CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 1,123 results for author: <span class="mathjax">Li, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Li%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Li, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Li%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Li, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Li%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19538">arXiv:2411.19538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19538">pdf</a>, <a href="https://arxiv.org/format/2411.19538">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Haldane phase, field-induced magnetic ordering and Tomonaga-Luttinger liquid behavior in a spin-one chain compound NiC$_2$O$_4$$\cdot$2NH$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zhanlong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yanhong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jun Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+K">Kefan Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaoyu Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Ze Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+J">Jie Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhengxin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+R">Rui Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hongcheng Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+W">Weiqiang Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19538v1-abstract-short" style="display: inline;"> We performed single-crystal magnetic susceptibility and $^1$H NMR measurements on a quasi-1D, spin-1 antiferromagnet NiC$_2$O$_4$$\cdot$2NH$_3$, with temperature down to 100 mK and with field up to 26 T. With field applied along the chain direction (crystalline $b$ direction), a spin gap is determined at low fields. Our susceptibility and spin-lattice relaxation measurements reveal a Haldane phase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19538v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19538v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19538v1-abstract-full" style="display: none;"> We performed single-crystal magnetic susceptibility and $^1$H NMR measurements on a quasi-1D, spin-1 antiferromagnet NiC$_2$O$_4$$\cdot$2NH$_3$, with temperature down to 100 mK and with field up to 26 T. With field applied along the chain direction (crystalline $b$ direction), a spin gap is determined at low fields. Our susceptibility and spin-lattice relaxation measurements reveal a Haldane phase at low field, with an intrachain exchange coupling $J$ $\approx$ 35 K and an easy-plane single-ion anisotropy of 17 K. A field-induced antiferromagnetic (AFM) ordering emerges at fields of 2.1 T, which sets a three-dimensional (3D) quantum critical point (QCP). The high-temperature spin-lattice relaxation rates $1/T_1$ resolves an onset of Tomonaga-Luttinger liquid behavior at field above $3.5$ T, which characterizes a hidden 1D QCP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19538v1-abstract-full').style.display = 'none'; document.getElementById('2411.19538v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19237">arXiv:2411.19237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19237">pdf</a>, <a href="https://arxiv.org/format/2411.19237">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0242426">10.1063/5.0242426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-induced valley polarization, topological states, and piezomagnetism in two-dimensional altermagnetic V$_2$Te$_2$O, V$_2$STeO, V$_2$SSeO, and V$_2$S$_2$O </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jin-Yang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+A">An-Dong Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong-Kun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Ying Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Si Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19237v1-abstract-short" style="display: inline;"> Altermagnets (AM) are a recently discovered third class of collinear magnets, and have been attracting significant interest in the field of condensed matter physics. Here, based on first-principles calculations and theoretical analysis, we propose four two-dimensional (2D) magnetic materials--monolayer V$_2$Te$_2$O, V$_2$STeO, V$_2$SSeO, and V$_2$S$_2$O--as candidates for altermagnetic materials.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19237v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19237v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19237v1-abstract-full" style="display: none;"> Altermagnets (AM) are a recently discovered third class of collinear magnets, and have been attracting significant interest in the field of condensed matter physics. Here, based on first-principles calculations and theoretical analysis, we propose four two-dimensional (2D) magnetic materials--monolayer V$_2$Te$_2$O, V$_2$STeO, V$_2$SSeO, and V$_2$S$_2$O--as candidates for altermagnetic materials. We show that these materials are semiconductors with spin-splitting in their nonrelativistic band structures. Furthermore, in the band structure, there are a pair of Dirac-type valleys located at the time-reversal invariant momenta (TRIM) X and Y points. These two valleys are connected by crystal symmetry instead of time-reversal symmetry. We investigate the strain effect on the band structure and find that uniaxial strain can induce valley polarization, topological states in these monolayer materials. Moreover, piezomagnetism can be realized upon finite doping. Our result reveals interesting valley physics in monolayer V$_2$Te$_2$O, V$_2$STeO, V$_2$SSeO, and V$_2$S$_2$O, suggesting their great potential for valleytronics, spintronics, and multifunctional nanoelectronics applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19237v1-abstract-full').style.display = 'none'; document.getElementById('2411.19237v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 125, 222404 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14648">arXiv:2411.14648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14648">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Manipulating Momentum-Space and Real-Space Topological States in Metallic Strontium Ruthenate Ultrathin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xuan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zengxing Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lao%2C+B">Bin Lao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Sheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+R">Run-Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radovic%2C+M">Milan Radovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiming Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14648v1-abstract-short" style="display: inline;"> SrRuO3, a 4d transition metal oxide, has gained significant interest due to its topological states in both momentum space (Weyl points) and real space (skyrmions). However, probing topological states in ultrathin SrRuO3 faces challenges such as the metal-insulator transition and questioned existence of skyrmions due to possible superposition of opposite anomalous Hall effect (AHE) signals. To addr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14648v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14648v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14648v1-abstract-full" style="display: none;"> SrRuO3, a 4d transition metal oxide, has gained significant interest due to its topological states in both momentum space (Weyl points) and real space (skyrmions). However, probing topological states in ultrathin SrRuO3 faces challenges such as the metal-insulator transition and questioned existence of skyrmions due to possible superposition of opposite anomalous Hall effect (AHE) signals. To address these issues, we investigate ultrathin SrRuO3/SrIrO3 heterostructures and their AHE and topological Hall effect (THE). Our results reveal metallized ultrathin SrRuO3 down to the monolayer limit with an AHE signal. ARPES measurements confirm the metallic and topological band structure of ultrathin SrRuO3. Furthermore, the AHE sign remains negative over a wide thickness range, where THE is still observed. This observation excludes the two-channel explanation of THE and provides evidence for the existence of skyrmions in ultrathin SrRuO3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14648v1-abstract-full').style.display = 'none'; document.getElementById('2411.14648v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14220">arXiv:2411.14220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14220">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-passivation Causes the Different Fermi Level Pinning between Metal-Si and Metal-Ge Contacts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Z">Ziying Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jun-Wei Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shu-Shen Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14220v1-abstract-short" style="display: inline;"> Metal-Ge contacts possess much stronger Fermi level pinning (FLP) than metal-Si contacts, which is commonly believed to be due to Ge having a narrower bandgap and higher permittivity in the context of FLP caused by metal-induced gap states. Here, we show that both Ge and Si have a similar FLP strength if they adopt an identical interface chemical bonding configuration at the contact interface by p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14220v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14220v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14220v1-abstract-full" style="display: none;"> Metal-Ge contacts possess much stronger Fermi level pinning (FLP) than metal-Si contacts, which is commonly believed to be due to Ge having a narrower bandgap and higher permittivity in the context of FLP caused by metal-induced gap states. Here, we show that both Ge and Si have a similar FLP strength if they adopt an identical interface chemical bonding configuration at the contact interface by performing first-principles calculations: Si and Ge have FLP factors of 0.16 and 0.11, respectively, if they adopt the same reconstructed bonding configuration and have FLP factors of 0.05 and 0, respectively, if they adopt the same non-reconstructed bonding configuration. We illustrate that Ge prefers the latter configuration at the contact interface, which has denser dangling-bond-induced surface states, and Si prefers the latter one, which has a self-passivation effect for reducing the dangling bond-induced interface states, to reproduce the experimental data. By revealing the significance of dangling bond-induced interface gap states on FLP, these findings shed new light on lowering the contact resistance for developing future Si CMOS technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14220v1-abstract-full').style.display = 'none'; document.getElementById('2411.14220v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11827">arXiv:2411.11827</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11827">pdf</a>, <a href="https://arxiv.org/format/2411.11827">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Disorder-induced spin-cluster ferrimagnetism in a doped kagome spin liquid candidate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Seth%2C+A">Arnab Seth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prestigiacomo%2C+J+C">Joseph C. Prestigiacomo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+A">Aini Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Z">Zhenyuan Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ford%2C+T+D">Trevor D. Ford</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shivaram%2C+B+S">B. S. Shivaram</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+P+A">Patrick A. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kimchi%2C+I">Itamar Kimchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11827v1-abstract-short" style="display: inline;"> The search for new quantum spin liquid materials relies on systems with strong frustration such as spins on the kagome lattice. This allows lattice imperfections to have substantial effects which are not well understood. In recent work the 2D kagome system YCu$_3$(OH)$_6$[(Cl$_x$Br$_{(1-x)}$)$_{3-y}$(OH)$_y$] has emerged as a leading candidate hosting a Dirac spin liquid which appears to survive a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11827v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11827v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11827v1-abstract-full" style="display: none;"> The search for new quantum spin liquid materials relies on systems with strong frustration such as spins on the kagome lattice. This allows lattice imperfections to have substantial effects which are not well understood. In recent work the 2D kagome system YCu$_3$(OH)$_6$[(Cl$_x$Br$_{(1-x)}$)$_{3-y}$(OH)$_y$] has emerged as a leading candidate hosting a Dirac spin liquid which appears to survive at least for x&lt;0.4, associated with alternating-bond hexagon (ABH) disorder. Here in samples with x=0.58 we report an unusual coexistence of anti-ferromagnetic (AFM) and ferromagnetic (FM) order, and propose a semi-microscopic model to account for this order. Combined with a phenomenological model the results suggest growth of large FM clusters at intermediate temperatures which order eventually at lower temperatures. Generating these FM clusters relies on two ingredients: ABH disorder, and local-AFM FM-canting generated by small Kitaev interactions which can arise on the kagome lattice. The combination of experimental observation and theory suggests that Kitaev interactions and ABH disorder are necessary for describing the magnetic fluctuations in this family of materials, with potential implications for the proposed proximate spin liquid phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11827v1-abstract-full').style.display = 'none'; document.getElementById('2411.11827v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages 7 figures main text, 7 pages 4 figures supplementary material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10750">arXiv:2411.10750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10750">pdf</a>, <a href="https://arxiv.org/format/2411.10750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Symmetry-protected Landau-Zener-St眉ckelberg-Majorana interference and non-adiabatic topological transport of edge states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shihao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Meiqing Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Z">Zhoutao Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10750v1-abstract-short" style="display: inline;"> We systematically investigate Landau-Zener-St眉ckelberg-Majorana (LZSM) interference under chiral-mirror-like symmetry and propose its application to non-adiabatic topological transport of edge states. Protected by this symmetry, complete destructive interference emerges and can be characterized through occupation probability. This symmetry-protected LZSM interference enables state transitions to b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10750v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10750v1-abstract-full" style="display: none;"> We systematically investigate Landau-Zener-St眉ckelberg-Majorana (LZSM) interference under chiral-mirror-like symmetry and propose its application to non-adiabatic topological transport of edge states. Protected by this symmetry, complete destructive interference emerges and can be characterized through occupation probability. This symmetry-protected LZSM interference enables state transitions to be achieved within remarkably short time scales. To demonstrate our mechanism, we provide two distinctive two-level systems as examples and survey them in detail. By tuning evolution speed or increasing holding time, the complete destructive interferences are observed. Furthermore, we make use of this mechanism for topological edge states of Su-Schrieffer-Heeger (SSH) chain by taking them as an isolated two-level system. Through carefully designed time sequences, we construct symmetry-protected LZSM interference of topological edge states, enabling non-adiabatic topological transport. Our work unveils an alternative way to study quantum control, quantum state transfer, and quantum communication via non-adiabatic topological transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10750v1-abstract-full').style.display = 'none'; document.getElementById('2411.10750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures; Comments are welcomed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09883">arXiv:2411.09883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09883">pdf</a>, <a href="https://arxiv.org/format/2411.09883">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin excitations arising from anisotropic Dirac spinons in YCu$_3$(OD)$_6$Br$_2$[Br$_{0.33}$(OD)$_{0.67}$] </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+L">Lankun Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Z">Zhenyuan Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kofu%2C+M">Maiko Kofu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakajima%2C+K">Kenji Nakajima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steffens%2C+P">Paul Steffens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hiess%2C+A">Arno Hiess</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Su%2C+Y">Yixi Su</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiliang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09883v1-abstract-short" style="display: inline;"> A Dirac quantum spin liquid hosts Dirac spinons, which are low-energy fractionalized neutral quasiparticles with spin 1/2 that obey the Dirac equation. Recent studies have revealed cone spin continuum in YCu$_3$(OD)$_6$Br$_2$[Br$_{x}$(OD)$_{1-x}$], consistent with the convolution of two Dirac spinons. In this work, we further studied spin excitations using the inelastic neutron scattering techniqu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09883v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09883v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09883v1-abstract-full" style="display: none;"> A Dirac quantum spin liquid hosts Dirac spinons, which are low-energy fractionalized neutral quasiparticles with spin 1/2 that obey the Dirac equation. Recent studies have revealed cone spin continuum in YCu$_3$(OD)$_6$Br$_2$[Br$_{x}$(OD)$_{1-x}$], consistent with the convolution of two Dirac spinons. In this work, we further studied spin excitations using the inelastic neutron scattering technique. The width of low-energy spin excitations shows a linear temperature dependence, which can be explained by spinon-spinon interactions with a Dirac dispersion. Polarized neutron scattering measurements reveal that in-plane magnetic fluctuations are about 1.5 times stronger than the out-of-plane ones, suggesting the presence of out-of-plane Dzyaloshinskii-Moriya interaction. Moreover, the high-energy spin excitations around 14 meV agree with the one-pair spinon-antispinon excitations in Raman studies. The real part of the dynamical susceptibility derived from the Kramers-Kronig relationship also accords with the Knight shift measured by nuclear magnetic resonance. These results provide further insights for the possible Dirac quantum spin liquid in this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09883v1-abstract-full').style.display = 'none'; document.getElementById('2411.09883v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08911">arXiv:2411.08911</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08911">pdf</a>, <a href="https://arxiv.org/format/2411.08911">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> A Message Passing Neural Network Surrogate Model for Bond-Associated Peridynamic Material Correspondence Formulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xuan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Q">Qijun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+N+H">Nicholas H. Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+R+J">Richy J. Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shaofan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08911v1-abstract-short" style="display: inline;"> Peridynamics is a non-local continuum mechanics theory that offers unique advantages for modeling problems involving discontinuities and complex deformations. Within the peridynamic framework, various formulations exist, among which the material correspondence formulation stands out for its ability to directly incorporate traditional continuum material models, making it highly applicable to a rang&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08911v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08911v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08911v1-abstract-full" style="display: none;"> Peridynamics is a non-local continuum mechanics theory that offers unique advantages for modeling problems involving discontinuities and complex deformations. Within the peridynamic framework, various formulations exist, among which the material correspondence formulation stands out for its ability to directly incorporate traditional continuum material models, making it highly applicable to a range of engineering challenges. A notable advancement in this area is the bond-associated correspondence model, which not only resolves issues of material instability but also achieves high computational accuracy. However, the bond-associated model typically requires higher computational costs than FEA, which can limit its practical application. To address this computational challenge, we propose a novel surrogate model based on a message-passing neural network (MPNN) specifically designed for the bond-associated peridynamic material correspondence formulation. Leveraging the similarities between graph structure and the neighborhood connectivity inherent to peridynamics, we construct an MPNN that can transfers domain knowledge from peridynamics into a computational graph and shorten the computation time via GPU acceleration. Unlike conventional graph neural networks that focus on node features, our model emphasizes edge-based features, capturing the essential material point interactions in the formulation. A key advantage of this neural network approach is its flexibility: it does not require fixed neighborhood connectivity, making it adaptable across diverse configurations and scalable for complex systems. Furthermore, the model inherently possesses translational and rotational invariance, enabling it to maintain physical objectivity: a critical requirement for accurate mechanical modeling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08911v1-abstract-full').style.display = 'none'; document.getElementById('2411.08911v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2410.00934</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04481">arXiv:2411.04481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04481">pdf</a>, <a href="https://arxiv.org/format/2411.04481">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> High-throughput Screening of Ferrimagnetic Semiconductors With Ultrahigh N$\acute{e}$el Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Haidi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Q">Qingqing Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+W">Wei Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Weiduo Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhongjun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaofeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xingxing Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04481v1-abstract-short" style="display: inline;"> Ferrimagnetic semiconductors, integrated with net magnetization, antiferromagnetic coupling and semi-conductivity, have constructed an ideal platform for spintronics. For practical applications, achieving high N$\acute{e}$el temperatures ($T_{\mathrm{N}}$) is very desirable, but remains a significant challenge. Here, via high-throughput density-functional-theory calculations, we identify 19 intrin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04481v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04481v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04481v1-abstract-full" style="display: none;"> Ferrimagnetic semiconductors, integrated with net magnetization, antiferromagnetic coupling and semi-conductivity, have constructed an ideal platform for spintronics. For practical applications, achieving high N$\acute{e}$el temperatures ($T_{\mathrm{N}}$) is very desirable, but remains a significant challenge. Here, via high-throughput density-functional-theory calculations, we identify 19 intrinsic ferrimagnetic semiconductor candidates from nearly 44,000 structures in the Materials Project database, including 10 ferrimagnetic bipolar magnetic semiconductors (BMS) and 9 ferrimagnetic half semiconductors (HSC). Notably, the BMS \ce{NaFe5O8} possesses a high $T_{\mathrm{N}}$ of 768 K. By element substitutions, we obtain an HSC \ce{NaFe5S8} with a $T_{\mathrm{N}}$ of 957 K and a BMS \ce{LiFe5O8} with a $T_{\mathrm{N}}$ reaching 1059 K. Our results pave a promising avenue toward the development of ferrimagnetic spintronics at ambient temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04481v1-abstract-full').style.display = 'none'; document.getElementById('2411.04481v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00315">arXiv:2411.00315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00315">pdf</a>, <a href="https://arxiv.org/format/2411.00315">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Topological Orbital Hall Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Baokai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+Y">Yi-Chun Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Sheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Rui-Hua He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00315v1-abstract-short" style="display: inline;"> The orbital Hall effect (OHE) is attracting recent interest due to its fundamental science implications and potential applications in orbitronics and spintronics. Unlike the spin Hall effect, the connection between the OHE and band topology is not well understood. Here we present a novel approach for understanding the OHE based on analyzing the projected orbital angular momentum (POAM) spectrum. B&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00315v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00315v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00315v1-abstract-full" style="display: none;"> The orbital Hall effect (OHE) is attracting recent interest due to its fundamental science implications and potential applications in orbitronics and spintronics. Unlike the spin Hall effect, the connection between the OHE and band topology is not well understood. Here we present a novel approach for understanding the OHE based on analyzing the projected orbital angular momentum (POAM) spectrum. By considering monolayers of group IV elements, we demonstrate that the Wannier charge centers of the POAM spectrum display topologically nontrivial windings. The orbital Hall conductivity is found to form a plateau within the band gap as a direct consequence of the Chern number carried by the POAM spectrum. The topological orbital Hall phase is shown to yield a new form of bulk-boundary correspondence, which features gapless states in the POAM spectrum and induces nonzero orbital textures at the boundaries that should be amenable to experimental verification through ARPES measurements. Our study presents a systematic method for investigating the topological OHE and provides a pathway for its broader exploration in two-dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00315v1-abstract-full').style.display = 'none'; document.getElementById('2411.00315v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00302">arXiv:2411.00302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00302">pdf</a>, <a href="https://arxiv.org/format/2411.00302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Two plaquette-singlet phases in the Shastry-Sutherland compound SrCu2(BO3)2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yi Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+K">Kefan Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zhanlong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuo Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+P">Pengtao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Ying Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaoyu Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chengchen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Juanjuan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+B">Bosen Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+W">Wenshan Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Z">Zhiyuan Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+W">Weiqiang Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00302v1-abstract-short" style="display: inline;"> The nature of the high-pressure plaquette-singlet (PS) phase of SrCu$_2$(BO$_3$)$_2$ remains enigmatic. In this work, we revisit the high-pressure $^{11}$B NMR study and identify two distinct coexisting gapped PS states within the NMR spectra. In addition to the previously reported full-plaquette phase, a second PS phase is discerned, characterized by a slightly lower resonance frequency and large&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00302v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00302v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00302v1-abstract-full" style="display: none;"> The nature of the high-pressure plaquette-singlet (PS) phase of SrCu$_2$(BO$_3$)$_2$ remains enigmatic. In this work, we revisit the high-pressure $^{11}$B NMR study and identify two distinct coexisting gapped PS states within the NMR spectra. In addition to the previously reported full-plaquette phase, a second PS phase is discerned, characterized by a slightly lower resonance frequency and larger spin-lattice relaxation rates in its ordered phase. Notably, this second phase exhibits enhanced spin fluctuations in its precursor liquid state above the transition temperature. The volume fraction of this phase increases significantly with pressure, reaching approximately 70\% at 2.65~GPa. Furthermore, at 2.4~GPa, a field-induced quantum phase transition from the PS phase to an antiferromagnetic phase is observed around 5.5~T, with a scaling behavior of $1/T_1 \sim T^{0.6}$ near the transition field. This behavior suggests a continuous or nearly continuous nature for the field-induced transition. Our findings provide experimental evidence for the long-sought empty-plaquette singlet phase in SrCu$_2$(BO$_3$)$_2$ within the framework of the Shastry-Sutherland model, thus establishing a promising platform for future studies of deconfined quantum criticality in this model system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00302v1-abstract-full').style.display = 'none'; document.getElementById('2411.00302v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20761">arXiv:2410.20761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20761">pdf</a>, <a href="https://arxiv.org/format/2410.20761">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.043118">10.1103/PhysRevA.110.043118 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dual-species Optical tweezer for Rb and K atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Y">Yangbo Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+K">Kedi Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shangjin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Bo Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20761v1-abstract-short" style="display: inline;"> The optical tweezer experiment with neutral atoms is a focal topic in cold atom physics due to its significant potential in quantum computing and simulation. Here, we present the realization of a dual-species optical tweezer for both Rb and K atoms, marking the first step towards creating a polar molecule optical tweezer array. Initially, Rb and K atoms are collected using a dual magneto-optical t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20761v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20761v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20761v1-abstract-full" style="display: none;"> The optical tweezer experiment with neutral atoms is a focal topic in cold atom physics due to its significant potential in quantum computing and simulation. Here, we present the realization of a dual-species optical tweezer for both Rb and K atoms, marking the first step towards creating a polar molecule optical tweezer array. Initially, Rb and K atoms are collected using a dual magneto-optical trap (MOT) and further cooled to 7 $渭$K for Rb and 10 $渭$K for K. By employing 850 nm tweezer beams, we demonstrate the ability to capture individual Rb or K atoms. The filling ratios of Rb and K can be finely adjusted by controlling the atomic densities of both species. Utilizing the post-selection technique, we can create a deterministic array of two-species atoms, paving the way for future polar molecule array formation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20761v1-abstract-full').style.display = 'none'; document.getElementById('2410.20761v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110 (4), 043118 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19576">arXiv:2410.19576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19576">pdf</a>, <a href="https://arxiv.org/format/2410.19576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Unlocking high hole mobility in diamond over a wide temperature range via efficient shear strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+J">Jianshi Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shouhang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+C">Cheng Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tong%2C+Z">Zhen Tong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+M">Meng An</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yuhang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Y">Yue Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xiongfei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yifan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Renzong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiangjun Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frauenheim%2C+T">Thomas Frauenheim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19576v1-abstract-short" style="display: inline;"> As a wide bandgap semiconductor, diamond holds both excellent electrical and thermal properties, making it highly promising in the electrical industry. However, its hole mobility is relatively low and dramatically decreases with increasing temperature, which severely limits further applications. Herein, we proposed that the hole mobility can be efficiently enhanced via slight compressive shear str&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19576v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19576v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19576v1-abstract-full" style="display: none;"> As a wide bandgap semiconductor, diamond holds both excellent electrical and thermal properties, making it highly promising in the electrical industry. However, its hole mobility is relatively low and dramatically decreases with increasing temperature, which severely limits further applications. Herein, we proposed that the hole mobility can be efficiently enhanced via slight compressive shear strain along the [100] direction, while the improvement via shear strain along the [111] direction is marginal. This impressive distinction is attributed to the deformation potential and the elastic compliance matrix. The shear strain breaks the symmetry of the crystalline structure and lifts the band degeneracy near the valence band edge, resulting in a significant suppression of interband electron-phonon scattering. Moreover, the hole mobility becomes less temperature-dependent due to the decrease of electron scatterings from high-frequency acoustic phonons. Remarkably, the in-plane hole mobility of diamond is increased by approximately 800% at 800 K with a 2% compressive shear strain along the [100] direction. The efficient shear strain strategy can be further extended to other semiconductors with face-centered cubic geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19576v1-abstract-full').style.display = 'none'; document.getElementById('2410.19576v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12624">arXiv:2410.12624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12624">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Field-free superconducting diode effect and magnetochiral anisotropy in FeTe0.7Se0.3 junctions with the inherent asymmetric barrier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shengyao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+Y">Ya Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+D">Dianyi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+C">Chao Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zherui Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+W">Wanghao Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xueyan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+M">Ming Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Q">Qiong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X+R">Xiao Renshaw Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12624v1-abstract-short" style="display: inline;"> Nonreciprocal electrical transport, characterized by an asymmetric relationship between current and voltage, plays a crucial role in modern electronic industries. Recent studies have extended this phenomenon to superconductors, introducing the concept of the superconducting diode effect (SDE). The SDE is characterized by unequal critical supercurrents along opposite directions. Due to the requirem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12624v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12624v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12624v1-abstract-full" style="display: none;"> Nonreciprocal electrical transport, characterized by an asymmetric relationship between current and voltage, plays a crucial role in modern electronic industries. Recent studies have extended this phenomenon to superconductors, introducing the concept of the superconducting diode effect (SDE). The SDE is characterized by unequal critical supercurrents along opposite directions. Due to the requirement on broken inversion symmetry, the SDE is commonly accompanied by electrical magnetochiral anisotropy (eMCA) in the resistive state. Achieving a magnetic field-free SDE with field tunability is pivotal for advancements in superconductor devices. Conventionally, the field-free SDE has been achieved in Josephson junctions by intentionally intercalating an asymmetric barrier layer. Alternatively, internal magnetism was employed. Both approaches pose challenges in the selection of superconductors and fabrication processes, thereby impeding the development of SDE. Here, we present a field-free SDE in FeTe0.7Se0.3 (FTS) junction with eMCA, a phenomenon absent in FTS single nanosheets. The field-free property is associated with the presence of a gradient oxide layer on the upper surface of each FTS nanosheet, while the eMCA is linked to spin-splitting arising from the absence of inversion symmetry. Both the SDE and eMCA respond to magnetic fields with distinct temperature dependencies. This work presents a versatile and straightforward strategy for advancing superconducting electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12624v1-abstract-full').style.display = 'none'; document.getElementById('2410.12624v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12129">arXiv:2410.12129</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12129">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Coherent Driving of a Single Nitrogen Vacancy Center by a Resonant Magnetic Tunnel Junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+G+Q">Gerald Q. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McLaughlin%2C+N">Nathan McLaughlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamamoto%2C+T">Tatsuya Yamamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Senlei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nozaki%2C+T">Takayuki Nozaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuasa%2C+S">Shinji Yuasa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+C+R">Chunhui Rita Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hailong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12129v1-abstract-short" style="display: inline;"> Nitrogen-vacancy (NV) centers, atomic spin defects in diamond, represent an active contender for advancing transformative quantum information science (QIS) and innovations. One of the major challenges for designing NV-based hybrid systems for QIS applications results from the difficulty of realizing local control of individual NV spin qubits in a scalable and energyefficient way. To address this b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12129v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12129v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12129v1-abstract-full" style="display: none;"> Nitrogen-vacancy (NV) centers, atomic spin defects in diamond, represent an active contender for advancing transformative quantum information science (QIS) and innovations. One of the major challenges for designing NV-based hybrid systems for QIS applications results from the difficulty of realizing local control of individual NV spin qubits in a scalable and energyefficient way. To address this bottleneck, we introduce magnetic tunnel junction (MTJ) devices to establish coherent driving of an NV center by a resonant MTJ with voltage controlled magnetic anisotropy. We show that the oscillating magnetic stray field produced by a resonant micromagnet can be utilized to effectively modify and drive NV spin rotations when the NV frequency matches the corresponding resonance conditions of the MTJ. Our results present a new pathway to achieve all-electric control of an NV spin qubit with reduced power consumption and improved solid-state scalability for implementing cutting-edge QIS technological applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12129v1-abstract-full').style.display = 'none'; document.getElementById('2410.12129v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11609">arXiv:2410.11609</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11609">pdf</a>, <a href="https://arxiv.org/ps/2410.11609">ps</a>, <a href="https://arxiv.org/format/2410.11609">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Wigner-Yanase skew information, quantum entanglement and spin nematic quantum phase transitions in biquadratic spin-1 and spin-2 XY chains with single-ion anisotropies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+Y">Yan-Wei Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Sheng-Hao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+S+Y">Sam Young Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Huan-Qiang Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11609v1-abstract-short" style="display: inline;"> Quantum phase transitions (QPTs) between uniaxial or biaxial spin nematic (SN) phases are investigated in biquadratic spin-1 and spin-2 XY infinite chains with the rhombic- and uniaxial-type single-ion anisotropies. Systematic discussions of distinctive singular behaviors are made to classify various types of QPT from one SN state to the other SN state in using the Wigner-Yanase skew information (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11609v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11609v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11609v1-abstract-full" style="display: none;"> Quantum phase transitions (QPTs) between uniaxial or biaxial spin nematic (SN) phases are investigated in biquadratic spin-1 and spin-2 XY infinite chains with the rhombic- and uniaxial-type single-ion anisotropies. Systematic discussions of distinctive singular behaviors are made to classify various types of QPT from one SN state to the other SN state in using the Wigner-Yanase skew information (WYSI), the bipartite entanglement entropy (BEE), and the quadrupole moments (QMs). For the spin-1 system with the three uniaxial SN phases, we find that a discontinuous QPT, signaled by discontinuous behaviors of all the considered WYSI, BEE, and QMs, occurs from the z-ferroquadrupole phase (FQP) to the x- or y-FQPs, while a continuous QPT occurs between the x- and y-FQPs. The central charge in the continuous QPT line is estimated as $c \simeq 1$ from the BEE. Compared to the spin-1 system, depending on a given strength of the uniaxial-type single-ion anisotropy, the spin-2 system undergoes four different types of QPTs between the two biaxial SN phases as the rhombic-type anisotropy varies: the quantum crossovers, connecting the two orthogonal biaxial SN states adiabatically without an explicit phase transition, the continuous and the discontinuous QPTs, and the SN to magnetic transitions via the antiferromagnetic phase (AFP). In a sharp contrast to the spin-1 system, for the transitions between the two biaxial SN phases, the discontinuous transition line is classified as a topological phase characterized by a doubly degenerate entanglement spectrum and a string order parameter defined by the Cartan generator of the $\mathrm{SO}(5)$ symmetry group in spin-2 systems, while the continuous QPT is advocated by the central charge $c \simeq 1$. Whereas the QPT lines with $c \simeq 1/2$ indicate that the transition between the biaxial SN phase and the AFP belongs to the Ising universality class. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11609v1-abstract-full').style.display = 'none'; document.getElementById('2410.11609v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 26 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04469">arXiv:2410.04469</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04469">pdf</a>, <a href="https://arxiv.org/format/2410.04469">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergent Matryoshka doll-like point gap in a non-Hermitian quasiperiodic lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Y">Yi-Qi Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shan-Zhong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhi Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04469v1-abstract-short" style="display: inline;"> We propose a geometric series modulated non-Hermitian quasiperiodic lattice model, and explore its localization and topological properties. The results show that with the ever-increasing summation terms of the geometric series, multiple mobility edges and non-Hermitian point gaps with high winding number can be induced in the system. The point gap spectrum of the system has a Matryoshka doll-like&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04469v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04469v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04469v1-abstract-full" style="display: none;"> We propose a geometric series modulated non-Hermitian quasiperiodic lattice model, and explore its localization and topological properties. The results show that with the ever-increasing summation terms of the geometric series, multiple mobility edges and non-Hermitian point gaps with high winding number can be induced in the system. The point gap spectrum of the system has a Matryoshka doll-like structure in the complex plane, resulting in a high winding number. In addition, we analyze the limit case of summation of infinite terms. The results show that the mobility edges merge together as only one mobility edge when summation terms are pushed to the limit. Meanwhile, the corresponding point gaps are merged into a ring with winding number equal to one. Through Avila&#39;s global theory, we give an analytical expression for mobility edges in the limit of infinite summation, reconfirming that mobility edges and point gaps do merge and will result in a winding number that is indeed equal to one. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04469v1-abstract-full').style.display = 'none'; document.getElementById('2410.04469v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main 6 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01142">arXiv:2410.01142</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01142">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Isolated zero-energy flat-bands and intrinsic magnetism in carbon monolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+C">Chaoyu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shifang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yuwen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+Z">Zhentao Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+J">Jianxin Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01142v2-abstract-short" style="display: inline;"> Flat-band in twisted graphene bilayer has garnered widespread attention, and whether flat-bands can be realized in carbon monolayer is an interesting topic worth exploring in condensed matter physics. In this work, we demonstrate that, based on the theory of compact localized states, a series of two-dimensional carbon allotropes with flat-bands can be achieved. Two of them named as 191-8-66-C-r567&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01142v2-abstract-full').style.display = 'inline'; document.getElementById('2410.01142v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01142v2-abstract-full" style="display: none;"> Flat-band in twisted graphene bilayer has garnered widespread attention, and whether flat-bands can be realized in carbon monolayer is an interesting topic worth exploring in condensed matter physics. In this work, we demonstrate that, based on the theory of compact localized states, a series of two-dimensional carbon allotropes with flat-bands can be achieved. Two of them named as 191-8-66-C-r567x-1 and 191-10-90-C-r567x-1 are confirmed to be dynamically stable carbon phases with isolated or weakly overlapped flat-bands at the Fermi-level. The maximum Fermi velocities of the flat-band electrons are evaluated to be 1x10^4 m/s and 0.786x10^4 m/s, both of which are lower than the Fermi velocity of the flat-band electrons in magic-angle graphene (4x10^4 m/s). Furthermore, 191-8-66-C-r567x-1 has been confirmed to be a flat-band related magnetic half-metal with a magnetic moment of 1.854 miuB per cell, while 191-10-90-C-r567x-1 is a flat-band related magnetic normal metal with a magnetic moment of 1.663 miuB per cell. These results not only show that flat-bands can be constructed in carbon monolayer, but also indicate the potential for achieving metal-free magnetic materials with light elements based on flat-band theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01142v2-abstract-full').style.display = 'none'; document.getElementById('2410.01142v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14041">arXiv:2409.14041</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14041">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Two Distinct Oxidation Dispersion Mechanisms in Pd-CeO2 Mediated by Thermodynamic and Kinetic Behaviors of Single Pd Species </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+C">Chen Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wen Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+S">Shiyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Songda Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+F">Fangwen Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+L">Linjiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+C">Chaobin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yue-Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+X">Xiaojuan Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+Z">Zhong-Kang Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Ying Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+W">Wentao Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hangsheng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14041v1-abstract-short" style="display: inline;"> Understanding the dispersion process of supported catalysts is crucial for synthesizing atomic-level dispersed catalysts and precisely manipulating their chemical state. However, the underlying dispersion mechanism remains elusive due to the lack of atomic-level evidence during the dispersion process. Herein, by employing spherical aberration-corrected environmental scanning transmission electron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14041v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14041v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14041v1-abstract-full" style="display: none;"> Understanding the dispersion process of supported catalysts is crucial for synthesizing atomic-level dispersed catalysts and precisely manipulating their chemical state. However, the underlying dispersion mechanism remains elusive due to the lack of atomic-level evidence during the dispersion process. Herein, by employing spherical aberration-corrected environmental scanning transmission electron microscopy (ESTEM), first-principles calculations, and a global optimization algorithm, we unraveled the pre-oxidation dispersion and direct dispersion mechanisms in the Pd/CeO2 (100) system, mediated by the thermodynamic and kinetic behaviors of single Pd species. We discovered that at lower temperatures, the Pd nanoparticles first undergo oxidation followed by the dispersion of PdO, while at higher temperatures, the entire dispersion process of Pd remains in a metallic state. The distinct dispersion mechanisms at different temperatures are driven by the thermodynamic and kinetic differences of environment-dependent single Pd species. The nonmobile Pd1O4 species stabilized at lower temperatures obstructs the direct dispersion of Pd nanoparticles, instead triggering a sequence of pre-oxidation followed by limited dispersion. In contrast, the highly mobile Pd1O2 species at higher temperatures facilitates the complete and direct dispersion of Pd nanoparticles. This research illuminates the essential physical mechanisms of oxidative dispersion from both thermodynamic and kinetic perspectives, potentially enabling strategies for precisely controlling the state of highly dispersed catalysts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14041v1-abstract-full').style.display = 'none'; document.getElementById('2409.14041v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13636">arXiv:2409.13636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13636">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Break-down of the relationship between 伪-relaxation and equilibration in hydrostatically compressed metallic glasses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cornet%2C+A">Antoine Cornet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+J">Jie Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ronca%2C+A">Alberto Ronca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shubin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neuber%2C+N">Nico Neuber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frey%2C+M">Maximilian Frey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pineda%2C+E">Eloi Pineda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deschamps%2C+T">Thierry Deschamps</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinet%2C+C">Christine Martinet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Floch%2C+S+L">Sylvie Le Floch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cangialosi%2C+D">Daniele Cangialosi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chushkin%2C+Y">Yuriy Chushkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zontone%2C+F">Federico Zontone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cammarata%2C+M">Marco Cammarata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaughan%2C+G+B+M">Gavin B. M. Vaughan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=di+Michiel%2C+M">Marco di Michiel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garbarino%2C+G">Gaston Garbarino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Busch%2C+R">Ralf Busch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallino%2C+I">Isabella Gallino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goujon%2C+C">Celine Goujon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legendre%2C+M">Murielle Legendre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manthilake%2C+G">Geeth Manthilake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruta%2C+B">Beatrice Ruta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13636v1-abstract-short" style="display: inline;"> It is usually assumed that the memory of any thermo-mechanical protocol applied to a glass can be erased by heating the material in the supercooled liquid. While this is true for thermally treated amorphous solids, we show that hydrostatic compression can irreversibly modify the atomic motion, thermodynamic state and structure of a prototypical metallic glass-former, in a way which depends on the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13636v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13636v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13636v1-abstract-full" style="display: none;"> It is usually assumed that the memory of any thermo-mechanical protocol applied to a glass can be erased by heating the material in the supercooled liquid. While this is true for thermally treated amorphous solids, we show that hydrostatic compression can irreversibly modify the atomic motion, thermodynamic state and structure of a prototypical metallic glass-former, in a way which depends on the degree of ergodicity reached by the material during compression. While enhanced kinetic and thermodynamic stability can be obtained by quenching the dense liquid, high-pressure annealing in the glass leads to thermal rejuvenation and complex structural rearrangements at the level of the short and medium range order. When heated above their glass transition temperature, these compressed glasses do not convert into the pristine supercooled liquid but rather transform into different systems, challenging the generally accepted idea of an equilibrium recovery controlled solely by the microscopic $伪$-relaxation process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13636v1-abstract-full').style.display = 'none'; document.getElementById('2409.13636v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11830">arXiv:2409.11830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.11830">pdf</a>, <a href="https://arxiv.org/format/2409.11830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Designing a minimal Landau theory to stabilize desired quasicrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+W">Wei Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shifeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Pingwen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+A">An-Chang Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+K">Kai Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11830v1-abstract-short" style="display: inline;"> Interparticle interactions with multiple length scales play a pivotal role in the formation and stability of quasicrystals. Choosing a minimal set of length scales to stabilize a given quasicrystal is a challenging problem. To address this challenge, we propose an intelligent screening method (ISM) to design a Landau theory with a minimal number of length scales -- referred to as the minimal Landa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11830v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11830v1-abstract-full" style="display: none;"> Interparticle interactions with multiple length scales play a pivotal role in the formation and stability of quasicrystals. Choosing a minimal set of length scales to stabilize a given quasicrystal is a challenging problem. To address this challenge, we propose an intelligent screening method (ISM) to design a Landau theory with a minimal number of length scales -- referred to as the minimal Landau theory -- that includes only the essential length scales necessary to stabilize quasicrystals. Based on a generalized multiple-length-scale Landau theory, ISM first evaluates various spectral configurations of candidate structures under a hard constraint. It then identifies the configuration with the lowest free energy. Using this optimal configuration, ISM calculates phase diagrams to explore the thermodynamic stability of desired quasicrystals. ISM can design a minimal Landau theory capable of stabilizing the desired quasicrystals by incrementally increasing the number of length scales. Our application of ISM has not only confirmed known behaviors in 10- and 12-fold quasicrystals but also led to a significant prediction that quasicrystals with 8-, 14-, 16-, and 18-fold symmetry could be stable within three-length-scale Landau models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11830v1-abstract-full').style.display = 'none'; document.getElementById('2409.11830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, 2 long tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07698">arXiv:2409.07698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07698">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Interlayer Engineering of Lattice Dynamics and Elastic Constants of 2D Layered Nanomaterials under Pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+G">Guoshuai Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lili Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuchang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+J">Jing Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+S">Susu Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Han%2C+W">Wuxiao Han</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jiayin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Y">Yubing Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ming%2C+J">Jiaxin Ming</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Tiansong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+J">Jun Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaoyan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+W">Weigao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yabin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07698v1-abstract-short" style="display: inline;"> Interlayer coupling in two-dimensional (2D) layered nanomaterials can provide us novel strategies to evoke their superior properties, such as the exotic flat bands and unconventional superconductivity of twisted layers, the formation of moir茅 excitons and related nontrivial topology. However, to accurately quantify interlayer potential and further measure elastic properties of 2D materials remains&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07698v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07698v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07698v1-abstract-full" style="display: none;"> Interlayer coupling in two-dimensional (2D) layered nanomaterials can provide us novel strategies to evoke their superior properties, such as the exotic flat bands and unconventional superconductivity of twisted layers, the formation of moir茅 excitons and related nontrivial topology. However, to accurately quantify interlayer potential and further measure elastic properties of 2D materials remains vague, despite significant efforts. Herein, the layer-dependent lattice dynamics and elastic constants of 2D nanomaterials have been systematically investigated via pressure-engineering strategy based on ultralow frequency Raman spectroscopy. The shearing mode and layer-breathing Raman shifts of MoS2 with various thicknesses were analyzed by the linear chain model. Intriguingly, it was found that the layer-dependent d蠅/dP of shearing and breathing Raman modes display the opposite trends, quantitatively consistent with our molecular dynamics simulations and density functional theory calculations. These results can be generalized to other van der Waals systems, and may shed light on the potential applications of 2D materials in nanomechanics and nanoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07698v1-abstract-full').style.display = 'none'; document.getElementById('2409.07698v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06660">arXiv:2409.06660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06660">pdf</a>, <a href="https://arxiv.org/format/2409.06660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Memory and Personality Shape Ideological Polarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shengkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phan%2C+T+V">Trung V. Phan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Carlo%2C+L">Luca Di Carlo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Gao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Do%2C+V+H">Van H. Do</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mikhail%2C+E">Elia Mikhail</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Austin%2C+R+H">Robert H. Austin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Liyu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06660v2-abstract-short" style="display: inline;"> We do experiments on physical agents with dynamic binary ideologies, deep memories of previous probes of neigboring agents, but fixed personalities that interpret the memory content to make ideological decisions. We find experimentally a critical memory depth below which complete ideological polarization of the collective cannot occur, and above which it is inevitable, an emergent symmetry breakin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06660v2-abstract-full').style.display = 'inline'; document.getElementById('2409.06660v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06660v2-abstract-full" style="display: none;"> We do experiments on physical agents with dynamic binary ideologies, deep memories of previous probes of neigboring agents, but fixed personalities that interpret the memory content to make ideological decisions. We find experimentally a critical memory depth below which complete ideological polarization of the collective cannot occur, and above which it is inevitable, an emergent symmetry breaking that is memory depth dependent. Depending on the details of the personalities, the polarization can be static or dynamic in time, even in certain cases chaotic due to nonreciprocity in how the agents respond to other agents. Thus, agents with different personalities and depths of memory serve as a physics analog of the ideology dynamics among biased individuals, illuminating how decisions influenced by individual memories of past interactions can shape and influence subsequent polarization. Perhaps such applications of physics-based systems to political systems will help us to understand the ideological instabilities observed today. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06660v2-abstract-full').style.display = 'none'; document.getElementById('2409.06660v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05600">arXiv:2409.05600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05600">pdf</a>, <a href="https://arxiv.org/ps/2409.05600">ps</a>, <a href="https://arxiv.org/format/2409.05600">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Thermodynamic evidence of fermionic behavior in the vicinity of one-ninth plateau in a kagome antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+G">Guoxin Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+D">Dechen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yuan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kuan-Wen Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+A">Aaron Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jenkins%2C+K">Kaila Jenkins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+B">Byungmin Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+Z">Zhenyuan Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+A">Aini Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ratkovski%2C+D">D. Ratkovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blawat%2C+J">Joanna Blawat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bangura%2C+A">Ali Bangura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singleton%2C+J">John Singleton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+P+A">Patrick A. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+L">Lu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05600v1-abstract-short" style="display: inline;"> The spin-1/2 kagome Heisenberg antiferromagnets are believed to host exotic quantum entangled states. Recently, the report of 1/9 magnetization plateau and magnetic oscillations in a kagome antiferromagnet YCu$_3$(OH)$_6$Br$_2$[Br$_x$(OH)$_{1-x}$] (YCOB) have made this material a promising candidate for experimentally realizing quantum spin liquid states. Here we present measurements of the specif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05600v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05600v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05600v1-abstract-full" style="display: none;"> The spin-1/2 kagome Heisenberg antiferromagnets are believed to host exotic quantum entangled states. Recently, the report of 1/9 magnetization plateau and magnetic oscillations in a kagome antiferromagnet YCu$_3$(OH)$_6$Br$_2$[Br$_x$(OH)$_{1-x}$] (YCOB) have made this material a promising candidate for experimentally realizing quantum spin liquid states. Here we present measurements of the specific heat $C_p$ in YCOB in high magnetic fields (up to 41.5 Tesla) down to 0.46 Kelvin, and the 1/9 plateau feature has been confirmed. Moreover, the temperature dependence of $C_p/T$ in the vicinity of 1/9 plateau region can be fitted by a linear in $T$ term which indicates the presence of a Dirac spectrum, together with a constant term, which indicates a finite density of states (DOS) contributed by other Fermi surfaces. Surprisingly the constant term is highly anisotropic in the direction of the magnetic field. Additionally, we observe a double-peak feature near $30$~T above the 1/9 plateau which is another hallmark of fermionic excitations in the specific heat. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05600v1-abstract-full').style.display = 'none'; document.getElementById('2409.05600v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures in the main text, 7 figures in the appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04149">arXiv:2409.04149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04149">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Spin freezing induced giant exchange bias in a doped Hund&#39;s metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S+J">S. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+D">D. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kang%2C+B+L">B. L. Kang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+M">M. Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+Y+B">Y. B. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X+Y">X. Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">T. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X+H">X. H. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04149v1-abstract-short" style="display: inline;"> Exchange bias (EB) is a fundamental phenomenon in widespread information technologies. However, a comprehensive understanding of its microscopic origin remains a great challenge. One key issue in the debate is the role of frustration and disorder in the EB mechanism, which motivates the exploration of the EB effect in spin glass (SG) systems. Here,in the SG state of Cr-doped Hund&#39;s metal CsFe2As2,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04149v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04149v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04149v1-abstract-full" style="display: none;"> Exchange bias (EB) is a fundamental phenomenon in widespread information technologies. However, a comprehensive understanding of its microscopic origin remains a great challenge. One key issue in the debate is the role of frustration and disorder in the EB mechanism, which motivates the exploration of the EB effect in spin glass (SG) systems. Here,in the SG state of Cr-doped Hund&#39;s metal CsFe2As2, we discover a giant EB effect with a maximum bias field of ~ 2 Tesla, which is almost two orders of magnitude larger than that of traditional alloy SGs. Our results indicate that the giant EB effect should originate from the exchange interactions at the natural boundaries between the tunable ferromagnetic-like (FM) regions around Cr dopants and the SG matrix, via which the FM spins are strongly pinned by the frozen spins in the SG matrix. In addition, the temperature-dependent and cooling-field-dependent EB behaviors could be interpreted well by the SG model with frustrated FM/SG boundaries, which provides an intuitive and explicit understanding of the impact of glassy parameters on the EB effect. All these results suggest that the correlated metals are promising directions for exploring the EB effect in the SG state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04149v1-abstract-full').style.display = 'none'; document.getElementById('2409.04149v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures,Supplementary information available on request</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02767">arXiv:2409.02767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02767">pdf</a>, <a href="https://arxiv.org/format/2409.02767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.032438">10.1103/PhysRevA.110.032438 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hong-Ou-Mandel Interference in a temporal-average-inversion-symmetric chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+S">Shi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Meiqing Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shihao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Z">Zihui Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+Z">Zhoutao Lei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02767v1-abstract-short" style="display: inline;"> We show how to implement tunable beam splitter and Hong-Ou-Mandel interference in the Su-Schrieffer-Heeger chain by manipulating the topological edge states adiabatically. The boson initially injected in the one end of the chain can be transferred to the two-end with a tunable proportion depends on the dynamical phases accumulated during the adiabatic evolution. We also observe Hong-Ou-Mandel inte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02767v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02767v1-abstract-full" style="display: none;"> We show how to implement tunable beam splitter and Hong-Ou-Mandel interference in the Su-Schrieffer-Heeger chain by manipulating the topological edge states adiabatically. The boson initially injected in the one end of the chain can be transferred to the two-end with a tunable proportion depends on the dynamical phases accumulated during the adiabatic evolution. We also observe Hong-Ou-Mandel interference via the tunable beam splitter ($50:50$) and achieve a spatially entangled two-particle NOON state. We demonstrate the robustness of our proposal under chiral- and time-reversal-symmetry-preserving disorder. However, the chiral symmetry is scarce for realist system. Therefore, we demonstrate Hong-Ou-Mandel interference are robust to inversion symmetric disorder breaking the chiral symmetry, highlighting the protection of inversion symmetry. More importantly, the inversion symmetry violated by static disorder can be restored for more common situations where disorder becomes time dependent, giving rise to the temporal-average-inversion-symmetry protected Hong-Ou-Mandel interference. Our approach opens a new way to study quantum effects in topological matter with potential applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02767v1-abstract-full').style.display = 'none'; document.getElementById('2409.02767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevA.110, 032438 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00226">arXiv:2409.00226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00226">pdf</a>, <a href="https://arxiv.org/format/2409.00226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> </div> <p class="title is-5 mathjax"> Switchable Conformation in Protein Subunits: Unveiling Assembly Dynamics of Icosahedral Viruses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Siyu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tresset%2C+G">Guillaume Tresset</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zandi%2C+R">Roya Zandi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00226v1-abstract-short" style="display: inline;"> The packaging of genetic material within a protein shell, called the capsid, marks a pivotal step in the life cycle of numerous single-stranded RNA viruses. Understanding how hundreds, or even thousands, of proteins assemble around the genome to form highly symmetrical structures remains an unresolved puzzle. In this paper, we design novel subunits and develop a model that enables us to explore th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00226v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00226v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00226v1-abstract-full" style="display: none;"> The packaging of genetic material within a protein shell, called the capsid, marks a pivotal step in the life cycle of numerous single-stranded RNA viruses. Understanding how hundreds, or even thousands, of proteins assemble around the genome to form highly symmetrical structures remains an unresolved puzzle. In this paper, we design novel subunits and develop a model that enables us to explore the assembly pathways and genome packaging mechanism of icosahedral viruses, which were previously inaccessible. Using molecular dynamics (MD) simulations, we observe capsid fragments, varying in protein number and morphology, assembling at different locations along the genome. Initially, these fragments create a disordered structure that later merges to form a perfect symmetric capsid. The model demonstrates remarkable strength in addressing numerous unresolved issues surrounding virus assembly. For instance, it enables us to explore the advantages of RNA packaging by capsid proteins over linear polymers. Our MD simulations are in excellent agreement with our experimental findings from small-angle X-ray scattering and cryo-transmission electron microscopy, carefully analyzing the assembly products of viral capsid proteins around RNAs with distinct topologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00226v1-abstract-full').style.display = 'none'; document.getElementById('2409.00226v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16192">arXiv:2408.16192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16192">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Molecular-Scale Insights into the Heterogeneous Interactions Between an m-Terphenyl Isocyanide Ligand and Noble Metal Nanoparticles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bi%2C+L">Liya Bi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yufei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhe Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Do%2C+A">Alexandria Do</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuqua%2C+A">Alexander Fuqua</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balto%2C+K+P">Krista P. Balto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yanning Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Figueroa%2C+J+S">Joshua S. Figueroa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pascal%2C+T+A">Tod A. Pascal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+A+R">Andrea R. Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shaowei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16192v2-abstract-short" style="display: inline;"> The structural and chemical properties of metal nanoparticles are often dictated by their interactions with molecular ligand shells. These interactions are highly material-specific and can vary significantly even among elements within the same group or materials with similar crystal structure. Precise characterization of ligand-metal interactions is crucial for the rational design of ligands and t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16192v2-abstract-full').style.display = 'inline'; document.getElementById('2408.16192v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16192v2-abstract-full" style="display: none;"> The structural and chemical properties of metal nanoparticles are often dictated by their interactions with molecular ligand shells. These interactions are highly material-specific and can vary significantly even among elements within the same group or materials with similar crystal structure. Precise characterization of ligand-metal interactions is crucial for the rational design of ligands and the functionalization of nanoparticles. In this study, we found that the ligation behavior with m-terphenyl isocyanide molecule differs significantly between Au and Ag nanoparticles, with distinct ligand extraction efficiencies and size dependencies. Surface-enhanced Raman spectroscopy measurements revealed unique enhancement factors for two molecular vibrational modes between two metal surfaces, indicating different ligand binding geometries. Molecular-level characterization using scanning tunneling microscopy allowed us to directly visualize these variations between Ag and Au surfaces, which we assign as two distinct binding mechanisms. This molecular-scale visualization provides clear insights into the different ligand-metal interactions, as well as the chemical behavior and spectroscopic characteristics of isocyanide-functionalized nanoparticles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16192v2-abstract-full').style.display = 'none'; document.getElementById('2408.16192v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15704">arXiv:2408.15704</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15704">pdf</a>, <a href="https://arxiv.org/format/2408.15704">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Thermoelectric Performance of $p$-type BiSbTe Through Incorporation of Magnetic CrSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fortulan%2C+R">Raphael Fortulan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Suwei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reece%2C+M+J">Michael John Reece</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Serhiienko%2C+I">Illia Serhiienko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mori%2C+T">Takao Mori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamini%2C+S+A">Sima Aminorroya Yamini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15704v1-abstract-short" style="display: inline;"> There is evidence that magnetism can potentially increase the thermopower of materials, most likely due to magnon scattering, suggesting the incorporation of intrinsic magnetic semiconductors in non-magnetic thermoelectric materials. Here, samples of $\textit{p}$-type Bi$_{0.5}$Sb$_{1.5}$Te$_{3}$ with 10 at.% excess Te are ball-milled with varying ratio of the antiferromagnetic semiconductor CrSb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15704v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15704v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15704v1-abstract-full" style="display: none;"> There is evidence that magnetism can potentially increase the thermopower of materials, most likely due to magnon scattering, suggesting the incorporation of intrinsic magnetic semiconductors in non-magnetic thermoelectric materials. Here, samples of $\textit{p}$-type Bi$_{0.5}$Sb$_{1.5}$Te$_{3}$ with 10 at.% excess Te are ball-milled with varying ratio of the antiferromagnetic semiconductor CrSb (0, 0.125, 0.5, and 1 wt.%) to prepare bulk samples by spark plasma sintering technique. The thermopower of samples containing CrSb is increased due to an increase in the effective mass of the charge carriers, indicating that there is a drag effect originating from the magnetic particles. However, this was at the expense of reduced electrical conductivity caused by reduced charge carrier mobility. While overall only marginal improvements in power factors were observed, these samples exhibited significantly lower thermal conductivity compared to the single-phase material. As a result, a peak $\textit{zT}$ value of $\sim$1.4 was achieved at 325 K for the sample with 0.125 wt.% CrSb. These results highlight the potential of incorporating magnetic secondary phases to enhance the thermoelectric performance of materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15704v1-abstract-full').style.display = 'none'; document.getElementById('2408.15704v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13515">arXiv:2408.13515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.13515">pdf</a>, <a href="https://arxiv.org/format/2408.13515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Emission from Coupled Spin Pairs in Hexagonal Boron Nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Song Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pershin%2C+A">Anton Pershin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gali%2C+A">Adam Gali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13515v2-abstract-short" style="display: inline;"> Optically addressable defect qubits in wide band gap materials are favorable candidates for room temperature quantum information processing. The two-dimensional (2D) hexagonal boron nitride (hBN) is an attractive solid state platform with a great potential for hosting bright quantum emitters with quantum memories with leveraging the potential of 2D materials for realizing scalable preparation of d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13515v2-abstract-full').style.display = 'inline'; document.getElementById('2408.13515v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13515v2-abstract-full" style="display: none;"> Optically addressable defect qubits in wide band gap materials are favorable candidates for room temperature quantum information processing. The two-dimensional (2D) hexagonal boron nitride (hBN) is an attractive solid state platform with a great potential for hosting bright quantum emitters with quantum memories with leveraging the potential of 2D materials for realizing scalable preparation of defect qubits. Although, room temperature bright defect qubits have been recently reported in hBN but their microscopic origin, the nature of the optical transition as well as the optically detected magnetic resonance (ODMR) have been remained elusive. Here we connect the variance in the optical spectra, optical lifetimes and spectral stability of quantum emitters to donor-acceptor pairs (DAP) in hBN by means of ab initio calculations. We find that DAPs can exhibit ODMR signal for the acceptor counterpart of the defect pair with S=1/2 ground state at non-zero magnetic fields depending on the donor partner. The donor-acceptor pair model and its transition mechanisms provide a recipe towards defect qubit identification and performance optimization in hBN for quantum applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13515v2-abstract-full').style.display = 'none'; document.getElementById('2408.13515v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12911">arXiv:2408.12911</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12911">pdf</a>, <a href="https://arxiv.org/format/2408.12911">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Ground state of the S = 1/2 Heisenberg spin chain with random ferro- and antiferromagnetic couplings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Sibei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+H">Hui Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sandvik%2C+A+W">Anders W. Sandvik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12911v1-abstract-short" style="display: inline;"> We study the Heisenberg $S=1/2$ chain with random ferro- and antiferromagnetic couplings, using quantum Monte Carlo simulations at ultra-low temperatures, converging to the ground state. Finite-size scaling of correlation functions and excitation gaps demonstrate an exotic critical state in qualitative agreement with previous strong-disorder renormalization group calculations, but with scaling exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12911v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12911v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12911v1-abstract-full" style="display: none;"> We study the Heisenberg $S=1/2$ chain with random ferro- and antiferromagnetic couplings, using quantum Monte Carlo simulations at ultra-low temperatures, converging to the ground state. Finite-size scaling of correlation functions and excitation gaps demonstrate an exotic critical state in qualitative agreement with previous strong-disorder renormalization group calculations, but with scaling exponents depending on the coupling distribution. We find dual scaling regimes of the transverse correlations versus the distance, with an $L$ independent form $C(r)=r^{-渭}$ for $r \ll L$ and $C(r,L)=L^{-畏}f(r/L)$ for $r/L &gt; 0$, where $渭&gt; 畏$ and the scaling function is delivered by our analysis. These results are at variance with previous spin-wave and density-matrix renormalization group calculations, thus highlighting the power of unbiased quantum Monte Carlo simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12911v1-abstract-full').style.display = 'none'; document.getElementById('2408.12911v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09965">arXiv:2408.09965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09965">pdf</a>, <a href="https://arxiv.org/ps/2408.09965">ps</a>, <a href="https://arxiv.org/format/2408.09965">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Relaxing towards generalized one-body Boltzmann states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Sheng-Wen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+N">Ning Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09965v1-abstract-short" style="display: inline;"> Isolated quantum systems follow the reversible unitary evolution; if we focus on the dynamics of local states and observables, they exhibit the irreversible relaxation behaviors. Here we study the local relaxation process in an isolated chain consisting of \emph{N} three level systems. Though the entropy of the full many body state keeps a constant, it turns out the total correlation of this syste&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09965v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09965v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09965v1-abstract-full" style="display: none;"> Isolated quantum systems follow the reversible unitary evolution; if we focus on the dynamics of local states and observables, they exhibit the irreversible relaxation behaviors. Here we study the local relaxation process in an isolated chain consisting of \emph{N} three level systems. Though the entropy of the full many body state keeps a constant, it turns out the total correlation of this system approximately exhibits a monotonically increasing behavior. More importantly, a variation analysis shows that, the total correlation entropy would achieve its theoretical maximum when each site stays in a generalized one-body Boltzmann state, which is not solely determined by the energy but also depends on the spin value of each onsite level. It turns out such a theoretical correlation maximum is highly coincident with the result obtained from the exact time dependent evolution. In this sense, the total correlation entropy well serves as an indicator for the dynamical irreversibility of the nonequilibrium relaxation in this isolated system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09965v1-abstract-full').style.display = 'none'; document.getElementById('2408.09965v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05578">arXiv:2408.05578</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05578">pdf</a>, <a href="https://arxiv.org/format/2408.05578">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Order by projection in single-band Hubbard model: a DMRG study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuyi Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+C">Cheng Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+Y">Yue Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shastry%2C+B+S">B. Sriram Shastry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05578v1-abstract-short" style="display: inline;"> In a Fermi system near or at half-filling, a specific superconducting pairing channel, if not explicitly included in the Hamiltonian, can be boosted by suppressing a competing pairing channel; this is exemplified by the enhancement of extended $s$-wave correlations upon suppressing $s$-wave Cooper pairing. This phenomenon, originally found by the use of generalized uncertainty relations is referre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05578v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05578v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05578v1-abstract-full" style="display: none;"> In a Fermi system near or at half-filling, a specific superconducting pairing channel, if not explicitly included in the Hamiltonian, can be boosted by suppressing a competing pairing channel; this is exemplified by the enhancement of extended $s$-wave correlations upon suppressing $s$-wave Cooper pairing. This phenomenon, originally found by the use of generalized uncertainty relations is referred to as \emph{order by projection}. The case of zero on-site Coulomb interaction in the thermodynamic limit, confirms this mechanism through the analytical solution. In this study, we go further and systematically investigate this mechanism for a strongly correlated fermionic Hubbard model, now with finite on-site interaction, on a square lattice with an extended set of hopping parameters. We explore the behaviors of different pairing channels when one of them is suppressed, utilizing density matrix renormalization group calculations. Our findings provide numerical evidence supporting the existence of \emph{order by projection} in the strongly correlated system we studied. We also investigate the effect of the strength of Hubbard $U$, next-nearest neighbor $t&#39;$, hole-doping, as well as finite-size scaling approaching the thermodynamic limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05578v1-abstract-full').style.display = 'none'; document.getElementById('2408.05578v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00320">arXiv:2408.00320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00320">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a metallic room-temperature d-wave altermagnet KV2Se2O </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+B">Bei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+M">Mingzhe Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+J">Jianli Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Z">Ziyin Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mu%2C+C">Chao Mu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+G">Gexing Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Wenliang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pi%2C+H">Hanqi Pi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z">Zhongxu Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yujie Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+L">Lunhua He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+G">Genfu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+T">Tian Qian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00320v2-abstract-short" style="display: inline;"> Beyond conventional ferromagnetism and antiferromagnetism, altermagnetism is a recently discovered unconventional magnetic phase characterized by time-reversal symmetry breaking and spin-split band structures in materials with zero net magnetization. This distinct magnetic phase not only enriches the understanding of fundamental physical concepts but also has profound impacts on condense-matter ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00320v2-abstract-full').style.display = 'inline'; document.getElementById('2408.00320v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00320v2-abstract-full" style="display: none;"> Beyond conventional ferromagnetism and antiferromagnetism, altermagnetism is a recently discovered unconventional magnetic phase characterized by time-reversal symmetry breaking and spin-split band structures in materials with zero net magnetization. This distinct magnetic phase not only enriches the understanding of fundamental physical concepts but also has profound impacts on condense-matter physics research and practical device applications. Spin-polarized band structures have been recently observed in semiconductors MnTe and MnTe2 with vanishing net magnetization, confirming the existence of this unconventional magnetic order. Metallic altermagnets have unique advantages for exploring novel physical phenomena related to low-energy quasiparticle excitations and for applications in spintronics as electrical conductivity in metals allows the direct manipulation of spin current through electric field. Here, through comprehensive characterization and analysis of the magnetic and electronic structures of KV2Se2O, we have unambiguously demonstrated a metallic room-temperature altermaget with d-wave spin-momentum locking. The highly anisotropic spin-polarized Fermi surfaces and the spin-density-wave order emerging in the altermagnetic phase make it an extraordinary platform for designing high-performance spintronic devices and studying many-body effects coupled with the unconventional magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00320v2-abstract-full').style.display = 'none'; document.getElementById('2408.00320v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.21466">arXiv:2407.21466</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.21466">pdf</a>, <a href="https://arxiv.org/format/2407.21466">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Nonlinearity-induced dynamical self-organized twisted-bilayer lattices in Bose-Einstein condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+R">Rui Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+T">Tianhao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yong-Chang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.21466v1-abstract-short" style="display: inline;"> Creating crystal bilayers twisted with respect to each other would lead to large periodic supercell structures, which can support a wide range of novel electron correlated phenomena, where the full understanding is still under debate. Here, we propose a new scheme to realize a nonlinearity-induced dynamical self-organized twisted-bilayer lattice in an atomic Bose-Einstein condensate (BEC). The key&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21466v1-abstract-full').style.display = 'inline'; document.getElementById('2407.21466v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.21466v1-abstract-full" style="display: none;"> Creating crystal bilayers twisted with respect to each other would lead to large periodic supercell structures, which can support a wide range of novel electron correlated phenomena, where the full understanding is still under debate. Here, we propose a new scheme to realize a nonlinearity-induced dynamical self-organized twisted-bilayer lattice in an atomic Bose-Einstein condensate (BEC). The key idea here is to utilize the nonlinear effect from the intrinsic atomic interactions to couple different layers and induce a dynamical self-organized supercell structure, dramatically distinct from the conventional wisdom to achieve the static twisted-bilayer lattices. To illustrate that, we study the dynamics of a two-component BEC and show that the nonlinear interaction effect naturally emerged in the Gross-Pitaevskii equation of interacting bosonic ultracold atoms can dynamically induce both periodic (commensurable) and aperiodic (incommensurable) moir茅 structures. One of the interesting moir茅 phenomena, i.e., the flat-band physics, is shown through investigating the dynamics of the wave packet of BEC. Our proposal can be implemented using available state-of-the-art experimental techniques and reveal a profound connection between the nonlinearity and twistronics in cold atom quantum simulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21466v1-abstract-full').style.display = 'none'; document.getElementById('2407.21466v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20081">arXiv:2407.20081</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20081">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Gapped quantum spin liquid in a triangular-lattice Ising-type antiferromagnet PrMgAl11O19 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+C">Chengpeng Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+Z">Zhen Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hanru Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiao%2C+Y">Yihan Jiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+D">Dongzhe Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiyan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20081v1-abstract-short" style="display: inline;"> In the search of quantum spin liquid (QSLs), spin-1/2 triangular-lattice Heisenberg antiferromagnets (TLHAFs) have always been viewed as fertile soils. Despite the true magnetically-ordered ground state, anisotropy has been considered to play a significant role in stabilizing a QSL state. However, the nature and ground state of the most anisotropic case, the triangular-lattice Ising antiferromagne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20081v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20081v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20081v1-abstract-full" style="display: none;"> In the search of quantum spin liquid (QSLs), spin-1/2 triangular-lattice Heisenberg antiferromagnets (TLHAFs) have always been viewed as fertile soils. Despite the true magnetically-ordered ground state, anisotropy has been considered to play a significant role in stabilizing a QSL state. However, the nature and ground state of the most anisotropic case, the triangular-lattice Ising antiferromagnet (TLIAF), remains elusive and controversial. Here, we report specific heat and thermal conductivity measurements on a newly-discovered Ising-type QSL candidate PrMgAl11O19. At zero field, the magnetic specific heat shows a quadratic temperature dependence. On the contrary, no direct positive magnetic contribution to thermal conductivity was detected, ruling out the presence of mobile gapless fermionic excitations. Further analysis of phonon thermal conductivity reveals that the phonons are strongly scattered by thermally-activated magnetic excitations out of a gap, which exhibits a linear dependence with magnetic field. These results demonstrate that the spin-1/2 TLIAF PrMgAl11O19 has a gapped Z2 QSL ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20081v1-abstract-full').style.display = 'none'; document.getElementById('2407.20081v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19973">arXiv:2407.19973</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.19973">pdf</a>, <a href="https://arxiv.org/format/2407.19973">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spontaneous spin superconductor state in ABCA-stacked tetralayer graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Yuan-Hang Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+A">Ao-Long Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+H">Hua Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19973v1-abstract-short" style="display: inline;"> We theoretically demonstrate a spontaneous spin superconductor (SC) state in ABCA-stacked tetralayer graphene, under sequential effects of electron-electron (e-e) and electron-hole (e-h) interactions. First of all, we examine the ferromagnetic (FM) exchange instability and phase diagram of the system induced by the long-range e-e interaction. At non- or low-doping levels, the interaction trends to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19973v1-abstract-full').style.display = 'inline'; document.getElementById('2407.19973v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19973v1-abstract-full" style="display: none;"> We theoretically demonstrate a spontaneous spin superconductor (SC) state in ABCA-stacked tetralayer graphene, under sequential effects of electron-electron (e-e) and electron-hole (e-h) interactions. First of all, we examine the ferromagnetic (FM) exchange instability and phase diagram of the system induced by the long-range e-e interaction. At non- or low-doping levels, the interaction trends to stabilize a FM phase with the coexisting electron and hole carriers. Superior to bilayer and trilayer systems, tetralayer graphene has a larger FM phase region and spin splitting, making it more advantageous to realize the spin SC state. Subsequently, we prove that the FM phase becomes unstable when attractive e-h interaction is considered. As a consequence, the spin SC state can be spontaneously formed at low temperature, where spin-triplet exciton pairs act as the equivalent of Cooper pairs. We further develop a consistent BCS-type theory for the spin SC state in ABCA-stacked graphene. The predicted spin superconducting gap can reach about $7.0$ meV, with a critical temperature of about 45 K for non-doping system. At last, we demonstrated a spin-current Josephson effect in the ABCA-stacked graphene spin SC heterojunction. Our findings enrich the prospective spin SC candidate materials, illuminating more possibilities for achieving non-dissipative super-spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19973v1-abstract-full').style.display = 'none'; document.getElementById('2407.19973v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages,7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19766">arXiv:2407.19766</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.19766">pdf</a>, <a href="https://arxiv.org/format/2407.19766">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Anomalous symmetry protected blockade of skin effect in one-dimensional non-Hermitian lattice systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+M">Min Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+R">Rui Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arzamasovs%2C+M">Maksims Arzamasovs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19766v1-abstract-short" style="display: inline;"> The non-Hermitian skin effect (NHSE), an anomalous localization behavior of the bulk states, is an inherently non-Hermitian phenomenon, which can not find a counterpart in Hermitian systems. However, the fragility of NHSE has been revealed recently, such as the boundary sensitivity, and it stimulates a lot of studies on discussing the fate of that. Here we present a theorem which shows that the co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19766v1-abstract-full').style.display = 'inline'; document.getElementById('2407.19766v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19766v1-abstract-full" style="display: none;"> The non-Hermitian skin effect (NHSE), an anomalous localization behavior of the bulk states, is an inherently non-Hermitian phenomenon, which can not find a counterpart in Hermitian systems. However, the fragility of NHSE has been revealed recently, such as the boundary sensitivity, and it stimulates a lot of studies on discussing the fate of that. Here we present a theorem which shows that the combined spatial reflection symmetry can be considered as a criterion in one-dimensional non-Hermitian systems to determine whether the NHSE can exist or not. Distinct from previous studies, our proposed criterion only relies on analyzing the symmetry of the system, freeing out other requirements, such as the information of the energy spectrum. Furthermore, by taking the non-Hermitian Kitaev chain as an example, we verify our theorem through both a mathematical proof via the non-Bloch band theory and the exact diagonalization numerical studies. Our results reveal a profound connection between the symmetry and the fate of NHSE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19766v1-abstract-full').style.display = 'none'; document.getElementById('2407.19766v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, including Supplementary Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18485">arXiv:2407.18485</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18485">pdf</a>, <a href="https://arxiv.org/format/2407.18485">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yue Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yingchao Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tian%2C+R">Rui Tian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+M">Miao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hongrong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+H">Hong Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zubairy%2C+M+S">M. Suhail Zubairy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+F">Fuli Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+B">Bo Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18485v1-abstract-short" style="display: inline;"> The non-Bloch topology leads to the emergence of various counter-intuitive phenomena in non-Hermitian systems under the open boundary condition (OBC), which can not find a counterpart in Hermitian systems. However, in the non-Hermitian system without chiral symmetry, being ubiquitous in nature, exploring its non-Bloch topology has so far eluded experimental effort. Here by introducing the concept&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18485v1-abstract-full').style.display = 'inline'; document.getElementById('2407.18485v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18485v1-abstract-full" style="display: none;"> The non-Bloch topology leads to the emergence of various counter-intuitive phenomena in non-Hermitian systems under the open boundary condition (OBC), which can not find a counterpart in Hermitian systems. However, in the non-Hermitian system without chiral symmetry, being ubiquitous in nature, exploring its non-Bloch topology has so far eluded experimental effort. Here by introducing the concept of non-chiral non-Bloch invariants, we theoretically predict and experimentally identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry in discrete-time non-unitary quantum walks of single photons. Interestingly, we find that such topological invariants not only can distinguish topologically distinct gapped phases, but also faithfully capture the corresponding gap closing in open-boundary spectrum at the phase boundary. Different topological regions are experimentally identified by measuring the featured discontinuities of the higher moments of the walker&#39;s displacement, which amazingly match excellently with our defined non-Bloch invariants. Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18485v1-abstract-full').style.display = 'none'; document.getElementById('2407.18485v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, including Supplementary Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16924">arXiv:2407.16924</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16924">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Real-space topology-engineering of skyrmionic spin textures in a van der Waals ferromagnet Fe3GaTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+S">Shuo Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jianfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+G">Guojing Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Guangcheng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Songyang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+Z">Zizhao Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+S">Shuaizhao Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+R">Rui Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pang%2C+F">Fei Pang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+W">Wei Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+W">Weiqiang Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaolei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xueyun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haitao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zhihai Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16924v1-abstract-short" style="display: inline;"> Realizing magnetic skyrmions in two-dimensional (2D) van der Waals (vdW) ferromagnets offers unparalleled prospects for future spintronic applications. The room-temperature ferromagnet Fe3GaTe2 provides an ideal platform for tailoring these magnetic solitons. Here, skyrmions of distinct topological charges are artificially introduced and spatially engineered using magnetic force microscopy (MFM).&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16924v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16924v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16924v1-abstract-full" style="display: none;"> Realizing magnetic skyrmions in two-dimensional (2D) van der Waals (vdW) ferromagnets offers unparalleled prospects for future spintronic applications. The room-temperature ferromagnet Fe3GaTe2 provides an ideal platform for tailoring these magnetic solitons. Here, skyrmions of distinct topological charges are artificially introduced and spatially engineered using magnetic force microscopy (MFM). The skyrmion lattice is realized by specific field-cooling process, and can be further controllably erased and painted via delicate manipulation of tip stray field. The skyrmion lattice with opposite topological charges (S = +1 or -1) can be tailored at the target regions to form topological skyrmion junctions (TSJs) with specific configurations. The delicate interplay of TSJs and spin-polarized device current were finally investigated via the in-situ transport measurements, alongside the topological stability of TSJs. Our results demonstrate that Fe3GaTe2 not only serves as a potential building block for room-temperature skyrmion-based spintronic devices, but also presents promising prospects for Fe3GaTe2-based heterostructures with the engineered topological spin textures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16924v1-abstract-full').style.display = 'none'; document.getElementById('2407.16924v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08547">arXiv:2407.08547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08547">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Necklace-like pattern of vortex bound states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+Z">Zhiyong Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+K">Kailun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+W">Wenshan Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+D">Da Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+W">Wen Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Huan Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiliang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Huiqian Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qiang-Hua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H">Hai-Hu Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08547v1-abstract-short" style="display: inline;"> Vortex is a topological defect in the superconducting condensate when a magnetic field is applied to a type-II superconductor, as elucidated by the Ginzburg-Landau theory. Due to the confinement of the quasiparticles by a vortex, it exhibits a circular shaped pattern of bound states with discrete energy levels, as predicted by the Caroli-de Gennes-Matricon theory in 1964. Here, however, we report&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08547v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08547v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08547v1-abstract-full" style="display: none;"> Vortex is a topological defect in the superconducting condensate when a magnetic field is applied to a type-II superconductor, as elucidated by the Ginzburg-Landau theory. Due to the confinement of the quasiparticles by a vortex, it exhibits a circular shaped pattern of bound states with discrete energy levels, as predicted by the Caroli-de Gennes-Matricon theory in 1964. Here, however, we report a completely new type of vortex pattern which is necklace-like in an iron-based superconductor KCa2Fe4As4F2. Our theoretical analysis shows that this necklace-like vortex pattern arises from selective off-shell interference between vortex bound states of opposite angular momenta in the presence of rotational symmetry breaking due to disorders. This fascinating effect can be observed in a system with a small Fermi energy and wave vector, conditions fortuitously met in our samples. Our results not only disclose a novel vortex structure but also provide insights into comprehending the physics of the superconducting condensate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08547v1-abstract-full').style.display = 'none'; document.getElementById('2407.08547v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages total; 16 pages of main text with 5 figures, 13 pages of supplementary materials with 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06487">arXiv:2407.06487</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06487">pdf</a>, <a href="https://arxiv.org/format/2407.06487">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Unconventional Spin-Orbit Torques from Sputtered MoTe2 Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuchen Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gibbons%2C+J">Jonathan Gibbons</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chyczewski%2C+S">Stasiu Chyczewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zetai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ni%2C+H">Hsu-Chih Ni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qian%2C+J">Jiangchao Qian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zuo%2C+J">Jian-Min Zuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+J">Jun-Fei Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Wenjuan Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+A">Axel Hoffmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06487v1-abstract-short" style="display: inline;"> Materials with strong spin-orbit coupling and low crystalline symmetry are promising for generating large unconventional spin-orbit torques (SOTs), such as in-plane field-like (FL) torques and out-of-plane damping-like (DL) torques, which can effectively manipulate and deterministically switch an out-of-plane magnetization without the need for additional external in-plane magnetic fields. Here, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06487v1-abstract-full').style.display = 'inline'; document.getElementById('2407.06487v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06487v1-abstract-full" style="display: none;"> Materials with strong spin-orbit coupling and low crystalline symmetry are promising for generating large unconventional spin-orbit torques (SOTs), such as in-plane field-like (FL) torques and out-of-plane damping-like (DL) torques, which can effectively manipulate and deterministically switch an out-of-plane magnetization without the need for additional external in-plane magnetic fields. Here, we report SOTs generated by magnetron-sputtered 1T&#39; MoTe2/Permalloy (Py; Ni80Fe20)/MgO heterostructures using both spin-torque ferromagnetic resonance (ST-FMR) and second harmonic Hall measurements. We observed unconventional FL and DL torques in our samples due to spins polarized normal to the interface of MoTe2 and Py layers, and studied the influence of crystallographic order and MoTe2 layer thickness on the SOTs. By comparing the Raman spectra of 1T&#39; MoTe2 samples prepared in different ways, we found a tensile strain in sputtered MoTe2 films, which might further enhance the generation of unconventional torques by reducing the symmetry of 1T&#39; MoTe2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06487v1-abstract-full').style.display = 'none'; document.getElementById('2407.06487v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06406">arXiv:2407.06406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06406">pdf</a>, <a href="https://arxiv.org/format/2407.06406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Unveiling mussel plaque core ductility: the role of pore distribution and hierarchical structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+Y">Yulan Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tan%2C+M">Mengting Tan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pang%2C+Y">Yong Pang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+W">Wei Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuguang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tao Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06406v1-abstract-short" style="display: inline;"> The mussel thread-plaque system exhibits strong adhesion and high ductility, allowing it to adhere to various surfaces. While the microstructure of plaques has been thoroughly studied, the effect of their unique porous structure on ductility remains unclear. This study firstly investigated the porous structure of mussel plaque cores using scanning electron microscopy (SEM). Two-dimensional (2D) po&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06406v1-abstract-full').style.display = 'inline'; document.getElementById('2407.06406v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06406v1-abstract-full" style="display: none;"> The mussel thread-plaque system exhibits strong adhesion and high ductility, allowing it to adhere to various surfaces. While the microstructure of plaques has been thoroughly studied, the effect of their unique porous structure on ductility remains unclear. This study firstly investigated the porous structure of mussel plaque cores using scanning electron microscopy (SEM). Two-dimensional (2D) porous representative volume elements (RVEs) with scaled distribution parameters were generated, and the calibrated phase-field modelling method was applied to analyse the effect of the pore distribution and multi-scale porous structure on the failure mechanism of porous RVEs. The SEM analysis revealed that large-scale pores exhibited a lognormal size distribution and a uniform spatial distribution. Simulations showed that increasing the normalised mean radius value of the large-scale pore distribution can statistically lead to a decreasing trend in ductility, strength and strain energy, but cannot solely determine their values. The interaction between pores can lead to two different failure modes under the same pore distribution: progressive failure mode and sudden failure mode. Additionally, the hierarchical structure of multi-scale porous RVEs can further increase ductility by 40%-60% compared to single-scale porous RVEs by reducing stiffness, highlighting the hierarchical structure could be another key factor contributing to the high ductility. These findings deepen our understanding of how the pore distribution and multi-scale porous structure in mussel plaques contribute to their high ductility and affect other mechanical properties, providing valuable insights for the future design of highly ductile biomimetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06406v1-abstract-full').style.display = 'none'; document.getElementById('2407.06406v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03390">arXiv:2407.03390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03390">pdf</a>, <a href="https://arxiv.org/format/2407.03390">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Observation of Co-propagating Chiral Zero Modes in Magnetic Photonic Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhongfu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+S">Shaojie Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuwei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=you%2C+O">Oubo you</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yachao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Q">Qingdong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+Y">Yuanjiang Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+P">Peiheng Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shuang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03390v1-abstract-short" style="display: inline;"> Topological singularities, such as Weyl points and Dirac points, can give rise to unidirectional propagation channels known as chiral zero modes (CZMs) when subject to a magnetic field. These CZMs are responsible for intriguing phenomena like the chiral anomaly in quantum systems. The propagation direction of each CZM is determined by both the applied magnetic field and the topological charge of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03390v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03390v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03390v1-abstract-full" style="display: none;"> Topological singularities, such as Weyl points and Dirac points, can give rise to unidirectional propagation channels known as chiral zero modes (CZMs) when subject to a magnetic field. These CZMs are responsible for intriguing phenomena like the chiral anomaly in quantum systems. The propagation direction of each CZM is determined by both the applied magnetic field and the topological charge of the singularity point. While counter-propagating CZMs have been observed in 2D and 3D systems, the realization of co-propagating CZMs has remained elusive. Here we present the first experimental observation of co-propagating CZMs in magnetic photonic crystals hosting a single pair of ideal Weyl points WPs. By manipulating the crystal&#39;s structural configuration, we spatially alter the locations of the WPs, creating pseudo-magnetic fields in opposite directions between them. This arrangement results in a pair of CZMs that possess the same group velocity and co-propagate. Our work opens up new possibilities for topological manipulation of wave propagation and may lead to advancements in optical waveguides, switches, and various other applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03390v1-abstract-full').style.display = 'none'; document.getElementById('2407.03390v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03249">arXiv:2407.03249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03249">pdf</a>, <a href="https://arxiv.org/format/2407.03249">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum coarsening and collective dynamics on a programmable quantum simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Manovitz%2C+T">Tom Manovitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S+H">Sophie H. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ebadi%2C+S">Sepehr Ebadi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Samajdar%2C+R">Rhine Samajdar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geim%2C+A+A">Alexandra A. Geim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evered%2C+S+J">Simon J. Evered</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bluvstein%2C+D">Dolev Bluvstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+H">Hengyun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koyluoglu%2C+N+U">Nazli Ugur Koyluoglu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feldmeier%2C+J">Johannes Feldmeier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dolgirev%2C+P+E">Pavel E. Dolgirev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maskara%2C+N">Nishad Maskara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kalinowski%2C+M">Marcin Kalinowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sachdev%2C+S">Subir Sachdev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huse%2C+D+A">David A. Huse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greiner%2C+M">Markus Greiner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vuleti%C4%87%2C+V">Vladan Vuleti膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lukin%2C+M+D">Mikhail D. Lukin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03249v2-abstract-short" style="display: inline;"> Understanding the collective quantum dynamics of nonequilibrium many-body systems is an outstanding challenge in quantum science. In particular, dynamics driven by quantum fluctuations are important for the formation of exotic quantum phases of matter, fundamental high-energy processes, quantum metrology, and quantum algorithms. Here, we use a programmable quantum simulator based on Rydberg atom a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03249v2-abstract-full').style.display = 'inline'; document.getElementById('2407.03249v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03249v2-abstract-full" style="display: none;"> Understanding the collective quantum dynamics of nonequilibrium many-body systems is an outstanding challenge in quantum science. In particular, dynamics driven by quantum fluctuations are important for the formation of exotic quantum phases of matter, fundamental high-energy processes, quantum metrology, and quantum algorithms. Here, we use a programmable quantum simulator based on Rydberg atom arrays to experimentally study collective dynamics across a (2+1)D Ising quantum phase transition. After crossing the quantum critical point, we observe a gradual growth of correlations through coarsening of antiferromagnetically ordered domains. By deterministically preparing and following the evolution of ordered domains, we show that the coarsening is driven by the curvature of domain boundaries, and find that the dynamics accelerate with proximity to the quantum critical point. We quantitatively explore these phenomena and further observe long-lived oscillations of the order parameter, corresponding to an amplitude (Higgs) mode. These observations offer a unique viewpoint into emergent collective dynamics in strongly correlated quantum systems and nonequilibrium quantum processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03249v2-abstract-full').style.display = 'none'; document.getElementById('2407.03249v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03128">arXiv:2407.03128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03128">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Thorium doped strontium fluoride crystal: a unique candidate for solid nuclear optical clock material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gong%2C+Q">Qiaorui Gong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shanming Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shulong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+S">Siliang Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+G">Guoliang Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+P">Peixiong Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+C">Chengchun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hang%2C+Y">Yin Hang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+S">Shining Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+L">Longsheng Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03128v1-abstract-short" style="display: inline;"> We report a candidate with unique advantages in the cultivation of solid-state nuclear clock material, Th:SrF2 crystal. It not only has a segregation coefficient close to 1, which can achieve highly efficient and uniform doping of Th, but also ensures a high transmittance (~69% at 150 nm) while achieving extremely high doping concentration (232Th&gt;6*10^20 cm^(-3). In addition, SrF2 crystal will not&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03128v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03128v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03128v1-abstract-full" style="display: none;"> We report a candidate with unique advantages in the cultivation of solid-state nuclear clock material, Th:SrF2 crystal. It not only has a segregation coefficient close to 1, which can achieve highly efficient and uniform doping of Th, but also ensures a high transmittance (~69% at 150 nm) while achieving extremely high doping concentration (232Th&gt;6*10^20 cm^(-3). In addition, SrF2 crystal will not be irradiated-colored under strong 伪 radiation like CaF2 crystal, Th:SrF2 crystal is expected to fully unleash its high concentration doping characteristics while ensuring its transmission performance in nuclear transition band not be severely affected by 229Th radiation damage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03128v1-abstract-full').style.display = 'none'; document.getElementById('2407.03128v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01372">arXiv:2407.01372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01372">pdf</a>, <a href="https://arxiv.org/format/2407.01372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.134203">10.1103/PhysRevB.110.134203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Asymmetric transfer matrix analysis of Lyapunov exponents in one-dimensional non-reciprocal quasicrystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shan-Zhong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+E">Enhong Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+S">Shi-Liang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zhi Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01372v2-abstract-short" style="display: inline;"> The Lyapunov exponent, serving as an indicator of the localized state, is commonly utilized to identify localization transitions in disordered systems. In non-Hermitian quasicrystals, the non-Hermitian effect induced by non-reciprocal hopping can lead to the manifestation of two distinct Lyapunov exponents on opposite sides of the localization center. Building on this observation, we here introduc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01372v2-abstract-full').style.display = 'inline'; document.getElementById('2407.01372v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01372v2-abstract-full" style="display: none;"> The Lyapunov exponent, serving as an indicator of the localized state, is commonly utilized to identify localization transitions in disordered systems. In non-Hermitian quasicrystals, the non-Hermitian effect induced by non-reciprocal hopping can lead to the manifestation of two distinct Lyapunov exponents on opposite sides of the localization center. Building on this observation, we here introduce a comprehensive approach for examining the localization characteristics and mobility edges of non-reciprocal quasicrystals, referred to as asymmetric transfer matrix analysis. We demonstrate the application of this method to three specific scenarios: the non-reciprocal Aubry-Andr茅 model, the non-reciprocal off-diagonal Aubry-Andr茅 model, and the non-reciprocal mosaic quasicrystals. This work may contribute valuable insights to the investigation of non-Hermitian quasicrystal and disordered systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01372v2-abstract-full').style.display = 'none'; document.getElementById('2407.01372v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 134203 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16663">arXiv:2406.16663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16663">pdf</a>, <a href="https://arxiv.org/format/2406.16663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Light-induced percolative topological phase transition in type-II Weyl semimetal WTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+X">Xiaoyue Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+F">Fu Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+Y">Yifan Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+Y">Yi Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shulei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Jingdi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16663v2-abstract-short" style="display: inline;"> We report on an ultrafast terahertz free-carrier dynamic study of a photo-excited WTe2 thin film. In the photo-excited state, we observe a metastable electronic state featuring negative differential terahertz photoconductivity and reduced scattering rate. Detailed electrodynamics analysis and first-principal calculation attribute it to light-induced topological phase transition, reducing density o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16663v2-abstract-full').style.display = 'inline'; document.getElementById('2406.16663v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16663v2-abstract-full" style="display: none;"> We report on an ultrafast terahertz free-carrier dynamic study of a photo-excited WTe2 thin film. In the photo-excited state, we observe a metastable electronic state featuring negative differential terahertz photoconductivity and reduced scattering rate. Detailed electrodynamics analysis and first-principal calculation attribute it to light-induced topological phase transition, reducing density of states near the Fermi level. Furthermore, the emergence of an unconventional temporal isosbestic point marks a dynamic universality, strongly suggesting a percolative interaction between the two topologically distinct phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16663v2-abstract-full').style.display = 'none'; document.getElementById('2406.16663v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12522">arXiv:2406.12522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12522">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Photohermal Microswimmer Penetrate Cell Membrane with Cavitation Bubble </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+B">Binglin Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lai%2C+J">Jialin Lai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jingyuan Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Y">Yaxin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+C">Changjin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+C">Chao Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Q">Qingxin Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaofeng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shuai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+J">Jinyao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12522v2-abstract-short" style="display: inline;"> Self-propelled micromotors can efficiently convert ambient energy into mechanical motion, which is of great interest for its potential biomedical applications in delivering therapeutics noninvasively. However, navigating these micromotors through biological barriers remains a significant challenge as most micromotors do not provide sufficient disruption forces in in-vivo conditions. In this study,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12522v2-abstract-full').style.display = 'inline'; document.getElementById('2406.12522v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12522v2-abstract-full" style="display: none;"> Self-propelled micromotors can efficiently convert ambient energy into mechanical motion, which is of great interest for its potential biomedical applications in delivering therapeutics noninvasively. However, navigating these micromotors through biological barriers remains a significant challenge as most micromotors do not provide sufficient disruption forces in in-vivo conditions. In this study, we employed focused scanning laser from conventional confocal microscope to manipulate carbon microbottle based microswimmers. With the increasing of the laser power, the microswimmers&#39; motions translates from autonomous to directional, and finally the high power laser induced the microswimmer explosions, which effectively deliveres microbottle fragments through the cell membrane. It is revealed that photothermally-induced cavitation bubbles enable the propulsion of microbottles in liquids, where the motion direction can be precisely regulated by the scanning orientation of the laser. Furthermore, the membrane penetration ability of the microbottles promised potential applications in drug delivery and cellular injections. As microbottles navigate toward cells, we strategically increase the laser power to trigger their explosion. By loading microswimmers with transfection genes, cytoplasmic transfection can be realized, which is demonstrated by successful gene transfection of GPF in cells. Our findings open new possibilities for cell injection and gene transfection using micromotors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12522v2-abstract-full').style.display = 'none'; document.getElementById('2406.12522v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 00Axx </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12250">arXiv:2406.12250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12250">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-49942-2">10.1038/s41467-024-49942-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of stacking engineered magnetic phase transitions within moir茅 supercells of twisted van der Waals magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Senlei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zeliang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McLaughlin%2C+N+J">Nathan J. McLaughlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharmin%2C+A">Afsana Sharmin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+N">Nishkarsh Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+M">Mengqi Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sung%2C+S+H">Suk Hyun Sung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">Hanyi Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+S">Shaohua Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hovden%2C+R">Robert Hovden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hailong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hua Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Liuyan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+C+R">Chunhui Rita Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12250v1-abstract-short" style="display: inline;"> Twist engineering of magnetic van der Waals (vdW) moir茅 superlattices provides an attractive way to achieve precise nanoscale control over the spin degree of freedom on two-dimensional flatland. Despite the very recent demonstrations of moir茅 magnetism featuring exotic phases with noncollinear spin order in twisted vdW magnet chromium triiodide CrI3, the local magnetic interactions, spin dynamics,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12250v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12250v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12250v1-abstract-full" style="display: none;"> Twist engineering of magnetic van der Waals (vdW) moir茅 superlattices provides an attractive way to achieve precise nanoscale control over the spin degree of freedom on two-dimensional flatland. Despite the very recent demonstrations of moir茅 magnetism featuring exotic phases with noncollinear spin order in twisted vdW magnet chromium triiodide CrI3, the local magnetic interactions, spin dynamics, and magnetic phase transitions within and across individual moir茅 supercells remain elusive. Taking advantage of a scanning single-spin magnetometry platform, here we report observation of two distinct magnetic phase transitions with separate critical temperatures within a moir茅 supercell of small-angle twisted double trilayer CrI3. By measuring temperature dependent spin fluctuations at the coexisting ferromagnetic and antiferromagnetic regions in twisted CrI3, we explicitly show that the Curie temperature of the ferromagnetic state is higher than the N茅el temperature of the antiferromagnetic one by ~10 K. Our mean-field calculations attribute such a spatial and thermodynamic phase separation to the stacking order modulated interlayer exchange coupling at the twisted interface of the moir茅 superlattices. The presented results highlight twist engineering as a promising tuning knob to realize on-demand control of not only the nanoscale spin order of moir茅 quantum matter but also its dynamic magnetic responses, which may find relevant applications in developing transformative vdW electronic and magnetic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12250v1-abstract-full').style.display = 'none'; document.getElementById('2406.12250v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 5712 (2024) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Li%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Li%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10