CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;13 of 13 results for author: <span class="mathjax">D&#39;Emidio, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=D%27Emidio%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="D&#x27;Emidio, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=D%27Emidio%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="D&#x27;Emidio, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14396">arXiv:2401.14396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.14396">pdf</a>, <a href="https://arxiv.org/format/2401.14396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.166702">10.1103/PhysRevLett.133.166702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entanglement entropy and deconfined criticality: emergent SO(5) symmetry and proper lattice bipartition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=D%27Emidio%2C+J">Jonathan D&#39;Emidio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sandvik%2C+A+W">Anders W. Sandvik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14396v3-abstract-short" style="display: inline;"> We study the R茅nyi entanglement entropy (EE) of the two-dimensional $J$-$Q$ model, the emblematic quantum spin model of deconfined criticality at the phase transition between antiferromagnetic and valence-bond-solid ground states. State-of-the-art quantum Monte Carlo calculations of the EE reveal critical corner contributions that scale logarithmically with the system size, with a coefficient in r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14396v3-abstract-full').style.display = 'inline'; document.getElementById('2401.14396v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14396v3-abstract-full" style="display: none;"> We study the R茅nyi entanglement entropy (EE) of the two-dimensional $J$-$Q$ model, the emblematic quantum spin model of deconfined criticality at the phase transition between antiferromagnetic and valence-bond-solid ground states. State-of-the-art quantum Monte Carlo calculations of the EE reveal critical corner contributions that scale logarithmically with the system size, with a coefficient in remarkable agreement with the form expected from a large-$N$ conformal field theory with SO($N=5$) symmetry. However, details of the bipartition of the lattice are crucial in order to observe this behavior. If the subsystem for the reduced density matrix does not properly accommodate valence-bond fluctuations, logarithmic contributions appear even for corner-less bipartitions. We here use a $45^\circ$ tilted cut on the square lattice. Beyond supporting an SO($5$) deconfined quantum critical point, our results for both the regular and tilted cuts demonstrate important microscopic aspects of the EE that are not captured by conformal field theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14396v3-abstract-full').style.display = 'none'; document.getElementById('2401.14396v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4.5 pages, 3 figures + supplemental material. Added corner subtraction to supplement</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 166702 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00575">arXiv:2308.00575</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00575">pdf</a>, <a href="https://arxiv.org/format/2308.00575">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Lee-Yang zeros at $O(3)$ and deconfined quantum critical points </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=D%27Emidio%2C+J">Jonathan D&#39;Emidio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00575v1-abstract-short" style="display: inline;"> Lee-Yang theory, based on the study of zeros of the partition function, is widely regarded as a powerful and complimentary approach to the study of critical phenomena and forms a foundational part of the theory of phase transitions. Its widespread use, however, is complicated by the fact that it requires introducing complex-valued fields that create an obstacle for many numerical methods, especial&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00575v1-abstract-full').style.display = 'inline'; document.getElementById('2308.00575v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00575v1-abstract-full" style="display: none;"> Lee-Yang theory, based on the study of zeros of the partition function, is widely regarded as a powerful and complimentary approach to the study of critical phenomena and forms a foundational part of the theory of phase transitions. Its widespread use, however, is complicated by the fact that it requires introducing complex-valued fields that create an obstacle for many numerical methods, especially in the quantum case where very limited studies exist beyond one dimension. Here we present a simple and statistically exact method to compute partition function zeros with general complex-valued external fields in the context of large-scale quantum Monte Carlo simulations. We demonstrate the power of this approach by extracting critical exponents from the leading Lee-Yang zeros of 2D quantum antiferromagnets with a complex staggered field, focusing on the Heisenberg bilayer and square-lattice $J$-$Q$ models. The method also allows us to introduce a complex field that couples to valence bond solid order, where we observe extended rings of zeros in the $J$-$Q$ model with purely imaginary staggered and valence bond solid fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00575v1-abstract-full').style.display = 'none'; document.getElementById('2308.00575v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14326">arXiv:2303.14326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.14326">pdf</a>, <a href="https://arxiv.org/format/2303.14326">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L081123">10.1103/PhysRevB.108.L081123 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stable computation of entanglement entropy for 2D interacting fermion systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+G">Gaopei Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Da+Liao%2C+Y">Yuan Da Liao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+W">Weilun Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%27Emidio%2C+J">Jonathan D&#39;Emidio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qi%2C+Y">Yang Qi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meng%2C+Z+Y">Zi Yang Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14326v3-abstract-short" style="display: inline;"> There is no doubt that the information hidden in entanglement entropy (EE), for example, the $n$-th order R茅nyi EE, i.e., $S^{A}_n=\frac{1}{1-n}\ln \Tr (蟻_A^n)$ where $蟻_A=\mathrm{Tr}_{\overline{A}}蟻$ is the reduced density matrix, can be used to infer the organizing principle of 2D interacting fermion systems, ranging from spontaneous symmetry breaking phases, quantum critical points to topologic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14326v3-abstract-full').style.display = 'inline'; document.getElementById('2303.14326v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14326v3-abstract-full" style="display: none;"> There is no doubt that the information hidden in entanglement entropy (EE), for example, the $n$-th order R茅nyi EE, i.e., $S^{A}_n=\frac{1}{1-n}\ln \Tr (蟻_A^n)$ where $蟻_A=\mathrm{Tr}_{\overline{A}}蟻$ is the reduced density matrix, can be used to infer the organizing principle of 2D interacting fermion systems, ranging from spontaneous symmetry breaking phases, quantum critical points to topologically ordered states. It is far from clear, however, whether the EE can actually be obtained with the precision required to observe these fundamental features -- usually in the form of universal finite size scaling behavior. Even for the prototypical 2D interacting fermion model -- the Hubbard model, to all existing numerical algorithms, the computation of the EE has not been succeeded with reliable data that the universal scaling regime can be accessed. Here we explain the reason for these unsuccessful attempts in EE computations in quantum Monte Carlo simulations in the past decades and more importantly, show how to overcome the conceptual and computational barrier with the incremental algorithm, such that the stable computation of the EE in 2D interacting fermion systems can be achieved and universal scaling information can be extracted. Relevance towards the experimental 2D interacting fermion systems is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14326v3-abstract-full').style.display = 'none'; document.getElementById('2303.14326v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+4 pages, 4+4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, L081123 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04334">arXiv:2211.04334</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.04334">pdf</a>, <a href="https://arxiv.org/format/2211.04334">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.076502">10.1103/PhysRevLett.132.076502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal features of entanglement entropy in the honeycomb Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=D%27Emidio%2C+J">Jonathan D&#39;Emidio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orus%2C+R">Roman Orus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laflorencie%2C+N">Nicolas Laflorencie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Juan%2C+F">Fernando de Juan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04334v2-abstract-short" style="display: inline;"> The entanglement entropy is a unique probe to reveal universal features of strongly interacting many-body systems. In two or more dimensions these features are subtle, and detecting them numerically requires extreme precision, a notoriously difficult task. This is especially challenging in models of interacting fermions, where many such universal features have yet to be observed. In this paper we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04334v2-abstract-full').style.display = 'inline'; document.getElementById('2211.04334v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04334v2-abstract-full" style="display: none;"> The entanglement entropy is a unique probe to reveal universal features of strongly interacting many-body systems. In two or more dimensions these features are subtle, and detecting them numerically requires extreme precision, a notoriously difficult task. This is especially challenging in models of interacting fermions, where many such universal features have yet to be observed. In this paper we tackle this challenge by introducing a new method to compute the R茅nyi entanglement entropy in auxiliary-field quantum Monte Carlo simulations, where we treat the entangling region itself as a stochastic variable. We demonstrate the efficiency of this method by extracting, for the first time, universal subleading logarithmic terms in a two dimensional model of interacting fermions, focusing on the half-filled honeycomb Hubbard model at $T=0$. We detect the universal corner contribution due to gapless fermions throughout the Dirac semi-metal phase and at the Gross-Neveu-Yukawa critical point, where the latter shows a pronounced enhancement depending on the type of entangling cut. Finally, we observe the universal Goldstone mode contribution in the antiferromagnetic Mott insulating phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04334v2-abstract-full').style.display = 'none'; document.getElementById('2211.04334v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version. Added new triangular subsystem with corner logarithm versus U</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 076502 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.15462">arXiv:2106.15462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.15462">pdf</a>, <a href="https://arxiv.org/format/2106.15462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.15.2.061">10.21468/SciPostPhys.15.2.061 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diagnosing weakly first-order phase transitions by coupling to order parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=D%27Emidio%2C+J">Jonathan D&#39;Emidio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eberharter%2C+A+A">Alexander A. Eberharter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%A4uchli%2C+A+M">Andreas M. L盲uchli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.15462v2-abstract-short" style="display: inline;"> The hunt for exotic quantum phase transitions described by emergent fractionalized degrees of freedom coupled to gauge fields requires a precise determination of the fixed point structure from the field theoretical side, and an extreme sensitivity to weak first-order transitions from the numerical side. Addressing the latter, we revive the classic definition of the order parameter in the limit of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15462v2-abstract-full').style.display = 'inline'; document.getElementById('2106.15462v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.15462v2-abstract-full" style="display: none;"> The hunt for exotic quantum phase transitions described by emergent fractionalized degrees of freedom coupled to gauge fields requires a precise determination of the fixed point structure from the field theoretical side, and an extreme sensitivity to weak first-order transitions from the numerical side. Addressing the latter, we revive the classic definition of the order parameter in the limit of a vanishing external field at the transition. We demonstrate that this widely understood, yet so far unused approach provides a diagnostic test for first-order versus continuous behavior that is distinctly more sensitive than current methods. We first apply it to the family of $Q$-state Potts models, where the nature of the transition is continuous for $Q\leq4$ and turns (weakly) first order for $Q&gt;4$, using an infinite system matrix product state implementation. We then employ this new approach to address the unsettled question of deconfined quantum criticality in the $S=1/2$ N茅el to valence bond solid transition in two dimensions, focusing on the square lattice $J$-$Q$ model. Our quantum Monte Carlo simulations reveal that both order parameters remain finite at the transition, directly confirming a first-order scenario with wide reaching implications in condensed matter and quantum field theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15462v2-abstract-full').style.display = 'none'; document.getElementById('2106.15462v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 15, 061 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.13356">arXiv:2003.13356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.13356">pdf</a>, <a href="https://arxiv.org/format/2003.13356">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.064420">10.1103/PhysRevB.102.064420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reduction of the sign problem near $T=0$ in quantum Monte Carlo simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=D%27Emidio%2C+J">Jonathan D&#39;Emidio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wessel%2C+S">Stefan Wessel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mila%2C+F">Fr茅d茅ric Mila</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.13356v1-abstract-short" style="display: inline;"> Building on a recent investigation of the Shastry-Sutherland model [S. Wessel et al., Phys. Rev. B 98, 174432 (2018)], we develop a general strategy to eliminate the Monte Carlo sign problem near the zero temperature limit in frustrated quantum spin models. If the Hamiltonian of interest and the sign-problem-free Hamiltonian---obtained by making all off-diagonal elements negative in a given basis-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13356v1-abstract-full').style.display = 'inline'; document.getElementById('2003.13356v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.13356v1-abstract-full" style="display: none;"> Building on a recent investigation of the Shastry-Sutherland model [S. Wessel et al., Phys. Rev. B 98, 174432 (2018)], we develop a general strategy to eliminate the Monte Carlo sign problem near the zero temperature limit in frustrated quantum spin models. If the Hamiltonian of interest and the sign-problem-free Hamiltonian---obtained by making all off-diagonal elements negative in a given basis---have the same ground state and this state is a member of the computational basis, then the average sign returns to one as the temperature goes to zero. We illustrate this technique by studying the triangular and kagome lattice Heisenberg antiferrromagnet in a magnetic field above saturation, as well as the Heisenberg antiferromagnet on a modified Husimi cactus in the dimer basis. We also provide detailed appendices on using linear programming techniques to automatically generate efficient directed loop updates in quantum Monte Carlo simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13356v1-abstract-full').style.display = 'none'; document.getElementById('2003.13356v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 064420 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.06246">arXiv:1906.06246</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.06246">pdf</a>, <a href="https://arxiv.org/format/1906.06246">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.020402">10.1103/PhysRevB.101.020402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kagome model for a ${\mathbb Z}_2$ quantum spin liquid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Block%2C+M+S">Matthew S. Block</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%27Emidio%2C+J">Jonathan D&#39;Emidio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaul%2C+R+K">Ribhu K. Kaul</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.06246v1-abstract-short" style="display: inline;"> We present a study of a simple model antiferromagnet consisting of a sum of nearest neighbor SO($N$) singlet projectors on the Kagome lattice. Our model shares some features with the popular $S=1/2$ Kagome antiferromagnet but is specifically designed to be free of the sign-problem of quantum Monte Carlo. In our numerical analysis, we find as a function of $N$ a quadrupolar magnetic state and a wid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06246v1-abstract-full').style.display = 'inline'; document.getElementById('1906.06246v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.06246v1-abstract-full" style="display: none;"> We present a study of a simple model antiferromagnet consisting of a sum of nearest neighbor SO($N$) singlet projectors on the Kagome lattice. Our model shares some features with the popular $S=1/2$ Kagome antiferromagnet but is specifically designed to be free of the sign-problem of quantum Monte Carlo. In our numerical analysis, we find as a function of $N$ a quadrupolar magnetic state and a wide range of a quantum spin liquid. A solvable large-$N$ generalization suggests that the quantum spin liquid in our original model is a gapped ${\mathbb Z}_2$ topological phase. Supporting this assertion, a numerical study of the entanglement entropy in the sign free model shows a quantized topological contribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06246v1-abstract-full').style.display = 'none'; document.getElementById('1906.06246v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 020402 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.05918">arXiv:1904.05918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.05918">pdf</a>, <a href="https://arxiv.org/format/1904.05918">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.110602">10.1103/PhysRevLett.124.110602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entanglement entropy from nonequilibrium work </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=D%27Emidio%2C+J">Jonathan D&#39;Emidio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.05918v2-abstract-short" style="display: inline;"> The R茅nyi entanglement entropy in quantum many-body systems can be viewed as the difference in free energy between partition functions with different trace topologies. We introduce an external field $位$ that controls the partition function topology, allowing us to define a notion of nonequilibrium work as $位$ is varied smoothly. Nonequilibrium fluctuation theorems of the work provide us with stati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.05918v2-abstract-full').style.display = 'inline'; document.getElementById('1904.05918v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.05918v2-abstract-full" style="display: none;"> The R茅nyi entanglement entropy in quantum many-body systems can be viewed as the difference in free energy between partition functions with different trace topologies. We introduce an external field $位$ that controls the partition function topology, allowing us to define a notion of nonequilibrium work as $位$ is varied smoothly. Nonequilibrium fluctuation theorems of the work provide us with statistically exact estimates of the R茅nyi entanglement entropy. This framework also naturally leads to the idea of using quench functions with spatially smooth profiles, providing us a way to average over lattice scale features of the entanglement entropy while preserving long distance universal information. We use these ideas to extract universal information from quantum Monte Carlo simulations of SU(N) spin models in one and two dimensions. The vast gain in efficiency of this method allows us to access unprecedented system sizes up to 192 x 96 spins for the square lattice Heisenberg antiferromagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.05918v2-abstract-full').style.display = 'none'; document.getElementById('1904.05918v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version. Added T=0 projector QMC simulations on lattice sizes up to 192 x 96</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 110602 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.04731">arXiv:1808.04731</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.04731">pdf</a>, <a href="https://arxiv.org/format/1808.04731">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.045111">10.1103/PhysRevB.101.045111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First-order N茅el-cVBS transition in a model square lattice $S=1$ antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wildeboer%2C+J">Julia Wildeboer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Desai%2C+N">Nisheeta Desai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%27Emidio%2C+J">Jonathan D&#39;Emidio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaul%2C+R+K">Ribhu K. Kaul</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.04731v2-abstract-short" style="display: inline;"> We study the N茅el to four-fold columnar valence bond solid (cVBS) quantum phase transition in a sign free $S=1$ square lattice model. This is the same kind of transition that for $S=1/2$ has been argued to realize the prototypical deconfined critical point. Extensive numerical simulations of the square lattice $S=1/2$ N茅el-VBS transition have found consistency with the DCP scenario with no direct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.04731v2-abstract-full').style.display = 'inline'; document.getElementById('1808.04731v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.04731v2-abstract-full" style="display: none;"> We study the N茅el to four-fold columnar valence bond solid (cVBS) quantum phase transition in a sign free $S=1$ square lattice model. This is the same kind of transition that for $S=1/2$ has been argued to realize the prototypical deconfined critical point. Extensive numerical simulations of the square lattice $S=1/2$ N茅el-VBS transition have found consistency with the DCP scenario with no direct evidence for first order behavior. In contrast to the $S=1/2$ case, in our quantum Monte Carlo simulations for the $S=1$ model, we present unambiguous evidence for a direct conventional first-order quantum phase transition. Classic signs for a first order transition demonstrating co-existence including double peaked histograms and switching behavior are observed. The sharp contrast from the $S=1/2$ case is remarkable, and is a striking demonstration of the role of the size of the quantum spin in the phase diagram of two dimensional lattice models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.04731v2-abstract-full').style.display = 'none'; document.getElementById('1808.04731v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 045111 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.07924">arXiv:1708.07924</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.07924">pdf</a>, <a href="https://arxiv.org/format/1708.07924">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.184430">10.1103/PhysRevB.97.184430 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quadrupolar quantum criticality on a fractal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=D%27Emidio%2C+J">Jonathan D&#39;Emidio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lovell%2C+S">Simon Lovell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaul%2C+R+K">Ribhu K. Kaul</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.07924v1-abstract-short" style="display: inline;"> We study the ground state ordering of quadrupolar ordered $S=1$ magnets as a function of spin dilution probability $p$ on the triangular lattice. In sharp contrast to the ordering of $S=1/2$ dipolar N茅el magnets on percolating clusters, we find that the quadrupolar magnets are quantum disordered at the percolation threshold, $p=p^*$. Further we find that long-range quadrupolar order is present for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07924v1-abstract-full').style.display = 'inline'; document.getElementById('1708.07924v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.07924v1-abstract-full" style="display: none;"> We study the ground state ordering of quadrupolar ordered $S=1$ magnets as a function of spin dilution probability $p$ on the triangular lattice. In sharp contrast to the ordering of $S=1/2$ dipolar N茅el magnets on percolating clusters, we find that the quadrupolar magnets are quantum disordered at the percolation threshold, $p=p^*$. Further we find that long-range quadrupolar order is present for all $p&lt;p^*$ and vanishes first exactly at $p^*$. Strong evidence for scaling behavior close to $p^*$ points to an unusual quantum criticality without fine tuning that arises from an interplay of quantum fluctuations and randomness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07924v1-abstract-full').style.display = 'none'; document.getElementById('1708.07924v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 184430 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.07702">arXiv:1610.07702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.07702">pdf</a>, <a href="https://arxiv.org/format/1610.07702">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.187202">10.1103/PhysRevLett.118.187202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New easy-plane $\mathbb{CP}^{N-1}$ fixed points </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=D%27Emidio%2C+J">Jonathan D&#39;Emidio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaul%2C+R+K">Ribhu K. Kaul</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.07702v1-abstract-short" style="display: inline;"> We study fixed points of the easy-plane $\mathbb{CP}^{N-1}$ field theory by combining quantum Monte Carlo simulations of lattice models of easy-plane SU($N$) superfluids with field theoretic renormalization group calculations, by using ideas of deconfined criticality. From our simulations, we present evidence that at small $N$ our lattice model has a first order phase transition which progressivel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.07702v1-abstract-full').style.display = 'inline'; document.getElementById('1610.07702v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.07702v1-abstract-full" style="display: none;"> We study fixed points of the easy-plane $\mathbb{CP}^{N-1}$ field theory by combining quantum Monte Carlo simulations of lattice models of easy-plane SU($N$) superfluids with field theoretic renormalization group calculations, by using ideas of deconfined criticality. From our simulations, we present evidence that at small $N$ our lattice model has a first order phase transition which progressively weakens as $N$ increases, eventually becoming continuous for large values of $N$. Renormalization group calculations in $4-蔚$ dimensions provide an explanation of these results as arising due to the existence of an $N_{ep}$ that separates the fate of the flows with easy-plane anisotropy. When $N&lt;N_{ep}$ the renormalization group flows to a discontinuity fixed point and hence a first order transition arises. On the other hand, for $N &gt; N_{ep}$ the flows are to a new easy-plane $\mathbb{CP}^{N-1}$ fixed point that describes the quantum criticality in the lattice model at large $N$. Our lattice model at its critical point thus gives efficient numerical access to a new strongly coupled gauge-matter field theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.07702v1-abstract-full').style.display = 'none'; document.getElementById('1610.07702v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 187202 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.05082">arXiv:1512.05082</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.05082">pdf</a>, <a href="https://arxiv.org/format/1512.05082">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.054406">10.1103/PhysRevB.93.054406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First-order superfluid to valence bond solid phase transitions in easy-plane SU($N$) magnets for small-$N$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=D%27Emidio%2C+J">Jonathan D&#39;Emidio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaul%2C+R+K">Ribhu K. Kaul</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.05082v1-abstract-short" style="display: inline;"> We consider the easy-plane limit of bipartite SU($N$) Heisenberg Hamiltonians which have a fundamental representation on one sublattice and the conjugate to fundamental on the other sublattice. For $N=2$ the easy plane limit of the SU(2) Heisenberg model is the well known quantum XY model of a lattice superfluid. We introduce a logical method to generalize the quantum XY model to arbitrary $N$, wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05082v1-abstract-full').style.display = 'inline'; document.getElementById('1512.05082v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.05082v1-abstract-full" style="display: none;"> We consider the easy-plane limit of bipartite SU($N$) Heisenberg Hamiltonians which have a fundamental representation on one sublattice and the conjugate to fundamental on the other sublattice. For $N=2$ the easy plane limit of the SU(2) Heisenberg model is the well known quantum XY model of a lattice superfluid. We introduce a logical method to generalize the quantum XY model to arbitrary $N$, which keeps the Hamiltonian sign-free. We show that these quantum Hamiltonians have a world-line representation as the statistical mechanics of certain tightly packed loop models of $N$-colors in which neighboring loops are disallowed from having the same color. In this loop representation we design an efficient Monte Carlo cluster algorithm for our model. We present extensive numerical results for these models on the two dimensional square lattice, where we find the nearest neighbor model has superfluid order for $N\leq 5$ and valence-bond order for $N&gt; 5$. By introducing SU($N$) easy-plane symmetric four-spin couplings we are able to tune across the superfluid-VBS phase boundary for all $N\leq 5$. We present clear evidence that this quantum phase transition is first order for $N=2$ and $N=5$, suggesting that easy-plane deconfined criticality runs away generically to a first order transition for small-$N$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05082v1-abstract-full').style.display = 'none'; document.getElementById('1512.05082v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 93, 054406 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.04739">arXiv:1502.04739</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.04739">pdf</a>, <a href="https://arxiv.org/format/1502.04739">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.054411">10.1103/PhysRevB.92.054411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> R茅nyi entanglement entropy of critical SU($N$) spin chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=D%27Emidio%2C+J">Jonathan D&#39;Emidio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Block%2C+M+S">Matthew S. Block</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaul%2C+R+K">Ribhu K. Kaul</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.04739v1-abstract-short" style="display: inline;"> We present a study of the scaling behavior of the R茅nyi entanglement entropy (REE) in SU($N$) spin chain Hamiltonians, in which all the spins transform under the fundamental representation. These SU($N$) spin chains are known to be quantum critical and described by a well known Wess-Zumino-Witten (WZW) non-linear sigma model in the continuum limit. Numerical results from our lattice Hamiltonian ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.04739v1-abstract-full').style.display = 'inline'; document.getElementById('1502.04739v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.04739v1-abstract-full" style="display: none;"> We present a study of the scaling behavior of the R茅nyi entanglement entropy (REE) in SU($N$) spin chain Hamiltonians, in which all the spins transform under the fundamental representation. These SU($N$) spin chains are known to be quantum critical and described by a well known Wess-Zumino-Witten (WZW) non-linear sigma model in the continuum limit. Numerical results from our lattice Hamiltonian are obtained using stochastic series expansion (SSE) quantum Monte Carlo for both closed and open boundary conditions. As expected for this 1D critical system, the REE shows a logarithmic dependence on the subsystem size with a prefector given by the central charge of the SU($N$) WZW model. We study in detail the sub-leading oscillatory terms in the REE under both periodic and open boundaries. Each oscillatory term is associated with a WZW field and decays as a power law with an exponent proportional to the scaling dimension of the corresponding field. We find that the use of periodic boundaries (where oscillations are less prominent) allows for a better estimate of the central charge, while using open boundaries allows for a better estimate of the scaling dimensions. For completeness we also present numerical data on the thermal R茅nyi entropy which equally allows for extraction of the central charge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.04739v1-abstract-full').style.display = 'none'; document.getElementById('1502.04739v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 054411 (2015) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10