CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 62 results for author: <span class="mathjax">Hung, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Hung%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hung, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hung%2C+L&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hung, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hung%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hung%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hung%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08664">arXiv:2411.08664</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08664">pdf</a>, <a href="https://arxiv.org/format/2411.08664">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> UniMat: Unifying Materials Embeddings through Multi-modal Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ock%2C+J">Janghoon Ock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+J">Joseph Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schweigert%2C+D">Daniel Schweigert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Linda Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suram%2C+S+K">Santosh K. Suram</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+W">Weike Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08664v1-abstract-short" style="display: inline;"> Materials science datasets are inherently heterogeneous and are available in different modalities such as characterization spectra, atomic structures, microscopic images, and text-based synthesis conditions. The advancements in multi-modal learning, particularly in vision and language models, have opened new avenues for integrating data in different forms. In this work, we evaluate common techniqu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08664v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08664v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08664v1-abstract-full" style="display: none;"> Materials science datasets are inherently heterogeneous and are available in different modalities such as characterization spectra, atomic structures, microscopic images, and text-based synthesis conditions. The advancements in multi-modal learning, particularly in vision and language models, have opened new avenues for integrating data in different forms. In this work, we evaluate common techniques in multi-modal learning (alignment and fusion) in unifying some of the most important modalities in materials science: atomic structure, X-ray diffraction patterns (XRD), and composition. We show that structure graph modality can be enhanced by aligning with XRD patterns. Additionally, we show that aligning and fusing more experimentally accessible data formats, such as XRD patterns and compositions, can create more robust joint embeddings than individual modalities across various tasks. This lays the groundwork for future studies aiming to exploit the full potential of multi-modal data in materials science, facilitating more informed decision-making in materials design and discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08664v1-abstract-full').style.display = 'none'; document.getElementById('2411.08664v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00877">arXiv:2404.00877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00877">pdf</a>, <a href="https://arxiv.org/format/2404.00877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Building up quantum spacetimes with BCFT Legos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yikun Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00877v1-abstract-short" style="display: inline;"> Is it possible to read off the quantum gravity dual of a CFT directly from its operator algebra? In this essay, we present a step-by-step recipe synthesizing results and techniques from conformal bootstrap, topological symmetries, tensor networks, a novel symmetry-preserving real-space renormalization algorithm devised originally in lattice models, and the asymptotics of quantum $6j$ symbols, ther&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00877v1-abstract-full').style.display = 'inline'; document.getElementById('2404.00877v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00877v1-abstract-full" style="display: none;"> Is it possible to read off the quantum gravity dual of a CFT directly from its operator algebra? In this essay, we present a step-by-step recipe synthesizing results and techniques from conformal bootstrap, topological symmetries, tensor networks, a novel symmetry-preserving real-space renormalization algorithm devised originally in lattice models, and the asymptotics of quantum $6j$ symbols, thereby providing an answer in the affirmative. Quantum 2D Liouville theory serves as a simple and explicit example, illustrating how the quantum gravitational path integral can be built up from local pieces of BCFT correlation functions, which we call the ``BCFT Legos&#39;&#39;. The constructive map between gravity and CFT naturally and explicitly bridges local geometrical data, algebraic structures, and quantum entanglement, as envisaged by the $\it{It \, from \, Qubit}$ motto. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00877v1-abstract-full').style.display = 'none'; document.getElementById('2404.00877v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, expanded version of essay written for the Gravity Research Foundation 2024 Awards for Essays on Gravitation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03179">arXiv:2403.03179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03179">pdf</a>, <a href="https://arxiv.org/format/2403.03179">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum 2D Liouville Path-Integral Is a Sum over Geometries in AdS$_3$ Einstein Gravity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yikun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lao%2C+B">Bing-Xin Lao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03179v2-abstract-short" style="display: inline;"> There is a renowned solution of the modular bootstrap that defines the UV complete quantum Liouville theory. We triangulate the path-integral of this Liouville CFT on any 2D surface $\mathcal{M}$, by proposing a shrinkable boundary condition for this special CFT that allows small holes to close, analogous to the proposal in rational CFTs [1-3]. This is essentially a tensor network that admits an i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03179v2-abstract-full').style.display = 'inline'; document.getElementById('2403.03179v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03179v2-abstract-full" style="display: none;"> There is a renowned solution of the modular bootstrap that defines the UV complete quantum Liouville theory. We triangulate the path-integral of this Liouville CFT on any 2D surface $\mathcal{M}$, by proposing a shrinkable boundary condition for this special CFT that allows small holes to close, analogous to the proposal in rational CFTs [1-3]. This is essentially a tensor network that admits an interpretation of a state-sum of a 3D topological theory constructed with quantum 6j symbols of $\mathcal{U}_q(SL(2,\mathbb{R}))$ with non-trivial boundary conditions, and it reduces to a sum over 3D geometries weighted by the Einstein-Hilbert action to leading order in large $c$. The boundary conditions of quantum Liouville theory specifies a very special sum over bulk geometries to faithfully reproduce the CFT path-integral. The triangulation coincides with producing a network of geodesics in the AdS bulk, which can be changed making use of the pentagon identity and orthogonality condition satisfied by the 6j symbols, and arranged into a precise holographic tensor network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03179v2-abstract-full').style.display = 'none'; document.getElementById('2403.03179v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures; v2 typos corrected and references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18005">arXiv:2311.18005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18005">pdf</a>, <a href="https://arxiv.org/ps/2311.18005">ps</a>, <a href="https://arxiv.org/format/2311.18005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Precision reconstruction of rational CFT from exact fixed point tensor network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Gong Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Z">Zheng-Cheng Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18005v4-abstract-short" style="display: inline;"> The novel concept of entanglement renormalization and its corresponding tensor network renormalization technique have been highly successful in developing a controlled real space renormalization group (RG) scheme. Numerically approximate fixed-point (FP) tensors are widely used to extract the conformal data of the underlying conformal field theory (CFT) describing critical phenomena. In this paper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18005v4-abstract-full').style.display = 'inline'; document.getElementById('2311.18005v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18005v4-abstract-full" style="display: none;"> The novel concept of entanglement renormalization and its corresponding tensor network renormalization technique have been highly successful in developing a controlled real space renormalization group (RG) scheme. Numerically approximate fixed-point (FP) tensors are widely used to extract the conformal data of the underlying conformal field theory (CFT) describing critical phenomena. In this paper, we present an explicit analytical construction of the FP tensor for 2D rational CFT. We define it as a correlation function between the &#34;boundary-changing operators&#34; on triangles. Our construction fully captures all the real-space RG conditions. We also provide concrete examples, such as Ising, Yang-Lee and Tri-critical Ising models to compute the scaling dimensions explicitly based on the corresponding FP tensor. Interestingly, our construction of FP tensors is closely related to a strange correlator, where the holographic picture naturally emerges. Our results also open a new door towards understanding CFT in higher dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18005v4-abstract-full').style.display = 'none'; document.getElementById('2311.18005v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 17 figures, 12 tables; Added numerical test for Yang-Lee and Tri-critical Ising model</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14499">arXiv:2303.14499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.14499">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-981-19-9267-4_34">10.1007/978-981-19-9267-4_34 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Production of Porous Glass-foam Materials from Photovoltaic Panel Waste Glass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Thach%2C+B+K">Bui Khac Thach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+L+N">Le Nhat Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minh%2C+D+Q">Do Quang Minh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L+C">Ly Cam Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tuan%2C+P+D">Phan Dinh Tuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14499v1-abstract-short" style="display: inline;"> The Solar energy production is growing quickly for the global demand of renewa-ble one, decrease the dependence on fossil fuels. However, disposing of used pho-tovoltaic (PV) panels will be a serious environmental challenge in the future dec-ades since the solar panels would eventually become a source of hazardous waste. The potential of waste solar panel glass to generate porous glass material wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14499v1-abstract-full').style.display = 'inline'; document.getElementById('2303.14499v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14499v1-abstract-full" style="display: none;"> The Solar energy production is growing quickly for the global demand of renewa-ble one, decrease the dependence on fossil fuels. However, disposing of used pho-tovoltaic (PV) panels will be a serious environmental challenge in the future dec-ades since the solar panels would eventually become a source of hazardous waste. The potential of waste solar panel glass to generate porous glass material with the addition of CaCO3 and water glass was assessed in this study. The porous glass firing temperature range, from 830掳C - 910掳C, was determined using a simu-lation of heating microscope technique. The created samples have the smallest volumetric density of 0.25 g/cm3 and the largest water absorption of 303.08 wt.%. This indicates that the image analysis of samples during the heating process could be used to identify the firing temperature for better foaming, which was favorably indicated by specific physicochemical parameters. The created glass-foam mate-rials with an apparent porosity up to 81.49% could be used as a water-retaining medium in hydroponic and aquaponic systems <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14499v1-abstract-full').style.display = 'none'; document.getElementById('2303.14499v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02937">arXiv:2212.02937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02937">pdf</a>, <a href="https://arxiv.org/format/2212.02937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.245146">10.1103/PhysRevB.107.245146 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Virasoro Generators in the Fibonacci Model Tensor Network -- Tackling Finite Size Effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+X">Xiangdong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Ruoshui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Ce Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02937v2-abstract-short" style="display: inline;"> In this paper, we extend the method implementing Virasoro operators in a tensor network we proposed in arXiv:2205.04500 and test it on the Fibonacci model, which is known to suffer from far more finite size effects. To pick up the &#34;seed&#34; state that would flow to the stress tensor in the thermodynamic limit, we make use of the topological idempotent that projects the transfer matrix to the trivial&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02937v2-abstract-full').style.display = 'inline'; document.getElementById('2212.02937v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02937v2-abstract-full" style="display: none;"> In this paper, we extend the method implementing Virasoro operators in a tensor network we proposed in arXiv:2205.04500 and test it on the Fibonacci model, which is known to suffer from far more finite size effects. To pick up the &#34;seed&#34; state that would flow to the stress tensor in the thermodynamic limit, we make use of the topological idempotent that projects the transfer matrix to the trivial sector. Combined with an optimization method, the seed state can be identified. We demonstrate that the descendant states in the Fibonacci model can be correctly generated with this approximate stress tensor, giving further evidence that the method applies more generally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02937v2-abstract-full').style.display = 'none'; document.getElementById('2212.02937v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+7 pages, 3+5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12127">arXiv:2210.12127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.12127">pdf</a>, <a href="https://arxiv.org/format/2210.12127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> CFT$_D$ from TQFT$_{D+1}$ via Holographic Tensor Network, and Precision Discretisation of CFT$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Haochen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+K">Kaixin Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Ce Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Ruoshui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+X">Xiangdong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12127v3-abstract-short" style="display: inline;"> We show that the path-integral of conformal field theories in $D$ dimensions (CFT$_D$) can be constructed by solving for eigenstates of an RG operator following from the Turaev-Viro formulation of a topological field theory in $D+1$ dimensions (TQFT$_{D+1}$), explicitly realising the holographic sandwich relation between a symmetric theory and a TQFT. Generically, exact eigenstates corresponding t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12127v3-abstract-full').style.display = 'inline'; document.getElementById('2210.12127v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12127v3-abstract-full" style="display: none;"> We show that the path-integral of conformal field theories in $D$ dimensions (CFT$_D$) can be constructed by solving for eigenstates of an RG operator following from the Turaev-Viro formulation of a topological field theory in $D+1$ dimensions (TQFT$_{D+1}$), explicitly realising the holographic sandwich relation between a symmetric theory and a TQFT. Generically, exact eigenstates corresponding to symmetric-TQFT$_D$ follow from Frobenius algebra in the TQFT$_{D+1}$. For $D=2$, we constructed eigenstates that produce 2D rational CFT path-integral exactly, which, curiously connects a continuous field theoretic path-integral with the Turaev-Viro state sum. We also devise and illustrate numerical methods for $D=2,3$ to search for CFT$_D$ as phase transition points between symmetric TQFT$_D$. Finally since the RG operator is in fact an exact analytic holographic tensor network, we compute ``bulk-boundary&#39;&#39; correlator and compare with the AdS/CFT dictionary at $D=2$. Promisingly, they are numerically compatible given our accuracy, although further works will be needed to explore the precise connection to the AdS/CFT correspondence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12127v3-abstract-full').style.display = 'none'; document.getElementById('2210.12127v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 46 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.07865">arXiv:2208.07865</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.07865">pdf</a>, <a href="https://arxiv.org/ps/2208.07865">ps</a>, <a href="https://arxiv.org/format/2208.07865">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Category Theory">math.CT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.4310/ATMP.2023.v27.n2.a5">10.4310/ATMP.2023.v27.n2.a5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> String Condensations in 3+1D and Lagrangian Algebras </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jiaheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+J">Jia-Qi Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhi-Hao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+L">Liang Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Y">Yin Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.07865v2-abstract-short" style="display: inline;"> We present three Lagrangian algebras in the modular 2-category associated to the 3+1D $\mathbb{Z}_2$ topological order and discuss their physical interpretations, connecting algebras with gapped boundary conditions, and interestingly, maps (braided autoequivalences) exchanging algebras with bulk domain walls. A Lagrangian algebra, together with its modules and local modules, encapsulates detailed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07865v2-abstract-full').style.display = 'inline'; document.getElementById('2208.07865v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.07865v2-abstract-full" style="display: none;"> We present three Lagrangian algebras in the modular 2-category associated to the 3+1D $\mathbb{Z}_2$ topological order and discuss their physical interpretations, connecting algebras with gapped boundary conditions, and interestingly, maps (braided autoequivalences) exchanging algebras with bulk domain walls. A Lagrangian algebra, together with its modules and local modules, encapsulates detailed physical data of strings condensing at a gapped boundary. In particular, the condensed strings can terminate at boundaries in non-trivial ways. This phenomenon has no lower dimensional analogue and corresponds to novel mathematical structures associated to higher algebras. We provide a layered construction and also explicit lattice realizations of these boundaries and illustrate the correspondence between physics and mathematics of these boundary conditions. This is a first detailed study of the mathematics of Lagrangian algebras in modular 2-categories and their corresponding physics, that brings together rich phenomena of string condensations, gapped boundaries and domain walls in 3+1D topological orders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07865v2-abstract-full').style.display = 'none'; document.getElementById('2208.07865v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+17 pages, 16 figures. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Theor. Math. Phys. Volume 27, Number 2, 583--622, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04500">arXiv:2205.04500</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.04500">pdf</a>, <a href="https://arxiv.org/format/2205.04500">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.115116">10.1103/PhysRevB.106.115116 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Virasoro and Kac-Moody algebra in generic tensor network representations of 2d critical lattice partition functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Ruoshui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+X">Xiangdong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Ce Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04500v2-abstract-short" style="display: inline;"> In this paper, we propose a general implementation of the Virasoro generators and Kac-Moody currents in generic tensor network representations of 2-dimensional critical lattice models. Our proposal works even when a quantum Hamiltonian of the lattice model is not available, which is the case in many numerical computations involving numerical blockings. We tested our proposal on the 2d Ising model,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04500v2-abstract-full').style.display = 'inline'; document.getElementById('2205.04500v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04500v2-abstract-full" style="display: none;"> In this paper, we propose a general implementation of the Virasoro generators and Kac-Moody currents in generic tensor network representations of 2-dimensional critical lattice models. Our proposal works even when a quantum Hamiltonian of the lattice model is not available, which is the case in many numerical computations involving numerical blockings. We tested our proposal on the 2d Ising model, and also the dimer model, which works to high accuracy even with a fairly small system size. Our method makes use of eigenstates of a small cylinder to generate descendant states in a larger cylinder, suggesting some intricate algebraic relations between lattice of different sizes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04500v2-abstract-full').style.display = 'none'; document.getElementById('2205.04500v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+11 pages, 5+4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.07541">arXiv:2112.07541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.07541">pdf</a>, <a href="https://arxiv.org/format/2112.07541">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2022)106">10.1007/JHEP04(2022)106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Information propagation in a non-local model with emergent locality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+K">Kaixin Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.07541v3-abstract-short" style="display: inline;"> In this paper, we revisit a &#34;relatively local&#34; model proposed in arXiv:1811.07241, where locality and dimensionality of space only emerges from the entanglement structure of the state the system is in. Various quantities such as butterfly velocity/ entanglement speed can be defined similarly, at least in the regime where locality is well defined and a light cone structure emerges in the correlatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07541v3-abstract-full').style.display = 'inline'; document.getElementById('2112.07541v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.07541v3-abstract-full" style="display: none;"> In this paper, we revisit a &#34;relatively local&#34; model proposed in arXiv:1811.07241, where locality and dimensionality of space only emerges from the entanglement structure of the state the system is in. Various quantities such as butterfly velocity/ entanglement speed can be defined similarly, at least in the regime where locality is well defined and a light cone structure emerges in the correlation between sites. We find that the relations observed between them in local models arXiv:1908.06993 are not respected. In particular, we conjecture that the hierarchy of the interaction over different distances provides different &#34;layers&#34; of light-cones. When long range interactions are sufficiently suppressed, the effective light cones are dominated by linear behaviors with little remnant of non-locality. This could potentially be used as a physical smoking gun for emergent locality in non-local models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07541v3-abstract-full').style.display = 'none'; document.getElementById('2112.07541v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Slightly revised abstract, section 2, section 4.2 and discussion</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06145">arXiv:2109.06145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.06145">pdf</a>, <a href="https://arxiv.org/format/2109.06145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2022)026">10.1007/JHEP03(2022)026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anyon Condensation: Coherent states, Symmetry Enriched Topological Phases, Goldstone Theorem, and Dynamical Rearrangement of Symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yuting Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zichang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yidun Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06145v1-abstract-short" style="display: inline;"> Although the mathematics of anyon condensation in topological phases has been studied intensively in recent years, a proof of its physical existence is tantamount to constructing an effective Hamiltonian theory. In this paper, we concretely establish the physical foundation of anyon condensation by building the effective Hamiltonian and the Hilbert space, in which we explicitly construct the vacuu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06145v1-abstract-full').style.display = 'inline'; document.getElementById('2109.06145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06145v1-abstract-full" style="display: none;"> Although the mathematics of anyon condensation in topological phases has been studied intensively in recent years, a proof of its physical existence is tantamount to constructing an effective Hamiltonian theory. In this paper, we concretely establish the physical foundation of anyon condensation by building the effective Hamiltonian and the Hilbert space, in which we explicitly construct the vacuum of the condensed phase as the coherent states that are the eigenstates of the creation operators that create the condensate anyons. Along with this construction, which is analogous to Laughlin&#39;s construction of wavefunctions of fractional quantum hall states, we generalize the Goldstone theorem in the usual spontaneous symmetry breaking paradigm to the case of anyon condensation. We then prove that the condensed phase is a symmetry enriched (protected) topological phase by directly constructing the corresponding symmetry transformations, which can be considered as a generalization of the Bogoliubov transformation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06145v1-abstract-full').style.display = 'none'; document.getElementById('2109.06145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. High Energ. Phys. 2022, 26 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.05730">arXiv:2108.05730</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.05730">pdf</a>, <a href="https://arxiv.org/format/2108.05730">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.065009">10.1103/PhysRevD.105.065009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galois conjugates of String-net Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chao-Yi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lao%2C+B">Bing-Xin Lao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xin-Yang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.05730v3-abstract-short" style="display: inline;"> We revisit a class of non-Hermitian topological models that are Galois conjugates of their Hermitian counter parts. Particularly, these are Galois conjugates of unitary string-net models. We demonstrate these models necessarily have real spectra, and that topological numbers are recovered as matrix elements of operators evaluated in appropriate bi-orthogonal basis, that we conveniently reformulate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05730v3-abstract-full').style.display = 'inline'; document.getElementById('2108.05730v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.05730v3-abstract-full" style="display: none;"> We revisit a class of non-Hermitian topological models that are Galois conjugates of their Hermitian counter parts. Particularly, these are Galois conjugates of unitary string-net models. We demonstrate these models necessarily have real spectra, and that topological numbers are recovered as matrix elements of operators evaluated in appropriate bi-orthogonal basis, that we conveniently reformulate as a concomitant Hilbert space here. We also compute in the bi-orthogonal basis thetopological entanglement entropy, demonstrating that its real part is related to the quantum dimension of the topological order. While we focus mostly on the Yang-Lee model, the results in the paper apply generally to Galois conjugates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05730v3-abstract-full').style.display = 'none'; document.getElementById('2108.05730v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 2 figures, Chen and Lao are co-first authors of the manuscript</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.12024">arXiv:2102.12024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.12024">pdf</a>, <a href="https://arxiv.org/format/2102.12024">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP09(2021)097">10.1007/JHEP09(2021)097 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bending the Bruhat-Tits Tree II: the p-adic BTZ Black hole and Local Diffeomorphism on the Bruhat-Tits Tree </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xirong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.12024v2-abstract-short" style="display: inline;"> In this sequel to [1], we take up a second approach in bending the Bruhat-Tits tree. Inspired by the BTZ black hole connection, we demonstrate that one can transplant it to the Bruhat-Tits tree, at the cost of defining a novel &#34;exponential function&#34; on the p-adic numbers that is hinted by the BT tree. We demonstrate that the PGL$(2,Q_p)$ Wilson lines [2] evaluated on this analogue BTZ connection&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12024v2-abstract-full').style.display = 'inline'; document.getElementById('2102.12024v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.12024v2-abstract-full" style="display: none;"> In this sequel to [1], we take up a second approach in bending the Bruhat-Tits tree. Inspired by the BTZ black hole connection, we demonstrate that one can transplant it to the Bruhat-Tits tree, at the cost of defining a novel &#34;exponential function&#34; on the p-adic numbers that is hinted by the BT tree. We demonstrate that the PGL$(2,Q_p)$ Wilson lines [2] evaluated on this analogue BTZ connection is indeed consistent with correlation functions of a CFT at finite temperatures. We demonstrate that these results match up with the tensor network reconstruction of the p-adic AdS/CFT with a different cutoff surface at the asymptotic boundary, and give explicit coordinate transformations that relate the analogue p-adic BTZ background and the &#34;pure&#34; Bruhat-Tits tree background. This is an interesting demonstration that despite the purported lack of descendents in p-adic CFTs, there exists non-trivial local Weyl transformations in the CFT corresponding to diffeomorphism in the Bruhat-Tits tree. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12024v2-abstract-full').style.display = 'none'; document.getElementById('2102.12024v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.12023">arXiv:2102.12023</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.12023">pdf</a>, <a href="https://arxiv.org/format/2102.12023">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2021)094">10.1007/JHEP06(2021)094 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bending the Bruhat-Tits Tree I:Tensor Network and Emergent Einstein Equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xirong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.12023v3-abstract-short" style="display: inline;"> As an extended companion paper to [1], we elaborate in detail how the tensor network construction of a p-adic CFT encodes geometric information of a dual geometry even as we deform the CFT away from the fixed point by finding a way to assign distances to the tensor network. In fact we demonstrate that a unique (up to normalizations) emergent graph Einstein equation is satisfied by the geometric da&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12023v3-abstract-full').style.display = 'inline'; document.getElementById('2102.12023v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.12023v3-abstract-full" style="display: none;"> As an extended companion paper to [1], we elaborate in detail how the tensor network construction of a p-adic CFT encodes geometric information of a dual geometry even as we deform the CFT away from the fixed point by finding a way to assign distances to the tensor network. In fact we demonstrate that a unique (up to normalizations) emergent graph Einstein equation is satisfied by the geometric data encoded in the tensor network, and the graph Einstein tensor automatically recovers the known proposal in the mathematics literature, at least perturbatively order by order in the deformation away from the pure Bruhat-Tits Tree geometry dual to pure CFTs. Once the dust settles, it becomes apparent that the assigned distance indeed corresponds to some Fisher metric between quantum states encoding expectation values of bulk fields in one higher dimension. This is perhaps a first quantitative demonstration that a concrete Einstein equation can be extracted directly from the tensor network, albeit in the simplified setting of the p-adic AdS/CFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12023v3-abstract-full').style.display = 'none'; document.getElementById('2102.12023v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.12022">arXiv:2102.12022</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.12022">pdf</a>, <a href="https://arxiv.org/format/2102.12022">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.221602">10.1103/PhysRevLett.127.221602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent Einstein Equation in p-adic CFT Tensor Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Lin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xirong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.12022v2-abstract-short" style="display: inline;"> We take the tensor network describing explicit p-adic CFT partition functions proposed in [1], and considered boundary conditions of the network describing a deformed Bruhat-Tits (BT) tree geometry. We demonstrate that this geometry satisfies an emergent graph Einstein equation in a unique way that is consistent with the bulk effective matter action encoding the same correlation function as the te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12022v2-abstract-full').style.display = 'inline'; document.getElementById('2102.12022v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.12022v2-abstract-full" style="display: none;"> We take the tensor network describing explicit p-adic CFT partition functions proposed in [1], and considered boundary conditions of the network describing a deformed Bruhat-Tits (BT) tree geometry. We demonstrate that this geometry satisfies an emergent graph Einstein equation in a unique way that is consistent with the bulk effective matter action encoding the same correlation function as the tensor network, at least in the perturbative limit order by order away from the pure BT tree. Moreover, the (perturbative) definition of the graph curvature in the Mathematics literature naturally emerges from the consistency requirements of the emergent Einstein equation. This could provide new insights into the understanding of gravitational dynamics potentially encoded in more general tensor networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12022v2-abstract-full').style.display = 'none'; document.getElementById('2102.12022v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 + 2 pages, 3 figures, added comments and corrected typos</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.03674">arXiv:2101.03674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.03674">pdf</a>, <a href="https://arxiv.org/format/2101.03674">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Continuous entanglement renormalization on the circle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vidal%2C+G">Guifre Vidal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.03674v3-abstract-short" style="display: inline;"> The continuous multi-scale entanglement renormalization ansatz (cMERA) is a variational class of states for quantum fields. As originally formulated, the cMERA applies to infinite systems only. In this paper we generalize the cMERA formalism to a finite circle, which we achieve by wrapping the action of the so-called entangler around the circle. This allows us to transform a cMERA on the line into&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03674v3-abstract-full').style.display = 'inline'; document.getElementById('2101.03674v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.03674v3-abstract-full" style="display: none;"> The continuous multi-scale entanglement renormalization ansatz (cMERA) is a variational class of states for quantum fields. As originally formulated, the cMERA applies to infinite systems only. In this paper we generalize the cMERA formalism to a finite circle, which we achieve by wrapping the action of the so-called entangler around the circle. This allows us to transform a cMERA on the line into a cMERA on the circle. In addition, in the case of a Gaussian cMERA for non-interacting quantum fields, the method of images allow us to prove the following result: if on the line a cMERA state is a good approximation to a ground state of a local QFT Hamiltonian, then (under mild assumptions on their correlation functions) the resulting cMERA on a circle is also a good approximation to the ground state of the same QFT Hamiltonian on the circle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03674v3-abstract-full').style.display = 'none'; document.getElementById('2101.03674v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 8 Figures, 14 pages of Appendices, added footnote and references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.01510">arXiv:2011.01510</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.01510">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-25721-1">10.1038/s41467-021-25721-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure induced superconductivity in MnSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+T+L">T. L. Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C+H">C. H. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+L+Z">L. Z. Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ou%2C+M+N">M. N. Ou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+Y">Y. Y. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M+K">M. K. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huyan%2C+S+Y">S. Y. Huyan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+C+W">C. W. Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P+J">P. J. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+T+K">T. K. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.01510v1-abstract-short" style="display: inline;"> The rich phenomena in the FeSe and related compounds have attracted great interests as it provides fertile material to gain further insight into the mechanism of high temperature superconductivity. A natural follow-up work was to look into the possibility of superconductivity in MnSe. It was shown that MnP becomes superconducting with Tc ~ 1 K under pressure. We demonstrated in this work that high&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01510v1-abstract-full').style.display = 'inline'; document.getElementById('2011.01510v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.01510v1-abstract-full" style="display: none;"> The rich phenomena in the FeSe and related compounds have attracted great interests as it provides fertile material to gain further insight into the mechanism of high temperature superconductivity. A natural follow-up work was to look into the possibility of superconductivity in MnSe. It was shown that MnP becomes superconducting with Tc ~ 1 K under pressure. We demonstrated in this work that high pressure can effectively suppress the complex magnetic characters of MnSe crystal when observed at ambient condition. MnSe under pressure is found to undergo several structural transformations: the cubic phase first partially transforms to the hexagonal phase at about 12 GPa, the crystal exhibits the coexistence of cubic, hexagonal and orthorhombic phases from 16 GPa to 30 GPa, and above 30 GPa the crystal shows a single orthorhombic phase. Superconductivity with Tc ~ 5 K was first observed at pressure ~12 GPa by magnetic measurements (~16 GPa by resistive measurements). The highest Tc is ~ 9 K (magnetic result) at ~35 GPa. Our observations suggest the observed superconductivity may closely relate to the pressure-induced structural change. However, the interface between the metallic and insulating boundaries may also play an important role to the pressure induced superconductivity in MnSe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01510v1-abstract-full').style.display = 'none'; document.getElementById('2011.01510v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures. TLH, CHH and LZD contribute equally to this work</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.10562">arXiv:2007.10562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.10562">pdf</a>, <a href="https://arxiv.org/format/2007.10562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2021)171">10.1007/JHEP02(2021)171 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A (Dummy&#39;s) Guide to Working with Gapped Boundaries via (Fermion) Condensation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+J">Jiaqi Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Ce Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chaoyi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.10562v3-abstract-short" style="display: inline;"> We study gapped boundaries characterized by &#34;fermionic condensates&#34; in 2+1 d topological order. Mathematically, each of these condensates can be described by a super commutative Frobenius algebra. We systematically obtain the species of excitations at the gapped boundary/ junctions, and study their endomorphisms (ability to trap a Majorana fermion) and fusion rules, and generalized the defect Verl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.10562v3-abstract-full').style.display = 'inline'; document.getElementById('2007.10562v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.10562v3-abstract-full" style="display: none;"> We study gapped boundaries characterized by &#34;fermionic condensates&#34; in 2+1 d topological order. Mathematically, each of these condensates can be described by a super commutative Frobenius algebra. We systematically obtain the species of excitations at the gapped boundary/ junctions, and study their endomorphisms (ability to trap a Majorana fermion) and fusion rules, and generalized the defect Verlinde formula to a twisted version. We illustrate these results with explicit examples. We also connect these results with topological defects in super modular invariant CFTs. To render our discussion self-contained, we provide a pedagogical review of relevant mathematical results, so that physicists without prior experience in tensor category should be able to pick them up and apply them readily <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.10562v3-abstract-full').style.display = 'none'; document.getElementById('2007.10562v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages main text and 22 pages appendix, mathematica code for computing 6j symbols of condensed phase included; correct some typos and equations; correct some typos and rearrange the position of some figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.07700">arXiv:1908.07700</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.07700">pdf</a>, <a href="https://arxiv.org/format/1908.07700">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2019)168">10.1007/JHEP11(2019)168 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ishibashi States, Topological Orders with Boundaries and Topological Entanglement Entropy II -- Cutting through the boundary </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Ce Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+J">Jiaqi Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.07700v1-abstract-short" style="display: inline;"> We compute the entanglement entropy in a 2+1 dimensional topological order in the presence of gapped boundaries. Specifically, we consider entanglement cuts that cut through the boundaries. We argue that based on general considerations of the bulk-boundary correspondence, the &#34;twisted characters&#34; feature in the Renyi entropy, and the topological entanglement entropy is controlled by a &#34;half-linkin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07700v1-abstract-full').style.display = 'inline'; document.getElementById('1908.07700v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.07700v1-abstract-full" style="display: none;"> We compute the entanglement entropy in a 2+1 dimensional topological order in the presence of gapped boundaries. Specifically, we consider entanglement cuts that cut through the boundaries. We argue that based on general considerations of the bulk-boundary correspondence, the &#34;twisted characters&#34; feature in the Renyi entropy, and the topological entanglement entropy is controlled by a &#34;half-linking number&#34; in direct analogy to the role played by the S-modular matrix in the absence of boundaries. We also construct a class of boundary states based on the half-linking numbers that provides a &#34;closed-string&#34; picture complementing an &#34;open-string&#34; computation of the entanglement entropy. These boundary states do not correspond to diagonal RCFT&#39;s in general. These are illustrated in specific Abelian Chern-Simons theories with appropriate boundary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07700v1-abstract-full').style.display = 'none'; document.getElementById('1908.07700v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.08285">arXiv:1901.08285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.08285">pdf</a>, <a href="https://arxiv.org/format/1901.08285">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.051602">10.1103/PhysRevLett.123.051602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Defect Verlinde Formula </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Ce Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.08285v1-abstract-short" style="display: inline;"> We revisit the problem of boundary excitations at a topological boundary or junction defects between topological boundaries in non-chiral bosonic topological orders in 2+1 dimensions. Based on physical considerations, we derive a formula that relates the fusion rules of the boundary excitations, and the &#34;half-linking&#34; number between condensed anyons and confined boundary excitations. This formula&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08285v1-abstract-full').style.display = 'inline'; document.getElementById('1901.08285v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.08285v1-abstract-full" style="display: none;"> We revisit the problem of boundary excitations at a topological boundary or junction defects between topological boundaries in non-chiral bosonic topological orders in 2+1 dimensions. Based on physical considerations, we derive a formula that relates the fusion rules of the boundary excitations, and the &#34;half-linking&#34; number between condensed anyons and confined boundary excitations. This formula is a direct analogue of the Verlinde formula. We also demonstrate how these half-linking numbers can be computed in explicit Abelian and non-Abelian examples. As a fundamental property of topological orders and their allowed boundaries, this should also find applications in finding suitable platforms realizing quantum computing devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08285v1-abstract-full').style.display = 'none'; document.getElementById('1901.08285v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 051602 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.08238">arXiv:1901.08238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.08238">pdf</a>, <a href="https://arxiv.org/format/1901.08238">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2019)017">10.1007/JHEP04(2019)017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ishibashi States, Topological Orders with Boundaries and Topological Entanglement Entropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+J">Jiaqi Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+C">Ce Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.08238v2-abstract-short" style="display: inline;"> In this paper, we study gapped edges/interfaces in a 2+1 dimensional bosonic topological order and investigate how the topological entanglement entropy is sensitive to them. We present a detailed analysis of the Ishibashi states describing these edges/interfaces making use of the physics of anyon condensation in the context of Abelian Chern-Simons theory, which is then generalized to more non-Abel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08238v2-abstract-full').style.display = 'inline'; document.getElementById('1901.08238v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.08238v2-abstract-full" style="display: none;"> In this paper, we study gapped edges/interfaces in a 2+1 dimensional bosonic topological order and investigate how the topological entanglement entropy is sensitive to them. We present a detailed analysis of the Ishibashi states describing these edges/interfaces making use of the physics of anyon condensation in the context of Abelian Chern-Simons theory, which is then generalized to more non-Abelian theories whose edge RCFTs are known. Then we apply these results to computing the entanglement entropy of different topological orders. We consider cases where the system resides on a cylinder with gapped boundaries and that the entanglement cut is parallel to the boundary. We also consider cases where the entanglement cut coincides with the interface on a cylinder. In either cases, we find that the topological entanglement entropy is determined by the anyon condensation pattern that characterizes the interface/boundary. We note that conditions are imposed on some non-universal parameters in the edge theory to ensure existence of the conformal interface, analogous to requiring rational ratios of radii of compact bosons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08238v2-abstract-full').style.display = 'none'; document.getElementById('1901.08238v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 5 figure; Added reference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.05772">arXiv:1806.05772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.05772">pdf</a>, <a href="https://arxiv.org/format/1806.05772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-10030-5">10.1038/s41467-019-10030-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Network analysis of synthesizable materials discovery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aykol%2C+M">Muratahan Aykol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hegde%2C+V+I">Vinay I. Hegde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Linda Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suram%2C+S">Santosh Suram</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herring%2C+P">Patrick Herring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolverton%2C+C">Chris Wolverton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hummelsh%C3%B8j%2C+J+S">Jens S. Hummelsh酶j</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.05772v3-abstract-short" style="display: inline;"> Assessing the synthesizability of inorganic materials is a grand challenge for accelerating their discovery using computations. Synthesis of a material is a complex process that depends not only on its thermodynamic stability with respect to others, but also on factors from kinetics, to advances in synthesis techniques, to the availability of precursors. This complexity makes the development of a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.05772v3-abstract-full').style.display = 'inline'; document.getElementById('1806.05772v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.05772v3-abstract-full" style="display: none;"> Assessing the synthesizability of inorganic materials is a grand challenge for accelerating their discovery using computations. Synthesis of a material is a complex process that depends not only on its thermodynamic stability with respect to others, but also on factors from kinetics, to advances in synthesis techniques, to the availability of precursors. This complexity makes the development of a general theory or first-principles approach to synthesizability currently impractical. Here we show how an alternative pathway to predicting synthesizability emerges from the dynamics of the materials stability network: a scale-free network constructed by combining the convex free-energy surface of inorganic materials computed by high-throughput density functional theory and their experimental discovery timelines extracted from citations. The time-evolution of the underlying network properties allows us to use machine-learning to predict the likelihood that hypothetical, computer-generated materials will be amenable to successful experimental synthesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.05772v3-abstract-full').style.display = 'none'; document.getElementById('1806.05772v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 10, 2018 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.03071">arXiv:1805.03071</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.03071">pdf</a>, <a href="https://arxiv.org/format/1805.03071">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.086007">10.1103/PhysRevD.99.086007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Notes on the Causal Structure in a Tensor Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhattacharyya%2C+A">Arpan Bhattacharyya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+L">Long Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ning%2C+S">Sirui Ning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.03071v3-abstract-short" style="display: inline;"> In this paper we attempt to understand Lorentzian tensor networks, as a preparation for constructing tensor networks that can describe more exotic backgrounds such as black holes. To define notions of reference frames and switching of reference frames on a tensor network, we will borrow ideas from the algebraic quantum field theory literature. With these definitions, we construct simple examples o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.03071v3-abstract-full').style.display = 'inline'; document.getElementById('1805.03071v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.03071v3-abstract-full" style="display: none;"> In this paper we attempt to understand Lorentzian tensor networks, as a preparation for constructing tensor networks that can describe more exotic backgrounds such as black holes. To define notions of reference frames and switching of reference frames on a tensor network, we will borrow ideas from the algebraic quantum field theory literature. With these definitions, we construct simple examples of Lorentzian tensor networks and solve the spectrum for a choice of ``inertial frame&#39;&#39; based on Gaussian models of fermions and integrable models. In particular, the tensor network can be viewed as a periodically driven Floquet system, that by-pass the ``doubling problem&#39;&#39; and gives rise to fermions with exactly linear dispersion relations. We will find that a boost operator connecting different inertial frames, and notions of ``Rindler observers&#39;&#39; can be defined, and that important physics in Lorentz invariant QFT, such as the Unruh effect, can be captured by such skeleton of spacetime. We find interesting subtleties when the same approach is directly applied to bosons -- the operator algebra contains commutators that take the wrong sign -- resembling bosons behind horizons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.03071v3-abstract-full').style.display = 'none'; document.getElementById('1805.03071v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The typos are fixed, a shorter version with the new title &#34;Emergent Lorentz symmetry and the Unruh effect in a Lorentzian Fermionic Tensor Network&#34; has been published in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> YITP-18-40 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 086007 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.09093">arXiv:1804.09093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.09093">pdf</a>, <a href="https://arxiv.org/format/1804.09093">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.2.074202">10.1103/PhysRevMaterials.2.074202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mechanical control of crystal symmetry and superconductivity in Weyl semimetal MoTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Heikes%2C+C">Colin Heikes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+I">I-Lin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Metz%2C+T">Tristin Metz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eckberg%2C+C">Chris Eckberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neves%2C+P">Paul Neves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Linda Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piccoli%2C+P">Phil Piccoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leao%2C+J">Juscelino Leao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paglione%2C+J">Johnpierre Paglione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yildirim%2C+T">Taner Yildirim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Butch%2C+N+P">Nicholas P. Butch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ratcliff%2C+W">William Ratcliff II</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.09093v2-abstract-short" style="display: inline;"> The non-centrosymmetric Weyl semimetal candidate, MoTe$_2$ was investigated through neutron diffraction and transport measurements at pressures up to 1.5 GPa and at temperatures down to 40 mK. Centrosymmetric and non-centrosymmetric structural phases were found to coexist in the superconducting state. Density Functional Theory (DFT) calculations reveal that the strength of the electron-phonon coup&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.09093v2-abstract-full').style.display = 'inline'; document.getElementById('1804.09093v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.09093v2-abstract-full" style="display: none;"> The non-centrosymmetric Weyl semimetal candidate, MoTe$_2$ was investigated through neutron diffraction and transport measurements at pressures up to 1.5 GPa and at temperatures down to 40 mK. Centrosymmetric and non-centrosymmetric structural phases were found to coexist in the superconducting state. Density Functional Theory (DFT) calculations reveal that the strength of the electron-phonon coupling is similar for both crystal structures. Furthermore, it was found that by controlling non-hydrostatic components of stress, it is possible to mechanically control the ground state crystal structure. This allows for the tuning of crystal symmetry in the superconducting phase from centrosymmetric to non-centrosymmetric. DFT calculations support this strain control of crystal structure. This mechanical control of crystal symmetry gives a route to tuning the band topology of MoTe$_2$ and possibly the topology of the superconducting state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.09093v2-abstract-full').style.display = 'none'; document.getElementById('1804.09093v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures, supplement included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 2, 074202 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.05725">arXiv:1804.05725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.05725">pdf</a>, <a href="https://arxiv.org/format/1804.05725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2018)113">10.1007/JHEP06(2018)113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entanglement Entropy of Topological Orders with Boundaries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chaoyi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yingcheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yidun Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.05725v2-abstract-short" style="display: inline;"> In this paper we explore how non trivial boundary conditions could influence the entanglement entropy in a topological order in 2+1 dimensions. Specifically we consider the special class of topological orders describable by the quantum double. We will find very interesting dependence of the entanglement entropy on the boundary conditions particularly when the system is non-Abelian. Along the way,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.05725v2-abstract-full').style.display = 'inline'; document.getElementById('1804.05725v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.05725v2-abstract-full" style="display: none;"> In this paper we explore how non trivial boundary conditions could influence the entanglement entropy in a topological order in 2+1 dimensions. Specifically we consider the special class of topological orders describable by the quantum double. We will find very interesting dependence of the entanglement entropy on the boundary conditions particularly when the system is non-Abelian. Along the way, we demonstrate a streamlined procedure to compute the entanglement entropy, which is particularly efficient when dealing with systems with boundaries. We also show how this method efficiently reproduces all the known results in the presence of anyonic excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.05725v2-abstract-full').style.display = 'none'; document.getElementById('1804.05725v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP06(2018)113 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.04538">arXiv:1801.04538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.04538">pdf</a>, <a href="https://arxiv.org/ps/1801.04538">ps</a>, <a href="https://arxiv.org/format/1801.04538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP05(2018)008">10.1007/JHEP05(2018)008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linking Entanglement and Discrete Anomaly </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yong-Shi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yang Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.04538v1-abstract-short" style="display: inline;"> In $3d$ Chern-Simons theory, there is a discrete one-form symmetry, whose symmetry group is isomorphic to the center of the gauge group. We study the &#39;t Hooft anomaly associated to this discrete one-form symmetry in theories with generic gauge groups, $A,B,C,D$-types. We propose to detect the discrete anomaly by computing the Hopf state entanglement in the subspace spanned by the symmetry generato&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.04538v1-abstract-full').style.display = 'inline'; document.getElementById('1801.04538v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.04538v1-abstract-full" style="display: none;"> In $3d$ Chern-Simons theory, there is a discrete one-form symmetry, whose symmetry group is isomorphic to the center of the gauge group. We study the &#39;t Hooft anomaly associated to this discrete one-form symmetry in theories with generic gauge groups, $A,B,C,D$-types. We propose to detect the discrete anomaly by computing the Hopf state entanglement in the subspace spanned by the symmetry generators and develop a systematical way based on the truncated modular S matrix. We check our proposal for many examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.04538v1-abstract-full').style.display = 'none'; document.getElementById('1801.04538v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">1+15 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1805:008,2018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.01764">arXiv:1711.01764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.01764">pdf</a>, <a href="https://arxiv.org/format/1711.01764">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.224501">10.1103/PhysRevB.97.224501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First-principles study of magnetism, lattice dynamics, and superconductivity in LaFeSiH$_x$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Linda Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yildirim%2C+T">Taner Yildirim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.01764v1-abstract-short" style="display: inline;"> The structural, electronic, magnetic, and vibrational properties of LaFeSiH$_x$ for $x$ between 0 and 1 are investigated using density functional calculations. We find that the electronic and magnetic properties are strongly controlled by the hydrogen concentration $x$ in LaFeSiH$_x$. While fully hydrogenated LaFeSiH has a striped antiferromagnetic ground state, the underdoped LaFeSiH$_x$ for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.01764v1-abstract-full').style.display = 'inline'; document.getElementById('1711.01764v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.01764v1-abstract-full" style="display: none;"> The structural, electronic, magnetic, and vibrational properties of LaFeSiH$_x$ for $x$ between 0 and 1 are investigated using density functional calculations. We find that the electronic and magnetic properties are strongly controlled by the hydrogen concentration $x$ in LaFeSiH$_x$. While fully hydrogenated LaFeSiH has a striped antiferromagnetic ground state, the underdoped LaFeSiH$_x$ for $x\leq0.75$ is not magnetic within the virtual crystal approximation or with explicit doping of supercells. The antiferromagnetic configuration breaks the symmetry of Fe $d$ orbitals and increases electron-phonon coupling up to $50\%$, especially for modes in the 20-50 meV range that are associated with Fe atomic movement. We find competing nearest and next-nearest neighbor exchange interactions and significant spin-phonon coupling, qualitatively similar but smaller in magnitude compared those found in LaOFeAs superconductors. The superconducting $T_c$ for antiferromagnetic LaFeSiH$_x$, assuming conventional superconductivity via McMillan&#39;s equation, therefore is computed to be 2-10 K, in contrast to $T_c\approx0$ for the nonmagnetic material. We also predict that the LaFeSiH$_x$ could be a good proton conductor due to phase stability with a wide range of hydrogen concentration $x &lt; 1$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.01764v1-abstract-full').style.display = 'none'; document.getElementById('1711.01764v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 224501 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.09528">arXiv:1710.09528</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.09528">pdf</a>, <a href="https://arxiv.org/format/1710.09528">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2018)073">10.1007/JHEP03(2018)073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gauge choices and Entanglement Entropy of two dimensional lattice gauge fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.09528v2-abstract-short" style="display: inline;"> In this paper, we explore the question of how different gauge choices in a gauge theory affect the tensor product structure of the Hilbert space in configuration space. In particular, we study the Coulomb gauge and observe that the naive gauge potential degrees of freedom cease to be local operators as soon as we impose the Dirac brackets. We construct new local set of operators and compute the en&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09528v2-abstract-full').style.display = 'inline'; document.getElementById('1710.09528v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.09528v2-abstract-full" style="display: none;"> In this paper, we explore the question of how different gauge choices in a gauge theory affect the tensor product structure of the Hilbert space in configuration space. In particular, we study the Coulomb gauge and observe that the naive gauge potential degrees of freedom cease to be local operators as soon as we impose the Dirac brackets. We construct new local set of operators and compute the entanglement entropy according to this algebra in $2+1$ dimensions. We find that our proposal would lead to an entanglement entropy that behave very similar to a single scalar degree of freedom if we do not include further centers, but approaches that of a gauge field if we include non-trivial centers. We explore also the situation where the gauge field is Higgsed, and construct a local operator algebra that again requires some deformation. This should give us some insight into interpreting the entanglement entropy in generic gauge theories and perhaps also in gravitational theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.09528v2-abstract-full').style.display = 'none'; document.getElementById('1710.09528v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages,25 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1803 (2018) 073 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.05445">arXiv:1703.05445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.05445">pdf</a>, <a href="https://arxiv.org/format/1703.05445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP01(2018)139">10.1007/JHEP01(2018)139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tensor network and ($p$-adic) AdS/CFT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhattacharyya%2C+A">Arpan Bhattacharyya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Y">Yang Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.05445v3-abstract-short" style="display: inline;"> We use the tensor network living on the Bruhat-Tits tree to give a concrete realization of the recently proposed $p$-adic AdS/CFT correspondence (a holographic duality based on the $p$-adic number field $\mathbb{Q}_p$). Instead of assuming the $p$-adic AdS/CFT correspondence, we show how important features of AdS/CFT such as the bulk operator reconstruction and the holographic computation of bound&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.05445v3-abstract-full').style.display = 'inline'; document.getElementById('1703.05445v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.05445v3-abstract-full" style="display: none;"> We use the tensor network living on the Bruhat-Tits tree to give a concrete realization of the recently proposed $p$-adic AdS/CFT correspondence (a holographic duality based on the $p$-adic number field $\mathbb{Q}_p$). Instead of assuming the $p$-adic AdS/CFT correspondence, we show how important features of AdS/CFT such as the bulk operator reconstruction and the holographic computation of boundary correlators are automatically implemented in this tensor network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.05445v3-abstract-full').style.display = 'none'; document.getElementById('1703.05445v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">59 pages, 18 figures; v3: improved presentation, added figures and references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1801 (2018) 139 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.01611">arXiv:1703.01611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.01611">pdf</a>, <a href="https://arxiv.org/format/1703.01611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP10(2017)081">10.1007/JHEP10(2017)081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Instantons and Entanglement Entropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhattacharyya%2C+A">Arpan Bhattacharyya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Melby-Thompson%2C+C+M">Charles M. Melby-Thompson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.01611v2-abstract-short" style="display: inline;"> We would like to put the area law -- believed to by obeyed by entanglement entropies in the ground state of a local field theory -- to scrutiny in the presence of non-perturbative effects. We study instanton corrections to entanglement entropy in various models whose instanton effects are well understood, including $U(1)$ gauge theory in 2+1 dimensions and false vacuum decay in $蠁^4$ theory, and w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.01611v2-abstract-full').style.display = 'inline'; document.getElementById('1703.01611v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.01611v2-abstract-full" style="display: none;"> We would like to put the area law -- believed to by obeyed by entanglement entropies in the ground state of a local field theory -- to scrutiny in the presence of non-perturbative effects. We study instanton corrections to entanglement entropy in various models whose instanton effects are well understood, including $U(1)$ gauge theory in 2+1 dimensions and false vacuum decay in $蠁^4$ theory, and we demonstrate that the area law is indeed obeyed in these models. We also perform numerical computations for toy wavefunctions mimicking the theta vacuum of the (1+1)-dimensional Schwinger model. Our results indicate that such superpositions exhibit no more violation of the area law than the logarithmic behavior of a single Fermi surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.01611v2-abstract-full').style.display = 'none'; document.getElementById('1703.01611v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 4 figures, typos corrected, substantially revised, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP10(2017)081 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.06997">arXiv:1610.06997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.06997">pdf</a>, <a href="https://arxiv.org/format/1610.06997">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.085004">10.1103/PhysRevD.95.085004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Area Term of the Entanglement Entropy of a Supersymmetric $O(N)$ Vector Model in Three Dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yikun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yixu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.06997v1-abstract-short" style="display: inline;"> We studied the leading area term of the entanglement entropy of $\mathcal{N}=1$ supersymmetric $O(N)$ vector model in $2+1$ dimensions close to the line of second order phase transition in the large $N$ limit. We found that the area term is independent of the varying interaction coupling along the critical line, unlike what is expected in a perturbative theory. Along the way, we studied non-commut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.06997v1-abstract-full').style.display = 'inline'; document.getElementById('1610.06997v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.06997v1-abstract-full" style="display: none;"> We studied the leading area term of the entanglement entropy of $\mathcal{N}=1$ supersymmetric $O(N)$ vector model in $2+1$ dimensions close to the line of second order phase transition in the large $N$ limit. We found that the area term is independent of the varying interaction coupling along the critical line, unlike what is expected in a perturbative theory. Along the way, we studied non-commuting limits $n-1\to 0$ verses UV cutoff $r\to 0$ when evaluating the gap equation and found a match only when appropriate counter term is introduced and whose coupling is chosen to take its fixed point value. As a bonus, we also studied Fermionic Green&#39;s functions in the conical background. We made the observation of a map between the problem and the relativistic hydrogen atom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.06997v1-abstract-full').style.display = 'none'; document.getElementById('1610.06997v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 085004 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.02134">arXiv:1610.02134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.02134">pdf</a>, <a href="https://arxiv.org/format/1610.02134">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.024011">10.1103/PhysRevD.95.024011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Loop Quantum Gravity, Exact Holographic Mapping, and Holographic Entanglement Entropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+M">Muxin Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.02134v2-abstract-short" style="display: inline;"> The relation between Loop Quantum Gravity (LQG) and tensor network is explored from the perspectives of bulk-boundary duality and holographic entanglement entropy. We find that the LQG spin-network states in a space $危$ with boundary $\partial危$ is an exact holographic mapping similar to the proposal in arXiv:1309.6282. The tensor network, understood as the boundary quantum state, is the output of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02134v2-abstract-full').style.display = 'inline'; document.getElementById('1610.02134v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.02134v2-abstract-full" style="display: none;"> The relation between Loop Quantum Gravity (LQG) and tensor network is explored from the perspectives of bulk-boundary duality and holographic entanglement entropy. We find that the LQG spin-network states in a space $危$ with boundary $\partial危$ is an exact holographic mapping similar to the proposal in arXiv:1309.6282. The tensor network, understood as the boundary quantum state, is the output of the exact holographic mapping emerging from a coarse graining procedure of spin-networks. Furthermore, when a region $A$ and its complement $\bar{A}$ are specified on the boundary $\partial危$, we show that the boundary entanglement entropy $S(A)$ of the emergent tensor network satisfies the Ryu-Takayanagi formula in the semiclassical regime, i.e. $S(A)$ is proportional to the minimal area of the bulk surface attached to the boundary of $A$ in $\partial危$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02134v2-abstract-full').style.display = 'none'; document.getElementById('1610.02134v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26+1 pages, 6 figures, reference added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 024011 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.06978">arXiv:1608.06978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.06978">pdf</a>, <a href="https://arxiv.org/format/1608.06978">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys4281">10.1038/nphys4281 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimentally Probing Topological Order and Its Breakdown via Modular Matrices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Z">Zhihuang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhaokai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yidun Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+X">Xinhua Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+J">Jiangfeng Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.06978v2-abstract-short" style="display: inline;"> The modern conception of phases of matter has undergone tremendous developments since the first observation of topologically ordered states in fractional quantum Hall systems in the 1980s. In this paper, we explore the question: How much detail of the physics of topological orders can in principle be observed using state of the art technologies? We find that using surprisingly little data, namely&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06978v2-abstract-full').style.display = 'inline'; document.getElementById('1608.06978v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.06978v2-abstract-full" style="display: none;"> The modern conception of phases of matter has undergone tremendous developments since the first observation of topologically ordered states in fractional quantum Hall systems in the 1980s. In this paper, we explore the question: How much detail of the physics of topological orders can in principle be observed using state of the art technologies? We find that using surprisingly little data, namely the toric code Hamiltonian in the presence of generic disorders and detuning from its exactly solvable point, the modular matrices -- characterizing anyonic statistics that are some of the most fundamental finger prints of topological orders -- can be reconstructed with very good accuracy solely by experimental means. This is a first experimental realization of these fundamental signatures of a topological order, a test of their robustness against perturbations, and a proof of principle -- that current technologies have attained the precision to identify phases of matter and, as such, probe an extended region of phase space around the soluble point before its breakdown. Given the special role of anyonic statistics in quantum computation, our work promises myriad applications both in probing and realistically harnessing these exotic phases of matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06978v2-abstract-full').style.display = 'none'; document.getElementById('1608.06978v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Extensively revised and improved version. All comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 14, 160-165 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.06963">arXiv:1608.06963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.06963">pdf</a>, <a href="https://arxiv.org/format/1608.06963">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-019-9361-x">10.1007/s11433-019-9361-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Preparation of Topologically Ordered States via Adiabatic Evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Z">Zhihuang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhaokai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yidun Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+X">Xinhua Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+J">Jiangfeng Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.06963v2-abstract-short" style="display: inline;"> Topological orders are a class of exotic states of matter characterized by patterns of long-range entanglement. Certain topologically ordered systems are proposed as potential realization of fault-tolerant quantum computation. Topological orders can arise in two-dimensional spin-lattice models. In this paper, we engineer a time-dependent Hamiltonian to prepare a topologically ordered state through&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06963v2-abstract-full').style.display = 'inline'; document.getElementById('1608.06963v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.06963v2-abstract-full" style="display: none;"> Topological orders are a class of exotic states of matter characterized by patterns of long-range entanglement. Certain topologically ordered systems are proposed as potential realization of fault-tolerant quantum computation. Topological orders can arise in two-dimensional spin-lattice models. In this paper, we engineer a time-dependent Hamiltonian to prepare a topologically ordered state through adiabatic evolution. The other sectors in the degenerate ground-state space of the model are obtained by applying nontrivial operations corresponding to closed string operators. Each sector is highly entangled, as shown from the completely reconstructed density matrices. This paves the way towards exploring the properties of topological orders and the application of topological orders in topological quantum memory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06963v2-abstract-full').style.display = 'none'; document.getElementById('1608.06963v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages +6 figures. All comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SCIENCE CHINA Physics, Mechanics &amp; Astronomy 62, 980311 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.06932">arXiv:1608.06932</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.06932">pdf</a>, <a href="https://arxiv.org/format/1608.06932">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.080502">10.1103/PhysRevLett.118.080502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Identification of Non-Abelian Topological Orders on a Quantum Simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Keren Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yidun Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+T">Tian Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+G">Guilu Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Dawei Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laflamme%2C+R">Raymond Laflamme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.06932v2-abstract-short" style="display: inline;"> Topological orders can be used as media for topological quantum computing --- a promising quantum computation model due to its invulnerability against local errors. Conversely, a quantum simulator, often regarded as a quantum computing device for special purposes, also offers a way of characterizing topological orders. Here, we show how to identify distinct topological orders via measuring their m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06932v2-abstract-full').style.display = 'inline'; document.getElementById('1608.06932v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.06932v2-abstract-full" style="display: none;"> Topological orders can be used as media for topological quantum computing --- a promising quantum computation model due to its invulnerability against local errors. Conversely, a quantum simulator, often regarded as a quantum computing device for special purposes, also offers a way of characterizing topological orders. Here, we show how to identify distinct topological orders via measuring their modular $S$ and $T$ matrices. In particular, we employ a nuclear magnetic resonance quantum simulator to study the properties of three topologically ordered matter phases described by the string-net model with two string types, including the $\Z_2$ toric code, doubled semion, and doubled Fibonacci. The third one, non-Abelian Fibonacci order is notably expected to be the simplest candidate for universal topological quantum computing. Our experiment serves as the basic module, built on which one can simulate braiding of non-Abelian anyons and ultimately topological quantum computation via the braiding, and thus provides a new approach of investigating topological orders using quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.06932v2-abstract-full').style.display = 'none'; document.getElementById('1608.06932v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures; to appear in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 080502 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.00145">arXiv:1608.00145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.00145">pdf</a>, <a href="https://arxiv.org/format/1608.00145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/e19120671">10.3390/e19120671 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inspecting non-perturbative contributions to the Entanglement Entropy via wavefunctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhattacharyya%2C+A">Arpan Bhattacharyya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lau%2C+P+H+C">P. H. C. Lau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Si-Nong Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.00145v2-abstract-short" style="display: inline;"> In this paper, we would like to systematically explore the implications of non-perturbative effects on entanglement in a many body system. Instead of pursuing the usual path-integral method in a singular space, we attempt to study the wavefunctions in detail. We begin with a toy model of multiple particles whose interaction potential admits multiple minima. We study the entanglement of the true gr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00145v2-abstract-full').style.display = 'inline'; document.getElementById('1608.00145v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.00145v2-abstract-full" style="display: none;"> In this paper, we would like to systematically explore the implications of non-perturbative effects on entanglement in a many body system. Instead of pursuing the usual path-integral method in a singular space, we attempt to study the wavefunctions in detail. We begin with a toy model of multiple particles whose interaction potential admits multiple minima. We study the entanglement of the true ground state after taking the tunnelling effects into account and find some simple patterns. Notably, in the case of multiple particle interactions, entanglement entropy generically decreases with increasing number of minima. The knowledge of the subsystem actually increases with the number of minima. The reduced density matrix can also be seen to have close connections with graph spectra. In a more careful study of the two-well tunnelling system, we also extract the exponentially suppressed tail contribution, the analogues of instantons. To understand the effects of multiple minima in a field theory, it inspires us to inspect wavefunctions in a toy model of bosonic field describing quasi-particles of two different condensates related by Bogoliubov transformations. We find that the area law is naturally preserved. This is probably a useful set of perspectives that promise wider applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00145v2-abstract-full').style.display = 'none'; document.getElementById('1608.00145v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 4 figures, current version accepted by Entropy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> YITP-16-93 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Entropy 2017, 19(12), 671 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.00621">arXiv:1606.00621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.00621">pdf</a>, <a href="https://arxiv.org/format/1606.00621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2016)086">10.1007/JHEP08(2016)086 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring the Tensor Networks/AdS Correspondence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhattacharyya%2C+A">Arpan Bhattacharyya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Zhe-Shen Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Si-Nong Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.00621v2-abstract-short" style="display: inline;"> In this paper we study the recently proposed tensor networks/AdS correspondence. We found that the Coxeter group is a useful tool to describe tensor networks in a negatively curved space. Studying generic tensor network populated by perfect tensors, we find that the physical wave function generically do not admit any connected correlation functions of local operators. To remedy the problem, we ass&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00621v2-abstract-full').style.display = 'inline'; document.getElementById('1606.00621v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.00621v2-abstract-full" style="display: none;"> In this paper we study the recently proposed tensor networks/AdS correspondence. We found that the Coxeter group is a useful tool to describe tensor networks in a negatively curved space. Studying generic tensor network populated by perfect tensors, we find that the physical wave function generically do not admit any connected correlation functions of local operators. To remedy the problem, we assume that wavefunctions admitting such semi-classical gravitational interpretation are composed of tensors close to, but not exactly perfect tensors. Computing corrections to the connected two point correlation functions, we find that the leading contribution is given by structures related to geodesics connecting the operators inserted at the boundary physical dofs. Such considerations admit generalizations at least to three point functions. This is highly suggestive of the emergence of the analogues of Witten diagrams in the tensor network. The perturbations alone however do not give the right entanglement spectrum. Using the Coxeter construction, we also constructed the tensor network counterpart of the BTZ black hole, by orbifolding the discrete lattice on which the network resides. We found that the construction naturally reproduces some of the salient features of the BTZ black hole, such as the appearance of RT surfaces that could wrap the horizon, depending on the size of the entanglement region A. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00621v2-abstract-full').style.display = 'none'; document.getElementById('1606.00621v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 13 figures. Version appearing in JHEP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.08125">arXiv:1601.08125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.08125">pdf</a>, <a href="https://arxiv.org/ps/1601.08125">ps</a>, <a href="https://arxiv.org/format/1601.08125">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Interpretation of monoclinic hafnia valence electron energy loss spectra by TDDFT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Linda Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guedj%2C+C">Cyril Guedj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernier%2C+N">Nicolas Bernier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blaise%2C+P">Philippe Blaise</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olevano%2C+V">Valerio Olevano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sottile%2C+F">Francesco Sottile</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.08125v1-abstract-short" style="display: inline;"> We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m-HfO$_2$) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi&#39;s Golden Rule density-functional theory (DFT) calculations can capture the qualitat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.08125v1-abstract-full').style.display = 'inline'; document.getElementById('1601.08125v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.08125v1-abstract-full" style="display: none;"> We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m-HfO$_2$) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi&#39;s Golden Rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m-HfO$_2$ energy loss spectrum. The sole plasmon occurs between 13-16 eV, although the peaks $\sim$28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5$p$ and 4$f$) on the energy-loss spectrum, and find that the inclusion of transitions from the 4$f$ band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using a $GW$-derived electronic structure to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf $4f$ shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.08125v1-abstract-full').style.display = 'none'; document.getElementById('1601.08125v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 1 table, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.03751">arXiv:1601.03751</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.03751">pdf</a>, <a href="https://arxiv.org/ps/1601.03751">ps</a>, <a href="https://arxiv.org/format/1601.03751">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.195113">10.1103/PhysRevB.93.195113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charged Topological Entanglement Entropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Matsuura%2C+S">Shunji Matsuura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+X">Xueda Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+S">Shinsei Ryu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.03751v2-abstract-short" style="display: inline;"> A charged entanglement entropy is a new measure which probes quantum entanglement between different charge sectors. We study symmetry protected topological (SPT) phases in 2+1 dimensional space-time by using this charged entanglement entropy. SPT phases are short range entangled states without topological order and hence cannot be detected by the topological entanglement entropy. We demonstrate th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.03751v2-abstract-full').style.display = 'inline'; document.getElementById('1601.03751v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.03751v2-abstract-full" style="display: none;"> A charged entanglement entropy is a new measure which probes quantum entanglement between different charge sectors. We study symmetry protected topological (SPT) phases in 2+1 dimensional space-time by using this charged entanglement entropy. SPT phases are short range entangled states without topological order and hence cannot be detected by the topological entanglement entropy. We demonstrate that the universal part of the charged entanglement entropy is non-zero for non-trivial SPT phases and therefore it is a useful measure to detect short range entangled topological phases. We also discuss that the classification of SPT phases based on the charged topological entanglement entropy is related to that of the braiding statistics of quasiparticles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.03751v2-abstract-full').style.display = 'none'; document.getElementById('1601.03751v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, Explanation added in section 3</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NBI QDEV CMT 2016 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 195113 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.03844">arXiv:1511.03844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.03844">pdf</a>, <a href="https://arxiv.org/format/1511.03844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.94.064063">10.1103/PhysRevD.94.064063 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Law of Entanglement Entropy vs Black Hole Entropy in an Anomalous Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+L">Long Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Si-Nong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Hong-Zhe Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.03844v1-abstract-short" style="display: inline;"> In this note we explore the validity of the first law of entanglement entropy in the context of the topologically massive gravity (TMG). We found that the variation of the holographic entanglement entropy under perturbation from the pure AdS background satisfies the first law upon imposing the bulk equations of motion in a given time slice, despite the appearance of instabilities in the bulk for g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.03844v1-abstract-full').style.display = 'inline'; document.getElementById('1511.03844v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.03844v1-abstract-full" style="display: none;"> In this note we explore the validity of the first law of entanglement entropy in the context of the topologically massive gravity (TMG). We found that the variation of the holographic entanglement entropy under perturbation from the pure AdS background satisfies the first law upon imposing the bulk equations of motion in a given time slice, despite the appearance of instabilities in the bulk for generic gravitationl Chern-Simons coupling $渭$. The black hole entropy is different from the holographic entanglement entropy in a general boosted frame. This discrepancy however do not affect the entanglement first law. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.03844v1-abstract-full').style.display = 'none'; document.getElementById('1511.03844v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 94, 064063 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.01201">arXiv:1508.01201</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.01201">pdf</a>, <a href="https://arxiv.org/format/1508.01201">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2015)145">10.1007/JHEP11(2015)145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fake gaps in AdS_3/CFT_2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Belin%2C+A">Alexandre Belin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Castro%2C+A">Alejandra Castro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.01201v2-abstract-short" style="display: inline;"> We discuss properties of interpolating geometries in three dimensional gravity in the presence of a chiral anomaly. This anomaly, which introduces an unbalance between left and right central charges, is protected under RG flows. For this simple reason it is impossible to gap a system with such an anomaly. Our goal is to discuss how holography captures this basic and robust feature. We demonstrate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.01201v2-abstract-full').style.display = 'inline'; document.getElementById('1508.01201v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.01201v2-abstract-full" style="display: none;"> We discuss properties of interpolating geometries in three dimensional gravity in the presence of a chiral anomaly. This anomaly, which introduces an unbalance between left and right central charges, is protected under RG flows. For this simple reason it is impossible to gap a system with such an anomaly. Our goal is to discuss how holography captures this basic and robust feature. We demonstrate the absence of a mass gap by analysing the linearized spectrum and holographic entanglement entropy of these backgrounds in the context of AdS$_3$/CFT$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.01201v2-abstract-full').style.display = 'none'; document.getElementById('1508.01201v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages + Appendices, v2 bibliography fixed + references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.07467">arXiv:1503.07467</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.07467">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl5046796">10.1021/nl5046796 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pathway to the PiezoElectronic Transduction Logic Device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Solomon%2C+P+M">P. M. Solomon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bryce%2C+B+A">B. A. Bryce</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuroda%2C+M+A">M. A. Kuroda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keech%2C+R">R. Keech</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shett%2C+S">S. Shett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shaw%2C+T+M">T. M. Shaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Copel%2C+M">M. Copel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L+-">L. -W. Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schrott%2C+A+G">A. G. Schrott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Armstrong%2C+C">C. Armstrong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gordon%2C+M+S">M. S. Gordon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reuter%2C+K+B">K. B. Reuter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Theis%2C+T+N">T. N. Theis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haensch%2C+W">W. Haensch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossnagel%2C+S+M">S. M. Rossnagel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miyazoe%2C+H">H. Miyazoe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elmegreen%2C+B+G">B. G. Elmegreen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X+-">X. -H. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trolier-McKinstry%2C+S">S. Trolier-McKinstry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martyna%2C+G+J">G. J Martyna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Newns%2C+D+M">D. M. Newns</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.07467v1-abstract-short" style="display: inline;"> The information age challenges computer technology to process an exponentially increasing computational load on a limited energy budget - a requirement that demands an exponential reduction in energy per operation. In digital logic circuits, the switching energy of present FET devices is intimately connected with the switching voltage, and can no longer be lowered sufficiently, limiting the abilit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07467v1-abstract-full').style.display = 'inline'; document.getElementById('1503.07467v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.07467v1-abstract-full" style="display: none;"> The information age challenges computer technology to process an exponentially increasing computational load on a limited energy budget - a requirement that demands an exponential reduction in energy per operation. In digital logic circuits, the switching energy of present FET devices is intimately connected with the switching voltage, and can no longer be lowered sufficiently, limiting the ability of current technology to address the challenge. Quantum computing offers a leap forward in capability, but a clear advantage requires algorithms presently developed for only a small set of applications. Therefore, a new, general purpose, classical technology based on a different paradigm is needed to meet the ever increasing demand for data processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07467v1-abstract-full').style.display = 'none'; document.getElementById('1503.07467v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in Nano Letters (2015)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.02487">arXiv:1502.02487</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.02487">pdf</a>, <a href="https://arxiv.org/format/1502.02487">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> OPE of the stress tensors and surface operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+F">Feng-Li Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.02487v1-abstract-short" style="display: inline;"> We demonstrate that the divergent terms in the OPE of a stress tensor and a surface operator of general shape cannot be constructed only from local geometric data depending only on the shape of the surface. We verify this holographically at d=3 for Wilson line operators or equivalently the twist operator corresponding to computing the entanglement entropy using the Ryu-Takayanagi formula. We discu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.02487v1-abstract-full').style.display = 'inline'; document.getElementById('1502.02487v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.02487v1-abstract-full" style="display: none;"> We demonstrate that the divergent terms in the OPE of a stress tensor and a surface operator of general shape cannot be constructed only from local geometric data depending only on the shape of the surface. We verify this holographically at d=3 for Wilson line operators or equivalently the twist operator corresponding to computing the entanglement entropy using the Ryu-Takayanagi formula. We discuss possible implications of this result. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.02487v1-abstract-full').style.display = 'none'; document.getElementById('1502.02487v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, no figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.02026">arXiv:1502.02026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.02026">pdf</a>, <a href="https://arxiv.org/ps/1502.02026">ps</a>, <a href="https://arxiv.org/format/1502.02026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP07(2015)120">10.1007/JHEP07(2015)120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generalized ADE Classification of Gapped Domain Walls </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yidun Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.02026v2-abstract-short" style="display: inline;"> In this paper we would like to demonstrate how the known rules of anyon condensation motivated physically proposed by Bais \textit{et al} can be recovered by the mathematics of twist-free commutative separable Frobenius algebra (CSFA). In some simple cases, those physical rules are also sufficient conditions defining a twist-free CSFA. This allows us to make use of the generalized $ADE$ classifica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.02026v2-abstract-full').style.display = 'inline'; document.getElementById('1502.02026v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.02026v2-abstract-full" style="display: none;"> In this paper we would like to demonstrate how the known rules of anyon condensation motivated physically proposed by Bais \textit{et al} can be recovered by the mathematics of twist-free commutative separable Frobenius algebra (CSFA). In some simple cases, those physical rules are also sufficient conditions defining a twist-free CSFA. This allows us to make use of the generalized $ADE$ classification of CSFA&#39;s and modular invariants to classify anyon condensation, and thus characterizing all gapped domain walls and gapped boundaries of a large class of topological orders. In fact, this classification is equivalent to the classification we proposed in Ref.1. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.02026v2-abstract-full').style.display = 'none'; document.getElementById('1502.02026v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9+6 pages, 1 figure, 3 tables, minor corrections, references added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1507 (2015) 120 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.04389">arXiv:1501.04389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.04389">pdf</a>, <a href="https://arxiv.org/ps/1501.04389">ps</a>, <a href="https://arxiv.org/format/1501.04389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2015)122">10.1007/JHEP04(2015)122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revisiting Entanglement Entropy of Lattice Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yidun Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.04389v1-abstract-short" style="display: inline;"> Casini et al raise the issue that the entanglement entropy in gauge theories is ambiguous because its definition depends on the choice of the boundary between two regions.; even a small change in the boundary could annihilate the otherwise finite topological entanglement entropy between two regions. In this article, we first show that the topological entanglement entropy in the Kitaev model which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.04389v1-abstract-full').style.display = 'inline'; document.getElementById('1501.04389v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.04389v1-abstract-full" style="display: none;"> Casini et al raise the issue that the entanglement entropy in gauge theories is ambiguous because its definition depends on the choice of the boundary between two regions.; even a small change in the boundary could annihilate the otherwise finite topological entanglement entropy between two regions. In this article, we first show that the topological entanglement entropy in the Kitaev model which is not a true gauge theory, is free of ambiguity. Then, we give a physical interpretation, from the perspectives of what can be measured in an experiement, to the purported ambiguity of true gauge theories, where the topological entanglement arises as redundancy in counting the degrees of freedom along the boundary separating two regions. We generalize these discussions to non-Abelian gauge theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.04389v1-abstract-full').style.display = 'none'; document.getElementById('1501.04389v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1504 (2015) 122 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.3374">arXiv:1410.3374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.3374">pdf</a>, <a href="https://arxiv.org/format/1410.3374">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4903218">10.1063/1.4903218 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for anisotropic dielectric properties of monoclinic hafnia using high-resolution TEM valence electron energy-loss spectroscopy and ab initio time-dependent density-functional theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guedj%2C+C">Cyril Guedj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Linda Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zobelli%2C+A">Alberto Zobelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blaise%2C+P">Philippe Blaise</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sottile%2C+F">Francesco Sottile</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olevano%2C+V">Valerio Olevano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.3374v1-abstract-short" style="display: inline;"> The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO$_2$) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experime&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.3374v1-abstract-full').style.display = 'inline'; document.getElementById('1410.3374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.3374v1-abstract-full" style="display: none;"> The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO$_2$) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO$_2$, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO$_2$ may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.3374v1-abstract-full').style.display = 'none'; document.getElementById('1410.3374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 105, 222904 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.0014">arXiv:1408.0014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.0014">pdf</a>, <a href="https://arxiv.org/format/1408.0014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.076401">10.1103/PhysRevLett.114.076401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground State Degeneracy of Topological Phases on Open Surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yidun Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.0014v2-abstract-short" style="display: inline;"> We relate the ground state degeneracy (GSD) of a non-Abelian topological phase on a surface with boundaries to the anyon condensates that break the topological phase to a trivial phase. Specifically, we propose that gapped boundary conditions of the surface are in one-to-one correspondence to the sets of condensates, each being able to completely break the phase, and we substantiate this by exampl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.0014v2-abstract-full').style.display = 'inline'; document.getElementById('1408.0014v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.0014v2-abstract-full" style="display: none;"> We relate the ground state degeneracy (GSD) of a non-Abelian topological phase on a surface with boundaries to the anyon condensates that break the topological phase to a trivial phase. Specifically, we propose that gapped boundary conditions of the surface are in one-to-one correspondence to the sets of condensates, each being able to completely break the phase, and we substantiate this by examples. The GSD resulting from a particular boundary condition coincides with the number of confined topological sectors due to the corresponding condensation. These lead to a generalization of the Laughlin-Wu-Tao (LWT) charge-pumping argument for Abelian fractional quantum Hall states (FQHS) to encompass non-Abelian topological phases, in the sense that an anyon loop of a confined anyon winding a non-trivial cycle can pump a condensate from one boundary to another. Such generalized pumping may find applications in quantum control of anyons, eventually realizing topological quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.0014v2-abstract-full').style.display = 'none'; document.getElementById('1408.0014v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+2 pages, 4 figures, 1 table, (almost) the journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 114, 076401 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.5630">arXiv:1407.5630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.5630">pdf</a>, <a href="https://arxiv.org/format/1407.5630">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP01(2015)059">10.1007/JHEP01(2015)059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charged Renyi entropies and holographic superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Belin%2C+A">Alexandre Belin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maloney%2C+A">Alexander Maloney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuura%2C+S">Shunji Matsuura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.5630v1-abstract-short" style="display: inline;"> Charged Renyi entropies were recently introduced as a measure of entanglement between different charge sectors of a theory. We investigate the phase structure of charged Renyi entropies for CFTs with a light, charged scalar operator. The charged Renyi entropies are calculated holographically via areas of charged hyperbolic black holes. These black holes can become unstable to the formation of scal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.5630v1-abstract-full').style.display = 'inline'; document.getElementById('1407.5630v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.5630v1-abstract-full" style="display: none;"> Charged Renyi entropies were recently introduced as a measure of entanglement between different charge sectors of a theory. We investigate the phase structure of charged Renyi entropies for CFTs with a light, charged scalar operator. The charged Renyi entropies are calculated holographically via areas of charged hyperbolic black holes. These black holes can become unstable to the formation of scalar hair at sufficiently low temperature; this is the holographic superconducting instability in hyperbolic space. This implies that the Renyi entropies can be non-analytic in the Renyi parameter n. We find the onset of this instability as a function of the charge and dimension of the scalar operator. We also comment on the relation between the phase structure of these entropies and the phase structure of a holographic superconductor in flat space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.5630v1-abstract-full').style.display = 'none'; document.getElementById('1407.5630v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.3356">arXiv:1402.3356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.3356">pdf</a>, <a href="https://arxiv.org/ps/1402.3356">ps</a>, <a href="https://arxiv.org/format/1402.3356">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.245125">10.1103/PhysRevB.90.245125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Unified Framework of Topological Phases with Symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yuxiang Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yidun Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.3356v2-abstract-short" style="display: inline;"> In topological phases in $2+1$ dimensions, anyons fall into representations of quantum group symmetries. As proposed in our work (arXiv:1308.4673), physics of a symmetry enriched phase can be extracted by the Mathematics of (hidden) quantum group symmetry breaking of a &#34;parent phase&#34;. This offers a unified framework and classification of the symmetry enriched (topological) phases, including symmet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.3356v2-abstract-full').style.display = 'inline'; document.getElementById('1402.3356v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.3356v2-abstract-full" style="display: none;"> In topological phases in $2+1$ dimensions, anyons fall into representations of quantum group symmetries. As proposed in our work (arXiv:1308.4673), physics of a symmetry enriched phase can be extracted by the Mathematics of (hidden) quantum group symmetry breaking of a &#34;parent phase&#34;. This offers a unified framework and classification of the symmetry enriched (topological) phases, including symmetry protected trivial phases as well. In this paper, we extend our investigation to the case where the &#34;parent&#34; phases are non-Abelian topological phases. We show explicitly how one can obtain the topological data and symmetry transformations of the symmetry enriched phases from that of the &#34;parent&#34; non-Abelian phase. Two examples are computed: (1) the $\text{Ising}\times\overline{\text{Ising}}$ phase breaks into the $\mathbb{Z}_2$ toric code with $\mathbb{Z}_2$ global symmetry; (2) the $SU(2)_8$ phase breaks into the chiral Fibonacci $\times$ Fibonacci phase with a $\mathbb{Z}_2$ symmetry, a first non-Abelian example of symmetry enriched topological phase beyond the gauge theory construction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.3356v2-abstract-full').style.display = 'none'; document.getElementById('1402.3356v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages. Minor changes made, and references added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 245125 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.0875">arXiv:1402.0875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1402.0875">pdf</a>, <a href="https://arxiv.org/format/1402.0875">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.024506">10.1103/PhysRevB.90.024506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum quenches and competing orders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+W">Wenbo Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+L">Ling-Yan Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sachdev%2C+S">Subir Sachdev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.0875v3-abstract-short" style="display: inline;"> We study the nonequilibrium dynamics of an electronic model of competition between an unconventional charge density wave (a bond density wave) and $d$-wave superconductivity. In a time-dependent Hartree-Fock+BCS approximation, the dynamics reduces to the equations of motion of operators realizing the generators of SU(4) at each pair of momenta, ( $\boldsymbol{k}$, - $\boldsymbol{k}$ ), in the Bril&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.0875v3-abstract-full').style.display = 'inline'; document.getElementById('1402.0875v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.0875v3-abstract-full" style="display: none;"> We study the nonequilibrium dynamics of an electronic model of competition between an unconventional charge density wave (a bond density wave) and $d$-wave superconductivity. In a time-dependent Hartree-Fock+BCS approximation, the dynamics reduces to the equations of motion of operators realizing the generators of SU(4) at each pair of momenta, ( $\boldsymbol{k}$, - $\boldsymbol{k}$ ), in the Brillouin zone. We also study the nonequilibrium dynamics of a quantum generalization of a O(6) nonlinear $蟽$ model of competing orders in the underdoped cuprates [Hayward et al., Science $\boldsymbol{343}$, 1336 (2014)]. We obtain results, in the large $N$ limit of a O($N$) model, on the time dependence of correlation functions following a pulse disturbance. We compare our numerical studies with recent picosecond optical experiments. We find that, generically, the oscillatory responses in our models share various qualitative features with the experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.0875v3-abstract-full').style.display = 'none'; document.getElementById('1402.0875v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 33 figures; v2: includes analysis previously submitted as arXiv:1401.7674. v3: published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 90, 024506 (2014) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hung%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hung%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hung%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10