/0806.2590">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Metal-insulator transition and giant anisotropic magnetoresistance in ultra thin (Ga,Mn)As </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gareev%2C+R+R">R. R. Gareev</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A">A. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Schlapps%2C+M">M. Schlapps</a>, <a href="/search/cond-mat?searchtype=author&query=Doeppe%2C+M">M. Doeppe</a>, <a href="/search/cond-mat?searchtype=author&query=Sadowski%2C+J">J. Sadowski</a>, <a href="/search/cond-mat?searchtype=author&query=Sperl%2C+M">M. Sperl</a>, <a href="/search/cond-mat?searchtype=author&query=Wegscheider%2C+W">W. Wegscheider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0806.2590v1-abstract-short" style="display: inline;"> MBE-grown, 5 nm-thick annealed Ga0.95Mn0.05As films with Tc~90K demonstrate transition from metallic to insulating state below To~10K, where sheet resistances Rsh~h/e2 and both longitudinal Rxx and transverse Rxy components become comparable. Below metal-insulator transition we found giant anisotropic magnetoresistance (GAMR), which depends on orientation of magnetization to crystallographic axe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0806.2590v1-abstract-full').style.display = 'inline'; document.getElementById('0806.2590v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0806.2590v1-abstract-full" style="display: none;"> MBE-grown, 5 nm-thick annealed Ga0.95Mn0.05As films with Tc~90K demonstrate transition from metallic to insulating state below To~10K, where sheet resistances Rsh~h/e2 and both longitudinal Rxx and transverse Rxy components become comparable. Below metal-insulator transition we found giant anisotropic magnetoresistance (GAMR), which depends on orientation of magnetization to crystallographic axes and manifests itself in positive magnetoresistance near 50% for Rxx at T=1.7K, H//[110] crystallographic direction and parallel to current in contrast to smaller and negative magnetoresistance for H// direction. We connect GAMR with anisotropic spin-orbit interaction resulting in formation of high- and low- resistance states with different localization along non-equivalent easy axes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0806.2590v1-abstract-full').style.display = 'none'; document.getElementById('0806.2590v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures,submitted to APL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0707.2805">arXiv:0707.2805</a> <span> [<a href="https://arxiv.org/pdf/0707.2805">pdf</a>, <a href="https://arxiv.org/ps/0707.2805">ps</a>, <a href="https://arxiv.org/format/0707.2805">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.101.207202">10.1103/PhysRevLett.101.207202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Piezomagnetic Quantum Dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Abolfath%2C+R+M">Ramin M. Abolfath</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A">Andre Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Zutic%2C+I">Igor Zutic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0707.2805v1-abstract-short" style="display: inline;"> We study the influence of deformations on magnetic ordering in quantum dots doped with magnetic impurities. The reduction of symmetry and the associated deformation from circular to elliptical quantum confinement lead to the formation of piezomagnetic quantum dots. The strength of elliptical deformation can be controlled by the gate voltage to change the magnitude of magnetization, at a fixed nu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0707.2805v1-abstract-full').style.display = 'inline'; document.getElementById('0707.2805v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0707.2805v1-abstract-full" style="display: none;"> We study the influence of deformations on magnetic ordering in quantum dots doped with magnetic impurities. The reduction of symmetry and the associated deformation from circular to elliptical quantum confinement lead to the formation of piezomagnetic quantum dots. The strength of elliptical deformation can be controlled by the gate voltage to change the magnitude of magnetization, at a fixed number of carriers and in the absence of applied magnetic field. We reveal a reentrant magnetic ordering with the increase of elliptical deformation and suggest that the piezomagnetic quantum dots can be used as nanoscale magnetic switches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0707.2805v1-abstract-full').style.display = 'none'; document.getElementById('0707.2805v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 101, 207202 (2008); minor changes </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0705.4464">arXiv:0705.4464</a> <span> [<a href="https://arxiv.org/pdf/0705.4464">pdf</a>, <a href="https://arxiv.org/ps/0705.4464">ps</a>, <a href="https://arxiv.org/format/0705.4464">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.99.257202">10.1103/PhysRevLett.99.257202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermodynamics of carrier-mediated magnetism in semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Zutic%2C+I">Igor Zutic</a>, <a href="/search/cond-mat?searchtype=author&query=Erwin%2C+S+C">Steven C. Erwin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0705.4464v1-abstract-short" style="display: inline;"> We propose a model of carrier-mediated ferromagnetism in semiconductors that accounts for the temperature dependence of the carriers. The model permits analysis of the thermodynamic stability of competing magnetic states, opening the door to the construction of magnetic phase diagrams. As an example we analyze the stability of a possible reentrant ferromagnetic semiconductor, in which increasing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0705.4464v1-abstract-full').style.display = 'inline'; document.getElementById('0705.4464v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0705.4464v1-abstract-full" style="display: none;"> We propose a model of carrier-mediated ferromagnetism in semiconductors that accounts for the temperature dependence of the carriers. The model permits analysis of the thermodynamic stability of competing magnetic states, opening the door to the construction of magnetic phase diagrams. As an example we analyze the stability of a possible reentrant ferromagnetic semiconductor, in which increasing temperature leads to an increased carrier density, such that the enhanced exchange coupling between magnetic impurities results in the onset of ferromagnetism as temperature is raised. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0705.4464v1-abstract-full').style.display = 'none'; document.getElementById('0705.4464v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 99, 257202 (2007) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0702474">arXiv:cond-mat/0702474</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0702474">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0702474">ps</a>, <a href="https://arxiv.org/format/cond-mat/0702474">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Scattering by Atomic Spins and Magnetoresistance in Dilute Magnetic Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+M+F+A+G">M. Foygel A. G. Petukhov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0702474v1-abstract-short" style="display: inline;"> We studied electrical transport in magnetic semiconductors, which is determined by scattering of free carriers off localized magnetic moments. We calculated the scattering time and the mobility of the majority and minority-spin carriers with both the effects of thermal spin fluctuations and of spatial disorder of magnetic atoms taken into account. These are responsible for the magnetic-field dep… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0702474v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0702474v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0702474v1-abstract-full" style="display: none;"> We studied electrical transport in magnetic semiconductors, which is determined by scattering of free carriers off localized magnetic moments. We calculated the scattering time and the mobility of the majority and minority-spin carriers with both the effects of thermal spin fluctuations and of spatial disorder of magnetic atoms taken into account. These are responsible for the magnetic-field dependence of electrical resistivity. Namely, the application of the external magnetic field suppresses the thermodynamic spin fluctuations thus promoting negative magnetoresistance. Simultaneously, scattering off the built-in spatial fluctuations of the atomic spin concentrations may increase with the magnetic field. The latter effect is due to the growth of the magnitude of random local Zeeman splittings with the magnetic field. It promotes positive magnetoresistance. We discuss the role of the above effects on magnetoresistance of non-degenerate semiconductors where magnetic impurities are electrically active or neutral. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0702474v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0702474v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2007. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0609599">arXiv:cond-mat/0609599</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0609599">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0609599">ps</a>, <a href="https://arxiv.org/format/cond-mat/0609599">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Complete spin polarization of degenerate electrons in semiconductors near ferromagnetic contacts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Smelyanskiy%2C+V+N">V. N. Smelyanskiy</a>, <a href="/search/cond-mat?searchtype=author&query=Osipov%2C+V+V">V. V. Osipov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0609599v1-abstract-short" style="display: inline;"> We show that spin polarization of electron density in nonmagnetic degenerate semiconductors can achieve 100%. This effect is realized in ferromagnet-semiconductor $FM-n^{+}$-$n$ junctions even at moderate spin selectivity of the $FM-n^{+}$ contact when the electrons are extracted from the heavily doped $n^{+}-$semiconductor into the ferromagnet. We derived a general equation relating spin polari… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0609599v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0609599v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0609599v1-abstract-full" style="display: none;"> We show that spin polarization of electron density in nonmagnetic degenerate semiconductors can achieve 100%. This effect is realized in ferromagnet-semiconductor $FM-n^{+}$-$n$ junctions even at moderate spin selectivity of the $FM-n^{+}$ contact when the electrons are extracted from the heavily doped $n^{+}-$semiconductor into the ferromagnet. We derived a general equation relating spin polarization of the current to that of the electron density in nonmagnetic semiconductors. We found that the effect of the complete spin polarization is achieved near $n^{+}$-$n$ interface when an effective diffusion coefficient goes to zero in this region while the diffusion current remains finite. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0609599v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0609599v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2006. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0601337">arXiv:cond-mat/0601337</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0601337">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0601337">ps</a>, <a href="https://arxiv.org/format/cond-mat/0601337">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Electronic Control and Readout of Qubit States in Solid State Quantum Computing Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Osipov%2C+V+V">V. V. Osipov</a>, <a href="/search/cond-mat?searchtype=author&query=Smelyanskiy%2C+V+N">V. N. Smelyanskiy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0601337v2-abstract-short" style="display: inline;"> We demonstrate that an $n^+/i/n^+$ junction is the most suitable candidate for electronic control and readout of qubit states in quantum computing systems based on shallow impurities. The signature of this system is that the $n^+-$regions serve as metallic electrodes separated form the $i-$region by a self-induced barrier (internal workfunction). The $n^+/i/n^+$ system mimics the properties of a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0601337v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0601337v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0601337v2-abstract-full" style="display: none;"> We demonstrate that an $n^+/i/n^+$ junction is the most suitable candidate for electronic control and readout of qubit states in quantum computing systems based on shallow impurities. The signature of this system is that the $n^+-$regions serve as metallic electrodes separated form the $i-$region by a self-induced barrier (internal workfunction). The $n^+/i/n^+$ system mimics the properties of a metal-vacuum-metal junction with the qubit (impurity atom) placed in a ``vacuum'' $i$-region between two ``metallic'' $n^+$ electrodes. We will show that the self-induced barrier exists in a sufficiently wide range of the concentration of dopants in the $n^+$-semiconductor (e.g. up to $10^{21}$ cm$^{-3}$ for Si) and its height can be controlled by tuning the doping level. A shallow donor placed in a vacuum $i$-region will be populated with one electron in equilibrium. In the case of Li donor in Si the $n^+$-electrodes will be used for a precision placement of the Li atom during the growth process; for voltage control and manipulation of the qubit states; and for a qubit readout by means of the optically stimulated resonant tunnelling. Another important feature of our system is that the qubit states (first two lowest energy levels of Li in Si) are separated by an energy gap from a continuum of the many-body states of the controlling electrodes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0601337v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0601337v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2006; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2006. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0506670">arXiv:cond-mat/0506670</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0506670">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0506670">ps</a>, <a href="https://arxiv.org/format/cond-mat/0506670">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.2128060">10.1063/1.2128060 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complete spin polarization of electrons in semiconductor layers and quantum dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Osipov%2C+V+V">V. V. Osipov</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Smelyanskiy%2C+V+N">V. N. Smelyanskiy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0506670v1-abstract-short" style="display: inline;"> We demonstrate that non-equilibrium electrons in thin nonmagnetic semiconductor layers or quantum dots can be fully spin polarized by means of simultaneous electrical spin injection and extraction. The complete spin polarization is achieved if the thin layers or quantum dots are placed between two ferromagnetic metal contacts with moderate spin injection coefficients and antiparallel magnetizati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0506670v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0506670v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0506670v1-abstract-full" style="display: none;"> We demonstrate that non-equilibrium electrons in thin nonmagnetic semiconductor layers or quantum dots can be fully spin polarized by means of simultaneous electrical spin injection and extraction. The complete spin polarization is achieved if the thin layers or quantum dots are placed between two ferromagnetic metal contacts with moderate spin injection coefficients and antiparallel magnetizations. The sign of the spin polarization is determined by the direction of the current. Aplications of this effect in spintronics and quantum information processing are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0506670v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0506670v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2005. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0506625">arXiv:cond-mat/0506625</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0506625">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0506625">ps</a>, <a href="https://arxiv.org/format/cond-mat/0506625">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Complete spin extraction from semiconductors near ferromagnet-semiconductor interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Osipov%2C+V+V">V. V. Osipov</a>, <a href="/search/cond-mat?searchtype=author&query=Smelyanskiy%2C+V+N">V. N. Smelyanskiy</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A+G">A. G. Petukhov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0506625v1-abstract-short" style="display: inline;"> We show that spin polarization of electrons in nonmagnetic semiconductors near specially tailored ferromagnet-semiconductor junctions can achieve 100%. This effect is realized even at moderate spin injection coefficients of the contact when these coefficients only weakly depend on the current. The effect of complete spin extraction occurs at relatively strong electric fields and arises from a re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0506625v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0506625v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0506625v1-abstract-full" style="display: none;"> We show that spin polarization of electrons in nonmagnetic semiconductors near specially tailored ferromagnet-semiconductor junctions can achieve 100%. This effect is realized even at moderate spin injection coefficients of the contact when these coefficients only weakly depend on the current. The effect of complete spin extraction occurs at relatively strong electric fields and arises from a reduction of spin penetration length due to the drift of electrons from a semiconductor towards the spin-selective tunnel junction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0506625v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0506625v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2005. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Petukhov%2C+A&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Petukhov%2C+A&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Petukhov%2C+A&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>