CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 149 results for author: <span class="mathjax">Qiu, X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Qiu%2C+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Qiu, X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Qiu%2C+X&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Qiu, X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Qiu%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Qiu%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Qiu%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Qiu%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22156">arXiv:2410.22156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22156">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Topological surface state dominated nonlinear transverse response and microwave rectification at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Q">Qia Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiaxin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+B">Bin Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+Y">Yaqi Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongliang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+T">Tieyang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+X">Xianfa Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+D">Dandan Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaoyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jingsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cong%2C+L">Longqing Cong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingxin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Canhua Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Jinfeng Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22156v1-abstract-short" style="display: inline;"> Nonlinear Hall effect (NLHE) offers a novel means of uncovering symmetry and topological properties in quantum materials, holding promise for exotic (opto)electronic applications such as microwave rectification and THz detection. The BCD-independent NLHE could exhibit a robust response even at room temperature, which is highly desirable for practical applications. However, in materials with bulk i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22156v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22156v1-abstract-full" style="display: none;"> Nonlinear Hall effect (NLHE) offers a novel means of uncovering symmetry and topological properties in quantum materials, holding promise for exotic (opto)electronic applications such as microwave rectification and THz detection. The BCD-independent NLHE could exhibit a robust response even at room temperature, which is highly desirable for practical applications. However, in materials with bulk inversion symmetry, the coexistence of bulk and surface conducting channels often leads to a suppressed NLHE and complex thickness-dependent behavior. Here, we report the observation of room-temperature nonlinear transverse response in 3D topological insulator Bi2Te3 thin films, whose electrical transport properties are dominated by topological surface state (TSS). By varying the thickness of Bi2Te3 epitaxial films from 7 nm to 50 nm, we found that the nonlinear transverse response increases with thickness from 7 nm to 25 nm and remains almost constant above 25 nm. This is consistent with the thickness-dependent basic transport properties, including conductance, carrier density, and mobility, indicating a pure and robust TSS-dominated linear and nonlinear transport in thick (&gt;25 nm) Bi2Te3 films. The weaker nonlinear transverse response in Bi2Te3 below 25 nm was attributed to Te deficiency and poorer crystallinity. By utilizing the TSS-dominated electrical second harmonic generation, we successfully achieved the microwave rectification from 0.01 to 16.6 GHz in 30 nm and bulk Bi2Te3. Our work demonstrated the room temperature nonlinear transverse response in a paradigm topological insulator, addressing the tunability of the topological second harmonic response by thickness engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22156v1-abstract-full').style.display = 'none'; document.getElementById('2410.22156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21775">arXiv:2410.21775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21775">pdf</a>, <a href="https://arxiv.org/format/2410.21775">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Inherent circular dichroism of phonons in magnetic Weyl semimetal Co3Sn2S2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y+-">Y. -Y. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steigleder%2C+M">M. Steigleder</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X+-">X. -G. Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T+-">T. -T. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dressel%2C+M">M. Dressel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21775v1-abstract-short" style="display: inline;"> We investigated the infrared-active phonons in ferromagnetic Weyl semimetal Co3Sn3S3 using optical spectroscopy. Below the Curie temperature (T~175~K), we observed asymmetric Fano lineshapes of phonons peaks in the optical conductivities, reflecting the presence of electron-phonon coupling (EPC). Additionally, the detected phonon signals by the polar Kerr rotation and the ellipticity spectroscopy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21775v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21775v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21775v1-abstract-full" style="display: none;"> We investigated the infrared-active phonons in ferromagnetic Weyl semimetal Co3Sn3S3 using optical spectroscopy. Below the Curie temperature (T~175~K), we observed asymmetric Fano lineshapes of phonons peaks in the optical conductivities, reflecting the presence of electron-phonon coupling (EPC). Additionally, the detected phonon signals by the polar Kerr rotation and the ellipticity spectroscopy indicate the circular dichroism (CD) of phonons. We attribute the CD of phonons to their distinct couplings with charge excitations on the tilted Weyl nodal rings in two circularly polarized channels. Our findings provide experimental evidence that, without external fields, phonons can also become circularly polarized by coupling with the electronic topology. Since the magnetic exchange splitting gradually shifts the topological bands in Co3Sn2S2, the CD of phonons exhibits significant temperature dependence, hinting at a promising approach for manipulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21775v1-abstract-full').style.display = 'none'; document.getElementById('2410.21775v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09698">arXiv:2409.09698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09698">pdf</a>, <a href="https://arxiv.org/format/2409.09698">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Robust Coulomb Gap and Varied-temperature Study of Epitaxial 1T&#39;-WSe$_2$ Monolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wang Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Mengli Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zong%2C+J">Junyu Zong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X">Xuedong Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wei Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Q">Qinghao Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+F">Fan Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+Q">Qichao Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+S">Shaoen Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xiaodong Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaili Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Can Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Fang-Sen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Li Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09698v1-abstract-short" style="display: inline;"> The transition metal dichalcogenides (TMDCs) with a 1T&#39; structural phase are predicted to be two-dimensional topological insulators at zero temperature. Although the quantized edge conductance of 1T&#39;-WTe$_2$ has been confirmed to survive up to 100 K, this temperature is still relatively low for industrial applications. Addressing the limited studies on temperature effects in 1T&#39;-TMDCs, our researc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09698v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09698v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09698v1-abstract-full" style="display: none;"> The transition metal dichalcogenides (TMDCs) with a 1T&#39; structural phase are predicted to be two-dimensional topological insulators at zero temperature. Although the quantized edge conductance of 1T&#39;-WTe$_2$ has been confirmed to survive up to 100 K, this temperature is still relatively low for industrial applications. Addressing the limited studies on temperature effects in 1T&#39;-TMDCs, our research focuses on the electronic and crystal properties of the epitaxial 1T&#39;-WSe$_2$ monolayers grown on bilayer graphene (BLG) and SrTiO$_3$(100) substrates at various temperatures. For the 1T&#39;-WSe$_2$ grown on BLG, we observed a significant thermal expansion effect on its band structures with a thermal expansion coefficient of $\sim$60$\times$10$^{-6}$ K$^{-1}$. In contrast, the 1T&#39;-WSe$_2$ grown on SrTiO$_3$(100) exhibits minimal changes with varied temperatures due to the enhanced strain exerted by the substrate. Besides, A significant Coulomb gap (CG) was observed pinned at the Fermi level in the angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS). The CG was founded to decrease with increasing temperatures, and can persist up to 200 K for 1T&#39;-WSe$_2$/BLG, consistent with our Monte Carlo simulations. The robustness of the CG and the positive fundamental gap endow the epitaxial 1T&#39;-WSe$_2$ monolayers with huge potential for realizing the quantum spin Hall devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09698v1-abstract-full').style.display = 'none'; document.getElementById('2409.09698v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06286">arXiv:2409.06286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06286">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6463/ac33d9">10.1088/1361-6463/ac33d9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mimicking synaptic plasticity with wedged Pt/Co/Pt spin-orbit torque device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shiwei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahul%2C+M">Mishra Rahul</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Huanjian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hyunsoo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06286v1-abstract-short" style="display: inline;"> We fabricated a wedge-shaped Pt/Co/Pt device with perpendicular magnetic anisotropy and manifested that the Co magnetization can be solely switched by spin-orbit torque without any magnetic field. Similar to the synaptic weight, we observed that the state of Co magnetization (presented by the anomalous Hall resistance RH) of the wedged Pt/Co/Pt device can be tuned continuously with a large number&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06286v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06286v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06286v1-abstract-full" style="display: none;"> We fabricated a wedge-shaped Pt/Co/Pt device with perpendicular magnetic anisotropy and manifested that the Co magnetization can be solely switched by spin-orbit torque without any magnetic field. Similar to the synaptic weight, we observed that the state of Co magnetization (presented by the anomalous Hall resistance RH) of the wedged Pt/Co/Pt device can be tuned continuously with a large number of nonvolatile levels by applied pulse currents. Furthermore, we studied the synaptic plasticity of the wedged Pt/Co/Pt device, including the excitatory postsynaptic potentials or inhibitory postsynaptic potentials and spiking-time-dependent plasticity. The work elucidates the promise of the wedged Pt/Co/Pt device as a candidate for a new type of artificial synaptic device that is induced by a spin current and paves a substantial pathway toward the combination of spintronics and synaptic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06286v1-abstract-full').style.display = 'none'; document.getElementById('2409.06286v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. D: Appl. Phys. 55, 095001 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09950">arXiv:2403.09950</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09950">pdf</a>, <a href="https://arxiv.org/format/2403.09950">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Polarized Charge Dynamics of a Novel Charge Density Wave in Kagome FeGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+S">Shaohui Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Z">Zhiyu Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+H">Haiyang Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teng%2C+X">Xiaokun Teng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Y">Yaomin Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jianzhou Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yanpeng Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Bing Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xianggang Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09950v1-abstract-short" style="display: inline;"> We report on the charge dynamics of kagome FeGe, an antiferromagnet with a charge density wave (CDW) transition at $T_{\mathrm{CDW}} \simeq 105$ K, using polarized infrared spectroscopy and band structure calculations. We reveal a pronounced optical anisotropy, various excitations associated with flat bands and van Hove singularities (VHSs), and a moderate level of electronic correlations. Notably&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09950v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09950v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09950v1-abstract-full" style="display: none;"> We report on the charge dynamics of kagome FeGe, an antiferromagnet with a charge density wave (CDW) transition at $T_{\mathrm{CDW}} \simeq 105$ K, using polarized infrared spectroscopy and band structure calculations. We reveal a pronounced optical anisotropy, various excitations associated with flat bands and van Hove singularities (VHSs), and a moderate level of electronic correlations. Notably, there are two types of remarkable spectral weight (SW) redistributions for above and below $T_{\mathrm{CDW}}$. The former involves a transfer between incoherent and coherent excitations driven by the magnetic splitting-induced elevation of flat bands. The latter manifests itself as a sudden change of SW from low to high energies for both $a$ and $c$ directions, suggesting a first-order transition and the three-dimensional nature of CDW. These anomalies in SW significantly differ from those observed in other kagome metals like CsV$_3$Sb$_5$, where the nesting of VHSs results in a pronounced CDW gap feature. Instead, our findings can be accounted for by the jump of VHSs relative to the Fermi energy via a first-order structural transition involving large partial Ge1-dimerization. Our study thus unveils a complex interplay among structure, magnetism, electronic correlations, and charge order in FeGe, offering valuable insights for a comprehensive understanding of CDW order in kagome systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09950v1-abstract-full').style.display = 'none'; document.getElementById('2403.09950v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03043">arXiv:2403.03043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03043">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital torque switching in perpendicularly magnetized materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yuhe Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiali Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+C">Chang Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Ting Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+W">Wensi Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Cheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+L">Lujun Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenhong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yong Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03043v1-abstract-short" style="display: inline;"> The orbital Hall effect in light materials has attracted considerable attention for developing novel orbitronic devices. Here we investigate the orbital torque efficiency and demonstrate the switching of the perpendicularly magnetized materials through the orbital Hall material (OHM), i.e., Zirconium (Zr). The orbital torque efficiency of approximately 0.78 is achieved in the Zr OHM with the perpe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03043v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03043v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03043v1-abstract-full" style="display: none;"> The orbital Hall effect in light materials has attracted considerable attention for developing novel orbitronic devices. Here we investigate the orbital torque efficiency and demonstrate the switching of the perpendicularly magnetized materials through the orbital Hall material (OHM), i.e., Zirconium (Zr). The orbital torque efficiency of approximately 0.78 is achieved in the Zr OHM with the perpendicularly magnetized [Co/Pt]3 sample, which significantly surpasses that of the perpendicularly magnetized CoFeB/Gd/CoFeB sample (approximately 0.04). Such notable difference is attributed to the different spin-orbit correlation strength between the [Co/Pt]3 sample and the CoFeB/Gd/CoFeB sample, which has been confirmed through the theoretical calculations. Furthermore, the full magnetization switching of the [Co/Pt]3 sample with a switching current density of approximately 2.6x106 A/cm2 has been realized through Zr, which even outperforms that of the W spin Hall material. Our finding provides a guideline to understand orbital torque efficiency and paves the way to develop energy-efficient orbitronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03043v1-abstract-full').style.display = 'none'; document.getElementById('2403.03043v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01746">arXiv:2401.01746</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01746">pdf</a>, <a href="https://arxiv.org/format/2401.01746">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Generalized Coherent Quantum Speed Limits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xingze Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01746v1-abstract-short" style="display: inline;"> We present two infinite families of coherent quantum speed limits (QSLs) for general unitary dynamics by employing the H枚lder&#39;s inequality for matrix norms. Our approach clearly highlights the contribution of the coherence of the evolved states, and provides novel QSL bounds characterized by coherence measures based on Schatten $p$-norm or Hellinger distance. We illustrate our findings with releva&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01746v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01746v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01746v1-abstract-full" style="display: none;"> We present two infinite families of coherent quantum speed limits (QSLs) for general unitary dynamics by employing the H枚lder&#39;s inequality for matrix norms. Our approach clearly highlights the contribution of the coherence of the evolved states, and provides novel QSL bounds characterized by coherence measures based on Schatten $p$-norm or Hellinger distance. We illustrate our findings with relevant models, demonstrating our bounds are much tighter than the established ones and asymptotically saturable in the adiabatic limit. Our results show that rapid quantum dynamics requires coherent superpositions of energy eigenstates, singling out coherence as a key resource for the evolution of quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01746v1-abstract-full').style.display = 'none'; document.getElementById('2401.01746v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 table, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.15835">arXiv:2311.15835</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.15835">pdf</a>, <a href="https://arxiv.org/format/2311.15835">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Surface skyrmions and dual topological Hall effect in antiferromagnetic topological insulator EuCd$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Min Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xiangde Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Yixiong Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+A">Ang Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yongjie Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+C">Changming Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+Y">Yong Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+X">Xiang Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+D">Daifeng Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">Ding Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Y">Yuyan Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhaosheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Y">Yaomin Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+G">Guolin Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jianhui Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ning%2C+W">Wei Ning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xianggang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+M">Mingliang Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.15835v1-abstract-short" style="display: inline;"> In this work, we synthesized single crystal of EuCd$_2$As$_2$, which exhibits A-type antiferromagnetic (AFM) order with in-plane spin orientation below $T_N$ = 9.5~K.Optical spectroscopy and transport measurements suggest its topological insulator (TI) nature with an insulating gap around 0.1eV. Remarkably, a dual topological Hall resistivity that exhibits same magnitude but opposite signs in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15835v1-abstract-full').style.display = 'inline'; document.getElementById('2311.15835v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.15835v1-abstract-full" style="display: none;"> In this work, we synthesized single crystal of EuCd$_2$As$_2$, which exhibits A-type antiferromagnetic (AFM) order with in-plane spin orientation below $T_N$ = 9.5~K.Optical spectroscopy and transport measurements suggest its topological insulator (TI) nature with an insulating gap around 0.1eV. Remarkably, a dual topological Hall resistivity that exhibits same magnitude but opposite signs in the positive to negative and negative to positive magnetic field hysteresis branches emerges below 20~K. With magnetic force microscopy (MFM) images and numerical simulations, we attribute the dual topological Hall effect to the N茅el-type skyrmions stabilized by the interactions between topological surface states and magnetism, and the sign reversal in different hysteresis branches indicates potential coexistence of skyrmions and antiskyrmions. Our work uncovers a unique two-dimensional (2D) magnetism on the surface of intrinsic AFM TI, providing a promising platform for novel topological quantum states and AFM spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15835v1-abstract-full').style.display = 'none'; document.getElementById('2311.15835v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.06925">arXiv:2311.06925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.06925">pdf</a>, <a href="https://arxiv.org/format/2311.06925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43246-024-00505-4">10.1038/s43246-024-00505-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microwave Quantum Memcapacitor Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X+-">X. -Y. Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+S">S. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C3%A1rdenas-L%C3%B3pez%2C+F+A">F. A. C谩rdenas-L贸pez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barrios%2C+G+A">G. Alvarado Barrios</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solano%2C+E">E. Solano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Albarr%C3%A1n-Arriagada%2C+F">F. Albarr谩n-Arriagada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.06925v2-abstract-short" style="display: inline;"> Developing the field of neuromorphic quantum computing necessitates designing scalable quantum memory devices. Here, we propose a superconducting quantum memory device in the microwave regime, termed as a microwave quantum memcapacitor. It comprises two linked resonators, the primary one is coupled to a Superconducting Quantum Interference Device, which allows for the modulation of the resonator p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06925v2-abstract-full').style.display = 'inline'; document.getElementById('2311.06925v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.06925v2-abstract-full" style="display: none;"> Developing the field of neuromorphic quantum computing necessitates designing scalable quantum memory devices. Here, we propose a superconducting quantum memory device in the microwave regime, termed as a microwave quantum memcapacitor. It comprises two linked resonators, the primary one is coupled to a Superconducting Quantum Interference Device, which allows for the modulation of the resonator properties through external magnetic flux. The auxiliary resonator, operated through weak measurements, provides feedback to the primary resonator, ensuring stable memory behaviour. This device operates with a classical input in one cavity while reading the response in the other, serving as a fundamental building block toward arrays of microwave quantum memcapacitors. We observe that a bipartite setup can retain its memory behaviour and gains entanglement and quantum correlations. Our findings pave the way for the experimental implementation of memcapacitive superconducting quantum devices and memory device arrays for neuromorphic quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06925v2-abstract-full').style.display = 'none'; document.getElementById('2311.06925v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10+6 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Mater. 5, 70 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.06844">arXiv:2311.06844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.06844">pdf</a>, <a href="https://arxiv.org/format/2311.06844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Adiabatically compressing chiral p-wave Bose-Einstein condensates into the lowest landau level </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+X">Xinyang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xingze Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaopeng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.06844v1-abstract-short" style="display: inline;"> There has been much recent progress in controlling $p$-orbital degrees of freedom in optical lattices, for example with lattice shaking, sublattice swapping, and lattice potential programming. Here, we present a protocol of preparing lowest Landau level (LLL) states of cold atoms by adiabatically compressing $p$-orbital Bose-Einstein condensates confined in two-dimensional optical lattices. The sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06844v1-abstract-full').style.display = 'inline'; document.getElementById('2311.06844v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.06844v1-abstract-full" style="display: none;"> There has been much recent progress in controlling $p$-orbital degrees of freedom in optical lattices, for example with lattice shaking, sublattice swapping, and lattice potential programming. Here, we present a protocol of preparing lowest Landau level (LLL) states of cold atoms by adiabatically compressing $p$-orbital Bose-Einstein condensates confined in two-dimensional optical lattices. The system starts from a chiral $p+ip$ Bose-Einstein condensate (BEC) state, which acquires finite angular momentum by spontaneous symmetry breaking. Such chiral BEC states have been achieved in recent optical lattice experiments for cold atoms loaded in the $p$-bands. Through an adiabatic adjustment of the lattice potential, we compress the three-dimensional BEC into a two-dimensional system, in which the orbital degrees of freedom continuously morph into LLL states. This process is enforced by the discrete rotation symmetry of the lattice potential. The final quantum state inherits large angular momentum from the original chiral $p+ip$ state, with one quantized unit per particle. We investigate the quantum many-body ground state of interacting bosons in the LLL considering contact repulsion. This leads to an exotic gapped BEC state. Our theory can be readily tested in experiments for the required techniques are all accessible to the current optical lattice experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06844v1-abstract-full').style.display = 'none'; document.getElementById('2311.06844v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01370">arXiv:2311.01370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01370">pdf</a>, <a href="https://arxiv.org/format/2311.01370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Topological Waveguide Quantum Sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiazhong Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xingze Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01370v1-abstract-short" style="display: inline;"> We present an efficient and robust protocol for quantum-enhanced sensing using a single-spin qubit in the topological waveguide system. Our method relies on the topological-paired bound states, which are localized near the spin and can be effectively regarded as a two-level system. Through the lens of Bayesian inference theory, we show the sensitivity can reach the Heisenberg limit across a large&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01370v1-abstract-full').style.display = 'inline'; document.getElementById('2311.01370v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01370v1-abstract-full" style="display: none;"> We present an efficient and robust protocol for quantum-enhanced sensing using a single-spin qubit in the topological waveguide system. Our method relies on the topological-paired bound states, which are localized near the spin and can be effectively regarded as a two-level system. Through the lens of Bayesian inference theory, we show the sensitivity can reach the Heisenberg limit across a large field range. Inheriting from the topological robustness of the waveguide, our sensing protocol is robust against local perturbations. The advantages of our protocol are multifold as it allows for sensing various parameters and uses a product initial state, which can be easily prepared in experiments. We expect this approach would pave the way towards robust topological quantum sensors based on near term quantum platforms such as topological photonics and Rydberg arrays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01370v1-abstract-full').style.display = 'none'; document.getElementById('2311.01370v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4.5 + 3 pages, 3 + 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13363">arXiv:2310.13363</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13363">pdf</a>, <a href="https://arxiv.org/format/2310.13363">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.166706">10.1103/PhysRevLett.133.166706 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Visualization of Skyrmion-Superconducting Vortex Pairs in a Chiral-Magnet-Superconductor Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yong-Jie Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+A">Ang Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+B">Bin He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yu-Biao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Sheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Bing Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X+G">X. G. Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13363v2-abstract-short" style="display: inline;"> Magnetic skyrmions, the topological states possessing chiral magnetic structure with nontrivial topology, have been widely investigated as a promising candidate for spintronic devices. They can also couple with superconducting vortices to form skyrmion-vortex pairs, hosting Majorana zero mode, which is a potential candidate for topological quantum computing. Many theoretical proposals have been pu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13363v2-abstract-full').style.display = 'inline'; document.getElementById('2310.13363v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13363v2-abstract-full" style="display: none;"> Magnetic skyrmions, the topological states possessing chiral magnetic structure with nontrivial topology, have been widely investigated as a promising candidate for spintronic devices. They can also couple with superconducting vortices to form skyrmion-vortex pairs, hosting Majorana zero mode, which is a potential candidate for topological quantum computing. Many theoretical proposals have been put forward on constructing skyrmion-vortex pairs in heterostructures of chiral magnets and superconductors. Nevertheless, how to generate skyrmion-vortex pairs in a controllable way experimentally remains a significant challenge. We have designed a heterostructure of a chiral magnet and superconductor [Ta/Ir/CoFeB/MgO]7/Nb in which zero field N茅el-type skyrmions can be stabilized and the superconducting vortices can couple with the skyrmions when Nb is in the superconducting state. We have directly observed the formation of skyrmion-superconducting vortex pairs that is dependent on the direction of the applied magnetic field. Our results provide an effective method to manipulate the quantum states of skyrmions with the help of superconducting vortices, which can be used to explore new routines to control the skyrmions for spintronics devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13363v2-abstract-full').style.display = 'none'; document.getElementById('2310.13363v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 166706(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06651">arXiv:2308.06651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.06651">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Antisymmetric Planar Hall Effect in Rutile Oxide Films Induced by the Lorentz Force </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yongwei Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhaoqing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Haoran Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yue Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yunzhuo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+K">Ke Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+N">Nian Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+R">Renchao Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Zhe Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yizheng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06651v3-abstract-short" style="display: inline;"> The conventional Hall effect is linearly proportional to the field component or magnetization component perpendicular to a film. Despite the increasing theoretical proposals on the Hall effect to the in-plane field or magnetization in various special systems induced by the Berry curvature, such an unconventional Hall effect has only been experimentally reported in Weyl semimetals and in a heterodi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06651v3-abstract-full').style.display = 'inline'; document.getElementById('2308.06651v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06651v3-abstract-full" style="display: none;"> The conventional Hall effect is linearly proportional to the field component or magnetization component perpendicular to a film. Despite the increasing theoretical proposals on the Hall effect to the in-plane field or magnetization in various special systems induced by the Berry curvature, such an unconventional Hall effect has only been experimentally reported in Weyl semimetals and in a heterodimensional superlattice. Here, we report an unambiguous experimental observation of the antisymmetric planar Hall effect (APHE) with respect to the in-plane magnetic field in centrosymmetric rutile RuO2 and IrO2 single-crystal films. The measured Hall resistivity is found to be linearly proportional to the component of the applied in-plane magnetic field along a particular crystal axis and to be independent of the current direction or temperature. Both the experimental observations and theoretical calculations confirm that the APHE in rutile oxide films is induced by the Lorentz force. Our findings can be generalized to ferromagnetic materials for the discovery of anomalous Hall effects and quantum anomalous Hall effects induced by in-plane magnetization. In addition to significantly expanding knowledge of the Hall effect, this work opens the door to explore new members in the Hall effect family. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06651v3-abstract-full').style.display = 'none'; document.getElementById('2308.06651v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00490">arXiv:2308.00490</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00490">pdf</a>, <a href="https://arxiv.org/format/2308.00490">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovery of Stable Hybrid Organic-inorganic Double Perovskites for High-performance Solar Cells via Machine-learning Algorithms and Crystal Graph Convolution Neural Network Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+L">Linkang Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+D">Danfeng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xinjian Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cen%2C+Y">Yan Cen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00490v1-abstract-short" style="display: inline;"> Hybrid peroskite solar cells are newly emergent high-performance photovoltaic devices, which suffer from disadvantages such as toxic elements, short-term stabilities, and so on. Searching for alternative perovskites with high photovoltaic performances and thermally stabilities is urgent in this field. In this work, stimulated by the recently proposed materials-genome initiative project, firstly we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00490v1-abstract-full').style.display = 'inline'; document.getElementById('2308.00490v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00490v1-abstract-full" style="display: none;"> Hybrid peroskite solar cells are newly emergent high-performance photovoltaic devices, which suffer from disadvantages such as toxic elements, short-term stabilities, and so on. Searching for alternative perovskites with high photovoltaic performances and thermally stabilities is urgent in this field. In this work, stimulated by the recently proposed materials-genome initiative project, firstly we build classical machine-learning algorithms for the models of formation energies, bangdaps and Deybe temperatures for hybrid organic-inorganic double perovskites, then we choose the high-precision models to screen a large scale of double-perovskite chemical space, to filter out good pervoskite candidates for solar cells. We also analyze features of importances for the the three target properties to reveal the underlying mechanisms and discover the typical characteristics of high-performances double perovskites. Secondly we adopt the Crystal graph convolution neural network (CGCNN), to build precise model for bandgaps of perovskites for further filtering. Finally we use the ab-initio method to verify the results predicted by the CGCNN method, and find that, six out of twenty randomly chosen (CH3)2NH2-based HOIDP candidates possess finite bandgaps, and especially, (CH3)2NH2AuSbCl6 and (CH3)2NH2CsPdF6 possess the bandgaps of 0.633 eV and 0.504 eV, which are appropriate for photovoltaic applications. Our work not only provides a large scale of potential high-performance double-perovskite candidates for futural experimental or theoretical verification, but also showcases the effective and powerful prediction of the combined ML and CGCNN method proposed for the first time here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00490v1-abstract-full').style.display = 'none'; document.getElementById('2308.00490v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00826">arXiv:2305.00826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00826">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-40942-2">10.1038/s41467-023-40942-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery and construction of surface kagome electronic states induced by p-d electronic hybridization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">Li Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+X">Xianghua Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Q">Qi Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Y">Yuqing Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Zhixin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+S">Shiyu Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+J">Jingsi Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu-Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+H">Haixia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhihai Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xianggang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+X">Xiao Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+W">Wei Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00826v1-abstract-short" style="display: inline;"> Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, we show surface kagome electronic states (SKESs) on a Sn-terminated triangular Co3Sn2S2 surface, which are imprinted by vertical p-d electronic hybridization between the surface Sn (subsurface S) atoms and the buried Co kagome lattice network in the Co3Sn laye&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00826v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00826v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00826v1-abstract-full" style="display: none;"> Kagome-lattice materials possess attractive properties for quantum computing applications, but their synthesis remains challenging. Herein, we show surface kagome electronic states (SKESs) on a Sn-terminated triangular Co3Sn2S2 surface, which are imprinted by vertical p-d electronic hybridization between the surface Sn (subsurface S) atoms and the buried Co kagome lattice network in the Co3Sn layer under the surface. Owing to the subsequent lateral hybridization of the Sn and S atoms in a corner-sharing manner, the kagome symmetry and topological electronic properties of the Co3Sn layer is proximate to the Sn surface. The SKESs and both hybridizations were verified via qPlus non-contact atomic force microscopy (nc-AFM) and density functional theory calculations. The construction of SKESs with tunable properties can be achieved by the atomic substitution of surface Sn (subsurface S) with other group III-V elements (Se or Te), which was demonstrated theoretically. This work exhibits the powerful capacity of nc-AFM in characterizing localized topological states and reveals the strategy for synthesis of large-area transition-metal-based kagome lattice materials using conventional surface deposition techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00826v1-abstract-full').style.display = 'none'; document.getElementById('2305.00826v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 14, 5230 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00824">arXiv:2305.00824</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00824">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-46729-3">10.1038/s41467-024-46729-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomically-precise engineering of spin-orbit polarons in a kagome magnetic Weyl semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hui Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+Y">Yuqing Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">Li Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Q">Qi Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xianghe Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+B">Bin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+Y">Yuhan Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yao Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xianggang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong-Jun Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00824v2-abstract-short" style="display: inline;"> Atomically-precise engineering of defects in topological quantum materials, which is essential for constructing new artificial quantum materials with exotic properties and appealing for practical quantum applications, remains challenging due to the hindrances in modifying complex lattice with atomic precision. Here, we report the atomically-precise engineering of the vacancy-localized spin-orbital&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00824v2-abstract-full').style.display = 'inline'; document.getElementById('2305.00824v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00824v2-abstract-full" style="display: none;"> Atomically-precise engineering of defects in topological quantum materials, which is essential for constructing new artificial quantum materials with exotic properties and appealing for practical quantum applications, remains challenging due to the hindrances in modifying complex lattice with atomic precision. Here, we report the atomically-precise engineering of the vacancy-localized spin-orbital polarons (SOP) in a kagome magnetic Weyl semimetal Co3Sn2S2, using scanning tunneling microscope. We achieve the step-by-step repairing of the selected vacancies, which results in the formation of artificial sulfur vacancy with elaborate geometry. We find that that the bound states localized around the vacancies experience a symmetry-dependent energy shift towards Fermi level with increasing vacancy size. Strikingly, as vacancy size increases, the localized magnetic moments of SOPs are tunable and ultimately extended to the negative magnetic moments resulting from spin-orbit coupling in the kagome flat band. These findings establish a new platform for engineering atomic quantum states in topological quantum materials, offering potential for kagome-lattice-based spintronics and quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00824v2-abstract-full').style.display = 'none'; document.getElementById('2305.00824v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 2301 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06872">arXiv:2301.06872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.06872">pdf</a>, <a href="https://arxiv.org/format/2301.06872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.014307">10.1103/PhysRevB.108.014307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Sub-Exponential Critical Slowing Down at Floquet Time Crystal Phase Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wenqian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yadong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xingze Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nan%2C+J">Jue Nan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaopeng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06872v1-abstract-short" style="display: inline;"> Critical slowing down (CSD) has been a trademark of critical dynamics for equilibrium phase transitions of a many-body system, where the relaxation time for the system to reach thermal equilibrium or quantum ground state diverges with system size. The time crystal phase transition has attracted much attention in recent years for it provides a scenario of phase transition of quantum dynamics, unlik&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06872v1-abstract-full').style.display = 'inline'; document.getElementById('2301.06872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06872v1-abstract-full" style="display: none;"> Critical slowing down (CSD) has been a trademark of critical dynamics for equilibrium phase transitions of a many-body system, where the relaxation time for the system to reach thermal equilibrium or quantum ground state diverges with system size. The time crystal phase transition has attracted much attention in recent years for it provides a scenario of phase transition of quantum dynamics, unlike conventional equilibrium phase transitions. Here, we study critical dynamics near the Floquet time crystal phase transition. Its critical behavior is described by introducing a space-time coarse grained correlation function, whose relaxation time diverges at the critical point revealing the CSD. This is demonstrated by investigating the Floquet dynamics of one-dimensional disordered spin chain. Through finite-size scaling analysis, we show the relaxation time has a universal sub-exponential scaling near the critical point, in sharp contrast to the standard power-law behavior for CSD in equilibrium phase transitions. This prediction can be readily tested in present quantum simulation experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06872v1-abstract-full').style.display = 'none'; document.getElementById('2301.06872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4+5.5 pages, 3+1 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04984">arXiv:2301.04984</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.04984">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Pressure-induced coevolution of transport properties and lattice stability in CaK(Fe1-xNix)4As4 (x= 0.04 and 0) superconductors with and without spin-vortex crystal state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pengyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">Run Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+S">Shu Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+T">Tao Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jinyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J">Jinyu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+S">Sijin Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yazhou Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yanchun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaodong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huiqian Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xianggang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Liling Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04984v1-abstract-short" style="display: inline;"> Here we report the first investigation on correlation between the transport properties and the corresponding stability of the lattice structure for CaK(Fe1-xNix)4As4 (x=0.04 and 0), a new type of putative topological superconductors, with and without a spin-vortex crystal (SVC) state in a wide pressure range involving superconducting to non-superconducting transition and the half- to full-collapse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04984v1-abstract-full').style.display = 'inline'; document.getElementById('2301.04984v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04984v1-abstract-full" style="display: none;"> Here we report the first investigation on correlation between the transport properties and the corresponding stability of the lattice structure for CaK(Fe1-xNix)4As4 (x=0.04 and 0), a new type of putative topological superconductors, with and without a spin-vortex crystal (SVC) state in a wide pressure range involving superconducting to non-superconducting transition and the half- to full-collapse of tetragonal (h-cT and f-cT) phases, by the complementary measurements of high-pressure resistance, Hall coefficient and synchrotron X-ray diffraction. We identify the three critical pressures, P1 that is the turn-on critical pressure of the h-cT phase transition and it coincides with the critical pressure for the sign change of Hall coefficient from positive to negative, a manifestation of the Fermi surface reconstruction, P2 that is the turn-off pressures of the h-cT phase transition, and P3 that is the critical pressure of the f-cT phase transition. By comparing the high-pressure results measured from the two kinds of samples, we find a distinct left-shift of the P1 for the doped sample, at the pressure of which its SVC state is fully suppressed, however the P2 and the P3 remain the same as that of the undoped one. Our results not only provide a consistent understanding on the results reported before, but also demonstrate the importance of the Fe-As bonding in stabilizing the superconductivity of the iron pnictide superconductors through the pressure window. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04984v1-abstract-full').style.display = 'none'; document.getElementById('2301.04984v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108(2023)054415 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07169">arXiv:2211.07169</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.07169">pdf</a>, <a href="https://arxiv.org/format/2211.07169">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.107.043304">10.1103/PhysRevA.107.043304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable boson-assisted finite-range interaction and engineering Majorana corner modes in optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yu-Biao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Z">Zhen Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xiang-Gang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+L">Lin Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+X">Xu-Bo Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wu-Ming Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07169v2-abstract-short" style="display: inline;"> Nonlocal interaction between ultracold atoms trapped in optical lattices can give rise to interesting quantum many-body phenomena. However, its realization usually demands unconventional techniques, for example the artificial gauge fields or higher-orbit Feshbach resonances, and is not highly controllable. Here, we propose a valid and feasible scheme for realizing a tunable finite-range interactio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07169v2-abstract-full').style.display = 'inline'; document.getElementById('2211.07169v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07169v2-abstract-full" style="display: none;"> Nonlocal interaction between ultracold atoms trapped in optical lattices can give rise to interesting quantum many-body phenomena. However, its realization usually demands unconventional techniques, for example the artificial gauge fields or higher-orbit Feshbach resonances, and is not highly controllable. Here, we propose a valid and feasible scheme for realizing a tunable finite-range interaction for spinless fermions immersed into the bath of bosons. The strength of the effective interaction for the fermionic subsystem is artificially tunable by manipulating bosons, ranging from the repulsive to attractive regime. And the interaction distance is locked to the hopping of bosons, making the finite-range interaction perfectly clean for the fermionic subsystem. Specifically we find that, by introducing an additional staggered hopping of bosons, the proposal is readily applied to search the Majorana corner modes in such a spinless system, without implementation of complex artificial gauge fields, which is totally distinct from existing results reported in spinful systems. Therefore this scheme provides a potential platform for exploring the unconventional topological superfluids and other nontrivial phases induced by long-range interactions in ultracold atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07169v2-abstract-full').style.display = 'none'; document.getElementById('2211.07169v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 107, 043304 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04970">arXiv:2211.04970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.04970">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anomalous anisotropy of spin current in a cubic spin source with noncollinear antiferromagnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+C">Cuimei Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shiwei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+R">Rui-Chun Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengtai Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yangping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Liang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+T">Tieyang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jingsheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+Q">Qingfeng Zhan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04970v1-abstract-short" style="display: inline;"> Cubic materials host high crystal symmetry and hence are not expected to support anisotropy in transport phenomena. In contrast to this common expectation, here we report an anomalous anisotropy of spin current can emerge in the (001) film of Mn${_3}$Pt, a noncollinear antiferromagnetic spin source with face-centered cubic structure. Such spin current anisotropy originates from the intertwined tim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04970v1-abstract-full').style.display = 'inline'; document.getElementById('2211.04970v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04970v1-abstract-full" style="display: none;"> Cubic materials host high crystal symmetry and hence are not expected to support anisotropy in transport phenomena. In contrast to this common expectation, here we report an anomalous anisotropy of spin current can emerge in the (001) film of Mn${_3}$Pt, a noncollinear antiferromagnetic spin source with face-centered cubic structure. Such spin current anisotropy originates from the intertwined time reversal-odd ($T$-odd) and time reversal-even ($T$-even) spin Hall effects. Based on symmetry analyses and experimental characterizations of the current-induced spin torques in Mn${_3}$Pt-based heterostructures, we find that the spin current generated by Mn${_3}$Pt (001) exhibits exotic dependences on the current direction for all the spin components, deviating from that in conventional cubic systems. We also demonstrate that such an anisotropic spin current can be used to realize low-power spintronic applications such as the efficient field-free switching of the perpendicular magnetizations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04970v1-abstract-full').style.display = 'none'; document.getElementById('2211.04970v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.13272">arXiv:2207.13272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.13272">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-38763-4">10.1038/s41467-023-38763-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The breakdown of both strange metal and superconducting states at a pressure-induced quantum critical point in iron-pnictide superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+S">Shu Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jinyu Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+N">Ni Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">Run Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pengyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+J">Jinyu Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+S">Sijin Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yazhou Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qi Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xianggang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">Robert J Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Liling Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.13272v2-abstract-short" style="display: inline;"> The strange metal (SM) state, characterized by a linear-in-temperature resistivity, is often seen in the normal state of high temperature superconductors. It is believed that the SM state is one of the keys to understand the underlying mechanism of high-Tc superconductivity. Here we report the first observation of the concurrent breakdown of the SM normal state and superconductivity at a pressure-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13272v2-abstract-full').style.display = 'inline'; document.getElementById('2207.13272v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.13272v2-abstract-full" style="display: none;"> The strange metal (SM) state, characterized by a linear-in-temperature resistivity, is often seen in the normal state of high temperature superconductors. It is believed that the SM state is one of the keys to understand the underlying mechanism of high-Tc superconductivity. Here we report the first observation of the concurrent breakdown of the SM normal state and superconductivity at a pressure-induced quantum critical point in an iron-pnictide superconductor, Ca10(Pt4As8)((Fe0.97Pt0.03)2As2)5. We find that, upon suppressing the superconducting state by applying pressure, the power exponent changes from 1 to 2, and the corresponding coefficient A, the slope of the temperature-linear resistivity per FeAs layer, gradually diminishes. At a critical pressure (12.5 GPa), A and Tc go to zero concurrently,where a quantum phase transition (QPT) from a superconducting state with a SM normal state to a non-superconducting Fermi liquid state takes place. Scaling analysis on the results obtained from the pressurized 1048 superconductor reveals that A and Tc have a positive relation, which exhibits a similarity with that is seen in other chemically-doped unconventional superconductors, regardless of the type of the tuning method (doping or pressurizing), the crystal structure, the bulk or film superconductors and the nature of dopant. These results suggest that there is a simple but powerful organizational principle of connecting the SM normal state with the high-Tc superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13272v2-abstract-full').style.display = 'none'; document.getElementById('2207.13272v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14 (2023) 3116 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07042">arXiv:2207.07042</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07042">pdf</a>, <a href="https://arxiv.org/ps/2207.07042">ps</a>, <a href="https://arxiv.org/format/2207.07042">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.2c07271">10.1021/acs.jpcc.2c07271 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic surface on nonmagnetic bulk of electride Hf2S </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jian-Feng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+D">Duo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xiao-Le Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+N">Ning-Ning Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhong-Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07042v1-abstract-short" style="display: inline;"> Recent experiment reported the self-passivated electride Hf2S with excellent stability and continuous electrocatalytic ability [S. H. Kang et al., Sci. Adv. 6, eaba7416 (2020)]. Starting from its 2H-type layered structure, we have studied the electronic, magnetic, and transport properties of the electride Hf2S in the monolayer and multilayer forms by combining first-principles electronic structure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07042v1-abstract-full').style.display = 'inline'; document.getElementById('2207.07042v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07042v1-abstract-full" style="display: none;"> Recent experiment reported the self-passivated electride Hf2S with excellent stability and continuous electrocatalytic ability [S. H. Kang et al., Sci. Adv. 6, eaba7416 (2020)]. Starting from its 2H-type layered structure, we have studied the electronic, magnetic, and transport properties of the electride Hf2S in the monolayer and multilayer forms by combining first-principles electronic structure calculations and Kubo formula approach. Our calculations indicate that these thin films of Hf2S electride are both dynamically and thermodynamically stable. Astonishingly, the calculations further show that the outmost Hf atoms and the surface electron gas of the Hf2S multilayers are spin polarized, while the inner Hf atoms and the electron gas in the interlayer regions remain nonmagnetic. Due to the magnetic surface, the multilayer Hf2S exhibits many unusual transport properties such as the surface anomalous Hall effect and the electric-field-induced layer Hall effect. Our theoretical predictions on Hf2S call for future experimental verification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07042v1-abstract-full').style.display = 'none'; document.getElementById('2207.07042v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures, 34 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Chem. C 2023, 127, 1, 696-701 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.11712">arXiv:2206.11712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.11712">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/39/7/077403">10.1088/0256-307X/39/7/077403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Continuously Doping Bi 2 Sr 2 CaCu 2 O 8+未 into Electron-Doped Superconductor by CaH 2 Annealing Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gan%2C+Y">Yu-Lin Gan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+G">Guang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Y">Yi-Gui Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+C">Cen-Yao Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Fa-Zhi Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phan%2C+G+N">Giao Ngoc Phan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sui%2C+Q">Qiang-Tao Sui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xiang-Gang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qing-Hua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jie Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tian Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+L">Li Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+L">Lei Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Gen-Da Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+H">Hong Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.11712v1-abstract-short" style="display: inline;"> As a typical hole-doped cuprate superconductor, Bi 2 Sr 2 CaCu 2 O 8+未 (Bi2212) carrier doping is mostly determined by its oxygen content. Traditional doping methods can regulate its doping level within the range of hole doping. Here we report the first application of CaH 2 annealing method in regulating the doping level of Bi2212. By continuously controlling the anneal time, a series of different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11712v1-abstract-full').style.display = 'inline'; document.getElementById('2206.11712v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.11712v1-abstract-full" style="display: none;"> As a typical hole-doped cuprate superconductor, Bi 2 Sr 2 CaCu 2 O 8+未 (Bi2212) carrier doping is mostly determined by its oxygen content. Traditional doping methods can regulate its doping level within the range of hole doping. Here we report the first application of CaH 2 annealing method in regulating the doping level of Bi2212. By continuously controlling the anneal time, a series of differently doped samples can be obtained. The combined experimental results of x-ray diffraction, scanning transmission electron microscopy, resistance and Hall measurements demonstrate that the CaH 2 induced topochemical reaction can effectively change the oxygen content of Bi2212 within a very wide range, even switching from hole doping to electron doping. We also found evidence of a low-T c superconducting phase in the electron doping side. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.11712v1-abstract-full').style.display = 'none'; document.getElementById('2206.11712v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7pages,3 figures and Supplementary Material 3pages,3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 39 077403 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.13767">arXiv:2205.13767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.13767">pdf</a>, <a href="https://arxiv.org/format/2205.13767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.247202">10.1103/PhysRevLett.128.247202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fourfold anisotropic magnetoresistance of L1$_0$ FePt due to relaxation time anisotropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Y">Y. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y+W">Y. W. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+L">L. Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+M">M. Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X+P">X. P. Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Z">Z. Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S+M">S. M. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.13767v1-abstract-short" style="display: inline;"> Experimental measurements show that the angular dependence of the anisotropic magnetoresistance (AMR) in L1$_0$ ordered FePt epitaxial films on the current orientation and magnetization direction is a superposition of the corresponding dependences of twofold and fourfold symmetries. The twofold AMR exhibits a strong dependence on the current orientation, whereas the fourfold term only depends on t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13767v1-abstract-full').style.display = 'inline'; document.getElementById('2205.13767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.13767v1-abstract-full" style="display: none;"> Experimental measurements show that the angular dependence of the anisotropic magnetoresistance (AMR) in L1$_0$ ordered FePt epitaxial films on the current orientation and magnetization direction is a superposition of the corresponding dependences of twofold and fourfold symmetries. The twofold AMR exhibits a strong dependence on the current orientation, whereas the fourfold term only depends on the magnetization direction in the crystal and is independent of the current orientation. First-principles calculations reveal that the fourfold AMR arises from the relaxation time anisotropy due to the variation of the density of states near the Fermi energy under rotation of the magnetization. This relaxation time anisotropy is a universal property in ferromagnetic metals and determines other anisotropic physical properties that are observable in experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13767v1-abstract-full').style.display = 'none'; document.getElementById('2205.13767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 128, 247202 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.05179">arXiv:2204.05179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.05179">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Emergent superconductivity in van der Waals Kagome material Pd3P2S8 under high pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xiaole Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+C">Cuiying Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+B">Benchao Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+L">Lingling Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yi Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+W">Weizheng Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Changhua Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+S">Shihao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Mingxin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yanpeng Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.05179v1-abstract-short" style="display: inline;"> Kagome lattice systems have been proposed to host rich physics, which provide an excellent platform to explore unusual quantum states. Here, we report on the discovery of superconductivity in van der Waals material Pd3P2S8 under pressure. The superconductivity is observed in Pd3P2S8 for those pressures where the temperature dependence of the resistivity changes from a semiconducting-like behavior&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05179v1-abstract-full').style.display = 'inline'; document.getElementById('2204.05179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.05179v1-abstract-full" style="display: none;"> Kagome lattice systems have been proposed to host rich physics, which provide an excellent platform to explore unusual quantum states. Here, we report on the discovery of superconductivity in van der Waals material Pd3P2S8 under pressure. The superconductivity is observed in Pd3P2S8 for those pressures where the temperature dependence of the resistivity changes from a semiconducting-like behavior to that of a normal metal. The superconducting transition temperature Tc increases with applied pressure and reaches ~ 6.83 K at 79.5 GPa. Combining high-pressure XRD, Raman spectroscopy and theoretical calculations, our results demonstrate that the observed superconductivity induced by high pressure in Pd3P2S8 is closely related to the formation of amorphous phase, which results from the structural instability due to the enhanced coupling between interlayer Pd and S atoms upon compression. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05179v1-abstract-full').style.display = 'none'; document.getElementById('2204.05179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04378">arXiv:2204.04378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.04378">pdf</a>, <a href="https://arxiv.org/format/2204.04378">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.134313">10.1103/PhysRevB.106.134313 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Programmable Hamiltonian engineering with quadratic quantum Fourier transform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhijuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xingze Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaopeng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04378v2-abstract-short" style="display: inline;"> Quantum Fourier transform (QFT) is a widely used building block for quantum algorithms, whose scalable implementation is challenging in experiments. Here, we propose a protocol of quadratic quantum Fourier transform (QQFT), considering cold atoms confined in an optical lattice. This QQFT is equivalent to QFT in the single-particle subspace, and produces a different unitary operation in the entire&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04378v2-abstract-full').style.display = 'inline'; document.getElementById('2204.04378v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04378v2-abstract-full" style="display: none;"> Quantum Fourier transform (QFT) is a widely used building block for quantum algorithms, whose scalable implementation is challenging in experiments. Here, we propose a protocol of quadratic quantum Fourier transform (QQFT), considering cold atoms confined in an optical lattice. This QQFT is equivalent to QFT in the single-particle subspace, and produces a different unitary operation in the entire Hilbert space. We show this QQFT protocol can be implemented using programmable laser potential with the digital-micromirror-device techniques recently developed in the experiments. The QQFT protocol enables programmable Hamiltonian engineering, and allows quantum simulations of Hamiltonian models, which are difficult to realize with conventional approaches. The flexibility of our approach is demonstrated by performing quantum simulations of one-dimensional Poincar茅 crystal physics and two-dimensional topological flat bands, where the QQFT protocol effectively generates the required long-range tunnelings despite the locality of the cold atom system. We find the discrete Poincar茅 symmetry and topological properties in the two examples respectively have robustness against a certain degree of noise that is potentially existent in the experimental realization. We expect this approach would open up wide opportunities for optical lattice based programmable quantum simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04378v2-abstract-full').style.display = 'none'; document.getElementById('2204.04378v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 134313 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15669">arXiv:2203.15669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.15669">pdf</a>, <a href="https://arxiv.org/ps/2203.15669">ps</a>, <a href="https://arxiv.org/format/2203.15669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.165101">10.1103/PhysRevB.105.165101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity in monolayer Ba$_2$N electride: a first-principles study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xiao-Le Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jian-Feng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Huan-Cheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhong-Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15669v1-abstract-short" style="display: inline;"> The exploration of superconductivity in low-dimensional materials has attracted intensive attention for decades. Based on first-principles electronic structure calculations, we have systematically investigated the electronic and superconducting properties of the two-dimensional electride Ba$_2$N in the monolayer limit. Our results show that monolayer Ba$_2$N has a low work function of 3.0 eV and a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15669v1-abstract-full').style.display = 'inline'; document.getElementById('2203.15669v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15669v1-abstract-full" style="display: none;"> The exploration of superconductivity in low-dimensional materials has attracted intensive attention for decades. Based on first-principles electronic structure calculations, we have systematically investigated the electronic and superconducting properties of the two-dimensional electride Ba$_2$N in the monolayer limit. Our results show that monolayer Ba$_2$N has a low work function of 3.0 eV and a predicted superconducting transition temperature ($T_c$) of 3.4 K. The superconductivity can be further improved with the tensile strain, which results from the increase of density of states at the Fermi level as well as the enhanced coupling between inner-layer electrons and phonons. Remarkably, at the 4$\%$ tensile strain, the acoustic branches have noticeable softening at the K point of Brillouin zone and the superconducting $T_c$ can reach 10.8 K. The effect of lattice strain on the electron transfer from the superficial region to the inner-layer region of monolayer Ba$_2$N may also apply to other electride materials and influence their physical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15669v1-abstract-full').style.display = 'none'; document.getElementById('2203.15669v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 165101 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.06497">arXiv:2202.06497</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.06497">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal and Efficient p-Doping of Organic Semiconductors by Electrophilic Attack of Cations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Ying Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Ping-An Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xinhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanpei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jing Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xincan Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Z">Zebing Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+L">Lang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yuanping Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+S">Shun Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+L">Lei Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+Y">Yugang Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+T">Thuc-Quyen Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yuanyuan Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.06497v1-abstract-short" style="display: inline;"> Doping is of great importance to tailor the electrical properties of semiconductors. However, the present doping methodologies for organic semiconductors (OSCs) are either inefficient or can only apply to a small number of OSCs, seriously limiting their general application. Herein, we reveal a novel p-doping mechanism by investigating the interactions between the dopant trityl cation and poly(3-he&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06497v1-abstract-full').style.display = 'inline'; document.getElementById('2202.06497v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.06497v1-abstract-full" style="display: none;"> Doping is of great importance to tailor the electrical properties of semiconductors. However, the present doping methodologies for organic semiconductors (OSCs) are either inefficient or can only apply to a small number of OSCs, seriously limiting their general application. Herein, we reveal a novel p-doping mechanism by investigating the interactions between the dopant trityl cation and poly(3-hexylthiophene) (P3HT). It is found that electrophilic attack of the trityl cations on thiophenes results in the formation of alkylated ions that induce electron transfer from neighboring P3HT chains, resulting in p-doping. This unique p-doping mechanism can be employed to dope various OSCs including those with high ionization energy (IE=5.8 eV). Moreover, this doping mechanism endows trityl cation with strong doping ability, leading to polaron yielding efficiency of 100 % and doping efficiency of over 80 % in P3HT. The discovery and elucidation of this novel doping mechanism not only points out that strong electrophiles are a class of efficient p-dopants for OSCs, but also provides new opportunities towards highly efficient doping of OSCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06497v1-abstract-full').style.display = 'none'; document.getElementById('2202.06497v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05398">arXiv:2202.05398</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.05398">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c04756">10.1021/acs.nanolett.1c04756 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonreciprocal transport in a bilayer of MnBi2Te4 and Pt </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+C">Chen Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X">Xiangnan Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv3%2C+W">Wenxing Lv3</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+K">Ke Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+A+J">Allen Jian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S">Sicong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xue Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">Dapeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+M">Mingyu Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+T">Tong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+C">Chuang-Han Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P">Peisen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+K">Kesong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+T">Tian Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+R">Xiao Renshaw Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05398v1-abstract-short" style="display: inline;"> MnBi2Te4 (MBT) is the first intrinsic magnetic topological insulator with the interaction of spin-momentum locked surface electrons and intrinsic magnetism, and it exhibits novel magnetic and topological phenomena. Recent studies suggested that the interaction of electrons and magnetism can be affected by the Mn-doped Bi2Te3 phase at the surface due to inevitable structural defects. Here we report&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05398v1-abstract-full').style.display = 'inline'; document.getElementById('2202.05398v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05398v1-abstract-full" style="display: none;"> MnBi2Te4 (MBT) is the first intrinsic magnetic topological insulator with the interaction of spin-momentum locked surface electrons and intrinsic magnetism, and it exhibits novel magnetic and topological phenomena. Recent studies suggested that the interaction of electrons and magnetism can be affected by the Mn-doped Bi2Te3 phase at the surface due to inevitable structural defects. Here we report an observation of nonreciprocal transport, i.e. current-direction-dependent resistance, in a bilayer composed of antiferromagnetic MBT and nonmagnetic Pt. The emergence of the nonreciprocal response below the N茅el temperature confirms a correlation between nonreciprocity and intrinsic magnetism in the surface state of MBT. The angular dependence of the nonreciprocal transport indicates that nonreciprocal response originates from the asymmetry scattering of electrons at the surface of MBT mediated by magnon. Our work provides an insight into nonreciprocity arising from the correlation between magnetism and Dirac surface electrons in intrinsic magnetic topological insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05398v1-abstract-full').style.display = 'none'; document.getElementById('2202.05398v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 22, 3 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.01170">arXiv:2202.01170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.01170">pdf</a>, <a href="https://arxiv.org/format/2202.01170">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.085102">10.1103/PhysRevB.108.085102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kernel-Function Based Quantum Algorithms for Finite Temperature Quantum Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nan%2C+J">Jue Nan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xingze Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+W">Wenlan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaopeng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.01170v2-abstract-short" style="display: inline;"> Computing finite temperature properties of a quantum many-body system is key to describing a broad range of correlated quantum many-body physics from quantum chemistry and condensed matter to thermal quantum field theories. Quantum computing with rapid developments in recent years has a huge potential to impact the computation of quantum thermodynamics. To fulfill the potential impacts, it is cruc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01170v2-abstract-full').style.display = 'inline'; document.getElementById('2202.01170v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.01170v2-abstract-full" style="display: none;"> Computing finite temperature properties of a quantum many-body system is key to describing a broad range of correlated quantum many-body physics from quantum chemistry and condensed matter to thermal quantum field theories. Quantum computing with rapid developments in recent years has a huge potential to impact the computation of quantum thermodynamics. To fulfill the potential impacts, it is crucial to design quantum algorithms that utilize the computation power of the quantum computing devices. Here we present a quantum kernel function expansion (QKFE) algorithm for solving thermodynamic properties of quantum many-body systems. In this quantum algorithm, the many-body density of states is approximated by a kernel-Fourier expansion, whose expansion moments are obtained by random state sampling and quantum interferometric measurements. As compared to its classical counterpart, namely the kernel polynomial method (KPM), QKFE has an exponential advantage in the cost of both time and memory. In computing low temperature properties, QKFE becomes inefficient, as similar to classical KPM. To resolve this difficulty, we further construct a thermal ensemble and approaches the low temperature regime step-by-step. For quantum Hamiltonians, whose ground states are preparable with polynomial quantum circuits, THEI has an overall polynomial complexity. We demonstrate its efficiency with applications to one and two-dimensional quantum spin models, and a fermionic lattice. With our analysis on the realization with digital and analogue quantum devices, we expect the quantum algorithm is accessible to current quantum technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01170v2-abstract-full').style.display = 'none'; document.getElementById('2202.01170v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.13254">arXiv:2109.13254</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.13254">pdf</a>, <a href="https://arxiv.org/format/2109.13254">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.043009">10.1103/PhysRevResearch.4.043009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Peratic Phase Transition by Bulk-to-Surface Response </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xingze Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaopeng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.13254v3-abstract-short" style="display: inline;"> The study of dynamical phase transitions has been attracting considerable research efforts in the last decade. One theme of present interest is to search for exotic scenarios beyond the framework of equilibrium phase transitions. Here, we establish a duality between many-body dynamics and static Hamiltonian ground states for both classical and quantum systems. We construct frustration free Hamilto&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13254v3-abstract-full').style.display = 'inline'; document.getElementById('2109.13254v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.13254v3-abstract-full" style="display: none;"> The study of dynamical phase transitions has been attracting considerable research efforts in the last decade. One theme of present interest is to search for exotic scenarios beyond the framework of equilibrium phase transitions. Here, we establish a duality between many-body dynamics and static Hamiltonian ground states for both classical and quantum systems. We construct frustration free Hamiltonians whose ground state phase transitions have rigorous duality to chaotic transitions in dynamical systems. By this duality, we show the corresponding ground state phase transitions are characterized by bulk-to-surface response, which are then dubbed &#34;peratic&#34; meaning defined by response to the boundary. For the classical system, we show how the time-like dimension emerges in the static ground states. For the quantum system, the ground state is a superposition of geometrical lines on a two dimensional array, which encode the dynamical Floquet evolution history of one dimensional disordered spin chains. Our prediction of peratic phase transition has direct consequences in quantum simulation platforms such as Rydberg atoms and superconducting qubits, as well as anisotropic spin glass materials. The discovery would shed light on the unification of dynamical phase transitions with equilibrium systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13254v3-abstract-full').style.display = 'none'; document.getElementById('2109.13254v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+3 pages; 4+3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, 043009 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12388">arXiv:2106.12388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.12388">pdf</a>, <a href="https://arxiv.org/ps/2106.12388">ps</a>, <a href="https://arxiv.org/format/2106.12388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.035143">10.1103/PhysRevB.103.035143 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LaO as a candidate substrate for realizing superconductivity in FeSe epitaxial film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xiao-Le Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+B">Ben-Chao Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Huan-Cheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhong-Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12388v1-abstract-short" style="display: inline;"> The significantly enhanced superconducting transition temperature ($T_c$) of an FeSe monolayer on SrTiO$_3$(001) substrate has attracted extensive attention in recent years. Here, based on first-principles electronic structure calculations, we propose another candidate substrate LaO(001) for the epitaxial growth of FeSe monolayer to realize superconductivity. Our calculations show that for the opt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12388v1-abstract-full').style.display = 'inline'; document.getElementById('2106.12388v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12388v1-abstract-full" style="display: none;"> The significantly enhanced superconducting transition temperature ($T_c$) of an FeSe monolayer on SrTiO$_3$(001) substrate has attracted extensive attention in recent years. Here, based on first-principles electronic structure calculations, we propose another candidate substrate LaO(001) for the epitaxial growth of FeSe monolayer to realize superconductivity. Our calculations show that for the optimal adsorption structure of FeSe monolayer on LaO(001), the stripe antiferromagnetic state and the dimer antiferromagnetic state are almost energetically degenerate, indicating the existence of strong magnetic fluctuation that is beneficial to the appearance of superconductivity. According to the Bader charge analysis, the calculated electron doping from the LaO substrate to the FeSe monolayer is about 0.18 electrons per Fe atom, even larger than that in case of FeSe/SrTiO$_3$(001). Since LaO was also reported to be a superconductor with $T_c$ ~ 5 K, it may have a superconducting proximity effect on the epitaxial FeSe film and vice versa. These results suggest that LaO would be an interesting substrate to study the interface-related superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12388v1-abstract-full').style.display = 'none'; document.getElementById('2106.12388v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 035143 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.07134">arXiv:2105.07134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.07134">pdf</a>, <a href="https://arxiv.org/format/2105.07134">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-023-00755-z">10.1038/s41534-023-00755-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum optimization within lattice gauge theory model on a quantum simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z">Zheng Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Z">Zheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y">Yan-Hua Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yan-Cheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xingze Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xue-Feng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.07134v4-abstract-short" style="display: inline;"> Simulating lattice gauge theory (LGT) Hamiltonian and its nontrivial states by programmable quantum devices has attracted numerous attention in recent years. Rydberg atom arrays constitute one of the most rapidly developing arenas for quantum simulation and quantum computing. The $\mathbb{Z}_2$ LGT and topological order has been realized in experiments while the $U(1)$ LGT is being worked hard on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.07134v4-abstract-full').style.display = 'inline'; document.getElementById('2105.07134v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.07134v4-abstract-full" style="display: none;"> Simulating lattice gauge theory (LGT) Hamiltonian and its nontrivial states by programmable quantum devices has attracted numerous attention in recent years. Rydberg atom arrays constitute one of the most rapidly developing arenas for quantum simulation and quantum computing. The $\mathbb{Z}_2$ LGT and topological order has been realized in experiments while the $U(1)$ LGT is being worked hard on the way. States of LGT have local constraint and are fragmented into several winding sectors with topological protection. It is therefore difficult to reach the ground state in target sector for experiments, and it is also an important task for quantum topological memory. Here, we propose a protocol of sweeping quantum annealing (SQA) for searching the ground state among topological sectors. With the quantum Monte Carlo method, we show that this SQA has linear time complexity of size with applications to the antiferromagnetic transverse field Ising model, which has emergent $U(1)$ gauge fields. This SQA protocol can be realized easily on quantum simulation platforms such as Rydberg array and D-wave annealer. We expect this approach would provide an efficient recipe for resolving the topological hindrances in quantum optimization and the preparation of quantum topological state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.07134v4-abstract-full').style.display = 'none'; document.getElementById('2105.07134v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Information 9, 89 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.02727">arXiv:2104.02727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.02727">pdf</a>, <a href="https://arxiv.org/format/2104.02727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-022-1158-1">10.1007/s11467-022-1158-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Reservoir Learning Power across Quantum Many-Boby Localization Transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+J">Jie Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xingze Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaopeng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.02727v1-abstract-short" style="display: inline;"> Harnessing the quantum computation power of the present noisy-intermediate-size-quantum devices has received tremendous interest in the last few years. Here we study the learning power of a one-dimensional long-range randomly-coupled quantum spin chain, within the framework of reservoir computing. In time sequence learning tasks, we find the system in the quantum many-body localized (MBL) phase ho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02727v1-abstract-full').style.display = 'inline'; document.getElementById('2104.02727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.02727v1-abstract-full" style="display: none;"> Harnessing the quantum computation power of the present noisy-intermediate-size-quantum devices has received tremendous interest in the last few years. Here we study the learning power of a one-dimensional long-range randomly-coupled quantum spin chain, within the framework of reservoir computing. In time sequence learning tasks, we find the system in the quantum many-body localized (MBL) phase holds long-term memory, which can be attributed to the emergent local integrals of motion. On the other hand, MBL phase does not provide sufficient nonlinearity in learning highly-nonlinear time sequences, which we show in a parity check task. This is reversed in the quantum ergodic phase, which provides sufficient nonlinearity but compromises memory capacity. In a complex learning task of Mackey-Glass prediction that requires both sufficient memory capacity and nonlinearity, we find optimal learning performance near the MBL-to-ergodic transition. This leads to a guiding principle of quantum reservoir engineering at the edge of quantum ergodicity reaching optimal learning power for generic complex reservoir learning tasks. Our theoretical finding can be readily tested with present experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02727v1-abstract-full').style.display = 'none'; document.getElementById('2104.02727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. 17 (3) 33506 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.01591">arXiv:2104.01591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.01591">pdf</a>, <a href="https://arxiv.org/format/2104.01591">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.033240">10.1103/PhysRevResearch.3.033240 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Josephson junctions in double nanowires bridged by in-situ deposited superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vekris%2C+A">Alexandros Vekris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salda%C3%B1a%2C+J+C+E">Juan Carlos Estrada Salda帽a</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kanne%2C+T">Thomas Kanne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marnauza%2C+M">Mikelis Marnauza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olsteins%2C+D">Dags Olsteins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+F">Furong Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaobo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hvid-Olsen%2C+T">Thor Hvid-Olsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xiaohui Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+H">Hongqi Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nyg%C3%A5rd%2C+J">Jesper Nyg氓rd</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grove-Rasmussen%2C+K">Kasper Grove-Rasmussen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.01591v1-abstract-short" style="display: inline;"> We characterize parallel double quantum dot Josephson junctions based on closely-grown double nanowires bridged by in-situ deposited superconductors. The parallel double dot behavior occurs despite the closeness of the nanowires and the potential risk of nanowire clamping during growth. By tuning the charge filling and lead couplings, we map out the simplest parallel double quantum dot Yu-Shiba-Ru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01591v1-abstract-full').style.display = 'inline'; document.getElementById('2104.01591v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.01591v1-abstract-full" style="display: none;"> We characterize parallel double quantum dot Josephson junctions based on closely-grown double nanowires bridged by in-situ deposited superconductors. The parallel double dot behavior occurs despite the closeness of the nanowires and the potential risk of nanowire clamping during growth. By tuning the charge filling and lead couplings, we map out the simplest parallel double quantum dot Yu-Shiba-Rusinov phase diagram. Our quasi-independent two-wire hybrids show promise for the realization of exotic topological phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01591v1-abstract-full').style.display = 'none'; document.getElementById('2104.01591v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NBI QDEV 2021 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 033240 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.09011">arXiv:2103.09011</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.09011">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Efficient field-free perpendicular magnetization switching by a magnetic spin Hall effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Huanglin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+M">Meng Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+W">Weijia Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shiming Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsymbal%2C+E+Y">Evgeny Y. Tsymbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.09011v1-abstract-short" style="display: inline;"> Current induced spin-orbit torques driven by the conventional spin Hall effect are widely used to manipulate the magnetization. This approach, however, is nondeterministic and inefficient for the switching of magnets with perpendicular magnetic anisotropy that are demanded by the high-density magnetic storage and memory devices. Here, we demonstrate that this limitation can be overcome by exploiti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09011v1-abstract-full').style.display = 'inline'; document.getElementById('2103.09011v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.09011v1-abstract-full" style="display: none;"> Current induced spin-orbit torques driven by the conventional spin Hall effect are widely used to manipulate the magnetization. This approach, however, is nondeterministic and inefficient for the switching of magnets with perpendicular magnetic anisotropy that are demanded by the high-density magnetic storage and memory devices. Here, we demonstrate that this limitation can be overcome by exploiting a magnetic spin Hall effect in noncollinear antiferromagnets, such as Mn3Sn. The magnetic group symmetry of Mn3Sn allows generation of the out-of-plane spin current carrying spin polarization induced by an in-plane charge current. This spin current drives an out-of-plane anti-damping torque providing deterministic switching of perpendicular magnetization of an adjacent Ni/Co multilayer. Compared to the conventional spin-orbit torque devices, the observed switching does not need any external magnetic field and requires much lower current density. Our results demonstrate great prospects of exploiting the magnetic spin Hall effect in noncollinear antiferromagnets for low-power spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09011v1-abstract-full').style.display = 'none'; document.getElementById('2103.09011v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.07196">arXiv:2011.07196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.07196">pdf</a>, <a href="https://arxiv.org/format/2011.07196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.155301">10.1103/PhysRevLett.128.155301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Observation of Coherent Longitudinal and Shear Acoustic Phonons in TaAs Using Ultrafast X-ray Diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M">Min-Cheol Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sirica%2C+N">N. Sirica</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teitelbaum%2C+S+W">S. W. Teitelbaum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maznev%2C+A">A. Maznev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pezeril%2C+T">T. Pezeril</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tutchton%2C+R">R. Tutchton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krapivin%2C+V">V. Krapivin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+la+Pena%2C+G+A">G. A. de la Pena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L+X">L. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G+F">G. F. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">B. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">J. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">J. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yarotski%2C+D+A">D. A. Yarotski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X+G">X. G. Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+K+A">K. A. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trigo%2C+M">M. Trigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reis%2C+D+A">D. A. Reis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prasankumar%2C+R+P">R. P. Prasankumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.07196v2-abstract-short" style="display: inline;"> Using femtosecond time-resolved X-ray diffraction, we investigated optically excited coherent acoustic phonons in the Weyl semimetal TaAs. The low symmetry of the (112) surface probed in our experiment enables the simultaneous excitation of longitudinal and shear acoustic modes, whose dispersion closely matches our simulations. We observed an asymmetry in the spectral lineshape of the longitudinal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07196v2-abstract-full').style.display = 'inline'; document.getElementById('2011.07196v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.07196v2-abstract-full" style="display: none;"> Using femtosecond time-resolved X-ray diffraction, we investigated optically excited coherent acoustic phonons in the Weyl semimetal TaAs. The low symmetry of the (112) surface probed in our experiment enables the simultaneous excitation of longitudinal and shear acoustic modes, whose dispersion closely matches our simulations. We observed an asymmetry in the spectral lineshape of the longitudinal mode that is notably absent from the shear mode, suggesting a time-dependent frequency chirp that is likely driven by photoinduced carrier diffusion. We argue on the basis of symmetry that these acoustic deformations can transiently alter the electronic structure near the Weyl points and support this with model calculations. Our study underscores the benefit of using off-axis crystal orientations when optically exciting acoustic deformations in topological semimetals, allowing one to transiently change their crystal and electronic structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07196v2-abstract-full').style.display = 'none'; document.getElementById('2011.07196v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures for manuscript, and 15 pages and 11 figures for supplemental materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-20-29013 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 155301 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.00878">arXiv:2010.00878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.00878">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.064424">10.1103/PhysRevB.104.064424 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linear magnetization dependence and large intrinsic anomalous Hall effect in Fe78Si9B13 metallic glasses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Weiwei Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jinfeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Z">Zhiyu Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hongyu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+L">Laiquan Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xianggang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+H">Haiyang Bai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.00878v3-abstract-short" style="display: inline;"> The origin of anomalous Hall effect (AHE) in ferromagnetic metallic glasses (MGs) is not yet understood completely. Here, the AHE is explored in Fe78Si9B13 MGs. We find the behavior of resistivity at low temperature seems to be more likely due to structure effect rather than Kondo-type effect. More importantly, we firstly find the primitive experiment anomalous Hall conductivity (蟽AH) without sepa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00878v3-abstract-full').style.display = 'inline'; document.getElementById('2010.00878v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.00878v3-abstract-full" style="display: none;"> The origin of anomalous Hall effect (AHE) in ferromagnetic metallic glasses (MGs) is not yet understood completely. Here, the AHE is explored in Fe78Si9B13 MGs. We find the behavior of resistivity at low temperature seems to be more likely due to structure effect rather than Kondo-type effect. More importantly, we firstly find the primitive experiment anomalous Hall conductivity (蟽AH) without separation of extrinsic contribution has a linear magnetization (Mz) dependence when temperature is changing, which is another feature of intrinsic mechanism and indicates intrinsic contribution is dominated. Furthermore, the 蟽AH normalized by Mz is independent of longitudinal conductivity (蟽xx), which shows the characteristic of dissipationless intrinsic mechanism. We suggest the intrinsic contribution can be understood from the density of Berry curvature integrated over occupied energies proposed for aperiodic materials recently, and the linear magnetization dependence can be understood qualitatively from the fluctuations of spin orientation and the proportional relationship between Berry curvature and magnetization. Moreover, based on the recent theory report of topological amorphous metals, we make a prediction that the large intrinsic 蟽AH (616 S/cm) in Fe78Si9B13 MGs implies some topological properties of MGs waiting for further discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00878v3-abstract-full').style.display = 'none'; document.getElementById('2010.00878v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 064424 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.00006">arXiv:2008.00006</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.00006">pdf</a>, <a href="https://arxiv.org/format/2008.00006">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.1.020311">10.1103/PRXQuantum.1.020311 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Programmable Quantum Annealing Architectures with Ising Quantum Wires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xingze Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zoller%2C+P">Peter Zoller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaopeng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.00006v2-abstract-short" style="display: inline;"> Quantum annealing aims at solving optimization problems efficiently by preparing the ground state of an Ising spin-Hamiltonian quantum mechanically. A prerequisite of building a quantum annealer is the implementation of programmable long-range two-, three- or multi-spin Ising interactions. We discuss an architecture, where the required spin interactions are implemented via two-port, or in general&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00006v2-abstract-full').style.display = 'inline'; document.getElementById('2008.00006v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.00006v2-abstract-full" style="display: none;"> Quantum annealing aims at solving optimization problems efficiently by preparing the ground state of an Ising spin-Hamiltonian quantum mechanically. A prerequisite of building a quantum annealer is the implementation of programmable long-range two-, three- or multi-spin Ising interactions. We discuss an architecture, where the required spin interactions are implemented via two-port, or in general multi-port quantum Ising wires connecting the spins of interest. This quantum annealing architecture of spins connected by Ising quantum wires can be realized by exploiting the three dimensional (3D) character of atomic platforms, including atoms in optical lattices and Rydberg tweezer arrays. The realization only requires engineering on-site terms and two-body interactions between nearest neighboring qubits. The locally coupled spin model on a 3D cubic lattice is sufficient to effectively produce arbitrary all-to-all coupled Ising Hamiltonians. We illustrate the approach for few spin devices solving Max-Cut and prime factorization problems, and discuss the potential scaling to large atom based systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00006v2-abstract-full').style.display = 'none'; document.getElementById('2008.00006v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 1, 020311 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.10308">arXiv:2005.10308</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.10308">pdf</a>, <a href="https://arxiv.org/format/2005.10308">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-021-01126-9">10.1038/s41563-021-01126-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sirica%2C+N">N Sirica</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orth%2C+P+P">P. P. Orth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scheurer%2C+M+S">M. S. Scheurer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Y+M">Y. M. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+M+-">M. -C. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Padmanabhan%2C+P">P. Padmanabhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mix%2C+L+T">L. T. Mix</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teitelbaum%2C+S+W">S. W. Teitelbaum</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trigo%2C+M">M. Trigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L+X">L. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G+F">G. F. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">B. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+B">B. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+C">C. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C+-">C. -C. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">H. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">T. A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trugman%2C+S+A">S. A. Trugman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J+-">J. -X. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Z. Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+N">N. Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X+G">X. G. Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taylor%2C+A+J">A. J. Taylor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yarotski%2C+D+A">D. A. Yarotski</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.10308v4-abstract-short" style="display: inline;"> Symmetry plays a central role in conventional and topological phases of matter, making the ability to optically drive symmetry change a critical step in developing future technologies that rely on such control. Topological materials, like the newly discovered topological semimetals, are particularly sensitive to a breaking or restoring of time-reversal and crystalline symmetries, which affect both&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10308v4-abstract-full').style.display = 'inline'; document.getElementById('2005.10308v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.10308v4-abstract-full" style="display: none;"> Symmetry plays a central role in conventional and topological phases of matter, making the ability to optically drive symmetry change a critical step in developing future technologies that rely on such control. Topological materials, like the newly discovered topological semimetals, are particularly sensitive to a breaking or restoring of time-reversal and crystalline symmetries, which affect both bulk and surface electronic states. While previous studies have focused on controlling symmetry via coupling to the crystal lattice, we demonstrate here an all-electronic mechanism based on photocurrent generation. Using second-harmonic generation spectroscopy as a sensitive probe of symmetry change, we observe an ultrafast breaking of time-reversal and spatial symmetries following femtosecond optical excitation in the prototypical type-I Weyl semimetal TaAs. Our results show that optically driven photocurrents can be tailored to explicitly break electronic symmetry in a generic fashion, opening up the possibility of driving phase transitions between symmetry-protected states on ultrafast time scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10308v4-abstract-full').style.display = 'none'; document.getElementById('2005.10308v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 15 figures, 4 Tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Mater. (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.06146">arXiv:2005.06146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.06146">pdf</a>, <a href="https://arxiv.org/format/2005.06146">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.117002">10.1103/PhysRevLett.125.117002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron spin resonance in a quasi-two-dimensional iron-based superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+W">Wenshan Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+L">Linxing Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zezong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Z">Zhenyuan Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Dingsong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sui%2C+Q">Qiangtao Sui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+T">Tao Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Danilkin%2C+S">Sergey Danilkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+H">Haranath Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+A">Abyay Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xingjiang Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xianggang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huiqian Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.06146v1-abstract-short" style="display: inline;"> Magnetically mediated Cooper pairing is generally regarded as a key to establish the unified mechanism of unconventional superconductivity. One crucial evidence is the neutron spin resonance arising in the superconducting state, which is commonly interpreted as a spin-exciton from collective particle-hole excitations confined below the superconducting pair-breaking gap ($2螖$). Here, on the basis o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.06146v1-abstract-full').style.display = 'inline'; document.getElementById('2005.06146v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.06146v1-abstract-full" style="display: none;"> Magnetically mediated Cooper pairing is generally regarded as a key to establish the unified mechanism of unconventional superconductivity. One crucial evidence is the neutron spin resonance arising in the superconducting state, which is commonly interpreted as a spin-exciton from collective particle-hole excitations confined below the superconducting pair-breaking gap ($2螖$). Here, on the basis of inelastic neutron scattering measurements on a quasi-two-dimensional iron-based superconductor KCa$_2$Fe$_4$As$_4$F$_2$, we have discovered a two-dimensional spin resonant mode with downward dispersions, a behavior closely resembling the low branch of the hour-glass-type spin resonance in cuprates. The resonant intensity is predominant by two broad incommensurate peaks near $Q=$(0.5, 0.5) with a sharp energy peak at $E_R=16$ meV. The overall energy dispersion of the mode exceeds the measured maximum total gap $螖_{\rm tot}=|螖_k|+|螖_{k+Q}|$. These experimental results deeply challenge the conventional understanding of the resonance modes as magnetic excitons regardless of underlining pairing symmetry schemes, and it also points out that when the iron-based superconductivity becomes very quasi-two-dimensional, the electronic behaviors are similar to those in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.06146v1-abstract-full').style.display = 'none'; document.getElementById('2005.06146v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 14 figures, including supplementary materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 117002 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.01674">arXiv:2003.01674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.01674">pdf</a>, <a href="https://arxiv.org/format/2003.01674">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-020-00315-9">10.1038/s41534-020-00315-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precise Programmable Quantum Simulations with Optical Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xingze Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+J">Jie Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+X">Xiaodong Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaopeng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.01674v2-abstract-short" style="display: inline;"> We present an efficient approach to precisely simulate tight binding models with optical lattices, based on programmable digital-micromirror-device (DMD) techniques. Our approach consists of a subroutine of Wegner-flow enabled precise extraction of a tight-binding model for a given optical potential, and a reverse engineering step of adjusting the potential for a targeting model, for both of which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01674v2-abstract-full').style.display = 'inline'; document.getElementById('2003.01674v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.01674v2-abstract-full" style="display: none;"> We present an efficient approach to precisely simulate tight binding models with optical lattices, based on programmable digital-micromirror-device (DMD) techniques. Our approach consists of a subroutine of Wegner-flow enabled precise extraction of a tight-binding model for a given optical potential, and a reverse engineering step of adjusting the potential for a targeting model, for both of which we develop classical algorithms to achieve high precision and high efficiency. With renormalization of Wannier functions and high band effects systematically calibrated in our protocol, we show the tight-binding models with programmable onsite energies and tunnelings can be precisely simulated with optical lattices integrated with the DMD techniques. With numerical simulation, we demonstrate that our approach would facilitate quantum simulation of localization physics with unprecedented programmability and atom-based boson sampling for illustration of quantum computational advantage. We expect this approach would pave a way towards large-scale and precise programmable quantum simulations based on optical lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01674v2-abstract-full').style.display = 'none'; document.getElementById('2003.01674v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Information 6, 87 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.04082">arXiv:2001.04082</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.04082">pdf</a>, <a href="https://arxiv.org/format/2001.04082">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.224508">10.1103/PhysRevB.101.224508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopic Evidence of Bilayer Splitting and Interlayer Pairing in an Iron Based Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Dingsong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+W">Wenshan Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+C">Chenxiao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sui%2C+Q">Qiangtao Sui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jianwei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Cong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Chunyao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Hailan Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+C">Chaohui Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yu Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xiangyu Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+Y">Yongqing Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+J">Junjie Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qingyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yuan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shenjin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+F">Fengfeng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Feng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Q">Qinjun Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zuyan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xianggang Qiu</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.04082v1-abstract-short" style="display: inline;"> In high temperature cuprate superconductors, the interlayer coupling between the CuO$_2$ planes plays an important role in dictating superconductivity, as indicated by the sensitive dependence of the critical temperature (T$_C$) on the number of CuO$_2$ planes in one structural unit. In Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ superconductor with two CuO$_2$ planes in one structural unit, the interaction bet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04082v1-abstract-full').style.display = 'inline'; document.getElementById('2001.04082v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.04082v1-abstract-full" style="display: none;"> In high temperature cuprate superconductors, the interlayer coupling between the CuO$_2$ planes plays an important role in dictating superconductivity, as indicated by the sensitive dependence of the critical temperature (T$_C$) on the number of CuO$_2$ planes in one structural unit. In Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ superconductor with two CuO$_2$ planes in one structural unit, the interaction between the two CuO$_2$ planes gives rise to band splitting into two Fermi surface sheets (bilayer splitting) that have distinct superconducting gap. The iron based superconductors are composed of stacking of the FeAs/FeSe layers; whether the interlayer coupling can cause similar band splitting and its effect on superconductivity remain unclear. Here we report high resolution laser-based angle-resolved photoemission spectroscopy (ARPES) measurements on a newly discovered iron based superconductor, KCa$_2$Fe$_4$As$_4$F$_2$ (T$_C$=33.5\,K) which consists of stacking FeAs blocks with two FeAs layers separated by insulating Ca$_2$F$_2$ blocks. Bilayer splitting effect is observed for the first time that gives rise to totally five hole-like Fermi surface sheets around the Brilliouin zone center. Band structure calculations reproduce the observed bilayer splitting by identifying interlayer interorbital interaction between the two FeAs layers within one FeAs block. All the hole-like pockets around the zone center exhibit Fermi surface-dependent and nodeless superconducting gap. The gap functions with short-range antiferromagetic fluctuations are proposed and the gap symmetry can be well understood when the interlayer pairing is considered. The particularly strong interlayer pairing is observed for one of the bands. Our observations provide key information on the interlayer coupling and interlayer pairing in understanding superconductivity in iron based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04082v1-abstract-full').style.display = 'none'; document.getElementById('2001.04082v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 224508 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.04662">arXiv:1911.04662</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.04662">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s12598-020-01389-2">10.1007/s12598-020-01389-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of Superconductivity in Nd$_{0.8}$Sr$_{0.2}$NiO$_x$ Thin Films without Chemical Reduction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiao-Rong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Z">Ze-Xin Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+P">Pei-Xin Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Han Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">Hui-Xin Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiao-Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Hao-Jiang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hong-Yu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xue-Peng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhi-Qi Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.04662v2-abstract-short" style="display: inline;"> The recently reported superconductivity 9-15 K in Nd0.8Sr0.2NiO2/SrTiO3 heterostructures that were fabricated by a soft-chemical topotactic reduction approach based on precursor Nd0.8Sr0.2NiO3 thin films deposited on SrTiO3 substrates, has excited an immediate surge of research interest. To explore an alternative physical path instead of chemical reduction for realizing superconductivity in this c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04662v2-abstract-full').style.display = 'inline'; document.getElementById('1911.04662v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.04662v2-abstract-full" style="display: none;"> The recently reported superconductivity 9-15 K in Nd0.8Sr0.2NiO2/SrTiO3 heterostructures that were fabricated by a soft-chemical topotactic reduction approach based on precursor Nd0.8Sr0.2NiO3 thin films deposited on SrTiO3 substrates, has excited an immediate surge of research interest. To explore an alternative physical path instead of chemical reduction for realizing superconductivity in this compound, using pulsed laser deposition, we systematically fabricated 63 Nd0.8Sr0.2NiOx (NSNO) thin films at a wide range of oxygen partial pressures on various different oxide substrates. Transport measurements did not find any signature of superconductivity in all the 63 thin-film samples. With reducing the oxygen content in the NSNO films by lowering the deposition oxygen pressure, the NSNO films are getting more resistive and finally become insulating. Furthermore, we tried to cap a 20-nm-thick amorphous LaAlO3 layer on a Nd0.8Sr0.2NiO3 thin film deposited at a high oxygen pressure of 150 mTorr to create oxygen vacancies on its surface and did not succeed in higher conductivity either. Our experimental results together with the recent report on the absence of superconductivity in synthesized bulk Nd0.8Sr0.2NiO2 crystals suggest that the chemical reduction approach could be unique for yielding superconductivity in NSNO/SrTiO3 heterostructures. However, SrTiO3 substrates could be reduced to generate oxygen vacancies during the chemical reduction process as well, which may thus partially contribute to conductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.04662v2-abstract-full').style.display = 'none'; document.getElementById('1911.04662v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures; Accepted in Rare Metals</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rare Metals 39, 368-374 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.02927">arXiv:1910.02927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.02927">pdf</a>, <a href="https://arxiv.org/format/1910.02927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.235132">10.1103/PhysRevB.100.235132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical and photoemission investigation of structural and magnetic transitions in the iron-based superconductor Sr$_\mathbf{0.67}$Na$_\mathbf{0.33}$Fe$_\mathbf{2}$As$_\mathbf{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J+W">J. W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaki%2C+N">N. Zaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pletikosic%2C+I">I. Pletikosic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Y+M">Y. M. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+H">H. Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+P+D">P. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X+G">X. G. Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Homes%2C+C+C">C. C. Homes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.02927v2-abstract-short" style="display: inline;"> We report the temperature-dependent optical conductivity and ARPES studies of the iron-based superconductor (SC) Sr$_{0.67}$Na$_{0.33}$Fe$_2$As$_2$ in the high-temperature tetragonal paramagnetic phase; below the structural and magnetic transitions at $T_{\rm N}\simeq$125 K in the orthorhombic spin-density-wave (SDW)-like phase, and $T_r\simeq$42 K in the reentrant tetragonal double-Q magnetic pha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02927v2-abstract-full').style.display = 'inline'; document.getElementById('1910.02927v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.02927v2-abstract-full" style="display: none;"> We report the temperature-dependent optical conductivity and ARPES studies of the iron-based superconductor (SC) Sr$_{0.67}$Na$_{0.33}$Fe$_2$As$_2$ in the high-temperature tetragonal paramagnetic phase; below the structural and magnetic transitions at $T_{\rm N}\simeq$125 K in the orthorhombic spin-density-wave (SDW)-like phase, and $T_r\simeq$42 K in the reentrant tetragonal double-Q magnetic phase where both charge and SDW order exist; and below the SC transition at $T_c\simeq$10 K. The free-carrier component in the optical conductivity is described by two Drude contributions; one strong and broad, the other weak and narrow. The broad Drude component decreases dramatically below $T_{\rm N}$ and $T_r$, with much of its strength being transferred to a bound excitation in the mid-infrared, while the narrow Drude component shows no anomalies at either of the transitions, actually increasing in strength at low temperature while narrowing dramatically. The behavior of an infrared-active mode suggests zone-folding below $T_r$. Below $T_c$ the dramatic decrease in the low-frequency optical conductivity signals the formation of a SC energy gap. ARPES reveals hole-like bands at the center of the Brillouin zone (BZ), with both electron- and hole-like bands at the corners. Below $T_{\rm N}$, the hole pockets at the center of the BZ decrease in size, consistent with the behavior of the broad Drude component; while below $T_r$ the electron-like bands shift and split, giving rise to a low-energy excitation in the optical conductivity at ~20 meV. The magnetic states, with resulting SDW and charge-SDW order, respectively, lead to a significant reconstruction of the Fermi surface that has profound implications for the transport originating from the electron and hole pockets, but appears to have relatively little impact on the SC in this material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02927v2-abstract-full').style.display = 'none'; document.getElementById('1910.02927v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages with 6 figures; 7 pages of supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 235132 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.09012">arXiv:1909.09012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.09012">pdf</a>, <a href="https://arxiv.org/format/1909.09012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Angular characterization of spin-orbit torque and thermoelectric effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Huanglin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Huanjian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+M">Meng Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.09012v2-abstract-short" style="display: inline;"> Arising from the interplay between charge, spin and orbital of electrons, spin-orbit torque (SOT) has attracted immense interest in the past decade. Despite vast progress, the existing quantification methods of SOT still have their respective restrictions on the magnetic anisotropy, the entanglement between SOT effective fields, and the artifacts from the thermal gradient and the planar Hall effec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09012v2-abstract-full').style.display = 'inline'; document.getElementById('1909.09012v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.09012v2-abstract-full" style="display: none;"> Arising from the interplay between charge, spin and orbital of electrons, spin-orbit torque (SOT) has attracted immense interest in the past decade. Despite vast progress, the existing quantification methods of SOT still have their respective restrictions on the magnetic anisotropy, the entanglement between SOT effective fields, and the artifacts from the thermal gradient and the planar Hall effect, etc. Thus, accurately characterizing SOT across diverse samples remains as a critical need. In this work, with the aim of removing the afore-mentioned restrictions, thus enabling the universal SOT quantification, we report the characterization of the sign and amplitude of SOT by angular measurements. We first validate the applicability of our angular characterization in a perpendicularly magnetized Pt/Co-Ni heterostructure by showing excellent agreements to the results of conventional quantification methods. Remarkably, the thermoelectric effects, i.e., the anomalous Nernst effect (ANE) arising from the temperature gradient can be self-consistently disentangled and quantified from the field dependence of the angular characterization. The superiority of this angular characterization has been further demonstrated in a Cu/CoTb/Cu sample with large ANE but negligible SOT, and in a Pt/Co-Ni sample with weak perpendicular magnetic anisotropy (PMA), for which the conventional quantification methods are not applicable and even yield fatal error. By providing a comprehensive and versatile way to characterize SOT and thermoelectric effects in diverse heterostructures, our results pave the important foundation for the spin-orbitronic study as well as the interdisciplinary research of thermal spintronic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09012v2-abstract-full').style.display = 'none'; document.getElementById('1909.09012v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07066">arXiv:1909.07066</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.07066">pdf</a>, <a href="https://arxiv.org/ps/1909.07066">ps</a>, <a href="https://arxiv.org/format/1909.07066">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Modular decomposition of Markov chain: detecting hierarchical organization of pervasive communities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Okamoto%2C+H">Hiroshi Okamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xu-le Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07066v3-abstract-short" style="display: inline;"> In network science, a group of nodes connected with each other at higher probability than with those outside the group is referred to as a community. From the perspective that individual communities are associated with functional modules constituting complex systems described by networks, discovering communities is primarily important for understanding overall functions of these systems. Much effo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07066v3-abstract-full').style.display = 'inline'; document.getElementById('1909.07066v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07066v3-abstract-full" style="display: none;"> In network science, a group of nodes connected with each other at higher probability than with those outside the group is referred to as a community. From the perspective that individual communities are associated with functional modules constituting complex systems described by networks, discovering communities is primarily important for understanding overall functions of these systems. Much effort has been devoted to developing methods to detect communities in networks since the early days of network science. Nevertheless, the method to reveal key characteristics of communities in real-world network remains to be established. Here we formulate decomposition of a random walk spreading over the entire network into local modules as proxy for communities. This formulation will reveal the pervasive structure of communities and their hierarchical organization, which are the hallmarks of real-world networks but are out of reach of most existing methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07066v3-abstract-full').style.display = 'none'; document.getElementById('1909.07066v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.03895">arXiv:1908.03895</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.03895">pdf</a>, <a href="https://arxiv.org/format/1908.03895">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.077403">10.1103/PhysRevLett.124.077403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature-induced band shift in ferromagnetic Weyl semimetal Co3Sn2S2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">Run Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">Liqin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Y">Yaomin Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Z">Zhiyu Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xianggang Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.03895v2-abstract-short" style="display: inline;"> The discovery of nonmagnetic Weyl semimetals (WSMs) in TaAs compounds has triggered lots of efforts in finding its magnetic counterpart. While the direct observation of the Weyl nodes and Fermi arcs in a magnetic candidate through angle-resolved photoemission spectroscopy is hindered by the complex magnetic domains. The transport features of magnetic WSMs, including negative magnetoresistivity and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03895v2-abstract-full').style.display = 'inline'; document.getElementById('1908.03895v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.03895v2-abstract-full" style="display: none;"> The discovery of nonmagnetic Weyl semimetals (WSMs) in TaAs compounds has triggered lots of efforts in finding its magnetic counterpart. While the direct observation of the Weyl nodes and Fermi arcs in a magnetic candidate through angle-resolved photoemission spectroscopy is hindered by the complex magnetic domains. The transport features of magnetic WSMs, including negative magnetoresistivity and anomalous Hall conductivity, are not conclusive since these are sensitive to extrinsic factors like defects and disorders in lattice or magnetic ordering. Here, we systematically study the temperature-dependent optical spectra of ferromagnetic Co$_3$Sn$_2$S$_2$ experimentally and simulated by first-principles calculations. The many-body correlation effect due to Co $3d$ electrons leads to the renormalization of bands by a factor about 1.33, which is moderate and the description within density functional theory is suitable. As the temperature drops down, the magnetic phase transition happens and the magnetization drives the band shift through exchange splitting. The optical spectra can well detect these changes, including the transitions sensitive and insensitive to the magnetization, and those from the bands around the Weyl nodes. The results strongly support that Co$_3$Sn$_2$S$_2$ is a magnetic WSM and the Weyl nodes can be tuned by magnetization with temperature change. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03895v2-abstract-full').style.display = 'none'; document.getElementById('1908.03895v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 077403 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.07468">arXiv:1906.07468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.07468">pdf</a>, <a href="https://arxiv.org/format/1906.07468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Topology with broken parity-time symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+L">Lei Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xingze Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kunkun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanders%2C+B+C">Barry C. Sanders</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+W">Wei Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+P">Peng Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.07468v1-abstract-short" style="display: inline;"> Topological edge states arise in parity-time ($\mathcal{PT}$)-symmetric non-unitary quantum dynamics but have so far only been discussed in the $\mathcal{PT}$-symmetry-unbroken regime. Here we report the experimental detection of robust topological edge states in one-dimensional photonic quantum walks with spontaneously broken $\mathcal{PT}$ symmetry, thus establishing the existence of topological&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.07468v1-abstract-full').style.display = 'inline'; document.getElementById('1906.07468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.07468v1-abstract-full" style="display: none;"> Topological edge states arise in parity-time ($\mathcal{PT}$)-symmetric non-unitary quantum dynamics but have so far only been discussed in the $\mathcal{PT}$-symmetry-unbroken regime. Here we report the experimental detection of robust topological edge states in one-dimensional photonic quantum walks with spontaneously broken $\mathcal{PT}$ symmetry, thus establishing the existence of topological phenomena therein. We theoretically prove and experimentally confirm that the global Berry phase in non-unitary quantum-walk dynamics unambiguously defines topological invariants of the system in both the $\mathcal{PT}$-symmetry-unbroken and broken regimes. As topological edge states exist in both $\mathcal{PT}$ unbroken and broken regimes, we reveal that topological phenomena are not driven by $\mathcal{PT}$ symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.07468v1-abstract-full').style.display = 'none'; document.getElementById('1906.07468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.01811">arXiv:1904.01811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.01811">pdf</a>, <a href="https://arxiv.org/ps/1904.01811">ps</a>, <a href="https://arxiv.org/format/1904.01811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.125136">10.1103/PhysRevB.100.125136 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of topological nodal-line semimetal in YbMnSb2 through optical spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Z">Ziyang Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+C">Congcong Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+Z">Zhiyu Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+B">Bing Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">Run Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Y">Yaomin Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xianggang Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.01811v1-abstract-short" style="display: inline;"> The optical properties of YbMnSb2 have been measured in a broad frequency range from room temperature down to 7 K. With decreasing temperature, a flat region develops in the optical conductivity spectra at about 300cm-1, which can not be described by the well-known Drude-Lorentz model. A frequency-independent component has to be introduced to model the measured optical conductivity. Our first-prin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01811v1-abstract-full').style.display = 'inline'; document.getElementById('1904.01811v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.01811v1-abstract-full" style="display: none;"> The optical properties of YbMnSb2 have been measured in a broad frequency range from room temperature down to 7 K. With decreasing temperature, a flat region develops in the optical conductivity spectra at about 300cm-1, which can not be described by the well-known Drude-Lorentz model. A frequency-independent component has to be introduced to model the measured optical conductivity. Our first-principles calculations show that YbMnSb2 possesses a Dirac nodal line near the Fermi level. A comparison between the measured optical properties and calculated electronic band structures suggests that the frequency-independent optical conductivity component arises from interband transitions near the Dirac nodal line, thus demonstrating that YbMnSb2 is a Dirac nodal line semimetal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01811v1-abstract-full').style.display = 'none'; document.getElementById('1904.01811v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 78-05 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 125136 (2019) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Qiu%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Qiu%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Qiu%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Qiu%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10