CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 206 results for author: <span class="mathjax">Jiang, W</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Jiang%2C+W">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Jiang, W"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Jiang%2C+W&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Jiang, W"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jiang%2C+W&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+W&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+W&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+W&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+W&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+W&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04606">arXiv:2411.04606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04606">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Colossal Dielectric Permittivity and Superparaelectricity in phenyl pyrimidine based liquid crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Panarin%2C+Y+P">Yuri P. Panarin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanhe Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yadav%2C+N">Neelam Yadav</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahai%2C+M">Mudit Sahai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Yumin Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+X">Xiangbing Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panarina%2C+O+E">O. E. Panarina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mehl%2C+G+H">Georg H. Mehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vij%2C+J+K">Jagdish K. Vij</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04606v1-abstract-short" style="display: inline;"> A set of polar rod-shaped liquid crystalline molecules with large dipole moments (mu &gt; 10.4-14.8 D), their molecular structures based on the ferroelectric nematic prototype DIO, are designed, synthesized, and investigated. When the penultimate fluoro-phenyl ring is replaced by phenylpyrimidine moiety, the molecular dipole moment increases from 9.4 D for DIO to 10.4 D for the new molecule and when&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04606v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04606v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04606v1-abstract-full" style="display: none;"> A set of polar rod-shaped liquid crystalline molecules with large dipole moments (mu &gt; 10.4-14.8 D), their molecular structures based on the ferroelectric nematic prototype DIO, are designed, synthesized, and investigated. When the penultimate fluoro-phenyl ring is replaced by phenylpyrimidine moiety, the molecular dipole moment increases from 9.4 D for DIO to 10.4 D for the new molecule and when the terminal fluoro-group is additionally replaced by the nitrile group, the dipole moment rises to 14.8 D. Such a replacement enhances not only the net dipole moment of the molecule, but it also reduces the steric hindrance to rotations of the moieties within the molecule. The superparaelectric nematic (N) and smectic A (SmA) phases of these compounds are found to exhibit colossal dielectric permittivity, obtained both from dielectric spectroscopy, and capacitance measurements using a simple capacitor divider circuit. The electric polarization is measured vs. the field (E). However, no hysteresis in P vs. E is found in the nematic and smectic A phases. The colossal dielectric permittivity persists over the entire fluidic range. The experimental results lead us to conclude that these materials belong to the class of superparaelectrics (SPE) rather than to ferroelectrics due to the absence hysteresis and linear P vs E dependence. The synthesized organic materials are the first fluids for which superparaelectricity is discovered and furthermore these show great potential for the applications in supercapacitors used in storing energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04606v1-abstract-full').style.display = 'none'; document.getElementById('2411.04606v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 7 figures, 1 table. Submited to JMC C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20009">arXiv:2409.20009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20009">pdf</a>, <a href="https://arxiv.org/format/2409.20009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> High-efficiency quantum Monte Carlo algorithm for extracting entanglement entropy in interacting fermion systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Weilun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+G">Gaopei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+B">Bin-Bin Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+H">Heng Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+Z">Zheng Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20009v2-abstract-short" style="display: inline;"> The entanglement entropy probing novel phases and phase transitions numerically via quantum Monte Carlo has made great achievements in large-scale interacting spin/boson systems. In contrast, the numerical exploration in interacting fermion systems is rare, even though fermion systems attract more attentions in condensed matter. The fundamental restrictions is that the computational cost of fermio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20009v2-abstract-full').style.display = 'inline'; document.getElementById('2409.20009v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20009v2-abstract-full" style="display: none;"> The entanglement entropy probing novel phases and phase transitions numerically via quantum Monte Carlo has made great achievements in large-scale interacting spin/boson systems. In contrast, the numerical exploration in interacting fermion systems is rare, even though fermion systems attract more attentions in condensed matter. The fundamental restrictions is that the computational cost of fermion quantum Monte Carlo ($\sim 尾N^3$) is much higher than that of spin/boson ($\sim 尾N$). To tackle the problem cumbersome existent methods of eantanglement entropy calculation, we propose a fermionic quantum Monte Carlo algorithm based on the incremental technique along physical parameters, which greatly improves the efficiency of extracting entanglement entropy. Taking a two-dimensional square lattice Hubbard model as an example, we demonstrate the effectiveness of the algorithm and show the high computation precision. In this simulation, the calculated scaling behavior of the entanglement entropy elucidates the different phases of the Fermi surface and Goldstone modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20009v2-abstract-full').style.display = 'none'; document.getElementById('2409.20009v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 7 pages, 4 figures. Supplementary Material: 6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07432">arXiv:2409.07432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07432">pdf</a>, <a href="https://arxiv.org/format/2409.07432">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ab initio Green&#39;s functions approach for homogeneous nuclear matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Marino%2C+F">Francesco Marino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbieri%2C+C">Carlo Barbieri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Col%C3%B2%2C+G">Gianluca Col貌</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Weiguang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novario%2C+S+J">Samuel J. Novario</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07432v1-abstract-short" style="display: inline;"> Homogeneous nuclear matter is investigated using the \textit{ab initio} Self-consistent Green&#39;s function (SCGF) approach with nuclear interactions based on chiral effective field theory. The employed method, which combines the state-of-the-art algebraic diagrammatic construction approximation at third order with Gorkov correlations, is capable of computing both the equation of state (EOS) and sing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07432v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07432v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07432v1-abstract-full" style="display: none;"> Homogeneous nuclear matter is investigated using the \textit{ab initio} Self-consistent Green&#39;s function (SCGF) approach with nuclear interactions based on chiral effective field theory. The employed method, which combines the state-of-the-art algebraic diagrammatic construction approximation at third order with Gorkov correlations, is capable of computing both the equation of state (EOS) and single-particle properties of nuclear matter. The EOS calculated with our approach and coupled-cluster theory are shown to agree very well. The one-nucleon spectral functions and the momentum distributions are discussed to gain insights into the dynamics of the interacting nuclear matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07432v1-abstract-full').style.display = 'none'; document.getElementById('2409.07432v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceeding of &#34;10th International Conference on Quarks and Nuclear Physics&#34; (QNP2024), 8-12 July, 2024, Barcelona, Spain. Submitted to Proceeding of Science (PoS)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03468">arXiv:2409.03468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03468">pdf</a>, <a href="https://arxiv.org/ps/2409.03468">ps</a>, <a href="https://arxiv.org/format/2409.03468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dynamics of Small Solid Particles on Substrates of Arbitrary Topography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Q">Quan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Srolovitz%2C+D+J">David J. Srolovitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tiezheng Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+W">Weizhu Bao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03468v1-abstract-short" style="display: inline;"> We study the dynamics of a small solid particle arising from the dewetting of a thin film on a curved substrate driven by capillarity, where mass transport is controlled by surface diffusion. We consider the case when the size of the deposited particle is much smaller than the local radius of curvature of the substrate surface. The application of the Onsager variational principle leads to a reduce&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03468v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03468v1-abstract-full" style="display: none;"> We study the dynamics of a small solid particle arising from the dewetting of a thin film on a curved substrate driven by capillarity, where mass transport is controlled by surface diffusion. We consider the case when the size of the deposited particle is much smaller than the local radius of curvature of the substrate surface. The application of the Onsager variational principle leads to a reduced-order model for the dynamic behaviour of particles on arbitrarily curved substrates. We demonstrate that particles move toward region of the substrate surface with lower mean curvature with a determined velocity. In particular, the velocity is proportional to the substrate curvature gradient and inversely proportional to the size of the particle, with a coefficient that depends on material properties that include the surface energy, surface diffusivity, density, and Young&#39;s (wetting) angle. The reduced model is validated by comparing with numerical results for the full, sharp-interface model in both two and three dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03468v1-abstract-full').style.display = 'none'; document.getElementById('2409.03468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17098">arXiv:2407.17098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17098">pdf</a>, <a href="https://arxiv.org/format/2407.17098">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Diagrammatic ab initio methods for infinite nuclear matter with modern chiral interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Marino%2C+F">Francesco Marino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Weiguang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novario%2C+S+J">Samuel J. Novario</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17098v2-abstract-short" style="display: inline;"> A comparative study of the equation of state for pure neutron matter and symmetric nuclear matter is presented using three ab initio methods based on diagrammatic expansions: coupled-cluster theory, self-consistent Green&#39;s functions, and many-body perturbation theory. We critically evaluate these methods by employing different chiral potentials at next-to-next-to-leading-order -- all of which incl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17098v2-abstract-full').style.display = 'inline'; document.getElementById('2407.17098v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17098v2-abstract-full" style="display: none;"> A comparative study of the equation of state for pure neutron matter and symmetric nuclear matter is presented using three ab initio methods based on diagrammatic expansions: coupled-cluster theory, self-consistent Green&#39;s functions, and many-body perturbation theory. We critically evaluate these methods by employing different chiral potentials at next-to-next-to-leading-order -- all of which include both two- and three-nucleon contributions -- and by exploring various many-body truncations. Our investigation yields highly precise results for pure neutron matter and robust predictions for symmetric nuclear matter, particularly with soft interactions. Moreover, the new calculations demonstrate that the $\rm{ NNLO_{sat} }(450)$ and $螖\rm{NNLO_{go}}(394)$ potentials are consistent with the empirical constraints on the saturation point of symmetric nuclear matter. Additionally, this benchmark study reveals that diagrammatic expansions with similar architectures lead to consistent many-body correlations, even when applied across different methods. This consistency underscores the robustness of the diagrammatic approach in capturing the essential physics of nucleonic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17098v2-abstract-full').style.display = 'none'; document.getElementById('2407.17098v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01686">arXiv:2406.01686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.01686">pdf</a>, <a href="https://arxiv.org/format/2406.01686">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Prethermal Time-Crystalline Corner Modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+S">Si Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+D">Dong Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenjie Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+D">Dong-Ling Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Machado%2C+F">Francisco Machado</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01686v1-abstract-short" style="display: inline;"> We demonstrate the existence of prethermal discrete time crystals whose sub-harmonic response is entirely localized to zero-dimensional corner modes. Within the exponentially long prethermal regime, we show that the robustness of these corner modes arises from two related, yet distinct mechanisms: the presence of a higher-order symmetry-protected topological phase in the effective Hamiltonian, or&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01686v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01686v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01686v1-abstract-full" style="display: none;"> We demonstrate the existence of prethermal discrete time crystals whose sub-harmonic response is entirely localized to zero-dimensional corner modes. Within the exponentially long prethermal regime, we show that the robustness of these corner modes arises from two related, yet distinct mechanisms: the presence of a higher-order symmetry-protected topological phase in the effective Hamiltonian, or the emergence of a dynamical constraint that prevents the decay of the corner mode. While the first mechanism ensures the stability of the sub-harmonic response throughout the entirety of the prethermal regime, it is restricted to initial states in the ground state manifold of the effective Hamiltonian. By contrast, the second mechanism enables the observation of the prethermal time-crystalline order for arbitrary initial states, albeit with a time scale that is not only determined by the frequency of the drive, but also the relative energy scale across the system&#39;s sublattices. We characterize these two mechanisms by simulating the dynamics of a periodically driven two-dimensional spin model, and discuss natural extensions of our model to all other dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01686v1-abstract-full').style.display = 'none'; document.getElementById('2406.01686v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7+8 pages, 3+5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00330">arXiv:2406.00330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.00330">pdf</a>, <a href="https://arxiv.org/format/2406.00330">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetic ground state of monolayer CeI$_{2}$: occupation matrix control and DFT+U calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+Y">Yue-Fei Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shujing Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xinlong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qiuhao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+F">Fawei Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Z">Zhen-Guo Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Ping Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00330v1-abstract-short" style="display: inline;"> The magnetic ground state is crucial for the applications of the two-dimension magnets as it decides fundamental magnetic properties of the material, such as magnetic order, magnetic transition temperature, and low-energy excitation of the spin waves. However, the simulations for magnetism of local-electron systems are challenging due to the existence of metastable states. In this study, occupatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00330v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00330v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00330v1-abstract-full" style="display: none;"> The magnetic ground state is crucial for the applications of the two-dimension magnets as it decides fundamental magnetic properties of the material, such as magnetic order, magnetic transition temperature, and low-energy excitation of the spin waves. However, the simulations for magnetism of local-electron systems are challenging due to the existence of metastable states. In this study, occupation matrix control (OMC) and density functional theory plus Hubbard $U$ calculations are applied to investigate the magnetic ground state of monolayer CeI$_{2}$. Following the predicted ferrimagnetic (FM) order, the FM ground state and the FM metastable states are identified and found to have different values of the magnetic parameters. Based on the calculated magnetic parameters of the FM ground state, the Curie temperature is estimated to be $128$ K for monolayer CeI$_{2}$. When spin-orbit coupling (SOC) is considered,the FM ground state is further confirmed to contain both off-plane and in-plane components of magnetization. SOC is shown to be essential for reasonably describing not only magnetic anisotropy but also local electronic orbital state of monolayer CeI$_{2}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00330v1-abstract-full').style.display = 'none'; document.getElementById('2406.00330v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10753">arXiv:2405.10753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.10753">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological spin-torque diode effect in skyrmion-based magnetic tunnel junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+B">Bin Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tomasello%2C+R">Riccardo Tomasello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yuxuan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+A">Aitian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shuhui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Baoshun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Darwin%2C+E">Emily Darwin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carpentieri%2C+M">Mario Carpentieri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanjun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xixiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finocchio%2C+G">Giovanni Finocchio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Z">Zhongming Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10753v1-abstract-short" style="display: inline;"> The growing market and massive use of Internet of Things nodes is placing unprecedented demands of energy efficient hardware for edge computing and microwave devices. In particular, magnetic tunnel junctions (MTJs), as main building blocks of spintronic microwave technology, can offer a path for the development of compact and high-performance microwave detectors. On the other hand, the fascinating&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10753v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10753v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10753v1-abstract-full" style="display: none;"> The growing market and massive use of Internet of Things nodes is placing unprecedented demands of energy efficient hardware for edge computing and microwave devices. In particular, magnetic tunnel junctions (MTJs), as main building blocks of spintronic microwave technology, can offer a path for the development of compact and high-performance microwave detectors. On the other hand, the fascinating field of skyrmionics is bridging together concepts from topology and spintronics. Here, we show the proof of concept of a topological spin-torque diode realized with an MTJ on top of a skyrmionic material at room temperature and for a wide region of applied fields, including the zero-field case. Our spin torque diode electrical measurements show the electrical excitation of a skyrmion resonant mode with frequencies near 4 GHz and a selectivity one order of magnitude smaller than the uniform modes excited in the same device. Micromagnetic simulations identify these dynamics with the excitation of the breathing mode and point out the role of thickness dependent magnetic parameters (magnetic anisotropy field and Dzyaloshinkii Moriya interaction) in both stabilizing and exciting the magnetic skyrmions. This work marks a milestone for the development of topological spin-torque diodes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10753v1-abstract-full').style.display = 'none'; document.getElementById('2405.10753v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08686">arXiv:2405.08686</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.08686">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic Quantum Anomalous Hall Effect Modulated by Spin Flips and Flops </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lian%2C+Z">Zichen Lian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yongchao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yongqian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Y">Yang Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+Z">Zehao Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L">Liangcai Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaoxin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+B">Bohan Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuetan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanjun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinsong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yayu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08686v1-abstract-short" style="display: inline;"> The interplay between nontrivial band topology and layered antiferromagnetism in MnBi2Te4 has opened up a new avenue for exploring topological phases of matter. Representative examples include the quantum anomalous Hall effect and axion insulator state observed in odd and even number layers of MnBi2Te4, when the top and bottom surfaces have parallel and antiparallel spin alignments respectively. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08686v1-abstract-full').style.display = 'inline'; document.getElementById('2405.08686v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08686v1-abstract-full" style="display: none;"> The interplay between nontrivial band topology and layered antiferromagnetism in MnBi2Te4 has opened up a new avenue for exploring topological phases of matter. Representative examples include the quantum anomalous Hall effect and axion insulator state observed in odd and even number layers of MnBi2Te4, when the top and bottom surfaces have parallel and antiparallel spin alignments respectively. The rich and complex spin dynamics associated with the van der Waals antiferromagnetic order is expected to generate novel topological phases and phase transitions that are unique to MnBi2Te4. Here we fabricate a device of 7-septuple-layer MnBi2Te4 covered with AlOx capping layer, which enables the investigation of antiferromagnetic quantum anomalous Hall effect over wide parameter spaces. By tuning the gate voltage and perpendicular magnetic field, we uncover a cascade of quantum phase transitions that can be attributed to the influence of spin configurations on charge transport. Furthermore, we find that an in-plane magnetic field enhances both the coercive field and exchange gap of the surface state, in sharp contrast to that in ferromagnetic quantum anomalous Hall state. We propose that these peculiar features arise from the spin flip and flop transitions inherent to van der Waals antiferromagnet. The versatile tunability of the quantum anomalous Hall effect in MnBi2Te4 paves the way for potential applications in topological antiferromagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08686v1-abstract-full').style.display = 'none'; document.getElementById('2405.08686v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.08677">arXiv:2405.08677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.08677">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Towards the Quantized Anomalous Hall effect in AlO$_x$-capped MnBi$_2$Te$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yongqian Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+B">Bohan Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yongchao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lian%2C+Z">Zicheng Lian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yaoxin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L">Liangcai Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Z">Zhiting Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanjun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinsong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yayu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.08677v2-abstract-short" style="display: inline;"> The quantum anomalous Hall effect in layered antiferromagnet MnBi$_2$Te$_4$ harbors a rich interplay between magnetism and topology, holding a significant promise for low-power electronic devices and topological antiferromagnetic spintronics. In recent years, MnBi$_2$Te$_4$ has garnered considerable attention as the only known material to exhibit the antiferromagnetic quantum anomalous Hall effect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08677v2-abstract-full').style.display = 'inline'; document.getElementById('2405.08677v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.08677v2-abstract-full" style="display: none;"> The quantum anomalous Hall effect in layered antiferromagnet MnBi$_2$Te$_4$ harbors a rich interplay between magnetism and topology, holding a significant promise for low-power electronic devices and topological antiferromagnetic spintronics. In recent years, MnBi$_2$Te$_4$ has garnered considerable attention as the only known material to exhibit the antiferromagnetic quantum anomalous Hall effect. However, this field faces significant challenges as realizing quantized transport at zero magnetic fields depends critically on fabricating high-quality device. In this article, we address the detrimental influences of fabrication on MnBi$_2$Te$_4$ by simply depositing an AlO$_x$ thin layer on the surface prior to fabrications. Optical contrast and magnetotransport measurements on over 50 samples demonstrate that AlO$_x$ can effectively preserve the pristine state of the samples and significantly enhance the anomalous Hall effect towards quantization. Scaling analysis reveals the Berry curvature dominated mechanism of the anomalous Hall effect at various magnetic configurations. By adjusting the gate voltage, we uncover a gate independent antiferromagnetism in MnBi$_2$Te$_4$. Our experiment not only pave the way for fabricating high-quality transport devices but also advance the exploration of exotic quantum physics in 2D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.08677v2-abstract-full').style.display = 'none'; document.getElementById('2405.08677v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02831">arXiv:2405.02831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.02831">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Nonvolatile optical control of interlayer stacking order in 1T-TaS2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junde Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+P">Pei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Liu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sung-Hoon Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+M">Mojun Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+F">Famin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jierui Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+B">Bei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Mingzhe Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuchong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Z">Zhaoyang Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+M">Mengxue Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Huaixin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jianqi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yun%2C+C">Chenxia Yun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+S">Sheng Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tian Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">Xun Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02831v1-abstract-short" style="display: inline;"> Nonvolatile optical manipulation of material properties on demand is a highly sought-after feature in the advancement of future optoelectronic applications. While the discovery of such metastable transition in various materials holds good promise for achieving this goal, their practical implementation is still in the nascent stage. Here, we unravel the nature of the ultrafast laser-induced hidden&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02831v1-abstract-full').style.display = 'inline'; document.getElementById('2405.02831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02831v1-abstract-full" style="display: none;"> Nonvolatile optical manipulation of material properties on demand is a highly sought-after feature in the advancement of future optoelectronic applications. While the discovery of such metastable transition in various materials holds good promise for achieving this goal, their practical implementation is still in the nascent stage. Here, we unravel the nature of the ultrafast laser-induced hidden state in 1T-TaS2 by systematically characterizing the electronic structure evolution throughout the reversible transition cycle. We identify it as a mixed-stacking state involving two similarly low-energy interlayer orders, which is manifested as the charge density wave phase disruption. Furthermore, our comparative experiments utilizing the single-pulse writing, pulse-train erasing and pulse-pair control explicitly reveal the distinct mechanism of the bidirectional transformations -- the ultrafast formation of the hidden state is initiated by a coherent phonon which triggers a competition of interlayer stacking orders, while its recovery to the initial state is governed by the progressive domain coarsening. Our work highlights the deterministic role of the competing interlayer orders in the nonvolatile phase transition in the layered material 1T-TaS2, and promises the coherent control of the phase transition and switching speed. More importantly, these results establish all-optical engineering of stacking orders in low-dimensional materials as a viable strategy for achieving desirable nonvolatile electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02831v1-abstract-full').style.display = 'none'; document.getElementById('2405.02831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09283">arXiv:2403.09283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09283">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwae127">10.1093/nsr/nwae127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of quantum oscillations near the Mott-Ioffe-Regel limit in CaAs3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+M">Minhao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinglei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wenbin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shichao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenxiang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joseph%2C+N+B">Nesta Benno Joseph</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L">Liangcai Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mou%2C+Y">Yicheng Mou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yunkun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leng%2C+P">Pengliang Leng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+L">Li Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suslov%2C+A">Alexey Suslov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wyzula%2C+J">Jan Wyzula</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlita%2C+M">Milan Orlita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+F">Fengfeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Narayan%2C+A">Awadhesh Narayan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+D">Dong Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Jinsheng Wen</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09283v1-abstract-short" style="display: inline;"> The Mott-Ioffe-Regel limit sets the lower bound of carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of quasiparticle scattering rate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09283v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09283v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09283v1-abstract-full" style="display: none;"> The Mott-Ioffe-Regel limit sets the lower bound of carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of quasiparticle scattering rate such as linear-in-temperature resistivity, while the quasiparticle coherence phenomena in this regime are much less explored due to the short mean free path at the diffusive bound. Here we report the observation of quantum oscillations from Landau quantization near the Mott-Ioffe-Regel limit in CaAs3. Despite the insulator-like temperature dependence of resistivity, CaAs3 presents giant magnetoresistance and prominent Shubnikov-de Haas oscillations from Fermi surfaces, indicating highly coherent band transport. In contrast, the quantum oscillation is absent in the magnetic torque. The quasiparticle effective mass increases systematically with magnetic fields, manifesting a much larger value than the expectation given by magneto-infrared spectroscopy. It suggests a strong many-body renormalization effect near Fermi surface. We find that these unconventional behaviors may be explained by the interplay between the mobility edge and the van Hove singularity, which results in the formation of coherent cyclotron orbits emerging at the diffusive bound. Our results call for further study on the electron correlation effect of the van Hove singularity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09283v1-abstract-full').style.display = 'none'; document.getElementById('2403.09283v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review, nwae127 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03043">arXiv:2403.03043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03043">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Orbital torque switching in perpendicularly magnetized materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yuhe Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiali Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+C">Chang Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shuai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+T">Ting Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+W">Wensi Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Cheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+L">Lujun Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+X">Xuepeng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yue Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenhong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yong Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03043v1-abstract-short" style="display: inline;"> The orbital Hall effect in light materials has attracted considerable attention for developing novel orbitronic devices. Here we investigate the orbital torque efficiency and demonstrate the switching of the perpendicularly magnetized materials through the orbital Hall material (OHM), i.e., Zirconium (Zr). The orbital torque efficiency of approximately 0.78 is achieved in the Zr OHM with the perpe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03043v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03043v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03043v1-abstract-full" style="display: none;"> The orbital Hall effect in light materials has attracted considerable attention for developing novel orbitronic devices. Here we investigate the orbital torque efficiency and demonstrate the switching of the perpendicularly magnetized materials through the orbital Hall material (OHM), i.e., Zirconium (Zr). The orbital torque efficiency of approximately 0.78 is achieved in the Zr OHM with the perpendicularly magnetized [Co/Pt]3 sample, which significantly surpasses that of the perpendicularly magnetized CoFeB/Gd/CoFeB sample (approximately 0.04). Such notable difference is attributed to the different spin-orbit correlation strength between the [Co/Pt]3 sample and the CoFeB/Gd/CoFeB sample, which has been confirmed through the theoretical calculations. Furthermore, the full magnetization switching of the [Co/Pt]3 sample with a switching current density of approximately 2.6x106 A/cm2 has been realized through Zr, which even outperforms that of the W spin Hall material. Our finding provides a guideline to understand orbital torque efficiency and paves the way to develop energy-efficient orbitronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03043v1-abstract-full').style.display = 'none'; document.getElementById('2403.03043v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01970">arXiv:2403.01970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01970">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Calorimetric evidence for the existence of an intermediate phase between the ferroelectric nematic phase and the nematic phase in the liquid crystal RM734 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Thoen%2C+J">Jan Thoen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cordoyiannis%2C+G">George Cordoyiannis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Korblova%2C+E">Eva Korblova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walba%2C+D+M">David M. Walba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+N+A">Noel A. Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanhe Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mehl%2C+G+H">Georg H. Mehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glorieux%2C+C">Christ Glorieux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01970v1-abstract-short" style="display: inline;"> The idea that rod-like molecules possessing an electric dipole moment could exhibit a ferroelectric nematic phase was suggested more than a century ago. However, only recently such a phase has been reported for two quite different liquid crystals: RM734 (4-[(4-nitrophenoxy)carbonyl)]phenyl 2,4-dimethoxybenzoate) and DIO (2.3&#39;,4&#39;,5&#39;-tetrafluoro[1,1&#39;-biphenyl]-4-yl 2.6-difluoro-4-(5-propyl-1,3-dioxa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01970v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01970v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01970v1-abstract-full" style="display: none;"> The idea that rod-like molecules possessing an electric dipole moment could exhibit a ferroelectric nematic phase was suggested more than a century ago. However, only recently such a phase has been reported for two quite different liquid crystals: RM734 (4-[(4-nitrophenoxy)carbonyl)]phenyl 2,4-dimethoxybenzoate) and DIO (2.3&#39;,4&#39;,5&#39;-tetrafluoro[1,1&#39;-biphenyl]-4-yl 2.6-difluoro-4-(5-propyl-1,3-dioxan-2-yl) benzoate). For RM734 a direct ferroelectric nematic (NF) to classical nematic N transition was reported, whereas for DIO an intermediate phase Nx was discovered between the NF and the N phases. Here we present high-resolution calorimetric evidence that an intermediate Nx phase also exists in RM734 along a narrow temperature range between the NF and the N phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01970v1-abstract-full').style.display = 'none'; document.getElementById('2403.01970v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.07730">arXiv:2402.07730</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.07730">pdf</a>, <a href="https://arxiv.org/format/2402.07730">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Continuum of spin excitations in an ordered magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+J">Jieming Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Le Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenrui Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+H">Han Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+N">Nan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tiantian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kofu%2C+M">Maiko Kofu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D">Dehong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Wei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mei%2C+J">Jia-Wei Mei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhentao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Liusuo Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.07730v1-abstract-short" style="display: inline;"> Continuum of spin excitations observed in inelastic neutron scattering experiments are often considered as a strong evidence of quantum spin liquid formation. When quantum spin liquid is indeed the ground state of a disorder-free magnetic compound, the elementary excitation is no longer the conventional spin waves (magnons). Instead, the magnons fractionalize into spinons, leaving only a two-spino&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07730v1-abstract-full').style.display = 'inline'; document.getElementById('2402.07730v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.07730v1-abstract-full" style="display: none;"> Continuum of spin excitations observed in inelastic neutron scattering experiments are often considered as a strong evidence of quantum spin liquid formation. When quantum spin liquid is indeed the ground state of a disorder-free magnetic compound, the elementary excitation is no longer the conventional spin waves (magnons). Instead, the magnons fractionalize into spinons, leaving only a two-spinon continuum detectable in inelastic neutron scattering experiments. For a clean ordered antiferromagnet, it was unclear if we can observe a continuous spectrum similar to the ones in a quantum spin liquid state. Here we show that the magnetically ordered state in Na$_2$BaCo(PO$_4$)$_2$ is able to host a spin excitation continuum induced by strong quantum fluctuations. Thus, a second thought is necessary when concluding such continuum as signature of quantum spin liquid in new material explorations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07730v1-abstract-full').style.display = 'none'; document.getElementById('2402.07730v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages,9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04387">arXiv:2402.04387</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04387">pdf</a>, <a href="https://arxiv.org/format/2402.04387">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Giant piezoelectricity in group IV monochalcogenides with ferroelectric AA layer stacking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Seungjun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Hyeong-Ryul Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kwon%2C+Y">Young-Kyun Kwon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Low%2C+T">Tony Low</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04387v1-abstract-short" style="display: inline;"> The piezoelectricity of group IV monochalcogenides (MXs, with M = Ge, Sn and X = S, Se) has attracted much attention due to their substantially higher piezoelectric coefficients compared to other 2D materials. However, with increasing layer number, their piezoelectricity rapidly disappears due to the antiferroelectric stacking order, severely limiting their practical applications. Using first-prin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04387v1-abstract-full').style.display = 'inline'; document.getElementById('2402.04387v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04387v1-abstract-full" style="display: none;"> The piezoelectricity of group IV monochalcogenides (MXs, with M = Ge, Sn and X = S, Se) has attracted much attention due to their substantially higher piezoelectric coefficients compared to other 2D materials. However, with increasing layer number, their piezoelectricity rapidly disappears due to the antiferroelectric stacking order, severely limiting their practical applications. Using first-principles calculations, we investigated the piezoelectricity of MXs with the ferroelectric AA stacking configuration, which has recently been stabilized in experiments. We found that AA-stacked MXs have a ferroelectric ground state with the smallest lattice constant among other stacking configurations, resulting in a giant piezoelectric coefficient, which is the first demonstration of a strategy where the piezoelectric coefficients can increase with the number of layers. This can be attributed to a strong negative correlation between the lattice constant along the armchair direction and the piezoelectric coefficient, and spontaneous compressive strain stabilized in ferroelectric AA stacking configuration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04387v1-abstract-full').style.display = 'none'; document.getElementById('2402.04387v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages and 5 figures for main manuscript. 9pages and 3 figures for SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04333">arXiv:2401.04333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04333">pdf</a>, <a href="https://arxiv.org/format/2401.04333">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53077-9">10.1038/s41467-024-53077-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-lived topological time-crystalline order on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenjie Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04333v1-abstract-short" style="display: inline;"> Topologically ordered phases of matter elude Landau&#39;s symmetry-breaking theory, featuring a variety of intriguing properties such as long-range entanglement and intrinsic robustness against local perturbations. Their extension to periodically driven systems gives rise to exotic new phenomena that are forbidden in thermal equilibrium. Here, we report the observation of signatures of such a phenomen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04333v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04333v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04333v1-abstract-full" style="display: none;"> Topologically ordered phases of matter elude Landau&#39;s symmetry-breaking theory, featuring a variety of intriguing properties such as long-range entanglement and intrinsic robustness against local perturbations. Their extension to periodically driven systems gives rise to exotic new phenomena that are forbidden in thermal equilibrium. Here, we report the observation of signatures of such a phenomenon -- a prethermal topologically ordered time crystal -- with programmable superconducting qubits arranged on a square lattice. By periodically driving the superconducting qubits with a surface-code Hamiltonian, we observe discrete time-translation symmetry breaking dynamics that is only manifested in the subharmonic temporal response of nonlocal logical operators. We further connect the observed dynamics to the underlying topological order by measuring a nonzero topological entanglement entropy and studying its subsequent dynamics. Our results demonstrate the potential to explore exotic topologically ordered nonequilibrium phases of matter with noisy intermediate-scale quantum processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04333v1-abstract-full').style.display = 'none'; document.getElementById('2401.04333v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages (main text), 16 pages (supplementary information)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15492">arXiv:2312.15492</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15492">pdf</a>, <a href="https://arxiv.org/format/2312.15492">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> DPA-2: a large atomic model as a multi-task learner </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Duo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinzijian Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiangyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chengqian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+C">Chun Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bi%2C+H">Hangrui Bi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Yiming Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+X">Xuejian Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+A">Anyang Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jiameng Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bowen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+Y">Yifan Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+J">Jinzhe Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuzhi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Siyuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yifan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Junhan Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xinyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Shuo Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jianchuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xiaoshan Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanrun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jing Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yudi Yang</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15492v2-abstract-short" style="display: inline;"> The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct large-scale, long-duration simulations with the accuracy of ab initio electronic structure methods. However, the model generation process remains a bottleneck for large-scale applicatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15492v2-abstract-full').style.display = 'inline'; document.getElementById('2312.15492v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15492v2-abstract-full" style="display: none;"> The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct large-scale, long-duration simulations with the accuracy of ab initio electronic structure methods. However, the model generation process remains a bottleneck for large-scale applications. We propose a shift towards a model-centric ecosystem, wherein a large atomic model (LAM), pre-trained across multiple disciplines, can be efficiently fine-tuned and distilled for various downstream tasks, thereby establishing a new framework for molecular modeling. In this study, we introduce the DPA-2 architecture as a prototype for LAMs. Pre-trained on a diverse array of chemical and materials systems using a multi-task approach, DPA-2 demonstrates superior generalization capabilities across multiple downstream tasks compared to the traditional single-task pre-training and fine-tuning methodologies. Our approach sets the stage for the development and broad application of LAMs in molecular and materials simulation research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15492v2-abstract-full').style.display = 'none'; document.getElementById('2312.15492v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11548">arXiv:2311.11548</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.11548">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Comparison of PM-HIP to Forged SA508 Pressure Vessel Steel Under High-Dose Neutron Irradiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wen Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yangyang Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Y">Yu Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaqiao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frazer%2C+D">David Frazer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guillen%2C+D+P">Donna P. Guillen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gandy%2C+D+W">David W. Gandy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wharry%2C+J+P">Janelle P. Wharry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11548v1-abstract-short" style="display: inline;"> Powder metallurgy with hot isostatic pressing (PM-HIP) is an advanced manufacturing process that is envisioned to replace forging for heavy nuclear components, including the reactor pressure vessel (RPV). But PM-HIP products must at least demonstrate comparable irradiation tolerance than forgings in order to be qualified for nuclear applications. The objective of this study is to directly compare&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11548v1-abstract-full').style.display = 'inline'; document.getElementById('2311.11548v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11548v1-abstract-full" style="display: none;"> Powder metallurgy with hot isostatic pressing (PM-HIP) is an advanced manufacturing process that is envisioned to replace forging for heavy nuclear components, including the reactor pressure vessel (RPV). But PM-HIP products must at least demonstrate comparable irradiation tolerance than forgings in order to be qualified for nuclear applications. The objective of this study is to directly compare PM-HIP to forged SA508 Grade 3 Class 1 low-alloy RPV steel at two neutron irradiation conditions: ~0.5-1.0 displacements per atom (dpa) at ~270C and ~370C. PM-HIP SA508 experiences greater irradiation hardening and embrittlement (total elongation) than forged SA508. However, uniform elongation and approximate toughness are comparable across all irradiated materials, suggesting irradiated PM-HIP SA508 exhibits superior ductility at maximum load-bearing capacity. The irradiation hardening mechanism is linked to composition rather than fabrication method. Since PM-HIP SA508 has higher Mn and Ni concentration, it is more susceptible to irradiation-induced nucleation of Mn-Ni-Si-P (MNSP) nanoprecipitates and dislocation loops, which both contribute to hardening. Conversely, the forged material nucleates fewer MNSPs, causing dislocation loops to control irradiation hardening. These results show promise for the irradiation performance of PM-HIP SA508 and can motivate future nuclear code qualification of PM-HIP fabrication for RPVs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11548v1-abstract-full').style.display = 'none'; document.getElementById('2311.11548v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14180">arXiv:2310.14180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14180">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.195304">10.1103/PhysRevB.110.195304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Bloch-Siegert-type power-induced shift of two-photon electron paramagnetic resonances of charge-carrier spin states in an OLED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Atwood%2C+S+I">S. I. Atwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hosseinzadeh%2C+S">S. Hosseinzadeh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mkhitaryan%2C+V+V">V. V. Mkhitaryan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tennahewa%2C+T+H">T. H. Tennahewa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malissa%2C+H">H. Malissa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">W. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Darwish%2C+T+A">T. A. Darwish</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burn%2C+P+L">P. L. Burn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lupton%2C+J+M">J. M. Lupton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boehme%2C+C">C. Boehme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14180v1-abstract-short" style="display: inline;"> We present Floquet theory-based predictions and electrically detected magnetic resonance (EDMR) experiments scrutinizing the nature of two-photon magnetic resonance shifts of charge-carrier spin states in the perdeuterated $蟺$-conjugated polymer poly[2-methoxy-5-(2&#39;-ethylhexyloxy)-1,4-phenylene vinylene] (d-MEH-PPV) under strong magnetic resonant drive conditions (radiation amplitude $B_1$ ~ Zeema&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14180v1-abstract-full').style.display = 'inline'; document.getElementById('2310.14180v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14180v1-abstract-full" style="display: none;"> We present Floquet theory-based predictions and electrically detected magnetic resonance (EDMR) experiments scrutinizing the nature of two-photon magnetic resonance shifts of charge-carrier spin states in the perdeuterated $蟺$-conjugated polymer poly[2-methoxy-5-(2&#39;-ethylhexyloxy)-1,4-phenylene vinylene] (d-MEH-PPV) under strong magnetic resonant drive conditions (radiation amplitude $B_1$ ~ Zeeman field $B_0$). Numerical calculations show that the two-photon resonance shift with power is nearly drive-helicity independent. This is in contrast to the one-photon Bloch-Siegert shift that only occurs under non-circularly polarized strong drive conditions. We therefore treated the Floquet Hamiltonian analytically under arbitrary amplitudes of the co- and counter-rotating components of the radiation field to gain insight into the nature of the helicity dependence of multi-photon resonance shifts. In addition, we tested Floquet-theory predictions experimentally by comparing one-photon and two-photon charge-carrier spin resonance shifts observed through room-temperature EDMR experiments on d-MEH-PPV-based bipolar injection devices [i.e., organic light emitting diode structures (OLEDs)]. We found that under the experimental conditions of strong, linearly polarized drive, our observations consistently agree with theory, irrespective of the magnitude of $B_1$, and therefore underscore the robustness of Floquet theory in predicting nonlinear magnetic resonance behaviors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14180v1-abstract-full').style.display = 'none'; document.getElementById('2310.14180v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 195304 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05615">arXiv:2309.05615</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.05615">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Skyrmions in nanorings: a versatile platform for Skyrmionics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kechrakos%2C+D">Dimitris Kechrakos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puliafito%2C+V">Vito Puliafito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riveros%2C+A">Alejandro Riveros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiahao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanjun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carpentieri%2C+M">Mario Carpentieri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tomasello%2C+R">Riccardo Tomasello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finocchio%2C+G">Giovanni Finocchio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05615v1-abstract-short" style="display: inline;"> The dynamical properties of skyrmions can be exploited to build devices with new functionalities. Here, we first investigate a skyrmion-based ring-shaped device by means of micromagnetic simulations and Thiele equation. We subsequently show three applications scenarios: (1) a clock with tunable frequency that is biased with an electrical current having a radial spatial distribution, (2) an alterna&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05615v1-abstract-full').style.display = 'inline'; document.getElementById('2309.05615v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05615v1-abstract-full" style="display: none;"> The dynamical properties of skyrmions can be exploited to build devices with new functionalities. Here, we first investigate a skyrmion-based ring-shaped device by means of micromagnetic simulations and Thiele equation. We subsequently show three applications scenarios: (1) a clock with tunable frequency that is biased with an electrical current having a radial spatial distribution, (2) an alternator, where the skyrmion circular motion driven by an engineered anisotropy gradient is converted into an electrical signal, and (3) an energy harvester, where the skyrmion motion driven by a thermal gradient is converted into an electrical signal, thus providing a heat recovery operation. We also show how to precisely tune the frequency and amplitude of the output electrical signals by varying material parameters, geometrical parameters, number and velocity of skyrmions, and we further prove the correct device functionality under realistic conditions given by room temperature and internal material defects. Our results open a new route for the realization of energy efficient nanoscale clocks, generators, and energy harvesters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05615v1-abstract-full').style.display = 'none'; document.getElementById('2309.05615v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15869">arXiv:2308.15869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.15869">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity in the medium-entropy alloy TiVNbTa with a body-centered cubic structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+K">Kuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xunwu Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+R">Ruixin Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenrui Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+L">Lingyong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Longfu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Peifeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kangwang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+S">Shu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+T">Tao Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+D">DaoXin Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huixia Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15869v1-abstract-short" style="display: inline;"> Here we report the TiVNbTa medium-entropy alloy (MEA) superconductor with the mixed 3d - 5d elements synthesized by an arc-melting method. The TiVNbTa material has a body-centered cubic structure. The superconducting properties of TiVNbTa were studied by resistivity, magnetic susceptibility, and specific heat measurements. The experimental results show that the bulk superconducting phase transitio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15869v1-abstract-full').style.display = 'inline'; document.getElementById('2308.15869v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15869v1-abstract-full" style="display: none;"> Here we report the TiVNbTa medium-entropy alloy (MEA) superconductor with the mixed 3d - 5d elements synthesized by an arc-melting method. The TiVNbTa material has a body-centered cubic structure. The superconducting properties of TiVNbTa were studied by resistivity, magnetic susceptibility, and specific heat measurements. The experimental results show that the bulk superconducting phase transition temperature of TiVNbTa is about 4.65 K, and the upper and lower critical fields are 49.3(4) mT and 5.9(5) T, respectively, which indicates TiVNbTa is a type-II superconductor. First-principles calculations show that the d electrons of Ti, V, Nb, and Ta atoms play a significant role near the Fermi level. The results show TiVNbTa is a traditional s-wave superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15869v1-abstract-full').style.display = 'none'; document.getElementById('2308.15869v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J.Phys.Chem.C 2023,127,16211-16218 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07380">arXiv:2308.07380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.07380">pdf</a>, <a href="https://arxiv.org/format/2308.07380">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.156503">10.1103/PhysRevLett.132.156503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disorder Operator and R茅nyi Entanglement Entropy of Symmetric Mass Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+H">Zi Hong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Da+Liao%2C+Y">Yuan Da Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+G">Gaopei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+M">Menghan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jiarui Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Weilun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jian%2C+C">Chao-Ming Jian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=You%2C+Y">Yi-Zhuang You</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Assaad%2C+F+F">Fakher F. Assaad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Cenke Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07380v5-abstract-short" style="display: inline;"> In recent years a consensus has gradually been reached that the previously proposed deconfined quantum critical point (DQCP) for spin-1/2 systems, an archetypal example of quantum phase transition beyond the classic Landau&#39;s paradigm, actually does not correspond to a true unitary conformal field theory (CFT). In this work we carefully investigate another type of quantum phase transition supposedl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07380v5-abstract-full').style.display = 'inline'; document.getElementById('2308.07380v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07380v5-abstract-full" style="display: none;"> In recent years a consensus has gradually been reached that the previously proposed deconfined quantum critical point (DQCP) for spin-1/2 systems, an archetypal example of quantum phase transition beyond the classic Landau&#39;s paradigm, actually does not correspond to a true unitary conformal field theory (CFT). In this work we carefully investigate another type of quantum phase transition supposedly beyond the similar classic paradigm, the so called ``symmetric mass generation&#34; (SMG) transition proposed in recent years. We employ the sharp diagnosis including the scaling of disorder operator and R茅nyi entanglement entropy in large-scale lattice model quantum Monte Carlo simulations. Our results strongly suggest that the SMG transition is indeed an unconventional quantum phase transition and it should correspond to a true $(2+1)d$ unitary CFT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07380v5-abstract-full').style.display = 'none'; document.getElementById('2308.07380v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevLett.132.156503(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11331">arXiv:2307.11331</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.11331">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic Interlayer Force Field for Group-VI Transition Metal Dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenwu Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sofer%2C+R">Reut Sofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+X">Xiang Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tkatchenko%2C+A">Alexandre Tkatchenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kronik%2C+L">Leeor Kronik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ouyang%2C+W">Wengen Ouyang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Urbakh%2C+M">Michael Urbakh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hod%2C+O">Oded Hod</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11331v2-abstract-short" style="display: inline;"> An anisotropic interlayer force field that describes the interlayer interactions in homogeneous and heterogeneous interfaces of group-VI transition metal dichalcogenides (MX2 where M = Mo, W and X = S, Se) is presented. The force field is benchmarked against density functional theory calculations for bilayer systems within the Heyd-Scuseria-Ernzerhof hybrid density functional approximation, augmen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11331v2-abstract-full').style.display = 'inline'; document.getElementById('2307.11331v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11331v2-abstract-full" style="display: none;"> An anisotropic interlayer force field that describes the interlayer interactions in homogeneous and heterogeneous interfaces of group-VI transition metal dichalcogenides (MX2 where M = Mo, W and X = S, Se) is presented. The force field is benchmarked against density functional theory calculations for bilayer systems within the Heyd-Scuseria-Ernzerhof hybrid density functional approximation, augmented by a nonlocal many-body dispersion treatment of long-range correlation. The parametrization yields good agreement with reference calculations of binding energy curves and sliding potential energy surfaces. It is found to be transferable to TMD junctions outside the training set that contain the same atom types. Calculated bulk moduli agree with most previous dispersion corrected DFT predictions, which underestimate available experimental values. Calculated phonon spectra of the various junctions under consideration demonstrate the importance of appropriately treating the anisotropic nature of layered interfaces. Considering our previous parameterization for MoS2, the interlayer potential enables accurate and efficient large-scale simulations of the dynamical, tribological, and thermal transport properties of a large set of homogeneous and heterogeneous TMD interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11331v2-abstract-full').style.display = 'none'; document.getElementById('2307.11331v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.08160">arXiv:2307.08160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.08160">pdf</a>, <a href="https://arxiv.org/format/2307.08160">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Spin Hall Response From Aligned Kramers-Weyl Points in High Chern Number Semimetals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ascencio%2C+C+O">C. O. Ascencio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Sousa%2C+D+J+P">D. J. P. de Sousa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Seungjun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian-Ping Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Low%2C+T">Tony Low</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.08160v1-abstract-short" style="display: inline;"> We propose a spin Hall effect (SHE) enhancement mechanism due to Kramers-Weyl point (KWP) alignment in chiral topological semimetals with high Chern numbers (CNs). Through model Hamiltonian calculations, we identify enhancements in the intrinsic spin Hall conductivity (SHC) and the spin Hall angle (SHA). Such enhancements, attributed to a unique high CN KWP energetic alignment and a high degree of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08160v1-abstract-full').style.display = 'inline'; document.getElementById('2307.08160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.08160v1-abstract-full" style="display: none;"> We propose a spin Hall effect (SHE) enhancement mechanism due to Kramers-Weyl point (KWP) alignment in chiral topological semimetals with high Chern numbers (CNs). Through model Hamiltonian calculations, we identify enhancements in the intrinsic spin Hall conductivity (SHC) and the spin Hall angle (SHA). Such enhancements, attributed to a unique high CN KWP energetic alignment and a high degree of SOC-induced band nesting, strongly depend on orbital-orbital interactions. This represents a novel mechanism to enhance SHE, differing from the spin-orbit induced anticrossing mechanism in gapped systems. Guided by this principle, we corroborate our results by means of first-principles calculations and reveal multiple realistic materials with large intrinsic SHCs and even larger SHAs than Pt. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.08160v1-abstract-full').style.display = 'none'; document.getElementById('2307.08160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02857">arXiv:2307.02857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.02857">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tuning the Magnetism in Ultrathin CrxTey Films by Lattice Dimensionality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+G">Guangyao Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+M">Minghui Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+N">Nuoyu Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+W">Weiliang Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhihan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+M">Meng Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Weihua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jiandong Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02857v1-abstract-short" style="display: inline;"> Two-dimensional (2D) magnetic transition metal compounds with atomic thickness exhibit intriguing physics in fundamental research and great potential for device applications. Understanding the correlations between their macrosopic magnetic properties and the dimensionality of microscopic magnetic exchange interactions are valuable for the designing and applications of 2D magnetic crystals. Here, u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02857v1-abstract-full').style.display = 'inline'; document.getElementById('2307.02857v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02857v1-abstract-full" style="display: none;"> Two-dimensional (2D) magnetic transition metal compounds with atomic thickness exhibit intriguing physics in fundamental research and great potential for device applications. Understanding the correlations between their macrosopic magnetic properties and the dimensionality of microscopic magnetic exchange interactions are valuable for the designing and applications of 2D magnetic crystals. Here, using spin-polarized scanning tunneling microscopy, magnetization and magneto-transport measurements, we identify the zigzag-antiferromagnetism in monolayer CrTe2, incipient ferromagnetism in bilayer CrTe2, and robust ferromagnetism in bilayer Cr3Te4 films. Our density functional theory calculations unravel that the magnetic ordering in ultrathin CrTe2 is sensitive to the lattice parameters, while robust ferromagnetism with large perpendicular magnetic anisotropy in Cr3Te4 is stabilized through its anisotropic 3D magnetic exchange interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02857v1-abstract-full').style.display = 'none'; document.getElementById('2307.02857v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09695">arXiv:2306.09695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.09695">pdf</a>, <a href="https://arxiv.org/format/2306.09695">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Bose-Einstein condensation of a two-magnon bound state in a spin-one triangular lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+J">Jieming Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mei%2C+J">Jia-Wei Mei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Le Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaoyu Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenrui Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L">Lei Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ge%2C+H">Han Ge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+N">Nan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tiantian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Candini%2C+A">Andrea Candini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xi%2C+B">Bin Xi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jize Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Y">Ying Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jiong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuanzhu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biasiol%2C+G">Giorgio Biasiol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shanmin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jinlong Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+P">Ping Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+X">Xin Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D">Dapeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mole%2C+R">Richard Mole</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+L">Long Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhitao Zhang</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09695v2-abstract-short" style="display: inline;"> In ordered magnets, the elementary excitations are spin waves (magnons), which obey Bose-Einstein statistics. Similarly to Cooper pairs in superconductors, magnons can be paired into bound states under attractive interactions. The Zeeman coupling to a magnetic field is able to tune the particle density through a quantum critical point (QCP), beyond which a &#34;hidden order&#34; is predicted to exist. Her&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09695v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09695v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09695v2-abstract-full" style="display: none;"> In ordered magnets, the elementary excitations are spin waves (magnons), which obey Bose-Einstein statistics. Similarly to Cooper pairs in superconductors, magnons can be paired into bound states under attractive interactions. The Zeeman coupling to a magnetic field is able to tune the particle density through a quantum critical point (QCP), beyond which a &#34;hidden order&#34; is predicted to exist. Here we report direct observation of the Bose-Einstein condensation (BEC) of the two-magnon bound state in Na$_2$BaNi(PO$_4$)$_2$. Comprehensive thermodynamic measurements confirmed the two-dimensional BEC-QCP at the saturation field. Inelastic neutron scattering experiments were performed to establish the microscopic model. An exact solution revealed stable 2-magnon bound states that were further confirmed by electron spin resonance and nuclear magnetic resonance experiments, demonstrating that the QCP is due to the pair condensation and the phase below saturation field is likely the long-sought-after spin nematic phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09695v2-abstract-full').style.display = 'none'; document.getElementById('2306.09695v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 31 figures. Accepted by Nature Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10720">arXiv:2305.10720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.10720">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation and enhancement of room temperature bilinear magnetoelectric resistance in sputtered topological semimetal Pt3Sn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yihong Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cresswell%2C+Z">Zach Cresswell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yifei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+Y">Yang Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peterson%2C+T">Thomas Peterson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinming Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Low%2C+T">Tony Low</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian-ping Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10720v2-abstract-short" style="display: inline;"> Topological semimetal materials have become a research hotspot due to their intrinsic strong spin-orbit coupling which leads to large charge-to-spin conversion efficiency and novel transport behaviors. In this work, we have observed a bilinear magnetoelectric resistance (BMER) of up to 0.1 nm2A-1Oe-1 in a singlelayer of sputtered semimetal Pt3Sn at room temperature. Different from previous observa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10720v2-abstract-full').style.display = 'inline'; document.getElementById('2305.10720v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10720v2-abstract-full" style="display: none;"> Topological semimetal materials have become a research hotspot due to their intrinsic strong spin-orbit coupling which leads to large charge-to-spin conversion efficiency and novel transport behaviors. In this work, we have observed a bilinear magnetoelectric resistance (BMER) of up to 0.1 nm2A-1Oe-1 in a singlelayer of sputtered semimetal Pt3Sn at room temperature. Different from previous observations, the value of BMER in sputtered Pt3Sn does not change out-of-plane due to the polycrystalline nature of Pt3Sn. The observation of BMER provides strong evidence of the existence of spin-momentum locking in the sputtered polycrystalline Pt3Sn. By adding an adjacent CoFeB magnetic layer, the BMER value of this bilayer system is doubled compared to the single Pt3Sn layer. This work broadens the material system in BMER study, which paves the way for the characterization of topological states and applications for spin memory and logic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10720v2-abstract-full').style.display = 'none'; document.getElementById('2305.10720v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05801">arXiv:2305.05801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05801">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-39408-2">10.1038/s41467-023-39408-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust negative longitudinal magnetoresistance and spin-orbit torque in sputtered Pt3Sn topological semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benally%2C+O+J">Onri Jay Benally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peterson%2C+T">Thomas Peterson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cresswell%2C+Z">Zach Cresswell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yihong Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+Y">Yang Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guichuan Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barriocanal%2C+J+G">Javier Garcia Barriocanal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Swatek%2C+P">Przemyslaw Swatek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Low%2C+T">Tony Low</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian-Ping Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05801v1-abstract-short" style="display: inline;"> Contrary to topological insulators, topological semimetals possess a nontrivial chiral anomaly that leads to negative magnetoresistance and are hosts to both conductive bulk states and topological surface states with intriguing transport properties for spintronics. Here, we fabricate highly-ordered metallic Pt3Sn and Pt3SnxFe1-x thin films via sputtering technology. Systematic angular dependence (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05801v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05801v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05801v1-abstract-full" style="display: none;"> Contrary to topological insulators, topological semimetals possess a nontrivial chiral anomaly that leads to negative magnetoresistance and are hosts to both conductive bulk states and topological surface states with intriguing transport properties for spintronics. Here, we fabricate highly-ordered metallic Pt3Sn and Pt3SnxFe1-x thin films via sputtering technology. Systematic angular dependence (both in-plane and out-of-plane) study of magnetoresistance presents surprisingly robust quadratic and linear negative longitudinal magnetoresistance features for Pt3Sn and Pt3SnxFe1-x, respectively. We attribute the anomalous negative longitudinal magnetoresistance to the type-II Dirac semimetal phase (pristine Pt3Sn) and/or the formation of tunable Weyl semimetal phases through symmetry breaking processes, such as magnetic-atom doping, as confirmed by first-principles calculations. Furthermore, Pt3Sn and Pt3SnxFe1-x show the promising performance for facilitating the development of advanced spin-orbit torque devices. These results extend our understanding of chiral anomaly of topological semimetals and can pave the way for exploring novel topological materials for spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05801v1-abstract-full').style.display = 'none'; document.getElementById('2305.05801v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 14, Article number: 4151 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17073">arXiv:2303.17073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.17073">pdf</a>, <a href="https://arxiv.org/format/2303.17073">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.024508">10.1103/PhysRevB.108.024508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superfluid $^3$He-B Surface States in a Confined Geometry Probed by a Microelectromechanical Oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W+G">W. G. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barquist%2C+C+S">C. S. Barquist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gunther%2C+K">K. Gunther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Y. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+H+B">H. B. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17073v1-abstract-short" style="display: inline;"> A microelectromechanical oscillator with a 0.73 $渭$m gap structure is employed to probe the surface Andreev bound states in superfluid $^3$He-B. The surface specularity of the oscillator is increased by preplating it with 1.6 monolayers of $^4$He. In the linear regime, the temperature dependence of the damping coefficient is measured at various pressures, and the normalized energy gap is extracted&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17073v1-abstract-full').style.display = 'inline'; document.getElementById('2303.17073v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17073v1-abstract-full" style="display: none;"> A microelectromechanical oscillator with a 0.73 $渭$m gap structure is employed to probe the surface Andreev bound states in superfluid $^3$He-B. The surface specularity of the oscillator is increased by preplating it with 1.6 monolayers of $^4$He. In the linear regime, the temperature dependence of the damping coefficient is measured at various pressures, and the normalized energy gap is extracted. The damping coefficient increases after preplating at lower pressures, which is attributed to the decreased energy minigap of the surface bound states. The device is also driven into the nonlinear regime, where the temperature independent critical velocity at each pressure is measured. The critical velocity is observed to increase after preplating at all pressures, which might be related to the increased average energy gap. The observed behavior warrants a microscopic theory beyond a single parameter characterization of the surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17073v1-abstract-full').style.display = 'none'; document.getElementById('2303.17073v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 15 figures, to be submitted to Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14326">arXiv:2303.14326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.14326">pdf</a>, <a href="https://arxiv.org/format/2303.14326">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L081123">10.1103/PhysRevB.108.L081123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stable computation of entanglement entropy for 2D interacting fermion systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+G">Gaopei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Da+Liao%2C+Y">Yuan Da Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Weilun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%27Emidio%2C+J">Jonathan D&#39;Emidio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yang Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14326v3-abstract-short" style="display: inline;"> There is no doubt that the information hidden in entanglement entropy (EE), for example, the $n$-th order R茅nyi EE, i.e., $S^{A}_n=\frac{1}{1-n}\ln \Tr (蟻_A^n)$ where $蟻_A=\mathrm{Tr}_{\overline{A}}蟻$ is the reduced density matrix, can be used to infer the organizing principle of 2D interacting fermion systems, ranging from spontaneous symmetry breaking phases, quantum critical points to topologic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14326v3-abstract-full').style.display = 'inline'; document.getElementById('2303.14326v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14326v3-abstract-full" style="display: none;"> There is no doubt that the information hidden in entanglement entropy (EE), for example, the $n$-th order R茅nyi EE, i.e., $S^{A}_n=\frac{1}{1-n}\ln \Tr (蟻_A^n)$ where $蟻_A=\mathrm{Tr}_{\overline{A}}蟻$ is the reduced density matrix, can be used to infer the organizing principle of 2D interacting fermion systems, ranging from spontaneous symmetry breaking phases, quantum critical points to topologically ordered states. It is far from clear, however, whether the EE can actually be obtained with the precision required to observe these fundamental features -- usually in the form of universal finite size scaling behavior. Even for the prototypical 2D interacting fermion model -- the Hubbard model, to all existing numerical algorithms, the computation of the EE has not been succeeded with reliable data that the universal scaling regime can be accessed. Here we explain the reason for these unsuccessful attempts in EE computations in quantum Monte Carlo simulations in the past decades and more importantly, show how to overcome the conceptual and computational barrier with the incremental algorithm, such that the stable computation of the EE in 2D interacting fermion systems can be achieved and universal scaling information can be extracted. Relevance towards the experimental 2D interacting fermion systems is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14326v3-abstract-full').style.display = 'none'; document.getElementById('2303.14326v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+4 pages, 4+4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, L081123 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05988">arXiv:2303.05988</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05988">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.184416">10.1103/PhysRevB.107.184416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-driven collapsing dynamics of skyrmions in magnetic multilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tomasello%2C+R">R. Tomasello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raimondo%2C+E">E. Raimondo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Je%2C+S">S. Je</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Im%2C+M">M. Im</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carpentieri%2C+M">M. Carpentieri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">W. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finocchio%2C+G">G. Finocchio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05988v1-abstract-short" style="display: inline;"> Magnetic skyrmions are fascinating topological particle-like textures promoted by a trade-off among interfacial properties (perpendicular anisotropy and Dzyaloshinskii-Moriya interaction (DMI)) and dipolar interactions. Depending on the dominant interaction, complex spin textures, including pure N茅el and hybrid skyrmions have been observed in multilayer heterostructures. A quantification of these&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05988v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05988v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05988v1-abstract-full" style="display: none;"> Magnetic skyrmions are fascinating topological particle-like textures promoted by a trade-off among interfacial properties (perpendicular anisotropy and Dzyaloshinskii-Moriya interaction (DMI)) and dipolar interactions. Depending on the dominant interaction, complex spin textures, including pure N茅el and hybrid skyrmions have been observed in multilayer heterostructures. A quantification of these different spin textures typically requires a depth-reoslved magnetic imaging or scattering techniques. In the present work, we will show qualitatively different collapsing dynamics for pure N茅el and hybrid skyrmions induced by a perpendicular magnetic field in two representative systems, [Pt/Co/Ir]15 and [Ta/CoFeB/MgO]15 multilayers. Skyrmions in the former stack undergo two morphological transitions, upon reversing the perpendicular field direction. Skyrmions in [Ta/CoFeB/MgO]15 multilayers exhibit a continuous transition, which is mainly linked to a reversible change of the skyrmion size. A full micromagnetic phase diagram is presented to identify these two collapsing mechanisms as a function of material parameters. Since the two distinct collapsing dynamics rely on the detailed layer-dependent spin structures of skyrmions, they could be used as potential fingerprints for identifying the skyrmion type in magnetic multilayers. Our work suggests the employment of pure and hybrid skyrmions for specific applications, due to the strong correlation between the skyrmion dynamics and 3-dimentional spin profiles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05988v1-abstract-full').style.display = 'none'; document.getElementById('2303.05988v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.11742">arXiv:2302.11742</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.11742">pdf</a>, <a href="https://arxiv.org/format/2302.11742">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> The teaching from entanglement: 2D SU(2) antiferromagnet to valence bond solid deconfined quantum critical points are not conformal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Da+Liao%2C+Y">Yuan Da Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+G">Gaopei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Weilun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yang Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.11742v2-abstract-short" style="display: inline;"> The deconfined quantum critical point (DQCP) -- the enigmatic incarnation of the quantum phase transition beyond the Landau-Ginzburg-Wilson paradigm of symmetries and their spontaneous breaking -- has been proposed and actively pursued for more than two decades. Various 2D quantum many-body lattice models, both in spin/boson and fermion representations have been tested with the state-of-the-art nu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.11742v2-abstract-full').style.display = 'inline'; document.getElementById('2302.11742v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.11742v2-abstract-full" style="display: none;"> The deconfined quantum critical point (DQCP) -- the enigmatic incarnation of the quantum phase transition beyond the Landau-Ginzburg-Wilson paradigm of symmetries and their spontaneous breaking -- has been proposed and actively pursued for more than two decades. Various 2D quantum many-body lattice models, both in spin/boson and fermion representations have been tested with the state-of-the-art numerical techniques and field-theoretical analyses, and yet, the conclusion is still controversial. Experimental realizations of DQCP in the quantum magnet SrCu$_2$(BO$_3$)$_2$ and superconducting quantum criticality in 2D material have either shown first order transition or intermediate phase. The tension between the lattice scale details and the requirement from continuum limit, manifested in the form of the inconsistent critical scaling behavior and violations of generic conformal bootstrap bound, has not been resolved. Here we solve these decades-long controversies from the new and fundamental perspective of the quantum entanglement. We develop the incremental algorithm to compute the entanglement entropy at a fermionic DQCP with unprecedentedly accurate data and reveal the universal coefficient of the logarithmic correction therein is negative and at odds with positivity requirement of the conformal field theory. Together with results in other 2D DQCP lattice models (both in fermion and spin systems), our discoveries clearly demonstrate the 2D SU(2) antiferromagnet to valence bond solid DQCPs are not conformal fixed point and naturally explain the experimental difficulties in finding them. This marks the end of the beginning of unambiguous finding of the quantum phase transitions truely beyond the Landau-Ginzburg-Wilson paradigm, since its suggestion two decades ago. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.11742v2-abstract-full').style.display = 'none'; document.getElementById('2302.11742v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9+5 pages, 3+1 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.05486">arXiv:2301.05486</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.05486">pdf</a>, <a href="https://arxiv.org/format/2301.05486">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/advs.202206203">10.1002/advs.202206203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Significant Unconventional Anomalous Hall Effect in Heavy Metal/Antiferromagnetic Insulator Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yuhan Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Liang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+M">Minyi Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yujun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+N">Nian Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+W">Wei Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Le Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hetian Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Ji Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jialu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+Y">Yanwei Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+D">Di Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Jing Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanjun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jia-Mian Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nan%2C+C">Ce-Wen Nan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yuan-Hua Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.05486v1-abstract-short" style="display: inline;"> The anomalous Hall effect (AHE) is a quantum coherent transport phenomenon that conventionally vanishes at elevated temperatures because of thermal dephasing. Therefore, it is puzzling that the AHE can survive in heavy metal (HM)/antiferromagnetic (AFM) insulator (AFMI) heterostructures at high temperatures yet disappears at low temperatures. In this paper, we report that an unconventional high-te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05486v1-abstract-full').style.display = 'inline'; document.getElementById('2301.05486v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.05486v1-abstract-full" style="display: none;"> The anomalous Hall effect (AHE) is a quantum coherent transport phenomenon that conventionally vanishes at elevated temperatures because of thermal dephasing. Therefore, it is puzzling that the AHE can survive in heavy metal (HM)/antiferromagnetic (AFM) insulator (AFMI) heterostructures at high temperatures yet disappears at low temperatures. In this paper, we report that an unconventional high-temperature AHE in HM/AFMI is observed only around the N茅el temperature of AFM, with large anomalous Hall resistivity up to 40 n$惟$ cm. This mechanism is attributed to the emergence of a noncollinear AFM spin texture with a non-zero net topological charge. Atomistic spin dynamics simulation shows that such a unique spin texture can be stabilized by the subtle interplay among the collinear AFM exchange coupling, interfacial Dyzaloshinski-Moriya interaction, thermal fluctuation, and bias magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05486v1-abstract-full').style.display = 'none'; document.getElementById('2301.05486v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11821">arXiv:2212.11821</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11821">pdf</a>, <a href="https://arxiv.org/format/2212.11821">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.266501">10.1103/PhysRevLett.130.266501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermion disorder operator at Gross-Neveu and deconfined quantum criticalities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+H">Zi Hong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Weilun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bin-Bin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+J">Junchen Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+M">Meng Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+K">Kai Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z+Y">Zi Yang Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Assaad%2C+F+F">Fakher F. Assaad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11821v2-abstract-short" style="display: inline;"> The fermion disorder operator has been shown to reveal the entanglement information in 1D Luttinger liquids and 2D free and interacting Fermi and non-Fermi liquids emerging at quantum critical points(QCP). Here we study, by means of large-scale quantum Monte Carlo simulation, the scaling behavior of disorder operator in correlated Dirac systems. We first demonstrate the logarithmic scaling behavio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11821v2-abstract-full').style.display = 'inline'; document.getElementById('2212.11821v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11821v2-abstract-full" style="display: none;"> The fermion disorder operator has been shown to reveal the entanglement information in 1D Luttinger liquids and 2D free and interacting Fermi and non-Fermi liquids emerging at quantum critical points(QCP). Here we study, by means of large-scale quantum Monte Carlo simulation, the scaling behavior of disorder operator in correlated Dirac systems. We first demonstrate the logarithmic scaling behavior of the disorder operator at the Gross-Neveu (GN) chiral Ising and Heisenberg QCPs, where consistent conformal field theory (CFT) content of the GN-QCP in its coefficient is found. Then we study a 2D monopole free deconfined quantum critical point (DQCP) realized between a quantum-spin Hall insulator and a superconductor. Our data point to negative values of the logarithmic coefficients such that the DQCP does not correspond to a unitary CFT. Density matrix renormalization group calculations of the disorder operator on a 1D DQCP model also detect emergent continuous symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11821v2-abstract-full').style.display = 'none'; document.getElementById('2212.11821v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 266501(2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.04049">arXiv:2212.04049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.04049">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Acoustic-Driven Magnetic Skyrmion Motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yang Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Le Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+D">Di Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T">Teng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+Y">Yahong Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chenye Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+D">Dingsong Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yahui Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanjun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jianshi Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+P">Pu Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Huaqiang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nan%2C+T">Tianxiang Nan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.04049v1-abstract-short" style="display: inline;"> Magnetic skyrmions have great potential for developing novel spintronic devices. The electrical manipulation of skyrmions has mainly relied on current-induced spin-orbit torques. A recent theoretical model suggested that the skyrmions could be more efficiently manipulated by surface acoustic waves (SAW), an elastic wave that can couple with magnetic moment through magnetoelastic effect. However, t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04049v1-abstract-full').style.display = 'inline'; document.getElementById('2212.04049v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.04049v1-abstract-full" style="display: none;"> Magnetic skyrmions have great potential for developing novel spintronic devices. The electrical manipulation of skyrmions has mainly relied on current-induced spin-orbit torques. A recent theoretical model suggested that the skyrmions could be more efficiently manipulated by surface acoustic waves (SAW), an elastic wave that can couple with magnetic moment through magnetoelastic effect. However, the directional motion of skyrmions that is driven by SAW is still missing. Here, we experimentally demonstrate the motion of N茅el-type skyrmions in Ta/CoFeB/MgO/Ta multilayers driven by propagating SAW pulses from on-chip piezoelectric transducers. Our results reveal that the elastic wave with longitudinal and shear vertical displacements (Rayleigh wave) traps skyrmions, while the shear horizontal wave effectively drives the motion of skyrmions. In particular, a longitudinal motion along the SAW propagation direction and a transverse motion due to topological charge, are observed and further confirmed by our micromagnetic simulations. This work demonstrates a promising approach based on acoustic waves for manipulating skyrmions, which could offer new opportunities for ultra-low power spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.04049v1-abstract-full').style.display = 'none'; document.getElementById('2212.04049v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15074">arXiv:2211.15074</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.15074">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0121156">10.1063/5.0121156 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anomalous Nernst effect in compensated ferrimagnetic CoxGd1-x films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+R">Ruihao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+L">Li Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T">Teng Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiahao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Y">Yang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanjun Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15074v1-abstract-short" style="display: inline;"> The anomalous Nernst effect (ANE) is one of the most intriguing thermoelectric phenomena which has attracted growing interest both for its underlying physics and potential applications. Typically, a large ANE response is observed in magnets with pronounced magnetizations or nontrivial Berry curvature. Here, we report a significant ANE signal in compensated ferrimagnetic CoxGd1-x alloy films, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15074v1-abstract-full').style.display = 'inline'; document.getElementById('2211.15074v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15074v1-abstract-full" style="display: none;"> The anomalous Nernst effect (ANE) is one of the most intriguing thermoelectric phenomena which has attracted growing interest both for its underlying physics and potential applications. Typically, a large ANE response is observed in magnets with pronounced magnetizations or nontrivial Berry curvature. Here, we report a significant ANE signal in compensated ferrimagnetic CoxGd1-x alloy films, which exhibit vanishingly small magnetization. In particular, we found that the polarity of ANE signal is dominated by the magnetization orientation of the transition metal Co sublattices, rather than the net magnetization of CoxGd1-x films. This observation is not expected from the conventional understanding of ANE but is analogous to the anomalous Hall effect in compensated ferrimagnets. We attribute the origin of ANE and its Co-dominant property to the Co-dominant Berry curvature. Our work could trigger a more comprehensive understanding of ANE and may be useful for building energy-harvesting devices by employing ANE in compensated ferrimagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15074v1-abstract-full').style.display = 'none'; document.getElementById('2211.15074v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09802">arXiv:2211.09802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.09802">pdf</a>, <a href="https://arxiv.org/format/2211.09802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/40/6/060301">10.1088/0256-307X/40/6/060301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Digital simulation of non-Abelian anyons with 68 programmable superconducting qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zheng-Zhi Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wenhui Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Weikang Li</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09802v2-abstract-short" style="display: inline;"> Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter. They break the fermion-boson dichotomy and obey non-Abelian braiding statistics: their interchanges yield unitary operations, rather than merely a phase factor, in a space spanned by topologically degenerate wavefunctions. They are the building blocks of topological quantum computing. However, e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09802v2-abstract-full').style.display = 'inline'; document.getElementById('2211.09802v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09802v2-abstract-full" style="display: none;"> Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter. They break the fermion-boson dichotomy and obey non-Abelian braiding statistics: their interchanges yield unitary operations, rather than merely a phase factor, in a space spanned by topologically degenerate wavefunctions. They are the building blocks of topological quantum computing. However, experimental observation of non-Abelian anyons and their characterizing braiding statistics is notoriously challenging and has remained elusive hitherto, in spite of various theoretical proposals. Here, we report an experimental quantum digital simulation of projective non-Abelian anyons and their braiding statistics with up to 68 programmable superconducting qubits arranged on a two-dimensional lattice. By implementing the ground states of the toric-code model with twists through quantum circuits, we demonstrate that twists exchange electric and magnetic charges and behave as a particular type of non-Abelian anyons, i.e., the Ising anyons. In particular, we show experimentally that these twists follow the fusion rules and non-Abelian braiding statistics of the Ising type, and can be explored to encode topological logical qubits. Furthermore, we demonstrate how to implement both single- and two-qubit logic gates through applying a sequence of elementary Pauli gates on the underlying physical qubits. Our results demonstrate a versatile quantum digital approach for simulating non-Abelian anyons, offering a new lens into the study of such peculiar quasiparticles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09802v2-abstract-full').style.display = 'none'; document.getElementById('2211.09802v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 40 060301 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09437">arXiv:2211.09437</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.09437">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.107.014701">10.1103/PhysRevE.107.014701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase transitions study of the liquid crystal DIO with a ferroelectric nematic, a nematic and an intermediate phase and of mixtures with the ferroelectric nematic compound RM734 by adiabatic scanning calorimetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Thoen%2C+J">Jan Thoen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cordoyiannis%2C+G">George Cordoyiannis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanhe Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mehl%2C+G+H">Georg H. Mehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glorieux%2C+C">Christ Glorieux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09437v1-abstract-short" style="display: inline;"> Adiabatic scanning calorimetry (ASC) is capable of providing simultaneously the specific enthalpy h(T) and the specific heat capacity cp(T), and is an important tool to determine the order of transitions and to render high-resolution information on pretransitional thermal behavior. Here we report on ASC results on the compound DIO and on mixtures with RM734. Both compounds exhibit a low-temperatur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09437v1-abstract-full').style.display = 'inline'; document.getElementById('2211.09437v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09437v1-abstract-full" style="display: none;"> Adiabatic scanning calorimetry (ASC) is capable of providing simultaneously the specific enthalpy h(T) and the specific heat capacity cp(T), and is an important tool to determine the order of transitions and to render high-resolution information on pretransitional thermal behavior. Here we report on ASC results on the compound DIO and on mixtures with RM734. Both compounds exhibit a low-temperature ferroelectric nematic phase (NF) and a high-temperature paraelectric nematic (N). In DIO these two phases are separated by an intermediate phase (Nx). Detailed data of h(T) and cp(T), indicated that the intermediate phase was present in all mixtures over the complete composition range, albeit with strongly decreasing temperature width with decreasing mole fraction of DIO (xDIO). The xDIO dependence of the two transitions could be well described by a quadratic function and both transitions were weakly first order. The true latent heat of the Nx-N transition of DIO was as low as 0.0075 +/- 0.0005 J/g and 0.23 +/- 0.03 J/g for the NF-Nx transition, about twice the previously reported value of 0.115 J/g for the NF-N transition in RM734. In the mixtures both transition latent heats decrease gradually with decreasing xDIO. At all the Nx-N transitions pretransition fluctuation effects are absent and these transitions are purely but very weakly first order. As in RM734 the transition from the NF to the higher temperature phase exhibits substantial pretransitional behaviour. Power law analysis of cp(T) resulted in an effective critical exponent of 0.88 +/- 0.10 for DIO and this value decreased in mixtures with decreasing xDIO towards 0.50 +/- 0.05 reported for RM734. Ideal mixture analysis of the phase diagram was consistent with ideal mixture behavior for the total transition enthalpy change <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09437v1-abstract-full').style.display = 'none'; document.getElementById('2211.09437v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.07103">arXiv:2209.07103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.07103">pdf</a>, <a href="https://arxiv.org/format/2209.07103">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.15.3.082">10.21468/SciPostPhys.15.3.082 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Many versus one: the disorder operator and entanglement entropy in fermionic quantum matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Weilun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+B">Bin-Bin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+H">Zi Hong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+J">Junchen Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Assaad%2C+F+F">Fakher F. Assaad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+M">Meng Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+K">Kai Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.07103v5-abstract-short" style="display: inline;"> Motivated by recent development of the concept of the disorder operator and its relation with entanglement entropy in bosonic systems, here we show the disorder operator successfully probes many aspects of quantum entanglement in fermionic many-body systems. From both analytical and numerical computations in free and interacting fermion systems in 1D and 2D, we find the disorder operator and the e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07103v5-abstract-full').style.display = 'inline'; document.getElementById('2209.07103v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.07103v5-abstract-full" style="display: none;"> Motivated by recent development of the concept of the disorder operator and its relation with entanglement entropy in bosonic systems, here we show the disorder operator successfully probes many aspects of quantum entanglement in fermionic many-body systems. From both analytical and numerical computations in free and interacting fermion systems in 1D and 2D, we find the disorder operator and the entanglement entropy exhibit similar universal scaling behavior, as a function of the boundary length of the subsystem, but with subtle yet important differences. In 1D they both follow the $\log{L}$ scaling behavior with the coefficient determined by the Luttinger parameter for disorder operator, and the conformal central charge for entanglement entropy. In 2D they both show the universal $L\log L$ scaling behavior in free and interacting Fermi liquid states, with the coefficients depending on the geometry of the Fermi surfaces. However at a 2D quantum critical point with non-Fermi-liquid state, extra symmetry information is needed in the design of the disorder operator, so as to reveal the critical fluctuations as does the entanglement entropy. Our results demonstrate the fermion disorder operator can be used to probe quantum many-body entanglement related to global symmetry, and provides new tools to explore the still largely unknown territory of highly entangled fermion quantum matter in 2 or higher dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07103v5-abstract-full').style.display = 'none'; document.getElementById('2209.07103v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures with 8 pages supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 15, 082 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.06400">arXiv:2209.06400</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.06400">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Kondo scattering in underdoped Nd1-xSrxNiO2 infinite-layer superconducting thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+T+N">T. N. Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z+T">Z. T. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+Y+J">Y. J. Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Q">Q. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H+W">H. W. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+X">X. X. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W+M">W. M. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+C+L">C. L. Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+Y">X. Y. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+M+H">M. H. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dou%2C+R+F">R. F. Dou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+C+M">C. M. Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+G+M">G. M. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y+-">Y. -F. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+J+C">J. C. Nie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.06400v1-abstract-short" style="display: inline;"> The recent discovery of superconductivity in infinite-layer nickelates generates tremendous research endeavors, but the ground state of their parent compounds is still under debate. Here, we report experimental evidences for the dominant role of Kondo scattering in the underdoped Nd1-xSrxNiO2 thin films. A resistivity minimum associated with logarithmic temperature dependence in both longitudinal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06400v1-abstract-full').style.display = 'inline'; document.getElementById('2209.06400v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.06400v1-abstract-full" style="display: none;"> The recent discovery of superconductivity in infinite-layer nickelates generates tremendous research endeavors, but the ground state of their parent compounds is still under debate. Here, we report experimental evidences for the dominant role of Kondo scattering in the underdoped Nd1-xSrxNiO2 thin films. A resistivity minimum associated with logarithmic temperature dependence in both longitudinal and Hall resistivities are observed in the underdoped Nd1-xSrxNiO2 samples before the superconducting transition. A linear scaling behavior $蟽_{xy}^{AHE}\sim蟽_{xx}$ between anomalous Hall conductivity $蟽_{xy}^{AHE}$ and conductivity $蟽_{xx}$ is revealed, verifying the dominant Kondo scattering at low temperature. The effect of weak (anti-)localization is found to be secondary. Our experiments can help clarifying the basic physics in the underdoped Nd1-xSrxNiO2 infinite-layer thin films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06400v1-abstract-full').style.display = 'none'; document.getElementById('2209.06400v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01875">arXiv:2209.01875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.01875">pdf</a>, <a href="https://arxiv.org/format/2209.01875">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.046701">10.1103/PhysRevLett.130.046701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlocal detection of interlayer three-magnon coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sheng%2C+L">Lutong Sheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elyasi%2C+M">Mehrdad Elyasi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jilei Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+W">Wenqing He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yizhan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hanchen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+H">Hongmei Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medlej%2C+I">Israa Medlej</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Song Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanjun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiufeng Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+D">Dapeng Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansermet%2C+J">Jean-Philippe Ansermet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bauer%2C+G+E+W">Gerrit E. W. Bauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+H">Haiming Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01875v1-abstract-short" style="display: inline;"> A leading nonlinear effect in magnonics is the interaction that splits a high-frequency magnon into two low-frequency ones with conserved linear momentum. Here, we report experimental observation of nonlocal three-magnon scattering between spatially separated magnetic systems, viz. a CoFeB nanowire and an yttrium iron garnet (YIG) thin film. Above a certain threshold power of an applied microwave&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01875v1-abstract-full').style.display = 'inline'; document.getElementById('2209.01875v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01875v1-abstract-full" style="display: none;"> A leading nonlinear effect in magnonics is the interaction that splits a high-frequency magnon into two low-frequency ones with conserved linear momentum. Here, we report experimental observation of nonlocal three-magnon scattering between spatially separated magnetic systems, viz. a CoFeB nanowire and an yttrium iron garnet (YIG) thin film. Above a certain threshold power of an applied microwave field, a CoFeB Kittel magnon splits into a pair of counter-propagating YIG magnons that induce voltage signals in Pt electrodes on each side, in excellent agreement with model calculations based on the interlayer dipolar interaction. The excited YIG magnon pairs reside mainly in the first excited (n=1) perpdendicular standing spin-wave mode. With increasing power, the n=1 magnons successively scatter into nodeless (n=0) magnons through a four-magnon process. Our results help to assess non-local scattering processes in magnonic circuits that may enable quantum entanglement between distant magnons for quantum information applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01875v1-abstract-full').style.display = 'none'; document.getElementById('2209.01875v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14251">arXiv:2208.14251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.14251">pdf</a>, <a href="https://arxiv.org/format/2208.14251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.166702">10.1103/PhysRevLett.130.166702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-plane anomalous Hall effect in PT-symmetric antiferromagnetic materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+J">Jin Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiao-Ping Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+D">Daifeng Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jiadong Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jianhui Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14251v1-abstract-short" style="display: inline;"> Anomalous Hall effect (AHE), a protocol of various low-power dissipation quantum phenomena and a fundamental precursor of intriguing topological phases of matter, is usually observed in ferromagnetic materials with orthogonal configuration between the electric field, magnetization and the Hall current. Here, based on the symmetry analysis, we find an unconventional AHE induced by the in-plane magn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14251v1-abstract-full').style.display = 'inline'; document.getElementById('2208.14251v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14251v1-abstract-full" style="display: none;"> Anomalous Hall effect (AHE), a protocol of various low-power dissipation quantum phenomena and a fundamental precursor of intriguing topological phases of matter, is usually observed in ferromagnetic materials with orthogonal configuration between the electric field, magnetization and the Hall current. Here, based on the symmetry analysis, we find an unconventional AHE induced by the in-plane magnetic field (IPAHE) via spin-canting effect in $\mathcal{PT}$ symmetric antiferromagnetic (AFM) systems, featuring a linear dependence of magnetic field and 2$蟺$ angle periodicity with a comparable magnitude as conventional AHE. We demonstrate the key findings in the known AFM Dirac semimetal CuMnAs and a new kind of AFM heterodimensional VS$_2$-VS superlattice with a nodal-line Fermi surface and also briefly discuss the experimental detection. Our work provides an efficient pathway to search and/or design realistic materials for novel IPAHE that could greatly facilitate their application in AFM spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14251v1-abstract-full').style.display = 'none'; document.getElementById('2208.14251v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08872">arXiv:2207.08872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.08872">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.6.074206">10.1103/PhysRevMaterials.6.074206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room temperature spin-orbit torque efficiency in sputtered low-temperature superconductor delta-TaN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Swatek%2C+P+W">Przemyslaw Wojciech Swatek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hang%2C+X">Xudong Hang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yihong Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yun%2C+H">Hwanhui Yun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+D">Deyuan Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Delin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peterson%2C+T+J">Thomas J. Peterson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahu%2C+P">Protyush Sahu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benally%2C+O+J">Onri Jay Benally</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cresswell%2C+Z">Zach Cresswell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinming Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pahari%2C+R">Rabindra Pahari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kukla%2C+D">Daniel Kukla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Low%2C+T">Tony Low</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mkhoyan%2C+K+A">K. Andre Mkhoyan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jian-Ping Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08872v2-abstract-short" style="display: inline;"> In the course of searching for promising topological materials for applications in future topological electronics, we evaluated spin-orbit torques (SOTs) in high-quality sputtered $未-$TaN/Co20Fe60B20 devices through spin-torque ferromagnetic resonance ST-FMR and spin pumping measurements. From the ST-FMR characterization we observed a significant linewidth modulation in the magnetic Co20Fe60B20 la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08872v2-abstract-full').style.display = 'inline'; document.getElementById('2207.08872v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08872v2-abstract-full" style="display: none;"> In the course of searching for promising topological materials for applications in future topological electronics, we evaluated spin-orbit torques (SOTs) in high-quality sputtered $未-$TaN/Co20Fe60B20 devices through spin-torque ferromagnetic resonance ST-FMR and spin pumping measurements. From the ST-FMR characterization we observed a significant linewidth modulation in the magnetic Co20Fe60B20 layer attributed to the charge-to-spin conversion generated from the $未-$TaN layer. Remarkably, the spin-torque efficiency determined from ST-FMR and spin pumping measurements is as large as $螛 =$ 0.034 and 0.031, respectively. These values are over two times larger than for $伪-$Ta, but almost five times lower than for $尾-$Ta, which can be attributed to the low room temperature electrical resistivity $\sim 74渭惟$ cm in $未-$TaN. A large spin diffusion length of at least $\sim8$ nm is estimated, which is comparable to the spin diffusion length in pure Ta. Comprehensive experimental analysis, together with density functional theory calculations, indicates that the origin of the pronounced SOT effect in $未-$TaN can be mostly related to a significant contribution from the Berry curvature associated with the presence of a topically nontrivial electronic band structure in the vicinity of the Fermi level (EF). Through additional detailed theoretical analysis, we also found that an isostructural allotrope of the superconducting $未-$TaN phase, the simple hexagonal structure, $胃-$TaN, has larger Berry curvature, and that, together with expected reasonable charge conductivity, it can also be a promising candidate for exploring a generation of spin-orbit torque magnetic random access memory as cheap, temperature stable, and highly efficient spin current sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08872v2-abstract-full').style.display = 'none'; document.getElementById('2207.08872v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 6, 074206 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08676">arXiv:2207.08676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.08676">pdf</a>, <a href="https://arxiv.org/ps/2207.08676">ps</a>, <a href="https://arxiv.org/format/2207.08676">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Heating anomaly of cold interfacial water under irradiation of mid-infrared pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+L">Liu-Ye Meng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">Rong-Yao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei-Zhou Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08676v1-abstract-short" style="display: inline;"> The mid-infrared heating of interfacial water with different initial temperatures is studied using non-equilibrium molecular dynamics simulation. It is found that under the irradiation of a pulse at 3360-3380 $cm^{-1}$ the two-dimensional water monolayer on a hydrophilic surface at a lower initial temperature acquires a much larger temperature jump. The mechanism beneath this counterintuitive phen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08676v1-abstract-full').style.display = 'inline'; document.getElementById('2207.08676v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08676v1-abstract-full" style="display: none;"> The mid-infrared heating of interfacial water with different initial temperatures is studied using non-equilibrium molecular dynamics simulation. It is found that under the irradiation of a pulse at 3360-3380 $cm^{-1}$ the two-dimensional water monolayer on a hydrophilic surface at a lower initial temperature acquires a much larger temperature jump. The mechanism beneath this counterintuitive phenomenon is the enhanced transition efficiency of the asymmetric OH stretching vibration due to the specific oriented configuration of water molecules at lower initial temperatures. The understanding of the anomalous phenomenon clarifies the sensitivity of the interfacial properties of water molecules to the temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08676v1-abstract-full').style.display = 'none'; document.getElementById('2207.08676v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.08672">arXiv:2207.08672</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.08672">pdf</a>, <a href="https://arxiv.org/ps/2207.08672">ps</a>, <a href="https://arxiv.org/format/2207.08672">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Ultra-efficient mid-infrared energy absorption by water confined in carbon nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+R">Rong-Yao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei-Zhou Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huo%2C+P">Pei-Ying Huo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi-Lin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.08672v1-abstract-short" style="display: inline;"> The energy absorption on nanometer scale is vital for many bio and chemical systems. We report here that a two times amplification in absorption efficiency can be achieved by water molecules confined in carbon nanotubes with small radius, compared with situations in normal bulk water, under irradiations of short mid-infrared pulses. The effect of confinement due to a (6,6) carbon nanotube is found&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08672v1-abstract-full').style.display = 'inline'; document.getElementById('2207.08672v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.08672v1-abstract-full" style="display: none;"> The energy absorption on nanometer scale is vital for many bio and chemical systems. We report here that a two times amplification in absorption efficiency can be achieved by water molecules confined in carbon nanotubes with small radius, compared with situations in normal bulk water, under irradiations of short mid-infrared pulses. The effect of confinement due to a (6,6) carbon nanotube is found to be very robust, equivalent to that of a 5 $V/nm$ static electric field. These findings are instructive not only for designing high-efficiency nano devices but also for understanding behaviours in biological channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.08672v1-abstract-full').style.display = 'none'; document.getElementById('2207.08672v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02123">arXiv:2207.02123</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.02123">pdf</a>, <a href="https://arxiv.org/format/2207.02123">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/aca083">10.1088/1674-1056/aca083 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Sport and a Pastime: Model Design and Computation in Quantum Many-Body Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+G">Gaopei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Weilun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02123v2-abstract-short" style="display: inline;"> We summarize the recent developments in the model design and computation for a few representative quantum many-body systems, encompassing quantum critical metals beyond the Hertz-Millis-Moriya framework with pseudogap and superconductivity, SYK non-Fermi-liquid with self-tuned quantum criticality and fluctuation induced superconductivity, and the flat-band quantum Moir茅 lattice models in continuum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02123v2-abstract-full').style.display = 'inline'; document.getElementById('2207.02123v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02123v2-abstract-full" style="display: none;"> We summarize the recent developments in the model design and computation for a few representative quantum many-body systems, encompassing quantum critical metals beyond the Hertz-Millis-Moriya framework with pseudogap and superconductivity, SYK non-Fermi-liquid with self-tuned quantum criticality and fluctuation induced superconductivity, and the flat-band quantum Moir茅 lattice models in continuum where the interplay of quantum geometry of flat-band wave function and the long-range Coulomb interactions gives rise to novel insulating phases at integer fillings and superconductivity away from them. Although the narrative choreography seems simple, we show how important the appropriate model design and their tailor-made algorithmic developments -- in other words, the scientific imagination inspired by the corresponding fast experimental developments in the aforementioned systems -- compel us to invent and discover new knowledge and insights in the sport and pastime of quantum many-body research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02123v2-abstract-full').style.display = 'none'; document.getElementById('2207.02123v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited review article on quantum many-body model design and computation. 29 pages + 27 figures. Comments and missing references are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Phys. B 31 127101 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04385">arXiv:2205.04385</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.04385">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Temperature gradient-driven magnetic skyrmion motion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Raimondo%2C+E">Eleonora Raimondo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saugar%2C+E">Elias Saugar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barker%2C+J">Joseph Barker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodrigues%2C+D">Davi Rodrigues</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giordano%2C+A">Anna Giordano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carpentieri%2C+M">Mario Carpentieri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wanjun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chubykalo-Fesenko%2C+O">Oksana Chubykalo-Fesenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tomasello%2C+R">Riccardo Tomasello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finocchio%2C+G">Giovanni Finocchio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04385v1-abstract-short" style="display: inline;"> The static and dynamic properties of skyrmions have recently received increased attention due to the potential application of skyrmions as information carriers and for unconventional computing. While the current-driven dynamics has been explored deeply, both theoretically and experimentally, the theory of temperature gradient-induced dynamics - Skyrmion-Caloritronics - is still at its early stages&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04385v1-abstract-full').style.display = 'inline'; document.getElementById('2205.04385v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04385v1-abstract-full" style="display: none;"> The static and dynamic properties of skyrmions have recently received increased attention due to the potential application of skyrmions as information carriers and for unconventional computing. While the current-driven dynamics has been explored deeply, both theoretically and experimentally, the theory of temperature gradient-induced dynamics - Skyrmion-Caloritronics - is still at its early stages of development. Here, we move the topic forward by identifying the role of entropic torques due to the temperature dependence of magnetic parameters. Our results show that, skyrmions move towards higher temperatures in single-layer ferromagnets with interfacial Dzyaloshinski-Moriya interactions, whereas, in multilayers, they move to lower temperatures. We analytically and numerically demonstrate that the opposite behaviors are due to different scaling relations of the material parameters as well as a non-negligible magnetostatic field gradient in multilayers. We also find a spatially dependent skyrmion Hall angle in multilayers hosting hybrid skyrmions due to variations of the thickness dependent chirality as the skyrmion moves along the temperature gradient. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04385v1-abstract-full').style.display = 'none'; document.getElementById('2205.04385v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.01738">arXiv:2204.01738</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.01738">pdf</a>, <a href="https://arxiv.org/format/2204.01738">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43588-022-00351-9">10.1038/s43588-022-00351-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental quantum adversarial learning with programmable superconducting qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+W">Wenhui Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Weikang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenjie Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qiujiang Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hekang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biamonte%2C+J">Jacob Biamonte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Chao Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+D">Dong-Ling Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">H. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.01738v1-abstract-short" style="display: inline;"> Quantum computing promises to enhance machine learning and artificial intelligence. Different quantum algorithms have been proposed to improve a wide spectrum of machine learning tasks. Yet, recent theoretical works show that, similar to traditional classifiers based on deep classical neural networks, quantum classifiers would suffer from the vulnerability problem: adding tiny carefully-crafted pe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01738v1-abstract-full').style.display = 'inline'; document.getElementById('2204.01738v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.01738v1-abstract-full" style="display: none;"> Quantum computing promises to enhance machine learning and artificial intelligence. Different quantum algorithms have been proposed to improve a wide spectrum of machine learning tasks. Yet, recent theoretical works show that, similar to traditional classifiers based on deep classical neural networks, quantum classifiers would suffer from the vulnerability problem: adding tiny carefully-crafted perturbations to the legitimate original data samples would facilitate incorrect predictions at a notably high confidence level. This will pose serious problems for future quantum machine learning applications in safety and security-critical scenarios. Here, we report the first experimental demonstration of quantum adversarial learning with programmable superconducting qubits. We train quantum classifiers, which are built upon variational quantum circuits consisting of ten transmon qubits featuring average lifetimes of 150 $渭$s, and average fidelities of simultaneous single- and two-qubit gates above 99.94% and 99.4% respectively, with both real-life images (e.g., medical magnetic resonance imaging scans) and quantum data. We demonstrate that these well-trained classifiers (with testing accuracy up to 99%) can be practically deceived by small adversarial perturbations, whereas an adversarial training process would significantly enhance their robustness to such perturbations. Our results reveal experimentally a crucial vulnerability aspect of quantum learning systems under adversarial scenarios and demonstrate an effective defense strategy against adversarial attacks, which provide a valuable guide for quantum artificial intelligence applications with both near-term and future quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01738v1-abstract-full').style.display = 'none'; document.getElementById('2204.01738v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 17 figures, 8 algorithms</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Computational Science 2, 711 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.00810">arXiv:2204.00810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.00810">pdf</a>, <a href="https://arxiv.org/format/2204.00810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Inventory of high-quality flat-band van der Waals materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+J">Jingyi Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+D">Da-Shuai Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R">Run-Wu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zeying Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+C">Chaoxi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z">Zhi-Ming Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.00810v1-abstract-short" style="display: inline;"> More is left to do in the field of flat bands besides proposing theoretical models. One unexplored area is the flat bands featured in the van der Waals (vdW) materials. Exploring more flat-band material candidates and moving the promising materials toward applications have been well recognized as the cornerstones for the next-generation high-efficiency devices. Here, we utilize a powerful high-thr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00810v1-abstract-full').style.display = 'inline'; document.getElementById('2204.00810v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.00810v1-abstract-full" style="display: none;"> More is left to do in the field of flat bands besides proposing theoretical models. One unexplored area is the flat bands featured in the van der Waals (vdW) materials. Exploring more flat-band material candidates and moving the promising materials toward applications have been well recognized as the cornerstones for the next-generation high-efficiency devices. Here, we utilize a powerful high-throughput tool to screen desired vdW materials based on the Inorganic Crystal Structure Database. Through layers of filtration, we obtained 861 potential monolayers from 4997 vdW materials. Significantly, it is the first example to introduce flat-band electronic properties in the vdW materials and propose three families of representative flat-band materials by mapping two-dimensional (2D) flat-band lattice models. Unlike existing screening schemes, a simple, universal rule, i.e., 2D flat-band score criterion, is first proposed to efficiently identify 229 high-quality flat-band candidates, and guidance is provided to diagnose the quality of 2D flat bands. All these efforts to screen experimental available flat-band candidates will certainly motivate continuing exploration towards the realization of this class of special materials and their applications in material science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.00810v1-abstract-full').style.display = 'none'; document.getElementById('2204.00810v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Jiang%2C+W&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+W&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+W&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+W&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+W&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Jiang%2C+W&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10