CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 153 results for author: <span class="mathjax">Jiang, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Jiang%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Jiang, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Jiang%2C+L&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Jiang, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jiang%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+L&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+L&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01955">arXiv:2410.01955</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01955">pdf</a>, <a href="https://arxiv.org/format/2410.01955">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Quantum-data-driven dynamical transition in quantum learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bingzhi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+Q">Quntao Zhuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01955v1-abstract-short" style="display: inline;"> Quantum circuits are an essential ingredient of quantum information processing. Parameterized quantum circuits optimized under a specific cost function -- quantum neural networks (QNNs) -- provide a paradigm for achieving quantum advantage in the near term. Understanding QNN training dynamics is crucial for optimizing their performance. In terms of supervised learning tasks such as classification&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01955v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01955v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01955v1-abstract-full" style="display: none;"> Quantum circuits are an essential ingredient of quantum information processing. Parameterized quantum circuits optimized under a specific cost function -- quantum neural networks (QNNs) -- provide a paradigm for achieving quantum advantage in the near term. Understanding QNN training dynamics is crucial for optimizing their performance. In terms of supervised learning tasks such as classification and regression for large datasets, the role of quantum data in QNN training dynamics remains unclear. We reveal a quantum-data-driven dynamical transition, where the target value and data determine the polynomial or exponential convergence of the training. We analytically derive the complete classification of fixed points from the dynamical equation and reveal a comprehensive `phase diagram&#39; featuring seven distinct dynamics. These dynamics originate from a bifurcation transition with multiple codimensions induced by training data, extending the transcritical bifurcation in simple optimization tasks. Furthermore, perturbative analyses identify an exponential convergence class and a polynomial convergence class among the seven dynamics. We provide a non-perturbative theory to explain the transition via generalized restricted Haar ensemble. The analytical results are confirmed with numerical simulations of QNN training and experimental verification on IBM quantum devices. As the QNN training dynamics is determined by the choice of the target value, our findings provide guidance on constructing the cost function to optimize the speed of convergence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01955v1-abstract-full').style.display = 'none'; document.getElementById('2410.01955v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14+30 pages, 25 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03415">arXiv:2409.03415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03415">pdf</a>, <a href="https://arxiv.org/format/2409.03415">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic spin filtering by an altermagnetic barrier in magnetic tunnel junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+B">Boyuan Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Leina Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yu Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+C">Caihua Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03415v1-abstract-short" style="display: inline;"> The spin filtering effect, distinct decaying lengths experienced by oppositely spin-polarized electrons in a magnetic barrier, generally occurs in ferromagnetic (FM) insulators or semiconductors. With the rise of altermagnetic (ALM) materials which exhibit similar capability of spin-polarizing electrons with ferromagnets, it is a nature question whether the ALM insulators or semiconductors can als&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03415v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03415v1-abstract-full" style="display: none;"> The spin filtering effect, distinct decaying lengths experienced by oppositely spin-polarized electrons in a magnetic barrier, generally occurs in ferromagnetic (FM) insulators or semiconductors. With the rise of altermagnetic (ALM) materials which exhibit similar capability of spin-polarizing electrons with ferromagnets, it is a nature question whether the ALM insulators or semiconductors can also act as unique barriers for the spin splitting effect. Here, through first-principles calculations, we investigated the complex band structure of the ALM insulator FeF$_2$ and found that it possesses an anisotropic spin filtering effect: along the [001] direction of FeF$_2$, a current remains spin-neutral but has locally nonvanishing spin polarizations in the momentum space; moreover, along the [110] direction of FeF$_2$, a current will be globally spin-polarized by different attenuation lengths of oppositely spin-polarized electrons. Leveraging this anisotropic spin filtering effect, we designed two types of MTJs with the ALM barrier: ALM electrode/ALM insulator barrier/non-magnetic (NM) electrode and FM electrode/ALM insulator barrier/NM electrode, using RuO$_2$(001)/FeF$_2$/IrO$_2$ and CrO$_2$(110)/FeF$_2$/IrO$_2$ as the corresponding prototypes, respectively. We found that these two proposed MTJs exhibited the tunneling magnetoresistance (TMR) ratios of 216\% and 3956\%, by matching the conduction channels of the electrodes and the spin-resolved lowest decay rate of the barrier in the momentum space. Our work deepens and generalizes understanding toward the spin filtering effect for the rising ALM insulators and semiconductors, and broadens applications of the AFM spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03415v1-abstract-full').style.display = 'none'; document.getElementById('2409.03415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19690">arXiv:2407.19690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.19690">pdf</a>, <a href="https://arxiv.org/format/2407.19690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Synthetic monopole with half-integer magnetic charge in Bose-Einstein condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xi-Yu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lijia Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+W">Wen-Kai Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+T">Tao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+J">Jun-Hui Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19690v1-abstract-short" style="display: inline;"> We propose a scheme to create monopoles with half-integer magnetic charges in a spinful cold atom system. With a minimal monopole in the center, we derive the ground-state single-vortex wave function on the sphere and develop the vortex&#39;s kinematic equation in the presence of an external electromagnetic field. The vortex&#39;s trajectory is generally depicted by the precession of the system. We furthe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19690v1-abstract-full').style.display = 'inline'; document.getElementById('2407.19690v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19690v1-abstract-full" style="display: none;"> We propose a scheme to create monopoles with half-integer magnetic charges in a spinful cold atom system. With a minimal monopole in the center, we derive the ground-state single-vortex wave function on the sphere and develop the vortex&#39;s kinematic equation in the presence of an external electromagnetic field. The vortex&#39;s trajectory is generally depicted by the precession of the system. We further formulate the inter-vortex interaction and build up a theory of multi-vortex dynamics in high-charge monopole systems. We predict the vortices&#39;trajectory in the bi-vortex system and figure out stable vortex (line) patterns in multi-vortex systems. Our study provides deep insights into properties of magnetic monopoles and vortices and paves the way for experimental verification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19690v1-abstract-full').style.display = 'none'; document.getElementById('2407.19690v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+2+3 pages, 4+1 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06975">arXiv:2407.06975</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06975">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0216021">10.1063/5.0216021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimization of noncollinear magnetic ordering temperature in Y-type hexaferrite by machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yonghong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Linfeng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Long Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yugang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xueliang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+Y">Yisheng Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoyuan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zizhen Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06975v1-abstract-short" style="display: inline;"> Searching the optimal doping compositions of the Y-type hexaferrite Ba2Mg2Fe12O22 remains a long-standing challenge for enhanced non-collinear magnetic transition temperature (TNC). Instead of the conventional trial-and-error approach, the composition-property descriptor is established via a data driven machine learning method named SISSO (sure independence screening and sparsifying operator). Bas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06975v1-abstract-full').style.display = 'inline'; document.getElementById('2407.06975v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06975v1-abstract-full" style="display: none;"> Searching the optimal doping compositions of the Y-type hexaferrite Ba2Mg2Fe12O22 remains a long-standing challenge for enhanced non-collinear magnetic transition temperature (TNC). Instead of the conventional trial-and-error approach, the composition-property descriptor is established via a data driven machine learning method named SISSO (sure independence screening and sparsifying operator). Based on the chosen efficient and physically interpretable descriptor, a series of Y-type hexaferrite compositions are predicted to hold high TNC, among which the BaSrMg0.28Co1.72Fe10Al2O22 is then experimentally validated. Test results indicate that, under appropriate external magnetic field conditions, the TNC of this composition reaches up to reaches up to 568 K, and its magnetic transition temperature is also elevated to 735 K. This work offers a machine learning-based route to develop room temperature single phase multiferroics for device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06975v1-abstract-full').style.display = 'none'; document.getElementById('2407.06975v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by Applied Physics Letters in 2024</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 125, 032903 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13203">arXiv:2406.13203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13203">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41524-024-01380-w">10.1038/s41524-024-01380-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical phase-field model of cavity electromagnonic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+S">Shihao Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yujie Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+C">Changchun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xufeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jia-Mian Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13203v2-abstract-short" style="display: inline;"> Cavity electromagnonic system, which simultaneously consists of cavities for photons, magnons (quanta of spin waves), and acoustic phonons, provides an exciting platform to achieve coherent energy transduction among different physical systems down to single quantum level. Here we report a dynamical phase-field model that allows simulating the coupled dynamics of the electromagnetic waves, magnetiz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13203v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13203v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13203v2-abstract-full" style="display: none;"> Cavity electromagnonic system, which simultaneously consists of cavities for photons, magnons (quanta of spin waves), and acoustic phonons, provides an exciting platform to achieve coherent energy transduction among different physical systems down to single quantum level. Here we report a dynamical phase-field model that allows simulating the coupled dynamics of the electromagnetic waves, magnetization, and strain in 3D multiphase systems. As examples of application, we computationally demonstrate the excitation of hybrid magnon-photon modes (magnon polaritons), Floquet-induced magnonic Aulter-Townes splitting, dynamical energy exchange (Rabi oscillation) and relative phase control (Ramsey interference) between the two magnon polariton modes. The simulation results are consistent with analytical calculations based on Floquet Hamiltonian theory. Simulations are also performed to design a cavity electro-magno-mechanical system that enables the triple phonon-magnon-photon resonance, where the resonant excitation of a chiral, fundamental (n=1) transverse acoustic phonon mode by magnon polaritons is demonstrated. With the capability to predict coupling strength, dissipation rates, and temporal evolution of photon/magnon/phonon mode profiles using fundamental materials parameters as the inputs, the present dynamical phase-field model represents a valuable computational tool to guide the fabrication of the cavity electromagnonic system and the design of operating conditions for applications in quantum sensing, transduction, and communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13203v2-abstract-full').style.display = 'none'; document.getElementById('2406.13203v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05671">arXiv:2405.05671</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.05671">pdf</a>, <a href="https://arxiv.org/format/2405.05671">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-correcting GKP qubit and gates in a driven-dissipative circuit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nathan%2C+F">Frederik Nathan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Brien%2C+L">Liam O&#39;Brien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noh%2C+K">Kyungjoo Noh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matheny%2C+M+H">Matthew H. Matheny</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grimsmo%2C+A+L">Arne L. Grimsmo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Refael%2C+G">Gil Refael</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05671v1-abstract-short" style="display: inline;"> We propose a circuit architecture for a dissipatively error-corrected GKP qubit. The device consists of a high-impedance LC circuit coupled to a Josephson junction and a resistor via a controllable switch. When the switch is activated via a particular family of stepwise protocols, the resistor absorbs all noise-induced entropy, resulting in dissipative error correction of both phase and amplitude&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05671v1-abstract-full').style.display = 'inline'; document.getElementById('2405.05671v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05671v1-abstract-full" style="display: none;"> We propose a circuit architecture for a dissipatively error-corrected GKP qubit. The device consists of a high-impedance LC circuit coupled to a Josephson junction and a resistor via a controllable switch. When the switch is activated via a particular family of stepwise protocols, the resistor absorbs all noise-induced entropy, resulting in dissipative error correction of both phase and amplitude errors. This leads to an exponential increase of qubit lifetime, reaching beyond 10ms in simulations with near-feasible parameters. We show that the lifetime remains exponentially long in the presence of extrinsic noise and device/control imperfections (e.g., due to parasitics and finite control bandwidth) under specific thresholds. In this regime, lifetime is likely only limited by phase slips and quasiparticle tunneling. We show that the qubit can be read out and initialized via measurement of the supercurrent in the Josephson junction. We finally show that the qubit supports native self-correcting single-qubit Clifford gates, where dissipative error-correction of control noise leads to exponential suppression of gate infidelity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05671v1-abstract-full').style.display = 'none'; document.getElementById('2405.05671v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages + 8 figures in the main text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.14145">arXiv:2403.14145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.14145">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-024-01775-2">10.1038/s41565-024-01775-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Construction of topological quantum magnets from atomic spins on surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+P">Peng Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jing Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lili Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lado%2C+J+L">Jose L. Lado</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+K">Kai Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.14145v2-abstract-short" style="display: inline;"> Artificial quantum systems have emerged as indispensable platforms to realize exotic topological matter in a well-controlled manner. Here, we demonstrate topological quantum Heisenberg spin lattices, engineered with spin chains and two-dimensional spin arrays using spin 1/2 atoms on insulating films in a scanning tunnelling microscope (STM). We engineered with atomic precision both topological and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14145v2-abstract-full').style.display = 'inline'; document.getElementById('2403.14145v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.14145v2-abstract-full" style="display: none;"> Artificial quantum systems have emerged as indispensable platforms to realize exotic topological matter in a well-controlled manner. Here, we demonstrate topological quantum Heisenberg spin lattices, engineered with spin chains and two-dimensional spin arrays using spin 1/2 atoms on insulating films in a scanning tunnelling microscope (STM). We engineered with atomic precision both topological and trivial phases of the quantum spin model, realizing first- and second-order topological quantum magnets. Their many-body excitations were probed by single-atom electron spin resonance with ultrahigh energy resolution. The atomically-localized magnetic field of the STM tip allows us to directly visualize various topological bound modes including topological edge states, topological defects, and higher-order corner modes. Our results provide an important bottom-up approach to simulating exotic quantum many-body phases of interacting spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14145v2-abstract-full').style.display = 'none'; document.getElementById('2403.14145v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Nanotechnology (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18548">arXiv:2402.18548</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18548">pdf</a>, <a href="https://arxiv.org/format/2402.18548">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.200402">10.1103/PhysRevLett.133.200402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal Spreading of Conditional Mutual Information in Noisy Random Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Su-un Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oh%2C+C">Changhun Oh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+Y">Yat Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Senrui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18548v3-abstract-short" style="display: inline;"> We study the evolution of conditional mutual information in generic open quantum systems, focusing on one-dimensional random circuits with interspersed local noise. Unlike in noiseless circuits, where conditional mutual information spreads linearly while being bounded by the lightcone, we find that noisy random circuits with an error rate $p$ exhibit superlinear propagation of conditional mutual i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18548v3-abstract-full').style.display = 'inline'; document.getElementById('2402.18548v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18548v3-abstract-full" style="display: none;"> We study the evolution of conditional mutual information in generic open quantum systems, focusing on one-dimensional random circuits with interspersed local noise. Unlike in noiseless circuits, where conditional mutual information spreads linearly while being bounded by the lightcone, we find that noisy random circuits with an error rate $p$ exhibit superlinear propagation of conditional mutual information, which diverges far beyond the lightcone at a critical circuit depth $t_c \propto p^{-1}$. We demonstrate that the underlying mechanism for such rapid spreading is the combined effect of local noise and a scrambling unitary, which selectively removes short-range correlations while preserving long-range correlations. To analytically capture the dynamics of conditional mutual information in noisy random circuits, we introduce a coarse-graining method, and we validate our theoretical results through numerical simulations. Furthermore, we identify a universal scaling law governing the spreading of conditional mutual information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18548v3-abstract-full').style.display = 'none'; document.getElementById('2402.18548v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08872">arXiv:2402.08872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.08872">pdf</a>, <a href="https://arxiv.org/format/2402.08872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Slow-Wave Hybrid Magnonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jing Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+C">Changchun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+S">Shihao Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+C">Chen Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pishehvar%2C+A">Amin Pishehvar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+D">Dafei Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jornet%2C+J+M">Josep M. Jornet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhen%2C+B">Bo Zhen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiamian Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xufeng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08872v1-abstract-short" style="display: inline;"> Cavity magnonics is an emerging research area focusing on the coupling between magnons and photons. Despite its great potential for coherent information processing, it has been long restricted by the narrow interaction bandwidth. In this work, we theoretically propose and experimentally demonstrate a novel approach to achieve broadband photon-magnon coupling by adopting slow waves on engineered mi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08872v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08872v1-abstract-full" style="display: none;"> Cavity magnonics is an emerging research area focusing on the coupling between magnons and photons. Despite its great potential for coherent information processing, it has been long restricted by the narrow interaction bandwidth. In this work, we theoretically propose and experimentally demonstrate a novel approach to achieve broadband photon-magnon coupling by adopting slow waves on engineered microwave waveguides. To the best of our knowledge, this is the first time that slow wave is combined with hybrid magnonics. Its unique properties promise great potentials for both fundamental research and practical applications, for instance, by deepening our understanding of the light-matter interaction in the slow wave regime and providing high-efficiency spin wave transducers. The device concept can be extended to other systems such as optomagnonics and magnomechanics, opening up new directions for hybrid magnonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08872v1-abstract-full').style.display = 'none'; document.getElementById('2402.08872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09733">arXiv:2312.09733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.09733">pdf</a>, <a href="https://arxiv.org/format/2312.09733">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.future.2024.04.060">10.1016/j.future.2024.04.060 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-centric Supercomputing for Materials Science: A Perspective on Challenges and Future Directions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Alexeev%2C+Y">Yuri Alexeev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amsler%2C+M">Maximilian Amsler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baity%2C+P">Paul Baity</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barroca%2C+M+A">Marco Antonio Barroca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bassini%2C+S">Sanzio Bassini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Battelle%2C+T">Torey Battelle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Camps%2C+D">Daan Camps</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casanova%2C+D">David Casanova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+Y+J">Young Jai Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chong%2C+F+T">Frederic T. Chong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chung%2C+C">Charles Chung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Codella%2C+C">Chris Codella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Corcoles%2C+A+D">Antonio D. Corcoles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cruise%2C+J">James Cruise</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Meglio%2C+A">Alberto Di Meglio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dubois%2C+J">Jonathan Dubois</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duran%2C+I">Ivan Duran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eckl%2C+T">Thomas Eckl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Economou%2C+S">Sophia Economou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eidenbenz%2C+S">Stephan Eidenbenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elmegreen%2C+B">Bruce Elmegreen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fare%2C+C">Clyde Fare</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faro%2C+I">Ismael Faro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fern%C3%A1ndez%2C+C+S">Cristina Sanz Fern谩ndez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferreira%2C+R+N+B">Rodrigo Neumann Barros Ferreira</a> , et al. (102 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09733v3-abstract-short" style="display: inline;"> Computational models are an essential tool for the design, characterization, and discovery of novel materials. Hard computational tasks in materials science stretch the limits of existing high-performance supercomputing centers, consuming much of their simulation, analysis, and data resources. Quantum computing, on the other hand, is an emerging technology with the potential to accelerate many of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09733v3-abstract-full').style.display = 'inline'; document.getElementById('2312.09733v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09733v3-abstract-full" style="display: none;"> Computational models are an essential tool for the design, characterization, and discovery of novel materials. Hard computational tasks in materials science stretch the limits of existing high-performance supercomputing centers, consuming much of their simulation, analysis, and data resources. Quantum computing, on the other hand, is an emerging technology with the potential to accelerate many of the computational tasks needed for materials science. In order to do that, the quantum technology must interact with conventional high-performance computing in several ways: approximate results validation, identification of hard problems, and synergies in quantum-centric supercomputing. In this paper, we provide a perspective on how quantum-centric supercomputing can help address critical computational problems in materials science, the challenges to face in order to solve representative use cases, and new suggested directions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09733v3-abstract-full').style.display = 'none'; document.getElementById('2312.09733v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">65 pages, 15 figures; comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Future Generation Computer Systems, Volume 160, November 2024, Pages 666-710 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18144">arXiv:2311.18144</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18144">pdf</a>, <a href="https://arxiv.org/format/2311.18144">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53769-2">10.1038/s41467-024-53769-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical transition in controllable quantum neural networks with large depth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bingzhi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xiao-Chuan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+Q">Quntao Zhuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18144v2-abstract-short" style="display: inline;"> Understanding the training dynamics of quantum neural networks is a fundamental task in quantum information science with wide impact in physics, chemistry and machine learning. In this work, we show that the late-time training dynamics of quantum neural networks with a quadratic loss function can be described by the generalized Lotka-Volterra equations, which lead to a transcritical bifurcation tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18144v2-abstract-full').style.display = 'inline'; document.getElementById('2311.18144v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18144v2-abstract-full" style="display: none;"> Understanding the training dynamics of quantum neural networks is a fundamental task in quantum information science with wide impact in physics, chemistry and machine learning. In this work, we show that the late-time training dynamics of quantum neural networks with a quadratic loss function can be described by the generalized Lotka-Volterra equations, which lead to a transcritical bifurcation transition in the dynamics. When the targeted value of loss function crosses the minimum achievable value from above to below, the dynamics evolve from a frozen-kernel dynamics to a frozen-error dynamics, showing a duality between the quantum neural tangent kernel and the total error. In both regions, the convergence towards the fixed point is exponential, while at the critical point becomes polynomial. We provide a non-perturbative analytical theory to explain the transition via a restricted Haar ensemble at late time, when the output state approaches the steady state. Via mapping the Hessian to an effective Hamiltonian, we also identify a linearly vanishing gap at the transition point. Compared with the linear loss function, we show that a quadratic loss function within the frozen-error dynamics enables a speedup in the training convergence. The theory findings are verified experimentally on IBM quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18144v2-abstract-full').style.display = 'none'; document.getElementById('2311.18144v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11+45 pages, comments are welcomed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 9354 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11505">arXiv:2311.11505</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.11505">pdf</a>, <a href="https://arxiv.org/ps/2311.11505">ps</a>, <a href="https://arxiv.org/format/2311.11505">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Quantum-well resonances caused by partial confinement in MgO-based magnetic tunnel junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L+N">L. N. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+B+Y">B. Y. Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W+Z">W. Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X+F">X. F. Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11505v2-abstract-short" style="display: inline;"> Quantum-well resonance is achieved through partial confinement in magnetic tunnel junctions (MTJs), which provides an additional operable degree of freedom to regulate quantum-well levels. Using Al/Fe/MgO/Fe/Al and Ag/Al/Fe/MgO/Fe/Al/Ag MTJs as examples, via first-principles calculations, we demonstrate that the partial confinement of $螖_1$ electron at Al/Fe interface and the full confinement at F&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11505v2-abstract-full').style.display = 'inline'; document.getElementById('2311.11505v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11505v2-abstract-full" style="display: none;"> Quantum-well resonance is achieved through partial confinement in magnetic tunnel junctions (MTJs), which provides an additional operable degree of freedom to regulate quantum-well levels. Using Al/Fe/MgO/Fe/Al and Ag/Al/Fe/MgO/Fe/Al/Ag MTJs as examples, via first-principles calculations, we demonstrate that the partial confinement of $螖_1$ electron at Al/Fe interface and the full confinement at Fe/MgO interface combine to produce quantum-well resonances in Fe. The quantum-well levels of Fe can be periodically adjusted by two degrees of freedom: Fe and Al thickness. The oscillation period obtained from conductance $G_{\uparrow\uparrow}$ is 2.13 ML Fe (9 ML Al), close to 2.25 ML Fe (8.33 ML Al) calculated by bcc-Fe (fcc-Al) band. The combination of long and short periods enables quantum-well levels to be finely adjusted. An ultrahigh optimistic TMR effect of $3.05\times10$$^5$\% is achieved. Our results provides a new path for designing and applying quantum-well resonances in spintronics devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11505v2-abstract-full').style.display = 'none'; document.getElementById('2311.11505v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.20341">arXiv:2310.20341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.20341">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.mtphys.2023.101309">10.1016/j.mtphys.2023.101309 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signature of Topological Semimetal in Harmonic-honeycomb ReO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Yifeng Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Cui-Qun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hualei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+S">Shuang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Long Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuxuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zhongxiong Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hongliang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Ziyou Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhiqiang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+D">Dao-Xin Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Man-Rong Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.20341v2-abstract-short" style="display: inline;"> Transition-metal honeycomb compounds are capturing scientific attention due to their distinctive electronic configurations, underscored by the triangular-lattice spin-orbit coupling and competition between multiple interactions, paving the way for potential manifestations of phenomena such as Dirac semimetal, superconductivity, and quantum spin liquid states. These compounds can undergo discernibl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.20341v2-abstract-full').style.display = 'inline'; document.getElementById('2310.20341v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.20341v2-abstract-full" style="display: none;"> Transition-metal honeycomb compounds are capturing scientific attention due to their distinctive electronic configurations, underscored by the triangular-lattice spin-orbit coupling and competition between multiple interactions, paving the way for potential manifestations of phenomena such as Dirac semimetal, superconductivity, and quantum spin liquid states. These compounds can undergo discernible pressure-induced alterations in their crystallographic and electronic paradigms, as exemplified by our high-pressure (HP) synthesis and exploration of the honeycomb polymorph of ReO3 (P6322). This HP-P6322 polymorph bears a phase transition from P6322 to P63/mmc upon cooling around Tp = 250 K, as evidenced by the evolution of temperature-dependent magnetization (M-T curves), cell dimension, and conductivity initiated by an inherent bifurcation of the oxygen position in the ab plane. Insightful analysis of its band structure positions suggests this HP-P6322 polymorph being a plausible candidate for Dirac semimetal properties. This phase transition evokes anomalies in the temperature-dependent variation of paramagnetism (non-linearity) and a crossover from semiconductor to temperature-independent metal, showing a temperature independent conductivity behavior below ~200 K. Under increasing external pressure, both the Tp and resistance of this HP-polymorph is slightly magnetic-field dependent and undergo a &#34;V&#34;-style evolution (decreasing and then increasing) before becoming pressure independent up to 20.2 GPa. Theoretical calculations pinpoint this anionic disorder as a probable catalyst for the decrement in the conductive efficiency and muted temperature-dependent conductivity response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.20341v2-abstract-full').style.display = 'none'; document.getElementById('2310.20341v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Materials Today Physics 40,101309 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16414">arXiv:2310.16414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16414">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> V2C MXene-modified g-C3N4 for enhanced visible-light photocatalytic activity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Ruizheng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+G">Guiyu Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Z">Zhemin Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Diao%2C+S">Sijie Diao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Jianfeng Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+T">Tao Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Li Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+G">Guanghui Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16414v1-abstract-short" style="display: inline;"> Increasing the efficiency of charge transfer and separation efficiency of photogenerated carriers are still the main challenges in the field of semiconductor-based photocatalysts. Herein, we synthesized g-C3N4@V2C MXene photocatalyst by modifying g-C3N4 using V2C MXene. The prepared photocatalyst exhibited outstanding photocatalytic performance under visible light. The degradation efficiency of me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16414v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16414v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16414v1-abstract-full" style="display: none;"> Increasing the efficiency of charge transfer and separation efficiency of photogenerated carriers are still the main challenges in the field of semiconductor-based photocatalysts. Herein, we synthesized g-C3N4@V2C MXene photocatalyst by modifying g-C3N4 using V2C MXene. The prepared photocatalyst exhibited outstanding photocatalytic performance under visible light. The degradation efficiency of methyl orange by g-C3N4@V2C MXene photocatalyst was as high as 94.5%, which is 1.56 times higher than that by g-C3N4. This was attributed to the V2C MXene inhibiting the rapid recombination of photogenerated carriers and facilitating rapid transfer of photogenerated electrons (e) from g-C3N4 to MXene. Moreover, g-C3N4@V2C MXene photocatalyst showed good cycling stability. The photocatalytic performance was higher than 85% after three cycles. Experiments to capture free radicals revealed that superoxide radicals (02) are the main contributors to the photocatalytic activity. Thus, the proposed g-C3N4@V2C MXene photocatalyst is a promising visible-light catalyst. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16414v1-abstract-full').style.display = 'none'; document.getElementById('2310.16414v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.06327">arXiv:2310.06327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.06327">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Improved iron-tolerance in recycled aluminum alloys via direct strip casting process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marceau%2C+R+K+W">Ross. K. W. Marceau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dorin%2C+T">Thomas Dorin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.06327v1-abstract-short" style="display: inline;"> Recycled aluminum alloys are pivotal for sustainable manufacturing, offering strength, durability, and environmental advantages. However, the presence of iron (Fe) impurities poses a major challenge, undermining their properties and recyclability. Conventional manufacturing processes result in coarse Fe-rich intermetallic compounds that limit the tolerance of Fe content and negatively influence pe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06327v1-abstract-full').style.display = 'inline'; document.getElementById('2310.06327v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.06327v1-abstract-full" style="display: none;"> Recycled aluminum alloys are pivotal for sustainable manufacturing, offering strength, durability, and environmental advantages. However, the presence of iron (Fe) impurities poses a major challenge, undermining their properties and recyclability. Conventional manufacturing processes result in coarse Fe-rich intermetallic compounds that limit the tolerance of Fe content and negatively influence performance of advanced aluminum alloys. To address this, rapid solidification techniques like direct strip casting have been explored. In this work, a detailed study of the strip cast microstructure was conducted by scanning electron microscopy, electron backscattered diffraction and atom probe tomography. Our results reveal that alloys produced by DSC exhibit significantly refined microstructures and are free from coarse Fe-rich intermetallics, thereby retaining the majority of Fe in solid solution. These findings indicate that strip casting significantly enhances Fe-tolerance in aluminum alloys, making it an attractive process for future aluminum recycling, with implications for sustainable high-performance applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06327v1-abstract-full').style.display = 'none'; document.getElementById('2310.06327v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.10145">arXiv:2309.10145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.10145">pdf</a>, <a href="https://arxiv.org/format/2309.10145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Efficient multimode Wigner tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">Kevin He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+M">Ming Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+Y">Yat Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakram%2C+S">Srivatsan Chakram</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seif%2C+A">Alireza Seif</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuster%2C+D+I">David I. Schuster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.10145v1-abstract-short" style="display: inline;"> Advancements in quantum system lifetimes and control have enabled the creation of increasingly complex quantum states, such as those on multiple bosonic cavity modes. When characterizing these states, traditional tomography scales exponentially in both computational and experimental measurement requirement, which becomes prohibitive as the state size increases. Here, we implement a state reconstru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10145v1-abstract-full').style.display = 'inline'; document.getElementById('2309.10145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.10145v1-abstract-full" style="display: none;"> Advancements in quantum system lifetimes and control have enabled the creation of increasingly complex quantum states, such as those on multiple bosonic cavity modes. When characterizing these states, traditional tomography scales exponentially in both computational and experimental measurement requirement, which becomes prohibitive as the state size increases. Here, we implement a state reconstruction method whose sampling requirement instead scales polynomially with subspace size, and thus mode number, for states that can be expressed within such a subspace. We demonstrate this improved scaling with Wigner tomography of multimode entangled W states of up to 4 modes on a 3D circuit quantum electrodynamics (cQED) system. This approach performs similarly in efficiency to existing matrix inversion methods for 2 modes, and demonstrates a noticeable improvement for 3 and 4 modes, with even greater theoretical gains at higher mode numbers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10145v1-abstract-full').style.display = 'none'; document.getElementById('2309.10145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages of main text with 4 figures. 10 pages of supplementary information with 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09561">arXiv:2309.09561</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.09561">pdf</a>, <a href="https://arxiv.org/ps/2309.09561">ps</a>, <a href="https://arxiv.org/format/2309.09561">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.21.034038">10.1103/PhysRevApplied.21.034038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystal facet orientated Altermagnets for detecting ferromagnetic and antiferromagnetic states by giant tunneling magnetoresistance effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+B">Boyuan Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Leina Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yu Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+C">Caihua Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jia Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09561v2-abstract-short" style="display: inline;"> Emerging altermagnetic materials with vanishing net magnetizations and unique band structures have been envisioned as an ideal electrode to design antiferromagnetic tunnel junctions. Their momentum-resolved spin splitting in band structures defines a spin-polarized Fermi surface, which allows altermagnetic materials to polarize current as a ferromagnet, when the current flows along specific direct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09561v2-abstract-full').style.display = 'inline'; document.getElementById('2309.09561v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09561v2-abstract-full" style="display: none;"> Emerging altermagnetic materials with vanishing net magnetizations and unique band structures have been envisioned as an ideal electrode to design antiferromagnetic tunnel junctions. Their momentum-resolved spin splitting in band structures defines a spin-polarized Fermi surface, which allows altermagnetic materials to polarize current as a ferromagnet, when the current flows along specific directions relevant to their altermagnetism. Here, we design an Altermagnet/Insulator barrier/Ferromagnet junction, renamed as altermagnetic tunnel junction (ATMTJ), using RuO$_2$/TiO$_2$/CrO$_2$ as a prototype. Through first-principles calculations, we investigate the tunneling properties of the ATMTJ along the [001] and [110] directions, which shows that the tunneling magnetoresistance (TMR) is almost zero when the current flows along the [001] direction, while it can reach as high as 6100\% with current flows along the [110] direction. The spin-resolved conduction channels of the altermagnetic RuO$_2$ electrode are found responsible for this momentum-dependent (or transport-direction-dependent) TMR effect. Furthermore, this ATMTJ can also be used to readout the N茅el vector of the altermagnetic electrode RuO$_2$. Our work promotes the understanding toward the altermagnetic materials and provides an alternative way to design magnetic tunnel junctions with ultrahigh TMR ratios and robustness of the altermagnetic electrode against external disturbance, which broadens the application avenue for antiferromagnetic spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09561v2-abstract-full').style.display = 'none'; document.getElementById('2309.09561v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.13815">arXiv:2305.13815</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.13815">pdf</a>, <a href="https://arxiv.org/format/2305.13815">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.094433">10.1103/PhysRevB.108.094433 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of Kitaev interaction in the monolayer 1T-CrTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Can Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bingjie Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">LingZi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+Y">Yanfei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+J">Jiyu Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+D">Daning Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+C">Chunlan Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Q">Qiang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yan Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.13815v2-abstract-short" style="display: inline;"> The two-dimensional 1T-CrTe$_2$ has been an attractive room-temperature van der Waals magnet which has a potential application in spintronic devices. Although it was recognized as a ferromagnetism in the past, the monolayer 1T-CrTe$_2$ was recently found to exhibit zigzag antiferromagnetism with the easy axis oriented at $70^\circ$ to the perpendicular direction of the plane. Therefore, the origin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13815v2-abstract-full').style.display = 'inline'; document.getElementById('2305.13815v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.13815v2-abstract-full" style="display: none;"> The two-dimensional 1T-CrTe$_2$ has been an attractive room-temperature van der Waals magnet which has a potential application in spintronic devices. Although it was recognized as a ferromagnetism in the past, the monolayer 1T-CrTe$_2$ was recently found to exhibit zigzag antiferromagnetism with the easy axis oriented at $70^\circ$ to the perpendicular direction of the plane. Therefore, the origin of the intricate anisotropic magnetic behavior therein is well worthy of thorough exploration. Here, by applying density functional theory with spin spiral method, we demonstrate that the Kitaev interaction, together with the single-ion anisotropy and other off-diagonal exchanges, is amenable to explain the magnetic orientation in the metallic 1T-CrTe$_2$. Moreover, the Ruderman-Kittle-Kasuya-Yosida interaction can also be extracted from the dispersion calculations, which explains the metallic behavior of 1T-CrTe$_2$. Our results demonstrate that 1T-CrTe$_2$ is potentially a rare metallic Kitaev material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13815v2-abstract-full').style.display = 'none'; document.getElementById('2305.13815v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevB.108(2023)094433 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.08387">arXiv:2305.08387</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.08387">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c01741">10.1021/acs.nanolett.3c01741 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic field stabilized Wigner crystal states in a graphene moir茅 superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Guorui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Ya-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharpe%2C+A">Aaron Sharpe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zuocheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shaoxin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lili Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+B">Bosai Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hongyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhiwen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldhaber-Gordon%2C+D">David Goldhaber-Gordon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuanbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.08387v1-abstract-short" style="display: inline;"> Wigner crystals are predicted as the crystallization of the dilute electron gas moving in a uniform background when the electron-electron Coulomb energy dominates the kinetic energy. The Wigner crystal has previously been observed in the ultraclean two-dimensional electron gas (2DEG) present on the surface of liquid helium and in semiconductor quantum wells at high magnetic field. More recently, W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08387v1-abstract-full').style.display = 'inline'; document.getElementById('2305.08387v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.08387v1-abstract-full" style="display: none;"> Wigner crystals are predicted as the crystallization of the dilute electron gas moving in a uniform background when the electron-electron Coulomb energy dominates the kinetic energy. The Wigner crystal has previously been observed in the ultraclean two-dimensional electron gas (2DEG) present on the surface of liquid helium and in semiconductor quantum wells at high magnetic field. More recently, Wigner crystals have also been reported in WS2/WSe2 moir茅 heterostructures. ABC-stacked trilayer graphene on boron nitride (ABC-TLG/hBN) moir茅 superlattices provide a unique tunable platform to explore Wigner crystal states where the electron correlation can be controlled by electric and magnetic field. Here we report the observation of magnetic field stabilized Wigner crystal states in a ABC-TLG/hBN moir茅 superlattice. We show that correlated insulating states emerge at multiple fractional and integer fillings corresponding to v = 1/3, 2/3, 1, 4/3, 5/3 and 2 electrons per moir茅 lattice site under a magnetic field. These correlated insulating states can be attributed to generalized Mott states for the integer fillings (v = 1, 2) and generalized Wigner crystal states for the fractional fillings (v = 1/3, 2/3, 4/3, 5/3). The generalized Wigner crystal states are stabilized by a vertical magnetic field, and they are strongest at one magnetic flux quantum per three moir茅 superlattices. The correlated insulating states at v = 2 persists up to 30 Tesla, which can be described by a Mott-Hofstadter transition at high magnetic field. The tunable Mott and Wigner crystal states in the ABC-TLG/hBN highlight the opportunities to discover new correlated quantum phases due to the interplay between the magnetic field and moir茅 flatbands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08387v1-abstract-full').style.display = 'none'; document.getElementById('2305.08387v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.04262">arXiv:2305.04262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.04262">pdf</a>, <a href="https://arxiv.org/format/2305.04262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Magnetic field-induced weak-to-strong-link transformation in patterned superconducting films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chaves%2C+D+A+D">D. A. D. Chaves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valerio-Cuadros%2C+M+I">M. I. Valerio-Cuadros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbey%2C+E+A">E. A. Abbey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colauto%2C+F">F. Colauto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oliveira%2C+A+A+M">A. A. M. Oliveira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrade%2C+A+M+H">A. M. H. Andrade</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pinheiro%2C+L+B+L+G">L. B. L. G. Pinheiro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johansen%2C+T+H">T. H. Johansen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+C">C. Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y+-">Y. -H. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Silhanek%2C+A+V">A. V. Silhanek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ortiz%2C+W+A">W. A. Ortiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Motta%2C+M">M. Motta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.04262v3-abstract-short" style="display: inline;"> Ubiquitous in most superconducting materials and a common result of nanofabrication processes, weak-links are known for their limiting effects on the transport of electric currents. Still, they are at the root of key features of superconducting technology. By performing quantitative magneto-optical imaging experiments and thermomagnetic model simulations, we correlate the existence of local maxima&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04262v3-abstract-full').style.display = 'inline'; document.getElementById('2305.04262v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.04262v3-abstract-full" style="display: none;"> Ubiquitous in most superconducting materials and a common result of nanofabrication processes, weak-links are known for their limiting effects on the transport of electric currents. Still, they are at the root of key features of superconducting technology. By performing quantitative magneto-optical imaging experiments and thermomagnetic model simulations, we correlate the existence of local maxima in the magnetization loops of FIB-patterned Nb films to a magnetic field-induced weak-to-strong-link transformation increasing their critical current. This phenomenon arises from the nanoscale interaction between quantized magnetic flux lines and FIB-induced modifications of the device microstructure. Under an ac drive field, this leads to a rectified vortex motion along the weak-link. The reported tunable effect can be exploited in the development of new superconducting electronic devices, such as flux pumps and valves, to attenuate or amplify the supercurrent through a circuit element, and as a strategy to enhance the critical current in weak-link-bearing devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04262v3-abstract-full').style.display = 'none'; document.getElementById('2305.04262v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages and 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.05003">arXiv:2302.05003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.05003">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-36565-2">10.1038/s41467-023-36565-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Variant Plateau Law in Atomically Thin Transition Metal Dichalcogenide Dome Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Boqing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yildirim%2C+T">Tanju Yildirim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+T">Tieyu Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blundo%2C+E">Elena Blundo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Li Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lixue Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+H">Hongshuai Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lijun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+H">Huijun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+Z">Zongyou Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+F">Fangbao Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polimeni%2C+A">Antonio Polimeni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yuerui Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.05003v2-abstract-short" style="display: inline;"> Since its fundamental inception from soap bubbles, Plateau law has sparked extensive research in equilibrated states. However, most studies primarily relied on liquids, foams or cellular structures, whereas its applicability has yet to be explored in nano-scale solid films. Here, we observed a variant Plateau law in networks of atomically thin domes made of solid two-dimensional (2D) transition me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05003v2-abstract-full').style.display = 'inline'; document.getElementById('2302.05003v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.05003v2-abstract-full" style="display: none;"> Since its fundamental inception from soap bubbles, Plateau law has sparked extensive research in equilibrated states. However, most studies primarily relied on liquids, foams or cellular structures, whereas its applicability has yet to be explored in nano-scale solid films. Here, we observed a variant Plateau law in networks of atomically thin domes made of solid two-dimensional (2D) transition metal dichalcogenides (TMDs). Discrete layer-dependent van der Waals (vdWs) interaction energies were experimentally and theoretically obtained for domes protruding in different TMD layers. Significant surface tension differences from layer-dependent vdWs interaction energies manifest in a variant of this fundamental law. Meanwhile, the remarkable mechanical properties, gas impermeability and interlayer vdWs interaction energy of TMD films enable domes and the networks to sustain high gas pressure and exist in a fundamentally variant nature for several years. Our findings pave the way towards exploring variant discretised states with applications in opto-electro-mechanical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05003v2-abstract-full').style.display = 'none'; document.getElementById('2302.05003v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06248">arXiv:2301.06248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.06248">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unconventional polarization switching mechanism in (Hf, Zr)O2 ferroelectrics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuke Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Jie Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Limei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+M">Minghua Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yichun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+M">Min Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qiong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06248v2-abstract-short" style="display: inline;"> HfO$_{2}$-based ferroelectric thin films are promising for their application in ferroelectric devices. Predicting the ultimate magnitude of polarization and understanding its switching mechanism are critical to realize the optimal performance of these devices. Here, a generalized solid-state variable cell nudged elastic band (VCNEB) method is employed to predict the switching pathway associated wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06248v2-abstract-full').style.display = 'inline'; document.getElementById('2301.06248v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06248v2-abstract-full" style="display: none;"> HfO$_{2}$-based ferroelectric thin films are promising for their application in ferroelectric devices. Predicting the ultimate magnitude of polarization and understanding its switching mechanism are critical to realize the optimal performance of these devices. Here, a generalized solid-state variable cell nudged elastic band (VCNEB) method is employed to predict the switching pathway associated with domain-wall motion in (Hf, Zr)O$_{2}$ ferroelectrics. It is found that the polarization reversal pathway, where three-fold coordinated O atoms pass across the nominal unit-cell boundaries defined by the Hf/Zr atomic planes, is energetically more favorable than the conventional pathway where the O atoms do not pass through these planes. This finding implies that the polarization orientation in the orthorhombic Pca2$_{1}$ phase of HfO$_{2}$ nd its derivatives is opposite to that normally assumed, predicts the spontaneous polarization magnitude of about 70 $渭$C/cm$^{2}$ that is nearly 50% larger than the commonly accepted value, signifies a positive intrinsic longitudinal piezoelectric coefficient, and suggests growth of ferroelectric domains, in response to an applied electric field, structurally reversed to those usually anticipated. These results provide important insights into the understanding of ferroelectricity in HfO$_{2}$-based ferroelectrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06248v2-abstract-full').style.display = 'none'; document.getElementById('2301.06248v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 28 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.13341">arXiv:2212.13341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.13341">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-44765-7">10.1038/s41467-024-44765-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventionally Fast Transport through Sliding Dynamics of Rodlike Particles in Macromolecular Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+X">Xiaobin Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Habib%2C+M+A">Md Ahsan Habib</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Ziyang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+L">Lijuan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wenlong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+W">Wenjie Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Z">Zhongqiu Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+X">Xianyu Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+X">Xiangjun Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lingxiang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+L">Li-Tang Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.13341v4-abstract-short" style="display: inline;"> Transport of rodlike particles in confinement environments of macromolecular networks plays crucial roles in many important biological processes and technological applications. The relevant understanding has been limited to thin rods with diameter much smaller than network mesh size, although the opposite case, of which the dynamical behaviors and underlying physical mechanisms remain unclear, is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13341v4-abstract-full').style.display = 'inline'; document.getElementById('2212.13341v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.13341v4-abstract-full" style="display: none;"> Transport of rodlike particles in confinement environments of macromolecular networks plays crucial roles in many important biological processes and technological applications. The relevant understanding has been limited to thin rods with diameter much smaller than network mesh size, although the opposite case, of which the dynamical behaviors and underlying physical mechanisms remain unclear, is ubiquitous. Here, we solve this issue by combining experiments, simulations and theory. We find a nonmonotonic dependence of translational diffusion on rod length, characterized by length commensuration-governed unconventionally fast dynamics which is in striking contrast to the monotonic dependence for thin rods. Our results clarify that such a fast diffusion of thick rods with length of integral multiple of mesh size follows sliding dynamics and demonstrate it to be &#34;anomalous yet Brownian&#34;. Moreover, good agreement between theoretical analysis and simulations corroborates that the sliding dynamics is an intermediate regime between hopping and Brownian dynamics, and provides a mechanistic interpretation based on the rod-length dependent entropic free energy barrier. The findings yield a principle, that is, length commensuration, for optimal design of rodlike particles with highly efficient transport in confined environments of macromolecular networks, and might enrich the physics of the diffusion dynamics in heterogeneous media. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13341v4-abstract-full').style.display = 'none'; document.getElementById('2212.13341v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.09999">arXiv:2210.09999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.09999">pdf</a>, <a href="https://arxiv.org/ps/2210.09999">ps</a>, <a href="https://arxiv.org/format/2210.09999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.224520">10.1103/PhysRevB.106.224520 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic flux penetration in nanoscale wedge-shaped superconducting thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pinheiro%2C+L+B+L+G">L. B. L. G. Pinheiro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abbey%2C+E+A">E. A. Abbey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaves%2C+D+A+D">Davi A. D. Chaves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiquito%2C+A+J">A. J. Chiquito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johansen%2C+T+H">T. H. Johansen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Van+de+Vondel%2C+J">J. Van de Vondel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+C">C. Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y+-">Y. -H. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Silhanek%2C+A+V">A. V. Silhanek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ortiz%2C+W+A">W. A. Ortiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Motta%2C+M">M. Motta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.09999v1-abstract-short" style="display: inline;"> Thickness uniformity is regarded as an important parameter in designing thin film devices. However, some applications based on films with non-uniform thickness have recently emerged, such as gas sensors and optimized materials based on the gradual change of film composition. This work deals with superconducting Pb thin films with a thickness gradient prepared with the aid of a diffuse stencil mask&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09999v1-abstract-full').style.display = 'inline'; document.getElementById('2210.09999v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.09999v1-abstract-full" style="display: none;"> Thickness uniformity is regarded as an important parameter in designing thin film devices. However, some applications based on films with non-uniform thickness have recently emerged, such as gas sensors and optimized materials based on the gradual change of film composition. This work deals with superconducting Pb thin films with a thickness gradient prepared with the aid of a diffuse stencil mask. Atomic Force Microscopy and Energy-Dispersive X-ray Spectroscopy show variations ranging from 90~nm to 154~nm. Quantitative magneto-optical images reveal interesting features during both the abrupt and the smooth penetration regimes of magnetic flux, as well as the thickness-dependent critical current density ($J_c$). In addition, we observe a gradual superconducting transition as the upper critical field is progressively reached for certain thicknesses. Furthermore, the hysteresis observed for triggering flux avalanches when increasing and decreasing magnetic fields is also accounted for by the $J_c$ profile evolution along the thickness gradient. Numerical simulations based on the Thermomagnetic Model are in fair agreement with the experimental data. These findings demonstrate that wedge-shaped films are a viable approach to investigate, in a continuous fashion, thickness-dependent properties of a superconducting materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09999v1-abstract-full').style.display = 'none'; document.getElementById('2210.09999v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.10665">arXiv:2208.10665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.10665">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Failure behaviors and processing maps with failure domains for hot compression of a powder metallurgy Ni-based superalloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+Z">Zonglin Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+S">Shuai Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+J">Jingbo Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+J">Jinglong Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chengbin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Z">Zhuanye Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shuying Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+F">Fanchao Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.10665v1-abstract-short" style="display: inline;"> Processing maps are key to guiding the thermo-mechanical processing (TMP) of superalloys. However, traditional processing maps are incapable of delimiting failure, which is an essential factor to be concerned about during the TMP of superalloys. Employing isothermal hot compression experiments and finite element analysis (FEA), the present study examined the failure behaviors of a powder metallurg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10665v1-abstract-full').style.display = 'inline'; document.getElementById('2208.10665v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.10665v1-abstract-full" style="display: none;"> Processing maps are key to guiding the thermo-mechanical processing (TMP) of superalloys. However, traditional processing maps are incapable of delimiting failure, which is an essential factor to be concerned about during the TMP of superalloys. Employing isothermal hot compression experiments and finite element analysis (FEA), the present study examined the failure behaviors of a powder metallurgy (P/M) Ni-based superalloy and constructed processing maps with failure domains based on the predicted failure threshold. The micromechanical Gurson-Tvergaard-Needleman (GTN) damage model was employed in the FEA to model the cavity-driven intergranular fracture of the superalloy. Deformation temperature and strain rate were considered in the range of 1050 ~ 1150 C and 0.001 ~ 1 s-1, respectively. The FEA results reveal that the maximum tensile stress locates at the outer budging surfaces of the samples, which causes failure initiation and subsequent propagation into longitudinal cracks, being consistent with the experiments. It is further demonstrated that the failure is strain-controlled and the critical failure strain remains nearly insensitive to the range of strain rates considered while increasing with the increase of temperature in a third-order polynomial. Finally, an optimized processing window for hot deformation of the superalloy is formulated to warrant good hot workability while avoiding flow instability and failure. The present study offers direct insights into the failure behaviors of P/M Ni-based superalloys and details a modeling strategy to delineate optimized parametric spaces for the TMP of superalloys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10665v1-abstract-full').style.display = 'none'; document.getElementById('2208.10665v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05936">arXiv:2207.05936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.05936">pdf</a>, <a href="https://arxiv.org/ps/2207.05936">ps</a>, <a href="https://arxiv.org/format/2207.05936">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/aca393">10.1088/1674-1056/aca393 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg$_3$Si$_2$Te$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chaoxin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+B">Benyuan Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yunwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Long Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lisi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huo%2C+M">Mengwu Huo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+F">Feixiang Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+H">Hualei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05936v1-abstract-short" style="display: inline;"> We report the synthesis and characterization of a Si-based ternary semiconductor Mg$_3$Si$_2$Te$_6$, which exhibits a quasi-two-dimensional structure, where the trigonal Mg$_2$Si$_2$Te$_6$ layers are separated by Mg ions. Ultraviolet-visible absorption spectroscopy and density functional theory calculations were performed to investigate the electronic structure. The experimentally determined direc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05936v1-abstract-full').style.display = 'inline'; document.getElementById('2207.05936v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05936v1-abstract-full" style="display: none;"> We report the synthesis and characterization of a Si-based ternary semiconductor Mg$_3$Si$_2$Te$_6$, which exhibits a quasi-two-dimensional structure, where the trigonal Mg$_2$Si$_2$Te$_6$ layers are separated by Mg ions. Ultraviolet-visible absorption spectroscopy and density functional theory calculations were performed to investigate the electronic structure. The experimentally determined direct band gap is 1.39 eV, consistent with the value of the density function theory calculations. Our results reveal that Mg$_3$Si$_2$Te$_6$ is a direct gap semiconductor with a relatively narrow gap, which is a potential candidate for infrared optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05936v1-abstract-full').style.display = 'none'; document.getElementById('2207.05936v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> https://iopscience.iop.org/article/10.1088/1674-1056/aca393 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics B, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.15456">arXiv:2206.15456</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.15456">pdf</a>, <a href="https://arxiv.org/format/2206.15456">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Gravity-induced accelerating expansion of excited-state Bose-Einstein condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lijia Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+J">Jun-Hui Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.15456v3-abstract-short" style="display: inline;"> The Bose-Einstein condensate (BEC) of excited states, provides a different platform to explore the interplay between gravity and quantum physics. In this Letter, we study the response of excited-state BECs to an external gravitational field and their dynamics under gravity when space is expanding. We reveal the anomalous response of the center-of-mass of the BEC to the gravitational field and the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15456v3-abstract-full').style.display = 'inline'; document.getElementById('2206.15456v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.15456v3-abstract-full" style="display: none;"> The Bose-Einstein condensate (BEC) of excited states, provides a different platform to explore the interplay between gravity and quantum physics. In this Letter, we study the response of excited-state BECs to an external gravitational field and their dynamics under gravity when space is expanding. We reveal the anomalous response of the center-of-mass of the BEC to the gravitational field and the exotic gravity-induced accelerating expansion phenomena. We demonstrate that these effects result from the interplay among gravity, space and quantum effects. We also propose related experiments to observe these anomalies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15456v3-abstract-full').style.display = 'none'; document.getElementById('2206.15456v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.00589">arXiv:2205.00589</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.00589">pdf</a>, <a href="https://arxiv.org/format/2205.00589">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Electron spin coherence on a solid neon surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qianfan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martin%2C+I">Ivar Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+D">Dafei Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.00589v3-abstract-short" style="display: inline;"> A single electron floating on the surface of a condensed noble-gas liquid or solid can act as a spin qubit with ultralong coherence time, thanks to the extraordinary purity of such systems. Previous studies suggest that the electron spin coherence time on a superfluid helium (He) surface can exceed 100 s. In this paper, we present theoretical studies of the electron spin coherence on a solid neon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.00589v3-abstract-full').style.display = 'inline'; document.getElementById('2205.00589v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.00589v3-abstract-full" style="display: none;"> A single electron floating on the surface of a condensed noble-gas liquid or solid can act as a spin qubit with ultralong coherence time, thanks to the extraordinary purity of such systems. Previous studies suggest that the electron spin coherence time on a superfluid helium (He) surface can exceed 100 s. In this paper, we present theoretical studies of the electron spin coherence on a solid neon (Ne) surface, motivated by our recent experimental realization of single-electron charge qubit on solid Ne. The major spin decoherence mechanisms investigated include the fluctuating Ne diamagnetic susceptibility due to thermal phonons, the fluctuating thermal current in normal metal electrodes, and the quasi-statically fluctuating nuclear spins of the $^{21}$Ne ensemble. We find that at a typical experimental temperature about 10 mK in a fully superconducting device, the electron spin decoherence is dominated by the third mechanism via electron-nuclear spin-spin interaction. For natural Ne with 2700 ppm abundance of $^{21}$Ne, the estimated inhomogeneous dephasing time $T_{2}^{*}$ is around 0.16 ms, already better than most semiconductor quantum-dot spin qubits. For commercially available, isotopically purified Ne with 1 ppm of $^{21}$Ne, $T_{2}^{*}$ can be $0.43$ s. Under the application of Hahn echoes, the coherence time $T_{2}$ can be improved to $30$ ms for natural Ne and $81$ s for purified Ne. Therefore, the single-electron spin qubits on solid Ne can serve as promising new spin qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.00589v3-abstract-full').style.display = 'none'; document.getElementById('2205.00589v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.12330">arXiv:2202.12330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.12330">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abg3036">10.1126/science.abg3036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopy Signatures of Electron Correlations in a Trilayer Graphene/hBN Moir茅 Superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jixiang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Guorui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+T">Tianyi Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qihang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Ya-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lili Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+B">Bosai Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hongyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhiwen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Senthil%2C+T">Todadri Senthil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuanbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ju%2C+L">Long Ju</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.12330v2-abstract-short" style="display: inline;"> ABC-stacked trilayer graphene/hBN moir茅 superlattice (TLG/hBN) has emerged as a playground for correlated electron physics. We report spectroscopy measurements of dual-gated TLG/hBN using Fourier transformed infrared photocurrent spectroscopy. We observed a strong optical transition between moir茅 mini-bands that narrows continuously as a bandgap is opened by gating, indicating a reduction of the s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12330v2-abstract-full').style.display = 'inline'; document.getElementById('2202.12330v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.12330v2-abstract-full" style="display: none;"> ABC-stacked trilayer graphene/hBN moir茅 superlattice (TLG/hBN) has emerged as a playground for correlated electron physics. We report spectroscopy measurements of dual-gated TLG/hBN using Fourier transformed infrared photocurrent spectroscopy. We observed a strong optical transition between moir茅 mini-bands that narrows continuously as a bandgap is opened by gating, indicating a reduction of the single particle bandwidth. At half-filling of the valence flat band, a broad absorption peak emerges at ~18 meV, indicating direct optical excitation across an emerging Mott gap. Similar photocurrent spectra are observed in two other correlated insulating states at quarter- and half-filling of the first conduction band. Our findings provide key parameters of the Hubbard model for the understanding of electron correlation in TLG/hBN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12330v2-abstract-full').style.display = 'none'; document.getElementById('2202.12330v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages; 4 figures; supplementary materials: 13 pages; Science (2022, in press)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.06497">arXiv:2202.06497</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.06497">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal and Efficient p-Doping of Organic Semiconductors by Electrophilic Attack of Cations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Ping-An Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xinhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanpei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xincan Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Z">Zebing Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yuanping Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+S">Shun Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+L">Lei Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+Y">Yugang Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+T">Thuc-Quyen Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yuanyuan Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.06497v1-abstract-short" style="display: inline;"> Doping is of great importance to tailor the electrical properties of semiconductors. However, the present doping methodologies for organic semiconductors (OSCs) are either inefficient or can only apply to a small number of OSCs, seriously limiting their general application. Herein, we reveal a novel p-doping mechanism by investigating the interactions between the dopant trityl cation and poly(3-he&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06497v1-abstract-full').style.display = 'inline'; document.getElementById('2202.06497v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.06497v1-abstract-full" style="display: none;"> Doping is of great importance to tailor the electrical properties of semiconductors. However, the present doping methodologies for organic semiconductors (OSCs) are either inefficient or can only apply to a small number of OSCs, seriously limiting their general application. Herein, we reveal a novel p-doping mechanism by investigating the interactions between the dopant trityl cation and poly(3-hexylthiophene) (P3HT). It is found that electrophilic attack of the trityl cations on thiophenes results in the formation of alkylated ions that induce electron transfer from neighboring P3HT chains, resulting in p-doping. This unique p-doping mechanism can be employed to dope various OSCs including those with high ionization energy (IE=5.8 eV). Moreover, this doping mechanism endows trityl cation with strong doping ability, leading to polaron yielding efficiency of 100 % and doping efficiency of over 80 % in P3HT. The discovery and elucidation of this novel doping mechanism not only points out that strong electrophiles are a class of efficient p-dopants for OSCs, but also provides new opportunities towards highly efficient doping of OSCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06497v1-abstract-full').style.display = 'none'; document.getElementById('2202.06497v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.04351">arXiv:2202.04351</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.04351">pdf</a>, <a href="https://arxiv.org/format/2202.04351">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0083802">10.1063/5.0083802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accumulation and alignment of elongated gyrotactic swimmers in turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zehua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Linfeng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+C">Chao Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.04351v1-abstract-short" style="display: inline;"> We study the dynamics of gyrotactic swimmers in turbulence, whose orientation is governed by gravitational torque and local fluid velocity gradient. The gyrotaxis strength is measured by the ratio of the Kolmogorov time scale to the reorientation time scale due to gravity, and a large value of this ratio means the gyrotaxis is strong. By means of direct numerical simulations, we investigate the ef&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04351v1-abstract-full').style.display = 'inline'; document.getElementById('2202.04351v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.04351v1-abstract-full" style="display: none;"> We study the dynamics of gyrotactic swimmers in turbulence, whose orientation is governed by gravitational torque and local fluid velocity gradient. The gyrotaxis strength is measured by the ratio of the Kolmogorov time scale to the reorientation time scale due to gravity, and a large value of this ratio means the gyrotaxis is strong. By means of direct numerical simulations, we investigate the effects of swimming velocity and gyrotactic stability on spatial accumulation and alignment. Three-dimensional Vorono{\&#34;谋} analysis is used to study the spatial distribution and time evolution of the particle concentration. We study spatial distribution by examing the overall preferential sampling and where clusters and voids (subsets of particles that have small and large Vorono{\&#34;谋} volumes respectively) form. Compared with the ensemble particles, the preferential sampling of clusters and voids is found to be more pronounced. The clustering of fast swimmers lasts much longer than slower swimmers when the gyrotaxis is strong and intermediate, but an opposite trend emerges when the gyrotaxis is weak. In addition, we study the preferential alignment with the Lagrangian stretching direction, with which passive slender rods have been known to align. We show that the Lagrangian alignment is reduced by the swimming velocity when the gyrotaxis is weak, while the Lagrangian alignment is enhanced for the regime in which gyrotaxis is strong. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04351v1-abstract-full').style.display = 'none'; document.getElementById('2202.04351v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.03937">arXiv:2202.03937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.03937">pdf</a>, <a href="https://arxiv.org/format/2202.03937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/jfm.2022.197">10.1017/jfm.2022.197 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of finite-size spheroids in turbulent flow: the roles of flow structures and particle boundary layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Linfeng Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Cheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shuang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+C">Chao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Calzavarini%2C+E">Enrico Calzavarini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.03937v1-abstract-short" style="display: inline;"> We study the translational and rotational dynamics of neutrally-buoyant finite-size spheroids in hydrodynamic turbulence by means of fully resolved numerical simulations. We examine axisymmetric shapes, from oblate to prolate, and the particle volume dependences. We show that the accelerations and rotations experienced by non-spherical inertial-scale particles result from volume filtered fluid for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03937v1-abstract-full').style.display = 'inline'; document.getElementById('2202.03937v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.03937v1-abstract-full" style="display: none;"> We study the translational and rotational dynamics of neutrally-buoyant finite-size spheroids in hydrodynamic turbulence by means of fully resolved numerical simulations. We examine axisymmetric shapes, from oblate to prolate, and the particle volume dependences. We show that the accelerations and rotations experienced by non-spherical inertial-scale particles result from volume filtered fluid forces and torques, similar to spherical particles. However, the particle orientations carry signatures of preferential alignments with the surrounding flow structures, which is reflected in distinct axial and lateral fluctuations for accelerations and rotation rates. The randomization of orientations does not occur even for particles with volume equivalent diameter size in the inertial range, here up to 60 $畏$ at $Re_位=120$. Additionally, we demonstrate that the role of fluid boundary layers around the particles cannot be neglected to reach a quantitative understanding of particle statistical dynamics, as they affect the intensities of angular velocities, and the relative importance of tumbling with respect to spinning rotations. This study brings to the fore the importance of inertial-scale flow structures in homogeneous and isotropic turbulence and their impacts on the transport of neutrally-buoyant bodies with size in the inertial range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.03937v1-abstract-full').style.display = 'none'; document.getElementById('2202.03937v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Fluid Mech. 939, A22 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.07802">arXiv:2201.07802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.07802">pdf</a>, <a href="https://arxiv.org/format/2201.07802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.5.010347">10.1103/PRXQuantum.5.010347 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Clifford-deformed Surface Codes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dua%2C+A">Arpit Dua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kubica%2C+A">Aleksander Kubica</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flammia%2C+S+T">Steven T. Flammia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gullans%2C+M+J">Michael J. Gullans</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.07802v3-abstract-short" style="display: inline;"> Various realizations of Kitaev&#39;s surface code perform surprisingly well for biased Pauli noise. Attracted by these potential gains, we study the performance of Clifford-deformed surface codes (CDSCs) obtained from the surface code by applying single-qubit Clifford operators. We first analyze CDSCs on the $3\times 3$ square lattice and find that, depending on the noise bias, their logical error rat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07802v3-abstract-full').style.display = 'inline'; document.getElementById('2201.07802v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.07802v3-abstract-full" style="display: none;"> Various realizations of Kitaev&#39;s surface code perform surprisingly well for biased Pauli noise. Attracted by these potential gains, we study the performance of Clifford-deformed surface codes (CDSCs) obtained from the surface code by applying single-qubit Clifford operators. We first analyze CDSCs on the $3\times 3$ square lattice and find that, depending on the noise bias, their logical error rates can differ by orders of magnitude. To explain the observed behavior, we introduce the effective distance $d&#39;$, which reduces to the standard distance for unbiased noise. To study CDSC performance in the thermodynamic limit, we focus on random CDSCs. Using the statistical mechanical mapping for quantum codes, we uncover a phase diagram that describes random CDSC families with $50\%$ threshold at infinite bias. In the high-threshold region, we further demonstrate that typical code realizations outperform the thresholds and subthreshold logical error rates, at finite bias, of the best-known translationally invariant codes. We demonstrate the practical relevance of these random CDSC families by constructing a translation-invariant CDSC belonging to a high-performance random CDSC family. We also show that our translation-invariant CDSC outperforms well-known translation-invariant CDSCs such as the XZZX and XY codes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07802v3-abstract-full').style.display = 'none'; document.getElementById('2201.07802v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+10 pages, 14 figures, v2 changes: added a section on a translation-invariant code belonging to a high-performance random CDSC family to demonstrate the practical relevance of the random CDSCs. The code used for the simulations in the paper is available at https://github.com/dua-arpit/qecsim. See also https://errorcorrectionzoo.org/c/clifford-deformed_surface, v3 changes: PRX Quantum version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 5, 010347 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.06347">arXiv:2201.06347</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.06347">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.174428">10.1103/PhysRevB.104.174428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-engineered high-temperature ferromagnetic Oxygen-substituted NaMnF3 from first principles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wenning Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+K">Kuijuan Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+E">Erjia Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+C">Chen Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Can Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiulai Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+H">Hongbao Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Litong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+G">Guozhen Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.06347v1-abstract-short" style="display: inline;"> Using first-principles calculations, we investigated the magnetic, electronic, and structural properties of oxygen-substituted NaMnF3 (NaMnF1.5O1.5) with in-plane biaxial strain. For simplicity, a structure containing an oxygen octahedron is used to explore the underlying physical mechanism. We found that the oxygen octahedron induces a transition from an insulating antiferromagnet to a high-tempe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06347v1-abstract-full').style.display = 'inline'; document.getElementById('2201.06347v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.06347v1-abstract-full" style="display: none;"> Using first-principles calculations, we investigated the magnetic, electronic, and structural properties of oxygen-substituted NaMnF3 (NaMnF1.5O1.5) with in-plane biaxial strain. For simplicity, a structure containing an oxygen octahedron is used to explore the underlying physical mechanism. We found that the oxygen octahedron induces a transition from an insulating antiferromagnet to a high-temperature half-metallic ferromagnet. More importantly, the Curie temperature can be significantly enhanced and even might reach room temperature by applying tensile strain. The changing trends of exchange coupling constants with the increasing biaxial tensile strain can be attributed to the cooperative effects of Jahn-Teller distortion and rotation distortion. It is expected that these findings can enrich the versatility of NaMnF3 and make it a promising candidate for spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.06347v1-abstract-full').style.display = 'none'; document.getElementById('2201.06347v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02079">arXiv:2201.02079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.02079">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-4926/43/4/042101">10.1088/1674-4926/43/4/042101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DASP: Defect and Dopant ab-initio Simulation Package </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Menglin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Z">Zhengneng Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Z">Zhenxing Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+X">Xinjing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanshan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lilai Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+J">Jinchen Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shiyou Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02079v1-abstract-short" style="display: inline;"> In order to perform automated calculations of defect and dopant properties in semiconductors and insulators, we developed a software package, Defect and Dopant ab-initio Simulation Package (DASP), which is composed of four modules for calculating: (i) elemental chemical potentials, (ii) defect (dopant) formation energies and transition energy levels, (iii) defect and carrier densities and (iv) car&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02079v1-abstract-full').style.display = 'inline'; document.getElementById('2201.02079v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02079v1-abstract-full" style="display: none;"> In order to perform automated calculations of defect and dopant properties in semiconductors and insulators, we developed a software package, Defect and Dopant ab-initio Simulation Package (DASP), which is composed of four modules for calculating: (i) elemental chemical potentials, (ii) defect (dopant) formation energies and transition energy levels, (iii) defect and carrier densities and (iv) carrier dynamics properties of high-density defects. DASP uses the materials genome database for quick determination of competing secondary phases and calculation of the energy above convex hull when calculating the elemental chemical potential that stabilizes compound semiconductors, so it can perform high-throughput prediction of thermodynamic stability of multinary compounds. DASP calls the ab-initio softwares to perform the total energy, structural relaxation and electronic structure calculations of the defect supercells with different structure configurations and charge states, based on which the defect formation energies and transition energy levels are calculated and the corrections for electrostatic potential alignment and image charge interaction can be included. Then DASP can calculate the equilibrium densities of defects and electron and hole carriers as well as the Fermi level in semiconductors under different chemical potential conditions and different growth/working temperature. For high-density defects, DASP can calculate the carrier dynamics properties such as the photoluminescence (PL) spectrum, defect-related radiative and non-radiative carrier capture cross sections, and recombination lifetime of non-equilibrium carriers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02079v1-abstract-full').style.display = 'none'; document.getElementById('2201.02079v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Semiconductors 43, 042101 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00157">arXiv:2112.00157</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.00157">pdf</a>, <a href="https://arxiv.org/ps/2112.00157">ps</a>, <a href="https://arxiv.org/format/2112.00157">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04796-w">10.1038/s41586-022-04796-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring the knot of non-Hermitian degeneracies and non-commuting braids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Patil%2C+Y+S+S">Yogesh S. S. Patil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%B6ller%2C+J">Judith H枚ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Henry%2C+P+A">Parker A. Henry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guria%2C+C">Chitres Guria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yiming Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Luyao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kralj%2C+N">Nenad Kralj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Read%2C+N">Nicholas Read</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harris%2C+J+G+E">Jack G. E. Harris</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00157v3-abstract-short" style="display: inline;"> Any system of coupled oscillators may be characterized by its spectrum of resonance frequencies (or eigenfrequencies), which can be tuned by varying the system&#39;s parameters. The relationship between control parameters and the eigenfrequency spectrum is central to a range of applications. However, fundamental aspects of this relationship remain poorly understood. For example, if the controls are va&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00157v3-abstract-full').style.display = 'inline'; document.getElementById('2112.00157v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00157v3-abstract-full" style="display: none;"> Any system of coupled oscillators may be characterized by its spectrum of resonance frequencies (or eigenfrequencies), which can be tuned by varying the system&#39;s parameters. The relationship between control parameters and the eigenfrequency spectrum is central to a range of applications. However, fundamental aspects of this relationship remain poorly understood. For example, if the controls are varied along a path that returns to its starting point (i.e., around a &#34;loop&#34;), the system&#39;s spectrum must return to itself. In systems that are Hermitian (i.e., lossless and reciprocal) this process is trivial, and each resonance frequency returns to its original value. However, in non-Hermitian systems, where the eigenfrequencies are complex, the spectrum may return to itself in a topologically non-trivial manner, a phenomenon known as spectral flow. The spectral flow is determined by how the control loop encircles degeneracies, and this relationship is well understood for $N=2$ (where $N$ is the number of oscillators in the system). Here we extend this description to arbitrary $N$. We show that control loops generically produce braids of eigenfrequencies, and for $N&gt;2$ these braids form a non-Abelian group which reflects the non-trivial geometry of the space of degeneracies. We demonstrate these features experimentally for $N=3$ using a cavity optomechanical system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00157v3-abstract-full').style.display = 'none'; document.getElementById('2112.00157v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplementary Videos S1-S5 are included as ancillary files, or see http://www.youtube.com/watch?v=2HsIo1OgZFA&amp;list=PL3IrfT-_t1GQvk8LYYyXvdFkp8ymv1Slc ; corrected numbering of references in SI; reorganized SI</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 607, 271-275 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.04182">arXiv:2109.04182</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.04182">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jallcom.2021.161375">10.1016/j.jallcom.2021.161375 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigation of the phase occurrence and H sorption properties in the Y33.33Ni66.67-xAlx (0 &lt;= x &lt;= 33.33) system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+H">Hao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paul-Boncour%2C+V">Valerie Paul-Boncour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Latroche%2C+M">Michel Latroche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cuevas%2C+F">Fermin Cuevas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Ping Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+H">Huiping Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhinian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junxian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lijun Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.04182v1-abstract-short" style="display: inline;"> The Y33.33Ni66.67-xAlx system has been investigated in the region 0 &lt;= x &lt;= 33.3. The alloys were synthesized by induction melting. Phase occurrence and structural properties were studied by X-Ray powder Diffraction (XRD). The Al solubility in each phase has been investigated by XRD and Electron Probe Micro-Analysis (EPMA). The hydrogenation properties were characterized by pressure-composition is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04182v1-abstract-full').style.display = 'inline'; document.getElementById('2109.04182v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.04182v1-abstract-full" style="display: none;"> The Y33.33Ni66.67-xAlx system has been investigated in the region 0 &lt;= x &lt;= 33.3. The alloys were synthesized by induction melting. Phase occurrence and structural properties were studied by X-Ray powder Diffraction (XRD). The Al solubility in each phase has been investigated by XRD and Electron Probe Micro-Analysis (EPMA). The hydrogenation properties were characterized by pressure-composition isotherm measurements and kinetic curves at 473 K. For x = 0, the binary Y33.33Ni66.67 alloy crystallizes in the cubic superstructure with F4-3m space group and ordered Y vacancies. For 1.67 &lt;= x &lt;= 8.33, the alloys contain mainly Y(Ni, Al)2 and Y(Ni, Al)3 pseudobinary phases; while for 16.67 &lt;= x &lt;= 33.33 they are mainly formed by ternary line compounds Y3Ni6Al2, Y2Ni2Al and YNiAl. Contrary to the binary Y33.33Ni66.67, Y(Ni, Al)2 pseudo-binary compounds crystalize in C15 phase (space group Fd-3m ) with disordered Y vacancies. The solubility limit of Al in the C15 YNi2-yAly phase is y = 0.11 (i.e., x = 3.67). The Y(Ni, Al)3 phase changes from rhombohedral (PuNi3-type, R-3m) to hexagonal (CeNi3-type, P63/mmc) structure for x increasing from 5.00 to 6.67. Upon hydrogenation, the disproportion of C15 Y(Ni, Al)2 and losses of crystallinity of YNi and Y2Ni2Al are the main reasons causing capacity decay of Y33.33Ni66.67-xAlx (0 &lt;= x &lt;= 33.33) alloys upon cycling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04182v1-abstract-full').style.display = 'none'; document.getElementById('2109.04182v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Alloys and Compounds 888 (2021) 161375 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.00450">arXiv:2104.00450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.00450">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Damageless Tough Hydrogels with On-demand Self-reinforcement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujiyabu%2C+T">Takeshi Fujiyabu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morimoto%2C+N">Naoya Morimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yokoyama%2C+H">Hideaki Yokoyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sakai%2C+T">Takamasa Sakai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayumi%2C+K">Koichi Mayumi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ito%2C+K">Kohzo Ito</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.00450v1-abstract-short" style="display: inline;"> Most tough hydrogels are reinforced by introducing sacrificial structures that can dissipate input energy. However, since the sacrificial damages cannot recover instantly, the toughness of these gels drops substantially during consecutive cyclic loadings. Here, we propose a new damageless reinforcement strategy for hydrogels utilizing strain-induced crystallization (SIC). In Slide-Ring (SR) gels w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00450v1-abstract-full').style.display = 'inline'; document.getElementById('2104.00450v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.00450v1-abstract-full" style="display: none;"> Most tough hydrogels are reinforced by introducing sacrificial structures that can dissipate input energy. However, since the sacrificial damages cannot recover instantly, the toughness of these gels drops substantially during consecutive cyclic loadings. Here, we propose a new damageless reinforcement strategy for hydrogels utilizing strain-induced crystallization (SIC). In Slide-Ring (SR) gels with freely movable cross-links, crystalline repetitively forms and destructs with elongation and relaxation, resulting in both excellent toughness of 5.5 - 25.2 MJ/m$^3$ and 87% - 95% instant recovery of extension energy between two consecutive 11-fold loading-unloading cycles. Moreover, SIC occurs &#34;on-demandly&#34; at the crack-tip area where strain amplification and stress concentration take place and forces the crack to turn sideways. The instantly reversible tough hydrogels are promising candidates for applications in artificial connective tissues such as tendon and ligament. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.00450v1-abstract-full').style.display = 'none'; document.getElementById('2104.00450v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.15134">arXiv:2103.15134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.15134">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.actamat.2022.118662">10.1016/j.actamat.2022.118662 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiation-tolerant high-entropy alloys via interstitial-solute-induced chemical heterogeneities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Z">Zhengxiong Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+J">Jun Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+M">Miao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Li Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+T">Tan Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhiming Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Sheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+F">Fei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yun%2C+D">Di Yun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+C">Chenyang Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+E">En Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.15134v1-abstract-short" style="display: inline;"> High-entropy alloys (HEAs) composed of multiple principal elements have been shown to offer improved radiation resistance over their elemental or dilute-solution counterparts. Using NiCoFeCrMn HEA as a model, here we introduce carbon and nitrogen interstitial alloying elements to impart chemical heterogeneities in the form of the local chemical order (LCO) and associated compositional variations.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15134v1-abstract-full').style.display = 'inline'; document.getElementById('2103.15134v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.15134v1-abstract-full" style="display: none;"> High-entropy alloys (HEAs) composed of multiple principal elements have been shown to offer improved radiation resistance over their elemental or dilute-solution counterparts. Using NiCoFeCrMn HEA as a model, here we introduce carbon and nitrogen interstitial alloying elements to impart chemical heterogeneities in the form of the local chemical order (LCO) and associated compositional variations. Density functional theory simulations predict chemical short-range order (CSRO) (nearest neighbors and the next couple of atomic shells) surrounding C and N, due to the chemical affinity of C with (Co, Fe) and N with (Cr, Mn). Atomic-resolution chemical mapping of the elemental distribution confirms marked compositional variations well beyond statistical fluctuations. Ni+ irradiation experiments at elevated temperatures demonstrate a remarkable reduction in void swelling by at least one order of magnitude compared to the base HEA without C and N alloying. The underlying mechanism is that the interstitial-solute-induced chemical heterogeneities roughen the lattice as well as the energy landscape, impeding the movements of, and constraining the path lanes for, the normally fast-moving self-interstitials and their clusters. The irradiation-produced interstitials and vacancies therefore recombine more readily, delaying void formation. Our findings thus open a promising avenue towards highly radiation-tolerant alloys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15134v1-abstract-full').style.display = 'none'; document.getElementById('2103.15134v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Acta Materialia (245) 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06906">arXiv:2102.06906</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.06906">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scriptamat.2021.114104">10.1016/j.scriptamat.2021.114104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge-transfer effect on local lattice distortion in a HfNbTiZr high entropy alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+F">Fanchao Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenyan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zhukun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+R">Ruixin Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+A+C+-">Andrew C. -P. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Chongchong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H">Hailiang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xia Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shangzhou Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+L">Lilong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liaw%2C+P+K">Peter K. Liaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shuying Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+Y">Yang Tong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06906v2-abstract-short" style="display: inline;"> It is often assumed that atoms are hard spheres in the estimation of local lattice distortion (LLD) in high-entropy alloys (HEAs). However, our study demonstrates that the hard sphere model misses the key effect, charge transfer among atoms with different electronegativities, in the understanding of the stabilization of severely-distorted HEAs. Through the characterization and simulations of the l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06906v2-abstract-full').style.display = 'inline'; document.getElementById('2102.06906v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06906v2-abstract-full" style="display: none;"> It is often assumed that atoms are hard spheres in the estimation of local lattice distortion (LLD) in high-entropy alloys (HEAs). However, our study demonstrates that the hard sphere model misses the key effect, charge transfer among atoms with different electronegativities, in the understanding of the stabilization of severely-distorted HEAs. Through the characterization and simulations of the local structure of the HfNbTiZr HEA, we found that the charge transfer effect competes with LLD to significantly reduce the average atomic-size mismatch. Our finding may form the basis for the design of severely distorted, but stable HEAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06906v2-abstract-full').style.display = 'none'; document.getElementById('2102.06906v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.03418">arXiv:2102.03418</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.03418">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0044726">10.1063/5.0044726 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Formation of Ultra-High-Resistance Au/Ti/p-GaN Junctions and the Applications in AlGaN/GaN HEMTs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+G">Guangnan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+G">Gaiying Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+M">Mengya Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lingli Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">Hongyu Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+G">Guangrui Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.03418v1-abstract-short" style="display: inline;"> We report a dramatic current reduction, or a resistance increase, by a few orders of magnitude of two common-anode Au/Ti/pGaN Schottky junctions annealed within a certain annealing condition window (600 - 700 oC, 1 - 4 min). Results from similar common-anode Schottky junctions made of Au/p-GaN, Al/Ti/p-GaN and Au/Ti/graphene/p-GaN junctions demonstrated that all the three layers (Au, Ti and p-GaN)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03418v1-abstract-full').style.display = 'inline'; document.getElementById('2102.03418v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.03418v1-abstract-full" style="display: none;"> We report a dramatic current reduction, or a resistance increase, by a few orders of magnitude of two common-anode Au/Ti/pGaN Schottky junctions annealed within a certain annealing condition window (600 - 700 oC, 1 - 4 min). Results from similar common-anode Schottky junctions made of Au/p-GaN, Al/Ti/p-GaN and Au/Ti/graphene/p-GaN junctions demonstrated that all the three layers (Au, Ti and p-GaN) are essential for the increased resistance. Raman characterization of the p-GaN showed a decrease of the Mg-N bonding, i.e., the deactivation of Mg, which is consistent with the Hall measurement results. Moreover, this high-resistance junction structure was employed in p-GaN gate AlGaN/GaN HEMTs. It was shown to be an effective gate technology that was capable to boost the gate breakdown voltage from 9.9 V to 13.8 V with a negligible effect on the threshold voltage or the sub-threshold slope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03418v1-abstract-full').style.display = 'none'; document.getElementById('2102.03418v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.00192">arXiv:2101.00192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.00192">pdf</a>, <a href="https://arxiv.org/ps/2101.00192">ps</a>, <a href="https://arxiv.org/format/2101.00192">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of strained graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+F">Feng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liyun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+W">Wendeng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mou%2C+C">Chung-Yu Mou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.00192v1-abstract-short" style="display: inline;"> We obtain the superfluid weight and Berezinskii-Kosterlitz-Thouless (BKT) transition temperature for highly unconventional superconducting states with the coexistence of chiral d-wave superconductivity, charge density waves and pair density waves in the strained graphene. Our results show that the strain-induced flat bands can promote the superconducting transition temperature approximately&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00192v1-abstract-full').style.display = 'inline'; document.getElementById('2101.00192v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.00192v1-abstract-full" style="display: none;"> We obtain the superfluid weight and Berezinskii-Kosterlitz-Thouless (BKT) transition temperature for highly unconventional superconducting states with the coexistence of chiral d-wave superconductivity, charge density waves and pair density waves in the strained graphene. Our results show that the strain-induced flat bands can promote the superconducting transition temperature approximately $50\%$ compared to that of the original doped graphene, which suggests that the flat-band superconductivity is a potential route to get superconductivity with higher critical temperatures. In particular, we obtain the superfluid weight for the pure superconducting pair-density-wave states from which the deduced superconducting transition temperature is shown to be much lower than the gap-opening temperature of the pair density wave, which is helpful to understand the phenomenon of the pseudogap state in high-$T_c$ cuprate superconductors. Finally, we show that the BKT transition temperature versus doping for strained graphene exhibits a dome-like shape and it depends linearly on the spin-spin interaction strength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00192v1-abstract-full').style.display = 'none'; document.getElementById('2101.00192v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.10075">arXiv:2012.10075</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.10075">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c03699">10.1021/acs.nanolett.1c03699 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable ferromagnetism at non-integer filling of a moir茅 superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Guorui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharpe%2C+A+L">Aaron L. Sharpe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fox%2C+E+J">Eli J. Fox</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shaoxin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+B">Bosai Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lili Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hongyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crommie%2C+M+F">Michael F. Crommie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kastner%2C+M+A">M. A. Kastner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Z">Zhiwen Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldhaber-Gordon%2C+D">David Goldhaber-Gordon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuanbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.10075v1-abstract-short" style="display: inline;"> The flat bands resulting from moir茅 superlattices in magic-angle twisted bilayer graphene (MATBG) and ABC-trilayer graphene aligned with hexagonal boron nitride (ABC-TLG/hBN) have been shown to give rise to fascinating correlated electron phenomena such as correlated insulators and superconductivity. More recently, orbital magnetism associated with correlated Chern insulators was found in this cla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10075v1-abstract-full').style.display = 'inline'; document.getElementById('2012.10075v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.10075v1-abstract-full" style="display: none;"> The flat bands resulting from moir茅 superlattices in magic-angle twisted bilayer graphene (MATBG) and ABC-trilayer graphene aligned with hexagonal boron nitride (ABC-TLG/hBN) have been shown to give rise to fascinating correlated electron phenomena such as correlated insulators and superconductivity. More recently, orbital magnetism associated with correlated Chern insulators was found in this class of layered structures centered at integer multiples of n0, the density corresponding to one electron per moir茅 superlattice unit cell. Here we report the experimental observation of ferromagnetism at fractional filling of a flat Chern band in an ABC-TLG/hBN moir茅superlattice. The ferromagnetic state exhibits prominent ferromagnetic hysteresis behavior with large anomalous Hall resistivity in a broad region of densities, centered in the valence miniband at n = -2.3 n0. This ferromagnetism depends very sensitively on the control parameters in the moir茅 system: not only the magnitude of the anomalous Hall signal, but also the sign of the hysteretic ferromagnetic response can be modulated by tuning the carrier density and displacement field. Our discovery of electrically tunable ferromagnetism in a moir茅 Chern band at non-integer filling highlights the opportunities for exploring new correlated ferromagnetic states in moir茅 heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10075v1-abstract-full').style.display = 'none'; document.getElementById('2012.10075v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.02312">arXiv:2011.02312</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.02312">pdf</a>, <a href="https://arxiv.org/ps/2011.02312">ps</a>, <a href="https://arxiv.org/format/2011.02312">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.043148">10.1103/PhysRevResearch.2.043148 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence of pseudospin- and valley-Hall-like edge states in a photonic crystal with $C_{3v}$ symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M+L+N">Menglin L. N. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L+J">Li Jun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+Z">Zhihao Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sha%2C+W+E+I">Wei E. I. Sha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.02312v1-abstract-short" style="display: inline;"> We demonstrate the coexistence of pseudospin- and valley-Hall-like edge states in a photonic crystal with $C_{3v}$ symmetry, which is composed of three interlacing triangular sublattices with the same lattice constants. By tuning the geometry of the sublattices, three complete photonic band gaps with nontrivial topology can be created, one of which is due to the band inversion associated with the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02312v1-abstract-full').style.display = 'inline'; document.getElementById('2011.02312v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.02312v1-abstract-full" style="display: none;"> We demonstrate the coexistence of pseudospin- and valley-Hall-like edge states in a photonic crystal with $C_{3v}$ symmetry, which is composed of three interlacing triangular sublattices with the same lattice constants. By tuning the geometry of the sublattices, three complete photonic band gaps with nontrivial topology can be created, one of which is due to the band inversion associated with the pseudospin degree of freedom at the $螕$ point and the other two due to the gapping out of Dirac cones associated with the valley degree of freedom at the $K, K&#39;$ points. The system can support tri-band pseudospin- and valley-momentum locking edge states at properly designed domain-wall interfaces. Furthermore, to demonstrate the novel interplay of the two kinds of edge states in a single configuration, we design a four-channel system, where the unidirectional routing of electromagnetic waves against sharp bends between two routes can be selectively controlled by the pseudospin and valley degrees of freedom. Our work combines the pseudospin and valley degrees of freedom in a single configuration and may provide more flexibility in manipulating electromagnetic waves with promising potential for multiband and multifunctional applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02312v1-abstract-full').style.display = 'none'; document.getElementById('2011.02312v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Research, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.15292">arXiv:2010.15292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.15292">pdf</a>, <a href="https://arxiv.org/format/2010.15292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01630-y">10.1038/s41567-022-01630-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multimode photon blockade </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chakram%2C+S">Srivatsan Chakram</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+K">Kevin He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dixit%2C+A+V">Akash V. Dixit</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oriani%2C+A+E">Andrew E. Oriani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naik%2C+R+K">Ravi K. Naik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leung%2C+N">Nelson Leung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwon%2C+H">Hyeokshin Kwon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+W">Wen-Long Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuster%2C+D+I">David I. Schuster</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.15292v1-abstract-short" style="display: inline;"> Interactions are essential for the creation of correlated quantum many-body states. While two-body interactions underlie most natural phenomena, three- and four-body interactions are important for the physics of nuclei [1], exotic few-body states in ultracold quantum gases [2], the fractional quantum Hall effect [3], quantum error correction [4], and holography [5, 6]. Recently, a number of artifi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.15292v1-abstract-full').style.display = 'inline'; document.getElementById('2010.15292v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.15292v1-abstract-full" style="display: none;"> Interactions are essential for the creation of correlated quantum many-body states. While two-body interactions underlie most natural phenomena, three- and four-body interactions are important for the physics of nuclei [1], exotic few-body states in ultracold quantum gases [2], the fractional quantum Hall effect [3], quantum error correction [4], and holography [5, 6]. Recently, a number of artificial quantum systems have emerged as simulators for many-body physics, featuring the ability to engineer strong interactions. However, the interactions in these systems have largely been limited to the two-body paradigm, and require building up multi-body interactions by combining two-body forces. Here, we demonstrate a pure N-body interaction between microwave photons stored in an arbitrary number of electromagnetic modes of a multimode cavity. The system is dressed such that there is collectively no interaction until a target total photon number is reached across multiple distinct modes, at which point they interact strongly. The microwave cavity features 9 modes with photon lifetimes of $\sim 2$ ms coupled to a superconducting transmon circuit, forming a multimode circuit QED system with single photon cooperativities of $\sim10^9$. We generate multimode interactions by using cavity photon number resolved drives on the transmon circuit to blockade any multiphoton state with a chosen total photon number distributed across the target modes. We harness the interaction for state preparation, preparing Fock states of increasing photon number via quantum optimal control pulses acting only on the cavity modes. We demonstrate multimode interactions by generating entanglement purely with uniform cavity drives and multimode photon blockade, and characterize the resulting two- and three-mode W states using a new protocol for multimode Wigner tomography. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.15292v1-abstract-full').style.display = 'none'; document.getElementById('2010.15292v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages of main text with 5 figures. 11 pages of supplementary information with 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14727">arXiv:2010.14727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.14727">pdf</a>, <a href="https://arxiv.org/format/2010.14727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.237201">10.1103/PhysRevLett.125.237201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Floquet Cavity Electromagnonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+J">Jing Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+C">Changchun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+D">Dafei Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xufeng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14727v1-abstract-short" style="display: inline;"> Hybrid magnonics has recently attracted intensive attentions as a promising platform for coherent information processing. In spite of its rapid development, on-demand control over the interaction of magnons with other information carriers, in particular microwave photons in electromagnonic systems, has been long missing, significantly limiting the broad applications of hybrid magnonics. Here, we s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14727v1-abstract-full').style.display = 'inline'; document.getElementById('2010.14727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14727v1-abstract-full" style="display: none;"> Hybrid magnonics has recently attracted intensive attentions as a promising platform for coherent information processing. In spite of its rapid development, on-demand control over the interaction of magnons with other information carriers, in particular microwave photons in electromagnonic systems, has been long missing, significantly limiting the broad applications of hybrid magnonics. Here, we show that by introducing Floquet engineering into cavity electromagnonics, coherent control on the magnon-microwave photon coupling can be realized. Leveraging the periodic temporal modulation from a Floquet drive, our first-of-its-kind Floquet cavity electromagnonic system can manipulate the interaction between hybridized cavity electromagnonic modes on demand. Moreover, we demonstrate a new coupling regime in such systems: the Floquet ultrastrong coupling, where the Floquet splitting is comparable with or even larger than the level spacing of the two interacting modes, resulting in the breakdown of the rotating wave approximation. Our findings open up new directions for magnon-based coherent signal processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14727v1-abstract-full').style.display = 'none'; document.getElementById('2010.14727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.09775">arXiv:2010.09775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.09775">pdf</a>, <a href="https://arxiv.org/format/2010.09775">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.031066">10.1103/PhysRevX.11.031066 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum coding with low-depth random circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gullans%2C+M+J">Michael J. Gullans</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krastanov%2C+S">Stefan Krastanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huse%2C+D+A">David A. Huse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flammia%2C+S+T">Steven T. Flammia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.09775v2-abstract-short" style="display: inline;"> Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity in $D\ge 1$ spatial dimensions to generate quantum error-correcting codes. For random stabilizer codes and the erasure channel, we find strong evidence that a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.09775v2-abstract-full').style.display = 'inline'; document.getElementById('2010.09775v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.09775v2-abstract-full" style="display: none;"> Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity in $D\ge 1$ spatial dimensions to generate quantum error-correcting codes. For random stabilizer codes and the erasure channel, we find strong evidence that a depth $O(\log N)$ random circuit is necessary and sufficient to converge (with high probability) to zero failure probability for any finite amount below the optimal erasure threshold, set by the channel capacity, for any $D$. Previous results on random circuits have only shown that $O(N^{1/D})$ depth suffices or that $O(\log^3 N)$ depth suffices for all-to-all connectivity ($D \to \infty$). We then study the critical behavior of the erasure threshold in the so-called moderate deviation limit, where both the failure probability and the distance to the optimal threshold converge to zero with $N$. We find that the requisite depth scales like $O(\log N)$ only for dimensions $D \ge 2$, and that random circuits require $O(\sqrt{N})$ depth for $D=1$. Finally, we introduce an &#34;expurgation&#34; algorithm that uses quantum measurements to remove logical operators that cause the code to fail by turning them into additional stabilizers or gauge operators. With such targeted measurements, we can achieve sub-logarithmic depth in $D\ge 2$ below capacity without increasing the maximum weight of the check operators. We find that for any rate beneath the capacity, high-performing codes with thousands of logical qubits are achievable with depth 4-8 expurgated random circuits in $D=2$ dimensions. These results indicate that finite-rate quantum codes are practically relevant for near-term devices and may significantly reduce the resource requirements to achieve fault tolerance for near-term applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.09775v2-abstract-full').style.display = 'none'; document.getElementById('2010.09775v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 11 figures; v1: Presented at QIP 2021; v2: Accepted journal version, minor changes to improve readability and rigor</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 11, 031066 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14803">arXiv:2009.14803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.14803">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TED.2021.3057007">10.1109/TED.2021.3057007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determination of the Gate Breakdown Mechanisms in p-GaN Gate HEMTs by Multiple-gate-sweep Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+G">Guangnan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+F">Fanming Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lingli Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guangrui"> Guangrui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia"> Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">Hongyu Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14803v1-abstract-short" style="display: inline;"> In this work, we studied the gate breakdown mechanisms of p-GaN gate AlGaN/GaN HEMTs by a novel multiple-gate-sweep-based method. For the first time, three different breakdown mechanisms were observed and identified separately in the same devices: the metal/p-GaN junction breakdown, the p-GaN/AlGaN/GaN junction breakdown, and the passivation related breakdown. This method is an effective method to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14803v1-abstract-full').style.display = 'inline'; document.getElementById('2009.14803v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14803v1-abstract-full" style="display: none;"> In this work, we studied the gate breakdown mechanisms of p-GaN gate AlGaN/GaN HEMTs by a novel multiple-gate-sweep-based method. For the first time, three different breakdown mechanisms were observed and identified separately in the same devices: the metal/p-GaN junction breakdown, the p-GaN/AlGaN/GaN junction breakdown, and the passivation related breakdown. This method is an effective method to determine the breakdown mechanisms. The different BD mechanisms were further confirmed by scanning electron microscopy (SEM). Finally, the temperature dependences of the three BD mechanisms were measured and compared. This analysis method was also employed in the devices with a different passivation material and showed its applicability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14803v1-abstract-full').style.display = 'none'; document.getElementById('2009.14803v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.06429">arXiv:2005.06429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.06429">pdf</a>, <a href="https://arxiv.org/format/2005.06429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Waveguide cavity optomagnonics for broadband multimode microwave-to-optics conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+N">Na Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xufeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+C">Chang-Ling Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+C">Changchun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chiao-Hsuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+H+X">Hong X. Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.06429v1-abstract-short" style="display: inline;"> Cavity optomagnonics has emerged as a promising platform for studying coherent photon-spin interactions as well as tunable microwave-to-optical conversion. However, current implementation of cavity optomagnonics in ferrimagnetic crystals remains orders of magnitude larger in volume than state-of-the-art cavity optomechanical devices, resulting in very limited magneto-optical interaction strength.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.06429v1-abstract-full').style.display = 'inline'; document.getElementById('2005.06429v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.06429v1-abstract-full" style="display: none;"> Cavity optomagnonics has emerged as a promising platform for studying coherent photon-spin interactions as well as tunable microwave-to-optical conversion. However, current implementation of cavity optomagnonics in ferrimagnetic crystals remains orders of magnitude larger in volume than state-of-the-art cavity optomechanical devices, resulting in very limited magneto-optical interaction strength. Here, we demonstrate a cavity optomagnonic device based on integrated waveguides and its application for microwave-to-optical conversion. By designing a ferrimagnetic rib waveguide to support multiple magnon modes with maximal mode overlap to the optical field, we realize a high magneto-optical cooperativity which is three orders of magnitude higher compared to previous records obtained on polished YIG spheres. Furthermore, we achieve tunable conversion of microwave photons at around 8.45 GHz to 1550 nm light with a broad conversion bandwidth as large as 16.1 MHz. The unique features of the system point to novel applications at the crossroad between quantum optics and magnonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.06429v1-abstract-full').style.display = 'none'; document.getElementById('2005.06429v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.04856">arXiv:2005.04856</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.04856">pdf</a>, <a href="https://arxiv.org/ps/2005.04856">ps</a>, <a href="https://arxiv.org/format/2005.04856">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.387993">10.1364/OE.387993 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local orbital-angular-momentum dependent surface states with topological protection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M+L+N">Menglin L. N. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L+J">Li Jun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+Z">Zhihao Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sha%2C+W+E+I">Wei E. I. Sha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.04856v1-abstract-short" style="display: inline;"> Chiral surface states along the zigzag edge of a valley photonic crystal in the honeycomb lattice are demonstrated. By decomposing the local fields into orbital angular momentum (OAM) modes, we find that the chiral surface states present OAM-dependent unidirectional propagation characteristics. Particularly, the propagation directivities of the surface states are quantified by the local OAM decomp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04856v1-abstract-full').style.display = 'inline'; document.getElementById('2005.04856v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.04856v1-abstract-full" style="display: none;"> Chiral surface states along the zigzag edge of a valley photonic crystal in the honeycomb lattice are demonstrated. By decomposing the local fields into orbital angular momentum (OAM) modes, we find that the chiral surface states present OAM-dependent unidirectional propagation characteristics. Particularly, the propagation directivities of the surface states are quantified by the local OAM decomposition and are found to depend on the chiralities of both the source and surface states. These findings allow for the engineering control of the unidirectional propagation of electromagnetic energy without requiring an ancillary cladding layer. Furthermore, we examine the propagation of the chiral surface states against sharp bends. It turns out that although only certain states successfully pass through the bend, the unidirectional propagation is well maintained due to the topology of the structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04856v1-abstract-full').style.display = 'none'; document.getElementById('2005.04856v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express,2020 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jiang%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+L&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+L&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10