CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;38 of 38 results for author: <span class="mathjax">Kou, X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Kou%2C+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kou, X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kou%2C+X&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kou, X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09587">arXiv:2409.09587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09587">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Electrical detection in two-terminal perpendicularly magnetized devices via geometric anomalous Nernst effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiuming Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rong%2C+B">Bin Rong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+H">Hua Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanghui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yifan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yujie Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+Y">Yuzhen Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Qi Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+L">Liyang Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Cheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09587v1-abstract-short" style="display: inline;"> The non-uniform current distribution arisen from either current crowding effect or hot spot effect provides a method to tailor the interaction between thermal gradient and electron transport in magnetically ordered systems. Here we apply the device structural engineering to realize an in-plane inhomogeneous temperature distribution within the conduction channel, and the resulting geometric anomalo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09587v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09587v1-abstract-full" style="display: none;"> The non-uniform current distribution arisen from either current crowding effect or hot spot effect provides a method to tailor the interaction between thermal gradient and electron transport in magnetically ordered systems. Here we apply the device structural engineering to realize an in-plane inhomogeneous temperature distribution within the conduction channel, and the resulting geometric anomalous Nernst effect (GANE) gives rise to a non-zero 2nd -harmonic resistance whose polarity corresponds to the out-of-plane magnetization of Co/Pt multi-layer thin film, and its amplitude is linearly proportional to the applied current. By optimizing the aspect ratio of convex-shaped device, the effective temperature gradient can reach up to 0.3 K/$渭$m along the y-direction, leading to a GANE signal of 28.3 $渭$V. Moreover, we demonstrate electrical write and read operations in the perpendicularly-magnetized Co/Pt-based spin-orbit torque device with a simple two-terminal structure. Our results unveil a new pathway to utilize thermoelectric effects for constructing high-density magnetic memories <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09587v1-abstract-full').style.display = 'none'; document.getElementById('2409.09587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10032">arXiv:2408.10032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10032">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Tunable interfacial Rashba spin-orbit coupling in asymmetric Al$_x$In$_{1-x}$Sb/InSb/CdTe quantum well heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+H">Hanzhi Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhi%2C+Z">Zhenghang Zhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yuyang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiuming Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+P">Puyang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+S">Shan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+C">Chenjia Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Qi Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">Lu Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yifan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+Y">Yujie Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+R">Renchao Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10032v1-abstract-short" style="display: inline;"> The manipulation of Rashba-type spin-orbit coupling (SOC) in molecular beam epitaxy-grown Al$_x$In$_{1-x}$Sb/InSb/CdTe quantum well heterostructures is reported. The effective band bending provides robust two-dimensional quantum confinement, while the unidirectional built-in electric field from the asymmetric hetero-interfaces results in pronounced Rashba SOC strength. By tuning the Al concentrati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10032v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10032v1-abstract-full" style="display: none;"> The manipulation of Rashba-type spin-orbit coupling (SOC) in molecular beam epitaxy-grown Al$_x$In$_{1-x}$Sb/InSb/CdTe quantum well heterostructures is reported. The effective band bending provides robust two-dimensional quantum confinement, while the unidirectional built-in electric field from the asymmetric hetero-interfaces results in pronounced Rashba SOC strength. By tuning the Al concentration in the top Al$_x$In$_{1-x}$Sb barrier layer, the optimal structure with $x = 0.15$ shows the largest Rashba coefficient of 0.23 eV-Angstrom. and the highest low-temperature electron mobility of 4400 cm$^2$/Vs . Quantitative investigations of the weak anti-localization effect further confirm the dominant D&#39;yakonov-Perel (DP) spin relaxation mechanism during charge-to-spin conversion. These findings highlight the significance of quantum well engineering in shaping magneto-resistance responses, and narrow bandgap semiconductor-based heterostructures may offer a reliable platform for energy-efficient spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10032v1-abstract-full').style.display = 'none'; document.getElementById('2408.10032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09283">arXiv:2403.09283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09283">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/nsr/nwae127">10.1093/nsr/nwae127 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of quantum oscillations near the Mott-Ioffe-Regel limit in CaAs3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yuxiang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+M">Minhao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinglei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Wenbin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shichao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Wenxiang Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joseph%2C+N+B">Nesta Benno Joseph</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+L">Liangcai Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mou%2C+Y">Yicheng Mou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yunkun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leng%2C+P">Pengliang Leng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+L">Li Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suslov%2C+A">Alexey Suslov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wyzula%2C+J">Jan Wyzula</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orlita%2C+M">Milan Orlita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+F">Fengfeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Narayan%2C+A">Awadhesh Narayan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+D">Dong Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Jinsheng Wen</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09283v1-abstract-short" style="display: inline;"> The Mott-Ioffe-Regel limit sets the lower bound of carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of quasiparticle scattering rate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09283v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09283v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09283v1-abstract-full" style="display: none;"> The Mott-Ioffe-Regel limit sets the lower bound of carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of quasiparticle scattering rate such as linear-in-temperature resistivity, while the quasiparticle coherence phenomena in this regime are much less explored due to the short mean free path at the diffusive bound. Here we report the observation of quantum oscillations from Landau quantization near the Mott-Ioffe-Regel limit in CaAs3. Despite the insulator-like temperature dependence of resistivity, CaAs3 presents giant magnetoresistance and prominent Shubnikov-de Haas oscillations from Fermi surfaces, indicating highly coherent band transport. In contrast, the quantum oscillation is absent in the magnetic torque. The quasiparticle effective mass increases systematically with magnetic fields, manifesting a much larger value than the expectation given by magneto-infrared spectroscopy. It suggests a strong many-body renormalization effect near Fermi surface. We find that these unconventional behaviors may be explained by the interplay between the mobility edge and the van Hove singularity, which results in the formation of coherent cyclotron orbits emerging at the diffusive bound. Our results call for further study on the electron correlation effect of the van Hove singularity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09283v1-abstract-full').style.display = 'none'; document.getElementById('2403.09283v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> National Science Review, nwae127 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05941">arXiv:2211.05941</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.05941">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Negative GMR Effect in current perpendicular-to-plane (Zn,Cr)Te/Cu/Co spin salves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W+G">W. G. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+C">C. Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shah%2C+L+R">L. R. Shah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X+M">X. M. Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+J+Q">J. Q. Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05941v1-abstract-short" style="display: inline;"> Magnetic and transport properties are explored in the current perpendicular-to-plane (CPP) spin salves with Cr doped wide band gap semiconductor ZnTe as one of the ferromagnetic electrodes. A negative magnetoresistance is observed in these CPP spin valves at low temperature, with a strong temperature dependence. This effect can be explained by the large difference of spin scattering asymmetry coef&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05941v1-abstract-full').style.display = 'inline'; document.getElementById('2211.05941v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05941v1-abstract-full" style="display: none;"> Magnetic and transport properties are explored in the current perpendicular-to-plane (CPP) spin salves with Cr doped wide band gap semiconductor ZnTe as one of the ferromagnetic electrodes. A negative magnetoresistance is observed in these CPP spin valves at low temperature, with a strong temperature dependence. This effect can be explained by the large difference of spin scattering asymmetry coefficients in (Zn,Cr)Te and Cobalt, due to the very different spin polarizations of the two materials as revealed by the DFT calculation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05941v1-abstract-full').style.display = 'none'; document.getElementById('2211.05941v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.16727">arXiv:2210.16727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.16727">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spin-polarized transport in magnetic tunnel junctions with ZnTe barriers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W+G">W. G. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+C">C. Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ozbay%2C+A">A. Ozbay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shah%2C+L+R">L. R. Shah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+X">X. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X+M">X. M. Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nowak%2C+E+R">E. R. Nowak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+J+Q">J. Q. Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.16727v1-abstract-short" style="display: inline;"> Magnetic tunnel junctions with wide band gap semiconductor ZnTe barrier were fabricated. A very low barrier height and sizable magnetoresistance were observed in the Fe/ZnTe/Fe junctions at room temperature. The nonlinear I-V characteristic curve confirmed the observed magnetoresistance is due to spin-dependent tunneling effect. Temperature dependent study indicated that the total conductance of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16727v1-abstract-full').style.display = 'inline'; document.getElementById('2210.16727v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.16727v1-abstract-full" style="display: none;"> Magnetic tunnel junctions with wide band gap semiconductor ZnTe barrier were fabricated. A very low barrier height and sizable magnetoresistance were observed in the Fe/ZnTe/Fe junctions at room temperature. The nonlinear I-V characteristic curve confirmed the observed magnetoresistance is due to spin-dependent tunneling effect. Temperature dependent study indicated that the total conductance of the junction is dominated by direct tunneling, with only a small portion from the hopping conduction through the defect states inside the barrier. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.16727v1-abstract-full').style.display = 'none'; document.getElementById('2210.16727v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.06001">arXiv:2209.06001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.06001">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Integrated Artificial Neural Network with Trainable Activation Function Enabled by Topological Insulator-based Spin-Orbit Torque Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+P">Puyang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xin%2C+Y">Yue Xin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+Y">Yu Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+A">Albert Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhuo Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+W">Weijie Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Qi Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zhifeng Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.06001v2-abstract-short" style="display: inline;"> Non-volatile memristors offer a salient platform for artificial neural network (ANN), but the integration of different function blocks into one hardware system remains challenging. Here we demonstrate the implementation of brain-like synaptic (SOT-S) and neuronal (SOT-N) functions in the Bi2Te3/CrTe2 heterostructure-based spin-orbit torque (SOT) device. The SOT-S unit exhibits highly linear (linea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06001v2-abstract-full').style.display = 'inline'; document.getElementById('2209.06001v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.06001v2-abstract-full" style="display: none;"> Non-volatile memristors offer a salient platform for artificial neural network (ANN), but the integration of different function blocks into one hardware system remains challenging. Here we demonstrate the implementation of brain-like synaptic (SOT-S) and neuronal (SOT-N) functions in the Bi2Te3/CrTe2 heterostructure-based spin-orbit torque (SOT) device. The SOT-S unit exhibits highly linear (linearity error &lt; 4.19%) and symmetrical long-term potentiation/depression process, resulting in better performance compared to other memristor synapses. Meanwhile, the Sigmoid-shape transition curve inherited in the SOT-N cell replaces the software-based activation function block, hence reducing the system complexity. On this basis, we employ a serial-connected, voltage-mode sensing ANN architecture to enhance the vector-matrix multiplication signal strength with low reading error of 0.61%. Furthermore, the trainable activation function of SOT-N enables the integrated SOT-ANN to execute the Batch Normalization algorithm and activation operation within one clock cycle, which bring about improved on/off-chip training performance close to the ideal baseline. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06001v2-abstract-full').style.display = 'none'; document.getElementById('2209.06001v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05944">arXiv:2207.05944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.05944">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202304454">10.1002/adfm.202304454 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wafer-scale epitaxial growth of the thickness-controllable van der Waals ferromagnet CrTe2 for reliable magnetic memory applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xinqi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+Y">Yunyouyou Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+L">Lei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+P">Puyang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+L">Liyang Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+B">Baoshan Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Backes%2C+D">Dirk Backes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Laan%2C+G">Gerrit van der Laan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hesjedal%2C+T">Thorsten Hesjedal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yuchen Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+F">Fan Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meixiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junwei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Cheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yong Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Qi Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05944v1-abstract-short" style="display: inline;"> To harness the intriguing properties of two-dimensional van der Waals (vdW) ferromagnets (FMs) for versatile applications, the key challenge lies in the reliable material synthesis for scalable device production. Here, we demonstrate the epitaxial growth of single-crystalline 1T-CrTe2 thin films on 2-inch sapphire substrates. Benefiting from the uniform surface energy of the dangling bond-free Al2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05944v1-abstract-full').style.display = 'inline'; document.getElementById('2207.05944v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05944v1-abstract-full" style="display: none;"> To harness the intriguing properties of two-dimensional van der Waals (vdW) ferromagnets (FMs) for versatile applications, the key challenge lies in the reliable material synthesis for scalable device production. Here, we demonstrate the epitaxial growth of single-crystalline 1T-CrTe2 thin films on 2-inch sapphire substrates. Benefiting from the uniform surface energy of the dangling bond-free Al2O3(0001) surface, the layer-by-layer vdW growth mode is observed right from the initial growth stage, which warrants precise control of the sample thickness and atomically smooth surface morphology across the entire wafer. Moreover, the presence of the Coulomb interaction at the CrTe2/Al2O3 interface serves as an effective tuning parameter to tailor the anomalous Hall response, and the structural optimization of the CrTe2-based spin-orbit torque device leads to a substantial switching power reduction by 54%. Our results may lay out a general framework for the design of energy-efficient spintronics based on configurable vdW FMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05944v1-abstract-full').style.display = 'none'; document.getElementById('2207.05944v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11259">arXiv:2204.11259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.11259">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.1c03666">10.1021/acsnano.1c03666 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Visualization and Manipulation of Tunable Quantum Well State in Semiconducting Nb2SiTe4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhilong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shuai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+T">Tongshuai Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Cheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chengwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meixiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lexian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Haijun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11259v1-abstract-short" style="display: inline;"> Quantum well states (QWSs) can form at the surface or interfaces of materials with confinement potential. They have broad applications in electronic and optical devices such as high mobility electron transistor, photodetector and quantum well laser. The properties of the QWSs are usually the key factors for the performance of the devices. However, direct visualization and manipulation of such stat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11259v1-abstract-full').style.display = 'inline'; document.getElementById('2204.11259v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11259v1-abstract-full" style="display: none;"> Quantum well states (QWSs) can form at the surface or interfaces of materials with confinement potential. They have broad applications in electronic and optical devices such as high mobility electron transistor, photodetector and quantum well laser. The properties of the QWSs are usually the key factors for the performance of the devices. However, direct visualization and manipulation of such states are in general challenging. In this work, by using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we directly probe the QWSs generated on the vacuum interface of a narrow band gap semiconductor Nb2SiTe4. Interestingly, the position and splitting of QWSs could be easily manipulated via potassium (K) dosage onto the sample surface. Our results suggest Nb2SiTe4 to be an intriguing semiconductor system to study and engineer the QWSs, which has great potential in device applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11259v1-abstract-full').style.display = 'none'; document.getElementById('2204.11259v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 5 figures,</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano 2021 15 (10), 15850-15857 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.17059">arXiv:2203.17059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.17059">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Room Temperature Gate Tunable Non Reciprocal Charge Transport in Lattice Matched InSb/CdTe Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yuyang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoyang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+H">Hanzhi Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhi%2C+Z">Zhenghang Zhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jiuming Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+P">Puyang Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yuchen Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+C">Chenjia Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+R">Renchao Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.17059v2-abstract-short" style="display: inline;"> The manipulation of symmetry provides an effective way to tailor the physical orders in solid-state systems. With the breaking of both the inversion and time-reversal symmetries, non-reciprocal magneto-transport may emerge in assorted non-magnetic systems to enrich spintronic physics. Here, we report the observation of the uni-directional magneto-resistance (UMR) in the lattice-matched InSb/CdTe f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17059v2-abstract-full').style.display = 'inline'; document.getElementById('2203.17059v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.17059v2-abstract-full" style="display: none;"> The manipulation of symmetry provides an effective way to tailor the physical orders in solid-state systems. With the breaking of both the inversion and time-reversal symmetries, non-reciprocal magneto-transport may emerge in assorted non-magnetic systems to enrich spintronic physics. Here, we report the observation of the uni-directional magneto-resistance (UMR) in the lattice-matched InSb/CdTe film up to room temperature. Benefiting from the strong built-in electric field of $0.13 \mathrm{~V} \cdot \mathrm{nm}^{-1}$ in the hetero-junction region, the resulting Rashba-type spin-orbit coupling and quantum confinement warrant stable angular-dependent second-order charge current with the non-reciprocal coefficient 1-2 orders of magnitude larger than most non-centrosymmetric materials at 298 K. More importantly, this heterostructure configuration enables highly-efficient gate tuning of the rectification response in which the enhancement of the UMR amplitude by 40% is realized. Our results advocate the narrow-gap semiconductor-based hybrid system with the robust two-dimensional interfacial spin texture as a suitable platform for the pursuit of controllable chiral spin-orbit devices and applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17059v2-abstract-full').style.display = 'none'; document.getElementById('2203.17059v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04303">arXiv:2112.04303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04303">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41928-022-00880-1">10.1038/s41928-022-00880-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tailoring Magnetic Exchange Interactions in Ferromagnet-Intercalated MnBi2Te4 Superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Qi Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Q">Qiang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grutter%2C+A+J">Alexander J. Grutter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Quarterman%2C+P">P. Quarterman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+P+P">Purnima P. Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kinane%2C+C+J">Christy J. Kinane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caruana%2C+A+J">Andrew J. Caruana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Langridge%2C+S">Sean Langridge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+B">Baoshan Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yuchen Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+J">Jin Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yumeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04303v1-abstract-short" style="display: inline;"> The intrinsic magnetic topological insulator MnBi2Te4 (MBT) has provided a platform for the successful realization of exotic quantum phenomena. To broaden the horizons of MBT-based material systems, we intercalate ferromagnetic MnTe layers to construct the [(MBT)(MnTe)m]N superlattices by molecular beam epitaxy. The effective incorporation of ferromagnetic spacers mediates the anti-ferromagnetic i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04303v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04303v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04303v1-abstract-full" style="display: none;"> The intrinsic magnetic topological insulator MnBi2Te4 (MBT) has provided a platform for the successful realization of exotic quantum phenomena. To broaden the horizons of MBT-based material systems, we intercalate ferromagnetic MnTe layers to construct the [(MBT)(MnTe)m]N superlattices by molecular beam epitaxy. The effective incorporation of ferromagnetic spacers mediates the anti-ferromagnetic interlayer coupling among the MBT layers through the exchange spring effect at the MBT/MnTe hetero-interfaces. Moreover, the precise control of the MnTe thickness enables the modulation of relative strengths among the constituent magnetic orders, leading to tunable magnetoelectric responses, while the superlattice periodicity serves as an additional tuning parameter to tailor the spin configurations of the synthesized multi-layers. Our results demonstrate the advantages of superlattice engineering for optimizing the magnetic interactions in MBT-family systems, and the ferromagnet-intercalated strategy opens up new avenues in magnetic topological insulator structural design and spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04303v1-abstract-full').style.display = 'none'; document.getElementById('2112.04303v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.00540">arXiv:2110.00540</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.00540">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Gate-tunable Intrinsic Anomalous Hall Effect in Epitaxial MnBi2Te4 Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shanshan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jiexiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+E">Enze Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zihan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Q">Qiang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+M">Minhao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leng%2C+P">Pengliang Leng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+X">Xiangyu Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+J">Jin Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zang%2C+J">Jiadong Zang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiu%2C+F">Faxian Xiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.00540v1-abstract-short" style="display: inline;"> Anomalous Hall effect (AHE) is an important transport signature revealing topological properties of magnetic materials and their spin textures. Recently, antiferromagnetic MnBi2Te4 has been demonstrated to be an intrinsic magnetic topological insulator that exhibits quantum AHE in exfoliated nanoflakes. However, its complicated AHE behaviors may offer an opportunity for the unexplored correlation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00540v1-abstract-full').style.display = 'inline'; document.getElementById('2110.00540v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.00540v1-abstract-full" style="display: none;"> Anomalous Hall effect (AHE) is an important transport signature revealing topological properties of magnetic materials and their spin textures. Recently, antiferromagnetic MnBi2Te4 has been demonstrated to be an intrinsic magnetic topological insulator that exhibits quantum AHE in exfoliated nanoflakes. However, its complicated AHE behaviors may offer an opportunity for the unexplored correlation between magnetism and band structure. Here, we show the Berry curvature dominated intrinsic AHE in wafer-scale MnBi2Te4 thin films. By utilizing a high-dielectric SrTiO3 as the back-gate, we unveil an ambipolar conduction and electron-hole carrier (n-p) transition in ~7 septuple layer MnBi2Te4. A quadratic relation between the saturated AHE resistance and longitudinal resistance suggests its intrinsic AHE mechanism. For ~3 septuple layer MnBi2Te4, however, the AHE reverses its sign from pristine negative to positive under the electric-gating. The first-principles calculations demonstrate that such behavior is due to the competing Berry curvature between polarized spin-minority-dominated surface states and spin-majority-dominated inner-bands. Our results shed light on the physical mechanism of the gate-tunable intrinsic AHE in MnBi2Te4 thin films and provide a feasible approach to engineering its AHE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00540v1-abstract-full').style.display = 'none'; document.getElementById('2110.00540v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.10684">arXiv:2105.10684</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.10684">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Thickness-Driven Quantum Anomalous Hall Phase Transition in Magnetic Topological Insulator Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yuchen Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+S">Shifei Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Qi Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+Z">Zhenhua Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.10684v1-abstract-short" style="display: inline;"> The quantized version of anomalous Hall effect realized in magnetic topological insulators (MTIs) has great potential for the development of topological quantum physics and low-power electronic/spintronic applications. To enable dissipationless chiral edge conduction at zero magnetic field, effective exchange field arisen from the aligned magnetic dopants needs to be large enough to yield specific&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10684v1-abstract-full').style.display = 'inline'; document.getElementById('2105.10684v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.10684v1-abstract-full" style="display: none;"> The quantized version of anomalous Hall effect realized in magnetic topological insulators (MTIs) has great potential for the development of topological quantum physics and low-power electronic/spintronic applications. To enable dissipationless chiral edge conduction at zero magnetic field, effective exchange field arisen from the aligned magnetic dopants needs to be large enough to yield specific spin sub-band configurations. Here we report the thickness-tailored quantum anomalous Hall (QAH) effect in Cr-doped (Bi,Sb)2Te3 thin films by tuning the system across the two-dimensional (2D) limit. In addition to the Chern number-related metal-to-insulator QAH phase transition, we also demonstrate that the induced hybridization gap plays an indispensable role in determining the ground magnetic state of the MTIs, namely the spontaneous magnetization owning to considerable Van Vleck spin susceptibility guarantees the zero-field QAH state with unitary scaling law in thick samples, while the quantization of the Hall conductance can only be achieved with the assistance of external magnetic fields in ultra-thin films. The modulation of topology and magnetism through structural engineering may provide a useful guidance for the pursuit of QAH-based new phase diagrams and functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10684v1-abstract-full').style.display = 'none'; document.getElementById('2105.10684v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.04323">arXiv:2101.04323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.04323">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-26946-w">10.1038/s41467-021-26946-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Van der Waals Ferromagnetic Josephson Junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ai%2C+L">Linfeng Ai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+E">Enze Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Ce Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X">Xiaoyi Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yunkun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+Z">Zehao Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuda Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shanshan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zihan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leng%2C+P">Pengliang Leng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+X">Xingdan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z">Zheng Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiu%2C+F">Faxian Xiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.04323v1-abstract-short" style="display: inline;"> Superconductor-ferromagnet (S-F) interfaces in two-dimensional (2D) heterostructures present a unique opportunity to study the interplay between superconductivity and ferromagnetism. The realization of such nanoscale heterostructures in van der Waals (vdW) crystals remains largely unexplored due to the challenge of making an atomically-sharp interface from their layered structures. Here, we build&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.04323v1-abstract-full').style.display = 'inline'; document.getElementById('2101.04323v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.04323v1-abstract-full" style="display: none;"> Superconductor-ferromagnet (S-F) interfaces in two-dimensional (2D) heterostructures present a unique opportunity to study the interplay between superconductivity and ferromagnetism. The realization of such nanoscale heterostructures in van der Waals (vdW) crystals remains largely unexplored due to the challenge of making an atomically-sharp interface from their layered structures. Here, we build a vdW ferromagnetic Josephson junction (JJ) by inserting a few-layer ferromagnetic insulator Cr2Ge2Te6 into two layers of superconductor NbSe2. Owing to the remanent magnetic moment of the barrier, the critical current and the corresponding junction resistance exhibit a hysteretic and oscillatory behavior against in-plane magnetic fields, manifesting itself as a strong Josephson coupling state. Through the control of this hysteresis, we can effectively trace the magnetic properties of atomic Cr2Ge2Te6 in response to the external magnetic field. Also, we observe a central minimum of critical current in some thick JJ devices, evidencing the coexistence of 0 and 蟺 phase coupling in the junction region. Our study paves the way to exploring the sensitive probes of weak magnetism and multifunctional building blocks for phase-related superconducting circuits with the use of vdW heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.04323v1-abstract-full').style.display = 'none'; document.getElementById('2101.04323v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.04148">arXiv:2011.04148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.04148">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1080/23746149.2020.1870560">10.1080/23746149.2020.1870560 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Insulators-Based Magnetic Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Qi Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+Y">Yuchen Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Q">Qing-Lin He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.04148v1-abstract-short" style="display: inline;"> The combination of magnetism and topology in magnetic topological insulators (MTIs) has led to unprecedented advancements of time reversal symmetry-breaking topological quantum physics in the past decade. Compared with the uniform films, the MTI heterostructures provide a better framework to manipulate the spin-orbit coupling and spin properties. In this review, we summarize the fundamental mechan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04148v1-abstract-full').style.display = 'inline'; document.getElementById('2011.04148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.04148v1-abstract-full" style="display: none;"> The combination of magnetism and topology in magnetic topological insulators (MTIs) has led to unprecedented advancements of time reversal symmetry-breaking topological quantum physics in the past decade. Compared with the uniform films, the MTI heterostructures provide a better framework to manipulate the spin-orbit coupling and spin properties. In this review, we summarize the fundamental mechanisms related to the physical orders host in (Bi,Sb)2(Te,Se)3-based hybrid systems. Besides, we provide an assessment on the general strategies to enhance the magnetic coupling and spin-orbit torque strength through different structural engineering approaches and effective interfacial interactions. Finally, we offer an outlook of MTI heterostructures-based spintronics applications, particularly in view of their feasibility to achieve room-temperature operation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04148v1-abstract-full').style.display = 'none'; document.getElementById('2011.04148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.12775">arXiv:2010.12775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.12775">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> The Discovery of Tunable Universality Class in Superconducting $尾$-W Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Ce Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+E">Enze Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jinglei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiu%2C+F">Faxian Xiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Haiwen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X">Xiaoyi Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ai%2C+L">Linfeng Ai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yunkun Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+M">Minhao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+J">Junjie Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shanshan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zihan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhan%2C+R">Runze Zhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bie%2C+Y">Ya-Qing Bie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+S">Shaozhi Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.12775v1-abstract-short" style="display: inline;"> The interplay between quenched disorder and critical behavior in quantum phase transitions is conceptually fascinating and of fundamental importance for understanding phase transitions. However, it is still unclear whether or not the quenched disorder influences the universality class of quantum phase transitions. More crucially, the absence of superconducting-metal transitions under in-plane magn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12775v1-abstract-full').style.display = 'inline'; document.getElementById('2010.12775v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.12775v1-abstract-full" style="display: none;"> The interplay between quenched disorder and critical behavior in quantum phase transitions is conceptually fascinating and of fundamental importance for understanding phase transitions. However, it is still unclear whether or not the quenched disorder influences the universality class of quantum phase transitions. More crucially, the absence of superconducting-metal transitions under in-plane magnetic fields in 2D superconductors imposes constraints on the universality of quantum criticality. Here, we discover the tunable universality class of superconductor-metal transition by changing the disorder strength in $尾$-W films with varying thickness. The finite-size scaling uncovers the switch of universality class: quantum Griffiths singularity to multiple quantum criticality at a critical thickness of $t_{c \perp 1}\sim 8 nm$ and then from multiple quantum criticality to single criticality at $t_{c\perp 2}\sim 16 nm$. Moreover, the superconducting-metal transition is observed for the first time under in-plane magnetic fields and the universality class is changed at $t_{c \parallel }\sim 8 nm$. The discovery of tunable universality class under both out-of-plane and in-plane magnetic fields provides broad information for the disorder effect on superconducting-metal transitions and quantum criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12775v1-abstract-full').style.display = 'none'; document.getElementById('2010.12775v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.02002">arXiv:2009.02002</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.02002">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.matt.2020.09.005">10.1016/j.matt.2020.09.005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of topological electronic structure in quasi-1D superconductor TaSe3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C">Cheng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liang%2C+A">Aiji Liang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+S">Shuai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+S">Simin Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Junwei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meixiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yiwei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pei%2C+D">Ding Pei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haifeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+H">Huijun Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barinov%2C+A">Alexei Barinov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lexian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhijun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+H">Hongtao Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.02002v2-abstract-short" style="display: inline;"> Topological superconductors (TSCs), with the capability to host Majorana bound states that can lead to non-Abelian statistics and application in quantum computation, have been one of the most intensively studied topics in condensed matter physics recently. Up to date, only a few compounds have been proposed as candidates of intrinsic TSCs, such as doped topological insulator CuxBi2Se3 and iron-bas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.02002v2-abstract-full').style.display = 'inline'; document.getElementById('2009.02002v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.02002v2-abstract-full" style="display: none;"> Topological superconductors (TSCs), with the capability to host Majorana bound states that can lead to non-Abelian statistics and application in quantum computation, have been one of the most intensively studied topics in condensed matter physics recently. Up to date, only a few compounds have been proposed as candidates of intrinsic TSCs, such as doped topological insulator CuxBi2Se3 and iron-based superconductor FeTe0.55Se0.45. Here, by carrying out synchrotron and laser based angle-resolved photoemission spectroscopy (ARPES), we systematically investigated the electronic structure of a quasi-1D superconductor TaSe3, and identified the nontrivial topological surface states. In addition, our scanning tunneling microscopy (STM) study revealed a clean cleaved surface with a persistent superconducting gap, proving it suitable for further investigation of potential Majorana modes. These results prove TaSe3 as a stoichiometric TSC candidate that is stable and exfoliable, therefore a great platform for the study of rich novel phenomena and application potentials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.02002v2-abstract-full').style.display = 'none'; document.getElementById('2009.02002v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in Matter</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.10319">arXiv:2006.10319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.10319">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.214418">10.1103/PhysRevB.101.214418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Current-induced magnetization switching in CoTb amorphous single layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+R+Q">R. Q. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+L+Y">L. Y. Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+Z">X. Z. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+T">T. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+L">L. Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+M+H">M. H. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+H">Hao Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+L">L. Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+F+H">F. H. Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+J">J. Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+C+H">C. H. Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+H">Hua Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y+X">Y. X. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+R+Y">R. Y. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+N">N. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W+J">W. J. Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X+F">X. F. Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+J+W">J. W. Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H+Q">H. Q. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+F">F. Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">C. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.10319v1-abstract-short" style="display: inline;"> We demonstrate spin-orbit torque (SOT) switching of amorphous CoTb single layer films with perpendicular magnetic anisotropy (PMA). The switching sustains even the film thickness is above 10 nm, where the critical switching current density keeps almost constant. Without the need of overcoming the strong interfacial Dzyaloshinskii-Moriya interaction caused by the heavy metal, a quite low assistant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10319v1-abstract-full').style.display = 'inline'; document.getElementById('2006.10319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.10319v1-abstract-full" style="display: none;"> We demonstrate spin-orbit torque (SOT) switching of amorphous CoTb single layer films with perpendicular magnetic anisotropy (PMA). The switching sustains even the film thickness is above 10 nm, where the critical switching current density keeps almost constant. Without the need of overcoming the strong interfacial Dzyaloshinskii-Moriya interaction caused by the heavy metal, a quite low assistant field of ~20 Oe is sufficient to realize the fully switching. The SOT effective field decreases and undergoes a sign change with the decrease of the Tb-concentration, implying that a combination of the spin Hall effect from both Co and Tb as well as an asymmetric spin current absorption accounts for the SOT switching mechanism. Our findings would advance the use of magnetic materials with bulk PMA for energy-efficient and thermal-stable non-volatile memories, and add a different dimension for understanding the ordering and asymmetry in amorphous thin films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10319v1-abstract-full').style.display = 'none'; document.getElementById('2006.10319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures, Phys. Rev. B 101, 214418 (2020)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07157">arXiv:1912.07157</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.07157">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.9b04932">10.1021/acs.nanolett.9b04932 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tailoring Hybrid Anomalous Hall Response in Engineered Magnetic Topological Insulator Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Q">Qi Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+F">Fugu Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Z">Zhengkun Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoyang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liao%2C+L">Liyang Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+C">Cheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jingyuan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+J">Jing Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burn%2C+D+M">David M. Burn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Laan%2C+G">Gerrit van der Laan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hesjedal%2C+T">Thorsten Hesjedal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shilei Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07157v1-abstract-short" style="display: inline;"> Engineering the anomalous Hall effect (AHE) in the emerging magnetic topological insulators (MTIs) has great potentials for quantum information processing and spintronics applications. In this letter, we synthesize the epitaxial Bi2Te3/MnTe magnetic heterostructures and observe pronounced AHE signals from both layers combined together. The evolution of the resulting hybrid AHE intensity with the t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07157v1-abstract-full').style.display = 'inline'; document.getElementById('1912.07157v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07157v1-abstract-full" style="display: none;"> Engineering the anomalous Hall effect (AHE) in the emerging magnetic topological insulators (MTIs) has great potentials for quantum information processing and spintronics applications. In this letter, we synthesize the epitaxial Bi2Te3/MnTe magnetic heterostructures and observe pronounced AHE signals from both layers combined together. The evolution of the resulting hybrid AHE intensity with the top Bi2Te3 layer thickness manifests the presence of an intrinsic ferromagnetic phase induced by the topological surface states at the heterolayer-interface. More importantly, by doping the Bi2Te3 layer with Sb, we are able to manipulate the sign of the Berry phase-associated AHE component. Our results demonstrate the un-paralleled advantages of MTI heterostructures over magnetically doped TI counterparts, in which the tunability of the AHE response can be greatly enhanced. This in turn unveils a new avenue for MTI heterostructure-based multifunctional applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07157v1-abstract-full').style.display = 'none'; document.getElementById('1912.07157v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01421">arXiv:1912.01421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.01421">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.155117">10.1103/PhysRevB.101.155117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bulk Fermi surface of the layered superconductor TaSe3 with three-dimensional strong topological insulator state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">Xianbiao Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+H">Hao Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+L">Linchao Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+L">Leiming Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xia Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Z">Zhiqiang Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+N">Na Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+L">Li Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hao%2C+Y">Yufeng Hao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Bin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Z">Zengwei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weiwei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01421v1-abstract-short" style="display: inline;"> High magnetic field transport measurements and ab initio calculations on the layered superconductor TaSe3 have provided compelling evidences for the existence of a three-dimensional strong topological insulator state. Longitudinal magnetotransport measurements up to ~ 33 T unveiled striking Shubnikov-de Hass oscillations with two fundamental frequencies at 100 T and 175 T corresponding to a nontri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01421v1-abstract-full').style.display = 'inline'; document.getElementById('1912.01421v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01421v1-abstract-full" style="display: none;"> High magnetic field transport measurements and ab initio calculations on the layered superconductor TaSe3 have provided compelling evidences for the existence of a three-dimensional strong topological insulator state. Longitudinal magnetotransport measurements up to ~ 33 T unveiled striking Shubnikov-de Hass oscillations with two fundamental frequencies at 100 T and 175 T corresponding to a nontrivial electron Fermi pocket at the B point and a nontrivial hole Fermi pocket at the 螕 point respectively in the Brillouin zone. However, calculations revealed one more electron pocket at the B point, which was not detected by the magnetotransport measurements, presumably due to the limited carrier momentum relaxation time. Angle dependent quantum oscillations by rotating the sample with respect to the magnetic field revealed clear changes in the two fundamental frequencies, indicating anisotropic electronic Fermi pockets. The ab initio calculations gave the topological Z2 invariants of (1; 100) and revealed a single Dirac cone on the (1 0 -1) surface at the X point with helical spin texture at a constant-energy contour, suggesting a strong topological insulator state. The results demonstrate TaSe3 an excellent platform to study the interplay between topological phase and superconductivity and a promising system for the exploration of topological superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01421v1-abstract-full').style.display = 'none'; document.getElementById('1912.01421v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures, 1 table. arXiv admin note: text overlap with arXiv:1911.03844</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 155117 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.02603">arXiv:1910.02603</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.02603">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Pressure-induced superconductivity and topological phase transitions in the topological nodal-line semimetal SrAs3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+E+J">E. J. Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">W. Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X+B">X. B. Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Z+H">Z. H. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+L+M">L. M. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peets%2C+D+C">D. C. Peets</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+C+C">C. C. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+H">H. Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+D+Z">D. Z. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Z+Q">Z. Q. Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+N">N. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X+F">X. F. Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W+G">W. G. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W+W">W. W. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y+F">Y. F. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S+Y">S. Y. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.02603v1-abstract-short" style="display: inline;"> Topological nodal-line semimetals (TNLSMs) are materials whose conduction and valence bands cross each other, meeting a topologically-protected closed loop rather than discrete points in the Brillouin zone (BZ). The anticipated properties for TNLSMs include drumhead-like nearly flat surface states, unique Landau energy levels, special collective modes, long-range Coulomb interactions, or the possi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02603v1-abstract-full').style.display = 'inline'; document.getElementById('1910.02603v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.02603v1-abstract-full" style="display: none;"> Topological nodal-line semimetals (TNLSMs) are materials whose conduction and valence bands cross each other, meeting a topologically-protected closed loop rather than discrete points in the Brillouin zone (BZ). The anticipated properties for TNLSMs include drumhead-like nearly flat surface states, unique Landau energy levels, special collective modes, long-range Coulomb interactions, or the possibility of realizing high-temperature superconductivity. Recently, SrAs3 has been theoretically proposed and then experimentally confirmed to be a TNLSM. Here, we report high-pressure experiments on SrAs3, identifying a Lifshitz transition below 1 GPa and a superconducting transition accompanied by a structural phase transition above 20 GPa. A topological crystalline insulator (TCI) state is revealed by means of density functional theory (DFT) calculations on the emergent high-pressure phase. As the counterpart of topological insulators, TCIs possess metallic boundary states protected by crystal symmetry, rather than time reversal. In consideration of topological surface states (TSSs) and helical spin texture observed in the high-pressure state of SrAs3, the superconducting state may be induced in the surface states, and is most likely topologically nontrivial, making pressurized SrAs3 a strong candidate for topological superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02603v1-abstract-full').style.display = 'none'; document.getElementById('1910.02603v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 5, 38 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.01850">arXiv:1710.01850</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.01850">pdf</a>, <a href="https://arxiv.org/format/1710.01850">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.075145">10.1103/PhysRevB.98.075145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fox%2C+E+J">E. J. Fox</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosen%2C+I+T">I. T. Rosen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yanfei Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+G+R">George R. Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elmquist%2C+R+E">Randolph E. Elmquist</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldhaber-Gordon%2C+D">D. Goldhaber-Gordon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.01850v1-abstract-short" style="display: inline;"> In the quantum anomalous Hall effect, quantized Hall resistance and vanishing longitudinal resistivity are predicted to result from the presence of dissipationless, chiral edge states and an insulating 2D bulk, without requiring an external magnetic field. Here, we explore the potential of this effect in magnetic topological insulator thin films for metrological applications. Using a cryogenic cur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01850v1-abstract-full').style.display = 'inline'; document.getElementById('1710.01850v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.01850v1-abstract-full" style="display: none;"> In the quantum anomalous Hall effect, quantized Hall resistance and vanishing longitudinal resistivity are predicted to result from the presence of dissipationless, chiral edge states and an insulating 2D bulk, without requiring an external magnetic field. Here, we explore the potential of this effect in magnetic topological insulator thin films for metrological applications. Using a cryogenic current comparator system, we measure quantization of the Hall resistance to within one part per million and longitudinal resistivity under 10 m$惟$ per square at zero magnetic field. Increasing the current density past a critical value leads to a breakdown of the quantized, low-dissipation state, which we attribute to electron heating in bulk current flow. We further investigate the pre-breakdown regime by measuring transport dependence on temperature, current, and geometry, and find evidence for bulk dissipation, including thermal activation and possible variable-range hopping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01850v1-abstract-full').style.display = 'none'; document.getElementById('1710.01850v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, with 7 pages of supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 075145 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.08677">arXiv:1707.08677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.08677">pdf</a>, <a href="https://arxiv.org/format/1707.08677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-017-0073-0">10.1038/s41535-017-0073-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral transport along magnetic domain walls in the quantum anomalous Hall effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rosen%2C+I+T">I. T. Rosen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fox%2C+E+J">E. J. Fox</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldhaber-Gordon%2C+D">D. Goldhaber-Gordon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.08677v1-abstract-short" style="display: inline;"> The recent prediction, and subsequent discovery, of the quantum anomalous Hall (QAH) effect in thin films of the three-dimensional ferromagnetic topological insulator (MTI) (Cr$_y$Bi$_x$Sb$_{1-x-y}$)$_2$Te$_3$ has opened new possibilities for chiral-edge-state-based devices in zero external magnetic field. Like the $谓=1$ quantum Hall system, the QAH system is predicted to have a single chiral edge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08677v1-abstract-full').style.display = 'inline'; document.getElementById('1707.08677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.08677v1-abstract-full" style="display: none;"> The recent prediction, and subsequent discovery, of the quantum anomalous Hall (QAH) effect in thin films of the three-dimensional ferromagnetic topological insulator (MTI) (Cr$_y$Bi$_x$Sb$_{1-x-y}$)$_2$Te$_3$ has opened new possibilities for chiral-edge-state-based devices in zero external magnetic field. Like the $谓=1$ quantum Hall system, the QAH system is predicted to have a single chiral edge mode circulating along the boundary of the film. Backscattering of the chiral edge mode should be suppressed, as recently verified by the observation of well-quantized Hall resistivities $蟻_{yx} = \pm h/e^2$, along with longitudinal resistivities as low as a few ohms. Dissipationless 1D conduction is also expected along magnetic domain walls. Here, we intentionally create a magnetic domain wall in a MTI and study electrical transport along the domain wall. We present the first observation of chiral transport along domain walls, in agreement with theoretical predictions. We present further evidence that two modes equilibrate and co-propagate along the length of the domain wall. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.08677v1-abstract-full').style.display = 'none'; document.getElementById('1707.08677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, with 8 pages of supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 2, 69 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.03122">arXiv:1703.03122</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.03122">pdf</a>, <a href="https://arxiv.org/format/1703.03122">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-017-01984-5">10.1038/s41467-017-01984-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Zero-field Edge Magnetoplasmons in a Magnetic Topological Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mahoney%2C+A+C">A. C. Mahoney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colless%2C+J+I">J. I. Colless</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peeters%2C+L">L. Peeters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pauka%2C+S+J">S. J. Pauka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fox%2C+E+J">E. J. Fox</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">X. Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">K. L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldhaber-Gordon%2C+D">D. Goldhaber-Gordon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reilly%2C+D+J">D. J. Reilly</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.03122v1-abstract-short" style="display: inline;"> Incorporating ferromagnetic dopants, such as chromium or vanadium, into thin films of the three-dimensional (3D) topological insulator (TI) (Bi,Sb)2Te3 has recently led to the realisation of the quantum anomalous Hall effect (QAHE), a unique phase of quantum matter. These materials are of great interest, since they may support electrical currents that flow without resistance via edge channels, eve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.03122v1-abstract-full').style.display = 'inline'; document.getElementById('1703.03122v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.03122v1-abstract-full" style="display: none;"> Incorporating ferromagnetic dopants, such as chromium or vanadium, into thin films of the three-dimensional (3D) topological insulator (TI) (Bi,Sb)2Te3 has recently led to the realisation of the quantum anomalous Hall effect (QAHE), a unique phase of quantum matter. These materials are of great interest, since they may support electrical currents that flow without resistance via edge channels, even at zero magnetic field. To date, the QAHE has been investigated using low-frequency transport measurements. However, transport requires contacting the sample and results can be difficult to interpret due to the presence of parallel conductive paths, via either the bulk or surface, or because additional non-chiral edge channels may exist. Here, we move beyond transport measurements by probing the microwave response of a magnetised disk of Cr-(Bi,Sb)2Te3. We identify features associated with chiral edge magnetoplasmons (EMPs), a signature that robust edge-channels are indeed intrinsic to this material system. Our results provide a measure of the velocity of edge excitations without contacting the sample, and pave the way for a new, on-chip circuit element of practical importance: the TI, zero-field microwave circulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.03122v1-abstract-full').style.display = 'none'; document.getElementById('1703.03122v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.01661">arXiv:1612.01661</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.01661">pdf</a>, <a href="https://arxiv.org/format/1612.01661">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.096802">10.1103/PhysRevLett.121.096802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological transitions induced by antiferromagnetism in a thin-film topological insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Q+L">Qing Lin He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+G">Gen Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+L">Luyan Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grutter%2C+A+J">Alexander J. Grutter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+X">Xiaoyu Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+T">Tianxiao Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+B">Bin Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murata%2C+K">Koichi Murata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xiaodan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yabin Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+X">Xiaodong Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirby%2C+B+J">Brian J. Kirby</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.01661v1-abstract-short" style="display: inline;"> Ferromagnetism in topological insulators (TIs) opens a topologically non-trivial exchange band gap, providing an exciting platform to manipulate the topological order through an external magnetic field. Here, we experimentally show that the surface of an antiferromagnetic thin film can independently control the topological order of the top and the bottom surface states of a TI thin film through pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.01661v1-abstract-full').style.display = 'inline'; document.getElementById('1612.01661v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.01661v1-abstract-full" style="display: none;"> Ferromagnetism in topological insulators (TIs) opens a topologically non-trivial exchange band gap, providing an exciting platform to manipulate the topological order through an external magnetic field. Here, we experimentally show that the surface of an antiferromagnetic thin film can independently control the topological order of the top and the bottom surface states of a TI thin film through proximity couplings. During the magnetization reversal in a field scan, two intermediate spin configurations stem from unsynchronized magnetic switchings of the top and the bottom AFM/TI interfaces. These magnetic configurations are shown to result in new topological phases with non-zero Chern numbers for each surface, introducing two counter-propagating chiral edge modes inside the exchange gap. This change in the number of transport channels, as the result of the topological transitions, induces antisymmetric magneto-resistance spikes during the magnetization reversal. With the high Neel ordering temperature provided by the antiferromagnetic layers, the signature of the induced topological transition persists in transport measurements up to a temperature of around 90 K, a factor of three over the Curie temperature in a typical magnetically doped TI thin film. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.01661v1-abstract-full').style.display = 'none'; document.getElementById('1612.01661v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 096802 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.05712">arXiv:1606.05712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.05712">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aag2792">10.1126/science.aag2792 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral Majorana edge state in a quantum anomalous Hall insulator-superconductor structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Q+L">Qing Lin He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stern%2C+A+L">Alexander L. Stern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burks%2C+E">Edward Burks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+X">Xiaoyu Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+G">Gen Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lian%2C+B">Biao Lian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Q">Quan Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">Eun Sang Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murata%2C+K">Koichi Murata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+T">Tianxiao Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yabin Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shou-Cheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+J">Jing Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.05712v1-abstract-short" style="display: inline;"> After the recognition of the possibility to implement Majorana fermions using the building blocks of solid-state matters, the detection of this peculiar particle has been an intense focus of research. Here we experimentally demonstrate a collection of Majorana fermions living in a one-dimensional transport channel at the boundary of a superconducting quantum anomalous Hall insulator thin film. A s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.05712v1-abstract-full').style.display = 'inline'; document.getElementById('1606.05712v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.05712v1-abstract-full" style="display: none;"> After the recognition of the possibility to implement Majorana fermions using the building blocks of solid-state matters, the detection of this peculiar particle has been an intense focus of research. Here we experimentally demonstrate a collection of Majorana fermions living in a one-dimensional transport channel at the boundary of a superconducting quantum anomalous Hall insulator thin film. A series of topological phase changes are controlled by the reversal of the magnetization, where a half-integer quantized conductance plateau (0.5e2/h) is observed as a clear signature of the Majorana phase. This transport signature can be well repeated during many magnetic reversal sweeps, and can be tracked at different temperatures, providing a promising evidence of the chiral Majorana edge modes in the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.05712v1-abstract-full').style.display = 'none'; document.getElementById('1606.05712v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.04854">arXiv:1605.04854</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.04854">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nmat4783">10.1038/nmat4783 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tailoring Exchange Couplings in Magnetic Topological Insulator/Antiferromagnet Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Q+L">Qing Lin He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grutter%2C+A+J">Alexander J. Grutter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+X">Xiaoyu Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuxiang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+T">Tianxiao Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Disseler%2C+S+M">Steven M. Disseler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirby%2C+B+J">Brian J. Kirby</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ratcliff%2C+W">William Ratcliff II</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murata%2C+K">Koichi Murata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yabin Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montazeri%2C+M">Mohammad Montazeri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borchers%2C+J+A">Julie A. Borchers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.04854v1-abstract-short" style="display: inline;"> Magnetic topological insulators such as Cr-doped (Bi,Sb)2Te3 provide a platform for the realization of versatile time-reversal symmetry-breaking physics. By constructing heterostructures with N茅el order in an antiferromagnetic CrSb and magnetic topological order in Cr-doped (Bi,Sb)2Te3, we realize emergent interfacial magnetic phenomena which can be tailored through artificial structural engineeri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.04854v1-abstract-full').style.display = 'inline'; document.getElementById('1605.04854v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.04854v1-abstract-full" style="display: none;"> Magnetic topological insulators such as Cr-doped (Bi,Sb)2Te3 provide a platform for the realization of versatile time-reversal symmetry-breaking physics. By constructing heterostructures with N茅el order in an antiferromagnetic CrSb and magnetic topological order in Cr-doped (Bi,Sb)2Te3, we realize emergent interfacial magnetic phenomena which can be tailored through artificial structural engineering. Through deliberate geometrical design of heterostructures and superlattices, we demonstrate the use of antiferromagnetic exchange coupling in manipulating the magnetic properties of the topological surface massive Dirac fermions. This work provides a new framework on integrating topological insulators with antiferromagnetic materials and unveils new avenues towards dissipationless topological antiferromagnetic spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.04854v1-abstract-full').style.display = 'none'; document.getElementById('1605.04854v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.07442">arXiv:1511.07442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.07442">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nnano.2015.294">10.1038/nnano.2015.294 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric-field control of spin-orbit torque in a magnetically doped topological insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yabin Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Upadhyaya%2C+P">Pramey Upadhyaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Murong Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Che%2C+X">Xiaoyu Che</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jianshi Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montazeri%2C+M">Mohammad Montazeri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murata%2C+K">Koichi Murata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+L">Li-Te Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Akyol%2C+M">Mustafa Akyol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+T">Tianxiao Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+K+L">Kin L. Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tserkovnyak%2C+Y">Yaroslav Tserkovnyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.07442v1-abstract-short" style="display: inline;"> Electric-field manipulation of magnetic order has proved of both fundamental and technological importance in spintronic devices. So far, electric-field control of ferromagnetism, magnetization and magnetic anisotropy has been explored in various magnetic materials, but the efficient electric-field control of spin-orbit torque (SOT) still remains elusive. Here, we report the effective electric-fiel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.07442v1-abstract-full').style.display = 'inline'; document.getElementById('1511.07442v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.07442v1-abstract-full" style="display: none;"> Electric-field manipulation of magnetic order has proved of both fundamental and technological importance in spintronic devices. So far, electric-field control of ferromagnetism, magnetization and magnetic anisotropy has been explored in various magnetic materials, but the efficient electric-field control of spin-orbit torque (SOT) still remains elusive. Here, we report the effective electric-field control of a giant SOT in a Cr-doped topological insulator (TI) thin film using a top-gate FET structure. The SOT strength can be modulated by a factor of 4 within the accessible gate voltage range, and it shows strong correlation with the spin-polarized surface current in the film. Furthermore, we demonstrate the magnetization switching by scanning gate voltage with constant current and in-plane magnetic field applied in the film. The effective electric-field control of SOT and the giant spin-torque efficiency in Cr-doped TI may lead to the development of energy-efficient gate-controlled spin-torque devices compatible with modern field-effect semiconductor technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.07442v1-abstract-full').style.display = 'none'; document.getElementById('1511.07442v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.08940">arXiv:1506.08940</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.08940">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.1502330112">10.1073/pnas.1502330112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoscale $尾$-Nuclear Magnetic Resonance Depth Imaging of Topological Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Koumoulis%2C+D">Dimitrios Koumoulis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morris%2C+G+D">Gerald D. Morris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Liang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=King%2C+D">Danny King Jr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D">Dong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+D">Masrur D. Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fiete%2C+G+A">Gregory A. Fiete</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kanatzidis%2C+M+G">Mercouri G. Kanatzidis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouchard%2C+L">Louis-S. Bouchard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.08940v1-abstract-short" style="display: inline;"> Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.08940v1-abstract-full').style.display = 'inline'; document.getElementById('1506.08940v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.08940v1-abstract-full" style="display: none;"> Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein we present a non-invasive depth-profiling technique based on $尾$-NMR spectroscopy of radioactive $^8$Li$^+$ ions that can provide &#34;one-dimensional imaging&#34; in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the $^8$Li nuclear resonance near the surface and 10 nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological non-trivial characteristics that affect the electron-nuclear hyperfine field, the metallic shift and magnetic order. These nanoscale variations in $尾$-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.08940v1-abstract-full').style.display = 'none'; document.getElementById('1506.08940v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 12 figures in Proc. Natl. Aca. Sci. USA (2015) Published online - early edition</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.06841">arXiv:1506.06841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.06841">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/17/11/113042">10.1088/1367-2630/17/11/113042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetism-induced massive Dirac spectra and topological defects in the surface state of Cr-doped Bi$_2$Se$_3$-bilayer topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C+-">C. -C. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teague%2C+M+L">M. L. Teague</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">X. Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">M. Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+W">W. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Woodward%2C+N">N. Woodward</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+-">K. -L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeh%2C+N+-">N. -C. Yeh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.06841v2-abstract-short" style="display: inline;"> Proximity-induced magnetic effects on the surface Dirac spectra of topological insulators are investigated by scanning tunneling spectroscopic (STS) studies of bilayer structures consisting of undoped Bi2Se3 thin films on top of Cr-doped Bi2Se3 layers. For thickness of the top Bi2Se3 layer equal to or smaller than 3 quintuple layers (QL), a spatially inhomogeneous surface spectral gap 螖opens up be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.06841v2-abstract-full').style.display = 'inline'; document.getElementById('1506.06841v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.06841v2-abstract-full" style="display: none;"> Proximity-induced magnetic effects on the surface Dirac spectra of topological insulators are investigated by scanning tunneling spectroscopic (STS) studies of bilayer structures consisting of undoped Bi2Se3 thin films on top of Cr-doped Bi2Se3 layers. For thickness of the top Bi2Se3 layer equal to or smaller than 3 quintuple layers (QL), a spatially inhomogeneous surface spectral gap 螖opens up below T_c^{2D}, which is much higher than the bulk Curie temperature T_c^{3D}. The mean value and spatial homogeneity of the gap 螖generally increase with increasing c-axis magnetic field (H) and increasing Cr doping level (x), suggesting that the physical origin of this surface gap is associated with proximity-induced c-axis ferromagnetism. On the other hand, the temperature (T) dependence of 螖is non-monotonic, showing an initial increase below T_c^{2D} followed by a dip and then reaching maximum at T &lt;&lt; T_c^{3D}. These phenomena may be attributed to proximity magnetism induced by two types of contributions with different temperature dependence: a 3D contribution from the bulk magnetism that dominates at low T, and a 2D contribution associated with the RKKY interactions mediated by surface Dirac fermions, which dominates at T_c^{3D} &lt;&lt; T &lt; T_c^{2D}. Additionally, spatially localized sharp resonant spectra are found along the boundaries of gapped and gapless regions. These spectral resonances are long-lived at H = 0 and become suppressed under strong c-axis magnetic fields, and are attributed to magnetic impurity-induced topological defects in the spin texture of surface Dirac fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.06841v2-abstract-full').style.display = 'none'; document.getElementById('1506.06841v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript 14 pages, 6 figures. Supplementary Information 7 pages. Accepted for publication in New Journal of Physics (2015)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New Journal of Physics 17, 113042 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.00728">arXiv:1505.00728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.00728">pdf</a>, <a href="https://arxiv.org/format/1505.00728">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.214440">10.1103/PhysRevB.92.214440 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant magneto-optic Kerr effect in the magnetic topological insulator Cr:(Sb$_x$,Bi$_{1-x}$)$_2$Te$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Patankar%2C+S">Shreyas Patankar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinton%2C+J+P">J. P. Hinton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Griesmar%2C+J">Joel Griesmar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orenstein%2C+J">J. Orenstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dodge%2C+J+S">J. S. Dodge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bestwick%2C+A+J">A. J. Bestwick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fox%2C+E+J">E. J. Fox</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldhaber-Gordon%2C+D">D. Goldhaber-Gordon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shou-Cheng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.00728v3-abstract-short" style="display: inline;"> We report measurements of the polar Kerr effect, proportional to the out-of-plane component of the magnetization, in thin films of the magnetically doped topological insulator $(\text{Cr}_{0.12}\text{Bi}_{0.26}\text{Sb}_{0.62})_2\text{Te}_3$. Measurements of the complex Kerr angle, $螛_K$, were performed as a function of photon energy in the range $0.8\text{ eV}&lt;\hbar蠅&lt;3.0\text{ eV}$. We observed a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.00728v3-abstract-full').style.display = 'inline'; document.getElementById('1505.00728v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.00728v3-abstract-full" style="display: none;"> We report measurements of the polar Kerr effect, proportional to the out-of-plane component of the magnetization, in thin films of the magnetically doped topological insulator $(\text{Cr}_{0.12}\text{Bi}_{0.26}\text{Sb}_{0.62})_2\text{Te}_3$. Measurements of the complex Kerr angle, $螛_K$, were performed as a function of photon energy in the range $0.8\text{ eV}&lt;\hbar蠅&lt;3.0\text{ eV}$. We observed a peak in the real part of $螛_K(蠅)$ and zero crossing in the imaginary part that we attribute to resonant interaction with a spin-orbit avoided crossing located $\approx$ 1.6 eV above the Fermi energy. The resonant enhancement allows measurement of the temperature and magnetic field dependence of $螛_K$ in the ultrathin film limit, $d\geq2$ quintuple layers. We find a sharp transition to zero remanent magnetization at 6 K for $d&lt;8$~QL, consistent with theories of the dependence of impurity spin interactions on film thickness and their location relative to topological insulator surfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.00728v3-abstract-full').style.display = 'none'; document.getElementById('1505.00728v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 214440 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.04150">arXiv:1503.04150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.04150">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms9474">10.1038/ncomms9474 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Metal-to-Insulator Switching in Quantum Anomalous Hall States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+J">Jing Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yabin Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">Eun Sang Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Wei-Li Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+T">Tianxiao Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murata%2C+K">Koichi Murata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shou-Cheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.04150v2-abstract-short" style="display: inline;"> After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator (TI) films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04150v2-abstract-full').style.display = 'inline'; document.getElementById('1503.04150v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.04150v2-abstract-full" style="display: none;"> After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator (TI) films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the 6 quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is realized through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. In addition, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.04150v2-abstract-full').style.display = 'none'; document.getElementById('1503.04150v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 6:8474 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.3189">arXiv:1412.3189</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.3189">pdf</a>, <a href="https://arxiv.org/format/1412.3189">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.187201">10.1103/PhysRevLett.114.187201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precise quantization of anomalous Hall effect near zero magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bestwick%2C+A+J">A. J. Bestwick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fox%2C+E+J">E. J. Fox</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goldhaber-Gordon%2C+D">D. Goldhaber-Gordon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.3189v2-abstract-short" style="display: inline;"> We report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in Hall resistance to within a part per 10,000 and longitudinal resistivity under 1 ohm per square, with chiral edge transport explicitly confirmed by non-local measurements. Deviations from this beha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.3189v2-abstract-full').style.display = 'inline'; document.getElementById('1412.3189v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.3189v2-abstract-full" style="display: none;"> We report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in Hall resistance to within a part per 10,000 and longitudinal resistivity under 1 ohm per square, with chiral edge transport explicitly confirmed by non-local measurements. Deviations from this behavior are found to be caused by thermally-activated carriers, which can be eliminated by taking advantage of an unexpected magnetocaloric effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.3189v2-abstract-full').style.display = 'none'; document.getElementById('1412.3189v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, with 9 pages of supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 114, 187201 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.0106">arXiv:1406.0106</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.0106">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.137201">10.1103/PhysRevLett.113.137201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scale-Invariant Dissipationless Chiral Transport in Magnetic Topological Insulators beyond the Two-Dimensional Limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+S">Shih-Ting Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yabin Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+L">Lei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Murong Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Ying Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Q">Qiming Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+T">Tianxiao Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murata%2C+K">Koichi Murata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jianshi Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Liang He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+T">Ting-Kuo Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">Wei-Li Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.0106v2-abstract-short" style="display: inline;"> We investigate the quantum anomalous Hall Effect (QAHE) and related chiral transport in the millimeter-size (Cr0.12Bi0.26Sb0.62)2Te3 films. With high sample quality and robust magnetism at low temperatures, the quantized Hall conductance of e2/h is found to persist even when the film thickness is beyond the two-dimensional (2D) hybridization limit. Meanwhile, the Chern insulator-featured chiral ed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.0106v2-abstract-full').style.display = 'inline'; document.getElementById('1406.0106v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.0106v2-abstract-full" style="display: none;"> We investigate the quantum anomalous Hall Effect (QAHE) and related chiral transport in the millimeter-size (Cr0.12Bi0.26Sb0.62)2Te3 films. With high sample quality and robust magnetism at low temperatures, the quantized Hall conductance of e2/h is found to persist even when the film thickness is beyond the two-dimensional (2D) hybridization limit. Meanwhile, the Chern insulator-featured chiral edge conduction is manifested by the non-local transport measurements. In contrast to the 2D hybridized thin film, an additional weakly field-dependent longitudinal resistance is observed in the 10 quintuple-layer film, suggesting the influence of the film thickness on the dissipative edge channel in the QAHE regime. The extension of QAHE into the three-dimensional thickness region addresses the universality of this quantum transport phenomenon and motivates the exploration of new QAHE phases with tunable Chern numbers. In addition, the observation of the scale-invariant dissipationless chiral propagation on a macroscopic scale makes a major stride towards ideal low-power interconnect applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.0106v2-abstract-full').style.display = 'none'; document.getElementById('1406.0106v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 113, 137201 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.5331">arXiv:1311.5331</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.5331">pdf</a>, <a href="https://arxiv.org/format/1311.5331">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.235131">10.1103/PhysRevB.88.235131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stability, Electronic and Magnetic properties of magnetically doped topological insulators Bi2Se3, Bi2Te3 and Sb2Te3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jian-Min Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ming%2C+W">Wenmei Ming</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zhigao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Gui-Bin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+Y">Yabin Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K+L">Kang L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.5331v1-abstract-short" style="display: inline;"> Magnetic interaction with the gapless surface states in topological insulator (TI) has been predicted to give rise to a few exotic quantum phenomena. However, the effective magnetic doping of TI is still challenging in experiment. Using first-principles calculations, the magnetic doping properties (V, Cr, Mn and Fe) in three strong TIs (Bi$_{2}$Se$_{3}$, Bi$_{2}$Te$_{3}$ and Sb$_{2}$Te$_{3}$) are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.5331v1-abstract-full').style.display = 'inline'; document.getElementById('1311.5331v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.5331v1-abstract-full" style="display: none;"> Magnetic interaction with the gapless surface states in topological insulator (TI) has been predicted to give rise to a few exotic quantum phenomena. However, the effective magnetic doping of TI is still challenging in experiment. Using first-principles calculations, the magnetic doping properties (V, Cr, Mn and Fe) in three strong TIs (Bi$_{2}$Se$_{3}$, Bi$_{2}$Te$_{3}$ and Sb$_{2}$Te$_{3}$) are investigated. We find that for all three TIs the cation-site substitutional doping is most energetically favorable with anion-rich environment as the optimal growth condition. Further our results show that under the nominal doping concentration of 4%, Cr and Fe doped Bi$_{2}$Se$_{3}$, Bi$_{2}$Te$_{3}$, and Cr doped Sb$_{2}$Te$_{3}$ remain as insulator, while all TIs doped with V, Mn and Fe doped Sb$_{2}$Te$_{3}$ become metal. We also show that the magnetic interaction of Cr doped Bi$_{2}$Se$_{3}$ tends to be ferromagnetic, while Fe doped Bi$_{2}$Se$_{3}$ is likely to be antiferromagnetic. Finally, we estimate the magnetic coupling and the Curie temperature for the promising ferromagnetic insulator (Cr doped Bi$_{2}$Se$_{3}$) by Monte Carlo simulation. These findings may provide important guidance for the magnetism incorporation in TIs experimentally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.5331v1-abstract-full').style.display = 'none'; document.getElementById('1311.5331v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 88, 235131 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.1020">arXiv:1109.1020</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> 77Se NMR Investigation of Fe-doped Bi2Se3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Taylor%2C+R+E">Robert E. Taylor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alyahyaei%2C+H+M">Hamad M. Alyahyaei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiyong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+J">Jing Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zurbuchen%2C+M+A">Mark A. Zurbuchen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leung%2C+B">Belinda Leung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarenwattananon%2C+N+N">Nanette N. Jarenwattananon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xufeng Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouchard%2C+L">Louis-S. Bouchard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.1020v4-abstract-short" style="display: inline;"> Bismuth selenide is both a thermoelectric material and topological insulator. Defects and dopants create conduction in thermoelectric applications. However, such defects may degrade the performance as a topological insulator (TI). Magnetic impurities such as iron open a band gap at the Dirac point on the surface. Since magnetically-doped TIs are important in technological applications, a good unde&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.1020v4-abstract-full').style.display = 'inline'; document.getElementById('1109.1020v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.1020v4-abstract-full" style="display: none;"> Bismuth selenide is both a thermoelectric material and topological insulator. Defects and dopants create conduction in thermoelectric applications. However, such defects may degrade the performance as a topological insulator (TI). Magnetic impurities such as iron open a band gap at the Dirac point on the surface. Since magnetically-doped TIs are important in technological applications, a good understanding of their properties is needed. In this article, 77Se nuclear magnetic resonance (NMR) spectroscopy has been used to investigate Fe-doped Bi2Se3. Spin-lattice relaxation measurements indicate that the Fe dopants provide a spin diffusion relaxation mechanism at low temperatures for the 77Se. Above 320 K, the predominant 77Se relaxation mechanism resulting from interaction with the conduction carriers is thermally induced with an activation energy of 21.5 kJ/mol (5.1 kcal/mol, 222 meV) and likely arises from inter-band excitations. Magic-angle spinning produces negligible narrowing of the 77Se resonance at 7 T, suggesting a statistical distribution of material defects and is also consistent with a dipolar interaction with the neighboring quadrupolar nucleus. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.1020v4-abstract-full').style.display = 'none'; document.getElementById('1109.1020v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has been withdrawn because it is not published yet</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0807.4422">arXiv:0807.4422</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0807.4422">pdf</a>, <a href="https://arxiv.org/format/0807.4422">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2008.08.088">10.1016/j.jmmm.2008.08.088 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Current induced resistance change of magnetic tunnel junctions with ultra-thin MgO tunnel barriers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krzysteczko%2C+P">Patryk Krzysteczko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xinli Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rott%2C+K">Karsten Rott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomas%2C+A">Andy Thomas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reiss%2C+G">G眉nter Reiss</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0807.4422v1-abstract-short" style="display: inline;"> Ultra-thin magnetic tunnel junctions with low resistive MgO tunnel barriers are prepared to examine their stability under large current stress. The devices show magnetoresistance ratios of up to 110 % and an area resistance product of down to 4.4 ohm micrometer squared. If a large current is applied, a reversible resistance change is observed, which can be attributed to two different processes d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0807.4422v1-abstract-full').style.display = 'inline'; document.getElementById('0807.4422v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0807.4422v1-abstract-full" style="display: none;"> Ultra-thin magnetic tunnel junctions with low resistive MgO tunnel barriers are prepared to examine their stability under large current stress. The devices show magnetoresistance ratios of up to 110 % and an area resistance product of down to 4.4 ohm micrometer squared. If a large current is applied, a reversible resistance change is observed, which can be attributed to two different processes during stressing and one relaxation process afterwards. Here, we analyze the time dependence of the resistance and use a simple model to explain the observed behavior. The explanation is further supported by numerical fits to the data in order to quantify the timescales of the involved phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0807.4422v1-abstract-full').style.display = 'none'; document.getElementById('0807.4422v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2008. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0701749">arXiv:cond-mat/0701749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0701749">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0701749">ps</a>, <a href="https://arxiv.org/format/cond-mat/0701749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.2776001">10.1063/1.2776001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Influence of chemical and magnetic interface properties of Co-Fe-B / MgO / Co-Fe-B tunnel junctions on the annealing temperature dependence of the magnetoresistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schmalhorst%2C+J">J. Schmalhorst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomas%2C+A">A. Thomas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reiss%2C+G">G. Reiss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">X. Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arenholz%2C+E">E. Arenholz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0701749v1-abstract-short" style="display: inline;"> The knowledge of chemical and magnetic conditions at the Co40Fe40B20 / MgO interface is important to interpret the strong annealing temperature dependence of tunnel magnetoresistance of Co-Fe-B / MgO / Co-Fe-B magnetic tunnel junctions, which increases with annealing temperature from 20% after annealing at 200C up to a maximum value of 112% after annealing at 350C. While the well defined nearest&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0701749v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0701749v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0701749v1-abstract-full" style="display: none;"> The knowledge of chemical and magnetic conditions at the Co40Fe40B20 / MgO interface is important to interpret the strong annealing temperature dependence of tunnel magnetoresistance of Co-Fe-B / MgO / Co-Fe-B magnetic tunnel junctions, which increases with annealing temperature from 20% after annealing at 200C up to a maximum value of 112% after annealing at 350C. While the well defined nearest neighbor ordering indicating crystallinity of the MgO barrier does not change by the annealing, a small amount of interfacial Fe-O at the lower Co-Fe-B / MgO interface is found in the as grown samples, which is completely reduced after annealing at 275C. This is accompanied by a simultaneous increase of the Fe magnetic moment and the tunnel magnetoresistance. However, the TMR of the MgO based junctions increases further for higher annealing temperature which can not be caused by Fe-O reduction. The occurrence of an x-ray absorption near-edge structure above the Fe and Co L-edges after annealing at 350C indicates the recrystallization of the Co-Fe-B electrode. This is prerequisite for coherent tunneling and has been suggested to be responsible for the further increase of the TMR above 275C. Simultaneously, the B concentration in the Co-Fe-B decreases with increasing annealing temperature, at least some of the B diffuses towards or into the MgO barrier and forms a B2O3 oxide. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0701749v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0701749v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2007. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9812010">arXiv:cond-mat/9812010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9812010">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9812010">ps</a>, <a href="https://arxiv.org/format/cond-mat/9812010">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Simulation of Magnetization Switching in Biaxial Single-Domain Ferromagnetic Particles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kou%2C+X">Xuekun Kou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novotny%2C+M+A">M. A. Novotny</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rikvold%2C+P+A">Per Arne Rikvold</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9812010v1-abstract-short" style="display: inline;"> The magnetization switching dynamics of biaxial single-domain homogeneous ferromagnetic particles, in which the two easy axes are perpendicular to each other, is simulated using a 4-state clock model. A zero-field mapping of the statics between the symmetric 4-state clock model and two decoupled Ising models is extended to non-zero field statics and to the dynamics. This significantly simplifies&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9812010v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9812010v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9812010v1-abstract-full" style="display: none;"> The magnetization switching dynamics of biaxial single-domain homogeneous ferromagnetic particles, in which the two easy axes are perpendicular to each other, is simulated using a 4-state clock model. A zero-field mapping of the statics between the symmetric 4-state clock model and two decoupled Ising models is extended to non-zero field statics and to the dynamics. This significantly simplifies the analysis of the simulation results. We measure the magnetization switching time of the model and analyze the results using droplet theory. The switching dynamics in the asymmetric model is more complicated. If the easy axis is perpendicular to the stable magnetization direction, the system can switch its magnetization via two different channels, one very fast and the other very slow. A maximum value for the switching field as a function of system size is obtained. The asymmetry affects the switching fields differently, depending on whether the switching involves one single droplet or many droplets of spins in the stable magnetization configuration. The angular dependence of the switching field in symmetric and asymmetric models is also studied. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9812010v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9812010v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 1998. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FSU-SCRI-98-129 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10