CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 250 results for author: <span class="mathjax">Kumar, N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Kumar%2C+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kumar, N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kumar%2C+N&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kumar, N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Kumar%2C+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Kumar%2C+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kumar%2C+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kumar%2C+N&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kumar%2C+N&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kumar%2C+N&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kumar%2C+N&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06605">arXiv:2411.06605</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06605">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Noise Spectroscopy and Electrical Transport in NbO2 Memristors with Dual Resistive Switching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitin Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J+E">Jong E. Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beckmann%2C+K">Karsten Beckmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cady%2C+N">Nathaniel Cady</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sambandamurthy%2C+G">G. Sambandamurthy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06605v1-abstract-short" style="display: inline;"> Negative differential resistance (NDR) behavior observed in several transition metal oxides is crucial for developing next-generation memory devices and neuromorphic computing systems. NbO2-based memristors exhibit two regions of NDR at room temperature, making them promising candidates for such applications. Despite this potential, the physical mechanisms behind the onset and the ability to engin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06605v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06605v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06605v1-abstract-full" style="display: none;"> Negative differential resistance (NDR) behavior observed in several transition metal oxides is crucial for developing next-generation memory devices and neuromorphic computing systems. NbO2-based memristors exhibit two regions of NDR at room temperature, making them promising candidates for such applications. Despite this potential, the physical mechanisms behind the onset and the ability to engineer these NDR regions remain unclear, hindering further development of these devices for applications. This study employed electrical transport and ultra-low frequency noise spectroscopy measurements to investigate two distinct NDR phenomena in nanoscale thin films of NbO2. By analyzing the residual current fluctuations as a function of time, we find spatially inhomogeneous and non-linear conduction near NDR-1 and a two-state switching near NDR-2, leading to an insulator-to-metal (IMT) transition. The power spectral density of the residual fluctuations exhibits significantly elevated noise magnitudes around both NDR regions, providing insights into physical mechanisms and device size scaling for electronic applications. A simple theoretical model, based on the dimerization of correlated insulators, offers a comprehensive explanation of observed transport and noise behaviors near NDRs, affirming the presence of non-linear conduction followed by an IMT connecting macroscopic device response to transport signatures at atomic level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06605v1-abstract-full').style.display = 'none'; document.getElementById('2411.06605v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06250">arXiv:2409.06250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06250">pdf</a>, <a href="https://arxiv.org/format/2409.06250">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Giant anisotropic anomalous Hall effect in antiferromagnetic topological metal NdGaSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Saraswati%2C+A">Anyesh Saraswati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chatterjee%2C+S">Sudipta Chatterjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06250v1-abstract-short" style="display: inline;"> The interplay between magnetism and strong electron correlation in magnetic materials discerns a variety of intriguing topological features. Here, we report a systematic investigation of the magnetic, thermodynamic, and electrical transport properties in NdGaSi single crystals. The magnetic measurements reveal a magnetic ordering below T_N (11 K), with spins aligning antiferromagnetically in-plane&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06250v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06250v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06250v1-abstract-full" style="display: none;"> The interplay between magnetism and strong electron correlation in magnetic materials discerns a variety of intriguing topological features. Here, we report a systematic investigation of the magnetic, thermodynamic, and electrical transport properties in NdGaSi single crystals. The magnetic measurements reveal a magnetic ordering below T_N (11 K), with spins aligning antiferromagnetically in-plane, and it orders ferromagnetically (FM) out-of-plane. The longitudinal resistivity data and heat capacity exhibit a significant anomaly as a consequence of the magnetic ordering at TN. The magnetoresistance study shows significantly different behavior when measured along either direction, resulting from the complex nature of the magnetic structure, stemming from complete saturation of moments in one direction and subsequent spin flop transitions in the other. Remarkably, we have also noticed an unusual anisotropic anomalous Hall response. We have observed a giant anomalous Hall conductivity (AHC) of 1730 ohm-1 cm-1 and 490 ohm-1 cm-1 at 2 K, with B // [001] and B // [100], respectively. Our scaling analysis of AHC reveals that the anomalous Hall effect in the studied compound is dominated by the Berry phase-driven intrinsic mechanism. These astonishing findings in NdGaSi open up new possibilities for antiferromagnetic spintronics in rare-earth-based intermetallic compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06250v1-abstract-full').style.display = 'none'; document.getElementById('2409.06250v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02504">arXiv:2408.02504</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02504">pdf</a>, <a href="https://arxiv.org/format/2408.02504">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Exploring magnetic and topological complexity in MgMn$_6$Sn$_6$: from frustrated ground states to nontrivial Hall conductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sau%2C+J">Jyotirmoy Sau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banerjee%2C+H">Hrishit Banerjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saha%2C+S">Sourabh Saha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+M">Manoranjan Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02504v1-abstract-short" style="display: inline;"> We explore the intriguing topological itinerant magnet MgMn$_6$Sn$_6$, characterized by bilayer kagome Mn layers encasing a hexagonal Sn layer. Using \textit{ab initio} Density functional theory and Dynamical mean-field theory calculations, we uncover the complex electronic properties and many-body configuration of its magnetic ground state. Mn d-orbital electrons form a frustrated many-body groun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02504v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02504v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02504v1-abstract-full" style="display: none;"> We explore the intriguing topological itinerant magnet MgMn$_6$Sn$_6$, characterized by bilayer kagome Mn layers encasing a hexagonal Sn layer. Using \textit{ab initio} Density functional theory and Dynamical mean-field theory calculations, we uncover the complex electronic properties and many-body configuration of its magnetic ground state. Mn d-orbital electrons form a frustrated many-body ground state with significant quantum fluctuations, resulting in competing antiferromagnetic and ferromagnetic spin exchanges. Our band dispersion calculations reveal a mirror symmetry-protected nodal line in the \textit{k}$_z$ = 0 plane. When spin-orbit coupling (SOC) is introduced, the gap is formed along the nodal line lifted due to broken time-reversal symmetry with magnetic ordering, leading to substantial intrinsic Berry curvature. We identify Dirac fermions, van Hove singularities, and flat band near the Fermi energy (\textit{E}$_F$), with SOC introducing a finite gap at key points. The unique proximity of the flat band to \textit{E}$_F$ suggests potential instabilities. Spin-orbit coupling opens a 20 meV gap at the quadratic touching point between the Dirac and flat band, bestowing a nonzero Z$_2$ invariant. This leads to a significant spin Hall conductivity. Despite the presence of large incoherent scattering due to electronic interactions, band crossings and flat band features persist at finite temperatures. MgMn$_6$Sn$_6$ exhibits intriguing topological and magnetic properties, with promising applications in spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02504v1-abstract-full').style.display = 'none'; document.getElementById('2408.02504v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00410">arXiv:2408.00410</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00410">pdf</a>, <a href="https://arxiv.org/format/2408.00410">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Synchrotron x-ray diffraction and DFT study of non-centrosymmetric EuRhGe3 under high pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dhami%2C+N+S">N. S. Dhami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bal%C3%A9dent%2C+V">V. Bal茅dent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batisti%C4%87%2C+I">I. Batisti膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bednarchuk%2C+O">O. Bednarchuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaczorowski%2C+D">D. Kaczorowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iti%C3%A9%2C+J+P">J. P. Iti茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shieh%2C+S+R">S. R. Shieh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+C+M+N">C. M. N. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Utsumi%2C+Y">Y. Utsumi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00410v1-abstract-short" style="display: inline;"> Antiferromagnetic intermetallic compound EuRhGe3 crystalizes in a non-centrosymmetric BaNiSn3-type (I4mm) structure. We studied its pressure-dependent crystal structure by using synchrotron powder x-ray diffraction at room temperature. Our results show a smooth contraction of the unit cell volume by applying pressure while preserving I4mm symmetry. No structural transition was observed up to 35 GP&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00410v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00410v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00410v1-abstract-full" style="display: none;"> Antiferromagnetic intermetallic compound EuRhGe3 crystalizes in a non-centrosymmetric BaNiSn3-type (I4mm) structure. We studied its pressure-dependent crystal structure by using synchrotron powder x-ray diffraction at room temperature. Our results show a smooth contraction of the unit cell volume by applying pressure while preserving I4mm symmetry. No structural transition was observed up to 35 GPa. By the equation of state fitting analysis, the bulk modulus and its pressure derivative were determined to be 73 (1) GPa and 5.5 (2), respectively. Furthermore, similar to the isostructural EuCoGe3, an anisotropic compression of a and c lattice parameters was observed. Our experimental results show a good agreement with the pressure-dependent structural evolution expected from theoretical calculations below 13 GPa. Reflecting a strong deviation from integer Eu valence, the experimental volume data appear to be smaller than those of DFT calculated values at higher pressures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00410v1-abstract-full').style.display = 'none'; document.getElementById('2408.00410v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17108">arXiv:2406.17108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17108">pdf</a>, <a href="https://arxiv.org/format/2406.17108">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> High-entropy magnetism of murunskite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tolj%2C+D">D. Tolj</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reddy%2C+P">P. Reddy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%BDivkovi%C4%87%2C+I">I. 沤ivkovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ak%C5%A1amovi%C4%87%2C+L">L. Ak拧amovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+J+R">J. R. Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kom%C8%A9dera%2C+K">K. Kom醛dera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bia%C5%82o%2C+I">I. Bia艂o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+C+M+N">C. M. N. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iv%C5%A1i%C4%87%2C+T">T. Iv拧i膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novak%2C+M">M. Novak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaharko%2C+O">O. Zaharko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritter%2C+C">C. Ritter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=La+Grange%2C+T">T. La Grange</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tabi%C5%9B%2C+W">W. Tabi艣</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Batisti%C4%87%2C+I">I. Batisti膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forr%C3%B3%2C+L">L. Forr贸</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B8nnow%2C+H+M">H. M. R酶nnow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sunko%2C+D+K">D. K. Sunko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bari%C5%A1i%C4%87%2C+N">N. Bari拧i膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17108v1-abstract-short" style="display: inline;"> Murunskite (K$_2$FeCu$_3$S$_4$) is a bridging compound between the only two known families of high-temperature superconductors. It is a semiconductor like the parent compounds of cuprates, yet isostructural to metallic iron-pnictides. Moreover, like both families, it has an antiferromagnetic (AF)-like response with an ordered phase occurring below $\approx$ 100 K. Through comprehensive neutron, M枚&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17108v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17108v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17108v1-abstract-full" style="display: none;"> Murunskite (K$_2$FeCu$_3$S$_4$) is a bridging compound between the only two known families of high-temperature superconductors. It is a semiconductor like the parent compounds of cuprates, yet isostructural to metallic iron-pnictides. Moreover, like both families, it has an antiferromagnetic (AF)-like response with an ordered phase occurring below $\approx$ 100 K. Through comprehensive neutron, M枚ssbauer, and XPS measurements on single crystals, we unveil AF with a nearly commensurate quarter-zone wave vector. Intriguingly, the only identifiable magnetic atoms, iron, are randomly distributed over one-quarter of available crystallographic sites in 2D planes, while the remaining sites are occupied by closed-shell copper. Notably, any interpretation in terms of a spin-density wave is challenging, in contrast to the metallic iron-pnictides where Fermi-surface nesting can occur. Our findings align with a disordered-alloy picture featuring magnetic interactions up to second neighbors. Moreover, in the paramagnetic state, iron ions are either in Fe$^{3+}$ or Fe$^{2+}$ oxidation states, associated with two distinct paramagnetic sites identified by M枚ssbauer spectroscopy. Upon decreasing the temperature below the appearance of magnetic interactions, these two signals merge completely into a third, implying an orbital transition. It completes the cascade of (local) transitions that transform iron atoms from fully orbitally and magnetically disordered to homogeneously ordered in inverse space, but still randomly distributed in real space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17108v1-abstract-full').style.display = 'none'; document.getElementById('2406.17108v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figure, 2 tables (9 pages, 4 figures in the main text; 8 pages, 4 figures, 2 tables in the appendix)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14821">arXiv:2406.14821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.14821">pdf</a>, <a href="https://arxiv.org/format/2406.14821">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Fano-enhanced low-loss on-chip superconducting microwave circulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N+P">N. Pradeep Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+D+T">Dat Thanh Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pakkiam%2C+P">Prasanna Pakkiam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stace%2C+T+M">Thomas M. Stace</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Arkady Fedorov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14821v1-abstract-short" style="display: inline;"> Ferrite-free circulators that are passive and readily integratable on a chip are highly sought-after in quantum technologies based on superconducting circuits. In our previous work, we implemented such a circulator using a three-Josephson-junction loop that exhibited unambiguous nonreciprocity and signal circulation, but required junction energies to be within $1\%$ of design values. This toleranc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14821v1-abstract-full').style.display = 'inline'; document.getElementById('2406.14821v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14821v1-abstract-full" style="display: none;"> Ferrite-free circulators that are passive and readily integratable on a chip are highly sought-after in quantum technologies based on superconducting circuits. In our previous work, we implemented such a circulator using a three-Josephson-junction loop that exhibited unambiguous nonreciprocity and signal circulation, but required junction energies to be within $1\%$ of design values. This tolerance is tighter than standard junction fabrication methods provide, so we propose and demonstrate a design improvement that relaxes the required junction fabrication precision, allowing for higher device performance and fabrication yield. Specifically, we introduce large direct capacitive couplings between the waveguides to create strong Fano scattering interference. We measure enhanced `circulation fidelity&#39; above $97\%$, with optimised on-resonance insertion loss of $0.2$~dB, isolation of $18$~dB, and power reflectance of $-15$~dB, in good agreement with model calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14821v1-abstract-full').style.display = 'none'; document.getElementById('2406.14821v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09898">arXiv:2405.09898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09898">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> NH3 gas sensing over 2D Phosphorene sheet: A First-Principles Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Naresh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gautam%2C+Y+K">Yogendra K. Gautam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+S">Soni Mishra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+A">Anuj Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+A+K">Abhishek Kumar Mishra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09898v1-abstract-short" style="display: inline;"> First-principles based calculations were executed to investigate the sensing properties of ammonia gas molecules on two-dimensional pristine black phosphorene towards its application as a gas sensor and related applications. We discuss in detail, the interaction of ammonia gas molecules on the phosphorene single sheet through the structural change analysis, electronic band gap, Bader charge transf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09898v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09898v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09898v1-abstract-full" style="display: none;"> First-principles based calculations were executed to investigate the sensing properties of ammonia gas molecules on two-dimensional pristine black phosphorene towards its application as a gas sensor and related applications. We discuss in detail, the interaction of ammonia gas molecules on the phosphorene single sheet through the structural change analysis, electronic band gap, Bader charge transfer, and density-of-states calculations. Our calculations indicate that the phosphorene could be used as a detector of ammonia, where good sensitivity and very short recovery time at room temperature have confirmed the potential use of phosphorene in the detection of ammonia. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09898v1-abstract-full').style.display = 'none'; document.getElementById('2405.09898v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, Figures 8</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14773">arXiv:2404.14773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.14773">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity at 9 K in Pb-Bi Alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Karn%2C+N+K">N. K. Karn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+K">Kapil Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Naveen Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+Y">Yogesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+M+M">M. M. Sharma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Awana%2C+V+P+S">V. P. S. Awana</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14773v2-abstract-short" style="display: inline;"> In the present work, we report the synthesis of Pb-Bi alloy with enhanced Tc of up to 9K, which is higher than that of Pb. The alloy is synthesized via a solid-state reaction route in the vacuum-encapsulated quartz tube at 7000C in an automated furnace. The synthesized sample is characterized by X-ray Diffraction(XRD) and Energy dispersive X-ray analysis(EDAX) for its phase purity and elemental co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14773v2-abstract-full').style.display = 'inline'; document.getElementById('2404.14773v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14773v2-abstract-full" style="display: none;"> In the present work, we report the synthesis of Pb-Bi alloy with enhanced Tc of up to 9K, which is higher than that of Pb. The alloy is synthesized via a solid-state reaction route in the vacuum-encapsulated quartz tube at 7000C in an automated furnace. The synthesized sample is characterized by X-ray Diffraction(XRD) and Energy dispersive X-ray analysis(EDAX) for its phase purity and elemental composition. Rietveld refinement of XRD reveals that the end product is a majority hexagonal Pb7Bi3, with minor rhombohedral Bi. The electronic transport measurement shows metallic behavior with the Debye temperature of 108K and a superconductivity transition temperature (Tc) below 9K, which is the maximum to date for any reported Pb-Bi alloy, Pb or Bi at ambient pressure. Partial substitution of Bi at the Pb site may modify the free density of electronic states within the BCS model to attain the optimum Tc, which is higher by around 2K from the reported Tc of Pb. The superconductor phase diagram derived from magneto-transport measurements reveals that the synthesized alloy is a conventional superconductor with an upper critical field (Hc2) of 3.9 Tesla, which lies well within the Pauli paramagnetic limit. The magnetization measurements carried out following ZFC(Zero Field Cool) protocols infer that the synthesized alloy is a bulk superconductor below 9K. The isothermal M-H(Magnetization vs. Field) measurements performed below Tc establish it as a type-II superconductor. The specific heat capacity measurements show that the Pb-Bi alloy is a strongly coupled bulk superconductor below around 9K with possibly two superconducting gaps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14773v2-abstract-full').style.display = 'none'; document.getElementById('2404.14773v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 Pages Text including and Figs. Letter MS - Revised in Solid State Commun</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13969">arXiv:2404.13969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.13969">pdf</a>, <a href="https://arxiv.org/format/2404.13969">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.L041202">10.1103/PhysRevMaterials.8.L041202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Importance of the semimetallic state for the quantum Hall effect in HfTe$_{5}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Piva%2C+M+M">M. M. Piva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wawrzy%C5%84czak%2C+R">R. Wawrzy艅czak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kutelak%2C+L+O">L. O. Kutelak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lombardi%2C+G+A">G. A. Lombardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reis%2C+R+D+d">R. D. dos Reis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicklas%2C+M">M. Nicklas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13969v1-abstract-short" style="display: inline;"> At ambient pressure, HfTe$_{5}$ is a material at the boundary between a weak and a strong topological phase, which can be tuned by changes in its crystalline structure or by the application of high magnetic fields. It exhibits a Lifshitz transition upon cooling, and three-dimensional (3D) quantum Hall effect (QHE) plateaus can be observed at low temperatures. Here, we have investigated the electri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13969v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13969v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13969v1-abstract-full" style="display: none;"> At ambient pressure, HfTe$_{5}$ is a material at the boundary between a weak and a strong topological phase, which can be tuned by changes in its crystalline structure or by the application of high magnetic fields. It exhibits a Lifshitz transition upon cooling, and three-dimensional (3D) quantum Hall effect (QHE) plateaus can be observed at low temperatures. Here, we have investigated the electrical transport properties of HfTe$_{5}$ under hydrostatic pressure up to 3 GPa. We find a pressure-induced crossover from a semimetallic phase at low pressures to an insulating phase at about 1.5 GPa. Our data suggest the presence of a pressure-induced Lifshitz transition at low temperatures within the insulating phase around 2 GPa. The quasi-3D QHE is confined to the low-pressure region in the semimetallic phase. This reveals the importance of the semimetallic groundstate for the emergence of the QHE in HfTe$_{5}$ and thus favors a scenario based on a low carrier density metal in the quantum limit for the observed signatures of the quasi-quantized 3D QHE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13969v1-abstract-full').style.display = 'none'; document.getElementById('2404.13969v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 8 L041202 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03391">arXiv:2404.03391</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.03391">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Peculiar magnetism and magneto-transport properties in a non-centrosymmetric self-intercalated van der Waals ferromagnet Cr5Te8 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rai%2C+B">Banik Rai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuila%2C+S+K">Sandip Kumar Kuila</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saha%2C+R">Rana Saha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De%2C+C">Chandan De</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hazra%2C+S">Sankalpa Hazra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gopalan%2C+V">Venkatraman Gopalan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jana%2C+P+P">Partha Pratim Jana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">Stuart S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03391v1-abstract-short" style="display: inline;"> Trigonal Cr5Te8, a self-intercalated van der Waals ferromagnet with an out of plane magnetic anisotropy, has long been known to crystallise in a centrosymmetric structure. Through detailed structural analysis together with second harmonic generation experiments, we show that the compound actually adopts a non-centrosymmetric structure. A large anomalous Hall conductivity of 102 惟^(-1) cm^(-1) at l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03391v1-abstract-full').style.display = 'inline'; document.getElementById('2404.03391v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03391v1-abstract-full" style="display: none;"> Trigonal Cr5Te8, a self-intercalated van der Waals ferromagnet with an out of plane magnetic anisotropy, has long been known to crystallise in a centrosymmetric structure. Through detailed structural analysis together with second harmonic generation experiments, we show that the compound actually adopts a non-centrosymmetric structure. A large anomalous Hall conductivity of 102 惟^(-1) cm^(-1) at low temperature stems from intrinsic origin, which is larger than any previously reported values in bulk Cr-Te system. In addition, we observe a hump-like feature in the field-dependent Hall resistivity data, resembling a typical topological Hall signal. We demonstrate that the feature is highly tunable and is not related to topological Hall effect even though we observe N茅el-type skyrmions by Lorentz transmission electron microscopy which is consistent with the non-centrosymmetric structure of the compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03391v1-abstract-full').style.display = 'none'; document.getElementById('2404.03391v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 8 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01797">arXiv:2404.01797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.01797">pdf</a>, <a href="https://arxiv.org/format/2404.01797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0197238">10.1063/5.0197238 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Excitons, Optical Spectra, and Electronic Properties of Semiconducting Hf-based MXenes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nilesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolos%2C+M">Miroslav Kolos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhattacharya%2C+S">Sitangshu Bhattacharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karlick%C3%BD%2C+F">Franti拧ek Karlick媒</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01797v1-abstract-short" style="display: inline;"> Semiconducting MXenes are an intriguing two-dimensional (2D) material class with promising electronic and optoelectronic properties. Here, we focused on recently prepared Hf-based MXenes, namely Hf$_3$C$_2$O$_2$ and Hf$_2$CO$_2$. Using the first-principles calculation and excited state corrections, we proved its dynamical stability, reconciled its semiconducting behavior, and obtained fundamental&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01797v1-abstract-full').style.display = 'inline'; document.getElementById('2404.01797v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01797v1-abstract-full" style="display: none;"> Semiconducting MXenes are an intriguing two-dimensional (2D) material class with promising electronic and optoelectronic properties. Here, we focused on recently prepared Hf-based MXenes, namely Hf$_3$C$_2$O$_2$ and Hf$_2$CO$_2$. Using the first-principles calculation and excited state corrections, we proved its dynamical stability, reconciled its semiconducting behavior, and obtained fundamental gaps by the many-body GW method (indirect 1.1 eV and 2.2 eV, respectively, direct 1.4 eV and 3.5 eV, respectively). Using the Bethe-Salpeter equation (BSE) we subsequently provided optical gaps (0.9 eV and 2.7eV, respectively), exciton binding energies, absorption spectra, and other properties of excitons in both Hf-based MXenes. The indirect character of both 2D materials further allowed a significant decrease of excitation energies by considering indirect excitons with exciton momentum along the $螕$-M path in the Brillouin zone. The first bright excitons are strongly delocalized in real space while contributed by only a limited number of electron-hole pairs around the M point in the k-space from the valence and conduction band. A diverse range of excitonic states in Hf$_3$C$_2$O$_2$ MXene lead to a 4\% and 13\% absorptance for the first and second peaks in the infrared region of absorption spectra, respectively. In contrast, a prominent 28\% absorptance peak in the visible region appears in Hf$_2$CO$_2$ MXene. Results from radiative lifetime calculations indicate the promising potential of these materials in optoelectric devices requiring sustained and efficient exciton behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01797v1-abstract-full').style.display = 'none'; document.getElementById('2404.01797v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 160, 124707 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19581">arXiv:2403.19581</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.19581">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.8.084201">10.1103/PhysRevMaterials.8.084201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning intrinsic anomalous Hall effect from large to zero in two ferromagnetic states of SmMn2Ge2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+M">Mahima Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sau%2C+J">Jyotirmoy Sau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rai%2C+B">Banik Rai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panda%2C+A">Arunanshu Panda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+M">Manoranjan Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19581v3-abstract-short" style="display: inline;"> The intrinsic anomalous Hall conductivity (AHC) in a ferromagnetic metal is completely determined by its band structure. Since the spin orientation direction is an important band-structure tuning parameter, it is highly desirable to study the anomalous Hall effect in a system with multiple spin reorientation transitions. We study a layered tetragonal room temperature ferromagnet SmMn2Ge2, which gi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19581v3-abstract-full').style.display = 'inline'; document.getElementById('2403.19581v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19581v3-abstract-full" style="display: none;"> The intrinsic anomalous Hall conductivity (AHC) in a ferromagnetic metal is completely determined by its band structure. Since the spin orientation direction is an important band-structure tuning parameter, it is highly desirable to study the anomalous Hall effect in a system with multiple spin reorientation transitions. We study a layered tetragonal room temperature ferromagnet SmMn2Ge2, which gives us the opportunity to measure magnetotransport properties where the long c-axis and the short a-axis can both be magnetically easy axes depending on the temperature range we choose. We show a moderately large fully intrinsic AHC up to room temperature when the crystal is magnetized along the c-axis. Interestingly, the AHC can be tuned to completely extrinsic with extremely large values when the crystal is magnetized along the a-axis, regardless of whether the a-axis is magnetically easy or hard axis. First-principles calculations show that nodal line states originate from Mn-d orbitals just below the Fermi energy (EF) in the electronic band structure when the spins are oriented along the c-axis. Intrinsic AHC originates from the Berry curvature effect of the gapped nodal lines in the presence of spin-orbit coupling. AHC almost disappears when the spins are aligned along the a-axis because the nodal line states shift above EF and become unoccupied. Since the AHC can be tuned from fully extrinsic to intrinsic even at 300 K, SmMn2Ge2 becomes a potential candidate for room-temperature spintronics applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19581v3-abstract-full').style.display = 'none'; document.getElementById('2403.19581v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 main figures, 4 SI figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Materials 8, 084201 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02463">arXiv:2403.02463</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.02463">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tuning charge density wave of kagome metal ScV6Sn6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C">Changjiang Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xiaolong Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02463v1-abstract-short" style="display: inline;"> Compounds with a kagome lattice exhibit intriguing properties and the charge density wave (CDW) adds an additional layer of interest to research on them. In this study, we investigate the temperature and magnetic field dependent electrical properties under a chemical substitution and hydrostatic pressure of ScV6Sn6, a non-magnetic charge density wave (CDW) compound. Substituting 5 % Cr at the V si&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02463v1-abstract-full').style.display = 'inline'; document.getElementById('2403.02463v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02463v1-abstract-full" style="display: none;"> Compounds with a kagome lattice exhibit intriguing properties and the charge density wave (CDW) adds an additional layer of interest to research on them. In this study, we investigate the temperature and magnetic field dependent electrical properties under a chemical substitution and hydrostatic pressure of ScV6Sn6, a non-magnetic charge density wave (CDW) compound. Substituting 5 % Cr at the V site or applying 1.5 GPa of pressure shifts the CDW to 50 K from 92 K. This shift is attributed to the movement of the imaginary phonon band, as revealed by the phonon dispersion relation. The longitudinal and Hall resistivities respond differently under these stimuli. The magnetoresistance (MR) maintains its quasilinear behavior under pressure, but it becomes quadratic after Cr substitution. The anomalous Hall-like behavior of the parent compound persists up to the respective CDW transition under pressure, after which it sharply declines. In contrast, the longitudinal and Hall resistivities of Cr substituted compounds follow a two-band model and originates from the multi carrier effect. These results clearly highlight the role of phonon contributions in the CDW transition and call for further investigation into the origin of the anomalous Hall-like behavior in the parent compound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02463v1-abstract-full').style.display = 'none'; document.getElementById('2403.02463v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures, supplementary files</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00728">arXiv:2403.00728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00728">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202310668">10.1002/adma.202310668 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of interfacial magnetism in strongly-correlated nickelate-titanate superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Asmara%2C+T+C">Teguh Citra Asmara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suter%2C+A">Andreas Suter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yuan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenliang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knez%2C+D">Daniel Knez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harris%2C+G">Grant Harris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+T">Tianlun Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Betto%2C+D">Davide Betto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klein%2C+Y+M">Yannick Maximilian Klein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Neeraj Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Galdino%2C+C+W">Carlos William Galdino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salman%2C+Z">Zaher Salman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokscha%2C+T">Thomas Prokscha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medarde%2C+M">Marisa Medarde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+E">Elisabeth M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+Y">Yona Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">Nicholas B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">Milan Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00728v2-abstract-short" style="display: inline;"> Strongly-correlated transition-metal oxides are widely known for their various exotic phenomena. This is exemplified by rare-earth nickelates such as LaNiO$_{3}$, which possess intimate interconnections between their electronic, spin, and lattice degrees of freedom. Their properties can be further enhanced by pairing them in hybrid heterostructures, which can lead to hidden phases and emergent phe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00728v2-abstract-full').style.display = 'inline'; document.getElementById('2403.00728v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00728v2-abstract-full" style="display: none;"> Strongly-correlated transition-metal oxides are widely known for their various exotic phenomena. This is exemplified by rare-earth nickelates such as LaNiO$_{3}$, which possess intimate interconnections between their electronic, spin, and lattice degrees of freedom. Their properties can be further enhanced by pairing them in hybrid heterostructures, which can lead to hidden phases and emergent phenomena. An important example is the LaNiO$_{3}$/LaTiO$_{3}$ superlattice, where an interlayer electron transfer has been observed from LaTiO$_{3}$ into LaNiO$_{3}$ leading to a high-spin state. However, macroscopic emergence of magnetic order associated with this high-spin state has so far not been observed. Here, by using muon spin rotation, x-ray absorption, and resonant inelastic x-ray scattering, we present direct evidence of an emergent antiferromagnetic order with high magnon energy and exchange interactions at the LaNiO$_{3}$/LaTiO$_{3}$ interface. As the magnetism is purely interfacial, a single LaNiO$_{3}$/LaTiO$_{3}$ interface can essentially behave as an atomically thin strongly-correlated quasi-two-dimensional antiferromagnet, potentially allowing its technological utilisation in advanced spintronic devices. Furthermore, its strong quasi-two-dimensional magnetic correlations, orbitally-polarized planar ligand holes, and layered superlattice design make its electronic, magnetic, and lattice configurations resemble the precursor states of superconducting cuprates and nickelates, but with an $S \rightarrow 1$ spin state instead. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00728v2-abstract-full').style.display = 'none'; document.getElementById('2403.00728v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials 36, 2310668 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14547">arXiv:2401.14547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.14547">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a Topological Charge Density Wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Songbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guin%2C+S+N">Satya N. Guin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14547v1-abstract-short" style="display: inline;"> Charge density waves (CDWs) appear in numerous condensed matter platforms, ranging from high-Tc superconductors to quantum Hall systems. Despite such ubiquity, there has been a lack of direct experimental study on boundary states that can uniquely stem from the charge order. Here, using scanning tunneling microscopy, we directly visualize the bulk and boundary phenomenology of CDW in a topological&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14547v1-abstract-full').style.display = 'inline'; document.getElementById('2401.14547v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14547v1-abstract-full" style="display: none;"> Charge density waves (CDWs) appear in numerous condensed matter platforms, ranging from high-Tc superconductors to quantum Hall systems. Despite such ubiquity, there has been a lack of direct experimental study on boundary states that can uniquely stem from the charge order. Here, using scanning tunneling microscopy, we directly visualize the bulk and boundary phenomenology of CDW in a topological material, Ta2Se8I. Below the transition temperature (TCDW = 260 K), tunneling spectra on an atomically resolved lattice reveal a large insulating gap in the bulk and on the surface, exceeding 500 meV, surpassing predictions from standard weakly-coupled mean-field theory. Spectroscopic imaging confirms the presence of CDW, with LDOS maxima at the conduction band corresponding to the LDOS minima at the valence band, thus revealing a 蟺 phase difference in the respective CDW order. Concomitantly, at a monolayer step edge, we detect an in-gap boundary mode with modulations along the edge that match the CDW wavevector along the edge. Intriguingly, the phase of the edge state modulation shifts by 蟺 within the charge order gap, connecting the fully gapped bulk (and surface) conduction and valence bands via a smooth energy-phase relation. This bears similarity to the topological spectral flow of edge modes, where the boundary modes bridge the gapped bulk modes in energy and momentum magnitude but in Ta2Se8I, the connectivity distinctly occurs in energy and momentum phase. Notably, our temperature-dependent measurements indicate a vanishing of the insulating gap and the in-gap edge state above TCDW, suggesting their direct relation to CDW. The theoretical analysis also indicates that the observed boundary mode is topological and linked to CDW. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14547v1-abstract-full').style.display = 'none'; document.getElementById('2401.14547v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Physics (2024); in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14143">arXiv:2311.14143</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14143">pdf</a>, <a href="https://arxiv.org/format/2311.14143">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Exciting high-frequency short-wavelength spin waves using high harmonics of a magnonic cavity mode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nikhil Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gruszecki%2C+P">Pawe艂 Gruszecki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Go%C5%82%C4%99biewski%2C+M">Mateusz Go艂臋biewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C5%82os%2C+J+W">Jaros艂aw W. K艂os</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krawczyk%2C+M">Maciej Krawczyk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14143v1-abstract-short" style="display: inline;"> Confined spin-wave modes are a promising object for studying nonlinear effects and future quantum technologies. Here, using micromagnetic simulations, we use a microwave magnetic field from a coplanar waveguide (CPW) to pump a standing spin-wave confined in the cavity of magnonic crystal. We find that the frequency of the fundamental cavity mode is equal to the ferromagnetic resonance frequency of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14143v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14143v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14143v1-abstract-full" style="display: none;"> Confined spin-wave modes are a promising object for studying nonlinear effects and future quantum technologies. Here, using micromagnetic simulations, we use a microwave magnetic field from a coplanar waveguide (CPW) to pump a standing spin-wave confined in the cavity of magnonic crystal. We find that the frequency of the fundamental cavity mode is equal to the ferromagnetic resonance frequency of the plane film and overlaps with the magnonic bandgap, allowing high magnetic field tunability. Multi-frequency harmonics of the cavity mode are generated once the microwave amplitude surpasses a certain threshold. Specifically, the second and third harmonics at 0.5 T equate to 48.6 and 72.9 GHz with wavelengths of 44 and 22 nm respectively, which propagate into the crystal. This effect reaches saturation when the CPW covers the entire cavity, making the system feasible for realization. These processes show potential for the advancement of magnonics at high-frequencies and very short-wavelengths. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14143v1-abstract-full').style.display = 'none'; document.getElementById('2311.14143v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07864">arXiv:2310.07864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07864">pdf</a>, <a href="https://arxiv.org/format/2310.07864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3624062.3626081">10.1145/3624062.3626081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards Foundation Models for Materials Science: The Open MatSci ML Toolkit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+K+L+K">Kin Long Kelvin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonzales%2C+C">Carmelo Gonzales</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spellings%2C+M">Matthew Spellings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Galkin%2C+M">Mikhail Galkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miret%2C+S">Santiago Miret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nalini Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07864v1-abstract-short" style="display: inline;"> Artificial intelligence and machine learning have shown great promise in their ability to accelerate novel materials discovery. As researchers and domain scientists seek to unify and consolidate chemical knowledge, the case for models with potential to generalize across different tasks within materials science - so-called &#34;foundation models&#34; - grows with ambitions. This manuscript reviews our rece&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07864v1-abstract-full').style.display = 'inline'; document.getElementById('2310.07864v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07864v1-abstract-full" style="display: none;"> Artificial intelligence and machine learning have shown great promise in their ability to accelerate novel materials discovery. As researchers and domain scientists seek to unify and consolidate chemical knowledge, the case for models with potential to generalize across different tasks within materials science - so-called &#34;foundation models&#34; - grows with ambitions. This manuscript reviews our recent progress with development of Open MatSci ML Toolkit, and details experiments that lay the groundwork for foundation model research and development with our framework. First, we describe and characterize a new pretraining task that uses synthetic data generated from symmetry operations, and reveal complex training dynamics at large scales. Using the pretrained model, we discuss a number of use cases relevant to foundation model development: semantic architecture of datasets, and fine-tuning for property prediction and classification. Our key results show that for simple applications, pretraining appears to provide worse modeling performance than training models from random initialization. However, for more complex instances, such as when a model is required to learn across multiple datasets and types of targets simultaneously, the inductive bias from pretraining provides significantly better performance. This insight will hopefully inform subsequent efforts into creating foundation models for materials science applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07864v1-abstract-full').style.display = 'none'; document.getElementById('2310.07864v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures, 1 table. Accepted paper/presentation at the AI4Science workshop at Super Computing &#39;23</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.11323">arXiv:2309.11323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.11323">pdf</a>, <a href="https://arxiv.org/format/2309.11323">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D3SM01224G">10.1039/D3SM01224G <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantifying nematic order in evaporation-driven self-assembly of Halloysite nanotubes: Nematic islands and critical aspect ratio </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dadwal%2C+A">Arun Dadwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prasher%2C+M">Meenu Prasher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sengupta%2C+P">Pranesh Sengupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitin Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.11323v1-abstract-short" style="display: inline;"> Halloysite nanotubes (HNTs) are naturally occurring clay minerals found in Earth&#39;s crust that typically exist in the form of high aspect-ratio nanometers-long rods. Here, we investigate the evaporation-driven self-assembly process of HNTs and show that a highly polydisperse collection of HNTs self-sort into a spatially inhomogeneous structure, displaying a systematic variation in the resulting nem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11323v1-abstract-full').style.display = 'inline'; document.getElementById('2309.11323v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.11323v1-abstract-full" style="display: none;"> Halloysite nanotubes (HNTs) are naturally occurring clay minerals found in Earth&#39;s crust that typically exist in the form of high aspect-ratio nanometers-long rods. Here, we investigate the evaporation-driven self-assembly process of HNTs and show that a highly polydisperse collection of HNTs self-sort into a spatially inhomogeneous structure, displaying a systematic variation in the resulting nematic order. Through detailed quantification using nematic order parameter $S$ and nematic correlation functions, we show the existence of well-defined isotropic-nematic transitions in the emerging structures. We also show that the onset of these transitions gives rise to the formation of nematic islands - phase coexisting ordered nematic domains surrounded by isotropic phase - which grow in size with $S$. Detailed image analysis indicates a strong correlation between local $S$ and the local aspect ratio, $L/D$, with nematic order possible only for rods with $L/D \ge 6.5 \pm 1$. Finally, we conclude that observed phenomena directly result from aspect ratio-based sorting in our system. Altogether, our results provide a unique method of tuning the local microscopic structure in self-assembled HNTs using $L/D$ as an external parameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11323v1-abstract-full').style.display = 'none'; document.getElementById('2309.11323v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Soft Matter (2023) 19, 9050-9058 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02342">arXiv:2308.02342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.02342">pdf</a>, <a href="https://arxiv.org/format/2308.02342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adm6761">10.1126/sciadv.adm6761 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence of Scaling Advantage for the Quantum Approximate Optimization Algorithm on a Classically Intractable Problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shaydulin%2C+R">Ruslan Shaydulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Changhao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakrabarti%2C+S">Shouvanik Chakrabarti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=DeCross%2C+M">Matthew DeCross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herman%2C+D">Dylan Herman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Niraj Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Larson%2C+J">Jeffrey Larson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lykov%2C+D">Danylo Lykov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minssen%2C+P">Pierre Minssen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yue Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alexeev%2C+Y">Yuri Alexeev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dreiling%2C+J+M">Joan M. Dreiling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaebler%2C+J+P">John P. Gaebler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatterman%2C+T+M">Thomas M. Gatterman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+J+A">Justin A. Gerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gilmore%2C+K">Kevin Gilmore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gresh%2C+D">Dan Gresh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hewitt%2C+N">Nathan Hewitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Horst%2C+C+V">Chandler V. Horst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shaohan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johansen%2C+J">Jacob Johansen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matheny%2C+M">Mitchell Matheny</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mengle%2C+T">Tanner Mengle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mills%2C+M">Michael Mills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moses%2C+S+A">Steven A. Moses</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02342v2-abstract-short" style="display: inline;"> The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on the low autocorrelation binary sequences (LABS) problem, which is classically intractable even for mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02342v2-abstract-full').style.display = 'inline'; document.getElementById('2308.02342v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02342v2-abstract-full" style="display: none;"> The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on the low autocorrelation binary sequences (LABS) problem, which is classically intractable even for moderately sized instances. We perform noiseless simulations with up to 40 qubits and observe that the runtime of QAOA with fixed parameters scales better than branch-and-bound solvers, which are the state-of-the-art exact solvers for LABS. The combination of QAOA with quantum minimum finding gives the best empirical scaling of any algorithm for the LABS problem. We demonstrate experimental progress in executing QAOA for the LABS problem using an algorithm-specific error detection scheme on Quantinuum trapped-ion processors. Our results provide evidence for the utility of QAOA as an algorithmic component that enables quantum speedups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02342v2-abstract-full').style.display = 'none'; document.getElementById('2308.02342v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Journal-accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Adv. 10 (22), eadm6761 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14233">arXiv:2307.14233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14233">pdf</a>, <a href="https://arxiv.org/format/2307.14233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Why soft contacts are stickier when breaking than when making them </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sanner%2C+A">Antoine Sanner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nityanshu Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhinojwala%2C+A">Ali Dhinojwala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jacobs%2C+T+D+B">Tevis D. B. Jacobs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pastewka%2C+L">Lars Pastewka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14233v1-abstract-short" style="display: inline;"> Insects, pick-and-place manufacturing, engineered adhesives, and soft robots employ soft materials to stick to surfaces even in the presence of roughness. Experiments show that the force required for making contact is lower than for releasing it, a phenomenon known as the adhesion hysteresis. The common explanation for this hysteresis is either contact aging or viscoelasticity. Here, we show that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14233v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14233v1-abstract-full" style="display: none;"> Insects, pick-and-place manufacturing, engineered adhesives, and soft robots employ soft materials to stick to surfaces even in the presence of roughness. Experiments show that the force required for making contact is lower than for releasing it, a phenomenon known as the adhesion hysteresis. The common explanation for this hysteresis is either contact aging or viscoelasticity. Here, we show that adhesion hysteresis emerges even for perfectly elastic contacts and in the absence of contact aging and viscoelasticity because of surface roughness. We present a crack-perturbation model and experimental observations that reveal discrete jumps of the contact perimeter. These stick-slip instabilities are triggered by local differences in fracture energy between roughness peaks and valleys. Pinning of the contact perimeter retards both its advancement when coming into contact and its retraction when pulling away. Our model quantitatively reproduces the hysteresis observed in experiments and allows us to derive analytical predictions for its magnitude, accounting for realistic rough geometries across orders of magnitude in length scale. Our results explain why adhesion hysteresis is ubiquitous and reveal why soft pads in nature and engineering are efficient in adhering even to surfaces with significant roughness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14233v1-abstract-full').style.display = 'none'; document.getElementById('2307.14233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13534">arXiv:2307.13534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13534">pdf</a>, <a href="https://arxiv.org/format/2307.13534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01339-1">10.1038/s42005-023-01339-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge fluctuations in the intermediate-valence ground state of SmCoIn$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tam%2C+D+W">David W. Tam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colonna%2C+N">Nicola Colonna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Neeraj Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piamonteze%2C+C">Cinthia Piamonteze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alarab%2C+F">Fatima Alarab</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cervellino%2C+A">Antonio Cervellino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fennell%2C+T">Tom Fennell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gawryluk%2C+D+J">Dariusz Jakub Gawryluk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">Ekaterina Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+Y">Y. Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kenzelmann%2C+M">Michel Kenzelmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13534v1-abstract-short" style="display: inline;"> The microscopic mechanism of heavy band formation, relevant for unconventional superconductivity in CeCoIn$_5$ and other Ce-based heavy fermion materials, depends strongly on the efficiency with which $f$ electrons are delocalized from the rare earth sites and participate in a Kondo lattice. Replacing Ce$^{3+}$ ($4f^1$, $J=5/2$) with Sm$^{3+}$ ($4f^5$, $J=5/2$), we show that a combination of cryst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13534v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13534v1-abstract-full" style="display: none;"> The microscopic mechanism of heavy band formation, relevant for unconventional superconductivity in CeCoIn$_5$ and other Ce-based heavy fermion materials, depends strongly on the efficiency with which $f$ electrons are delocalized from the rare earth sites and participate in a Kondo lattice. Replacing Ce$^{3+}$ ($4f^1$, $J=5/2$) with Sm$^{3+}$ ($4f^5$, $J=5/2$), we show that a combination of crystal field and on-site Coulomb repulsion causes SmCoIn$_5$ to exhibit a $螕_7$ ground state similar to CeCoIn$_5$ with multiple $f$ electrons. Remarkably, we also find that with this ground state, SmCoIn$_5$ exhibits a temperature-induced valence crossover consistent with a Kondo scenario, leading to increased delocalization of $f$ holes below a temperature scale set by the crystal field, $T_v$ $\approx$ 60 K. Our result provides evidence that in the case of many $f$ electrons, the crystal field remains the most important tuning knob in controlling the efficiency of delocalization near a heavy fermion quantum critical point, and additionally clarifies that charge fluctuations play a general role in the ground state of &#34;115&#34; materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13534v1-abstract-full').style.display = 'none'; document.getElementById('2307.13534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.09442">arXiv:2307.09442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.09442">pdf</a>, <a href="https://arxiv.org/format/2307.09442">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.043277">10.1103/PhysRevResearch.5.043277 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hardness of the Maximum Independent Set Problem on Unit-Disk Graphs and Prospects for Quantum Speedups </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Andrist%2C+R+S">Ruben S. Andrist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuetz%2C+M+J+A">Martin J. A. Schuetz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minssen%2C+P">Pierre Minssen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yalovetzky%2C+R">Romina Yalovetzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakrabarti%2C+S">Shouvanik Chakrabarti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herman%2C+D">Dylan Herman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Niraj Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salton%2C+G">Grant Salton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shaydulin%2C+R">Ruslan Shaydulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yue Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pistoia%2C+M">Marco Pistoia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katzgraber%2C+H+G">Helmut G. Katzgraber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.09442v3-abstract-short" style="display: inline;"> Rydberg atom arrays are among the leading contenders for the demonstration of quantum speedups. Motivated by recent experiments with up to 289 qubits [Ebadi et al., Science 376, 1209 (2022)] we study the maximum independent set problem on unit-disk graphs with a broader range of classical solvers beyond the scope of the original paper. We carry out extensive numerical studies and assess problem ha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09442v3-abstract-full').style.display = 'inline'; document.getElementById('2307.09442v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.09442v3-abstract-full" style="display: none;"> Rydberg atom arrays are among the leading contenders for the demonstration of quantum speedups. Motivated by recent experiments with up to 289 qubits [Ebadi et al., Science 376, 1209 (2022)] we study the maximum independent set problem on unit-disk graphs with a broader range of classical solvers beyond the scope of the original paper. We carry out extensive numerical studies and assess problem hardness, using both exact and heuristic algorithms. We find that quasi-planar instances with Union-Jack-like connectivity can be solved to optimality for up to thousands of nodes within minutes, with both custom and generic commercial solvers on commodity hardware, without any instance-specific fine-tuning. We also perform a scaling analysis, showing that by relaxing the constraints on the classical simulated annealing algorithms considered in Ebadi et al., our implementation is competitive with the quantum algorithms. Conversely, instances with larger connectivity or less structure are shown to display a time-to-solution potentially orders of magnitudes larger. Based on these results we propose protocols to systematically tune problem hardness, motivating experiments with Rydberg atom arrays on instances orders of magnitude harder (for established classical solvers) than previously studied. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09442v3-abstract-full').style.display = 'none'; document.getElementById('2307.09442v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript: 9 pages, 9 figures. Appendix: 2 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 043277 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06609">arXiv:2306.06609</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.06609">pdf</a>, <a href="https://arxiv.org/format/2306.06609">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epje/s10189-024-00430-x">10.1140/epje/s10189-024-00430-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Programming tunable active dynamics in a self-propelled robot </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Paramanick%2C+S">Somnath Paramanick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pal%2C+A">Arnab Pal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soni%2C+H">Harsh Soni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitin Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06609v2-abstract-short" style="display: inline;"> We present a scheme for producing tunable active dynamics in a self-propelled robotic device. The robot moves using the differential drive mechanism where two wheels can vary their instantaneous velocities independently. These velocities are calculated by equating robot&#39;s equations of motion in two dimensions with well-established active particle models and encoded into the robot&#39;s microcontroller&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06609v2-abstract-full').style.display = 'inline'; document.getElementById('2306.06609v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06609v2-abstract-full" style="display: none;"> We present a scheme for producing tunable active dynamics in a self-propelled robotic device. The robot moves using the differential drive mechanism where two wheels can vary their instantaneous velocities independently. These velocities are calculated by equating robot&#39;s equations of motion in two dimensions with well-established active particle models and encoded into the robot&#39;s microcontroller. We demonstrate that the robot can depict active Brownian, run and tumble, and Brownian dynamics with a wide range of parameters. The resulting motion analyzed using particle tracking shows excellent agreement with the theoretically predicted trajectories. Finally, we demonstrate that its motion can be switched between different dynamics using light intensity as an external parameter. This work opens an avenue for designing tunable active systems with the potential of revealing the physics of active matter and its application for bio- and nature-inspired robotics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06609v2-abstract-full').style.display = 'none'; document.getElementById('2306.06609v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, For supplementary movies and SI file visit: https://iitbacin-my.sharepoint.com/:f:/g/personal/somnath_p_iitb_ac_in/EvOuWA3nDdtFsJ9x1thyDCcBDuE029-kduxwXulG6HFMpA?e=iIgTRK</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. E (2024) 47:34 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00938">arXiv:2305.00938</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00938">pdf</a>, <a href="https://arxiv.org/format/2305.00938">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.083802">10.1103/PhysRevMaterials.7.083802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accelerating microstructure modelling via machine learning: a new method combining Autoencoder and ConvLSTM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ahmad%2C+O">Owais Ahmad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Naveen Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukherjee%2C+R">Rajdip Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhowmick%2C+S">Somnath Bhowmick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00938v1-abstract-short" style="display: inline;"> Phase-field modeling is an elegant and versatile computation tool to predict microstructure evolution in materials in the mesoscale regime. However, these simulations require rigorous numerical solutions of differential equations, which are accurate but computationally expensive. To overcome this difficulty, we combine two popular machine learning techniques, autoencoder and convolutional long sho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00938v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00938v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00938v1-abstract-full" style="display: none;"> Phase-field modeling is an elegant and versatile computation tool to predict microstructure evolution in materials in the mesoscale regime. However, these simulations require rigorous numerical solutions of differential equations, which are accurate but computationally expensive. To overcome this difficulty, we combine two popular machine learning techniques, autoencoder and convolutional long short-term memory (ConvLSTM), to accelerate the study of microstructural evolution without compromising the resolution of the microstructural representation. After training with phase-field generated microstructures of ten known compositions, the model can accurately predict the microstructure for the future nth frames based on previous m frames for an unknown composition. Replacing n phase-field steps with machine-learned microstructures can significantly accelerate the in silico study of microstructure evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00938v1-abstract-full').style.display = 'none'; document.getElementById('2305.00938v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 7, 083802 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.18134">arXiv:2303.18134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.18134">pdf</a>, <a href="https://arxiv.org/format/2303.18134">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.155119">10.1103/PhysRevB.107.155119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure evolution of electronic and crystal structure of non-centrosymmetric EuCoGe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dhami%2C+N+S">N. S. Dhami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bal%C3%A9dent%2C+V">V. Bal茅dent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bednarchuk%2C+O">O. Bednarchuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaczorowski%2C+D">D. Kaczorowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shieh%2C+S+R">S. R. Shieh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ablett%2C+J+M">J. M. Ablett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rueff%2C+J+-">J. -P. Rueff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iti%C3%A9%2C+J+P">J. P. Iti茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+C+M+N">C. M. N. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Utsumi%2C+Y">Y. Utsumi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.18134v1-abstract-short" style="display: inline;"> We report on the pressure evolution of the electronic and crystal structures of the noncentrosymmetric antiferromagnet EuCoGe3. Using a diamond anvil cell, we performed high pressure fluorescence detected near-edge x-ray absorption spectroscopy at the Eu L3, Co K, and Ge K edges and synchrotron powder x-ray diffraction. In the Eu L3 spectrum, both divalent and trivalent Eu peaks are observed from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.18134v1-abstract-full').style.display = 'inline'; document.getElementById('2303.18134v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.18134v1-abstract-full" style="display: none;"> We report on the pressure evolution of the electronic and crystal structures of the noncentrosymmetric antiferromagnet EuCoGe3. Using a diamond anvil cell, we performed high pressure fluorescence detected near-edge x-ray absorption spectroscopy at the Eu L3, Co K, and Ge K edges and synchrotron powder x-ray diffraction. In the Eu L3 spectrum, both divalent and trivalent Eu peaks are observed from the lowest pressure measurement (~2 GPa). By increasing pressure, the relative intensity of the trivalent Eu peak increases, and an average Eu valence continuously increases from 2.2 at 2 GPa to 2.31 at~50 GPa. On the other hand, no discernible changes are observed in the Co K and Ge K spectra as a function of pressure. With the increase in pressure, lattice parameters continuously decrease without changing I4mm symmetry. Our study revealed a robust divalent Eu state and an unchanged crystal symmetry of EuCoGe3 against pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.18134v1-abstract-full').style.display = 'none'; document.getElementById('2303.18134v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in PRB https://journals.aps.org/prb/accepted/b2073O6fL9e1ca40307905b1de5bf05de12d8fc1a</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.06707">arXiv:2303.06707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.06707">pdf</a>, <a href="https://arxiv.org/format/2303.06707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-37694-4">10.1038/s41467-023-37694-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reply to: Low-frequency quantum oscillations in LaRhIn$_5$: Dirac point or nodal line? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alexandradinata%2C+A">A. Alexandradinata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzke%2C+C">Carsten Putzke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Estry%2C+A">Amelia Estry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+T">Teng Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+F">Feng-Ren Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shengnan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Quansheng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazyev%2C+O+V">Oleg V. Yazyev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shirer%2C+K+R">Kent R. Shirer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bachmann%2C+M+D">Maja D. Bachmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+H">Hailin Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+E+D">Eric D. Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronning%2C+F">Filip Ronning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.06707v1-abstract-short" style="display: inline;"> We thank G.P. Mikitik and Yu.V. Sharlai for contributing this note and the cordial exchange about it. First and foremost, we note that the aim of our paper is to report a methodology to diagnose topological (semi)metals using magnetic quantum oscillations. Thus far, such diagnosis has been based on the phase offset of quantum oscillations, which is extracted from a &#34;Landau fan plot&#34;. A thorough an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06707v1-abstract-full').style.display = 'inline'; document.getElementById('2303.06707v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.06707v1-abstract-full" style="display: none;"> We thank G.P. Mikitik and Yu.V. Sharlai for contributing this note and the cordial exchange about it. First and foremost, we note that the aim of our paper is to report a methodology to diagnose topological (semi)metals using magnetic quantum oscillations. Thus far, such diagnosis has been based on the phase offset of quantum oscillations, which is extracted from a &#34;Landau fan plot&#34;. A thorough analysis of the Onsager-Lifshitz-Roth quantization rules has shown that the famous $蟺$-phase shift can equally well arise from orbital- or spin magnetic moments in topologically trivial systems with strong spin-orbit coupling or small effective masses. Therefore, the &#34;Landau fan plot&#34; does not by itself constitute a proof of a topologically nontrivial Fermi surface. In the paper at hand, we report an improved analysis method that exploits the strong energy-dependence of the effective mass in linearly dispersing bands. This leads to a characteristic temperature dependence of the oscillation frequency which is a strong indicator of nontrivial topology, even for multi-band metals with complex Fermi surfaces. Three materials, Cd$_3$As$_2$, Bi$_2$O$_2$Se and LaRhIn$_5$ served as test cases for this method. Linear band dispersions were detected for Cd$_3$As$_2$, as well as the $F$ $\approx$ 7 T pocket in LaRhIn$_5$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06707v1-abstract-full').style.display = 'none'; document.getElementById('2303.06707v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Response to Matter arising for Nature Communications 12, 6213 (2021)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.06023">arXiv:2303.06023</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.06023">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Hematite $伪-Fe_{2}O_{3}(0001)$ in top and side view: resolving long-standing controversies about its surface structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Redondo%2C+J">Jes煤s Redondo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michali%C4%8Dka%2C+J">Jan Michali膷ka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franceschi%2C+G">Giada Franceschi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0mid%2C+B">B艡etislav 艩mid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nishant Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Man%2C+O">Ond艡ej Man</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blatnik%2C+M">Matthias Blatnik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wrana%2C+D">Dominik Wrana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kraushofer%2C+F">Florian Kraushofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mallada%2C+B">Benjamin Mallada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%A0vec%2C+M">Martin 艩vec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkinson%2C+G+S">Gareth S. Parkinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Setvin%2C+M">Martin Setvin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riva%2C+M">Michele Riva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Diebold%2C+U">Ulrike Diebold</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C4%8Cechal%2C+J">Jan 膶echal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.06023v1-abstract-short" style="display: inline;"> Hematite $伪-Fe_{2}O_{3}(0001)$ is the most-investigated iron oxide model system in photo and electrocatalytic research. The rich chemistry of Fe and O allows for many bulk and surface transformations, but their control is challenging. This has led to controversies regarding the structure of the topmost layers. This comprehensive study combines surface methods (nc-AFM, STM, LEED, and XPS) complemen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06023v1-abstract-full').style.display = 'inline'; document.getElementById('2303.06023v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.06023v1-abstract-full" style="display: none;"> Hematite $伪-Fe_{2}O_{3}(0001)$ is the most-investigated iron oxide model system in photo and electrocatalytic research. The rich chemistry of Fe and O allows for many bulk and surface transformations, but their control is challenging. This has led to controversies regarding the structure of the topmost layers. This comprehensive study combines surface methods (nc-AFM, STM, LEED, and XPS) complemented by structural and chemical analysis of the near-surface bulk (HRTEM and EELS). The results show that a compact 2D layer constitutes the topmost surface of $伪-Fe_{2}O_{3}(0001)$; it is locally corrugated due to the mismatch with the bulk. Assessing the influence of naturally-occurring impurities shows that these can force the formation of surface phases that are not stable on pure samples. Impurities can also cause the formation of ill-defined inclusions in the subsurface and modify the oxidation phase diagram of hematite. The results provide a significant step forward in determining the hematite surface structure that is crucial for accurately modeling catalytic reactions. Combining surface and cross-sectional imaging provided the full view that is essential for understanding the evolution of the near-surface region of oxide surfaces under oxidative conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06023v1-abstract-full').style.display = 'none'; document.getElementById('2303.06023v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.01761">arXiv:2303.01761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.01761">pdf</a>, <a href="https://arxiv.org/format/2303.01761">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.actamat.2023.119077">10.1016/j.actamat.2023.119077 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entropic Stabilization and Descriptors of Structural Transformation in High Entropy Alloys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Narendra Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Waghmare%2C+U+V">Umesh V. Waghmare</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.01761v1-abstract-short" style="display: inline;"> With first-principles theoretical analysis of the local structure using Bond Orientational Order parameters and Voronoi partitioning, we establish (a) HCP$\rightarrow$BCC structural transformation in high-entropy alloys (HEAs) Nb$_x$(HfZrTi)$_y$ at 16% Nb-concentration, and (b) that the internal lattice distortions (ILDs) peak at the transition. We demonstrate that the relative stability of HCP an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01761v1-abstract-full').style.display = 'inline'; document.getElementById('2303.01761v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.01761v1-abstract-full" style="display: none;"> With first-principles theoretical analysis of the local structure using Bond Orientational Order parameters and Voronoi partitioning, we establish (a) HCP$\rightarrow$BCC structural transformation in high-entropy alloys (HEAs) Nb$_x$(HfZrTi)$_y$ at 16% Nb-concentration, and (b) that the internal lattice distortions (ILDs) peak at the transition. We demonstrate that the relative stability of HCP and BCC structures is driven by energetics, while the overall stability is achieved with contribution from the vibrational entropy that exceeds the configurational entropy of mixing. We show that along with atomic size mismatch, low average number ($&lt; $5) of valence electrons and disparity in the crystal structures of constituent elements are responsible for larger ILDs in Nb$_x$(HfZrTi)$_y$ than in HEAs like Nb$_a$Mo$_b$W$_c$Ta$_d$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01761v1-abstract-full').style.display = 'none'; document.getElementById('2303.01761v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Acta Materialia 255 (2023) 119077 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.12059">arXiv:2301.12059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.12059">pdf</a>, <a href="https://arxiv.org/ps/2301.12059">ps</a>, <a href="https://arxiv.org/format/2301.12059">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Potential energy surface prediction of Alumina polymorphs using graph neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sanyal%2C+S">Soumya Sanyal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sagotra%2C+A+K">Arun Kumar Sagotra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Narendra Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rathi%2C+S">Sharad Rathi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krishna%2C+M">Mohana Krishna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Somayajula%2C+N">Nagesh Somayajula</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palanisamy%2C+D">Duraivelan Palanisamy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ratnakar%2C+R+R">Ram R. Ratnakar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanyal%2C+S">Suchismita Sanyal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Talukdar%2C+P">Partha Talukdar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Waghmare%2C+U">Umesh Waghmare</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balachandran%2C+J">Janakiraman Balachandran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.12059v1-abstract-short" style="display: inline;"> The process of design and discovery of new materials can be significantly expedited and simplified if we can learn effectively from available data. Deep learning (DL) approaches have recently received a lot of interest for their ability to speed up the design of novel materials by predicting material properties with precision close to experiments and ab-initio calculations. The application of deep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12059v1-abstract-full').style.display = 'inline'; document.getElementById('2301.12059v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.12059v1-abstract-full" style="display: none;"> The process of design and discovery of new materials can be significantly expedited and simplified if we can learn effectively from available data. Deep learning (DL) approaches have recently received a lot of interest for their ability to speed up the design of novel materials by predicting material properties with precision close to experiments and ab-initio calculations. The application of deep learning to predict materials properties measured by experiments are valuable yet challenging due to the limited amount of experimental data. Most of the existing approaches to predict properties from computational data have also been directed towards specific material properties. In this work, we extend this approach, by proposing Landscape Crystal Graph Convolution Network(LCGCN), an accurate and transferable deep learning framework based on graph convolutional networks. LCGCN directly learns the potential energy surface (PES) from atomic configurations. This approach can enable transferable models that can predict different material properties. We apply this framework to bulk crystals (i.e. Al2O3), and test it by calculating potential energy surfaces at different temperatures and across different phases of crystal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12059v1-abstract-full').style.display = 'none'; document.getElementById('2301.12059v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.00108">arXiv:2212.00108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.00108">pdf</a>, <a href="https://arxiv.org/format/2212.00108">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-023-00722-8">10.1038/s41534-023-00722-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Qubit-controlled directional edge states in waveguide QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pakkiam%2C+P">Prasanna Pakkiam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N+P">N. Pradeep Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pletyukhov%2C+M">Mikhail Pletyukhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Arkady Fedorov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.00108v2-abstract-short" style="display: inline;"> We propose an in-situ tunable chiral quantum system, composed of a quantum emitter coupled to a waveguide based on the Rice-Mele model (where we alternate both the on-site potentials and tunnel couplings between sites in the waveguide array). Specifically, we show that the chirality of photonic bound state, that emerges in the bandgap of the waveguide, depends only on the energy of the qubit; a pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00108v2-abstract-full').style.display = 'inline'; document.getElementById('2212.00108v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.00108v2-abstract-full" style="display: none;"> We propose an in-situ tunable chiral quantum system, composed of a quantum emitter coupled to a waveguide based on the Rice-Mele model (where we alternate both the on-site potentials and tunnel couplings between sites in the waveguide array). Specifically, we show that the chirality of photonic bound state, that emerges in the bandgap of the waveguide, depends only on the energy of the qubit; a parameter that is easy to tune in many artificial atoms. In contrast to previous proposals that have either shown imperfect chirality or fixed directionality, our waveguide QED scheme achieves both perfect chirality and the capability to switch the directionality on demand with just one tunable element in the device. We also show that our model is easy to implement in both state-of-the-art superconducting circuit and quantum dot architectures. The results show technological promise in creating long-range couplers between qubits while maintaining, in principle, zero crosstalk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00108v2-abstract-full').style.display = 'none'; document.getElementById('2212.00108v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01707">arXiv:2209.01707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.01707">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic phase crossover in strongly correlated EuMn2P2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Berry%2C+T">Tanya Berry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varnava%2C+N">Nicodemos Varnava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryan%2C+D">Dominic Ryan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stewart%2C+V">Veronica Stewart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%A4sta%2C+R">Riho R盲sta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinmaa%2C+I">Ivo Heinmaa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnelle%2C+W">Walter Schnelle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhandia%2C+R">Rishi Bhandia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pasco%2C+C">Christopher Pasco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Armitage%2C+N+P">N. P. Armitage</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stern%2C+R">Raivo Stern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vanderbilt%2C+D">David Vanderbilt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueen%2C+T+M">Tyrel M. McQueen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01707v1-abstract-short" style="display: inline;"> Strong electron correlations underlie a plethora of electronic and magnetic components and devices and are often used to identify and probe novel ground states in quantum materials. Herein we report a magnetic phase crossover in EuMn2P2, an insulator which shows Eu antiferromagnetism at TN=17K, but no phase transition attributed to Mn magnetism. The absence of a Mn magnetic phase transition contra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01707v1-abstract-full').style.display = 'inline'; document.getElementById('2209.01707v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01707v1-abstract-full" style="display: none;"> Strong electron correlations underlie a plethora of electronic and magnetic components and devices and are often used to identify and probe novel ground states in quantum materials. Herein we report a magnetic phase crossover in EuMn2P2, an insulator which shows Eu antiferromagnetism at TN=17K, but no phase transition attributed to Mn magnetism. The absence of a Mn magnetic phase transition contrasts with the formation of long-range Mn order at T=130K in isoelectronic EuMn2Sb2 and EuMn2As2. Temperature-dependent specific heat and 31P NMR measurements provide evidence for the development of Mn magnetic correlations from T=250-100 K. Density functional theory calculations demonstrate an unusual sensitivity of the band structure to the details of the imposed Mn and Eu magnetic order, with antiferromagnetic Mn order required to recapitulate an insulating state. Our results imply a picture in which long range Mn magnetic order is suppressed by chemical pressure, but that magnetic correlations persist, narrowing bands and producing an insulating state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01707v1-abstract-full').style.display = 'none'; document.getElementById('2209.01707v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.00558">arXiv:2208.00558</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.00558">pdf</a>, <a href="https://arxiv.org/format/2208.00558">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Bound states in microwave QED: Crossover from waveguide to cavity regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N+P">N. Pradeep Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamann%2C+A+R">Andr猫s Rosario Hamann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Navarathna%2C+R">Rohit Navarathna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zanner%2C+M">Maximilian Zanner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pletyukhov%2C+M">Mikhail Pletyukhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Arkady Fedorov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.00558v1-abstract-short" style="display: inline;"> Light-matter interaction at the single-quantum level is the heart of many regimes of high fundamental importance to modern quantum technologies. Strong interaction of a qubit with a single photon of an electromagnetic field mode is described by the cavity/circuit electrodynamics (QED) regime which is one of the most advanced platforms for quantum computing. The opposite regime of the waveguide QED&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00558v1-abstract-full').style.display = 'inline'; document.getElementById('2208.00558v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.00558v1-abstract-full" style="display: none;"> Light-matter interaction at the single-quantum level is the heart of many regimes of high fundamental importance to modern quantum technologies. Strong interaction of a qubit with a single photon of an electromagnetic field mode is described by the cavity/circuit electrodynamics (QED) regime which is one of the most advanced platforms for quantum computing. The opposite regime of the waveguide QED, where qubits interact with a continuum of modes in an infinite one-dimensional space, is also at the focus of recent research revealing novel quantum phenomena. Despite the demonstration of several key features of waveguide QED, the transition from an experimentally realizable finite-size system to the theoretically assumed infinite device size is neither rigorously justified nor fully understood. In this paper, we formulate a unifying theory which under a minimal set of standard approximations accounts for physical boundaries of a system in all parameter domains. Considering two qubits in a rectangular waveguide which naturally exhibits a low frequency cutoff we are able to account for infinite number of modes and obtain an accurate description of the waveguide transmission, a life-time of a qubit-photon bound state and the exchange interaction between two qubit-photon bounds states. For verification, we compare our theory to experimental data obtained for two superconducting qubits in a rectangular waveguide demonstrating how the infinite size limit of waveguide QED emerges in a finite-size system. Our theory can be straightforwardly extended to other waveguides such as the photonic crystal and coupled cavity arrays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.00558v1-abstract-full').style.display = 'none'; document.getElementById('2208.00558v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.03547">arXiv:2207.03547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.03547">pdf</a>, <a href="https://arxiv.org/format/2207.03547">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Anomalous transport in itinerant van der Waals ferromagnets Fe$_n$GeTe$_2$ (\emph{n}=3, 4, 5) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sau%2C+J">Jyotirmoy Sau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hassan%2C+S+R">S. R. Hassan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+M">Manoranjan Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.03547v1-abstract-short" style="display: inline;"> Ferromagnetic (FM) semimetals Fe$_n$GeTe$_2$(n=3, 4, 5), exhibit several symmetry-protected band-crossing points or lines near the Fermi energy (E$_F$) and these topological properties of energy bands lead to interesting transport properties. We study these materials employing the first-principle calculations and the tight-binding Hamiltonian constructed by fitting the parameters of the first prin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03547v1-abstract-full').style.display = 'inline'; document.getElementById('2207.03547v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.03547v1-abstract-full" style="display: none;"> Ferromagnetic (FM) semimetals Fe$_n$GeTe$_2$(n=3, 4, 5), exhibit several symmetry-protected band-crossing points or lines near the Fermi energy (E$_F$) and these topological properties of energy bands lead to interesting transport properties. We study these materials employing the first-principle calculations and the tight-binding Hamiltonian constructed by fitting the parameters of the first principles calculation. In the presence of spin-orbit coupling (SOC) for n=3,5 a large Berry curvature (BC) concentrated on the nodal lines is observed. The consequence of the correlation of the topological nodal line and magnetic moments on anomalous Hall conductivity (AHC) $蟽_{xy}$ and anomalous Nernst conductivity (ANC) $伪_{xy}$ have been investigated. We find $蟽_{xy}=150$ S/cm for n=3, 295 S/cm for n=4, and 90 S/cm for n=5 at 0 K, while the ANC is observed as $伪_{xy}=0.55$ A/Km for n=3, 0.10 A/Km for n=5, and 0.80 A/Km for n=4, at the E$_F$ at room temperature. Our calculated AHC values at 0 K, i.e., 150 S/cm for Fe$_3$GeTe$_2$ and 90 S/cm Fe$_5$GeTe$_2$, are consistent with the experimentally reported values. Also the experimentally reported value of ANC for Fe$_5$GeTe$_2$ is close to our calculated value at room temperature, i.e., 0.10 A/Km. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03547v1-abstract-full').style.display = 'none'; document.getElementById('2207.03547v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.10992">arXiv:2204.10992</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.10992">pdf</a>, <a href="https://arxiv.org/format/2204.10992">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-5468/ac7aa8">10.1088/1742-5468/ac7aa8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy fluctuations in one dimensional Zhang sandpile model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Naveen Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+S">Suram Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yadav%2C+A+C">Avinash Chand Yadav</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.10992v2-abstract-short" style="display: inline;"> We consider the Zhang sandpile model in one-dimension (1D) with locally conservative (or dissipative) dynamics and examine its total energy fluctuations at the external drive time scale. The bulk-driven system leads to Lorentzian spectra, with a cutoff time $T$ growing linearly with the system size $L$. The fluctuations show $1/f^伪$ behavior with $伪\sim 1$ for the boundary drive, and the cutoff ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10992v2-abstract-full').style.display = 'inline'; document.getElementById('2204.10992v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.10992v2-abstract-full" style="display: none;"> We consider the Zhang sandpile model in one-dimension (1D) with locally conservative (or dissipative) dynamics and examine its total energy fluctuations at the external drive time scale. The bulk-driven system leads to Lorentzian spectra, with a cutoff time $T$ growing linearly with the system size $L$. The fluctuations show $1/f^伪$ behavior with $伪\sim 1$ for the boundary drive, and the cutoff time varies non-linearly. For conservative local dynamics, the cutoff time shows a power-law growth $T \sim L^位$ that differs from an exponential form $ \sim \exp(渭L)$ observed for the nonconservative case. We suggest that the local dissipation is not a necessary ingredient of the system in 1D to get the $1/f$ noise, and the cutoff time can reveal the distinct nature of the local dynamics. We also discuss the energy fluctuations for locally nonconservative dynamics with random dissipation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10992v2-abstract-full').style.display = 'none'; document.getElementById('2204.10992v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.10284">arXiv:2204.10284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.10284">pdf</a>, <a href="https://arxiv.org/format/2204.10284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.144515">10.1103/PhysRevB.107.144515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of two electronic subsystems in cuprates through optical conductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+C+M+N">C. M. N. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akrap%2C+A">Ana Akrap</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Homes%2C+C+C">Chris C. Homes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martino%2C+E">Edoardo Martino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klebel-Knobloch%2C+B">Benjamin Klebel-Knobloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tabis%2C+W">Wojciech Tabis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bari%C5%A1i%C4%87%2C+O+S">Osor S. Bari拧i膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sunko%2C+D+K">Denis K. Sunko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bari%C5%A1i%C4%87%2C+N">Neven Bari拧i膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.10284v3-abstract-short" style="display: inline;"> Understanding the physical properties of unconventional superconductors as well as of other correlated materials presents a formidable challenge. Their unusual evolution with doping, frequency, and temperature has frequently led to non-Fermi-liquid (non-FL) interpretations. Optical conductivity is a major challenge in this context. Here, the optical spectra of two archetypal cuprates, underdoped H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10284v3-abstract-full').style.display = 'inline'; document.getElementById('2204.10284v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.10284v3-abstract-full" style="display: none;"> Understanding the physical properties of unconventional superconductors as well as of other correlated materials presents a formidable challenge. Their unusual evolution with doping, frequency, and temperature has frequently led to non-Fermi-liquid (non-FL) interpretations. Optical conductivity is a major challenge in this context. Here, the optical spectra of two archetypal cuprates, underdoped HgBa$_2$CuO$_{4+未}$ and optimally-doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$, are interpreted based on the standard Fermi liquid (FL) paradigm. At both dopings, perfect frequency-temperature FL scaling is found to be modified by the presence of a second, gapped electronic subsystem. This non-FL component emerges as a well-defined mid-infrared spectral feature after the FL contribution -- determined independently by transport -- is subtracted. Temperature, frequency, and doping evolution of the MIR feature identify a gapped rather than dissipative response. In contrast, the dissipative response is found to be relevant for pnictides and ruthenates. Such an unbiased FL/non-FL separation is extended across the cuprate phase diagram, capturing all the key features of the normal state and providing a natural explanation why the superfluid density is attenuated on the overdoped side. Thus, we obtain a unified interpretation of optical responses and transport measurements in all analyzed physical regimes and all analyzed compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10284v3-abstract-full').style.display = 'none'; document.getElementById('2204.10284v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 144515 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00113">arXiv:2204.00113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.00113">pdf</a>, <a href="https://arxiv.org/ps/2204.00113">ps</a>, <a href="https://arxiv.org/format/2204.00113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D2SM00414C">10.1039/D2SM00414C <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Catapulting of topological defects through elasticity bands in active nematics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitin Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Redford%2C+S+A">Steven A. Redford</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Pablo%2C+J+J">Juan J. de Pablo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gardel%2C+M+L">Margaret L. Gardel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00113v1-abstract-short" style="display: inline;"> Active materials are those in which individual, uncoordinated local stresses drive the material out of equilibrium on a global scale. Examples of such assemblies can be seen across scales from schools of fish to the cellular cytoskeleton and underpin many important biological processes. Synthetic experiments that recapitulate the essential features of such active systems have been the object of st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00113v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00113v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00113v1-abstract-full" style="display: none;"> Active materials are those in which individual, uncoordinated local stresses drive the material out of equilibrium on a global scale. Examples of such assemblies can be seen across scales from schools of fish to the cellular cytoskeleton and underpin many important biological processes. Synthetic experiments that recapitulate the essential features of such active systems have been the object of study for decades as their simple rules allow us to elucidate the physical underpinnings of collective motion. One system of particular interest has been active nematic liquid crystals (LCs). Because of their well understood passive physics, LCs provide a rich platform to interrogate the effects of active stress. The flows and steady state structures that emerge in an active LCs have been understood to result from a competition between nematic elasticity and the local activity. However most investigations of such phenomena consider only the magnitude of the elastic resistance and not its peculiarities. Here we investigate a nematic liquid crystal and selectively change the ratio of the material&#39;s splay and bend elasticities. We show that increases in the nematic&#39;s bend elasticity specifically drives the material into an exotic steady state where elongated regions of acute bend distortion or &#34;elasticity bands&#34; dominate the structure and dynamics. We show that these bands strongly influence defect dynamics, including the rapid motion or &#34;catapulting&#34; along the disintegration of one of these bands thus converting bend distortion into defect transport. Thus, we report a novel dynamical state resultant from the competition between nematic elasticity and active stress. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00113v1-abstract-full').style.display = 'none'; document.getElementById('2204.00113v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Soft Matter 18, 5271-5281 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15868">arXiv:2203.15868</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.15868">pdf</a>, <a href="https://arxiv.org/format/2203.15868">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Microstructural Characterization and Mechanical Property Evaluation of High Nitrogen Martensitic Stainless Steel Subjected to Heat Treatment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dhami%2C+H+S">Harish Singh Dhami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N+D">Nellori Dileep Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tharian%2C+T">Thomas Tharian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=P%2C+C">Chakravarthy P</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Viswanathan%2C+K">Koushik Viswanathan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15868v1-abstract-short" style="display: inline;"> The High Nitrogen Martensitic Stainless Steel (HNMS) was subjected to three different austenitizing cycles of 1050$^\circ$C, 1075$^\circ$C and 1100$^\circ$C followed by subzero treatment at -70$^\circ$C. The fraction of retained austenite has been reduced after sub-zero treatment as revealed by microstructural evolution. The material was subsequently tempered at different temperatures ranging from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15868v1-abstract-full').style.display = 'inline'; document.getElementById('2203.15868v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15868v1-abstract-full" style="display: none;"> The High Nitrogen Martensitic Stainless Steel (HNMS) was subjected to three different austenitizing cycles of 1050$^\circ$C, 1075$^\circ$C and 1100$^\circ$C followed by subzero treatment at -70$^\circ$C. The fraction of retained austenite has been reduced after sub-zero treatment as revealed by microstructural evolution. The material was subsequently tempered at different temperatures ranging from 180$^\circ$C to 650$^\circ$C and the change in micro-structure, hardness, tensile strength and toughness were investigated after each heat treatment cycle. Optical microscopy, electron microscopy with EDS and X-Ray diffraction techniques were used to characterize the material. This has showed the constituents of microstructure were lath martensite, precipitated metal carbides of type $M_{23}C_6$, $M_7C_6$ and carbo-nitrides. Hardness, tensile testing and Charpy impact testing were carried to evaluate mechanical properties after the heat treatment which has showed the better mechanical properties for the samples solutionised at 1075$^\circ$C. Secondary hardening has been observed on tempering above 450$^\circ$C which can be attributed to the precipitation of secondary phase inter-metallic compounds. Hardness attains a peak value at peculiar temperature range after which it decreases on further tempering which is most likely because of the loss of coherency of the precipitates with the metal matrix. This has been further confirmed by the XRD of the specimens before and after tempering. The study stablishes the structure-property correlation of HNMS for different heat treatment cycles. The results indicate that a good combination of hardness and strength can be achieved after solutionizing at 1075$^\circ$C followed by double tempering at 525$^\circ$C. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15868v1-abstract-full').style.display = 'none'; document.getElementById('2203.15868v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.00915">arXiv:2202.00915</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.00915">pdf</a>, <a href="https://arxiv.org/format/2202.00915">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Self-Assembly of Magnetic Co Atoms on Stanene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitin Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lan%2C+Y">Ye-Shun Lan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Chia-Ju Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yen-Hui Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Tang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeng%2C+H">Horng-Tay Jeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+P">Pin-Jui Hsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.00915v1-abstract-short" style="display: inline;"> We have investigated the magnetic Co atoms self-assembled on the ultraflat stanene on Cu(111) substrate by utilizing scanning tunneling microscopy/spectroscopy (STM/STS) in conjunction with density functional theory (DFT). By means of depositing Co onto the stanene/Cu(111) held at 80 K, Co atoms have developed into the monomer, dimer, and trimer structures containing one, two, and three Co atoms r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.00915v1-abstract-full').style.display = 'inline'; document.getElementById('2202.00915v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.00915v1-abstract-full" style="display: none;"> We have investigated the magnetic Co atoms self-assembled on the ultraflat stanene on Cu(111) substrate by utilizing scanning tunneling microscopy/spectroscopy (STM/STS) in conjunction with density functional theory (DFT). By means of depositing Co onto the stanene/Cu(111) held at 80 K, Co atoms have developed into the monomer, dimer, and trimer structures containing one, two, and three Co atoms respectively. As per atomically resolved topographic images and bias-dependent apparent heights, the atomic structure models based on Sn atoms substituted by Co atoms have been deduced, which are in agreement with both self-consistent DFT calculations and STM simulations. Apart from that, the projected density of states (PDOS) has revealed a minimum at around -0.5 eV from the Co-3d3z2-r2 minority band, which contributes predominately to the peak feature at about -0.3 eV in tunneling conductance (dI/dU) spectra taken at the Co atomic sites. As a result of the exchange splitting between the Co-3d majority and minority bands, there are non-zero magnetic moments, including about 0.60 uB in monomer, 0.56 uB in dimer, and 0.29 uB in trimer of the Co atom assembly on the stanene. Such magnetic Co atom assembly therefore could provide the vital building blocks in stabilizing the local magnetism on the two-dimensional (2D) stanene with non-trivial topological properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.00915v1-abstract-full').style.display = 'none'; document.getElementById('2202.00915v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03826">arXiv:2111.03826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.03826">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.045120">10.1103/PhysRevB.106.045120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning the electronic band structure in a kagome ferromagnetic metal via magnetization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Neeraj Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soh%2C+Y">Y. Soh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yihao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Junbo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Y">Y. Xiong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03826v1-abstract-short" style="display: inline;"> Materials with zero energy band gap display intriguing properties including high sensitivity of the electronic band structure to external stimulus such as pressure or magnetic field. An interesting candidate for zero energy band gap are Weyl nodes at the Fermi level EF. A prerequisite for the existence of Weyl nodes is to either have inversion or time reversal symmetry broken. Weyl nodes in system&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03826v1-abstract-full').style.display = 'inline'; document.getElementById('2111.03826v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03826v1-abstract-full" style="display: none;"> Materials with zero energy band gap display intriguing properties including high sensitivity of the electronic band structure to external stimulus such as pressure or magnetic field. An interesting candidate for zero energy band gap are Weyl nodes at the Fermi level EF. A prerequisite for the existence of Weyl nodes is to either have inversion or time reversal symmetry broken. Weyl nodes in systems with broken time reversal symmetry are ideal to realize the tunability of the electronic band structure by magnetic field. Theoretically, it has been shown that in ferromagnetic Weyl materials, the band structure is dependent upon the magnetization direction and thus the electronic bands can be tuned by controlling the magnetization direction. Here, we demonstrate tuning of the band structure in a kagome Weyl ferromagnetic metal Fe3Sn2 with magnetization and magnetic field. Owing to spin-orbit coupling, we observe changes in the band structure depending on the magnetization direction that amount to a decrease in the carrier density by a factor of four when the magnetization lies in the kagome plane as compared to when the magnetization is along the c axis. Our discovery opens a way for tuning the carrier density in ferromagnetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03826v1-abstract-full').style.display = 'none'; document.getElementById('2111.03826v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00694">arXiv:2111.00694</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.00694">pdf</a>, <a href="https://arxiv.org/ps/2111.00694">ps</a>, <a href="https://arxiv.org/format/2111.00694">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Localized-delocalized crossover of spin-carriers and magnetization reversal in Co$_{2}$VO$_{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kademane%2C+A+B">Abhijit Bhat Kademane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhandari%2C+C">Churna Bhandari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paudyal%2C+D">Durga Paudyal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cottrell%2C+S">Stephen Cottrell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+P">Pinaki Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yiu%2C+Y">Yuen Yiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+C+M+N">C. M. Naveen Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siemensmeyer%2C+K">Konrad Siemensmeyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoser%2C+A">Andreas Hoser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quintero-Castro%2C+D+L">Diana Lucia Quintero-Castro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaknin%2C+D">David Vaknin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Toft-Petersen%2C+R">Rasmus Toft-Petersen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00694v1-abstract-short" style="display: inline;"> Neutron diffraction, magnetization and muon spin relaxation measurements, supplemented by density functional theory (DFT) calculations are employed to unravel temperature-driven magnetization reversal (MR) in inverse spinel Co$_2$VO$_4$. All measurements show a second-order magnetic phase transition at $T_{\rm C} = 168$\,K to a collinear ferrimagnetic phase. The DFT results suggest the moments in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00694v1-abstract-full').style.display = 'inline'; document.getElementById('2111.00694v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00694v1-abstract-full" style="display: none;"> Neutron diffraction, magnetization and muon spin relaxation measurements, supplemented by density functional theory (DFT) calculations are employed to unravel temperature-driven magnetization reversal (MR) in inverse spinel Co$_2$VO$_4$. All measurements show a second-order magnetic phase transition at $T_{\rm C} = 168$\,K to a collinear ferrimagnetic phase. The DFT results suggest the moments in the ferrimagnetic phase are delocalized and undergo gradual localization as the temperature is lowered below $T_{\rm C}$. The delocalized-localized crossover gives rise to a maximum magnetization at $T_{\rm NC} = 138$\,K and the continuous decrease in magnetization produces sign-change at $T_{\rm MR} \sim 65$\,K. Muon spectroscopy results support the DFT, as a strong $T_1$-relaxation is observed around $T_{\rm NC}$, indicating highly delocalized spin-carriers gradually tend to localization upon cooling. The magnetization reversal determined at zero field is found to be highly sensitive to the applied magnetic field, such that above $B\sim 0.25$\,T instead of a reversal a broad minimum in the magnetization is apparent at $T_{\rm MR}$. Analysis of the neutron diffraction measurements shows two antiparallel magnetic sub-lattice-structure, each belonging to magnetic ions on two distinct crystal lattice sites. The relative balance of these two structural components in essence determines the magnetization. Indeed, the order parameter of the magnetic phase on one site develops moderately more than that on the other site. Unusual tipping of the magnetic balance, caused by such site-specific magnetic fluctuation, gives rise to a spontaneous flipping of the magnetization as the temperature is lowered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00694v1-abstract-full').style.display = 'none'; document.getElementById('2111.00694v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages and 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.09283">arXiv:2110.09283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.09283">pdf</a>, <a href="https://arxiv.org/ps/2110.09283">ps</a>, <a href="https://arxiv.org/format/2110.09283">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Complex interplay of magnetic ordering and spin-lattice coupling in orthochromite Nd$_{0.5}$Dy$_{0.5}$CrO$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Anas%2C+M">M. Anas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balasubramanian%2C+P">Padmanabhan Balasubramanian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vikram%2C+K">K. Vikram</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+A">Ankita Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+C+M+N">C. M. N. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoser%2C+A">Andreas Hoser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rusinek%2C+D">Dariusz Rusinek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinha%2C+A+K">A. K. Sinha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Srihari%2C+V">V. Srihari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+R+K">Ranjan K. Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+R">Rinku Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+M">Mukul Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maitra%2C+T">T. Maitra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malik%2C+V+K">V. K. Malik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.09283v1-abstract-short" style="display: inline;"> The mixed rare-earth orthochromite Nd$_{0.5}$Dy$_{0.5}$CrO$_{3}$ has a N茅el temperature ($T_\mathrm{N}$) of ${\sim}$ 175\,K, resulting in the G-type antiferromagnetic ordering of Cr$^{3+}$ spins. The inverse susceptibility shows a deviation from Curie-Weiss law at 230\,K, with a large effective paramagnetic moment of 8.8\,$渭_{\mathrm{B}}$. The ZFC-FC magnetization bifurcate just above&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09283v1-abstract-full').style.display = 'inline'; document.getElementById('2110.09283v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.09283v1-abstract-full" style="display: none;"> The mixed rare-earth orthochromite Nd$_{0.5}$Dy$_{0.5}$CrO$_{3}$ has a N茅el temperature ($T_\mathrm{N}$) of ${\sim}$ 175\,K, resulting in the G-type antiferromagnetic ordering of Cr$^{3+}$ spins. The inverse susceptibility shows a deviation from Curie-Weiss law at 230\,K, with a large effective paramagnetic moment of 8.8\,$渭_{\mathrm{B}}$. The ZFC-FC magnetization bifurcate just above $T_\mathrm{N}$ and show a distinct signature of spin reorientation near 60\,K. Neutron diffraction show that below $T_\mathrm{N}$, the Cr$^{3+}$ spins align in $螕_{2}$ representation as ($F_{x}$, $G_{z}$). Below 60\,K, due to spin reorientation, the magnetic structure is in $螕_{1}$ ($G_{y}$) configuration. The neutron diffraction does not show any signature of rare-earth ordering even at 1.5\,K. First principles density functional theory calculations within GGA+U and GGA+U+SO approximations reveal that the G-type antiferromagnetic order is the ground state magnetic structure of Cr sublattice and the spin-reorientation of Cr$^{3+}$ spins can happen in the absence of 3d-4f interactions unlike in the case of orthoferrites. The specific heat shows a `$位$&#39; anomaly at $T_\mathrm{N}$, while at low temperature two distinct Schottky anomalies are observed; a Schottky peak at 2\,K and an additional step-like feature above 10\,K. Above $T_\mathrm{N}$, the magnetic transition is preceded by structural anomalies as seen in our x-ray diffraction and Raman measurements. The deviation of structural parameters near N茅el temperature is smaller. The phonon frequencies show deviation from the standard anharmonic behaviour: first near 250\,K, due to magneto-volume effects while the second deviation occurs near 200\,K due to spin-phonon coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09283v1-abstract-full').style.display = 'none'; document.getElementById('2110.09283v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06134">arXiv:2109.06134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.06134">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202104126">10.1002/adma.202104126 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic Nodal-Line-Derived Large Anomalous Hall Conductivity in ZrMnP and HfMnP </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+S">Sukriti Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noky%2C+J">Jonathan Noky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bhattacharya%2C+S">Shaileyee Bhattacharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vir%2C+P">Praveen Vir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06134v1-abstract-short" style="display: inline;"> The nontrivial band structure of semimetals has attracted substantial research attention in condensed matter physics and materials science in recent years owing to its intriguing physical properties. Within this class, a group of non-trivial materials known as nodal-line semimetals is particularly important. Nodal-line semimetals exhibit the potential effects of electronic correlation in nonmagnet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06134v1-abstract-full').style.display = 'inline'; document.getElementById('2109.06134v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06134v1-abstract-full" style="display: none;"> The nontrivial band structure of semimetals has attracted substantial research attention in condensed matter physics and materials science in recent years owing to its intriguing physical properties. Within this class, a group of non-trivial materials known as nodal-line semimetals is particularly important. Nodal-line semimetals exhibit the potential effects of electronic correlation in nonmagnetic materials, whereas they enhance the contribution of the Berry curvature in magnetic materials, resulting in high anomalous Hall conductivity (AHC). In this study, two ferromagnetic compounds, namely ZrMnP and HfMnP, are selected, wherein the abundance of mirror planes in the crystal structure ensures gapped nodal lines at the Fermi energy. These nodal lines result in one of the largest AHC values of 2840 ohm^-1cm^-1, with a high anomalous Hall angle of 13.6 % in these compounds. First-principles calculations provide a clear and detailed understanding of nodal line-enhanced AHC. Our finding suggests a guideline for searching large AHC compounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06134v1-abstract-full').style.display = 'none'; document.getElementById('2109.06134v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures, 14 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Mater. 2021, 202104126 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.09975">arXiv:2108.09975</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.09975">pdf</a>, <a href="https://arxiv.org/format/2108.09975">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.214436">10.1103/PhysRevB.105.214436 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexisting magnetic structures and spin-reorientation in Er$_{0.5}$Dy$_{0.5}$FeO$_{3}$: Bulk magnetization, neutron scattering, specific heat, and \emph{Ab-initio} studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rajput%2C+S">Sarita Rajput</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balasubramanian%2C+P">Padmanabhan Balasubramanian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+A">Ankita Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damay%2C+F">Francoise Damay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+C+M+N">C. M. N. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tabis%2C+W">W. Tabis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maitra%2C+T">T. Maitra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malik%2C+V+K">V. K. Malik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.09975v2-abstract-short" style="display: inline;"> The complex magnetic structures, spin-reorientation and associated exchange interactions have been investigate in Er$_{0.5}$Dy$_{0.5}$FeO$_3$ using bulk magnetization, neutron diffraction, specific heat measurements and density functional theory calculations. The Fe$^{3+}$ spins order as G-type antiferromagnet structure depicted by $螕_{4}$($G_{x}$,$A_{y}$,$F_{z}$) irreducible representation below&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09975v2-abstract-full').style.display = 'inline'; document.getElementById('2108.09975v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.09975v2-abstract-full" style="display: none;"> The complex magnetic structures, spin-reorientation and associated exchange interactions have been investigate in Er$_{0.5}$Dy$_{0.5}$FeO$_3$ using bulk magnetization, neutron diffraction, specific heat measurements and density functional theory calculations. The Fe$^{3+}$ spins order as G-type antiferromagnet structure depicted by $螕_{4}$($G_{x}$,$A_{y}$,$F_{z}$) irreducible representation below 700K, similar to its end compounds. The bulk magnetization data indicate occurrence of the spin-reorientation and rare-earth magnetic ordering below $\sim$75 K and 10 K, respectively. The neutron diffraction studies confirm an &#34;incomplete&#34; $螕_{4}$${\rightarrow}$ $螕_{2}$($F_{x}$,$C_{y}$,$G_{z}$) spin-reorientation initiated $\leq$75 K. Although, the relative volume fraction of the two magnetic structures varies with decreasing temperature, both co-exist even at 1.5 K. At 8 K, Er$^{3+}$/Dy$^{3+}$ moments order as $c_{y}^R$ arrangement develop, which gradually increases in intensity with decreasing temperature. At 2 K, magnetic structure associated with $c_{z}^R$ arrangement of Er$^{3+}$/Dy$^{3+}$ moments also appears. At 1.5 K the magnetic structure of Fe$^{3+}$ spins is represented by a combination of $螕_{2}$+$螕_{4}$+$螕_{1}$, while the rare earth moments coexists as $c_{y}^R$ and $c_{z}^R$ corresponding to $螕_{2}$ and $螕_{1}$ representation, respectively. The observed Schottky anomaly at 2.5 K suggests that the &#34;rare-earth ordering&#34; is induced by polarization due to Fe$^{3+}$ spins. The Er$^{3+}$-Fe$^{3+}$ and Er$^{3+}$-Dy$^{3+}$ exchange interactions, obtained from first principle calculations, primarily cause the complicated spin-reorientation and $c_{y}^R$ rare-earth ordering, respectively, while the dipolar interactions between rare-earth moments, result in the $c_{z}^R$ type rare-earth ordering at 2 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.09975v2-abstract-full').style.display = 'none'; document.getElementById('2108.09975v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04840">arXiv:2107.04840</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.04840">pdf</a>, <a href="https://arxiv.org/format/2107.04840">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.104.064132">10.1103/PhysRevE.104.064132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linking space-time correlations for a class of self-organized critical systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Naveen Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+S">Suram Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yadav%2C+A+C">Avinash Chand Yadav</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04840v1-abstract-short" style="display: inline;"> The hypothesis of self-organized criticality explains the existence of long-range `space-time&#39; correlations, observed inseparably in many natural dynamical systems. A simple link between these correlations is yet unclear, particularly in fluctuations at `external drive&#39; time scales. As an example, we consider a class of sandpile models displaying non-trivial correlations. Employing the scaling met&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04840v1-abstract-full').style.display = 'inline'; document.getElementById('2107.04840v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04840v1-abstract-full" style="display: none;"> The hypothesis of self-organized criticality explains the existence of long-range `space-time&#39; correlations, observed inseparably in many natural dynamical systems. A simple link between these correlations is yet unclear, particularly in fluctuations at `external drive&#39; time scales. As an example, we consider a class of sandpile models displaying non-trivial correlations. Employing the scaling methods, we demonstrate the computation of spatial correlation by establishing a link between local and global temporal correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04840v1-abstract-full').style.display = 'none'; document.getElementById('2107.04840v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.11332">arXiv:2106.11332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.11332">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of pressure-induced Weyl state and superconductivity in a chirality-neutral Weyl semimetal candidate SrSi2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+M+-">M. -Y. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noky%2C+J">J. Noky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+Q+-">Q. -G. Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manna%2C+K">K. Manna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">N. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">V. N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">C. Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medvedev%2C+S">S. Medvedev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.11332v2-abstract-short" style="display: inline;"> Quasi-particle excitations in solids described by the Weyl equation have attracted significant attention in recent years. Thus far, a wide range of solids that have been experimentally realized as Weyl semimetals (WSMs) lack either mirror or inversion symmetry. For the first time, in the absence of both mirror and inversion symmetry, SrSi2 has been predicted as a robust WSM by recent theoretical w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11332v2-abstract-full').style.display = 'inline'; document.getElementById('2106.11332v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.11332v2-abstract-full" style="display: none;"> Quasi-particle excitations in solids described by the Weyl equation have attracted significant attention in recent years. Thus far, a wide range of solids that have been experimentally realized as Weyl semimetals (WSMs) lack either mirror or inversion symmetry. For the first time, in the absence of both mirror and inversion symmetry, SrSi2 has been predicted as a robust WSM by recent theoretical works. Herein, supported by first-principles calculations, we present systematic angle-resolved photoemission studies of undoped SrSi2 and Ca-doped SrSi2 single crystals. Our results show no evidence of the predicted Weyl fermions at the kz = 0 plane or the Fermi arcs on the (001) surface. With external pressure, the electronic band structure evolved and induced Weyl fermions in this compound, as revealed by first-principle calculations combined with electrical transport property measurements. Moreover, a superconducting transition was observed at pressures above 20 GPa. Our investigations indicate that the SrSi2 system is a good platform for studying topological transitions and correlations with superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11332v2-abstract-full').style.display = 'none'; document.getElementById('2106.11332v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.11329">arXiv:2106.11329</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.11329">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L041113">10.1103/PhysRevB.106.L041113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three-dimensional quasi-quantized Hall insulator phase in SrSi2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Manna%2C+K">Kaustuv Manna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chattopadhyay%2C+S">Sumanta Chattopadhyay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noky%2C+J">Jonathan Noky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+M">Mengyu Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J">Joonbum Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%B6rster%2C+T">Tobias F枚rster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uhlarz%2C+M">Marc Uhlarz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakraborty%2C+T">Tirthankar Chakraborty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schwarze%2C+B+V">B. Valentin Schwarze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hornung%2C+J">Jacob Hornung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borrmann%2C+H">Horst Borrmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wosnitza%2C+J">Jochen Wosnitza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gooth%2C+J">Johannes Gooth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.11329v1-abstract-short" style="display: inline;"> In insulators, the longitudinal resistivity becomes infinitely large at zero temperature. For classic insulators, the Hall conductivity becomes zero at the same time. However, there are special systems, such as two-dimensional quantum Hall isolators, in which a more complex scenario is observed at high magnetic fields. Here, we report experimental evidence for a quasi-quantized Hall insulator in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11329v1-abstract-full').style.display = 'inline'; document.getElementById('2106.11329v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.11329v1-abstract-full" style="display: none;"> In insulators, the longitudinal resistivity becomes infinitely large at zero temperature. For classic insulators, the Hall conductivity becomes zero at the same time. However, there are special systems, such as two-dimensional quantum Hall isolators, in which a more complex scenario is observed at high magnetic fields. Here, we report experimental evidence for a quasi-quantized Hall insulator in the quantum limit of the three-dimensional semimetal SrSi2. Our measurements reveal a magnetic field-range, in which the longitudinal resistivity diverges with decreasing temperature, while the Hall conductivity approaches a quasi-quantized value that is given only by the conductance quantum and the Fermi wave vector in the field-direction. The quasi-quantized Hall insulator appears in a magnetic-field induced insulating ground state of three-dimensional materials and is deeply rooted in quantum Hall physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11329v1-abstract-full').style.display = 'none'; document.getElementById('2106.11329v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages including SI, 3 main figures and 6 SI figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, L041113 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.10250">arXiv:2106.10250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.10250">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0045466">10.1063/5.0045466 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of the Critical State to Multiple-Type Dirac Semimetal Phases in KMgBi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+D+F">D. F. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=W%2C+L+Y">L. Y. W</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+C+C">C. C. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H+Y">H. Y. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">X. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">N. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">C. Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schr%C3%B6ter%2C+N+B+M">N. B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y+W">Y. W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+D">D. Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L+X">L. X. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dudin%2C+P">P. Dudin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">T. K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">C. Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujii%2C+J">J. Fujii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vobornik%2C+I">I. Vobornik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=W%2C+M+X">M. X. W</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L+X">L. X. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+K">Z. K. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y+F">Y. F. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J+P">J. P. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">S. S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+L">Y. L. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.10250v1-abstract-short" style="display: inline;"> Dirac semimetals (DSMs) are classified into different phases based on the types of the Dirac fermions. Tuning the transition among different types of the Dirac fermions in one system remains challenging. Recently, KMgBi was predicted to be located at a critical state that various types of Dirac fermions can be induced owing to the existence of a flat band. Here, we carried out systematic studies o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10250v1-abstract-full').style.display = 'inline'; document.getElementById('2106.10250v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.10250v1-abstract-full" style="display: none;"> Dirac semimetals (DSMs) are classified into different phases based on the types of the Dirac fermions. Tuning the transition among different types of the Dirac fermions in one system remains challenging. Recently, KMgBi was predicted to be located at a critical state that various types of Dirac fermions can be induced owing to the existence of a flat band. Here, we carried out systematic studies on the electronic structure of KMgBi single crystal by combining angle-resolve photoemission spectroscopy (ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS). The flat band was clearly observed near the Fermi level. We also revealed a small bandgap of ~ 20 meV between the flat band and the conduction band. These results demonstrate the critical state of KMgBi that transitions among various types of Dirac fermions can be tuned in one system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10250v1-abstract-full').style.display = 'none'; document.getElementById('2106.10250v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Physics 129, 235109 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.07457">arXiv:2106.07457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.07457">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Arc-to-pocket transition and quantitative understanding of transport properties in cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tabi%C5%9B%2C+W">W. Tabi艣</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pop%C4%8Devi%C4%87%2C+P">P. Pop膷evi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klebel-Knobloch%2C+B">B. Klebel-Knobloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bia%C5%82o%2C+I">I. Bia艂o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+C+M+N">C. M. N. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vignolle%2C+B">B. Vignolle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greven%2C+M">M. Greven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bari%C5%A1i%C4%87%2C+N">N. Bari拧i膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.07457v1-abstract-short" style="display: inline;"> Despite immense efforts, the cuprate Fermi surface (FS) has been unambiguously determined in only two distinct, low-temperature regions of the phase diagram: a large hole-like FS at high doping, and a small electron-like pocket associated with charge-density-wave driven FS reconstruction at moderate doping. Moreover, there exists incomplete understanding of the reconstructed state, which is stabil&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07457v1-abstract-full').style.display = 'inline'; document.getElementById('2106.07457v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.07457v1-abstract-full" style="display: none;"> Despite immense efforts, the cuprate Fermi surface (FS) has been unambiguously determined in only two distinct, low-temperature regions of the phase diagram: a large hole-like FS at high doping, and a small electron-like pocket associated with charge-density-wave driven FS reconstruction at moderate doping. Moreover, there exists incomplete understanding of the reconstructed state, which is stabilized by high magnetic fields, and its connection with the normal state that consists of arc-like remnants of the large underlying FS. Part of the problem is that compound-specific idiosyncrasies, such as disorder effects and low structural symmetry, can obscure the fundamental properties of the quintessential CuO$_2$ planes. Here we present planar magnetotransport measurements for moderately-doped HgBa$_2$CuO$_{4+未}$ that enable a quantitative understanding of the phase transition between the normal and reconstructed states and of the charge transport in the latter, and that demonstrate that the quasiparticle scattering rate in both states is due to Umklapp scattering. Building on prior insights, we furthermore arrive at a comprehensive understanding of the evolution of the planar transport properties throughout the entire cuprate phase diagram. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07457v1-abstract-full').style.display = 'none'; document.getElementById('2106.07457v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.00906">arXiv:2105.00906</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.00906">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.202100023">10.1002/qute.202100023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant anomalous Hall conductivity in the itinerant ferromagnet LaCrSb3 and the effect of f-electrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamba%2C+N">Neetu Lamba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gayles%2C+J">Jacob Gayles</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+C">Congcong Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vir%2C+P">Praveen Vir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guin%2C+S+N">Satya N. Guin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.00906v1-abstract-short" style="display: inline;"> Itinerant ferromagnets constitute an important class of materials wherein spin-polarization can affect the electric transport properties in nontrivial ways. One such phenomenon is anomalous Hall effect which depends on the details of the band structure such as the amount of band crossings in the valence band of the ferromagnet. Here, we have found extraordinary anomalous Hall effect in an itineran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.00906v1-abstract-full').style.display = 'inline'; document.getElementById('2105.00906v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.00906v1-abstract-full" style="display: none;"> Itinerant ferromagnets constitute an important class of materials wherein spin-polarization can affect the electric transport properties in nontrivial ways. One such phenomenon is anomalous Hall effect which depends on the details of the band structure such as the amount of band crossings in the valence band of the ferromagnet. Here, we have found extraordinary anomalous Hall effect in an itinerant ferromagnetic metal LaCrSb3. The rather two-dimensional nature of the magnetic subunit imparts large anisotropic anomalous Hall conductivity of 1250 S/cm at 2K. Our investigations suggest that a strong Berry curvature by abundant momentum-space crossings and narrow energy-gap openings are the primary sources of the anomalous Hall conductivity. An important observation is the existence of quasi-dispersionless bands in LaCrSb3 which is now known to increase the anomalous Hall conductivity. After introducing f-electrons, anomalous Hall conductivity experiences more than two-fold increase and reaches 2900 S/cm in NdCrSb3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.00906v1-abstract-full').style.display = 'none'; document.getElementById('2105.00906v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, and supplementary</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Quantum Technol. 2021, 2100023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.11608">arXiv:2103.11608</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.11608">pdf</a>, <a href="https://arxiv.org/format/2103.11608">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Scaling theory for the $1/f$ noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yadav%2C+A+C">Avinash Chand Yadav</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Naveen Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.11608v1-abstract-short" style="display: inline;"> We show that in a broad class of processes that show a $1/f^伪$ spectrum, the power also explicitly depends on the characteristic time scale. Despite an enormous amount of work, this generic behavior remains so far overlooked and poorly understood. An intriguing example is how the power spectrum of a simple random walk on a ring with $L$ sites shows $1/f^{3/2}$ not $1/f^2$ behavior in the frequency&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.11608v1-abstract-full').style.display = 'inline'; document.getElementById('2103.11608v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.11608v1-abstract-full" style="display: none;"> We show that in a broad class of processes that show a $1/f^伪$ spectrum, the power also explicitly depends on the characteristic time scale. Despite an enormous amount of work, this generic behavior remains so far overlooked and poorly understood. An intriguing example is how the power spectrum of a simple random walk on a ring with $L$ sites shows $1/f^{3/2}$ not $1/f^2$ behavior in the frequency range $1/L^2 \ll f \ll 1/2$. We address the fundamental issue by a scaling method and discuss a class of solvable processes covering physically relevant applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.11608v1-abstract-full').style.display = 'none'; document.getElementById('2103.11608v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Kumar%2C+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Kumar%2C+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kumar%2C+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kumar%2C+N&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kumar%2C+N&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kumar%2C+N&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kumar%2C+N&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10