CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 467 results for author: <span class="mathjax">Jiang, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Jiang, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Jiang%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Jiang, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18684">arXiv:2411.18684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18684">pdf</a>, <a href="https://arxiv.org/format/2411.18684">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A New Moir茅 Platform Based on M-Point Twisting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+H">Hanqi Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jiabin Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+J">Jie Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efetov%2C+D+K">Dmitri K. Efetov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mak%2C+K+F">Kin Fai Mak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18684v1-abstract-short" style="display: inline;"> We introduce a new class of moir茅 systems and materials based on monolayers with triangular lattices and low-energy states at the M points of the Brillouin zone. These M-point moir茅 materials are fundamentally distinct from those derived from $螕$- or K-point monolayers, featuring three time-reversal-preserving valleys related by three-fold rotational symmetry. We propose twisted bilayers of experi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18684v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18684v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18684v1-abstract-full" style="display: none;"> We introduce a new class of moir茅 systems and materials based on monolayers with triangular lattices and low-energy states at the M points of the Brillouin zone. These M-point moir茅 materials are fundamentally distinct from those derived from $螕$- or K-point monolayers, featuring three time-reversal-preserving valleys related by three-fold rotational symmetry. We propose twisted bilayers of experimentally exfoliable 1T-SnSe$_2$ and 1T-ZrS$_2$ as realizations of this new class. Using extensive ab initio simulations, we develop quantitative continuum models and analytically show that the corresponding M-point moir茅 Hamiltonians exhibit emergent momentum-space non-symmorphic symmetries and a kagome plane-wave lattice in momentum space. This represents the first experimentally viable realization of a projective representation of crystalline space groups in a non-magnetic system. With interactions, these materials represent six-flavor Hubbard simulators with Mott physics, as can be seen by their flat Wilson loops. Furthermore, the presence of a non-symmorphic momentum-space in-plane mirror symmetry makes some of the M-point moir茅 Hamiltonians quasi-one-dimensional in each valley, suggesting the possibility of realizing Luttinger liquid physics. We predict the twist angles at which a series of (conduction) flat bands appear, provide a faithful continuum Hamiltonian, analyze its topology and charge density and briefly discuss several aspects of the physics of this new platform. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18684v1-abstract-full').style.display = 'none'; document.getElementById('2411.18684v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+124 pages, 5+132 figures, 1+27 tables. Previously submitted. See also arXiv:2411.08950 and arXiv:2411.09741</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17081">arXiv:2411.17081</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17081">pdf</a>, <a href="https://arxiv.org/format/2411.17081">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Magneto-optical evidence of tilting effect in coupled Weyl bands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moon%2C+S">Seongphill Moon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuxuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neu%2C+J">Jennifer Neu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siegrist%2C+T">Theo Siegrist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Z">Zhigang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smirnov%2C+D">Dmitry Smirnov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17081v1-abstract-short" style="display: inline;"> Theories have revealed the universality of the band tilting effect in topological Weyl semimetals (WSMs) and its implications for the material&#39;s physical properties. However, the experimental identification of tilted Weyl bands remains much less explored. Here, by combining magneto-infrared optical studies with a four-band coupled Weyl point model, we report spectroscopic evidence of the tilting e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17081v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17081v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17081v1-abstract-full" style="display: none;"> Theories have revealed the universality of the band tilting effect in topological Weyl semimetals (WSMs) and its implications for the material&#39;s physical properties. However, the experimental identification of tilted Weyl bands remains much less explored. Here, by combining magneto-infrared optical studies with a four-band coupled Weyl point model, we report spectroscopic evidence of the tilting effect in the well-established WSM niobium phosphide. Specifically, we observe Landau level transitions with rich features that are well reproduced within a model of coupled tilted Weyl points. Our analysis indicates that the tilting effect relaxes the selection rules and gives rise to transitions that would otherwise be forbidden in the non-tilt case. Additionally, we observe unconventional interband transitions with flat and negative magnetic field dispersions, highlighting the importance of coupling between Weyl points. Our results not only emphasize the significance of the tilting effect in the optical responses of WSMs but also demonstrate magneto-optics as an effective tool for probing the tilting effect in electronic band structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17081v1-abstract-full').style.display = 'none'; document.getElementById('2411.17081v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15333">arXiv:2411.15333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15333">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Unconventional gapping behavior in a kagome superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">Eun Sang Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ratkovski%2C+D">Danilo Ratkovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%BCscher%2C+B">Bernhard L眉scher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bangura%2C+A">Ali Bangura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15333v1-abstract-short" style="display: inline;"> Determining the types of superconducting order in quantum materials is a challenge, especially when multiple degrees of freedom, such as bands or orbitals, contribute to the fermiology and when superconductivity competes, intertwines, or coexists with other symmetry-breaking orders. Here, we study the Kagome-lattice superconductor CsV3Sb5, in which multiband superconductivity coexists with a charg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15333v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15333v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15333v1-abstract-full" style="display: none;"> Determining the types of superconducting order in quantum materials is a challenge, especially when multiple degrees of freedom, such as bands or orbitals, contribute to the fermiology and when superconductivity competes, intertwines, or coexists with other symmetry-breaking orders. Here, we study the Kagome-lattice superconductor CsV3Sb5, in which multiband superconductivity coexists with a charge order that substantially reduces the compound&#39;s space group symmetries. Through a combination of thermodynamic as well as electrical and thermal transport measurements, we uncover two superconducting regimes with distinct transport and thermodynamic characteristics, while finding no evidence for a phase transition separating them. Thermodynamic measurements reveal substantial quasiparticle weight in a high-temperature regime. At lower temperatures, this weight is removed via the formation of a second gap. The two regimes are sharply distinguished by a pronounced enhancement of the upper critical field at low temperatures and by a switch in the anisotropy of the longitudinal thermal conductivity as a function of in-plane magnetic field orientation. We argue that the band with a gap opening at lower temperatures continues to host low-energy quasiparticles, possibly due to a nodal structure of the gap. Taken together, our results present evidence for band-selective superconductivity with remarkable decoupling of the (two) superconducting gaps. The commonly employed multiband scenario, whereby superconductivity emerges in a primary band and is then induced in other bands appears to fail in this unconventional kagome superconductor. Instead, band-selective superconducting pairing is a paradigm that seems to unify seemingly contradicting results in this intensely studied family of materials and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15333v1-abstract-full').style.display = 'none'; document.getElementById('2411.15333v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Physics (2024); in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13898">arXiv:2411.13898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13898">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Discovery of an Antiferromagnetic Topological Nodal-line Kondo Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D+F">D. F. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y+F">Y. F. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H+Y">H. Y. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J+Y">J. Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+T+P">T. P. Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+Y+Y">Y. Y. Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y+H">Y. H. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+D">D. Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+M+H">M. H. Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J+J">J. J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q+H">Q. H. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+F+Q">F. Q. Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiagarajan%2C+B">B. Thiagarajan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+C">C. Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">M. Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D+H">D. H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">N. B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louat%2C+A">A. Louat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">C. Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+D">D. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+T+-">T. -L. Lee</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13898v1-abstract-short" style="display: inline;"> The symbiosis of strong interactions, flat bands, topology and symmetry has led to the discovery of exotic phases of matter, including fractional Chern insulators, correlated moir茅 topological superconductors, and Dirac and Weyl semimetals. Correlated metals, such as those present in Kondo lattices, rely on the screening of local moments by a sea of non-magnetic conduction electrons. Here, we repo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13898v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13898v1-abstract-full" style="display: none;"> The symbiosis of strong interactions, flat bands, topology and symmetry has led to the discovery of exotic phases of matter, including fractional Chern insulators, correlated moir茅 topological superconductors, and Dirac and Weyl semimetals. Correlated metals, such as those present in Kondo lattices, rely on the screening of local moments by a sea of non-magnetic conduction electrons. Here, we report on a unique topological Kondo lattice compound, CeCo2P2, where the Kondo effect - whose existence under the magnetic Co phase is protected by PT symmetry - coexists with antiferromagnetic order emerging from the flat bands associated with the Co atoms. Remarkably, this is the only known Kondo lattice compound where magnetic order occurs in non-heavy electrons, and puzzlingly, at a temperature significantly higher than that of the Kondo effect. Furthermore, at low temperatures, the emergence of the Kondo effect, in conjunction with a glide-mirror-z symmetry, results in a nodal line protected by bulk topology near the Fermi energy. These unusual properties, arising from the interplay between itinerant and correlated electrons from different constituent elements, lead to novel quantum phases beyond the celebrated topological Kondo insulators and Weyl Kondo semimetals. CeCo2P2 thus provides an ideal platform for investigating narrow bands, topology, magnetism, and the Kondo effect in strongly correlated electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13898v1-abstract-full').style.display = 'none'; document.getElementById('2411.13898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13647">arXiv:2411.13647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13647">pdf</a>, <a href="https://arxiv.org/format/2411.13647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> CeCo$_2$P$_2$: a unique Co-antiferromagnetic topological heavy-fermion system with $P\cdot\mathcal{T}$-protected Kondo effect and nodal-line excitations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D">Defa Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsvelik%2C+A+M">Alexei M. Tsvelik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuanfeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13647v1-abstract-short" style="display: inline;"> Based on high-throughput screening and experimental data, we find that CeCo$_2$P$_2$ is unique in heavy-fermion materials: it has a Kondo effect at a high temperature which is nonetheless below a Co-antiferromagnetic ordering temperature. This begs the question: how is the Kondo singlet formed? All other magnetic Kondo materials do not first form magnetism on the atoms whose electrons are supposed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13647v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13647v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13647v1-abstract-full" style="display: none;"> Based on high-throughput screening and experimental data, we find that CeCo$_2$P$_2$ is unique in heavy-fermion materials: it has a Kondo effect at a high temperature which is nonetheless below a Co-antiferromagnetic ordering temperature. This begs the question: how is the Kondo singlet formed? All other magnetic Kondo materials do not first form magnetism on the atoms whose electrons are supposed to screen the local moments. We theoretically explain these observations and show the multifaceted uniqueness of CeCo$_2$P$_2$: a playground for Kondo, magnetism, flat band, and topological physics. At high temperatures, the itinerant Co $c$ electrons of the system form non-atomic bands with a narrow bandwidth, leading to a high antiferromagnetic transition temperature. We show that the quantum geometry of the bands promotes in-plane ferromagnetism, while the weak dispersion along the $z$ direction facilitates out-of-plane antiferromagnetism. At low temperatures, we uncover a novel phase that manifests the coexistence of Co-antiferromagnetism and the Kondo effect, linked to the $P\cdot \mathcal{T}$-protected Kramers&#39; doublets and the filling-enforced metallic nature of $c$ electrons in the antiferromagnetic phase. Subsequently, the emergence of the Kondo effect, in cooperation with glide-mirror-$z$ symmetry, creates nodal-line excitation near the Fermi energy. Our results emphasize the importance of lattice symmetry and quantum geometry, Kondo physics, and magnetism in the understanding of the correlation physics of this unique compound. We also test our theory on the structurally similar compound LaCo$_2$P$_2$ and show how we are able to understand its vastly different phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13647v1-abstract-full').style.display = 'none'; document.getElementById('2411.13647v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">67 pages, 30 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13070">arXiv:2411.13070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13070">pdf</a>, <a href="https://arxiv.org/ps/2411.13070">ps</a>, <a href="https://arxiv.org/format/2411.13070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Persistent Spin Dynamics in the Ising Triangular-lattice Antiferromagnet Ba$_6$Nd$_2$Ti$_4$O$_{17}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+C+Y">C. Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B+L">B. L. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K+W">K. W. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+J+C">J. C. Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Q. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+N+Y">N. Y. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+M+Y">M. Y. Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+P+-">P. -C. Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernal%2C+O+O">O. O. Bernal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shu%2C+L">L. Shu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13070v1-abstract-short" style="display: inline;"> We report results of magnetic susceptibility, specific heat, and muon spin relaxation ($渭$SR) measurements on the polycrystalline Ba$_6$Nd$_2$Ti$_4$O$_{17}$, a disorder-free triangular-lattice antiferromagnet. The absence of long-range magnetic order or spin freezing is confirmed down to 30~mK, much less than the Curie-Weiss temperature -1.8~K. The magnetic and specific heat measurements reveal th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13070v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13070v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13070v1-abstract-full" style="display: none;"> We report results of magnetic susceptibility, specific heat, and muon spin relaxation ($渭$SR) measurements on the polycrystalline Ba$_6$Nd$_2$Ti$_4$O$_{17}$, a disorder-free triangular-lattice antiferromagnet. The absence of long-range magnetic order or spin freezing is confirmed down to 30~mK, much less than the Curie-Weiss temperature -1.8~K. The magnetic and specific heat measurements reveal the effective-1/2 spins are Ising-like. The persistent spin dynamics is determined down to 37~mK. Our study present a remarkable example of Ising spins on the triangular lattice, which remains magnetically disordered at low temperatures and potentially hosts a quantum spin liquid ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13070v1-abstract-full').style.display = 'none'; document.getElementById('2411.13070v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10931">arXiv:2411.10931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10931">pdf</a>, <a href="https://arxiv.org/format/2411.10931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Competing phases in kagome magnet FeGe from functional renormalization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bonetti%2C+P+M">Pietro M. Bonetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scherer%2C+M+M">Michael M. Scherer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Classen%2C+L">Laura Classen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10931v1-abstract-short" style="display: inline;"> The discovery of a charge density wave in FeGe extends the discussion of the nature of charge order in kagome metals to a magnetic compound. Motivated by this observation, we combine density functional theory (DFT) and functional-renormalization-group calculations to study interaction-induced Fermi-surface instabilities of the magnetic state of FeGe. We argue that the leading intra-band contributi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10931v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10931v1-abstract-full" style="display: none;"> The discovery of a charge density wave in FeGe extends the discussion of the nature of charge order in kagome metals to a magnetic compound. Motivated by this observation, we combine density functional theory (DFT) and functional-renormalization-group calculations to study interaction-induced Fermi-surface instabilities of the magnetic state of FeGe. We argue that the leading intra-band contribution to electronic correlations are approximately 2D and come from Van Hove points at the projected $M$~points. By varying parameters around DFT values, we determine a phase diagram for the quasi-2D scenario as function of on-site and nearest-neighbor interactions. We discuss universal aspects in the electronic mechanisms for the resulting phases, as well as the role of SU(2) symmetry breaking. We find FeGe to be in a regime of strong competition between $p$-wave charge density wave, $f$-wave pairing, and $d$-wave spin Pomeranchuk instabilities. This interplay can be influenced in favor of superconducting pairing for slightly increased nearest-neighbor interaction, suggesting a potential to induce superconductivity in FeGe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10931v1-abstract-full').style.display = 'none'; document.getElementById('2411.10931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09741">arXiv:2411.09741</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09741">pdf</a>, <a href="https://arxiv.org/format/2411.09741">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> 2D Theoretically Twistable Material Database </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petralanda%2C+U">Urko Petralanda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skorupskii%2C+G">Grigorii Skorupskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Q">Qiaoling Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+H">Hanqi Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+J">Jiaze Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mustaf%2C+R+A">Rose Albu Mustaf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%B6hn%2C+P">Peter H枚hn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haase%2C+V">Vicky Haase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claassen%2C+M">Martin Claassen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elcoro%2C+L">Luis Elcoro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+J">Jie Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mak%2C+K+F">Kin Fai Mak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efetov%2C+D+K">Dmitri K. Efetov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morosan%2C+E">Emilia Morosan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kennes%2C+D+M">Dante M. Kennes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rubio%2C+A">Angel Rubio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xian%2C+L">Lede Xian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09741v1-abstract-short" style="display: inline;"> The study of twisted two-dimensional (2D) materials, where twisting layers create moir茅 superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs) have been extensively studied, the broader potential of a seemingly infinite set of other twi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09741v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09741v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09741v1-abstract-full" style="display: none;"> The study of twisted two-dimensional (2D) materials, where twisting layers create moir茅 superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs) have been extensively studied, the broader potential of a seemingly infinite set of other twistable 2D materials remains largely unexplored. In this paper, we define &#34;theoretically twistable materials&#34; as single- or multi-layer structures that allow for the construction of simple continuum models of their moir茅 structures. This excludes, for example, materials with a &#34;spaghetti&#34; of bands or those with numerous crossing points at the Fermi level, for which theoretical moir茅 modeling is unfeasible. We present a high-throughput algorithm that systematically searches for theoretically twistable semimetals and insulators based on the Topological 2D Materials Database. By analyzing key electronic properties, we identify thousands of new candidate materials that could host rich topological and strongly correlated phenomena when twisted. We propose representative twistable materials for realizing different types of moir茅 systems, including materials with different Bravais lattices, valleys, and strength of spin-orbital coupling. We provide examples of crystal growth for several of these materials and showcase twisted bilayer band structures along with simplified twisted continuum models. Our results significantly broaden the scope of moir茅 heterostructures and provide a valuable resource for future experimental and theoretical studies on novel moir茅 systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09741v1-abstract-full').style.display = 'none'; document.getElementById('2411.09741v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15+81 pages, 5+187 figures, 4+104 tables. The Topological 2D Materials Database is available at https://topologicalquantumchemistry.com/topo2d/index.html . See also the accompanying paper &#34;Two-dimensional Topological Quantum Chemistry and Catalog of Topological Materials&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08950">arXiv:2411.08950</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08950">pdf</a>, <a href="https://arxiv.org/format/2411.08950">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Two-dimensional Topological Quantum Chemistry and Catalog of Topological Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Petralanda%2C+U">Urko Petralanda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elcoro%2C+L">Luis Elcoro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08950v1-abstract-short" style="display: inline;"> We adapt the topological quantum chemistry formalism to layer groups, and apply it to study the band topology of 8,872 entries from the computational two-dimensional (2D) materials databases C2DB and MC2D. In our analysis, we find 4,073 topologically non-trivial or obstructed atomic insulator entries, including 905 topological insulators, 602 even-electron number topological semimetals, and 1,003&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08950v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08950v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08950v1-abstract-full" style="display: none;"> We adapt the topological quantum chemistry formalism to layer groups, and apply it to study the band topology of 8,872 entries from the computational two-dimensional (2D) materials databases C2DB and MC2D. In our analysis, we find 4,073 topologically non-trivial or obstructed atomic insulator entries, including 905 topological insulators, 602 even-electron number topological semimetals, and 1,003 obstructed atomic insulators. We thus largely expand the library of known topological or obstructed materials in two dimensions, beyond the few hundreds known to date. We additionally classify the materials into four categories: experimentally existing, stable, computationally exfoliated, and not stable. We present a detailed analysis of the edge states emerging in a number of selected new materials, and compile a Topological 2D Materials Database (2D-TQCDB) containing the band structures and detailed topological properties of all the materials studied in this work. The methodology here developed is implemented in new programs available to the public, designed to study the topology of any non-magnetic monolayer or multilayer 2D material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08950v1-abstract-full').style.display = 'none'; document.getElementById('2411.08950v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">167 pages, 21 figures, 28 tables. The Topological 2D Materials Database is available at https://www.topologicalquantumchemistry.org/topo2d/index.html . The new programs on the Bilbao Crystallographic Server is available at https://www.cryst.ehu.es/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06668">arXiv:2411.06668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06668">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ab initio investigation of layered TMGeTe3 alloys for phase-change applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yihui Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+S">Suyang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hanyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaozhe Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Y">Yibo Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzarello%2C+R">Riccardo Mazzarello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06668v1-abstract-short" style="display: inline;"> Chalcogenide phase-change materials (PCMs) are one of the most mature candidates for next-generation memory technology. Recently, CrGeTe3 (CrGT) emerged as a promising PCM due to its enhanced amorphous stability and fast crystallization for embedded memory applications. The amorphous stability of CrGT was attributed to the complex layered structure of the crystalline motifs needed to initiate crys&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06668v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06668v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06668v1-abstract-full" style="display: none;"> Chalcogenide phase-change materials (PCMs) are one of the most mature candidates for next-generation memory technology. Recently, CrGeTe3 (CrGT) emerged as a promising PCM due to its enhanced amorphous stability and fast crystallization for embedded memory applications. The amorphous stability of CrGT was attributed to the complex layered structure of the crystalline motifs needed to initiate crystallization. A subsequent computational screening work identified several similar compounds with good thermal stability, such as InGeTe3, CrSiTe3 and BiSiTe3. Here, we explore substitution of Cr in CrGT with other 3d metals, and predict four additional layered alloys to be dynamically stable, namely, ScGeTe3, TiGeTe3, ZnGeTe3 and MnGeTe3. Thorough ab initio simulations performed on both crystalline and amorphous models of these materials indicate the former three alloys to be potential PCMs with sizable resistance contrast. Furthermore, we find that crystalline MnGeTe3 exhibits ferromagnetic behavior, whereas the amorphous state probably forms a spin-glass phase. This makes MnGeTe3 a promising candidate for magnetic phase-change applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06668v1-abstract-full').style.display = 'none'; document.getElementById('2411.06668v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19636">arXiv:2410.19636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19636">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Pomeranchuk instability of a topological crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muhammad%2C+Z">Zahir Muhammad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+R">Rajibul Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+F">Fei Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perakis%2C+I+E">Ilias E. Perakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kargarian%2C+M">Mehdi Kargarian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19636v1-abstract-short" style="display: inline;"> Nematic quantum fluids appear in strongly interacting systems and break the rotational symmetry of the crystallographic lattice. In metals, this is connected to a well-known instability of the Fermi liquid-the Pomeranchuk instability. Using scanning tunneling microscopy, we identified this instability in a highly unusual setting: on the surface of an elemental topological metal, arsenic. By direct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19636v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19636v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19636v1-abstract-full" style="display: none;"> Nematic quantum fluids appear in strongly interacting systems and break the rotational symmetry of the crystallographic lattice. In metals, this is connected to a well-known instability of the Fermi liquid-the Pomeranchuk instability. Using scanning tunneling microscopy, we identified this instability in a highly unusual setting: on the surface of an elemental topological metal, arsenic. By directly visualizing the Fermi surface of the surface state via scanning tunneling spectroscopy and photoemission spectroscopy, we find that the Fermi surface gets deformed and becomes elliptical at the energies where the nematic state is present. Known instances of nematic instability typically need van-Hove singularities or multi-orbital physics as drivers. In contrast, the surface states of arsenic are essentially indistinguishable from well-confined isotropic Rashba bands near the Fermi level, rendering our finding the first realization of Pomeranchuk instability of the topological surface state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19636v1-abstract-full').style.display = 'none'; document.getElementById('2410.19636v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19921">arXiv:2409.19921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19921">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s44214-024-00066-0">10.1007/s44214-024-00066-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perspective: imaging atomic step geometry to determine surface terminations of kagome materials and beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guowei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+T">Tianyu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+S">Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+H">Hanbin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19921v1-abstract-short" style="display: inline;"> Here we review scanning tunneling microscopy research on the surface determination for various types of kagome materials, including 11-type (CoSn, FeSn, FeGe), 32-type (Fe3Sn2), 13-type (Mn3Sn), 135-type (AV3Sb5, A = K, Rb, Cs), 166-type (TbMn6Sn6, YMn6Sn6 and ScV6Sn6), and 322-type (Co3Sn2S2 and Ni3In2Se2). We first demonstrate that the measured step height between different surfaces typically de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19921v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19921v1-abstract-full" style="display: none;"> Here we review scanning tunneling microscopy research on the surface determination for various types of kagome materials, including 11-type (CoSn, FeSn, FeGe), 32-type (Fe3Sn2), 13-type (Mn3Sn), 135-type (AV3Sb5, A = K, Rb, Cs), 166-type (TbMn6Sn6, YMn6Sn6 and ScV6Sn6), and 322-type (Co3Sn2S2 and Ni3In2Se2). We first demonstrate that the measured step height between different surfaces typically deviates from the expected value of +-0.4~0.8A, which is owing to the tunneling convolution effect with electronic states and becomes a serious issue for Co3Sn2S2 where the expected Sn-S interlayer distance is 0.6A. Hence, we put forward a general methodology for surface determination as atomic step geometry imaging, which is fundamental but also experimentally challenging to locate the step and to image with atomic precision. We discuss how this method can be used to resolve the surface termination puzzle in Co3Sn2S2. This method provides a natural explanation for the existence of adatoms and vacancies, and beyond using unknown impurity states, we propose and use designer layer-selective substitutional chemical markers to confirm the validity of this method. Finally, we apply this method to determine the surface of a new kagome material Ni3In2Se2, as a cousin of Co3Sn2S2, and we image the underlying kagome geometry on the determined Se surface above the kagome layer, which directly visualizes the p-d hybridization physics. We emphasize that this general method does not rely on theory, but the determined surface identity can provide guidelines for first-principles calculations with adjustable parameters on the surface-dependent local density of states and quasi-particle interference patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19921v1-abstract-full').style.display = 'none'; document.getElementById('2409.19921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Front 3, 19 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18833">arXiv:2409.18833</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18833">pdf</a>, <a href="https://arxiv.org/format/2409.18833">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Stripes, pair density wave, and holon Wigner crystal in single-band Hubbard model on diagonal square lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhi Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Gui-Xin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi-Fan Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18833v1-abstract-short" style="display: inline;"> We investigate the ground-state properties of the Hubbard model on wide diagonal square cylinders, rotated by $蟺/4$ relative to the regular lattice orientation. Using state-of-the-art density matrix renormalization group calculations with a large number of states, we convincingly demonstrate the development of a unidirectional charge density wave (CDW) characterized by infinite-length stripes alon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18833v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18833v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18833v1-abstract-full" style="display: none;"> We investigate the ground-state properties of the Hubbard model on wide diagonal square cylinders, rotated by $蟺/4$ relative to the regular lattice orientation. Using state-of-the-art density matrix renormalization group calculations with a large number of states, we convincingly demonstrate the development of a unidirectional charge density wave (CDW) characterized by infinite-length stripes along the primitive vector of square lattice in models with next-nearest-neighbor hopping $t&#39;=-0.1\sim -0.3$ and doping $未\sim 14\%$. Intriguingly, analysis of pair-pair correlation functions along these stripes reveals incommensurate pair density wave (PDW) superconductivity with diverged susceptibility. To the best of our knowledge, this is probably the first controlled numerical evidence of dominant PDW in the single-band Hubbard model on square lattices. At lower doping $未\sim 10\%$, we observed the formation of an additional CDW order within each stripe, which aligns across different stripes, forming a holon Wigner crystal phase. The spin pattern retains antiferromagnetic stripes with anti-phase domain walls. The ordering momentum of this emerged CDW order is remarkably close to the center-of-mass momentum of Cooper pairs in the PDW phase, suggesting a multifaceted relationship between CDW and PDW ordering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18833v1-abstract-full').style.display = 'none'; document.getElementById('2409.18833v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures + supplemental material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14041">arXiv:2409.14041</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14041">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Two Distinct Oxidation Dispersion Mechanisms in Pd-CeO2 Mediated by Thermodynamic and Kinetic Behaviors of Single Pd Species </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+C">Chen Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shiyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Songda Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Fangwen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+L">Linjiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+C">Chaobin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yue-Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xiaojuan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z">Zhong-Kang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Ying Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+W">Wentao Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hangsheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14041v1-abstract-short" style="display: inline;"> Understanding the dispersion process of supported catalysts is crucial for synthesizing atomic-level dispersed catalysts and precisely manipulating their chemical state. However, the underlying dispersion mechanism remains elusive due to the lack of atomic-level evidence during the dispersion process. Herein, by employing spherical aberration-corrected environmental scanning transmission electron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14041v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14041v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14041v1-abstract-full" style="display: none;"> Understanding the dispersion process of supported catalysts is crucial for synthesizing atomic-level dispersed catalysts and precisely manipulating their chemical state. However, the underlying dispersion mechanism remains elusive due to the lack of atomic-level evidence during the dispersion process. Herein, by employing spherical aberration-corrected environmental scanning transmission electron microscopy (ESTEM), first-principles calculations, and a global optimization algorithm, we unraveled the pre-oxidation dispersion and direct dispersion mechanisms in the Pd/CeO2 (100) system, mediated by the thermodynamic and kinetic behaviors of single Pd species. We discovered that at lower temperatures, the Pd nanoparticles first undergo oxidation followed by the dispersion of PdO, while at higher temperatures, the entire dispersion process of Pd remains in a metallic state. The distinct dispersion mechanisms at different temperatures are driven by the thermodynamic and kinetic differences of environment-dependent single Pd species. The nonmobile Pd1O4 species stabilized at lower temperatures obstructs the direct dispersion of Pd nanoparticles, instead triggering a sequence of pre-oxidation followed by limited dispersion. In contrast, the highly mobile Pd1O2 species at higher temperatures facilitates the complete and direct dispersion of Pd nanoparticles. This research illuminates the essential physical mechanisms of oxidative dispersion from both thermodynamic and kinetic perspectives, potentially enabling strategies for precisely controlling the state of highly dispersed catalysts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14041v1-abstract-full').style.display = 'none'; document.getElementById('2409.14041v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13601">arXiv:2409.13601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13601">pdf</a>, <a href="https://arxiv.org/format/2409.13601">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Constructions and Applications of Irreducible Representations of Spin-Space Groups </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Ziyin Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+A+Z">A. Z. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Z">Zhong Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+C">Chen Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zheng-Xin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13601v1-abstract-short" style="display: inline;"> Spin-space groups (SSGs), including the traditional space groups (SGs) and magnetic space groups (MSGs) as subsets, describe the complete symmetries of magnetic materials with weak spin-orbit coupling (SOC). In the present work, we systematically study the irreducible representations (irreps) of SSGs by focusing on the projective irreps of the little co-group $L(k)$ of any momentum point $\pmb k$.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13601v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13601v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13601v1-abstract-full" style="display: none;"> Spin-space groups (SSGs), including the traditional space groups (SGs) and magnetic space groups (MSGs) as subsets, describe the complete symmetries of magnetic materials with weak spin-orbit coupling (SOC). In the present work, we systematically study the irreducible representations (irreps) of SSGs by focusing on the projective irreps of the little co-group $L(k)$ of any momentum point $\pmb k$. We analysis the factor systems of $L(k)$, and then reduce the projective regular representation of $L(k)$ into direct sum of irreps using the Hamiltonian approach. Especially, for collinear SSGs which contain continuous spin rotation operations, we adopt discrete subgroups to effectively capture their characteristics. Furthermore, we apply the representation theory of SSGs to study the band structure of electrons and magnons in magnetic materials. After identifying the SSG symmetry group, we extract relevant irreps and determine the $k\cdot p$ models. As an example, we illustrate how our approach works for the material \ch{Mn3Sn}. Degeneracies facilitated by SSG symmetry are observed, underscoring the effectiveness of application in material analysis. The SSG recognition and representation code is uploaded to GitHub, the information of irreps of all SSGs is also available in the online Database. Our work provides a practical toolkit for exploring the intricate symmetries of magnetic materials and paves the way for future advances in materials science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13601v1-abstract-full').style.display = 'none'; document.getElementById('2409.13601v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13078">arXiv:2409.13078</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13078">pdf</a>, <a href="https://arxiv.org/format/2409.13078">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Catalogue of Phonon Instabilities in Symmetry Group 191 Kagome MT$_6$Z$_6$ Materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">X. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">H. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">D. C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">N. Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">M. G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13078v1-abstract-short" style="display: inline;"> Kagome materials manifest rich physical properties due to the emergence of abundant electronic phases. Here, we carry out a high-throughput first-principles study of the kagome 1:6:6 family MT$_6$Z$_6$ materials in space group 191, focusing on their phonon instability and electronic flat bands. Different MT$_6$Z$_6$ kagome candidates reveal a remarkable variety of kagome flat bands ranging from un&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13078v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13078v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13078v1-abstract-full" style="display: none;"> Kagome materials manifest rich physical properties due to the emergence of abundant electronic phases. Here, we carry out a high-throughput first-principles study of the kagome 1:6:6 family MT$_6$Z$_6$ materials in space group 191, focusing on their phonon instability and electronic flat bands. Different MT$_6$Z$_6$ kagome candidates reveal a remarkable variety of kagome flat bands ranging from unfilled, partially filled, to fully filled. Notably, the Mn/Fe-166 compounds exhibit partially filled flat bands with a pronounced sharp peak in the density of states near the Fermi level, leading to magnetic orders that polarize the bands and stabilize the otherwise unstable phonon. When the flat bands are located away from the Fermi level, we find a large number of phonon instabilities, which can be classified into three types, based on the phonon dispersion and vibrational modes. Type-I instabilities involve the in-plane distortion of kagome nets, while type-II and type-III present out-of-plane distortion of trigonal M and Z atoms. We take MgNi$_6$Ge$_6$ and HfNi$_6$In$_6$ as examples to illustrate the possible CDW structures derived from the emergent type-I and type-II instabilities. The type-I instability in MgNi$_6$Ge$_6$ suggests a nematic phase transition, governed by the local twisting of kagome nets. The type-II instability in HfNi$_6$In$_6$ may result in a hexagonal-to-orthorhombic transition, offering insight into the formation of MT$_6$Z$_6$ in other space groups. Additionally, the predicted ScNb$_6$Sn$_6$ is analyzed as an example of the type-III instability. Our predictions suggest a vast kagome family with rich properties induced by the flat bands, possible CDW transitions, and their interplay with magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13078v1-abstract-full').style.display = 'none'; document.getElementById('2409.13078v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures, with 1000 pages of additional supplemental materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04325">arXiv:2409.04325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04325">pdf</a>, <a href="https://arxiv.org/format/2409.04325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Pressure induced quasi-long-range $\sqrt{3} \times \sqrt{3}$ charge density wave and competing orders in the kagome metal FeGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Korshunov%2C+A">A. Korshunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kar%2C+A">A. Kar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lim%2C+C+-">C. -Y. Lim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Subires%2C+D">D. Subires</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">J. Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">H. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">D. C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C">C. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roychowdhury%2C+S">S. Roychowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">C. Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garbarino%2C+G">G. Garbarino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=T%C3%B6rm%C3%A4%2C+P">P. T枚rm盲</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04325v1-abstract-short" style="display: inline;"> Electronic ordering is prevalent in correlated systems, which commonly exhibit competing interactions. Here, we use x-ray diffraction to show that the charge density wave transition temperature of FeGe increases with pressure and evolves towards a $\sqrt{3}\times\sqrt{3}$ periodic lattice modulation, $\mathbf{q}$$^*$=$\left(\frac{1}{3}\ \frac{1}{3}\ \frac{1}{2}\right)$. In the pressure interval be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04325v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04325v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04325v1-abstract-full" style="display: none;"> Electronic ordering is prevalent in correlated systems, which commonly exhibit competing interactions. Here, we use x-ray diffraction to show that the charge density wave transition temperature of FeGe increases with pressure and evolves towards a $\sqrt{3}\times\sqrt{3}$ periodic lattice modulation, $\mathbf{q}$$^*$=$\left(\frac{1}{3}\ \frac{1}{3}\ \frac{1}{2}\right)$. In the pressure interval between 4$&lt;$$p$$&lt;$12 GPa both orders coexist and the spatial extent of the $\sqrt{3}\times\sqrt{3}$ order at high pressure becomes nearly long-range, $\sim$30 unit cells, while the correlation length of the 2$\times$2 phase remains shorter-ranged. The $\sqrt{3}\times\sqrt{3}$ phase is the ground state above 15 GPa, consistent with harmonic DFT calculations that predict a dimerization induced $\sqrt{3}\times\sqrt{3}$ order without phonon softening. The pressure dependence of the integrated intensities of $\mathbf{q}$$_\mathrm{CDW}=\left(\frac{1}{2}\ 0\ \frac{1}{2}\right)$ and $\mathbf{q}$$^*$ indicates a competition between the 2$\times$2 and $\sqrt{3}\times\sqrt{3}$ and demonstrates that the ground state of FeGe is characterized by a rich landscape of metastable/fragile phases. We discuss possible scenarios based on an order-disorder transformation and the formation of Friedel oscillations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04325v1-abstract-full').style.display = 'none'; document.getElementById('2409.04325v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00660">arXiv:2409.00660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00660">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-51558-5">10.1038/s41467-024-51558-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Directly visualizing nematic superconductivity driven by the pair density wave in NbSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+L">Lu Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+Y">Yucheng Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yingbo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fu-Chun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Jian Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+J">Jinhai Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuhang Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00660v1-abstract-short" style="display: inline;"> Pair density wave (PDW) is a distinct superconducting state characterized by a periodic modulation of its order parameter in real space. Its intricate interplay with the charge density wave (CDW) state is a continuing topic of interest in condensed matter physics. While PDW states have been discovered in cuprates and other unconventional superconductors, the understanding of diverse PDWs and their&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00660v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00660v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00660v1-abstract-full" style="display: none;"> Pair density wave (PDW) is a distinct superconducting state characterized by a periodic modulation of its order parameter in real space. Its intricate interplay with the charge density wave (CDW) state is a continuing topic of interest in condensed matter physics. While PDW states have been discovered in cuprates and other unconventional superconductors, the understanding of diverse PDWs and their interactions with different types of CDWs remains limited. Here, utilizing scanning tunneling microscopy, we unveil the subtle correlations between PDW ground states and two distinct CDW phases -- namely, anion-centered-CDW (AC-CDW) and hollow-centered-CDW (HC-CDW) -- in 2H-NbSe$_2$. In both CDW regions, we observe coexisting PDWs with a commensurate structure that aligns with the underlying CDW phase. The superconducting gap size, $螖(r)$, related to the pairing order parameter is in phase with the charge density in both CDW regions. Meanwhile, the coherence peak height, $H(r)$, qualitatively reflecting the electron-pair density, exhibits a phase difference of approximately $2蟺/3$ relative to the CDW. The three-fold rotational symmetry is preserved in the HC-CDW region but is spontaneously broken in the AC-CDW region due to the PDW state, leading to the emergence of nematic superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00660v1-abstract-full').style.display = 'none'; document.getElementById('2409.00660v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 7234 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16851">arXiv:2408.16851</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16851">pdf</a>, <a href="https://arxiv.org/format/2408.16851">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> New magnetic topological materials from high-throughput search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuanfeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elcoro%2C+L">Luis Elcoro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16851v1-abstract-short" style="display: inline;"> We conducted a high-throughput search for topological magnetic materials on 522 new, experimentally reported commensurate magnetic structures from MAGNDATA, doubling the number of available materials on the Topological Magnetic Materials database. This brings up to date the previous studies which had become incomplete due to the discovery of new materials. For each material, we performed first-pri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16851v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16851v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16851v1-abstract-full" style="display: none;"> We conducted a high-throughput search for topological magnetic materials on 522 new, experimentally reported commensurate magnetic structures from MAGNDATA, doubling the number of available materials on the Topological Magnetic Materials database. This brings up to date the previous studies which had become incomplete due to the discovery of new materials. For each material, we performed first-principle electronic calculations and diagnosed the topology as a function of the Hubbard U parameter. Our high-throughput calculation led us to the prediction of 250 experimentally relevant topologically non-trivial materials, which represent 47.89% of the newly analyzed materials. We present five remarkable examples of these materials, each showcasing a different topological phase: Mn${}_2$AlB${}_2$ (BCSID 1.508), which exhibits a nodal line semimetal to topological insulator transition as a function of SOC, CaMnSi (BCSID 0.599), a narrow gap axion insulator, UAsS (BCSID 0.594) a 5f-orbital Weyl semimetal, CsMnF${}_4$ (BCSID 0.327), a material presenting a new type of quasi-symmetry protected closed nodal surface and FeCr${}_2$S${}_4$ (BCSID 0.613), a symmetry-enforced semimetal with double Weyls and spin-polarised surface states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16851v1-abstract-full').style.display = 'none'; document.getElementById('2408.16851v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">249 pages, Full topologies and band structures are provided on the Topological Magnetic Materials Database https://www.topologicalquantumchemistry.fr/magnetic/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08801">arXiv:2408.08801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08801">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Fabrication of Spin-1/2 Heisenberg Antiferromagnetic Chains via Combined On-surface Synthesis and Reduction for Spinon Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+X">Xuelei Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+Z">Zhihao Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+Y">Ye Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%2C+N">Nan Ke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+K">KaKing Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Can Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yifan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Ping Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08801v1-abstract-short" style="display: inline;"> Spin-1/2 Heisenberg antiferromagnetic chains are excellent one-dimensional platforms for exploring quantum magnetic states and quasiparticle fractionalization. Understanding its quantum magnetism and quasiparticle excitation at the atomic scale is crucial for manipulating the quantum spin systems. Here, we report the fabrication of spin-1/2 Heisenberg chains through on-surface synthesis and in-sit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08801v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08801v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08801v1-abstract-full" style="display: none;"> Spin-1/2 Heisenberg antiferromagnetic chains are excellent one-dimensional platforms for exploring quantum magnetic states and quasiparticle fractionalization. Understanding its quantum magnetism and quasiparticle excitation at the atomic scale is crucial for manipulating the quantum spin systems. Here, we report the fabrication of spin-1/2 Heisenberg chains through on-surface synthesis and in-situ reduction. A closed-shell nanographene is employed as a precursor for Ullman coupling to avoid radical fusing, thus obtaining oligomer chains. Following exposure to atomic hydrogen and tip manipulation, closed-shell polymers are transformed into spin-1/2 chains with controlled lengths by reducing the ketone groups and subsequent hydrogen desorption. The spin excitation gaps are found to decrease in power-law as the chain lengths, suggesting its gapless feature. More interestingly, the spinon dispersion is extracted from the inelastic spectroscopic spectra, agreeing well with the calculations. Our results demonstrate the great potential of fabricating desired quantum systems through a combined on-surface synthesis and reduction approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08801v1-abstract-full').style.display = 'none'; document.getElementById('2408.08801v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08612">arXiv:2408.08612</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08612">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Atomic-Scale Imaging of Fractional Spinon Quasiparticles in Open-Shell Triangulene Spin-$\frac{1}{2}$ Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhangyu Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xin-Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yashi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+X">Xiangjian Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Ying Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yufeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jinfeng Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+M">Mingpu Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Pei-Nian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Deng-Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shiyong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08612v1-abstract-short" style="display: inline;"> The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08612v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08612v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08612v1-abstract-full" style="display: none;"> The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual Heisenberg antiferromagnetic spin-$\frac{1}{2}$ chains using open-shell [2]triangulene molecules as building blocks. Each [2]triangulene unit, owing to its sublattice imbalance, hosts a net spin-$\frac{1}{2}$ in accordance with Lieb&#39;s theorem, and these spins are antiferromagnetically coupled within covalent chains with a coupling strength of $J = 45$ meV. Through scanning tunneling microscopy and spectroscopy, we probe the spin states, excitation gaps, and their spatial excitation weights within covalent spin chains of varying lengths with atomic precision. Our investigation reveals that the excitation gap decreases as the chain length increases, extrapolating to zero for long chains, consistent with Haldane&#39;s gapless prediction. Moreover, inelastic tunneling spectroscopy reveals an m-shaped energy dispersion characteristic of confined spinon quasiparticles in a one-dimensional quantum box. These findings establish a promising strategy for exploring the unique properties of excitation quasiparticles and their broad implications for quantum information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08612v1-abstract-full').style.display = 'none'; document.getElementById('2408.08612v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08394">arXiv:2408.08394</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.08394">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-51255-3">10.1038/s41467-024-51255-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A topological Hund nodal line antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yueh-Ting Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+P">Pengyu Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+S">Shuyue Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Huibin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C">Che-Min Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoting Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhaohu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+T">Tong Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Shengwei Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+G">Gang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Z">Zhaoming Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Z">Zhiping Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08394v1-abstract-short" style="display: inline;"> The interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMn2Ge2. We further demonstra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08394v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08394v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08394v1-abstract-full" style="display: none;"> The interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMn2Ge2. We further demonstrate that this gapless, antiferromagnetic Dirac nodal line is enforced by the combination of magnetism, space-time inversion symmetry and nonsymmorphic lattice symmetry. The corresponding drumhead surface states traverse the whole surface Brillouin zone. YMn2Ge2 thus serves as a platform to exhibit the interplay of multiple degenerate nodal physics and antiferromagnetism. Interestingly, the magnetic nodal line displays a d-orbital dependent renormalization along its trajectory in momentum space, thereby manifesting Hund coupling. Our findings offer insights into the effect of electronic correlations on magnetic Dirac nodal lines, leading to an antiferromagnetic Hund nodal line. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08394v1-abstract-full').style.display = 'none'; document.getElementById('2408.08394v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 15, Article number: 7052 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04452">arXiv:2408.04452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04452">pdf</a>, <a href="https://arxiv.org/format/2408.04452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Frustrated charge density wave and quasi-long-range bond-orientational order in the magnetic kagome FeGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Subires%2C+D">D. Subires</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kar%2C+A">A. Kar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Korshunov%2C+A">A. Korshunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuller%2C+C+A">C. A. Fuller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Y. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+H">H. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C4%83lug%C4%83ru%2C+D">Dumitru C膬lug膬ru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McMonagle%2C+C">C. McMonagle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C">C. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roychowdhury%2C+S">S. Roychowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">C. Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">J. Strempfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jana%2C+A">A. Jana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vobornik%2C+I">I. Vobornik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">J. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tallarida%2C+M">M. Tallarida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chernyshov%2C+D">D. Chernyshov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bosak%2C+A">A. Bosak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04452v1-abstract-short" style="display: inline;"> The intrinsic frustrated nature of a kagome lattice is amenable to the realization of exotic phases of matter, such as quantum spin liquids or spin ices, and more recently the multiple-$\mathrm{\textbf{q}}$ charge density waves (CDW) in the kagome metals. Despite intense efforts to understand the mechanism driving the electronic modulations, its origin is still unknown and hindered by competing in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04452v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04452v1-abstract-full" style="display: none;"> The intrinsic frustrated nature of a kagome lattice is amenable to the realization of exotic phases of matter, such as quantum spin liquids or spin ices, and more recently the multiple-$\mathrm{\textbf{q}}$ charge density waves (CDW) in the kagome metals. Despite intense efforts to understand the mechanism driving the electronic modulations, its origin is still unknown and hindered by competing interactions and intertwined orders. Here, we identify a dimerization-driven 2D hexagonal charge-diffuse precursor in the antiferromagnetic kagome metal FeGe and demonstrate that the fraction of dimerized/undimerized states is the relevant order parameter of the multiple-$\mathrm{\textbf{q}}$ CDW of a continuous phase transition. The pretransitional charge fluctuations with propagation vector $\mathrm{\textbf{q}=\textbf{q}_M}$ at T$_{\mathrm{CDW}}$$&lt;$T$&lt;$T$^*$(125 K) are anisotropic, hence holding a quasi-long-range bond-orientational order. The broken translational symmetry emerges from the anisotropic diffuse precursor, akin to the Ising scenario of antiferromagnetic triangular lattices. The temperature and momentum dependence of the critical scattering show parallels to the stacked hexatic $\mathrm{B}$-phases reported in liquid crystals and transient states of CDWs and highlight the key role of the topological defect-mediated melting of the CDW in FeGe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04452v1-abstract-full').style.display = 'none'; document.getElementById('2408.04452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00363">arXiv:2408.00363</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00363">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Coexistence of large anomalous Hall effect and topological magnetic skyrmions in a Weyl nodal ring ferromagnet Mn5Ge3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+F">Feng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+B">Bei Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jie Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+L">Linxuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenyun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+Y">Yong-Chang Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jinbo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenhong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00363v2-abstract-short" style="display: inline;"> Topological magnetic materials are expected to show multiple transport responses because of their unusual bulk electronic topology in momentum space and topological spin texture in real space. However, such multiple topological properties-hosting materials are rare in nature. In this work, we reveal the coexistence of a large tunable anomalous Hall effect and topological magnetic skyrmions in a We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00363v2-abstract-full').style.display = 'inline'; document.getElementById('2408.00363v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00363v2-abstract-full" style="display: none;"> Topological magnetic materials are expected to show multiple transport responses because of their unusual bulk electronic topology in momentum space and topological spin texture in real space. However, such multiple topological properties-hosting materials are rare in nature. In this work, we reveal the coexistence of a large tunable anomalous Hall effect and topological magnetic skyrmions in a Weyl nodal ring ferromagnet Mn5Ge3, by using electrical transport and Lorentz transmission electronic microscope (TEM) measurements. It was found that the intrinsic anomalous Hall conductivity (AHC) can reach up to 979.7 S/cm with current along [120] and magnetic field along [001] of the Mn5Ge3 single crystals. Our theoretical calculations reveal that the large AHC is closely related with two Weyl nodal rings in band structure near the Fermi level and is strongly modified by the content of Ge. Moreover, our Lorentz-TEM images and micromagnetic simulation results, together with the sizable topological Hall effect clearly point to the robust formation of magnetic skyrmions over a wide temperature-magnetic field region. These results prove Mn5Ge3 as a rare magnetic topological nodal-line semimetal with great significance to explore novel multiple topological phenomena, which facilitates the development of spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00363v2-abstract-full').style.display = 'none'; document.getElementById('2408.00363v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18063">arXiv:2407.18063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18063">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Imaging interstitial atoms with multislice electron ptychography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Y">Yu-Tsun Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeltmann%2C+S+E">Steven E. Zeltmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=P.%2C+H+K">Harikrishnan K. P.</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenberg%2C+E+R">Ethan R. Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ross%2C+C+A">Caroline A. Ross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muller%2C+D+A">David A. Muller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18063v1-abstract-short" style="display: inline;"> Doping impurity atoms is a strategy commonly used to tune the functionality of materials including catalysts, semiconductors, and quantum emitters. The location of dopants and their interaction with surrounding atoms could significantly modulate the transport, optical, or magnetic properties of materials. However, directly imaging individual impurity atoms inside materials remains a generally unad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18063v1-abstract-full').style.display = 'inline'; document.getElementById('2407.18063v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18063v1-abstract-full" style="display: none;"> Doping impurity atoms is a strategy commonly used to tune the functionality of materials including catalysts, semiconductors, and quantum emitters. The location of dopants and their interaction with surrounding atoms could significantly modulate the transport, optical, or magnetic properties of materials. However, directly imaging individual impurity atoms inside materials remains a generally unaddressed need. Here, we demonstrate how single atoms can be detected and located in three dimensions via multislice electron ptychography.Interstitial atoms in a complex garnet oxide heterostructure are resolved with a depth resolution better than 2.7 nm, together with a deep-sub-脜ngstrom lateral resolution. Single-scan atomic-layer depth resolution should be possible using strongly divergent electron probe illumination. Our results provide a new approach to detecting individual atomic defects and open doors to characterize the local environments and spatial distributions that underlie a broad range of systems such as single-atom catalysts, nitrogen-vacancy centers, and other atomic-scale quantum sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18063v1-abstract-full').style.display = 'none'; document.getElementById('2407.18063v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 5 figures, 10 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13121">arXiv:2407.13121</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13121">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Nematic Ising superconductivity with hidden magnetism in few-layer 6R-TaS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shao-Bo Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+C">Congkuan Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Y">Yuqiang Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+H">Hongtao Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+L">Lu Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+X">Xinjian Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+H">Hang Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M">Mantang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Di Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y">Yuanjun Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+J">Jian Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiankun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+S">Shuyue Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chaoyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+W">Wenyu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+F">Fuqiang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuhang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+J">Jinhai Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Law%2C+K+T">K. T. Law</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jian-Hao Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13121v1-abstract-short" style="display: inline;"> In van der Waals heterostructures (vdWHs), the manipulation of interlayer stacking/coupling allows for the construction of customizable quantum systems exhibiting exotic physics. An illustrative example is the diverse range of states of matter achieved through varying the proximity coupling between two-dimensional (2D) quantum spin liquid (QSL) and superconductors within the TaS2 family. This stud&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13121v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13121v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13121v1-abstract-full" style="display: none;"> In van der Waals heterostructures (vdWHs), the manipulation of interlayer stacking/coupling allows for the construction of customizable quantum systems exhibiting exotic physics. An illustrative example is the diverse range of states of matter achieved through varying the proximity coupling between two-dimensional (2D) quantum spin liquid (QSL) and superconductors within the TaS2 family. This study presents a demonstration of the intertwined physics of spontaneous rotational symmetry breaking, hidden magnetism, and Ising superconductivity in the three-fold rotationally symmetric, non-magnetic natural vdWHs 6R-TaS2. A distinctive phase emerges in 6R-TaS2 below a characteristic temperature (T*) of approximately 30 K, which is characterized by a remarkable set of features, including a giant extrinsic anomalous Hall effect (AHE), Kondo screening, magnetic field-tunable thermal hysteresis, and nematic magneto-resistance. At lower temperatures, a coexistence of nematicity and Kondo screening with Ising superconductivity is observed, providing compelling evidence of hidden magnetism within a superconductor. This research not only sheds light on unexpected emergent physics resulting from the coupling of itinerant electrons and localized/correlated electrons in natural vdWHs but also emphasizes the potential for tailoring exotic quantum states through the manipulation of interlayer interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13121v1-abstract-full').style.display = 'none'; document.getElementById('2407.13121v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10628">arXiv:2407.10628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10628">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Automated high-resolution backscattered-electron imaging at macroscopic scale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+Z">Zhiyuan Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zunshuai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuhan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+W">Weixiong Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shenghua Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Ying Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tongyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jiong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10628v1-abstract-short" style="display: inline;"> Scanning electron microscopy (SEM) has been widely utilized in the field of materials science due to its significant advantages, such as large depth of field, wide field of view, and excellent stereoscopic imaging. However, at high magnification, the limited imaging range in SEM cannot cover all the possible inhomogeneous microstructures. In this research, we propose a novel approach for generatin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10628v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10628v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10628v1-abstract-full" style="display: none;"> Scanning electron microscopy (SEM) has been widely utilized in the field of materials science due to its significant advantages, such as large depth of field, wide field of view, and excellent stereoscopic imaging. However, at high magnification, the limited imaging range in SEM cannot cover all the possible inhomogeneous microstructures. In this research, we propose a novel approach for generating high-resolution SEM images across multiple scales, enabling a single image to capture physical dimensions at the centimeter level while preserving submicron-level details. We adopted the SEM imaging on the AlCoCrFeNi2.1 eutectic high entropy alloy (EHEA) as an example. SEM videos and image stitching are combined to fulfill this goal, and the video-extracted low-definition (LD) images are clarified by a well-trained denoising model. Furthermore, we segment the macroscopic image of the EHEA, and area of various microstructures are distinguished. Combining the segmentation results and hardness experiments, we found that the hardness is positively correlated with the content of body-centered cubic (BCC) phase, negatively correlated with the lamella width, and the relationship with the proportion of lamellar structures was not significant. Our work provides a feasible solution to generate macroscopic images based on SEMs for further analysis of the correlations between the microstructures and spatial distribution, and can be widely applied to other types of microscope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10628v1-abstract-full').style.display = 'none'; document.getElementById('2407.10628v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages,12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05245">arXiv:2407.05245</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.05245">pdf</a>, <a href="https://arxiv.org/format/2407.05245">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electrical magnetochiral anisotropy and quantum metric in chiral conductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yiyang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Q">Qinyan Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05245v1-abstract-short" style="display: inline;"> Electrical magnetochiral anisotropy (EMCA) refers to the chirality- and current-dependent nonlinear magnetoresistance in chiral conductors and is commonly interpreted in a semimclassical picture. In this work, we reveal a quantum geometry origin of EMCA by a chiral rectangular lattice model that resembles a chiral organic conductor (DM-EDT-TTF)${}_2$ClO${}_4$ studied for EMCA recently and exhibits&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05245v1-abstract-full').style.display = 'inline'; document.getElementById('2407.05245v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05245v1-abstract-full" style="display: none;"> Electrical magnetochiral anisotropy (EMCA) refers to the chirality- and current-dependent nonlinear magnetoresistance in chiral conductors and is commonly interpreted in a semimclassical picture. In this work, we reveal a quantum geometry origin of EMCA by a chiral rectangular lattice model that resembles a chiral organic conductor (DM-EDT-TTF)${}_2$ClO${}_4$ studied for EMCA recently and exhibits symmetry-protected Dirac bands similar to those of graphene. Compared to the semiclassical term, we find that Dirac states contribute significantly to EMCA by the quantum metric when Fermi energy is close to the Dirac point. Besides, we discovered topological insulator state can emerge once SOC is added to our chiral model lattice. Our work paves a path to understand quantum geometry in the magneto-transport of chiral materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05245v1-abstract-full').style.display = 'none'; document.getElementById('2407.05245v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02560">arXiv:2407.02560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02560">pdf</a>, <a href="https://arxiv.org/format/2407.02560">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> When Could Abelian Fractional Topological Insulators Exist in Twisted MoTe$_2$ (and Other Systems) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kwan%2C+Y+H">Yves H. Kwan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jiabin Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagnino%2C+A+K">Andrea Kouta Dagnino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02560v1-abstract-short" style="display: inline;"> Using comprehensive exact diagonalization calculations on $胃\approx 3.7 ^{\circ}$ twisted bilayer MoTe$_2$ ($t$MoTe$_2$), as well as idealized Landau level models also relevant for lower $胃$, we extract general principles for engineering fractional topological insulators (FTIs) in realistic situations. First, in a Landau level setup at $谓=1/3+1/3$, we investigate what features of the interaction d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02560v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02560v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02560v1-abstract-full" style="display: none;"> Using comprehensive exact diagonalization calculations on $胃\approx 3.7 ^{\circ}$ twisted bilayer MoTe$_2$ ($t$MoTe$_2$), as well as idealized Landau level models also relevant for lower $胃$, we extract general principles for engineering fractional topological insulators (FTIs) in realistic situations. First, in a Landau level setup at $谓=1/3+1/3$, we investigate what features of the interaction destroy an FTI. For both pseudopotential interactions and realistic screened Coulomb interactions, we find that sufficient suppression of the short-range repulsion is needed for stabilizing an FTI. We then study $胃\approx 3.7 ^{\circ}$ $t$MoTe$_2$ with realistic band-mixing and anisotropic non-local dielectric screening. Our finite-size calculations only find an FTI phase at $谓=-4/3$ in the presence of a significant additional short-range attraction $g$ that acts to counter the Coulomb repulsion at short distances. We discuss how further finite-size drifts, dielectric engineering, Landau level character, and band-mixing effects may reduce the required value of $g$ closer towards the experimentally relevant conditions of $t$MoTe$_2$. Projective calculations into the $n=1$ Landau level, which resembles the second valence band of $胃\simeq 2.1^\circ$ $t$MoTe$_2$, do not yield FTIs for any $g$, suggesting that FTIs at low-angle $t$MoTe$_2$ for $谓=-8/3$ and $-10/3$ may be unlikely. While our study highlights the challenges, at least for the fillings considered, to obtaining an FTI with transport plateaus, even in large-angle $t$MoTe$_2$ where fractional Chern insulators are experimentally established, we also provide potential sample-engineering routes to improve the stability of FTI phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02560v1-abstract-full').style.display = 'none'; document.getElementById('2407.02560v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+36 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17171">arXiv:2406.17171</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17171">pdf</a>, <a href="https://arxiv.org/format/2406.17171">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.L121406">10.1103/PhysRevB.110.L121406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectrum-preserving deformations of integrable spin chains with open boundaries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yunfeng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+Y">Yuan Miao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17171v3-abstract-short" style="display: inline;"> We discover a family of local deformations that leave part of the spectrum intact for strongly interacting and exactly solvable quantum many-body systems. Since the deformation preserves the Bethe Ansatz equations (BAE), it is dubbed the iso-BAE flow. Although all theories on the flow share the same BAE, the spectra are different. Part of the spectrum remains intact along the whole flow. Such stat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17171v3-abstract-full').style.display = 'inline'; document.getElementById('2406.17171v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17171v3-abstract-full" style="display: none;"> We discover a family of local deformations that leave part of the spectrum intact for strongly interacting and exactly solvable quantum many-body systems. Since the deformation preserves the Bethe Ansatz equations (BAE), it is dubbed the iso-BAE flow. Although all theories on the flow share the same BAE, the spectra are different. Part of the spectrum remains intact along the whole flow. Such states are protected by an emergent symmetry. The remaining parts of the spectrum change continuously along the flow and are doubly degenerate for even length spin chains. For odd length chains, the deformed spectrum also comprises doubly degenerate pairs apart from the sector with magnon number $(L+1)/2$, where $L$ is the length of the spin chain. We discuss the iso-BAE flow for the ${\rm XXX}_{1/2}$ model in detail and show that the iso-BAE flows exist for more general models including $q$-deformed XXZ as well as higher spin ${\rm XXX}_{s}$ spin chains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17171v3-abstract-full').style.display = 'none'; document.getElementById('2406.17171v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures (Supplemental Material 13 pages, 5 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> USTC-ICTS/PCFT-24-19 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, L121406 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13702">arXiv:2406.13702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13702">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-024-01914-z">10.1038/s41563-024-01914-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Van-Hove annihilation and nematic instability on a Kagome lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+S">Sen Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denner%2C+M+M">M. Michael Denner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ingham%2C+J">Julian Ingham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Songbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13702v2-abstract-short" style="display: inline;"> Novel states of matter arise in quantum materials due to strong interactions among electrons. A nematic phase breaks the point group symmetry of the crystal lattice and is known to emerge in correlated materials. Here we report the observation of an intra-unit-cell nematic order and signatures of Pomeranchuk instability in the Kagome metal ScV6Sn6. Using scanning tunneling microscopy and spectrosc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13702v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13702v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13702v2-abstract-full" style="display: none;"> Novel states of matter arise in quantum materials due to strong interactions among electrons. A nematic phase breaks the point group symmetry of the crystal lattice and is known to emerge in correlated materials. Here we report the observation of an intra-unit-cell nematic order and signatures of Pomeranchuk instability in the Kagome metal ScV6Sn6. Using scanning tunneling microscopy and spectroscopy, we reveal a stripe-like nematic order breaking the crystal rotational symmetry within the Kagome lattice itself. Moreover, we identify a set of van Hove singularities adhering to the Kagome layer electrons, which appear along one direction of the Brillouin zone while being annihilated along other high-symmetry directions, revealing a rotational symmetry breaking. Via detailed spectroscopic maps, we further observe an elliptical deformation of Fermi surface, which provides direct evidence for an electronically mediated nematic order. Our work not only bridges the gap between electronic nematicity and Kagome physics, but also sheds light on the potential mechanism for realizing symmetry-broken phases in correlated electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13702v2-abstract-full').style.display = 'none'; document.getElementById('2406.13702v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Mater. (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16070">arXiv:2405.16070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.16070">pdf</a>, <a href="https://arxiv.org/format/2405.16070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Exactly Solvable and Integrable Systems">nlin.SI</span> </div> </div> <p class="title is-5 mathjax"> Exact Spin Correlators of Integrable Quantum Circuits from Algebraic Geometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hutsalyuk%2C+A">Arthur Hutsalyuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yunfeng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pozsgay%2C+B">Balazs Pozsgay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Hefeng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16070v1-abstract-short" style="display: inline;"> We calculate the correlation functions of strings of spin operators for integrable quantum circuits exactly. These observables can be used for calibration of quantum simulation platforms. We use algebraic Bethe Ansatz, in combination with computational algebraic geometry to obtain analytic results for medium-size (around 10-20 qubits) quantum circuits. The results are rational functions of the qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16070v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16070v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16070v1-abstract-full" style="display: none;"> We calculate the correlation functions of strings of spin operators for integrable quantum circuits exactly. These observables can be used for calibration of quantum simulation platforms. We use algebraic Bethe Ansatz, in combination with computational algebraic geometry to obtain analytic results for medium-size (around 10-20 qubits) quantum circuits. The results are rational functions of the quantum circuit parameters. We obtain analytic results for such correlation functions both in the real space and Fourier space. In the real space, we analyze the short time and long time limit of the correlation functions. In Fourier space, we obtain analytic results in different parameter regimes, which exhibit qualitatively different behaviors. Using these analytic results, one can easily generate numerical data to arbitrary precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16070v1-abstract-full').style.display = 'none'; document.getElementById('2405.16070v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, many figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10980">arXiv:2405.10980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.10980">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Research on the Quantum confinement of Carriers in the Type-I Quantum Wells Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xinxin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Z">Zhen Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+C">Chunhua Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+H">Haiqiang Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenxin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10980v1-abstract-short" style="display: inline;"> Quantum confinement is recognized to be an inherent property in low-dimensional structures. Traditionally it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels. However, our previous research has revealed efficient carrier escape in low-dimensional structures, contradicting this conventional understanding. In this study, we review the energy band&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10980v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10980v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10980v1-abstract-full" style="display: none;"> Quantum confinement is recognized to be an inherent property in low-dimensional structures. Traditionally it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels. However, our previous research has revealed efficient carrier escape in low-dimensional structures, contradicting this conventional understanding. In this study, we review the energy band structure of quantum wells considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone. By accounting for all wave vectors, we obtain a certain distribution of carrier energy at each quantization energy level, giving rise to the energy subbands. These results enable carriers to escape from the well under the influence of an electric field. Additionally, we have compiled a comprehensive summary of various energy band scenarios in quantum well structures, relevant to carrier transport. Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands, discovering new physical phenomena, and designing novel devices with superior performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10980v1-abstract-full').style.display = 'none'; document.getElementById('2405.10980v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09745">arXiv:2405.09745</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09745">pdf</a>, <a href="https://arxiv.org/format/2405.09745">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Pseudoentropy sum rule by analytical continuation of the superposition parameter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+W">Wu-zhong Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yao-zong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jin Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09745v2-abstract-short" style="display: inline;"> In this paper, we establish a sum rule that connects the pseudoentropy and entanglement entropy of a superposition state. Through analytical continuation of the superposition parameter, we demonstrate that the transition matrix and density matrix of the superposition state can be treated in a unified manner. Within this framework, we naturally derive sum rules for the (reduced) transition matrix,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09745v2-abstract-full').style.display = 'inline'; document.getElementById('2405.09745v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09745v2-abstract-full" style="display: none;"> In this paper, we establish a sum rule that connects the pseudoentropy and entanglement entropy of a superposition state. Through analytical continuation of the superposition parameter, we demonstrate that the transition matrix and density matrix of the superposition state can be treated in a unified manner. Within this framework, we naturally derive sum rules for the (reduced) transition matrix, pseudo R茅nyi entropy, and pseudoentropy. Furthermore, we demonstrate the close relationship between the sum rule for pseudoentropy and the singularity structure of the entropy function for the superposition state after analytical continuation. We also explore potential applications of the sum rule, including its relevance to understanding the gravity dual of non-Hermitian transition matrices and establishing upper bounds for the absolute value of pseudoentropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09745v2-abstract-full').style.display = 'none'; document.getElementById('2405.09745v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04863">arXiv:2405.04863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.04863">pdf</a>, <a href="https://arxiv.org/format/2405.04863">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.043132">10.1103/PhysRevResearch.6.043132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-dimensional higher-order saddle points induced flat bands in Co-based kagome metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yiyang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McCandless%2C+G+T">Gregory T. McCandless</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+J+Y">Julia Y. Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04863v1-abstract-short" style="display: inline;"> The saddle point (van Hove singularity) exhibits a divergent density of states in 2D systems, leading to fascinating phenomena like strong correlations and unconventional superconductivity, yet it is seldom observed in 3D systems. In this work, we have found two types of 3D higher-order saddle points (HOSPs) in emerging 3D kagome metals, YbCo$_6$Ge$_6$ and MgCo$_6$Ge$_6$. Both HOSPs exhibit a sing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04863v1-abstract-full').style.display = 'inline'; document.getElementById('2405.04863v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04863v1-abstract-full" style="display: none;"> The saddle point (van Hove singularity) exhibits a divergent density of states in 2D systems, leading to fascinating phenomena like strong correlations and unconventional superconductivity, yet it is seldom observed in 3D systems. In this work, we have found two types of 3D higher-order saddle points (HOSPs) in emerging 3D kagome metals, YbCo$_6$Ge$_6$ and MgCo$_6$Ge$_6$. Both HOSPs exhibit a singularity in their density of states, which is significantly enhanced compared to the ordinary saddle point. The HOSP near the Fermi energy generates a flat band extending a large area in the Brillouin zone, potentially amplifying the correlation effect and fostering electronic instabilities. Two types of HOSPs exhibit distinct robustness upon element substitution and lattice distortions in these kagome compounds. Our work paves the way for engineering exotic band structures, such as saddle points and flat bands, and exploring interesting phenomena in Co-based kagome materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04863v1-abstract-full').style.display = 'none'; document.getElementById('2405.04863v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 main pages + 17 Supplementary pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 043132 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13405">arXiv:2404.13405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13405">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Field-free switching of perpendicular magnetization by cooperation of planar Hall and orbital Hall effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bekele%2C+Z+A">Zelalem Abebe Bekele</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yuan-Yuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+K">Kun Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+X">Xiukai Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiangyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H">Hui Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaiyou Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13405v1-abstract-short" style="display: inline;"> Spin-orbit torques (SOTs) generated through the conventional spin Hall effect and/or Rashba-Edelstein effect are promising for manipulating magnetization. However, this approach typically exhibits non-deterministic and inefficient behaviour when it comes to switching perpendicular ferromagnets. This limitation posed a challenge for write-in operations in high-density magnetic memory devices. Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13405v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13405v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13405v1-abstract-full" style="display: none;"> Spin-orbit torques (SOTs) generated through the conventional spin Hall effect and/or Rashba-Edelstein effect are promising for manipulating magnetization. However, this approach typically exhibits non-deterministic and inefficient behaviour when it comes to switching perpendicular ferromagnets. This limitation posed a challenge for write-in operations in high-density magnetic memory devices. Here, we determine an effective solution to overcome this challenge by simultaneously leveraging both a planar Hall effect (PHE) and an orbital Hall effect (OHE). Using a representative Co/PtGd/Mo trilayer SOT device, we demonstrate that the PHE of Co is enhanced by the interfacial coupling of Co/PtGd, giving rise to a finite out-of-plane damping-like torque within the Co layer. Simultaneously, the OHE in Mo layer induces a strong out-of-plane orbital current, significantly amplifying the in-plane damping-like torque through orbital-to-spin conversion. While either the PHE or OHE alone proves insufficient for reversing the perpendicular magnetization of Co, their collaborative action enables high-efficiency field-free deterministic switching. Our work provides a straightforward strategy to realize high-speed and low-power spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13405v1-abstract-full').style.display = 'none'; document.getElementById('2404.13405v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures, submitted to Nat. Commun</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00877">arXiv:2404.00877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00877">pdf</a>, <a href="https://arxiv.org/format/2404.00877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Building up quantum spacetimes with BCFT Legos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yikun Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00877v1-abstract-short" style="display: inline;"> Is it possible to read off the quantum gravity dual of a CFT directly from its operator algebra? In this essay, we present a step-by-step recipe synthesizing results and techniques from conformal bootstrap, topological symmetries, tensor networks, a novel symmetry-preserving real-space renormalization algorithm devised originally in lattice models, and the asymptotics of quantum $6j$ symbols, ther&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00877v1-abstract-full').style.display = 'inline'; document.getElementById('2404.00877v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00877v1-abstract-full" style="display: none;"> Is it possible to read off the quantum gravity dual of a CFT directly from its operator algebra? In this essay, we present a step-by-step recipe synthesizing results and techniques from conformal bootstrap, topological symmetries, tensor networks, a novel symmetry-preserving real-space renormalization algorithm devised originally in lattice models, and the asymptotics of quantum $6j$ symbols, thereby providing an answer in the affirmative. Quantum 2D Liouville theory serves as a simple and explicit example, illustrating how the quantum gravitational path integral can be built up from local pieces of BCFT correlation functions, which we call the ``BCFT Legos&#39;&#39;. The constructive map between gravity and CFT naturally and explicitly bridges local geometrical data, algebraic structures, and quantum entanglement, as envisaged by the $\it{It \, from \, Qubit}$ motto. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00877v1-abstract-full').style.display = 'none'; document.getElementById('2404.00877v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, expanded version of essay written for the Gravity Research Foundation 2024 Awards for Essays on Gravitation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18964">arXiv:2403.18964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.18964">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Chirality-Induced Magnet-Free Spin Generation in a Semiconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tianhan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adhikari%2C+Y">Yuwaraj Adhikari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yiyang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hua%2C+Z">Zhenqi Hua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Haoyang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlottmann%2C+P">Pedro Schlottmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hanwei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weiss%2C+P+S">Paul S. Weiss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jianhua Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+P">Peng Xiong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18964v1-abstract-short" style="display: inline;"> Electrical generation and transduction of polarized electron spins in semiconductors are of central interest in spintronics and quantum information science. While spin generation in semiconductors has been frequently realized via electrical injection from a ferromagnet, there are significant advantages in nonmagnetic pathways of creating spin polarization. One such pathway exploits the interplay o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18964v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18964v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18964v1-abstract-full" style="display: none;"> Electrical generation and transduction of polarized electron spins in semiconductors are of central interest in spintronics and quantum information science. While spin generation in semiconductors has been frequently realized via electrical injection from a ferromagnet, there are significant advantages in nonmagnetic pathways of creating spin polarization. One such pathway exploits the interplay of electron spin with chirality in electronic structures or real space. Here, utilizing chirality-induced spin selectivity (CISS), we demonstrate efficient creation of spin accumulation in n-doped GaAs via electric current injection from a normal metal (Au) electrode through a self-assembled monolayer of chiral molecules (伪-helix L-polyalanine, AHPA-L). The resulting spin polarization is detected as a Hanle effect in the n-GaAs, which is found to obey a distinct universal scaling with temperature and bias current consistent with chirality-induced spin accumulation. The experiment constitutes a definitive observation of CISS in a fully nonmagnetic device structure and demonstration of its ability to generate spin accumulation in a conventional semiconductor. The results thus place key constraints on the physical mechanism of CISS and present a new scheme for magnet-free semiconductor spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18964v1-abstract-full').style.display = 'none'; document.getElementById('2403.18964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10785">arXiv:2403.10785</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.10785">pdf</a>, <a href="https://arxiv.org/format/2403.10785">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergent $D_8^{(1)}$ spectrum and topological soliton excitation in CoNb$_2$O$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+N">Ning Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yunjing Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yunfeng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jianda Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10785v1-abstract-short" style="display: inline;"> Quantum integrability emerging near a quantum critical point (QCP) is manifested by exotic excitation spectrum that is organized by the associated algebraic structure. A well known example is the emergent $E_8$ integrability near the QCP of a transverse field Ising chain (TFIC), which was long predicted theoretically and initially proposed to be realized in the quasi-one-dimensional (q1D) quantum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10785v1-abstract-full').style.display = 'inline'; document.getElementById('2403.10785v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10785v1-abstract-full" style="display: none;"> Quantum integrability emerging near a quantum critical point (QCP) is manifested by exotic excitation spectrum that is organized by the associated algebraic structure. A well known example is the emergent $E_8$ integrability near the QCP of a transverse field Ising chain (TFIC), which was long predicted theoretically and initially proposed to be realized in the quasi-one-dimensional (q1D) quantum magnet CoNb$_2$O$_6$. However, later measurements on the spin excitation spectrum of this material revealed a series of satellite peaks that cannot be described by the $E_8$ Lie algebra. Motivated by these experimental progresses, we hereby revisit the spin excitations of CoNb$_2$O$_6$ by combining numerical calculation and analytical analysis. We show that, as effects of strong interchain fluctuations, the spectrum of the system near the 1D QCP is characterized by the $D_{8}^{(1)}$ Lie algebra with robust topological soliton excitation. We further show that the $D_{8}^{(1)}$ spectrum can be realized in a broad class of interacting quantum systems. Our results advance the exploration of integrability and manipulation of topological excitations in quantum critical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10785v1-abstract-full').style.display = 'none'; document.getElementById('2403.10785v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures - Supplementary Material 5 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07551">arXiv:2403.07551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07551">pdf</a>, <a href="https://arxiv.org/format/2403.07551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Isolated nearly flat higher Chern band in monolayer transition metal trihalides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+K">Kejie Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Huan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiaxuan Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yadong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Haosheng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jing Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07551v2-abstract-short" style="display: inline;"> The interplay between non-trivial topology and strong electron interaction can generate a variety of exotic quantum matter. Here we theoretically propose that monolayer transition metal trihalides MoF$_3$ and W$X_3$ ($X$= Cl, Br, I) have isolated nearly flat band near the Fermi level with higher Chern number $\mathcal{C}=+3$ and $\mathcal{C}=-2$, respectively. The nontrivial topology of these flat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07551v2-abstract-full').style.display = 'inline'; document.getElementById('2403.07551v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07551v2-abstract-full" style="display: none;"> The interplay between non-trivial topology and strong electron interaction can generate a variety of exotic quantum matter. Here we theoretically propose that monolayer transition metal trihalides MoF$_3$ and W$X_3$ ($X$= Cl, Br, I) have isolated nearly flat band near the Fermi level with higher Chern number $\mathcal{C}=+3$ and $\mathcal{C}=-2$, respectively. The nontrivial topology of these flat Chern bands originates from the effective $sd^2$ hybridization of transition metal atom, which transform the apparent atomic $d$ orbitals on a hexagonal lattice into $(s, p_+, p_-)$ orbitals on a triangular lattice. Interestingly, the quantum geometry of flat Chern bands in these materials are comparable with those in moir茅 systems exhibiting fractional Chern insulator state. The Hofstadter butterfly of such flat Chern bands are further studied. These natural materials, if realized experimentally, could offer new platforms to explore correlated phenomena driven by flat Chern band with higher Chern number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07551v2-abstract-full').style.display = 'none'; document.getElementById('2403.07551v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06304">arXiv:2403.06304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06304">pdf</a>, <a href="https://arxiv.org/format/2403.06304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.205111">10.1103/PhysRevB.110.205111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid-order topology in unconventional magnets of Eu-based Zintl compounds with surface-dependent quantum geometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yufei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yiyang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bae%2C+H">Hyeonhu Bae</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+K">Kamal Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chao-Xing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06304v2-abstract-short" style="display: inline;"> The exploration of magnetic topological insulators is instrumental in exploring axion electrodynamics and intriguing transport phenomena, such as the quantum anomalous Hall effect. Here, we report that a family of magnetic compounds Eu$_{2n+1}$In$_{2}$(As,Sb)$_{2n+2}$ ($n=0,1,2$) exhibit both gapless Dirac surface states and chiral hinge modes. Such a hybrid-order topology hatches surface-dependen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06304v2-abstract-full').style.display = 'inline'; document.getElementById('2403.06304v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06304v2-abstract-full" style="display: none;"> The exploration of magnetic topological insulators is instrumental in exploring axion electrodynamics and intriguing transport phenomena, such as the quantum anomalous Hall effect. Here, we report that a family of magnetic compounds Eu$_{2n+1}$In$_{2}$(As,Sb)$_{2n+2}$ ($n=0,1,2$) exhibit both gapless Dirac surface states and chiral hinge modes. Such a hybrid-order topology hatches surface-dependent quantum geometry. By mapping the responses into real space, we demonstrate the existence of chiral hinge modes along the $c$ direction, which originate from the half-quantized anomalous Hall effect on two gapped $ac$/$bc$ facets due to Berry curvature, while the unpinned Dirac surface states on the gapless $ab$ facet generate an intrinsic nonlinear anomalous Hall effect due to the quantum metric. When Eu$_{3}$In$_{2}$As$_{4}$ is polarized to the ferromagnetic phase by an external magnetic field, it becomes an ideal Weyl semimetal with a single pair of type-I Weyl points and no extra Fermi pocket. Our work predicts rich topological states sensitive to magnetic structures, quantum geometry-induced transport and topological superconductivity if proximitized with a superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06304v2-abstract-full').style.display = 'none'; document.getElementById('2403.06304v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110.205111 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03179">arXiv:2403.03179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03179">pdf</a>, <a href="https://arxiv.org/format/2403.03179">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum 2D Liouville Path-Integral Is a Sum over Geometries in AdS$_3$ Einstein Gravity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yikun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lao%2C+B">Bing-Xin Lao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03179v2-abstract-short" style="display: inline;"> There is a renowned solution of the modular bootstrap that defines the UV complete quantum Liouville theory. We triangulate the path-integral of this Liouville CFT on any 2D surface $\mathcal{M}$, by proposing a shrinkable boundary condition for this special CFT that allows small holes to close, analogous to the proposal in rational CFTs [1-3]. This is essentially a tensor network that admits an i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03179v2-abstract-full').style.display = 'inline'; document.getElementById('2403.03179v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03179v2-abstract-full" style="display: none;"> There is a renowned solution of the modular bootstrap that defines the UV complete quantum Liouville theory. We triangulate the path-integral of this Liouville CFT on any 2D surface $\mathcal{M}$, by proposing a shrinkable boundary condition for this special CFT that allows small holes to close, analogous to the proposal in rational CFTs [1-3]. This is essentially a tensor network that admits an interpretation of a state-sum of a 3D topological theory constructed with quantum 6j symbols of $\mathcal{U}_q(SL(2,\mathbb{R}))$ with non-trivial boundary conditions, and it reduces to a sum over 3D geometries weighted by the Einstein-Hilbert action to leading order in large $c$. The boundary conditions of quantum Liouville theory specifies a very special sum over bulk geometries to faithfully reproduce the CFT path-integral. The triangulation coincides with producing a network of geodesics in the AdS bulk, which can be changed making use of the pentagon identity and orthogonality condition satisfied by the 6j symbols, and arranged into a precise holographic tensor network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03179v2-abstract-full').style.display = 'none'; document.getElementById('2403.03179v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures; v2 typos corrected and references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03043">arXiv:2403.03043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03043">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital torque switching in perpendicularly magnetized materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yuhe Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiali Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+C">Chang Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Ting Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+W">Wensi Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Cheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+L">Lujun Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenhong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yong Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03043v1-abstract-short" style="display: inline;"> The orbital Hall effect in light materials has attracted considerable attention for developing novel orbitronic devices. Here we investigate the orbital torque efficiency and demonstrate the switching of the perpendicularly magnetized materials through the orbital Hall material (OHM), i.e., Zirconium (Zr). The orbital torque efficiency of approximately 0.78 is achieved in the Zr OHM with the perpe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03043v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03043v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03043v1-abstract-full" style="display: none;"> The orbital Hall effect in light materials has attracted considerable attention for developing novel orbitronic devices. Here we investigate the orbital torque efficiency and demonstrate the switching of the perpendicularly magnetized materials through the orbital Hall material (OHM), i.e., Zirconium (Zr). The orbital torque efficiency of approximately 0.78 is achieved in the Zr OHM with the perpendicularly magnetized [Co/Pt]3 sample, which significantly surpasses that of the perpendicularly magnetized CoFeB/Gd/CoFeB sample (approximately 0.04). Such notable difference is attributed to the different spin-orbit correlation strength between the [Co/Pt]3 sample and the CoFeB/Gd/CoFeB sample, which has been confirmed through the theoretical calculations. Furthermore, the full magnetization switching of the [Co/Pt]3 sample with a switching current density of approximately 2.6x106 A/cm2 has been realized through Zr, which even outperforms that of the W spin Hall material. Our finding provides a guideline to understand orbital torque efficiency and paves the way to develop energy-efficient orbitronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03043v1-abstract-full').style.display = 'none'; document.getElementById('2403.03043v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11255">arXiv:2402.11255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11255">pdf</a>, <a href="https://arxiv.org/format/2402.11255">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity enhancement and particle-hole asymmetry: interplay with electron attraction in doped Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhi Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hong-Chen Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi-Fan Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11255v1-abstract-short" style="display: inline;"> The role of near-neighbor electron attraction $V$ in strongly correlated systems has been at the forefront of recent research of unconventional superconductivity. However, its implications in the doped Hubbard model on expansive systems remain predominantly unexplored. In this study, we employ the density-matrix renormalization group to examine its effect in the lightly doped $t$-$t&#39;$-Hubbard mode&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11255v1-abstract-full').style.display = 'inline'; document.getElementById('2402.11255v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11255v1-abstract-full" style="display: none;"> The role of near-neighbor electron attraction $V$ in strongly correlated systems has been at the forefront of recent research of unconventional superconductivity. However, its implications in the doped Hubbard model on expansive systems remain predominantly unexplored. In this study, we employ the density-matrix renormalization group to examine its effect in the lightly doped $t$-$t&#39;$-Hubbard model on six-leg square cylinders, where $t$ and $t&#39;$ are the first and second neighbor electron hopping amplitudes. For positive $t&#39;$ in the electron-doped case, our results show that the attractive $V$ can significantly enhance the superconducting correlations and drive the system into a pronounced superconducting phase when the attraction exceeds a modest value $V_c \approx 0.7t$. In contrast, in the hole-doped regime with negative $t&#39; $, while heightened superconducting correlations have also been observed in the charge stripe phase, the systems remain insulating with pronounced charge density wave order. Our results demonstrate the importance of the electron attraction in boosting superconductivity in broader doped Hubbard systems and highlight the asymmetry between the electron and hole-doped regimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11255v1-abstract-full').style.display = 'none'; document.getElementById('2402.11255v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11229">arXiv:2402.11229</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11229">pdf</a>, <a href="https://arxiv.org/format/2402.11229">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Spin dynamics and dark particle in a weak-coupled quantum Ising ladder with $\mathcal{D}_8^{(1)}$ spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yunjing Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+N">Ning Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yunfeng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jianda Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11229v1-abstract-short" style="display: inline;"> Emergent Ising$_h^2$ integrability is anticipated in a quantum Ising ladder composed of two weakly coupled, critical transverse field Ising chains. This integrable system is remarkable for including eight types of massive relativistic particles, with their scattering matrix and spectrum characterized by the $\mathcal{D}_8^{(1)}$ Lie algebra. In this article we delve into the zero-temperature spin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11229v1-abstract-full').style.display = 'inline'; document.getElementById('2402.11229v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11229v1-abstract-full" style="display: none;"> Emergent Ising$_h^2$ integrability is anticipated in a quantum Ising ladder composed of two weakly coupled, critical transverse field Ising chains. This integrable system is remarkable for including eight types of massive relativistic particles, with their scattering matrix and spectrum characterized by the $\mathcal{D}_8^{(1)}$ Lie algebra. In this article we delve into the zero-temperature spin dynamics of this integrable quantum Ising ladder. By computing the dynamical structure factors from analytical form factor approach, we clearly identify dispersive single-particle excitations of (anti-) soliton and breathers as well as their multi-particle continua in the spin dynamical spectrum. We show that the selection rule to the form factor, which is inherent in the intrinsic charge-parity $\mathcal{C}$ of the Ising$_h^2$ particles as well as the local spin operators, causes a significant result that $\mathcal{C}$-odd particles, termed as dark particles, cannot be directly excited from the ground state through any local or quasi-local operations. Furthermore, the lightest dark particle is proposed to be generated and controlled through resonant absorption-resonant emission processes. The long lifetime of dark particle suggests its potential as a stable qubit for advancing quantum information technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11229v1-abstract-full').style.display = 'none'; document.getElementById('2402.11229v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures - Supplementary Material 9 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08872">arXiv:2402.08872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08872">pdf</a>, <a href="https://arxiv.org/format/2402.08872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Slow-Wave Hybrid Magnonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jing Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+C">Changchun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+S">Shihao Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+C">Chen Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pishehvar%2C+A">Amin Pishehvar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+D">Dafei Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jornet%2C+J+M">Josep M. Jornet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhen%2C+B">Bo Zhen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiamian Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xufeng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08872v1-abstract-short" style="display: inline;"> Cavity magnonics is an emerging research area focusing on the coupling between magnons and photons. Despite its great potential for coherent information processing, it has been long restricted by the narrow interaction bandwidth. In this work, we theoretically propose and experimentally demonstrate a novel approach to achieve broadband photon-magnon coupling by adopting slow waves on engineered mi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08872v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08872v1-abstract-full" style="display: none;"> Cavity magnonics is an emerging research area focusing on the coupling between magnons and photons. Despite its great potential for coherent information processing, it has been long restricted by the narrow interaction bandwidth. In this work, we theoretically propose and experimentally demonstrate a novel approach to achieve broadband photon-magnon coupling by adopting slow waves on engineered microwave waveguides. To the best of our knowledge, this is the first time that slow wave is combined with hybrid magnonics. Its unique properties promise great potentials for both fundamental research and practical applications, for instance, by deepening our understanding of the light-matter interaction in the slow wave regime and providing high-efficiency spin wave transducers. The device concept can be extended to other systems such as optomagnonics and magnomechanics, opening up new directions for hybrid magnonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08872v1-abstract-full').style.display = 'none'; document.getElementById('2402.08872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.05456">arXiv:2402.05456</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.05456">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Quantum Melting of a Disordered Wigner Solid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Z">Ziyu Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hongyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+J">Jianghan Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naik%2C+M+H">Mit H. Naik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+Z">Zhehao Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Z">Zehao He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Sudi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+J">Jiahui Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yifan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sailus%2C+R">Renee Sailus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+R">Rounak Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tongay%2C+S">Sefaattin Tongay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louie%2C+S+G">Steven G. Louie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crommie%2C+M+F">Michael F. Crommie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.05456v1-abstract-short" style="display: inline;"> The behavior of two-dimensional electron gas (2DEG) in extreme coupling limits are reasonably well-understood, but our understanding of intermediate region remains limited. Strongly interacting electrons crystalize into a solid phase known as the Wigner crystal at very low densities, and these evolve to a Fermi liquid at high densities. At intermediate densities, however, where the Wigner crystal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05456v1-abstract-full').style.display = 'inline'; document.getElementById('2402.05456v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.05456v1-abstract-full" style="display: none;"> The behavior of two-dimensional electron gas (2DEG) in extreme coupling limits are reasonably well-understood, but our understanding of intermediate region remains limited. Strongly interacting electrons crystalize into a solid phase known as the Wigner crystal at very low densities, and these evolve to a Fermi liquid at high densities. At intermediate densities, however, where the Wigner crystal melts into a strongly correlated electron fluid that is poorly understood partly due to a lack of microscopic probes for delicate quantum phases. Here we report the first imaging of a disordered Wigner solid and its quantum densification and quantum melting behavior in a bilayer MoSe2 using a non-invasive scanning tunneling microscopy (STM) technique. We observe a Wigner solid with nanocrystalline domains pinned by local disorder at low hole densities. With slightly increasing electrostatic gate voltages, the holes are added quantum mechanically during the densification of the disordered Wigner solid. As the hole density is increased above a threshold (p ~ 5.7 * 10e12 (cm-2)), the Wigner solid is observed to melt locally and create a mixed phase where solid and liquid regions coexist. With increasing density, the liquid regions gradually expand and form an apparent percolation network. Local solid domains appear to be pinned and stabilized by local disorder over a range of densities. Our observations are consistent with a microemulsion picture of Wigner solid quantum melting where solid and liquid domains emerge spontaneously and solid domains are pinned by local disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.05456v1-abstract-full').style.display = 'none'; document.getElementById('2402.05456v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02341">arXiv:2402.02341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.02341">pdf</a>, <a href="https://arxiv.org/format/2402.02341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Untangle charge-order dependent bulk states from surface effects in a topological kagome metal ScV$_6$Sn$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+S">Sen Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C">Changjiang Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roychowdhury%2C+S">Subhajit Roychowdhury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yilmaz%2C+T">Turgut Yilmaz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Alexei Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chandra%2C+S">Shekhar Chandra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02341v1-abstract-short" style="display: inline;"> Kagome metals with charge density wave (CDW) order exhibit a broad spectrum of intriguing quantum phenomena. The recent discovery of the novel kagome CDW compound ScV$_6$Sn$_6$ has spurred significant interest. However, understanding the interplay between CDW and the bulk electronic structure has been obscured by a profusion of surface states and terminations in this quantum material. Here, we emp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02341v1-abstract-full').style.display = 'inline'; document.getElementById('2402.02341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02341v1-abstract-full" style="display: none;"> Kagome metals with charge density wave (CDW) order exhibit a broad spectrum of intriguing quantum phenomena. The recent discovery of the novel kagome CDW compound ScV$_6$Sn$_6$ has spurred significant interest. However, understanding the interplay between CDW and the bulk electronic structure has been obscured by a profusion of surface states and terminations in this quantum material. Here, we employ photoemission spectroscopy and potassium dosing to elucidate the complete bulk band structure of ScV$_6$Sn$_6$, revealing multiple van Hove singularities near the Fermi level. We surprisingly discover a robust spin-polarized topological Dirac surface resonance state at the M point within the two-fold van Hove singularities. Assisted by the first-principle calculations, the temperature dependence of the $k_z$- resolved ARPES spectrum provides unequivocal evidence for the proposed $\sqrt{3}$$\times$$\sqrt{3}$$\times3$ charge order over other candidates. Our work not only enhances the understanding of the CDW-dependent bulk and surface states in ScV$_6$Sn$_6$ but also establishes an essential foundation for potential manipulation of the CDW order in kagome materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02341v1-abstract-full').style.display = 'none'; document.getElementById('2402.02341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in PRB</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17713">arXiv:2401.17713</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17713">pdf</a>, <a href="https://arxiv.org/format/2401.17713">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.7566/JPSJ.93.033703">10.7566/JPSJ.93.033703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher-order topology in honeycomb lattice with Y-Kekul茅 distortions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yong-Cheng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kariyado%2C+T">Toshikaze Kariyado</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xiao Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17713v1-abstract-short" style="display: inline;"> We investigate higher-order topological states in honeycomb lattice with Y-Kekul茅 distortions that preserve $C_{6v}$ crystalline symmetry. The gapped states in expanded and shrunken distortions are adiabatically connected to isolated hexamers and Y-shaped tetramer states, respectively, where the former possesses nontrivial higher-order topology characterized by a $\mathbb{Z}_6$ invariant. Topologi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17713v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17713v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17713v1-abstract-full" style="display: none;"> We investigate higher-order topological states in honeycomb lattice with Y-Kekul茅 distortions that preserve $C_{6v}$ crystalline symmetry. The gapped states in expanded and shrunken distortions are adiabatically connected to isolated hexamers and Y-shaped tetramer states, respectively, where the former possesses nontrivial higher-order topology characterized by a $\mathbb{Z}_6$ invariant. Topological corner states exist in a flake structure with expanded distortion where the hexamers are broken at the corners. Our work reveals that honeycomb lattice with Y-Kekul茅 distortions serves as a promising platform to study higher-order topological states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17713v1-abstract-full').style.display = 'none'; document.getElementById('2401.17713v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Soc. Jpn. 93, 033703 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14547">arXiv:2401.14547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.14547">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a Topological Charge Density Wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Songbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guin%2C+S+N">Satya N. Guin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14547v1-abstract-short" style="display: inline;"> Charge density waves (CDWs) appear in numerous condensed matter platforms, ranging from high-Tc superconductors to quantum Hall systems. Despite such ubiquity, there has been a lack of direct experimental study on boundary states that can uniquely stem from the charge order. Here, using scanning tunneling microscopy, we directly visualize the bulk and boundary phenomenology of CDW in a topological&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14547v1-abstract-full').style.display = 'inline'; document.getElementById('2401.14547v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14547v1-abstract-full" style="display: none;"> Charge density waves (CDWs) appear in numerous condensed matter platforms, ranging from high-Tc superconductors to quantum Hall systems. Despite such ubiquity, there has been a lack of direct experimental study on boundary states that can uniquely stem from the charge order. Here, using scanning tunneling microscopy, we directly visualize the bulk and boundary phenomenology of CDW in a topological material, Ta2Se8I. Below the transition temperature (TCDW = 260 K), tunneling spectra on an atomically resolved lattice reveal a large insulating gap in the bulk and on the surface, exceeding 500 meV, surpassing predictions from standard weakly-coupled mean-field theory. Spectroscopic imaging confirms the presence of CDW, with LDOS maxima at the conduction band corresponding to the LDOS minima at the valence band, thus revealing a 蟺 phase difference in the respective CDW order. Concomitantly, at a monolayer step edge, we detect an in-gap boundary mode with modulations along the edge that match the CDW wavevector along the edge. Intriguingly, the phase of the edge state modulation shifts by 蟺 within the charge order gap, connecting the fully gapped bulk (and surface) conduction and valence bands via a smooth energy-phase relation. This bears similarity to the topological spectral flow of edge modes, where the boundary modes bridge the gapped bulk modes in energy and momentum magnitude but in Ta2Se8I, the connectivity distinctly occurs in energy and momentum phase. Notably, our temperature-dependent measurements indicate a vanishing of the insulating gap and the in-gap edge state above TCDW, suggesting their direct relation to CDW. The theoretical analysis also indicates that the observed boundary mode is topological and linked to CDW. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14547v1-abstract-full').style.display = 'none'; document.getElementById('2401.14547v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Physics (2024); in press</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10