CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 293 results for author: <span class="mathjax">Sun, X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Sun%2C+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Sun, X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Sun%2C+X&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Sun, X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Sun%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+X&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+X&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.10552">arXiv:2501.10552</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.10552">pdf</a>, <a href="https://arxiv.org/format/2501.10552">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Parent Lindbladians for Matrix Product Density Operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuhan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruiz-de-Alarc%C3%B3n%2C+A">Alberto Ruiz-de-Alarc贸n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Styliaris%2C+G">Georgios Styliaris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiao-Qi Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=P%C3%A9rez-Garc%C3%ADa%2C+D">David P茅rez-Garc铆a</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cirac%2C+J+I">J. Ignacio Cirac</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.10552v1-abstract-short" style="display: inline;"> Understanding quantum phases of matter is a fundamental goal in physics. For pure states, the representatives of phases are the ground states of locally interacting Hamiltonians, which are also renormalization fixed points (RFPs). These RFP states are exactly described by tensor networks. Extending this framework to mixed states, matrix product density operators (MPDOs) which are RFPs are believed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10552v1-abstract-full').style.display = 'inline'; document.getElementById('2501.10552v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.10552v1-abstract-full" style="display: none;"> Understanding quantum phases of matter is a fundamental goal in physics. For pure states, the representatives of phases are the ground states of locally interacting Hamiltonians, which are also renormalization fixed points (RFPs). These RFP states are exactly described by tensor networks. Extending this framework to mixed states, matrix product density operators (MPDOs) which are RFPs are believed to encapsulate mixed-state phases of matter in one dimension. However, it remains an open question whether, by analogy, such MPDO RFPs can be realized as steady states of local Lindbladians. In this work, we resolve this question by analytically constructing parent Lindbladians for MPDO RFPs. These Lindbladians are local, frustration-free, and exhibit minimal steady-state degeneracy. Interestingly, we find that parent Lindbladians possess a rich structure, including non-commutativity for certain classes of RFPs, distinguishing them from their Hamiltonian counterparts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10552v1-abstract-full').style.display = 'none'; document.getElementById('2501.10552v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09968">arXiv:2501.09968</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.09968">pdf</a>, <a href="https://arxiv.org/format/2501.09968">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> In-plane anisotropy of charge density wave fluctuations in 1$T$-TiSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xuefei Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kogar%2C+A">Anshul Kogar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henke%2C+J">Jans Henke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flicker%2C+F">Felix Flicker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Juan%2C+F">Fernando de Juan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+S+X+-">Stella X. -L. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khayr%2C+I">Issam Khayr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sangjun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krogstad%2C+M+J">Matthew J. Krogstad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenkranz%2C+S">Stephan Rosenkranz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osborn%2C+R">Raymond Osborn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruff%2C+J+P+C">Jacob P. C. Ruff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lioi%2C+D+B">David B. Lioi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karapetrov%2C+G">Goran Karapetrov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campbell%2C+D+J">Daniel J. Campbell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paglione%2C+J">Johnpierre Paglione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Wezel%2C+J">Jasper van Wezel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiang%2C+T+C">Tai C. Chiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbamonte%2C+P">Peter Abbamonte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09968v1-abstract-short" style="display: inline;"> We report measurements of anisotropic triple-$q$ charge density wave (CDW) fluctuations in the transition metal dichalcogenide 1$T$-TiSe$_2$ over a large volume of reciprocal space with X-ray diffuse scattering. Above the transition temperature, $T_{\text{CDW}}$, the out-of-plane diffuse scattering is characterized by rod-like structures which indicate that the CDW fluctuations in neighboring laye&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09968v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09968v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09968v1-abstract-full" style="display: none;"> We report measurements of anisotropic triple-$q$ charge density wave (CDW) fluctuations in the transition metal dichalcogenide 1$T$-TiSe$_2$ over a large volume of reciprocal space with X-ray diffuse scattering. Above the transition temperature, $T_{\text{CDW}}$, the out-of-plane diffuse scattering is characterized by rod-like structures which indicate that the CDW fluctuations in neighboring layers are largely decoupled. In addition, the in-plane diffuse scattering is marked by ellipses which reveal that the in-plane fluctuations are anisotropic. Our analysis of the diffuse scattering line shapes and orientations suggests that the three charge density wave components contain independent phase fluctuations. At $T_{\text{CDW}}$, long range coherence is established in both the in-plane and out-of-plane directions, consistent with the large observed value of the CDW gap compared to $T_{\text{CDW}}$, and the predicted presence of a hierarchy of energy scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09968v1-abstract-full').style.display = 'none'; document.getElementById('2501.09968v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06287">arXiv:2501.06287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06287">pdf</a>, <a href="https://arxiv.org/format/2501.06287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Boundary operator expansion and extraordinary phase transition in the tricritical O(N) model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xinyu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jian%2C+S">Shao-Kai Jian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06287v1-abstract-short" style="display: inline;"> We study the boundary extraordinary transition of a 3D tricritical $O(N)$ model. We first compute the mean-field Green&#39;s function with a general coupling of $|\vec 蠁|^{2n}$ (with $n=3$ corresponding to the tricritical point) at the extraordinary phase transition. Then, by employing the technique of layer susceptibility, we solve the boundary operator expansion using the $蔚=3 - d$ expansion. Based&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06287v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06287v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06287v1-abstract-full" style="display: none;"> We study the boundary extraordinary transition of a 3D tricritical $O(N)$ model. We first compute the mean-field Green&#39;s function with a general coupling of $|\vec 蠁|^{2n}$ (with $n=3$ corresponding to the tricritical point) at the extraordinary phase transition. Then, by employing the technique of layer susceptibility, we solve the boundary operator expansion using the $蔚=3 - d$ expansion. Based on these results, we demonstrate that the tricritical point exhibits an extraordinary transition characterized by an ordered boundary for any $N$. This provides the first nontrivial example of continuous symmetry breaking in 2D dimensions in the context of boundary criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06287v1-abstract-full').style.display = 'none'; document.getElementById('2501.06287v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11092">arXiv:2412.11092</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.11092">pdf</a>, <a href="https://arxiv.org/ps/2412.11092">ps</a>, <a href="https://arxiv.org/format/2412.11092">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.224414">10.1103/PhysRevB.110.224414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermodynamics and heat transport of quantum spin liquid candidates NaYbS$_2$ and NaYbSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+M+T">M. T. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Q. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuo%2C+Z+W">Z. W. Zhuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Z. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">E. S. Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+Y">Y. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+H">H. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D+D">D. D. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">G. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+M">Q. M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11092v1-abstract-short" style="display: inline;"> We study the ultralow-temperature thermodynamics and thermal conductivity ($魏$) of the single-crystal rare-earth chalcogenides NaYbS$_2$ and NaYbSe$_2$, which have an ideal triangular lattice of the Yb$^{3+}$ ions and have been proposed to be quantum spin liquid candidates. The magnetic specific heat divided by temperature $C_{\rm{mag}}/T$ is nearly constant at $T &lt;$ 200 mK, which is indeed the in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11092v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11092v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11092v1-abstract-full" style="display: none;"> We study the ultralow-temperature thermodynamics and thermal conductivity ($魏$) of the single-crystal rare-earth chalcogenides NaYbS$_2$ and NaYbSe$_2$, which have an ideal triangular lattice of the Yb$^{3+}$ ions and have been proposed to be quantum spin liquid candidates. The magnetic specific heat divided by temperature $C_{\rm{mag}}/T$ is nearly constant at $T &lt;$ 200 mK, which is indeed the indication of the gapless magnetic excitations with a constant density of states. However, we observe a vanishingly small residual term $魏_0/T$, which points to the absence of mobile fermionic excitations in these materials. Both the weak temperature dependence of $魏$ and the strong magnetic-field dependence of $魏$ suggest the significant scattering between the spinons and phonons, which actually supports the existence of gapless or tiny-gapped quantum spin liquid. Moreover, the $魏(B)/魏(0)$ isotherms show a series of field-induced magnetic transitions for $B \parallel a$, confirming the easy-plane anisotropy, which is consistent with the results of ac magnetic susceptibility. We expect our results to inspire further interests in the understanding of the spinon-phonon coupling in the spin liquid systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11092v1-abstract-full').style.display = 'none'; document.getElementById('2412.11092v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Phys. Rev. B 110, 224414 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02361">arXiv:2412.02361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.02361">pdf</a>, <a href="https://arxiv.org/ps/2412.02361">ps</a>, <a href="https://arxiv.org/format/2412.02361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Chiral Anomalous Magnetohydrodynamics in action: effective field theory and holography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Baggioli%2C+M">Matteo Baggioli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bu%2C+Y">Yanyan Bu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiyang Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02361v2-abstract-short" style="display: inline;"> Chiral Anomalous Magnetohydrodynamics (CAMHD) provides a low-energy effective framework for describing chiral fluids in the presence of dynamical electromagnetic fields and axial anomaly. This theory finds applications across diverse physical systems, including heavy-ion collisions, the early universe, and Weyl/Dirac semimetals. Along with Schwinger-Keldysh (SK) effective theories, holographic mod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02361v2-abstract-full').style.display = 'inline'; document.getElementById('2412.02361v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02361v2-abstract-full" style="display: none;"> Chiral Anomalous Magnetohydrodynamics (CAMHD) provides a low-energy effective framework for describing chiral fluids in the presence of dynamical electromagnetic fields and axial anomaly. This theory finds applications across diverse physical systems, including heavy-ion collisions, the early universe, and Weyl/Dirac semimetals. Along with Schwinger-Keldysh (SK) effective theories, holographic models serve as a complementary tool to provide a systematic formulation of CAMHD that goes beyond the weak coupling regime. In this work, we explore holographic models with $U(1)_A \times U(1)$ symmetry, where the electromagnetic $U(1)$ field is rendered dynamical through mixed boundary conditions applied to the bulk gauge field and the axial anomaly is introduced via a Chern-Simons bulk term. Through a detailed holographic SK analysis, we demonstrate that the low-energy effective action derived from this model aligns precisely with the SK field theory proposed by Landry and Liu and, in fact, it generalizes it to scenarios with finite background axial field. This alignment not only validates the holographic model but also paves the way for its use in exploring unresolved aspects of CAMHD, such as the recently proposed chiral magnetic electric separation wave and nonlinear chiral instabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02361v2-abstract-full').style.display = 'none'; document.getElementById('2412.02361v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08558">arXiv:2411.08558</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08558">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Effect of Top Al$_2$O$_3$ Interlayer Thickness on Memory Window and Reliability of FeFETs With TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) Gate Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T">Tao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+X">Xinpei Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+R">Runhao Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jia Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+M">Mingkai Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+S">Saifei Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zeqi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yajing Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+K">Kai Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanrong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yuanyuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+X">Xiaoyu Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiaoqing Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+J">Junshuai Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Hao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaolei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenwu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+T">Tianchun Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08558v1-abstract-short" style="display: inline;"> We investigate the effect of top Al2O3 interlayer thickness on the memory window (MW) of Si channel ferroelectric field-effect transistors (Si-FeFETs) with TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) gate structure. We find that the MW first increases and then remains almost constant with the increasing thickness of the top Al2O3. The phenomenon is attributed to the lower electric&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08558v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08558v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08558v1-abstract-full" style="display: none;"> We investigate the effect of top Al2O3 interlayer thickness on the memory window (MW) of Si channel ferroelectric field-effect transistors (Si-FeFETs) with TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) gate structure. We find that the MW first increases and then remains almost constant with the increasing thickness of the top Al2O3. The phenomenon is attributed to the lower electric field of the ferroelectric Hf$_{0.5}$Zr$_{0.5}$O$_2$ in the MIFIS structure with a thicker top Al2O3 after a program operation. The lower electric field makes the charges trapped at the top Al2O3/Hf0.5Zr0.5O$_2$ interface, which are injected from the metal gate, cannot be retained. Furthermore, we study the effect of the top Al$_2$O$_3$ interlayer thickness on the reliability (endurance characteristics and retention characteristics). We find that the MIFIS structure with a thicker top Al$_2$O$_3$ interlayer has poorer retention and endurance characteristics. Our work is helpful in deeply understanding the effect of top interlayer thickness on the MW and reliability of Si-FeFETs with MIFIS gate stacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08558v1-abstract-full').style.display = 'none'; document.getElementById('2411.08558v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05321">arXiv:2411.05321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05321">pdf</a>, <a href="https://arxiv.org/format/2411.05321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Trapping of Single Atoms in Metasurface Optical Tweezer Arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Holman%2C+A">Aaron Holman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Ximo Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jiahao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Mingxuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+B">Bojeong Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+N">Nanfang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Will%2C+S">Sebastian Will</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05321v2-abstract-short" style="display: inline;"> Optical tweezer arrays have emerged as a key experimental platform for quantum computation, quantum simulation, and quantum metrology, enabling unprecedented levels of control over single atoms and molecules. Existing methods to generate tweezer arrays mostly rely on active beam-shaping devices, such as acousto-optic deflectors or liquid-crystal spatial light modulators. However, these approaches&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05321v2-abstract-full').style.display = 'inline'; document.getElementById('2411.05321v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05321v2-abstract-full" style="display: none;"> Optical tweezer arrays have emerged as a key experimental platform for quantum computation, quantum simulation, and quantum metrology, enabling unprecedented levels of control over single atoms and molecules. Existing methods to generate tweezer arrays mostly rely on active beam-shaping devices, such as acousto-optic deflectors or liquid-crystal spatial light modulators. However, these approaches have fundamental limitations in array geometry, size, and scalability. Here we demonstrate the trapping of single atoms in optical tweezer arrays generated via holographic metasurfaces. We realize two-dimensional arrays with more than 250 tweezer traps, arranged in arbitrary geometries with trap spacings as small as 1.5 um. The arrays have a high uniformity in terms of trap depth, trap frequency, and positional accuracy, rivaling or exceeding existing approaches. Owing to sub-micrometer pixel sizes and high pixel densities, holographic metasurfaces open a path towards optical tweezer arrays with &gt;100,000 traps, facilitating tweezer-array based quantum applications that require large system sizes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05321v2-abstract-full').style.display = 'none'; document.getElementById('2411.05321v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 main figures, 8 extended data figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06419">arXiv:2410.06419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06419">pdf</a>, <a href="https://arxiv.org/format/2410.06419">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> </div> <p class="title is-5 mathjax"> Backbone exponent and annulus crossing probability for planar percolation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nolin%2C+P">Pierre Nolin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+W">Wei Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xin Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+Z">Zijie Zhuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06419v2-abstract-short" style="display: inline;"> We report the recent derivation of the backbone exponent for 2D percolation. In contrast to previously known exactly solved percolation exponents, the backbone exponent is a transcendental number, which is a root of an elementary equation. We also report an exact formula for the probability that there are two disjoint paths of the same color crossing an annulus. The backbone exponent captures the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06419v2-abstract-full').style.display = 'inline'; document.getElementById('2410.06419v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06419v2-abstract-full" style="display: none;"> We report the recent derivation of the backbone exponent for 2D percolation. In contrast to previously known exactly solved percolation exponents, the backbone exponent is a transcendental number, which is a root of an elementary equation. We also report an exact formula for the probability that there are two disjoint paths of the same color crossing an annulus. The backbone exponent captures the leading asymptotic, while the other roots of the elementary equation capture the asymptotic of the remaining terms. This suggests that the backbone exponent is part of a conformal field theory (CFT) whose bulk spectrum contains this set of roots. Our approach is based on the coupling between SLE curves and Liouville quantum gravity (LQG), and the integrability of Liouville CFT that governs the LQG surfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06419v2-abstract-full').style.display = 'none'; document.getElementById('2410.06419v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures. Added supplementary material providing more details on the derivation. Accepted by Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07339">arXiv:2408.07339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07339">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Bilayer TeO2: The First Oxide Semiconductor with Symmetric Sub-5-nm NMOS and PMOS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L">Linqiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liya Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+C+S">Chit Siong Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L">Lianqiang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qiuhui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+S">Shibo Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ang%2C+Y+S">Yee Sin Ang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiaotian Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jing Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07339v1-abstract-short" style="display: inline;"> Wide bandgap oxide semiconductors are very promising channel candidates for next-generation electronics due to their large-area manufacturing, high-quality dielectrics, low contact resistance, and low leakage current. However, the absence of ultra-short gate length (Lg) p-type transistors has restricted their application in future complementary metal-oxide-semiconductor (CMOS) integration. Inspire&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07339v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07339v1-abstract-full" style="display: none;"> Wide bandgap oxide semiconductors are very promising channel candidates for next-generation electronics due to their large-area manufacturing, high-quality dielectrics, low contact resistance, and low leakage current. However, the absence of ultra-short gate length (Lg) p-type transistors has restricted their application in future complementary metal-oxide-semiconductor (CMOS) integration. Inspired by the successfully grown high-hole mobility bilayer (BL) beta tellurium dioxide (\b{eta}-TeO2), we investigate the performance of sub-5-nm-Lg BL \b{eta}-TeO2 field-effect transistors (FETs) by utilizing first-principles quantum transport simulation. The distinctive anisotropy of BL \b{eta}-TeO2 yields different transport properties. In the y-direction, both the sub-5-nm-Lg n-type and p-type BL \b{eta}-TeO2 FETs can fulfill the International Technology Roadmap for Semiconductors (ITRS) criteria for high-performance (HP) devices, which are superior to the reported oxide FETs (only n-type). Remarkably, we for the first time demonstrate the existence of the NMOS and PMOS symmetry in sub-5-nm-Lg oxide semiconductor FETs. As to the x-direction, the n-type BL \b{eta}-TeO2 FETs satisfy both the ITRS HP and low-power (LP) requirements with Lg down to 3 nm. Consequently, our work shed light on the tremendous prospects of BL \b{eta}-TeO2 for CMOS application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07339v1-abstract-full').style.display = 'none'; document.getElementById('2408.07339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02984">arXiv:2408.02984</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02984">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct measurement of topological invariants through temporal adiabatic evolution of bulk states in the synthetic Brillouin zone </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhao-Xian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuan-hong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiao-Chen Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Ruo-Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jiang-Shan Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xue-Feng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yan-Qing Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02984v1-abstract-short" style="display: inline;"> Mathematically, topological invariants arise from the parallel transport of eigenstates on the energy bands, which, in physics, correspond to the adiabatic dynamical evolution of transient states. It determines the presence of boundary states, while lacking direct measurements. Here, we develop time-varying programmable coupling circuits between acoustic cavities to mimic the Hamiltonians in the B&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02984v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02984v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02984v1-abstract-full" style="display: none;"> Mathematically, topological invariants arise from the parallel transport of eigenstates on the energy bands, which, in physics, correspond to the adiabatic dynamical evolution of transient states. It determines the presence of boundary states, while lacking direct measurements. Here, we develop time-varying programmable coupling circuits between acoustic cavities to mimic the Hamiltonians in the Brillouin zone, with which excitation and adiabatic evolution of bulk states are realized in a unit cell. By extracting the Berry phases of the bulk band, topological invariants, including the Zak phase for the SSH model and the Chern number for the AAH model, are obtained convincingly. The bulk state evolution also provides insight into the topological charges of our newly developed non-Abelian models, which are also verified by observing the adiabatic eigenframe rotation. Our work not only provides a general recipe for telling various topological invariants but also sheds light on transient acoustic wave manipulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02984v1-abstract-full').style.display = 'none'; document.getElementById('2408.02984v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19003">arXiv:2407.19003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.19003">pdf</a>, <a href="https://arxiv.org/format/2407.19003">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Holographic dual of defect CFT with corner contributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xinyu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jian%2C+S">Shao-Kai Jian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19003v1-abstract-short" style="display: inline;"> We study defect CFT within the framework of holographic duality, emphasizing the impact of corner contributions. We model distinct conformal defects using interface branes that differ in tensions and are connected by a corner. Employing the relationship between CFT scaling dimensions and Euclidean gravity actions, we outline a general procedure for calculating the anomalous dimensions of defect ch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19003v1-abstract-full').style.display = 'inline'; document.getElementById('2407.19003v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19003v1-abstract-full" style="display: none;"> We study defect CFT within the framework of holographic duality, emphasizing the impact of corner contributions. We model distinct conformal defects using interface branes that differ in tensions and are connected by a corner. Employing the relationship between CFT scaling dimensions and Euclidean gravity actions, we outline a general procedure for calculating the anomalous dimensions of defect changing operators at nontrivial cusps. Several analytical results are obtained, including the cusp anomalous dimensions at big and small angles. While $1/蠁$ universal divergence appears for small cusp angles due to the fusion of two defects, more interestingly, we uncover a bubble phase rendered by a near zero angle cusp, in which the divergence is absent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19003v1-abstract-full').style.display = 'none'; document.getElementById('2407.19003v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4.2 pages + supplemental material, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18701">arXiv:2407.18701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18701">pdf</a>, <a href="https://arxiv.org/format/2407.18701">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.043189">10.1103/PhysRevResearch.6.043189 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Designing Phase Sensitive Probes of Monopole Superconducting Order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Frazier%2C+G+R">Grayson R. Frazier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junjia Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xinyu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yi Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18701v2-abstract-short" style="display: inline;"> Distinct from familiar $s$-, $p$-, or $d$-wave pairings, the monopole superconducting order represents a novel class of pairing order arising from nontrivial monopole charge of the Cooper pair. In the weak-coupling regime, this order can emerge when pairing occurs between Fermi surfaces with different Chern numbers in, for example, doped Weyl semimetal systems. However, the phase of monopole pairi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18701v2-abstract-full').style.display = 'inline'; document.getElementById('2407.18701v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18701v2-abstract-full" style="display: none;"> Distinct from familiar $s$-, $p$-, or $d$-wave pairings, the monopole superconducting order represents a novel class of pairing order arising from nontrivial monopole charge of the Cooper pair. In the weak-coupling regime, this order can emerge when pairing occurs between Fermi surfaces with different Chern numbers in, for example, doped Weyl semimetal systems. However, the phase of monopole pairing order is not well-defined over an entire Fermi surface, making it challenging to design experiments sensitive to both its symmetry and topology. To address this, we propose a scheme based on symmetry and topological principles to identify this elusive pairing order through a set of phase-sensitive Josephson experiments. By examining the discrepancy between global and local angular momentum of the pairing order, we can unveil the monopole charge of the pairing order. We demonstrate the proposed probe of monopole pairing order through analytic and numerical studies of Josephson coupling in models of monopole superconductor junctions. This work opens a promising avenue to uncover the unique topological properties of monopole pairing orders and to distinguish them from known pairing orders based on spherical harmonic symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18701v2-abstract-full').style.display = 'none'; document.getElementById('2407.18701v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 043189 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16910">arXiv:2407.16910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16910">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Operando probing of nanocracking in CuO-derived Cu during CO$_2$ electroreduction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+J">Jiawei Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Ershuai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+W">Woong Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+J">Jiayun Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Buyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Keon-Han Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xianhu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Meng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+H">Han Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qiubo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+C">Changlian Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Ji Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bustillo%2C+K+C">Karen C. Bustillo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ercius%2C+P">Peter Ercius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leshchev%2C+D">Denis Leshchev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+J">Ji Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balushi%2C+Z+Y+A">Zakaria Y. Al Balushi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+A+Z">Adam Z. Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asta%2C+M">Mark Asta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bell%2C+A+T">Alexis T. Bell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drisdell%2C+W+S">Walter S. Drisdell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Haimei Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16910v1-abstract-short" style="display: inline;"> Identifying and controlling active sites in electrocatalysis remains a grand challenge due to restructuring of catalysts in the complex chemical environments during operation. Inactive precatalysts can transform into active catalysts under reaction conditions, such as oxide-derived Cu (OD-Cu) for CO$_2$ electroreduction displaying improved production of multicarbon (C$_{2+}$) chemicals. Revealing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16910v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16910v1-abstract-full" style="display: none;"> Identifying and controlling active sites in electrocatalysis remains a grand challenge due to restructuring of catalysts in the complex chemical environments during operation. Inactive precatalysts can transform into active catalysts under reaction conditions, such as oxide-derived Cu (OD-Cu) for CO$_2$ electroreduction displaying improved production of multicarbon (C$_{2+}$) chemicals. Revealing the mechanism of active site origin in OD-Cu catalysts requires in situ/operando characterizations of structure, morphology, and valence state evolution with high spatial and temporal resolution. Applying newly developed electrochemical liquid cell transmission electron microscopy combined with X-ray absorption spectroscopy, our multimodal operando techniques unveil the formation pathways of OD-Cu active sites from CuO bicrystal nanowire precatalysts. Rapid reduction of CuO directly to Cu within 60 seconds generates a nanocrack network throughout the nanowire, via formation of &#34;boundary nanocracks&#34; along the twin boundary and &#34;transverse nanocracks&#34; propagating from the surface to the center of the nanowire. The nanocrack network further reconstructs, leading to a highly porous structure rich in Cu nanograins, with a boosted specific surface area and density of active sites for C$_{2+}$ products. These findings suggest a means to optimize active OD-Cu nanostructures through nanocracking by tailoring grain boundaries in CuO precatalysts. More generally, our advanced operando approach opens new opportunities for mechanistic insights to enable improved control of catalyst structure and performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16910v1-abstract-full').style.display = 'none'; document.getElementById('2407.16910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11167">arXiv:2407.11167</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11167">pdf</a>, <a href="https://arxiv.org/ps/2407.11167">ps</a>, <a href="https://arxiv.org/format/2407.11167">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.134401">10.1103/PhysRevB.110.134401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ising-type quantum spin liquid state in PrMgAl$_{11}$O$_{19}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rutherford%2C+A">A. Rutherford</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+Y">Y. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+H">H. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z+J">Z. J. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">W. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11167v2-abstract-short" style="display: inline;"> We have grown single crystals of PrMgAl$_{11}$O$_{19}$, an ideal triangular-lattice antiferromagnet, and performed magnetic susceptibility, specific heat and thermal conductivity measurements at low temperatures. The main results are as follows: (i) The temperature-dependent susceptibility shows a negligible in-plane response and the isothermal magnetization curves confirm the easy axis along the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11167v2-abstract-full').style.display = 'inline'; document.getElementById('2407.11167v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11167v2-abstract-full" style="display: none;"> We have grown single crystals of PrMgAl$_{11}$O$_{19}$, an ideal triangular-lattice antiferromagnet, and performed magnetic susceptibility, specific heat and thermal conductivity measurements at low temperatures. The main results are as follows: (i) The temperature-dependent susceptibility shows a negligible in-plane response and the isothermal magnetization curves confirm the easy axis along the $c$ axis. (ii) The specific heat measurements reveal the absence of long-range magnetic order down to 60 mK, and the power-law temperature dependence indicates the existence of the gapless magnetic excitations in system. (iii) The ultralow-temperature thermal conductivity exhibits negligibly small residual term ($魏_0/T$) and strong spin-phonon scattering effect, suggesting that the spin excitations are also involved. Our results further demonstrate that PrMgAl$_{11}$O$_{19}$ is a rare quantum spin liquid candidate with Ising-like anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11167v2-abstract-full').style.display = 'none'; document.getElementById('2407.11167v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 134401 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01422">arXiv:2407.01422</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01422">pdf</a>, <a href="https://arxiv.org/format/2407.01422">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Simulation with Gauge Fixing: from Ising Lattice Gauge Theory to Dynamical Flux Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Junsen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiangxiang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+W">Wei Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01422v1-abstract-short" style="display: inline;"> Quantum simulation of synthetic dynamic gauge field has attracted much attentions in recent years. There are two traditional ways to simulate gauge theories. One is to directly simulate the full Hamiltonian of gauge theories with local gauge symmetries. And the other is to engineer the projected Hamiltonian in one gauge subsector. In this work, we provide the third way towards the simulation of ga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01422v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01422v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01422v1-abstract-full" style="display: none;"> Quantum simulation of synthetic dynamic gauge field has attracted much attentions in recent years. There are two traditional ways to simulate gauge theories. One is to directly simulate the full Hamiltonian of gauge theories with local gauge symmetries. And the other is to engineer the projected Hamiltonian in one gauge subsector. In this work, we provide the third way towards the simulation of gauge theories based on \emph{gauge fixing}. To demonstrate this concept, we fix the gauge of an Ising lattice gauge field coupled with spinless fermions on a ladder geometry. After the gauge fixing, this gauge theory is reduced to a simpler model, in which fermions hop on a ladder with a fluctuating dynamical $\mathbb{Z}_{2}$ flux. Then we shows that this model can be realized via Floquet engineering in ultracold atomic gases. By analytical and numerical studies of this dynamical flux model, we deduce that there is confinement to deconfinement phase transition in the original unfixed gauge theory. This work paves the way to quantum simulate lattice gauge theory using the concept of gauge fixing, relevant both for condensed matter and high energy physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01422v1-abstract-full').style.display = 'none'; document.getElementById('2407.01422v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15478">arXiv:2406.15478</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.15478">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Impact of the Top SiO2 Interlayer Thickness on Memory Window of Si Channel FeFET with TiN/SiO2/Hf0.5Zr0.5O2/SiOx/Si (MIFIS) Gate Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T">Tao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+X">Xianzhou Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+M">Mingkai Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+X">Xinpei Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+S">Saifei Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiaoqing Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+R">Runhao Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jia Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+X">Xiaoyu Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+F">Fengbin Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+J">Junshuai Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Hao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaolei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenwu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+T">Tianchun Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15478v1-abstract-short" style="display: inline;"> We study the impact of top SiO2 interlayer thickness on the memory window (MW) of Si channel ferroelectric field-effect transistor (FeFET) with TiN/SiO2/Hf0.5Zr0.5O2/SiOx/Si (MIFIS) gate structure. We find that the MW increases with the increasing thickness of the top SiO2 interlayer, and such an increase exhibits a two-stage linear dependence. The physical origin is the presence of the different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15478v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15478v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15478v1-abstract-full" style="display: none;"> We study the impact of top SiO2 interlayer thickness on the memory window (MW) of Si channel ferroelectric field-effect transistor (FeFET) with TiN/SiO2/Hf0.5Zr0.5O2/SiOx/Si (MIFIS) gate structure. We find that the MW increases with the increasing thickness of the top SiO2 interlayer, and such an increase exhibits a two-stage linear dependence. The physical origin is the presence of the different interfacial charges trapped at the top SiO2/Hf0.5Zr0.5O2 interface. Moreover, we investigate the dependence of endurance characteristics on initial MW. We find that the endurance characteristic degrades with increasing the initial MW. By inserting a 3.4 nm SiO2 dielectric interlayer between the gate metal TiN and the ferroelectric Hf0.5Zr0.5O2, we achieve a MW of 6.3 V and retention over 10 years. Our work is helpful in the device design of FeFET. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15478v1-abstract-full').style.display = 'none'; document.getElementById('2406.15478v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 12 figures. arXiv admin note: substantial text overlap with arXiv:2404.15825</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04636">arXiv:2406.04636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04636">pdf</a>, <a href="https://arxiv.org/format/2406.04636">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.115126">10.1103/PhysRevB.110.115126 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge self-consistent density functional theory plus ghost rotationally-invariant slave-boson theory for correlated materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+T">Tsung-Han Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Melnick%2C+C">Corey Melnick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adler%2C+R">Ran Adler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xue Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yongxin Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lanat%C3%A0%2C+N">Nicola Lanat脿</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kotliar%2C+G">Gabriel Kotliar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04636v2-abstract-short" style="display: inline;"> We present a charge self-consistent density functional theory combined with the ghost-rotationally-invariant slave-boson (DFT+gRISB) formalism for studying correlated materials. This method is applied to SrVO$_3$ and NiO, representing prototypical correlated metals and charge-transfer insulators. For SrVO$_3$, we demonstrate that DFT+gRISB yields an accurate equilibrium volume and effective mass c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04636v2-abstract-full').style.display = 'inline'; document.getElementById('2406.04636v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04636v2-abstract-full" style="display: none;"> We present a charge self-consistent density functional theory combined with the ghost-rotationally-invariant slave-boson (DFT+gRISB) formalism for studying correlated materials. This method is applied to SrVO$_3$ and NiO, representing prototypical correlated metals and charge-transfer insulators. For SrVO$_3$, we demonstrate that DFT+gRISB yields an accurate equilibrium volume and effective mass close to experimentally observed values. Regarding NiO, DFT+gRISB enables the simultaneous description of charge transfer and Mott-Hubbard bands, significantly enhancing the accuracy of the original DFT+RISB approach. Furthermore, the calculated equilibrium volume and spectral function reasonably agree with experimental observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04636v2-abstract-full').style.display = 'none'; document.getElementById('2406.04636v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 115126 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15689">arXiv:2405.15689</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15689">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Probing Berry curvature in magnetic topological insulators through resonant infrared magnetic circular dichroism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bac%2C+S">Seul-Ki Bac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardel%C3%A9%2C+F+l">Florian le Mardel茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jiashu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshimura%2C+K">Kota Yoshimura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mohelsk%C3%BD%2C+I">Ivan Mohelsk媒</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xingdan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piot%2C+B">Benjamin Piot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wimmer%2C+S">Stefan Wimmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ney%2C+A">Andreas Ney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlova%2C+T">Tatyana Orlova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhukovskyi%2C+M">Maksym Zhukovskyi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+G">G眉nther Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springholz%2C+G">Gunther Springholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlita%2C+M">Milan Orlita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+K">Kyungwha Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+Y">Yi-Ting Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Assaf%2C+B+A">Badih A. Assaf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15689v1-abstract-short" style="display: inline;"> Probing the quantum geometry and topology in condensed matter systems has relied heavily on static electronic transport experiments in magnetic fields. Yet, contact-free optical measurements have rarely been explored. Magnetic dichroism (MCD), the nonreciprocal absorption of circular polarized light, was theoretically linked to the quantized anomalous Hall effect in magnetic insulators and can ide&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15689v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15689v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15689v1-abstract-full" style="display: none;"> Probing the quantum geometry and topology in condensed matter systems has relied heavily on static electronic transport experiments in magnetic fields. Yet, contact-free optical measurements have rarely been explored. Magnetic dichroism (MCD), the nonreciprocal absorption of circular polarized light, was theoretically linked to the quantized anomalous Hall effect in magnetic insulators and can identify the bands and momenta responsible for the underlying Berry Curvature (BC). Detecting BC through MCD faces two challenges: First, the relevant inter-band transitions usually generate MCD in the infrared (IR) range, requiring large samples with high quality. Second, while most magnetic materials are metallic, the relation between MCD and BC in metals remains unclear. Here, we report the observation of MCD in the IR range along with the anomalous Hall effect in thin film MnBi2Te4. Both phenomena emerge with a field-driven phase transition from an antiferromagnet to a canted ferromagnet. By theoretically relating the MCD to the anomalous Hall effect via BC in a metal, we show that this transition accompanies an abrupt onset of BC, signaling a topological phase transition from a topological insulator to a doped Chern insulator. Our density functional theory calculation suggests the MCD signal mainly originates from an optical transition at the Brillouin zone edge, hinting at a potential new source of BC away from the commonly considered 螕 point. Our findings demonstrate a novel experimental approach for detecting BC and identifying the responsible bands and momenta, generally applicable to magnetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15689v1-abstract-full').style.display = 'none'; document.getElementById('2405.15689v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13628">arXiv:2405.13628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.13628">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spinons in a new Shastry-Sutherland lattice magnet Pr$_2$Ga$_2$BeO$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brassington%2C+A">A. Brassington</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+M+F">M. F. Shu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+Y">Y. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+H">H. Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baker%2C+P+J">P. J. Baker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kikuchi%2C+H">H. Kikuchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Masuda%2C+T">T. Masuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+G">G. Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">C. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+W">W. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R">R. Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">J. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">R. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H+D">H. D. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13628v1-abstract-short" style="display: inline;"> Identifying the elusive spinon excitations in quantum spin liquid (QSL) materials is what scientists have long sought for. Recently, thermal conductivity ($魏$) has emerged to be a decisive probe because the fermionic nature of spinons leads to a characteristic nonzero linear $魏_0/T$ term while approaching zero Kelvin. So far, only a few systems have been reported to exhibit such term. Here, we rep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13628v1-abstract-full').style.display = 'inline'; document.getElementById('2405.13628v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13628v1-abstract-full" style="display: none;"> Identifying the elusive spinon excitations in quantum spin liquid (QSL) materials is what scientists have long sought for. Recently, thermal conductivity ($魏$) has emerged to be a decisive probe because the fermionic nature of spinons leads to a characteristic nonzero linear $魏_0/T$ term while approaching zero Kelvin. So far, only a few systems have been reported to exhibit such term. Here, we report a $魏_0/T \approx$ 0.01 WK$^{-2}$m$^{-1}$, the largest $魏_0/T$ value ever observed in magnetic oxide QSL candidates, in a new quantum magnet Pr$_2$Ga$_2$BeO$_7$ with a Shastry-Sutherland lattice (SSL). Its QSL nature is further supported by the power-law temperature dependence of the specific heat, a plateau of muon spin relaxation rate, and gapless inelastic neutron spectra. Our theoretical analysis reveals that the introduction of XY spin anisotropy is the key for Pr$_2$Ga$_2$BeO$_7$ to be the first QSL realized on the SSL, after more than four decades of extensive studies on this celebrated magnetically frustrated lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13628v1-abstract-full').style.display = 'none'; document.getElementById('2405.13628v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures, with Supplementary Information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08929">arXiv:2405.08929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.08929">pdf</a>, <a href="https://arxiv.org/format/2405.08929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Size and Shape Dependence of Hydrogen-Induced Phase Transformation and Sorption Hysteresis in Palladium Nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xingsheng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+R">Rong Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08929v1-abstract-short" style="display: inline;"> We establish a computational framework to explore the atomic configuration of a metal-hydrogen (M-H) system when in equilibrium with a H environment. This approach combines Diffusive Molecular Dynamics with an iteration strategy, aiming to minimize the system&#39;s free energy and ensure uniform chemical potential across the system that matches that of the H environment. Applying this framework, we in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08929v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08929v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08929v1-abstract-full" style="display: none;"> We establish a computational framework to explore the atomic configuration of a metal-hydrogen (M-H) system when in equilibrium with a H environment. This approach combines Diffusive Molecular Dynamics with an iteration strategy, aiming to minimize the system&#39;s free energy and ensure uniform chemical potential across the system that matches that of the H environment. Applying this framework, we investigate H chemical potential-composition isotherms during the hydrogenation and dehydrogenation of palladium nanoparticles, ranging in size from $3.9$ nm to $15.6$ nm and featuring various shapes including cube, rhombic dodecahedron, octahedron, and sphere. Our findings reveal an abrupt phase transformation in all examined particles during both H loading and unloading processes, accompanied by a distinct hysteresis gap between absorption and desorption chemical potentials. Notably, as particle size increases, absorption chemical potential rises while desorption chemical potential declines, consequently widening the hysteresis gap across all shapes. Regarding shape effects, we observe that, at a given size, cubic particles exhibit the lowest absorption chemical potentials during H loading, whereas octahedral particles demonstrate the highest. Moreover, octahedral particles also exhibit the highest desorption chemical potentials during H unloading. These size and shape effects are elucidated by statistics of atomic volumetric strains resulting from specific facet orientations and inhomogeneous H distributions. Prior to phase transformation in absorption, a H-rich surface shell induces lattice expansion in the H-poor core, while before phase transformation in desorption, surface stress promotes lattice compression in the H-rich core. The magnitude of the volumetric strains correlates well with the size and shape dependence, underlining their pivotal role in the observed phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08929v1-abstract-full').style.display = 'none'; document.getElementById('2405.08929v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08276">arXiv:2403.08276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08276">pdf</a>, <a href="https://arxiv.org/format/2403.08276">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Synergy between Spin and Orbital Angular Momenta on a M枚bius Strip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Lei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiao-Chen Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Y">Yuan Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiujuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+M">Ming-Hui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yan-Feng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08276v1-abstract-short" style="display: inline;"> Spin and orbital angular momenta are fundamental physical characteristics described by polarization and spatial degrees of freedom, respectively. Polarization is a feature of vector fields while spatial phase gradient determines the orbital angular momentum ubiquitous to any scalar field. Common wisdom treats these two degrees of freedom as distinct and independent principles to manipulate wave pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08276v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08276v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08276v1-abstract-full" style="display: none;"> Spin and orbital angular momenta are fundamental physical characteristics described by polarization and spatial degrees of freedom, respectively. Polarization is a feature of vector fields while spatial phase gradient determines the orbital angular momentum ubiquitous to any scalar field. Common wisdom treats these two degrees of freedom as distinct and independent principles to manipulate wave propagations. Here, we demonstrate their synergy. This is achieved by introducing two orthogonal $p$-orbitals as eigenbases, whose spatial modal features are exploited to generate orbital angular momenta and the associated orbital orientations provide means to simultaneously manipulate polarizations. Through periodic modulation and directional coupling, we realize a full cyclic evolution of the synchronized and synergized spin-orbital angular momenta. Remarkably, this evolution acquires a nontrivial geometric phase, leading to its representation on a M枚bius strip. Experimentally, an acoustic cavity array is designed, whose dipole resonances precisely mimic the $p$-orbitals. The acoustic waves, uniquely, see the pressure (scalar) field as a spatial feature and carry an intrinsic polarization defined by the velocity (vector) field, serving as an ideal platform to observe the synergy of spin and orbital angular momenta. Based on such a property, we further showcase a spin-orbital-Hall effect, highlighting the intricate locking of handedness, directionality, spin density and spatial mode profile. Our study unveils a fundamental connection between spin and orbital angular momenta, promising avenues for novel applications in information coding and high-capacity communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08276v1-abstract-full').style.display = 'none'; document.getElementById('2403.08276v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08186">arXiv:2403.08186</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08186">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.21.044009">10.1103/PhysRevApplied.21.044009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid magnon-phonon cavity for large-amplitude terahertz spin-wave excitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+S">Shihao Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xufeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yujie Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+N+X">Nian X. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eom%2C+C">Chang-Beom Eom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evans%2C+P+G">Paul G. Evans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jia-Mian Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08186v1-abstract-short" style="display: inline;"> Terahertz (THz) spin waves or their quanta, magnons, can be efficiently excited by acoustic phonons because these excitations have similar wavevectors in the THz regime. THz acoustic phonons can be produced using photoacoustic phenomena but typically have a low population and thus a relatively low displacement amplitude. The magnetization amplitude and population of the acoustically excited THz ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08186v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08186v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08186v1-abstract-full" style="display: none;"> Terahertz (THz) spin waves or their quanta, magnons, can be efficiently excited by acoustic phonons because these excitations have similar wavevectors in the THz regime. THz acoustic phonons can be produced using photoacoustic phenomena but typically have a low population and thus a relatively low displacement amplitude. The magnetization amplitude and population of the acoustically excited THz magnons are thus usually small. Using analytical calculations and dynamical phase-field simulations, we show that a freestanding metal/magnetic-insulator (MI)/dielectric multilayer can be designed to produce large-amplitude THz spin wave via cavity-enhanced magnon-phonon interaction. The amplitude of the acoustically excited THz spin wave in the freestanding multilayer is predicted to be more than ten times larger than in a substrate-supported multilayer. Acoustically excited nonlinear magnon-magnon interaction is demonstrated in the freestanding multilayer. The simulations also indicate that the magnon modes can be detected by probing the charge current in the metal layer generated via spin-charge conversion across the MI/metal interface and the resulting THz radiation. Applications of the freestanding multilayer in THz optoelectronic transduction are computationally demonstrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08186v1-abstract-full').style.display = 'none'; document.getElementById('2403.08186v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07504">arXiv:2403.07504</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07504">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00635-5">10.1038/s41535-024-00635-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional phase diagram of the charge density wave in doped CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huai%2C+L">Linwei Huai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hongyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Yulei Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Y">Yang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+S">Shuting Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z">Zhiyuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jianchang Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Bingqian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+Y">Yu Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiupeng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ou%2C+Z">Zhipeng Ou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xiaoxiao Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Z">Ziji Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuang%2C+M">Min-Quan Kuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+Z">Zhenhua Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xianhui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Junfeng He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07504v1-abstract-short" style="display: inline;"> Kagome superconductors AV$_3$Sb$_5$ (A = K, Rb and Cs) have attracted much recent attention due to the coexistence of multiple exotic orders. Among them, the charge density wave (CDW) order has been shown to host various unconventional behaviors. Here, we investigate the CDW order by a combination of both bulk and surface doping methods. While element substitutions in bulk doping change both carri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07504v1-abstract-full').style.display = 'inline'; document.getElementById('2403.07504v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07504v1-abstract-full" style="display: none;"> Kagome superconductors AV$_3$Sb$_5$ (A = K, Rb and Cs) have attracted much recent attention due to the coexistence of multiple exotic orders. Among them, the charge density wave (CDW) order has been shown to host various unconventional behaviors. Here, we investigate the CDW order by a combination of both bulk and surface doping methods. While element substitutions in bulk doping change both carriers and the crystal lattice, the surface doping primarily tunes the carrier concentration. As such, our results reveal a two-dimensional phase diagram of the CDW in doped CsV$_3$Sb$_5$. In the lightly bulk doped regime, the existence of CDW order is reversible by tuning the carrier concentration. But excessive bulk doping permanently destroys the CDW, regardless of the carrier doping level. These results provide insights to the origin of the CDW from both electronic and structural degrees of freedom. They also open an avenue for manipulating the exotic CDW order in Kagome superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07504v1-abstract-full').style.display = 'none'; document.getElementById('2403.07504v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 9,23(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07448">arXiv:2403.07448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07448">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwae194">10.1093/nsr/nwae194 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cuprate-like Electronic Structures in Infinite-Layer Nickelates with Substantial Hole Dopings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">X. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Y. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+X">X. X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C+H">C. H. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+Z+T">Z. T. An</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+J+H">J. H. Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+S+L">S. L. Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+M+Y+N">M. Y. N. Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+T">X. T. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+N">N. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z+H">Z. H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sangphet%2C+S">S. Sangphet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+L">Y. L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H+C">H. C. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+R">R. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+D+L">D. L. Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07448v2-abstract-short" style="display: inline;"> The superconducting infinite-layer (IL) nickelates offer a new platform for investigating the long-standing problem of high-temperature superconductivity. Many models were proposed to understand its superconducting mechanisms based on the calculated electronic structure, and the multiple Fermi surfaces and multiple orbitals involved create complications and controversial conclusions. Over the past&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07448v2-abstract-full').style.display = 'inline'; document.getElementById('2403.07448v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07448v2-abstract-full" style="display: none;"> The superconducting infinite-layer (IL) nickelates offer a new platform for investigating the long-standing problem of high-temperature superconductivity. Many models were proposed to understand its superconducting mechanisms based on the calculated electronic structure, and the multiple Fermi surfaces and multiple orbitals involved create complications and controversial conclusions. Over the past 5 years, the lack of direct measurements of the electronic structure has hindered the understanding of nickelate superconductors. Here we fill this gap by directly resolving the electronic structures of the parent compound LaNiO$_2$ and superconducting La$_{0.8}$Ca$_{0.2}$NiO$_2$ using angle-resolved photoemission spectroscopy (ARPES). We find that their Fermi surfaces consist of a quasi-two-dimensional (quasi-2D) hole pocket and a three-dimensional (3D) electron pocket at the Brillouin zone corner, whose volumes change upon Ca doping. The Fermi surface topology and band dispersion of the hole pocket closely resemble those observed in hole-doped cuprates. However, the cuprate-like band exhibits significantly higher hole doping in superconducting La$_{0.8}$Ca$_{0.2}$NiO$_2$ compared to superconducting cuprates, highlighting the disparities in the electronic states of the superconducting phase. Our observations highlight the novel aspects of the IL nickelates, and pave the way toward the microscopic understanding of the IL nickelate family and its superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07448v2-abstract-full').style.display = 'none'; document.getElementById('2403.07448v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review, nwae194 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08394">arXiv:2402.08394</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08394">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Dipolar many-body complexes and their interactions in stacked 2D heterobilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xueqian Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malic%2C+E">Ermin Malic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yuerui Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08394v1-abstract-short" style="display: inline;"> Highly customizable interfaces created by van der Waals stacked 2D materials provide an extremely flexible opportunity for engineering and effectively controlling material properties. The atomic-thin nature and strong scalability of transition metal dichalcogenides (TMDs), the star family of two-dimensional semiconducting materials, allow for the modulation of their inherent optical and electrical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08394v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08394v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08394v1-abstract-full" style="display: none;"> Highly customizable interfaces created by van der Waals stacked 2D materials provide an extremely flexible opportunity for engineering and effectively controlling material properties. The atomic-thin nature and strong scalability of transition metal dichalcogenides (TMDs), the star family of two-dimensional semiconducting materials, allow for the modulation of their inherent optical and electrical characteristics by utilizing various environmental stimuli. In such a material system, the stacking mechanism with spatial separation in the structure enables recent observations of dipolar many-body complexes with the interplay of multi-particles, leading to some exotic and novel excitonic phenomena and enabling the closer study of high-correlated quantum physics. The presence of powerful dipole-dipole interactions among long-lived interlayer excitons can cause the system to enter unique classical and quantum phases with multiparticle correlations, such as dipolar liquids, dipolar crystals and superfluids. The strong binding energy of interlayer excitons in TMD-based hetero-bilayers especially enhances the critical temperature of these exotic phenomena. Here, we provide a concise summary of the recent frontier research progress on dipolar complexes and many-body effects in TMD double layers, encompassing fundamental theory and properties modulation. We reveal the significance and current challenges of this research field and present the potential developing directions of the hetero-bilayers in quantum physics and quantum devices by adding new levels of external control or integration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08394v1-abstract-full').style.display = 'none'; document.getElementById('2402.08394v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00915">arXiv:2401.00915</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00915">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Precision-controlled ultrafast electron microscope platforms. A case study: Multiple-order coherent phonon dynamics in 1T-TaSe$_2$ probed at 50 femtosecond - 10 femtometer scales </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiaoyi Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=William%2C+J">Joseph William</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+S">Sachin Sharma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kunjir%2C+S">Shriraj Kunjir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morris%2C+D">Dan Morris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+S">Shen Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+C">Chong-Yu Ruan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00915v1-abstract-short" style="display: inline;"> We report on the first detailed beam test attesting the fundamental principle behind the development of high-current-efficiency ultrafast electron microscope systems where a radio-frequency cavity is incorporated as a condenser lens in the beam delivery system. To allow the experiment to be carried out with a sufficient resolution to probe the performance at the emittance floor, a new cascade loop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00915v1-abstract-full').style.display = 'inline'; document.getElementById('2401.00915v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00915v1-abstract-full" style="display: none;"> We report on the first detailed beam test attesting the fundamental principle behind the development of high-current-efficiency ultrafast electron microscope systems where a radio-frequency cavity is incorporated as a condenser lens in the beam delivery system. To allow the experiment to be carried out with a sufficient resolution to probe the performance at the emittance floor, a new cascade loop RF controller system is developed to reduce the RF noise floor. Temporal resolution at 50 femtoseconds in full-width-at-half-maximum and detection sensitivity better than 1% are demonstrated on exfoliated 1T-TaSe$_2$ layers where the multi-order edge-mode coherent phonon excitation is employed as the standard candle to benchmark the performance. The high temporal resolution and the significant visibility to very low dynamical contrast in diffraction signals give strong support to the working principle of the high-brightness beam delivery via phase-space manipulation in the electron microscope system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00915v1-abstract-full').style.display = 'none'; document.getElementById('2401.00915v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16829">arXiv:2312.16829</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16829">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Enlargement of Memory Window of Si Channel FeFET by Inserting Al2O3 Interlayer on Ferroelectric Hf0.5Zr0.5O2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+T">Tao Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiaoqing Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+M">Mingkai Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+X">Xinpei Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+S">Saifei Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+R">Runhao Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Y">Yajing Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+H">Hongyang Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yuanyuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+J">Junshuai Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Hao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+M">Mengwei Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaolei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenwu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16829v1-abstract-short" style="display: inline;"> In this work, we demonstrate the enlargement of the memory window of Si channel FeFET with ferroelectric Hf0.5Zr0.5O2 by gate-side dielectric interlayer engineering. By inserting an Al2O3 dielectric interlayer between TiN gate metal and ferroelectric Hf0.5Zr0.5O2, we achieve a memory window of 3.2 V with endurance of ~105 cycles and retention over 10 years. The physical origin of memory window enl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16829v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16829v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16829v1-abstract-full" style="display: none;"> In this work, we demonstrate the enlargement of the memory window of Si channel FeFET with ferroelectric Hf0.5Zr0.5O2 by gate-side dielectric interlayer engineering. By inserting an Al2O3 dielectric interlayer between TiN gate metal and ferroelectric Hf0.5Zr0.5O2, we achieve a memory window of 3.2 V with endurance of ~105 cycles and retention over 10 years. The physical origin of memory window enlargement is clarified to be charge trapping at the Al2O3/Hf0.5Zr0.5O2 interface, which has an opposite charge polarity to the trapped charges at the Hf0.5Zr0.5O2/SiOx interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16829v1-abstract-full').style.display = 'none'; document.getElementById('2312.16829v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages,6 figures;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11757">arXiv:2312.11757</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.11757">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Twisted van der Waals Quantum Materials: Fundamentals, Tunability and Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xueqian Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suriyage%2C+M">Manuka Suriyage</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+A">Ahmed Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+M">Mingyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jie Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Boqing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M">Mehedi Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahman%2C+S">Sharidya Rahman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R">Ruosi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lam%2C+P+K">Ping Koy Lam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yuerui Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11757v1-abstract-short" style="display: inline;"> Twisted vdW quantum materials have emerged as a rapidly developing field of 2D semiconductors. These materials establish a new central research area and provide a promising platform for studying quantum phenomena and investigating the engineering of novel optoelectronic properties such as single-photon emission, non-linear optical response, magnon physics, and topological superconductivity. These&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11757v1-abstract-full').style.display = 'inline'; document.getElementById('2312.11757v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11757v1-abstract-full" style="display: none;"> Twisted vdW quantum materials have emerged as a rapidly developing field of 2D semiconductors. These materials establish a new central research area and provide a promising platform for studying quantum phenomena and investigating the engineering of novel optoelectronic properties such as single-photon emission, non-linear optical response, magnon physics, and topological superconductivity. These captivating electronic and optical properties result from, and can be tailored by, the interlayer coupling using moir茅 patterns formed by vertically stacking atomic layers with controlled angle misorientation or lattice mismatch. Their outstanding properties and the high degree of tunability position them as compelling building blocks for both compact quantum-enabled devices and classical optoelectronics. This article offers a comprehensive review of recent advancements in the understanding and manipulation of twisted van der Waals structures and presents a survey of the state-of-the-art research on moir茅 superlattices, encompassing interdisciplinary interests. It delves into fundamental theories, synthesis and fabrication, and visualization techniques, and the wide range of novel physical phenomena exhibited by these structures, with a focus on their potential for practical device integration in applications ranging from quantum information to biosensors, and including classical optoelectronics such as modulators, light emitting diodes (LEDs), lasers, and photodetectors. It highlights the unique ability of moir茅 superlattices to connect multiple disciplines, covering chemistry, electronics, optics, photonics, magnetism, topological and quantum physics. This comprehensive review provides a valuable resource for researchers interested in moir茅 superlattices, shedding light on their fundamental characteristics and their potential for transformative applications in various fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11757v1-abstract-full').style.display = 'none'; document.getElementById('2312.11757v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">179 pages, 42 figures, Chemical Reviews</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 85-06 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07402">arXiv:2312.07402</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07402">pdf</a>, <a href="https://arxiv.org/format/2312.07402">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.165205">10.1103/PhysRevB.109.165205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic band structure of Sb2Te3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mohelsky%2C+I">I. Mohelsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wyzula%2C+J">J. Wyzula</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mardele%2C+F+L">F. Le Mardele</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abadizaman%2C+F">F. Abadizaman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caha%2C+O">O. Caha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dubroka%2C+A">A. Dubroka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+D">X. D. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+C+W">C. W. Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piot%2C+B+A">B. A. Piot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanzim%2C+M+F">M. F. Tanzim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aguilera%2C+I">I. Aguilera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+G">G. Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springholz%2C+G">G. Springholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlita%2C+M">M. Orlita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07402v2-abstract-short" style="display: inline;"> Here we report on Landau level spectroscopy of an epitaxially grown thin film of the topological insulator Sb2Te3, complemented by ellipsometry and magneto-transport measurements. The observed response suggests that Sb2Te3 is a direct-gap semiconductor with the fundamental band gap located at the 螕point, or along the trigonal axis, and its width reaches Eg = 190 meV at low temperatures. Our data a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07402v2-abstract-full').style.display = 'inline'; document.getElementById('2312.07402v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07402v2-abstract-full" style="display: none;"> Here we report on Landau level spectroscopy of an epitaxially grown thin film of the topological insulator Sb2Te3, complemented by ellipsometry and magneto-transport measurements. The observed response suggests that Sb2Te3 is a direct-gap semiconductor with the fundamental band gap located at the 螕point, or along the trigonal axis, and its width reaches Eg = 190 meV at low temperatures. Our data also indicate the presence of other low-energy extrema with a higher multiplicity in both the conduction and valence bands. The conclusions based on our experimental data are confronted with and to a great extent corroborated by the electronic band structure calculated using the GW method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07402v2-abstract-full').style.display = 'none'; document.getElementById('2312.07402v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures, to be published in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 165205 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06601">arXiv:2312.06601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06601">pdf</a>, <a href="https://arxiv.org/format/2312.06601">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> On the Thermal Transport Puzzles in $伪\mbox{-}\mathrm{RuCl}_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Z">Zheng-Duo Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiao-Qi Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jing-Yuan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06601v2-abstract-short" style="display: inline;"> Thermal transport has been used to probe the nature of $伪\mbox{-}\mathrm{RuCl}_3$, an important candidate of Kitaev material. Two remarkable observations were made under applied magnetic fields at low temperatures, and have stimulated extensive discussions. One is a sizable thermal Hall effect, and the other is an apparent &#34;oscillation&#34; of the longitudinal thermal conductivity with the magnetic fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06601v2-abstract-full').style.display = 'inline'; document.getElementById('2312.06601v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06601v2-abstract-full" style="display: none;"> Thermal transport has been used to probe the nature of $伪\mbox{-}\mathrm{RuCl}_3$, an important candidate of Kitaev material. Two remarkable observations were made under applied magnetic fields at low temperatures, and have stimulated extensive discussions. One is a sizable thermal Hall effect, and the other is an apparent &#34;oscillation&#34; of the longitudinal thermal conductivity with the magnetic field. It has been proposed that the former is due to a bosonic Chern band. Meanwhile, the origin of the latter has largely remained obscure. This work aims to resolve this &#34;oscillation&#34; puzzle. By examining the thermal transport data as well as other measured properties of $伪\mbox{-}\mathrm{RuCl}_3$, we argue that the most plausible scenario is that of phonons scattering with spin degrees of freedom across multiple phases. We substantiate this picture into a phenomenological theory, which reproduces the &#34;oscillation&#34; behavior in a simple manner and makes predictions that can be examined by future experiments. Moreover, our phenomenological theory and the aforementioned proposal for the thermal Hall effect support each other. We hope this work can thus help settle the physical mechanism behind the thermal transport puzzles in $伪\mbox{-}\mathrm{RuCl}_3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06601v2-abstract-full').style.display = 'none'; document.getElementById('2312.06601v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.11378">arXiv:2310.11378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.11378">pdf</a>, <a href="https://arxiv.org/ps/2310.11378">ps</a>, <a href="https://arxiv.org/format/2310.11378">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202400166">10.1002/adma.202400166 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extremely large anomalous Hall conductivity and unusual axial diamagnetism in a quasi-1D Dirac material La$_3$MgBi$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Z">Zhe-Kai Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+P">Peng-Jie Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+H">Hui Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yi-Ran Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+P">Ping Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">Na Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Ying Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Dan-Dan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+X">Xiao-Yu Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qiu-Ju Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shou-Guo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xue-Feng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yi-Yan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.11378v1-abstract-short" style="display: inline;"> Anomalous Hall effect (AHE), one of the most important electronic transport phenomena, generally appears in ferromagnetic materials but is rare in materials without magnetic elements. Here, we present a study of La$_3$MgBi$_5$, whose band structure carries multitype Dirac fermions. Although magnetic elements are absent in La$_3$MgBi$_5$, clear signals of AHE can be observed. In particular, the ano&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11378v1-abstract-full').style.display = 'inline'; document.getElementById('2310.11378v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.11378v1-abstract-full" style="display: none;"> Anomalous Hall effect (AHE), one of the most important electronic transport phenomena, generally appears in ferromagnetic materials but is rare in materials without magnetic elements. Here, we present a study of La$_3$MgBi$_5$, whose band structure carries multitype Dirac fermions. Although magnetic elements are absent in La$_3$MgBi$_5$, clear signals of AHE can be observed. In particular, the anomalous Hall conductivity is extremely large, reaching 42,356 $惟^{-1}$ cm$^{-1}$ with an anomalous Hall angle of 8.8 %, the largest one that has been observed in the current AHE systems. The AHE is suggested to originate from the combination of skew scattering and Berry curvature. Another unique property discovered in La$_3$MgBi$_5$ is the axial diamagnetism. The diamagnetism is significantly enhanced and dominates the magnetization in the axial directions, which is the result of restricted motion of the Dirac fermion at Fermi level. Our findings not only establish La$_3$MgBi$_5$ as a suitable platform to study AHE and quantum transport, but also indicate the great potential of 315-type Bi-based materials for exploring novel physical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11378v1-abstract-full').style.display = 'none'; document.getElementById('2310.11378v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. 36, 2400166 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.03177">arXiv:2310.03177</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.03177">pdf</a>, <a href="https://arxiv.org/format/2310.03177">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Exploring Solute-Defect Interactions in Nanosized Palladium Hydrides across Multiple Time Scales </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xingsheng Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.03177v1-abstract-short" style="display: inline;"> We employ two different atomistic methods to investigate solute-defect interactions in nanosized palladium-hydrogen (Pd-H) systems across multiple time scales. The first method, referred to as Diffusive Molecular Dynamics (DMD), focuses on capturing hydride phase transformation and the evolution of solute-induced lattice defects over a diffusive time scale. The second method, Molecular Dynamics (M&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03177v1-abstract-full').style.display = 'inline'; document.getElementById('2310.03177v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.03177v1-abstract-full" style="display: none;"> We employ two different atomistic methods to investigate solute-defect interactions in nanosized palladium-hydrogen (Pd-H) systems across multiple time scales. The first method, referred to as Diffusive Molecular Dynamics (DMD), focuses on capturing hydride phase transformation and the evolution of solute-induced lattice defects over a diffusive time scale. The second method, Molecular Dynamics (MD), provides more detailed insights into atomic movements and lattice relaxation over the time scale of thermal vibrations. These two methods are connected with MD simulations initialized using statistical measures of microscopic variables obtained from DMD at different H/Pd ratios. Our study demonstrates that DMD effectively captures the propagation of an atomistically sharp hydride phase boundary as well as the dynamics of solute-induced misfit dislocations and stacking faults. While the H-concentrated phase leads to a reduction in the vibrational energy, the presence of stacking faults locally increases the vibrational energy of both Pd and H atoms. Furthermore, the MD simulation results align with DMD in terms of equilibrium potential energy, the preservation of hydride phase boundary, and the spatial distribution of stacking faults. We thoroughly characterize the lattice crystalline structures in four key regions of the particle. We observe a preference for H atoms to occupy tetrahedral interstitial sites near stacking faults due to the lower stacking fault energies provided by these sites within the H-concentrated phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03177v1-abstract-full').style.display = 'none'; document.getElementById('2310.03177v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02148">arXiv:2310.02148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.02148">pdf</a>, <a href="https://arxiv.org/format/2310.02148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.195134">10.1103/PhysRevB.110.195134 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable chiral anomalies and coherent transport on a honeycomb lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Saroka%2C+V+A">Vasil A. Saroka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+F">Fanmiao Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Downing%2C+C+A">Charles A. Downing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Payod%2C+R+B">Renebeth B. Payod</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+F+R">Felix R. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiankai Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bogani%2C+L">Lapo Bogani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02148v2-abstract-short" style="display: inline;"> The search for energy efficient materials is urged not only by the needs of modern electronics but also by emerging applications in neuromorphic computing and artificial intelligence. Currently, there exist two mechanisms for achieving dissipationless transport: superconductivity and the quantum Hall effect. Here we reveal that dissipationless transport is theoretically achievable on a honeycomb l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02148v2-abstract-full').style.display = 'inline'; document.getElementById('2310.02148v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02148v2-abstract-full" style="display: none;"> The search for energy efficient materials is urged not only by the needs of modern electronics but also by emerging applications in neuromorphic computing and artificial intelligence. Currently, there exist two mechanisms for achieving dissipationless transport: superconductivity and the quantum Hall effect. Here we reveal that dissipationless transport is theoretically achievable on a honeycomb lattice by rational design of chiral anomalies tunable without any magnetic fields. Breaking the usual assumption of commensurability and applying an external electric field lead to electronic modes exhibiting chiral anomalies capable of dissipationless transport in the material bulk, rather than on the edge. As the electric field increases, the system reaches a cubic-like dispersion material phase. While providing performance comparable to other known honeycomb lattice-based ballistic conductors such as an armchair nanotube, zigzag nanoribbon and hypothetical cumulenic carbyne, this scheme provides routes to a strongly correlated localization due to flat band dispersion and to exotic cubic dispersion material featuring a pitchfork bifurcation and a critical slowing down phenomena. These results open a new research avenue for the design of energy efficient information processing and higher-order dispersion materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02148v2-abstract-full').style.display = 'none'; document.getElementById('2310.02148v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">119 pages, 18 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TeraExc, 101065500 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 195134 (2024); </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15896">arXiv:2309.15896</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.15896">pdf</a>, <a href="https://arxiv.org/format/2309.15896">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2023)157">10.1007/JHEP12(2023)157 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Holographic Weak Measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xinyu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jian%2C+S">Shao-Kai Jian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15896v3-abstract-short" style="display: inline;"> In this paper, we study a holographic description of weak measurements in conformal field theories (CFTs). Weak measurements can be viewed as a soft projection that interpolates between an identity operator and a projection operator, and can induce an effective central charge distinct from the unmeasured CFT. We model the weak measurement by an interface brane, separating different geometries dual&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15896v3-abstract-full').style.display = 'inline'; document.getElementById('2309.15896v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15896v3-abstract-full" style="display: none;"> In this paper, we study a holographic description of weak measurements in conformal field theories (CFTs). Weak measurements can be viewed as a soft projection that interpolates between an identity operator and a projection operator, and can induce an effective central charge distinct from the unmeasured CFT. We model the weak measurement by an interface brane, separating different geometries dual to the post-measurement state and the unmeasured CFT, respectively. In an infinite system, the weak measurement is related to ICFT via a spacetime rotation. We find that the holographic entanglement entropy with twist operators located on the defect is consistent in both calculations for ICFT and weak measurements. We additionally calculate the boundary entropy via holographic entanglement as well as partition function. In a finite system, the weak measurement can lead to a rich phase diagram: for marginal measurements the emergent brane separates two AdS geometries, while for irrelevant measurements the post-measurement geometry features an AdS spacetime and a black hole spacetime that are separated by the brane. Although the measurement is irrelevant in the later phase, the post-measurement geometry can realize a Python&#39;s lunch. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15896v3-abstract-full').style.display = 'none'; document.getElementById('2309.15896v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">81 pages, 36 figures, added a discussion on the thick brane description, updated references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP12(2023)157 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14296">arXiv:2309.14296</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.14296">pdf</a>, <a href="https://arxiv.org/format/2309.14296">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Rapid Quantification of Dynamic and Spall Strength of Metals Across Strain Rates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Prameela%2C+S+E">Suhas Eswarappa Prameela</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+C+C">Christopher C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DiMarco%2C+C+S">Christopher S. DiMarco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mallick%2C+D+D">Debjoy D. Mallick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xingsheng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hernandez%2C+S">Stephanie Hernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sasaki%2C+T">Taisuke Sasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilkerson%2C+J+W">Justin W. Wilkerson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramesh%2C+K+T">K. T. Ramesh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pharr%2C+G+M">George M. Pharr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weihs%2C+T+P">Timothy P. Weihs</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14296v1-abstract-short" style="display: inline;"> The response of metals and their microstructures under extreme dynamic conditions can be markedly different from that under quasistatic conditions. Traditionally, high strain rates and shock stresses are measured using cumbersome and expensive methods such as the Kolsky bar or large spall experiments. These methods are low throughput and do not facilitate high-fidelity microstructure-property link&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14296v1-abstract-full').style.display = 'inline'; document.getElementById('2309.14296v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14296v1-abstract-full" style="display: none;"> The response of metals and their microstructures under extreme dynamic conditions can be markedly different from that under quasistatic conditions. Traditionally, high strain rates and shock stresses are measured using cumbersome and expensive methods such as the Kolsky bar or large spall experiments. These methods are low throughput and do not facilitate high-fidelity microstructure-property linkages. In this work, we combine two powerful small-scale testing methods, custom nanoindentation, and laser-driven micro-flyer shock, to measure the dynamic and spall strength of metals. The nanoindentation system is configured to test samples from quasistatic to dynamic strain rate regimes (10$^{-3}$ s$^{-1}$ to 10$^{+4}$ s$^{-1}$). The laser-driven micro-flyer shock system can test samples through impact loading between 10$^{+5}$ s$^{-1}$ to 10$^{+7}$ s$^{-1}$ strain rates, triggering spall failure. The model material used for testing is Magnesium alloys, which are lightweight, possess high-specific strengths and have historically been challenging to design and strengthen due to their mechanical anisotropy. Here, we modulate their microstructure by adding or removing precipitates to demonstrate interesting upticks in strain rate sensitivity and evolution of dynamic strength. At high shock loading rates, we unravel an interesting paradigm where the spall strength of these materials converges, but the failure mechanisms are markedly different. Peak aging, considered to be a standard method to strengthen metallic alloys, causes catastrophic failure, faring much worse than solutionized alloys. Our high throughput testing framework not only quantifies strength but also teases out unexplored failure mechanisms at extreme strain rates, providing valuable insights for the rapid design and improvement of metals for extreme environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14296v1-abstract-full').style.display = 'none'; document.getElementById('2309.14296v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01016">arXiv:2309.01016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.01016">pdf</a>, <a href="https://arxiv.org/format/2309.01016">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> </div> <p class="title is-5 mathjax"> Bootstrap, Markov Chain Monte Carlo, and LP/SDP Hierarchy for the Lattice Ising Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+M">Minjae Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xin Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01016v2-abstract-short" style="display: inline;"> Bootstrap is an idea that imposing consistency conditions on a physical system may lead to rigorous and nontrivial statements about its physical observables. In this work, we discuss the bootstrap problem for the invariant measure of the stochastic Ising model defined as a Markov chain where probability bounds and invariance equations are imposed. It is described by a linear programming (LP) hiera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01016v2-abstract-full').style.display = 'inline'; document.getElementById('2309.01016v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01016v2-abstract-full" style="display: none;"> Bootstrap is an idea that imposing consistency conditions on a physical system may lead to rigorous and nontrivial statements about its physical observables. In this work, we discuss the bootstrap problem for the invariant measure of the stochastic Ising model defined as a Markov chain where probability bounds and invariance equations are imposed. It is described by a linear programming (LP) hierarchy whose asymptotic convergence is shown by explicitly constructing the invariant measure from the convergent sequence of moments. We also discuss the relation between the LP hierarchy for the invariant measure and a recently introduced semidefinite programming (SDP) hierarchy for the Gibbs measure of the statistical Ising model based on reflection positivity and spin-flip equations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01016v2-abstract-full').style.display = 'none'; document.getElementById('2309.01016v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages. v2: mathematical notions clarified, a reference added, typo corrected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.16101">arXiv:2308.16101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.16101">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Stripe charge order driven manipulation of Majorana bound states in 2M-WS2 topological superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">Xuemin Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiaoqi Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+P">Penghao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yuqiang Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+Y">Yongkang Ju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Y">Yonghao Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+F">Fuqiang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hughes%2C+T+L">Taylor L. Hughes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+P">Peizhe Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Q">Qi-Kun Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.16101v1-abstract-short" style="display: inline;"> Majorana bound states (MBSs) are building blocks for topological quantum computing. They can be generated via the combination of electronic topology and superconductivity. To achieve logic operations via Majorana braiding, positional control of the MBS must be established. To this end, exotic co-existing phases or collective modes in an intrinsic topological superconductor can provide a tuning kno&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16101v1-abstract-full').style.display = 'inline'; document.getElementById('2308.16101v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.16101v1-abstract-full" style="display: none;"> Majorana bound states (MBSs) are building blocks for topological quantum computing. They can be generated via the combination of electronic topology and superconductivity. To achieve logic operations via Majorana braiding, positional control of the MBS must be established. To this end, exotic co-existing phases or collective modes in an intrinsic topological superconductor can provide a tuning knob to manipulate the MBS. Here we report the observation of a striped surface charge order coexisting with superconductivity and its controllable tuning of the MBS in the topological superconductor 2M-WS2 using low-temperature scanning tunneling microscopy. By applying an out-of-plane magnetic field, we observe that MBS is absent in vortices in the region with strong stripe order. This is in contrast to adjacent underlaying layers without charge order where vortex-bound MBSs are observed. Via theoretical simulations, we show that the surface stripe order does not destroy the bulk topology, but it can effectively modify the spatial distribution of MBS, i.e., it pushes them downward away from the 2M-WS2 surface. Our findings demonstrate that the interplay of charge order and topological superconductivity can be used to manipulate the positions of the MBS, and to explore of new states of matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.16101v1-abstract-full').style.display = 'none'; document.getElementById('2308.16101v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.04895">arXiv:2308.04895</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.04895">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.3c07236">10.1021/acsnano.3c07236 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong Exciton-Phonon Coupling as a Fingerprint of Magnetic Ordering in van der Waals Layered CrSBr </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+K">Kaiman Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiaoxiao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dirnberger%2C+F">Florian Dirnberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+J">Jiang Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+P">Peiting Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sofer%2C+Z">Zdenek Sofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%B6ll%2C+A">Aljoscha S枚ll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winnerl%2C+S">Stephan Winnerl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Helm%2C+M">Manfred Helm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shengqiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dan%2C+Y">Yaping Dan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prucnal%2C+S">Slawomir Prucnal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.04895v2-abstract-short" style="display: inline;"> The layered, air-stable van der Waals antiferromagnetic compound CrSBr exhibits pronounced coupling between its optical, electronic, and magnetic properties. As an example, exciton dynamics can be significantly influenced by lattice vibrations through exciton-phonon coupling. Using low-temperature photoluminescence spectroscopy, we demonstrate the effective coupling between excitons and phonons in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04895v2-abstract-full').style.display = 'inline'; document.getElementById('2308.04895v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.04895v2-abstract-full" style="display: none;"> The layered, air-stable van der Waals antiferromagnetic compound CrSBr exhibits pronounced coupling between its optical, electronic, and magnetic properties. As an example, exciton dynamics can be significantly influenced by lattice vibrations through exciton-phonon coupling. Using low-temperature photoluminescence spectroscopy, we demonstrate the effective coupling between excitons and phonons in nanometer-thick CrSBr. By careful analysis, we identify that the satellite peaks predominantly arise from the interaction between the exciton and an optical phonon with a frequency of 118 cm-1 (~14.6 meV) due to the out-of-plane vibration of Br atoms. Power-dependent and temperature-dependent photoluminescence measurements support exciton-phonon coupling and indicate a coupling between magnetic and optical properties, suggesting the possibility of carrier localization in the material. The presence of strong coupling between the exciton and the lattice may have important implications for the design of light-matter interactions in magnetic semiconductors and provides new insights into the exciton dynamics in CrSBr. This highlights the potential for exploiting exciton-phonon coupling to control the optical properties of layered antiferromagnetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04895v2-abstract-full').style.display = 'none'; document.getElementById('2308.04895v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, together with suppl</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano 18, 2898-2905 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06316">arXiv:2307.06316</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06316">pdf</a>, <a href="https://arxiv.org/ps/2307.06316">ps</a>, <a href="https://arxiv.org/format/2307.06316">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.024419">10.1103/PhysRevB.109.024419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic in-plane heat transport of Kitaev magnet Na$_2$Co$_2$TeO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guang%2C+S">Shuangkui Guang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">Na Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Q">Qing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+K">Ke Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yiyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+H">Hui Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qiuju Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">Xia Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+R+L">Rui Leonard Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Gang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Haidong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xuefeng Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06316v1-abstract-short" style="display: inline;"> We report a study on low-temperature heat transport of Kitaev magnet Na$_2$Co$_2$TeO$_6$, with the heat current and magnetic fields along the honeycomb spin layer (the $ab$ plane). The zero-field thermal conductivity of $魏^a_{xx}$ and $魏^{a*}_{xx}$ display similar temperature dependence and small difference in their magnitudes; whereas, their magnetic field (parallel to the heat current) dependenc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06316v1-abstract-full').style.display = 'inline'; document.getElementById('2307.06316v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06316v1-abstract-full" style="display: none;"> We report a study on low-temperature heat transport of Kitaev magnet Na$_2$Co$_2$TeO$_6$, with the heat current and magnetic fields along the honeycomb spin layer (the $ab$ plane). The zero-field thermal conductivity of $魏^a_{xx}$ and $魏^{a*}_{xx}$ display similar temperature dependence and small difference in their magnitudes; whereas, their magnetic field (parallel to the heat current) dependence are quite different and are related to the field-induced magnetic transitions. The $魏^a_{xx}(B)$ data for $B \parallel a$ at very low temperatures have an anomaly at 10.25--10.5 T, which reveals an unexplored magnetic transition. The planar thermal Hall conductivity $魏^a_{xy}$ and $魏^{a*}_{xy}$ show very weak signals at low fields and rather large values with sign change at high fields. This may point to a possible magnetic structure transition or the change of the magnon band topology that induces a radical change of magnon Berry curvature distribution before entering the spin polarized state. These results put clear constraints on the high-field phase and the theoretical models for Na$_2$Co$_2$TeO$_6$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06316v1-abstract-full').style.display = 'none'; document.getElementById('2307.06316v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 024419 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01042">arXiv:2307.01042</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01042">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39500-7">10.1038/s41467-023-39500-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A unique van Hove singularity in kagome superconductor CsV$_{3-x}$Ta$_x$Sb$_5$ with enhanced superconductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Y">Yang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Yulei Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huai%2C+L">Linwei Huai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hongyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Bingqian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jianchang Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+S">Shuhan Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zeyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+S">Shuting Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z">Zhiyuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+Y">Yu Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiupeng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ou%2C+Z">Zhipeng Ou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Z">Ziji Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xianhui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+Z">Zhenhua Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01042v1-abstract-short" style="display: inline;"> Van Hove singularity (VHS) has been considered as a driving source for unconventional superconductivity. A VHS in two-dimensional (2D) materials consists of a saddle point connecting electron-like and hole-like bands. In a rare case, when a VHS appears at Fermi level, both electron-like and hole-like conduction can coexist, giving rise to an enhanced density of states as well as an attractive comp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01042v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01042v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01042v1-abstract-full" style="display: none;"> Van Hove singularity (VHS) has been considered as a driving source for unconventional superconductivity. A VHS in two-dimensional (2D) materials consists of a saddle point connecting electron-like and hole-like bands. In a rare case, when a VHS appears at Fermi level, both electron-like and hole-like conduction can coexist, giving rise to an enhanced density of states as well as an attractive component of Coulomb interaction for unconventional electronic pairing. However, this van Hove scenario is often destroyed by an incorrect chemical potential or competing instabilities. Here, by using angle-resolved photoemission measurements, we report the observation of a VHS perfectly aligned with the Fermi level in a kagome superconductor CsV$_{3-x}$Ta$_x$Sb$_5$ (x~0.4), in which a record-high superconducting transition temperature is achieved among all the current variants of AV$_3$Sb$_5$ (A=Cs, Rb, K) at ambient pressure. Doping dependent measurements reveal the important role of van Hove scenario in boosting superconductivity, and spectroscopic-imaging scanning tunneling microscopy measurements indicate a distinct superconducting state in this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01042v1-abstract-full').style.display = 'none'; document.getElementById('2307.01042v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 3819 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13852">arXiv:2306.13852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.13852">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Gd-Based Solvated Shells for Defect Passivation of CsPbBr$_3$ Nanoplatelets Enabling Efficient Color-Saturated Blue Electroluminescence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haoran Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+J">Jingyu Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jiayun Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+T">Tong Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+S">Shiming Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaoyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choy%2C+W+C+H">Wallace C. H. Choy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+W">Xiao Wei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weiwei Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13852v1-abstract-short" style="display: inline;"> Reduced-dimensional CsPbBr$_3$ nanoplatelets (NPLs) are promising candidates for color-saturated blue emitters, yet their electroluminescence performance is hampered by non-radiative recombination, which is associated with bromine vacancies. Here, we show that a post-synthetic treatment of CsPbBr$_3$ NPLs with GdBr$_3$-dimethylformamide (DMF) can effectively eliminate defects while preserving the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13852v1-abstract-full').style.display = 'inline'; document.getElementById('2306.13852v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13852v1-abstract-full" style="display: none;"> Reduced-dimensional CsPbBr$_3$ nanoplatelets (NPLs) are promising candidates for color-saturated blue emitters, yet their electroluminescence performance is hampered by non-radiative recombination, which is associated with bromine vacancies. Here, we show that a post-synthetic treatment of CsPbBr$_3$ NPLs with GdBr$_3$-dimethylformamide (DMF) can effectively eliminate defects while preserving the color. According to a combined experimental and theoretical study, Gd$^{3+}$ ions are less reactive with NPLs as a result of compact interaction between them and DMF, and this stable Gd$^{3+}$-DMF solvation structure makes Brions more available and allows them to move more freely. Consequently, defects are rapidly passivated and photoluminescence quantum yield increases dramatically (from 35 to ~100%), while the surface ligand density and emission color remain unchanged. The result is a remarkable electroluminescence efficiency of 2.4% (at 464 nm), one of the highest in pure blue perovskite NPL light-emitting diodes. It is noteworthy that the conductive NPL film shows a high photoluminescence quantum yield of 80%, demonstrating NPLs&#39; significant electroluminescence potential with further device structure design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13852v1-abstract-full').style.display = 'none'; document.getElementById('2306.13852v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09688">arXiv:2306.09688</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.09688">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Self-assembled Frameworks Solid with Turbostratic Stacked Crystalline Layers -- A Frustrated 3D Crystal Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+H">Hongmei Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jiahui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+N">Na Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiaoxu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09688v1-abstract-short" style="display: inline;"> Solid materials possess both long-range order and some degree of disorder are critical for understanding the nature of crystal and glassy state, but how to controllable introduce specific type of disorder into a crystalline material is a big challenge. Our previous work indicated that weakening the inter-layer interaction is an effective strategy to import disorders between the layers.Here, we ill&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09688v1-abstract-full').style.display = 'inline'; document.getElementById('2306.09688v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09688v1-abstract-full" style="display: none;"> Solid materials possess both long-range order and some degree of disorder are critical for understanding the nature of crystal and glassy state, but how to controllable introduce specific type of disorder into a crystalline material is a big challenge. Our previous work indicated that weakening the inter-layer interaction is an effective strategy to import disorders between the layers.Here, we illustrated that the inter-layer interaction can be weakened to around 1/60 of that of graphite in the self-assembled material, a two-dimensions frameworks formed by B-C-T-A with Cu nodes, which has an obvious layered-structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09688v1-abstract-full').style.display = 'none'; document.getElementById('2306.09688v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.03905">arXiv:2306.03905</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.03905">pdf</a>, <a href="https://arxiv.org/format/2306.03905">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Computation and Simulation using Fermion-Pair Registers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiangkai Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+D">Di Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S">Soonwon Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.03905v1-abstract-short" style="display: inline;"> We propose and analyze an approach to realize quantum computation and simulation using fermionic particles under quantum gas microscopes. Our work is inspired by a recent experimental demonstration of large-scale quantum registers, where tightly localized fermion pairs are used to encode qubits exhibiting long coherence time and robustness against laser intensity noise. We describe how to engineer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03905v1-abstract-full').style.display = 'inline'; document.getElementById('2306.03905v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.03905v1-abstract-full" style="display: none;"> We propose and analyze an approach to realize quantum computation and simulation using fermionic particles under quantum gas microscopes. Our work is inspired by a recent experimental demonstration of large-scale quantum registers, where tightly localized fermion pairs are used to encode qubits exhibiting long coherence time and robustness against laser intensity noise. We describe how to engineer the SWAP gate and high-fidelity controlled-phase gates by adjusting the fermion hopping as well as Feshbach interaction strengths. Combined with previously demonstrated single-qubit rotations, these gates establish the computational universality of the system. Furthermore, we show that 2D quantum Ising Hamiltonians with tunable transverse and longitudinal fields can be efficient simulated by modulating Feshbach interaction strengths. We present a sample-efficient protocol to characterize engineered gates and Hamiltonian dynamics based on an improved classical shadow process tomography that requires minimal experimental controls. Our work opens up new opportunities to harness existing ultracold quantum gases for quantum information sciences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03905v1-abstract-full').style.display = 'none'; document.getElementById('2306.03905v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5559 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.12237">arXiv:2305.12237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.12237">pdf</a>, <a href="https://arxiv.org/format/2305.12237">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.046701">10.1103/PhysRevLett.132.046701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetostriction-Driven Muon Localization in an Antiferromagnetic Oxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bonf%C3%A0%2C+P">Pietro Bonf脿</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onuorah%2C+I+J">Ifeanyi John Onuorah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+F">Franz Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Timrov%2C+I">Iurii Timrov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Monacelli%2C+L">Lorenzo Monacelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chennan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petracic%2C+O">Oleg Petracic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pizzi%2C+G">Giovanni Pizzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marzari%2C+N">Nicola Marzari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blundell%2C+S+J">Stephen J. Blundell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Renzi%2C+R">Roberto De Renzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.12237v3-abstract-short" style="display: inline;"> Magnetostriction drives a rhombohedral distortion in the cubic rock salt antiferromagnet MnO at the N茅el temperature $T_{N}=118$ K. As an unexpected consequence we show that this distortion acts to localize the site of an implanted muon due to the accompanying redistribution of electron density. This lifts the degeneracy between equivalent sites, resulting in a single observed muon precession freq&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12237v3-abstract-full').style.display = 'inline'; document.getElementById('2305.12237v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.12237v3-abstract-full" style="display: none;"> Magnetostriction drives a rhombohedral distortion in the cubic rock salt antiferromagnet MnO at the N茅el temperature $T_{N}=118$ K. As an unexpected consequence we show that this distortion acts to localize the site of an implanted muon due to the accompanying redistribution of electron density. This lifts the degeneracy between equivalent sites, resulting in a single observed muon precession frequency. Above $T_{N}$, the muon instead becomes delocalized around a network of equivalent sites. Our first-principles simulations based on Hubbard-corrected density-functional theory and molecular dynamics are consistent with our experimental data and help to resolve a long-standing puzzle regarding muon data on MnO, as well as having wider applicability to other magnetic oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12237v3-abstract-full').style.display = 'none'; document.getElementById('2305.12237v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 046701 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06126">arXiv:2305.06126</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.06126">pdf</a>, <a href="https://arxiv.org/ps/2305.06126">ps</a>, <a href="https://arxiv.org/format/2305.06126">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.085427">10.1103/PhysRevB.108.085427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Voltage-tunable giant nonvolatile multiple-state resistance in sliding-interlayer ferroelectric h-BN van der Waals multiferroic tunnel junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+X">Xinlong Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+X">Xuemin Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiaowen Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+Y">Yuhao Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z">Zhi Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaohong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06126v2-abstract-short" style="display: inline;"> Multiferroic tunnel junctions (MFTJs) based on two-dimensional (2D) van der Waals heterostructures with sharp and clean interfaces at the atomic scale are crucial for applications in nanoscale multi-resistive logic memory devices. The recently discovered sliding ferroelectricity in 2D van der Waals materials has opened new avenues for ferroelectric-based devices. Here, we theoretically investigate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06126v2-abstract-full').style.display = 'inline'; document.getElementById('2305.06126v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06126v2-abstract-full" style="display: none;"> Multiferroic tunnel junctions (MFTJs) based on two-dimensional (2D) van der Waals heterostructures with sharp and clean interfaces at the atomic scale are crucial for applications in nanoscale multi-resistive logic memory devices. The recently discovered sliding ferroelectricity in 2D van der Waals materials has opened new avenues for ferroelectric-based devices. Here, we theoretically investigate the spin-dependent electronic transport properties of Fe$_3$GeTe$_2$/graphene/bilayer-$h$-BN/graphene/CrI$_3$ (FGT/Gr-BBN-Gr/CrI) all-vdW MFTJs by employing the nonequilibrium Green&#39;s function combined with density functional theory. We demonstrate that such FGT/Gr-BBN-Gr/CrI MFTJs exhibit four non-volatile resistance states associated with different staking orders of sliding ferroelectric BBN and magnetization alignment of ferromagnetic free layer CrI$_3$, with a maximum tunnel magnetoresistance (electroresistance) ratio, i.e., TMR (TER) up to $\sim$$3.36\times10^{4}$\% ($\sim$$6.68\times10^{3}$\%) at a specific bias voltage. Furthermore, the perfect spin filtering and remarkable negative differential resistance effects are evident in our MFTJs. We further discover that the TMR, TER, and spin polarization ratio under an equilibrium state can be enhanced by the application of in-plane biaxial strain. This work shows that the giant tunneling resistance ratio, multiple resistance states, and excellent spin-polarized transport properties of sliding ferroelectric BBN-based MFTJs indicate its significant potential in nonvolatile memories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06126v2-abstract-full').style.display = 'none'; document.getElementById('2305.06126v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03239">arXiv:2305.03239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.03239">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-Abelian Topological Phases and Their Quotient Relations in Acoustic Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiao-Chen Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jia-Bao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+C">Cheng He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yan-Feng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03239v1-abstract-short" style="display: inline;"> Non-Abelian topological phases (NATPs) are highly sought-after candidate states for quantum computing and communication while lacking straightforward configuration and manipulation, especially for classical waves. In this work, we exploit novel braid-type couplings among a pair of triple-component acoustic dipoles, which act as functional elements with effective imaginary couplings. Sequencing the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03239v1-abstract-full').style.display = 'inline'; document.getElementById('2305.03239v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03239v1-abstract-full" style="display: none;"> Non-Abelian topological phases (NATPs) are highly sought-after candidate states for quantum computing and communication while lacking straightforward configuration and manipulation, especially for classical waves. In this work, we exploit novel braid-type couplings among a pair of triple-component acoustic dipoles, which act as functional elements with effective imaginary couplings. Sequencing them in one dimension allows us to generate acoustic NATPs in a compact yet reciprocal Hermitian system. We further provide the whole phase diagram that encompasses all i, j, and k non-Abelian phases, and directly demonstrate their unique quotient relations via different endpoint states. Our NATPs based on real-space braiding may inspire the exploration of acoustic devices with non-commutative characters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03239v1-abstract-full').style.display = 'none'; document.getElementById('2305.03239v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.03948">arXiv:2304.03948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.03948">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Equilibrium distribution and diffusion of mixed hydrogen-methane gas in gravity field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+S">Shiyao Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Q">Qiao He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+D">Ducheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ouyang%2C+X">Xin Ouyang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaorui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+C">Chong Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lianlai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+H">Huiqiu Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+W">Wangyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+J">Jie Hou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.03948v1-abstract-short" style="display: inline;"> Repurposing existing natural gas pipelines is a promising solution for large-scale transportation of mixed hydrogen-methane gas. However, it remains debatable whether gravitational stratification can notably affect hydrogen partial pressure in the gas mixture. To address this issue, we combined molecular dynamics simulation with thermodynamic and diffusion theories. Our study systematically examin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03948v1-abstract-full').style.display = 'inline'; document.getElementById('2304.03948v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.03948v1-abstract-full" style="display: none;"> Repurposing existing natural gas pipelines is a promising solution for large-scale transportation of mixed hydrogen-methane gas. However, it remains debatable whether gravitational stratification can notably affect hydrogen partial pressure in the gas mixture. To address this issue, we combined molecular dynamics simulation with thermodynamic and diffusion theories. Our study systematically examined the equilibrium distribution of hydrogen-methane mixtures in gravity fields. We demonstrated that partial pressures of both gases decrease with altitude, with hydrogen showing slower decrease due to its smaller molar mass. As a result, the volume fraction of hydrogen is maximized at the top end of pipes. The stratification is more favorable at low temperature and large altitude drops, with notable gas stratification only occurring at extremely large drops in altitude, being generally negligible even at a drop of 1500 m. Furthermore, we showed that the diffusion time required to achieve the equilibrium distribution is proportional to gas pressure and the square of pipeline height. This requires approximately 300 years for a 1500 m pipeline at 1 bar. Therefore, temporary interruptions in pipeline gas transportation will not cause visible stratification. Our work clarifies the effect of gravity on hydrogen-methane gas mixtures and provides quantitative insights into assessing the stratification of gas mixtures in pipelines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03948v1-abstract-full').style.display = 'none'; document.getElementById('2304.03948v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.13300">arXiv:2302.13300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.13300">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Low-temperature thermal Hall conductivity of Pr2Zr2O7 single crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+W">Wenjun Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xuefeng Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.13300v1-abstract-short" style="display: inline;"> To probe the peculiar excitations spinons and magnetic monopoles in the quantum spin ice candidate Pr2Zr2O7, we studied the low-temperature thermal Hall conductivity (\k{appa}xy) and thermal conductivity (\k{appa}xx) of Pr2Zr2O7 single crystal with magnetic fields applied along the [111] axis. The magnetic field dependencies of \k{appa}xx suggest the roles of magnetic excitations in thermal conduc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13300v1-abstract-full').style.display = 'inline'; document.getElementById('2302.13300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.13300v1-abstract-full" style="display: none;"> To probe the peculiar excitations spinons and magnetic monopoles in the quantum spin ice candidate Pr2Zr2O7, we studied the low-temperature thermal Hall conductivity (\k{appa}xy) and thermal conductivity (\k{appa}xx) of Pr2Zr2O7 single crystal with magnetic fields applied along the [111] axis. The magnetic field dependencies of \k{appa}xx suggest the roles of magnetic excitations in thermal conductivity, that is, the emergent magnetic monopoles can transport heat at T &gt; 1.4 K and spinons mainly scatter phonons at lower temperatures. The finite \k{appa}xy was observed at low fields of several Tesla and was discussed to be related to the magnetic excitations, including magnetic monopoles as well as spinons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13300v1-abstract-full').style.display = 'none'; document.getElementById('2302.13300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.12471">arXiv:2302.12471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.12471">pdf</a>, <a href="https://arxiv.org/format/2302.12471">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Cubic singularities in binary linear electromechanical oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jing%2C+H">Hui Jing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+X">Xingjing Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jianqi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+R">Ran Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhipeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xiaopeng Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xuezhong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+C">Cheng-Wei Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nori%2C+F">Franco Nori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Dingbang Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.12471v1-abstract-short" style="display: inline;"> Singularities arise in diverse disciplines and play a key role in both exploring fundamental laws of physics and making highly-sensitive sensors. Higher-order (&gt;3) singularities, with further improved performance, however, usually require exquisite tuning of multiple (&gt;3) coupled degrees of freedom or nonlinear control, thus severely limiting their applications in practice. Here we propose theoret&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12471v1-abstract-full').style.display = 'inline'; document.getElementById('2302.12471v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.12471v1-abstract-full" style="display: none;"> Singularities arise in diverse disciplines and play a key role in both exploring fundamental laws of physics and making highly-sensitive sensors. Higher-order (&gt;3) singularities, with further improved performance, however, usually require exquisite tuning of multiple (&gt;3) coupled degrees of freedom or nonlinear control, thus severely limiting their applications in practice. Here we propose theoretically and confirm using mechanics experiments that, cubic singularities can be realized in a coupled binary system without any nonlinearity, only by observing the phase tomography of the driven response. By steering the cubic phase-tomographic singularities in an electrostatically-tunable micromechanical system, enhanced cubic-root response to frequency perturbation and voltage-controlled nonreciprocity are demonstrated. Our work opens up a new phase-tomographic method for interacted-system research and sheds new light on building and engineering advanced singular devices with simple and well-controllable elements, with a wide range of applications including precision metrology, portable nonreciprocal devices, and on-chip mechanical computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12471v1-abstract-full').style.display = 'none'; document.getElementById('2302.12471v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.10733">arXiv:2302.10733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.10733">pdf</a>, <a href="https://arxiv.org/ps/2302.10733">ps</a>, <a href="https://arxiv.org/format/2302.10733">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.054429">10.1103/PhysRevB.107.054429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-temperature specific heat and heat transport of Tb$_2$Ti$_{2-x}$Zr$_x$O$_7$ single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+H+L">H. L. Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S+J">S. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J+C">J. C. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+N">N. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guang%2C+S+K">S. K. Guang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+K">K. Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+X+Y">X. Y. Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+Y">Y. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+X">X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q+J">Q. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X+F">X. F. Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.10733v1-abstract-short" style="display: inline;"> We report a study on the specific heat and heat transport of Tb$_2$Ti$_{2-x}$Zr$_x$O$_7$ ($x =$ 0, 0.02, 0.1, 0.2, and 0.4) single crystals at low temperatures and in high magnetic fields. The magnetic specific heat can be described by the Schottky contribution from the crystal-electric-field (CEF) levels of Tb$^{3+}$, with introducing Gaussian distributions of the energy split of the ground-state&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.10733v1-abstract-full').style.display = 'inline'; document.getElementById('2302.10733v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.10733v1-abstract-full" style="display: none;"> We report a study on the specific heat and heat transport of Tb$_2$Ti$_{2-x}$Zr$_x$O$_7$ ($x =$ 0, 0.02, 0.1, 0.2, and 0.4) single crystals at low temperatures and in high magnetic fields. The magnetic specific heat can be described by the Schottky contribution from the crystal-electric-field (CEF) levels of Tb$^{3+}$, with introducing Gaussian distributions of the energy split of the ground-state doublet and the gap between the ground state and first excited level. These crystals has an extremely low phonon thermal conductivity in a broad temperature range that can be attributed to the scattering by the magnetic excitations, which are mainly associated with the CEF levels. There is strong magnetic field dependence of thermal conductivity, which is more likely related to the field-induced changes of phonon scattering by the CEF levels than magnetic transitions or spin excitations. For magnetic field along the [111] direction, there is large thermal Hall conductivity at low temperatures which displays a broad peak around 8 T. At high fields up to 14 T, the thermal Hall conductivity decreases to zero, which supports its origin from either the spinon transport or the phonon skew scattering by CEF levels. The thermal Hall effect is rather robust with Zr doping up to 0.2 but is strongly weakened in higher Zr-doped sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.10733v1-abstract-full').style.display = 'none'; document.getElementById('2302.10733v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures, accepted for publication in Phys. Rev. B</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Sun%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+X&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Sun%2C+X&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10