CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–22 of 22 results for author: <span class="mathjax">Acharya, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Acharya%2C+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Acharya, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Acharya%2C+R&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Acharya, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06557">arXiv:2410.06557</a> <span> [<a href="https://arxiv.org/pdf/2410.06557">pdf</a>, <a href="https://arxiv.org/format/2410.06557">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Observation of disorder-free localization and efficient disorder averaging on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T">Tyler Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Lensky%2C+Y">Yuri Lensky</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/cond-mat?searchtype=author&query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a> , et al. (195 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06557v1-abstract-short" style="display: inline;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06557v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06557v1-abstract-full" style="display: none;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without disorder in quantum many-body dynamics in one and two dimensions: perturbations do not diffuse even though both the generator of evolution and the initial states are fully translationally invariant. The disorder strength as well as its density can be readily tuned using the initial state. Furthermore, we demonstrate the versatility of our platform by measuring Renyi entropies. Our method could also be extended to higher moments of the physical observables and disorder learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'none'; document.getElementById('2410.06557v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17142">arXiv:2409.17142</a> <span> [<a href="https://arxiv.org/pdf/2409.17142">pdf</a>, <a href="https://arxiv.org/format/2409.17142">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Jobst%2C+B">Bernhard Jobst</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/cond-mat?searchtype=author&query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&query=Eassa%2C+N">Norhan Eassa</a>, <a href="/search/cond-mat?searchtype=author&query=Will%2C+M">Melissa Will</a>, <a href="/search/cond-mat?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Browne%2C+D+A">David A. Browne</a> , et al. (167 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17142v1-abstract-short" style="display: inline;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17142v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17142v1-abstract-full" style="display: none;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'none'; document.getElementById('2409.17142v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17385">arXiv:2405.17385</a> <span> [<a href="https://arxiv.org/pdf/2405.17385">pdf</a>, <a href="https://arxiv.org/format/2405.17385">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Thermalization and Criticality on an Analog-Digital Quantum Simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/cond-mat?searchtype=author&query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Motruk%2C+J">Johannes Motruk</a>, <a href="/search/cond-mat?searchtype=author&query=Szasz%2C+A">Aaron Szasz</a>, <a href="/search/cond-mat?searchtype=author&query=Gross%2C+J+A">Jonathan A. Gross</a>, <a href="/search/cond-mat?searchtype=author&query=Schuckert%2C+A">Alexander Schuckert</a>, <a href="/search/cond-mat?searchtype=author&query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yaxing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Forati%2C+E">Ebrahim Forati</a>, <a href="/search/cond-mat?searchtype=author&query=Rossi%2C+D">Dario Rossi</a>, <a href="/search/cond-mat?searchtype=author&query=Kobrin%2C+B">Bryce Kobrin</a>, <a href="/search/cond-mat?searchtype=author&query=Di+Paolo%2C+A">Agustin Di Paolo</a>, <a href="/search/cond-mat?searchtype=author&query=Klots%2C+A+R">Andrey R. Klots</a>, <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I">Ilya Drozdov</a>, <a href="/search/cond-mat?searchtype=author&query=Kurilovich%2C+V+D">Vladislav D. Kurilovich</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A">Andre Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Ioffe%2C+L+B">Lev B. Ioffe</a>, <a href="/search/cond-mat?searchtype=author&query=Elben%2C+A">Andreas Elben</a>, <a href="/search/cond-mat?searchtype=author&query=Rath%2C+A">Aniket Rath</a>, <a href="/search/cond-mat?searchtype=author&query=Vitale%2C+V">Vittorio Vitale</a>, <a href="/search/cond-mat?searchtype=author&query=Vermersch%2C+B">Benoit Vermersch</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Beni%2C+L+A">Laleh Aghababaie Beni</a> , et al. (202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17385v2-abstract-short" style="display: inline;"> Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17385v2-abstract-full').style.display = 'inline'; document.getElementById('2405.17385v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17385v2-abstract-full" style="display: none;"> Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. Emulating a two-dimensional (2D) XY quantum magnet, we leverage a wide range of measurement techniques to study quantum states after ramps from an antiferromagnetic initial state. We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions attributed to the interplay between quantum and classical coarsening of the correlated domains. This interpretation is corroborated by injecting variable energy density into the initial state, which enables studying the effects of the eigenstate thermalization hypothesis (ETH) in targeted parts of the eigenspectrum. Finally, we digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization. These results establish the efficacy of superconducting analog-digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17385v2-abstract-full').style.display = 'none'; document.getElementById('2405.17385v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12471">arXiv:2308.12471</a> <span> [<a href="https://arxiv.org/pdf/2308.12471">pdf</a>, <a href="https://arxiv.org/format/2308.12471">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Highly ${ }^{28} \mathrm{Si}$ Enriched Silicon by Localised Focused Ion Beam Implantation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Ravi Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Coke%2C+M">Maddison Coke</a>, <a href="/search/cond-mat?searchtype=author&query=Adshead%2C+M">Mason Adshead</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+K">Kexue Li</a>, <a href="/search/cond-mat?searchtype=author&query=Achinuq%2C+B">Barat Achinuq</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+R">Rongsheng Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Gholizadeh%2C+A+B">A. Baset Gholizadeh</a>, <a href="/search/cond-mat?searchtype=author&query=Jacobs%2C+J">Janet Jacobs</a>, <a href="/search/cond-mat?searchtype=author&query=Boland%2C+J+L">Jessica L. Boland</a>, <a href="/search/cond-mat?searchtype=author&query=Haigh%2C+S+J">Sarah J. Haigh</a>, <a href="/search/cond-mat?searchtype=author&query=Moore%2C+K+L">Katie L. Moore</a>, <a href="/search/cond-mat?searchtype=author&query=Jamieson%2C+D+N">David N. Jamieson</a>, <a href="/search/cond-mat?searchtype=author&query=Curry%2C+R+J">Richard J. Curry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12471v1-abstract-short" style="display: inline;"> Solid-state spin qubits within silicon crystals at mK temperatures show great promise in the realisation of a fully scalable quantum computation platform. Qubit coherence times are limited in natural silicon owing to coupling to the isotope ${ }^{29} \mathrm{Si}$ which has a non-zero nuclear spin. This work presents a method for the depletion of ${ }^{29} \mathrm{Si}$ in localised volumes of natur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12471v1-abstract-full').style.display = 'inline'; document.getElementById('2308.12471v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12471v1-abstract-full" style="display: none;"> Solid-state spin qubits within silicon crystals at mK temperatures show great promise in the realisation of a fully scalable quantum computation platform. Qubit coherence times are limited in natural silicon owing to coupling to the isotope ${ }^{29} \mathrm{Si}$ which has a non-zero nuclear spin. This work presents a method for the depletion of ${ }^{29} \mathrm{Si}$ in localised volumes of natural silicon wafers by irradiation using a 45 keV ${ }^{28} \mathrm{Si}$ focused ion beam with fluences above $1 \times 10^{19} \, \mathrm{ions} \, \mathrm{cm}^{-2}$. Nanoscale secondary ion mass spectrometry analysis of the irradiated volumes shows unprecedented quality enriched silicon that reaches a minimal residual ${ }^{29} \mathrm{Si}$ value of 2.3 $\pm$ 0.7 ppm and with residual C and O comparable to the background concentration in the unimplanted wafer. Transmission electron microscopy lattice images confirm the solid phase epitaxial re-crystallization of the as-implanted amorphous enriched volume extending over 200 nm in depth upon annealing. The ease of fabrication, requiring only commercially available natural silicon wafers and ion sources, opens the possibility for co-integration of qubits in localised highly enriched volumes with control circuitry in the surrounding natural silicon for large-scale devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12471v1-abstract-full').style.display = 'none'; document.getElementById('2308.12471v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05220">arXiv:2305.05220</a> <span> [<a href="https://arxiv.org/pdf/2305.05220">pdf</a>, <a href="https://arxiv.org/format/2305.05220">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.186902">10.1103/PhysRevLett.130.186902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for bootstrap percolation dynamics in a photo-induced phase transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Carbin%2C+T">Tyler Carbin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xinshu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Culver%2C+A+B">Adrian B. Culver</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+H">Hengdi Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Zong%2C+A">Alfred Zong</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rishi Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Abbamonte%2C+C+J">Cecilia J. Abbamonte</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+R">Rahul Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+G">Gang Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Kogar%2C+A">Anshul Kogar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05220v1-abstract-short" style="display: inline;"> Upon intense femtosecond photo-excitation, a many-body system can undergo a phase transition through a non-equilibrium route, but understanding these pathways remains an outstanding challenge. Here, we use time-resolved second harmonic generation to investigate a photo-induced phase transition in Ca$_3$Ru$_2$O$_7$ and show that mesoscale inhomogeneity profoundly influences the transition dynamics.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05220v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05220v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05220v1-abstract-full" style="display: none;"> Upon intense femtosecond photo-excitation, a many-body system can undergo a phase transition through a non-equilibrium route, but understanding these pathways remains an outstanding challenge. Here, we use time-resolved second harmonic generation to investigate a photo-induced phase transition in Ca$_3$Ru$_2$O$_7$ and show that mesoscale inhomogeneity profoundly influences the transition dynamics. We observe a marked slowing down of the characteristic time, $蟿$, that quantifies the transition between two structures. $蟿$ evolves non-monotonically as a function of photo-excitation fluence, rising from below 200~fs to $\sim$1.4~ps, then falling again to below 200~fs. To account for the observed behavior, we perform a bootstrap percolation simulation that demonstrates how local structural interactions govern the transition kinetics. Our work highlights the importance of percolating mesoscale inhomogeneity in the dynamics of photo-induced phase transitions and provides a model that may be useful for understanding such transitions more broadly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05220v1-abstract-full').style.display = 'none'; document.getElementById('2305.05220v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 186902 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04792">arXiv:2303.04792</a> <span> [<a href="https://arxiv.org/pdf/2303.04792">pdf</a>, <a href="https://arxiv.org/format/2303.04792">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06505-7">10.1038/s41586-023-06505-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement-induced entanglement and teleportation on a noisy quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hoke%2C+J+C">Jesse C. Hoke</a>, <a href="/search/cond-mat?searchtype=author&query=Ippoliti%2C+M">Matteo Ippoliti</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&query=Burger%2C+T">Tim Burger</a>, <a href="/search/cond-mat?searchtype=author&query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&query=Bushnell%2C+N">Nicholas Bushnell</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zijun Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Chiaro%2C+B">Ben Chiaro</a> , et al. (138 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04792v2-abstract-short" style="display: inline;"> Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04792v2-abstract-full').style.display = 'inline'; document.getElementById('2303.04792v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04792v2-abstract-full" style="display: none;"> Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04792v2-abstract-full').style.display = 'none'; document.getElementById('2303.04792v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 622, 481-486 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16437">arXiv:2211.16437</a> <span> [<a href="https://arxiv.org/pdf/2211.16437">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2633-4356/ad4b8c">10.1088/2633-4356/ad4b8c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Manufacturing high-Q superconducting 伪-tantalum resonators on silicon wafers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lozano%2C+D+P">D. P. Lozano</a>, <a href="/search/cond-mat?searchtype=author&query=Mongillo%2C+M">M. Mongillo</a>, <a href="/search/cond-mat?searchtype=author&query=Piao%2C+X">X. Piao</a>, <a href="/search/cond-mat?searchtype=author&query=Couet%2C+S">S. Couet</a>, <a href="/search/cond-mat?searchtype=author&query=Wan%2C+D">D. Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Canvel%2C+Y">Y. Canvel</a>, <a href="/search/cond-mat?searchtype=author&query=Vadiraj%2C+A+M">A. M. Vadiraj</a>, <a href="/search/cond-mat?searchtype=author&query=Ivanov%2C+T">Ts. Ivanov</a>, <a href="/search/cond-mat?searchtype=author&query=Verjauw%2C+J">J. Verjauw</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">R. Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Van+Damme%2C+J">J. Van Damme</a>, <a href="/search/cond-mat?searchtype=author&query=Mohiyaddin%2C+F+A">F. A. Mohiyaddin</a>, <a href="/search/cond-mat?searchtype=author&query=Jussot%2C+J">J. Jussot</a>, <a href="/search/cond-mat?searchtype=author&query=Gowda%2C+P+P">P. P. Gowda</a>, <a href="/search/cond-mat?searchtype=author&query=Pacco%2C+A">A. Pacco</a>, <a href="/search/cond-mat?searchtype=author&query=Raes%2C+B">B. Raes</a>, <a href="/search/cond-mat?searchtype=author&query=Van+de+Vondel%2C+J">J. Van de Vondel</a>, <a href="/search/cond-mat?searchtype=author&query=Radu%2C+I+P">I. P. Radu</a>, <a href="/search/cond-mat?searchtype=author&query=Govoreanu%2C+B">B. Govoreanu</a>, <a href="/search/cond-mat?searchtype=author&query=Swerts%2C+J">J. Swerts</a>, <a href="/search/cond-mat?searchtype=author&query=Poto%C4%8Dnik%2C+A">A. Poto膷nik</a>, <a href="/search/cond-mat?searchtype=author&query=De+Greve%2C+K">K. De Greve</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16437v2-abstract-short" style="display: inline;"> The performance of state-of-the-art superconducting quantum devices is currently limited by microwave dielectric losses at different surfaces and interfaces. 伪-tantalum is a superconductor that has proven effective in reducing dielectric loss and improving device performance due to its thin low-loss oxide. However, without the use of a seed layer, this tantalum phase has so far only been realised… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16437v2-abstract-full').style.display = 'inline'; document.getElementById('2211.16437v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16437v2-abstract-full" style="display: none;"> The performance of state-of-the-art superconducting quantum devices is currently limited by microwave dielectric losses at different surfaces and interfaces. 伪-tantalum is a superconductor that has proven effective in reducing dielectric loss and improving device performance due to its thin low-loss oxide. However, without the use of a seed layer, this tantalum phase has so far only been realised on sapphire substrates, which is incompatible with advanced processing in industry-scale fabrication facilities. Here, we demonstrate the fabrication of high-quality factor 伪-tantalum resonators directly on silicon wafers over a variety of metal deposition conditions and perform a comprehensive material and electrical characterization study. By comparing experiments with simulated resonator loss, we demonstrate that two-level-system loss is dominated by surface oxide contributions and not the substrate-metal interface. Our study paves the way to large scale manufacturing of low-loss superconducting circuits and to materials-driven advancements in superconducting circuit performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16437v2-abstract-full').style.display = 'none'; document.getElementById('2211.16437v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10255">arXiv:2210.10255</a> <span> [<a href="https://arxiv.org/pdf/2210.10255">pdf</a>, <a href="https://arxiv.org/format/2210.10255">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Non-Abelian braiding of graph vertices in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/cond-mat?searchtype=author&query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I">Ilya Drozdov</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Hong%2C+S">Sabrina Hong</a>, <a href="/search/cond-mat?searchtype=author&query=Morvan%2C+A">Alexis Morvan</a>, <a href="/search/cond-mat?searchtype=author&query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Opremcak%2C+A">Alex Opremcak</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Allen%2C+R">Richard Allen</a>, <a href="/search/cond-mat?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Bacon%2C+D">Dave Bacon</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Buckley%2C+B+B">Bob B. Buckley</a> , et al. (144 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10255v2-abstract-short" style="display: inline;"> Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10255v2-abstract-full').style.display = 'inline'; document.getElementById('2210.10255v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10255v2-abstract-full" style="display: none;"> Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10255v2-abstract-full').style.display = 'none'; document.getElementById('2210.10255v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.07757">arXiv:2209.07757</a> <span> [<a href="https://arxiv.org/pdf/2209.07757">pdf</a>, <a href="https://arxiv.org/format/2209.07757">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0127375">10.1063/5.0127375 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Readout of a quantum processor with high dynamic range Josephson parametric amplifiers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=White%2C+T+C">T. C. White</a>, <a href="/search/cond-mat?searchtype=author&query=Opremcak%2C+A">Alex Opremcak</a>, <a href="/search/cond-mat?searchtype=author&query=Sterling%2C+G">George Sterling</a>, <a href="/search/cond-mat?searchtype=author&query=Korotkov%2C+A">Alexander Korotkov</a>, <a href="/search/cond-mat?searchtype=author&query=Sank%2C+D">Daniel Sank</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&query=Burger%2C+T">Tim Burger</a>, <a href="/search/cond-mat?searchtype=author&query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&query=Bushnell%2C+N">Nicholas Bushnell</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zijun Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Chiaro%2C+B">Ben Chiaro</a>, <a href="/search/cond-mat?searchtype=author&query=Cogan%2C+J">Josh Cogan</a>, <a href="/search/cond-mat?searchtype=author&query=Collins%2C+R">Roberto Collins</a>, <a href="/search/cond-mat?searchtype=author&query=Crook%2C+A+L">Alexander L. Crook</a>, <a href="/search/cond-mat?searchtype=author&query=Curtin%2C+B">Ben Curtin</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.07757v2-abstract-short" style="display: inline;"> We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the 50 $惟$ environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07757v2-abstract-full').style.display = 'inline'; document.getElementById('2209.07757v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.07757v2-abstract-full" style="display: none;"> We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the 50 $惟$ environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmark these devices, providing a calibration for readout power, an estimate of amplifier added noise, and a platform for comparison against standard impedance matched parametric amplifiers with a single dc-SQUID. We find that the high power rf-SQUID array design has no adverse effect on system noise, readout fidelity, or qubit dephasing, and we estimate an upper bound on amplifier added noise at 1.6 times the quantum limit. Lastly, amplifiers with this design show no degradation in readout fidelity due to gain compression, which can occur in multi-tone multiplexed readout with traditional JPAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07757v2-abstract-full').style.display = 'none'; document.getElementById('2209.07757v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 122, 014001 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05254">arXiv:2206.05254</a> <span> [<a href="https://arxiv.org/pdf/2206.05254">pdf</a>, <a href="https://arxiv.org/format/2206.05254">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05348-y">10.1038/s41586-022-05348-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Formation of robust bound states of interacting microwave photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Morvan%2C+A">Alexis Morvan</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Neill%2C+C">Charles Neill</a>, <a href="/search/cond-mat?searchtype=author&query=Petukhov%2C+A">Andre Petukhov</a>, <a href="/search/cond-mat?searchtype=author&query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Bacon%2C+D">Dave Bacon</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Basso%2C+J">Joao Basso</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&query=Burger%2C+T">Tim Burger</a> , et al. (125 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05254v3-abstract-short" style="display: inline;"> Systems of correlated particles appear in many fields of science and represent some of the most intractable puzzles in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the 3-body problem and acceptable theory for strongly cor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05254v3-abstract-full').style.display = 'inline'; document.getElementById('2206.05254v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05254v3-abstract-full" style="display: none;"> Systems of correlated particles appear in many fields of science and represent some of the most intractable puzzles in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles. The lack of general solutions for the 3-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multi-particle bound states. In a ring of 24 superconducting qubits, we develop a high fidelity parameterizable fSim gate that we use to implement the periodic quantum circuit of the spin-1/2 XXZ model, an archetypal model of interaction. By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons. We devise a phase sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the common wisdom that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05254v3-abstract-full').style.display = 'none'; document.getElementById('2206.05254v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages + 15 pages supplements</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 612, 240-245 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11372">arXiv:2204.11372</a> <span> [<a href="https://arxiv.org/pdf/2204.11372">pdf</a>, <a href="https://arxiv.org/format/2204.11372">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abq5769">10.1126/science.abq5769 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise-resilient Edge Modes on a Chain of Superconducting Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Sonner%2C+M">Michael Sonner</a>, <a href="/search/cond-mat?searchtype=author&query=Niu%2C+M+Y">Murphy Yuezhen Niu</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K+W">Kenneth W. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Foxen%2C+B">Brooks Foxen</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Aleiner%2C+I">Igor Aleiner</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Bacon%2C+D">Dave Bacon</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Basso%2C+J">Joao Basso</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&query=Bushnell%2C+N">Nicholas Bushnell</a> , et al. (103 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11372v2-abstract-short" style="display: inline;"> Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $\mathbb{Z}_2$ parity symmetry. Remarkably, we find that any multi-qub… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11372v2-abstract-full').style.display = 'inline'; document.getElementById('2204.11372v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11372v2-abstract-full" style="display: none;"> Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $\mathbb{Z}_2$ parity symmetry. Remarkably, we find that any multi-qubit Pauli operator overlapping with the MEMs exhibits a uniform late-time decay rate comparable to single-qubit relaxation rates, irrespective of its size or composition. This characteristic allows us to accurately reconstruct the exponentially localized spatial profiles of the MEMs. Furthermore, the MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism. Our work elucidates the complex interplay between noise and symmetry-protected edge modes in a solid-state environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11372v2-abstract-full').style.display = 'none'; document.getElementById('2204.11372v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 378, 785 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.10303">arXiv:2202.10303</a> <span> [<a href="https://arxiv.org/pdf/2202.10303">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-022-00600-9">10.1038/s41534-022-00600-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Path toward manufacturable superconducting qubits with relaxation times exceeding 0.1 ms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Verjauw%2C+J">J. Verjauw</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">R. Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Van+Damme%2C+J">J. Van Damme</a>, <a href="/search/cond-mat?searchtype=author&query=Ivanov%2C+T">Ts. Ivanov</a>, <a href="/search/cond-mat?searchtype=author&query=Lozano%2C+D+P">D. Perez Lozano</a>, <a href="/search/cond-mat?searchtype=author&query=Mohiyaddin%2C+F+A">F. A. Mohiyaddin</a>, <a href="/search/cond-mat?searchtype=author&query=Wan%2C+D">D. Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Jussot%2C+J">J. Jussot</a>, <a href="/search/cond-mat?searchtype=author&query=Vadiraj%2C+A+M">A. M. Vadiraj</a>, <a href="/search/cond-mat?searchtype=author&query=Mongillo%2C+M">M. Mongillo</a>, <a href="/search/cond-mat?searchtype=author&query=Heyns%2C+M">M. Heyns</a>, <a href="/search/cond-mat?searchtype=author&query=Radu%2C+I">I. Radu</a>, <a href="/search/cond-mat?searchtype=author&query=Govoreanu%2C+B">B. Govoreanu</a>, <a href="/search/cond-mat?searchtype=author&query=Poto%C4%8Dnik%2C+A">A. Poto膷nik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.10303v1-abstract-short" style="display: inline;"> As the superconducting qubit platform matures towards ever-larger scales in the race towards a practical quantum computer, limitations due to qubit inhomogeneity through lack of process control become apparent. To benefit from the advanced process control in industry-scale CMOS fabrication facilities, different processing methods will be required. In particular, the double-angle evaporation and li… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10303v1-abstract-full').style.display = 'inline'; document.getElementById('2202.10303v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.10303v1-abstract-full" style="display: none;"> As the superconducting qubit platform matures towards ever-larger scales in the race towards a practical quantum computer, limitations due to qubit inhomogeneity through lack of process control become apparent. To benefit from the advanced process control in industry-scale CMOS fabrication facilities, different processing methods will be required. In particular, the double-angle evaporation and lift-off techniques used for current, state-of-the art superconducting qubits are generally incompatible with modern day manufacturable processes. Here, we demonstrate a fully CMOS compatible qubit fabrication method, and show results from overlap Josephson junction devices with long coherence and relaxation times, on par with the state-of-the-art. We experimentally verify that Argon milling - the critical step during junction fabrication - and a subtractive etch process nevertheless result in qubits with average qubit energy relaxation times T1 reaching 70 $渭$s, with maximum values exceeding 100 $渭$s. Furthermore, we show that our results are still limited by surface losses and not, crucially, by junction losses. The presented fabrication process therefore heralds an important milestone towards a manufacturable 300 mm CMOS process for high-coherence superconducting qubits and has the potential to advance the scaling of superconducting device architectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10303v1-abstract-full').style.display = 'none'; document.getElementById('2202.10303v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13+6 pages, 3+6 figures, 0+2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Inf 8, 93 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09235">arXiv:2112.09235</a> <span> [<a href="https://arxiv.org/pdf/2112.09235">pdf</a>, <a href="https://arxiv.org/format/2112.09235">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Dynamics of water and ethanol in graphene oxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+G+R">Gobin R. Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Tyagi%2C+M">Madhusudan Tyagi</a>, <a href="/search/cond-mat?searchtype=author&query=Mamontov%2C+E">Eugene Mamontov</a>, <a href="/search/cond-mat?searchtype=author&query=Hoffmann%2C+P+M">Peter M. Hoffmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09235v1-abstract-short" style="display: inline;"> We utilized the momentum transfer(Q)-dependence of Quasi-Elastic Neutron Scattering (QENS) to reveal the dynamics of water and ethanol confined in Graphene Oxide (GO) powder or membranes at different temperatures and in different orientations. The dynamics was measured across different length and time scales using several spectrometers. We found reduced diffusivities (up to 30\% in the case of wat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09235v1-abstract-full').style.display = 'inline'; document.getElementById('2112.09235v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09235v1-abstract-full" style="display: none;"> We utilized the momentum transfer(Q)-dependence of Quasi-Elastic Neutron Scattering (QENS) to reveal the dynamics of water and ethanol confined in Graphene Oxide (GO) powder or membranes at different temperatures and in different orientations. The dynamics was measured across different length and time scales using several spectrometers. We found reduced diffusivities (up to 30\% in the case of water) and a depression of the transition temperatures. While water showed near Arrhenius behavior with an almost bulk-like activation barrier in a temperature range of 280-310 K, the diffusivity of ethanol showed little temperature dependence. For both water and ethanol, we found evidence for immobile and mobile fractions of the confined liquid. The mobile fraction exhibited jump diffusion, with a jump length consistent with the expected average spacing of hydroxide groups in the GO surfaces. From anisotropy measurements, we found weak anisotropy in diffusion, with the surprising result that diffusion was faster perpendicular to membrane than parallel to it. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09235v1-abstract-full').style.display = 'none'; document.getElementById('2112.09235v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages; 7 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.01620">arXiv:2101.01620</a> <span> [<a href="https://arxiv.org/pdf/2101.01620">pdf</a>, <a href="https://arxiv.org/format/2101.01620">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c04297">10.1021/acs.nanolett.2c04297 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Berezinskii-Kosterlitz-Thouless transition in the type-I Weyl semimetal PtBi$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Veyrat%2C+A">Arthur Veyrat</a>, <a href="/search/cond-mat?searchtype=author&query=Labracherie%2C+V">Valentin Labracherie</a>, <a href="/search/cond-mat?searchtype=author&query=Bashlakov%2C+D+L">Dima L. Bashlakov</a>, <a href="/search/cond-mat?searchtype=author&query=Caglieris%2C+F">Federico Caglieris</a>, <a href="/search/cond-mat?searchtype=author&query=Facio%2C+J+I">Jorge I. Facio</a>, <a href="/search/cond-mat?searchtype=author&query=Shipunov%2C+G">Grigory Shipunov</a>, <a href="/search/cond-mat?searchtype=author&query=Charvin%2C+T">Titouan Charvin</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rohith Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Naidyuk%2C+Y">Yurii Naidyuk</a>, <a href="/search/cond-mat?searchtype=author&query=Giraud%2C+R">Romain Giraud</a>, <a href="/search/cond-mat?searchtype=author&query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&query=Hess%2C+C">Christian Hess</a>, <a href="/search/cond-mat?searchtype=author&query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&query=Dufouleur%2C+J">Joseph Dufouleur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.01620v2-abstract-short" style="display: inline;"> Symmetry breaking in topological matter has become in recent years a key concept in condensed matter physics to unveil novel electronic states. In this work, we predict that broken inversion symmetry and strong spin-orbit coupling in trigonal PtBi$_2$ lead to a type-I Weyl semimetal band structure. Transport measurements show an unusually robust low dimensional superconductivity in thin exfoliated… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01620v2-abstract-full').style.display = 'inline'; document.getElementById('2101.01620v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.01620v2-abstract-full" style="display: none;"> Symmetry breaking in topological matter has become in recent years a key concept in condensed matter physics to unveil novel electronic states. In this work, we predict that broken inversion symmetry and strong spin-orbit coupling in trigonal PtBi$_2$ lead to a type-I Weyl semimetal band structure. Transport measurements show an unusually robust low dimensional superconductivity in thin exfoliated flakes up to 126 nm in thickness (with $T_c \sim 275-400$~mK), which constitutes the first report and study of unambiguous superconductivity in a type-I Weyl semimetal. Remarkably, a Berezinskii-Kosterlitz-Thouless transition with $T_\text{BKT} \sim 310$~mK is revealed in up to 60 nm thick flakes, which is nearly an order of magnitude thicker than the rare examples of two-dimensional superconductors exhibiting such a transition. This makes PtBi$_2$ an ideal platform to study low dimensional and unconventional superconductivity in topological semimetals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01620v2-abstract-full').style.display = 'none'; document.getElementById('2101.01620v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to be published in Nano Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2023 23 (4), 1229-1235 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.10761">arXiv:2012.10761</a> <span> [<a href="https://arxiv.org/pdf/2012.10761">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.16.014018">10.1103/PhysRevApplied.16.014018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigation of microwave loss induced by oxide regrowth in high-Q Nb resonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Verjauw%2C+J">J. Verjauw</a>, <a href="/search/cond-mat?searchtype=author&query=Poto%C4%8Dnik%2C+A">A. Poto膷nik</a>, <a href="/search/cond-mat?searchtype=author&query=Mongillo%2C+M">M. Mongillo</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">R. Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Mohiyaddin%2C+F">F. Mohiyaddin</a>, <a href="/search/cond-mat?searchtype=author&query=Simion%2C+G">G. Simion</a>, <a href="/search/cond-mat?searchtype=author&query=Pacco%2C+A">A. Pacco</a>, <a href="/search/cond-mat?searchtype=author&query=Ivanov%2C+T">Ts. Ivanov</a>, <a href="/search/cond-mat?searchtype=author&query=Wan%2C+D">D. Wan</a>, <a href="/search/cond-mat?searchtype=author&query=Vanleenhove%2C+A">A. Vanleenhove</a>, <a href="/search/cond-mat?searchtype=author&query=Souriau%2C+L">L. Souriau</a>, <a href="/search/cond-mat?searchtype=author&query=Jussot%2C+J">J. Jussot</a>, <a href="/search/cond-mat?searchtype=author&query=Thiam%2C+A">A. Thiam</a>, <a href="/search/cond-mat?searchtype=author&query=Swerts%2C+J">J. Swerts</a>, <a href="/search/cond-mat?searchtype=author&query=Piao%2C+X">X. Piao</a>, <a href="/search/cond-mat?searchtype=author&query=Couet%2C+S">S. Couet</a>, <a href="/search/cond-mat?searchtype=author&query=Heyns%2C+M">M. Heyns</a>, <a href="/search/cond-mat?searchtype=author&query=Govoreanu%2C+B">B. Govoreanu</a>, <a href="/search/cond-mat?searchtype=author&query=Radu%2C+I">I. Radu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.10761v2-abstract-short" style="display: inline;"> The coherence of state-of-the-art superconducting qubit devices is predominantly limited by two-level-system defects, found primarily at amorphous interface layers. Reducing microwave loss from these interfaces by proper surface treatments is key to push the device performance forward. Here, we study niobium resonators after removing the native oxides with a hydrofluoric acid etch. We investigate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10761v2-abstract-full').style.display = 'inline'; document.getElementById('2012.10761v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.10761v2-abstract-full" style="display: none;"> The coherence of state-of-the-art superconducting qubit devices is predominantly limited by two-level-system defects, found primarily at amorphous interface layers. Reducing microwave loss from these interfaces by proper surface treatments is key to push the device performance forward. Here, we study niobium resonators after removing the native oxides with a hydrofluoric acid etch. We investigate the reappearance of microwave losses introduced by surface oxides that grow after exposure to the ambient environment. We find that losses in quantum devices are reduced by an order of magnitude, with internal Q-factors reaching up to 7 $\cdot$ 10$^6$ in the single photon regime, when devices are exposed to ambient conditions for 16 min. Furthermore, we observe that Nb2O5 is the only surface oxide that grows significantly within the first 200 hours, following the extended Cabrera-Mott growth model. In this time, microwave losses scale linearly with the Nb$_2$O$_5$ thickness, with an extracted loss tangent tan$未$ = 9.9 $\cdot$ 10$^{-3}$. Our findings are of particular interest for devices spanning from superconducting qubits, quantum-limited amplifiers, microwave kinetic inductance detectors to single photon detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10761v2-abstract-full').style.display = 'none'; document.getElementById('2012.10761v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+11 pages, 5+7 figures, 0+7 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 16, 014018 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14118">arXiv:2009.14118</a> <span> [<a href="https://arxiv.org/pdf/2009.14118">pdf</a>, <a href="https://arxiv.org/ps/2009.14118">ps</a>, <a href="https://arxiv.org/format/2009.14118">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.064305">10.1103/PhysRevB.103.064305 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron Thermalization and Relaxation in Laser-Heated Nickel by Few-Femtosecond Core-Level Transient Absorption Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chang%2C+H">Hung-Tzu Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Guggenmos%2C+A">Alexander Guggenmos</a>, <a href="/search/cond-mat?searchtype=author&query=Cushing%2C+S+K">Scott K. Cushing</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Y">Yang Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Din%2C+N+U">Naseem Ud Din</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+S+R">Shree Ram Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Porter%2C+I+J">Ilana J. Porter</a>, <a href="/search/cond-mat?searchtype=author&query=Kleineberg%2C+U">Ulf Kleineberg</a>, <a href="/search/cond-mat?searchtype=author&query=Turkowski%2C+V">Volodymyr Turkowski</a>, <a href="/search/cond-mat?searchtype=author&query=Rahman%2C+T+S">Talat S. Rahman</a>, <a href="/search/cond-mat?searchtype=author&query=Neumark%2C+D+M">Daniel M. Neumark</a>, <a href="/search/cond-mat?searchtype=author&query=Leone%2C+S+R">Stephen R. Leone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14118v2-abstract-short" style="display: inline;"> Direct measurements of photoexcited carrier dynamics in nickel are made using few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy at the nickel M$_{2,3}$ edge. It is observed that the core-level absorption lineshape of photoexcited nickel can be described by a Gaussian broadening ($蟽$) and a red shift ($蠅_{s}$) of the ground state absorption spectrum. Theory predicts, and t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14118v2-abstract-full').style.display = 'inline'; document.getElementById('2009.14118v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14118v2-abstract-full" style="display: none;"> Direct measurements of photoexcited carrier dynamics in nickel are made using few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy at the nickel M$_{2,3}$ edge. It is observed that the core-level absorption lineshape of photoexcited nickel can be described by a Gaussian broadening ($蟽$) and a red shift ($蠅_{s}$) of the ground state absorption spectrum. Theory predicts, and the experimental results verify that after initial rapid carrier thermalization, the electron temperature increase ($螖T$) is linearly proportional to the Gaussian broadening factor $蟽$, providing quantitative real-time tracking of the relaxation of the electron temperature. Measurements reveal an electron cooling time for 50 nm thick polycrystalline nickel films of 640$\pm$80 fs. With hot thermalized carriers, the spectral red shift exhibits a power-law relationship with the change in electron temperature of $蠅_{s}\propto螖T^{1.5}$. Rapid electron thermalization via carrier-carrier scattering accompanies and follows the nominal 4 fs photoexcitation pulse until the carriers reach a quasi-thermal equilibrium. Entwined with a <6 fs instrument response function, carrier thermalization times ranging from 34 fs to 13 fs are estimated from experimental data acquired at different pump fluences and it is observed that the electron thermalization time decreases with increasing pump fluence. The study provides an initial example of measuring electron temperature and thermalization in metals in real time with XUV light, and it lays a foundation for further investigation of photoinduced phase transitions and carrier transport in metals with core-level absorption spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14118v2-abstract-full').style.display = 'none'; document.getElementById('2009.14118v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 064305 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.01147">arXiv:1911.01147</a> <span> [<a href="https://arxiv.org/pdf/1911.01147">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.017202">10.1103/PhysRevLett.125.017202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast demagnetization dynamics in Ni: role of electron correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+S+R">Shree Ram Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Turkowski%2C+V">Volodymyr Turkowski</a>, <a href="/search/cond-mat?searchtype=author&query=Rahman%2C+G+Z+T+S">Guo-ping Zhang Talat S. Rahman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.01147v1-abstract-short" style="display: inline;"> Experimental observations of the ultrafast (less than 50 fs) demagnetization of Ni have so far defied theoretical explanations particularly since its spin-flipping time is much less than that resulting from spin-orbit and electron-lattice interactions. Through the application of an approach that benefits from spin-flip time-dependent density-functional theory and dynamical mean-field theory, we sh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.01147v1-abstract-full').style.display = 'inline'; document.getElementById('1911.01147v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.01147v1-abstract-full" style="display: none;"> Experimental observations of the ultrafast (less than 50 fs) demagnetization of Ni have so far defied theoretical explanations particularly since its spin-flipping time is much less than that resulting from spin-orbit and electron-lattice interactions. Through the application of an approach that benefits from spin-flip time-dependent density-functional theory and dynamical mean-field theory, we show that proper inclusion of electron correlations and memory (time-dependence of electron-electron interaction) effects leads to demagnetization at the femtosecond scale, in good agreement with experimental observations. Furthermore, our calculations reveal that this ultrafast demagnetization results mainly from spin-flip transitions from occupied to unoccupied orbitals implying a dynamical reduction of exchange splitting. These conclusions are found to be valid for a wide range of laser pulse amplitudes. They also pave the way for ab initio investigations of ultrafast charge and spin dynamics in a variety of quantum materials in which electron correlations may play a definitive role. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.01147v1-abstract-full').style.display = 'none'; document.getElementById('1911.01147v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 017202 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.00180">arXiv:1908.00180</a> <span> [<a href="https://arxiv.org/pdf/1908.00180">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Sub-monolayer structures of Ag overlayers on Ge(111): experimental observations and first-principles study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+S+R">Shree Ram Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Mullet%2C+C+H">Cory H. Mullet</a>, <a href="/search/cond-mat?searchtype=author&query=Giacomo%2C+J+A">Jason A. Giacomo</a>, <a href="/search/cond-mat?searchtype=author&query=Le%2C+D">Duy Le</a>, <a href="/search/cond-mat?searchtype=author&query=Chiang%2C+S">Shirley Chiang</a>, <a href="/search/cond-mat?searchtype=author&query=Rahman%2C+T+S">Talat S. Rahman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.00180v2-abstract-short" style="display: inline;"> We present a joint experimental and theoretical determination of structures of Ag adatoms on the Ge(111) surface using low energy electron diffraction, low energy electron microscopy, scanning tunneling microscopy, and density functional theory-based calculations, as functions of coverages and temperature. Experimentally for clean Ge(111), c(2X8) and (2X1) phases occur, while Ag overlayers cause (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.00180v2-abstract-full').style.display = 'inline'; document.getElementById('1908.00180v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.00180v2-abstract-full" style="display: none;"> We present a joint experimental and theoretical determination of structures of Ag adatoms on the Ge(111) surface using low energy electron diffraction, low energy electron microscopy, scanning tunneling microscopy, and density functional theory-based calculations, as functions of coverages and temperature. Experimentally for clean Ge(111), c(2X8) and (2X1) phases occur, while Ag overlayers cause (4X4), (V3XV3)R30 and (3X1) surface structural phases. The dependence of the growth behavior of these different phases was examined as a function of temperature, Ag deposition rate and coverage, substrate step density, and history of temperature cycling. First-principles calculations of the electronic and geometric structures and vibrational dynamics show the Ge(111)-c(2X8) configuration with Ge adatoms adsorbed on three-fold hollow (T4) sites to be the energetically most favored phase of the Ge(111) surface, among unreconstructed Ge(111), reconstructed Ge(111)-2X1, and Ge(111)-c(2X8) structures. The Ge(111)-Ag(3X1) overlayer of the system has Ge atoms forming a honeycomb chain on a missing top layer reconstructed surface, with metal at 1/3 ML coverage in channel. The Ge (111)-Ag(V3XV3)R30 overlayer contains one monolayer Ag forming inequivalent Ag triangles in a surface unit cell on the missing top layer reconstructed Ge(111) surface. The Ge(111)-Ag(4X4) overlayer formed at low Ag coverage contains two triangular subunits at different heights: one with six Ag adatoms and the other with three Ge adatoms on the intact double layer Ge(111) surface. The temperature and coverage dependent surface phase diagram, obtained by minimizing the surface free energy, captures the main features of the experimental phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.00180v2-abstract-full').style.display = 'none'; document.getElementById('1908.00180v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.06436">arXiv:1904.06436</a> <span> [<a href="https://arxiv.org/pdf/1904.06436">pdf</a>, <a href="https://arxiv.org/format/1904.06436">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> On the validity of the Arrhenius picture in two-dimensional submonolayer growth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Alberdi-Rodriguez%2C+J">Joseba Alberdi-Rodriguez</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+S+R">Shree Ram Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Rahman%2C+T+S">Talat S. Rahman</a>, <a href="/search/cond-mat?searchtype=author&query=Arnau%2C+A">Andres Arnau</a>, <a href="/search/cond-mat?searchtype=author&query=Gos%C3%A1lvez%2C+M+A">Miguel Angel Gos谩lvez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.06436v1-abstract-short" style="display: inline;"> For surface-mediated processes, such as on-surface synthesis, epitaxial growth and heterogeneous catalysis, a constant slope in the Arrhenius diagram of the corresponding rate of interest against inverse temperature, $\log R$ {\it vs} $1/k_B T$, is traditionally interpreted as the existence of a bottleneck elementary reaction (or rate-determining step), whereby the constant slope (or apparent acti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.06436v1-abstract-full').style.display = 'inline'; document.getElementById('1904.06436v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.06436v1-abstract-full" style="display: none;"> For surface-mediated processes, such as on-surface synthesis, epitaxial growth and heterogeneous catalysis, a constant slope in the Arrhenius diagram of the corresponding rate of interest against inverse temperature, $\log R$ {\it vs} $1/k_B T$, is traditionally interpreted as the existence of a bottleneck elementary reaction (or rate-determining step), whereby the constant slope (or apparent activation energy, $E_{app}^{R}$) reflects the value of the energy barrier for that reaction. Here, we show that a constant value of $E_{app}^{R}$ can be obtained even if control shifts from one elementary reaction to another. In fact, we show that $E_{app}^{R}$ is a weighted average and the leading elementary reaction will change with temperature while the actual energy contribution for every elementary reaction will contain, in addition to the traditional energy barrier, a configurational term directly related to the number of local configurations where that reaction can be performed. For this purpose, we consider kinetic Monte Carlo simulations of two-dimensional submonolayer growth at constant deposition flux, where the rate of interest is the tracer diffusivity. In particular, we focus on the study of the morphology, island density and diffusivity by including a large variety of single-atom, multi-atom and complete-island diffusion events for two specific metallic heteroepitaxial systems, namely, Cu on Ni(111) and Ni on Cu(111), as a function of coverage and temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.06436v1-abstract-full').style.display = 'none'; document.getElementById('1904.06436v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures, appendix of 11 pages and 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.10282">arXiv:1902.10282</a> <span> [<a href="https://arxiv.org/pdf/1902.10282">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Prediction of activation energy barrier of island diffusion processes using data-driven approaches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+S+R">Shree Ram Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Rahman%2C+T+S">Talat S. Rahman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.10282v2-abstract-short" style="display: inline;"> We present models for prediction of activation energy barrier of diffusion process of adatom (1-4) islands obtained by using data-driven techniques. A set of easily accessible features, geometric and energetic, that are extracted by analyzing the variation of the energy barriers of a large number of processes on homo-epitaxial metallic systems of Cu, Ni, Pd, and Ag are used along with the activati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10282v2-abstract-full').style.display = 'inline'; document.getElementById('1902.10282v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.10282v2-abstract-full" style="display: none;"> We present models for prediction of activation energy barrier of diffusion process of adatom (1-4) islands obtained by using data-driven techniques. A set of easily accessible features, geometric and energetic, that are extracted by analyzing the variation of the energy barriers of a large number of processes on homo-epitaxial metallic systems of Cu, Ni, Pd, and Ag are used along with the activation energy barriers to train and test linear and non-linear statistical models. A multivariate linear regression model trained with energy barriers for Cu, Pd, and Ag systems explains 92% of the variation of energy barriers of the Ni system, whereas the non-linear model using artificial neural network slightly enhances the success to 93%. Next mode of calculation that uses barriers of all four systems in training, predicts barriers of randomly picked processes of those systems with significantly high correlation coefficient: 94.4% in linear regression model and 97.7% in artificial neural network model. Calculated kinetics parameters such as the type of frequently executed processes and effective energy barrier for Ni dimer and trimer diffusion on the Ni(111) surface obtained from KMC simulation using the predicted (data-enabled) energy barriers are in close agreement with those obtained by using energy barriers calculated from interatomic interaction potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10282v2-abstract-full').style.display = 'none'; document.getElementById('1902.10282v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0409613">arXiv:cond-mat/0409613</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0409613">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0409613">ps</a>, <a href="https://arxiv.org/format/cond-mat/0409613">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Free energy differences : Representations, estimators, and sampling strategies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+A+R">Arjun R. Acharya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0409613v1-abstract-short" style="display: inline;"> In this thesis we examine methodologies for determining free energy differences (FEDs) of phases via Monte Carlo simulation. We identify and address three generic issues that arise in FED calculations; the choice of representation, the choice of estimator, and the choice of sampling strategy. In addition we discuss how the classical framework may be extended to take into account quantum effects.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0409613v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0409613v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0409613v1-abstract-full" style="display: none;"> In this thesis we examine methodologies for determining free energy differences (FEDs) of phases via Monte Carlo simulation. We identify and address three generic issues that arise in FED calculations; the choice of representation, the choice of estimator, and the choice of sampling strategy. In addition we discuss how the classical framework may be extended to take into account quantum effects. Key words: Phase Mapping, Phase Switch, Lattice Switch, Simulated Tempering, Multi-stage, Weighted Histogram Analysis Method, Fast Growth, Jarzynski method, Umbrella, Multicanonical, Path Integral Monte Carlo, Path Sampling, Multihamiltonian, fluctuation theorem <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0409613v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0409613v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Ph.D. Thesis, University of Edinburgh, pdflatex, bibtex</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/quant-ph/0308084">arXiv:quant-ph/0308084</a> <span> [<a href="https://arxiv.org/pdf/quant-ph/0308084">pdf</a>, <a href="https://arxiv.org/ps/quant-ph/0308084">ps</a>, <a href="https://arxiv.org/format/quant-ph/0308084">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0305-4470/37/7/001">10.1088/0305-4470/37/7/001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detailed Balance and Intermediate Statistics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">R. Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Swamy%2C+P+N">P. Narayana Swamy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="quant-ph/0308084v2-abstract-short" style="display: inline;"> We present a theory of particles, obeying intermediate statistics ("anyons"), interpolating between Bosons and Fermions, based on the principle of Detailed Balance. It is demonstrated that the scattering probabilities of identical particles can be expressed in terms of the basic numbers, which arise naturally and logically in this theory. A transcendental equation determining the distribution fu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0308084v2-abstract-full').style.display = 'inline'; document.getElementById('quant-ph/0308084v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="quant-ph/0308084v2-abstract-full" style="display: none;"> We present a theory of particles, obeying intermediate statistics ("anyons"), interpolating between Bosons and Fermions, based on the principle of Detailed Balance. It is demonstrated that the scattering probabilities of identical particles can be expressed in terms of the basic numbers, which arise naturally and logically in this theory. A transcendental equation determining the distribution function of anyons is obtained in terms of the statistics parameter, whose limiting values 0 and 1 correspond to Bosons and Fermions respectively. The distribution function is determined as a power series involving the Boltzmann factor and the statistics parameter and we also express the distribution function as an infinite continued fraction. The last form enables one to develop approximate forms for the distribution function, with the first approximant agreeing with our earlier investigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('quant-ph/0308084v2-abstract-full').style.display = 'none'; document.getElementById('quant-ph/0308084v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2003; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, RevTex, submitted for publication; added references; added sentences</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J.Phys.A37:2527-2536,2004; Erratum-ibid.A37:6605,2004 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>