CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 839 results for author: <span class="mathjax">Yang, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Yang%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yang, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yang%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yang, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Yang%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.08207">arXiv:2503.08207</a> <span> [<a href="https://arxiv.org/pdf/2503.08207">pdf</a>, <a href="https://arxiv.org/format/2503.08207">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> To Use or Not to Use a Universal Force Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Denan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiyuan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+X">Xiangkai Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+L">Lintao Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S">Shi Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.08207v1-abstract-short" style="display: inline;"> Artificial intelligence (AI) is revolutionizing scientific research, particularly in computational materials science, by enabling more accurate and efficient simulations. Machine learning force fields (MLFFs) have emerged as powerful tools for molecular dynamics (MD) simulations, potentially offering quantum-mechanical accuracy with the efficiency of classical MD. This Perspective evaluates the vi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.08207v1-abstract-full').style.display = 'inline'; document.getElementById('2503.08207v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.08207v1-abstract-full" style="display: none;"> Artificial intelligence (AI) is revolutionizing scientific research, particularly in computational materials science, by enabling more accurate and efficient simulations. Machine learning force fields (MLFFs) have emerged as powerful tools for molecular dynamics (MD) simulations, potentially offering quantum-mechanical accuracy with the efficiency of classical MD. This Perspective evaluates the viability of universal MLFFs for simulating complex materials systems from the standpoint of a potential practitioner. Using the temperature-driven ferroelectric-paraelectric phase transition of PbTiO$_3$ as a benchmark, we assess leading universal force fields, including CHGNet, MACE, M3GNet, and GPTFF, alongside specialized models like UniPero. While universal MLFFs trained on PBE-derived datasets perform well in predicting equilibrium properties, they largely fail to capture realistic finite-temperature phase transitions under constant-pressure MD, often exhibiting unphysical instabilities. These shortcomings stem from inherited biases in exchange-correlation functionals and limited generalization to anharmonic interactions governing dynamic behavior. However, fine-tuning universal models or employing system-specific MLFFs like UniPero successfully restores predictive accuracy. We advocates for hybrid approaches combining universal pretraining with targeted optimization, improved error quantification frameworks, and community-driven benchmarks to advance MLFFs as robust tools for computational materials discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.08207v1-abstract-full').style.display = 'none'; document.getElementById('2503.08207v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.05744">arXiv:2503.05744</a> <span> [<a href="https://arxiv.org/pdf/2503.05744">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Light communicative materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guo%2C+H">Hongshuang Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+K">Kai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jianfeng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+D">Dengfeng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+F">Fan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+H">Hao Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.05744v1-abstract-short" style="display: inline;"> The natural interactive materials under far-from-equilibrium conditions have significantly inspired advances in synthetic biomimetic materials. In artificial systems, gradient diffusion serves as the primary means of interaction between individuals, lacking directionality, sufficient interaction ranges and transmission rates. Here, we present a method for constructing highly directed, communicativ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.05744v1-abstract-full').style.display = 'inline'; document.getElementById('2503.05744v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.05744v1-abstract-full" style="display: none;"> The natural interactive materials under far-from-equilibrium conditions have significantly inspired advances in synthetic biomimetic materials. In artificial systems, gradient diffusion serves as the primary means of interaction between individuals, lacking directionality, sufficient interaction ranges and transmission rates. Here, we present a method for constructing highly directed, communicative structures via optical feedback in light responsive materials. We showcase a photomechanical operator system comprising a baffle and a soft actuator. Positive and negative operators are configured to induce light-triggered deformations, alternately interrupting the passage of two light beams in a closed feedback loop. The fundamental functionalities of this optically interconnected material loop include homeostasis-like self-oscillation and signal transmission from one material to another via light. Refinements in alignment facilitate remote sensing, fiber-optic/long-distance communication, and adaptation. These proof-of-concept demonstrations outline a versatile design framework for light-mediated communication among responsive materials, with broad applicability across diverse materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.05744v1-abstract-full').style.display = 'none'; document.getElementById('2503.05744v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.00470">arXiv:2503.00470</a> <span> [<a href="https://arxiv.org/pdf/2503.00470">pdf</a>, <a href="https://arxiv.org/format/2503.00470">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Rapid morphology characterization of two-dimensional TMDs and lateral heterostructures based on deep learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=He%2C+J">Junqi He</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yujie Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jialu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+P">Pan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+C">Chengjie Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinxing Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+X">Xiao Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X">Xiaohui Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.00470v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials and heterostructures exhibit unique physical properties, necessitating efficient and accurate characterization methods. Leveraging advancements in artificial intelligence, we introduce a deep learning-based method for efficiently characterizing heterostructures and 2D materials, specifically MoS2-MoSe2 lateral heterostructures and MoS2 flakes with varying shapes and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00470v1-abstract-full').style.display = 'inline'; document.getElementById('2503.00470v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.00470v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials and heterostructures exhibit unique physical properties, necessitating efficient and accurate characterization methods. Leveraging advancements in artificial intelligence, we introduce a deep learning-based method for efficiently characterizing heterostructures and 2D materials, specifically MoS2-MoSe2 lateral heterostructures and MoS2 flakes with varying shapes and thicknesses. By utilizing YOLO models, we achieve an accuracy rate of over 94.67% in identifying these materials. Additionally, we explore the application of transfer learning across different materials, which further enhances model performance. This model exhibits robust generalization and anti-interference ability, ensuring reliable results in diverse scenarios. To facilitate practical use, we have developed an application that enables real-time analysis directly from optical microscope images, making the process significantly faster and more cost-effective than traditional methods. This deep learning-driven approach represents a promising tool for the rapid and accurate characterization of 2D materials, opening new avenues for research and development in material science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.00470v1-abstract-full').style.display = 'none'; document.getElementById('2503.00470v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.19599">arXiv:2502.19599</a> <span> [<a href="https://arxiv.org/pdf/2502.19599">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> In-plane Ising superconductivity revealed by exchange interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Junyi Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Changjiang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xianjing Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Pearson%2C+J">John Pearson</a>, <a href="/search/cond-mat?searchtype=author&query=Suslov%2C+A">Alexey Suslov</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+D">Dafei Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+J+S">Jidong S. Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Welp%2C+U">Ulrich Welp</a>, <a href="/search/cond-mat?searchtype=author&query=Norman%2C+M+R">Michael R. Norman</a>, <a href="/search/cond-mat?searchtype=author&query=Bhattacharya%2C+A">Anand Bhattacharya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.19599v1-abstract-short" style="display: inline;"> Two-dimensional superconductors with spin-textured Fermi surfaces can be a platform for realizing unconventional pairing and are of substantial interest in the context of quantum information science, and superconducting spintronics/orbitronics. We find that the superconducting 2D electron gas (2DEG) formed at EuOx/KTaO3 (110) interfaces, where the EuOx is magnetic, has a spin-texture with an unusu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19599v1-abstract-full').style.display = 'inline'; document.getElementById('2502.19599v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.19599v1-abstract-full" style="display: none;"> Two-dimensional superconductors with spin-textured Fermi surfaces can be a platform for realizing unconventional pairing and are of substantial interest in the context of quantum information science, and superconducting spintronics/orbitronics. We find that the superconducting 2D electron gas (2DEG) formed at EuOx/KTaO3 (110) interfaces, where the EuOx is magnetic, has a spin-texture with an unusual in-plane Ising like uniaxial anisotropy that is revealed in measurements of the in-plane critical field in the superconducting state, as well as from quantum corrections to the magnetoresistance in the normal state. This spin texture is not evident in AlOx/KTaO3 (110) where the overlayer is non-magnetic. Our results are consistent with a highly anisotropic spin-textured Fermi surface in 2DEGs formed at the KTaO3 (110) interface that is hidden from external magnetic fields due to a near cancellation between orbital and spin moments but revealed by exchange interactions of the electrons in the 2DEG with Eu moments near the EuOx/KTaO3 (110) interface. Our findings demonstrate that magnetic overlayers provide a unique probe of spin textures and related phenomena in heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19599v1-abstract-full').style.display = 'none'; document.getElementById('2502.19599v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.19034">arXiv:2502.19034</a> <span> [<a href="https://arxiv.org/pdf/2502.19034">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Enhanced deep-freezing magneto- and elasto-caloric effects by modifying lattice anharmonicity and electronic structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Huang%2C+X">Xiao-Ming Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Ying Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+X">Xiaowen Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+H">Hua-You Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jin-Han Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Chin-Wei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wenyun Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Cuiping Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+B">Binru Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+J">Jie Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zongbin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Kuang%2C+Y">Yafei Kuang</a>, <a href="/search/cond-mat?searchtype=author&query=Zuo%2C+L">Liang Zuo</a>, <a href="/search/cond-mat?searchtype=author&query=Tong%2C+X">Xin Tong</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+H">Hai-Le Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Q">Qingyong Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.19034v1-abstract-short" style="display: inline;"> Designing the high performance magneto or elastocaloric effect in NiMnIn alloys with spin-lattice coupling in a deep freezing temperature range of 200 K to 255 K is challenging due to the limited lattice entropy change and large negative contribution of magnetic entropy change during phase transitions. In this work, we systematically study the first order magneto-structural transition in NiMnIn ba… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19034v1-abstract-full').style.display = 'inline'; document.getElementById('2502.19034v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.19034v1-abstract-full" style="display: none;"> Designing the high performance magneto or elastocaloric effect in NiMnIn alloys with spin-lattice coupling in a deep freezing temperature range of 200 K to 255 K is challenging due to the limited lattice entropy change and large negative contribution of magnetic entropy change during phase transitions. In this work, we systematically study the first order magneto-structural transition in NiMnIn based alloys by in-situ microstructural characterizations, physical property measurements, and first principles calculations. A multi element alloying strategy involving Cu and Ga co doping is proposed to manipulate the phase transition. The co doping reduces the lattice anharmonicity and thermal expansion coefficient of the martensitic phase, leading to an increase in the unit cell volume change and lattice entropy change. It also modifies the electronic density of states, causing a decrease in the magnetization change .The relief of the lattice mismatch reduces hysteresis losses in the refrigeration cycle. These synergetic effects yield excellent magneto and elastocaloric effects,with the effective magnetocaloric refrigeration capacity reaching up to 182 J/kg under the magnetic field of 5 T or an adiabatic temperature change of -4 K under a low field of 1.5 T and the elastocaloric coefficient of performance to 30 or an adiabatic temperature change of -7 K with the strain of 5% at 230 K, offering a potential solution for solid-state deep-freezing refrigeration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19034v1-abstract-full').style.display = 'none'; document.getElementById('2502.19034v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.18902">arXiv:2502.18902</a> <span> [<a href="https://arxiv.org/pdf/2502.18902">pdf</a>, <a href="https://arxiv.org/format/2502.18902">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Scalable Low-overhead Superconducting Non-local Coupler with Exponentially Enhanced Connectivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+H">Haonan Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jiahui Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+J">Juan Song</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jize Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zenghui Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Mi%2C+Z">Zhen-Yu Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hongyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+H">Hai-Feng Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Y">Yipu Song</a>, <a href="/search/cond-mat?searchtype=author&query=Duan%2C+L">Luming Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.18902v1-abstract-short" style="display: inline;"> Quantum error correction codes with non-local connections such as quantum low-density parity-check (qLDPC) incur lower overhead and outperform surface codes on large-scale devices. These codes are not applicable on current superconducting devices with nearest-neighbor connections. To rectify the deficiency in connectivity of superconducting circuit system, we experimentally demonstrate a convenien… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18902v1-abstract-full').style.display = 'inline'; document.getElementById('2502.18902v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.18902v1-abstract-full" style="display: none;"> Quantum error correction codes with non-local connections such as quantum low-density parity-check (qLDPC) incur lower overhead and outperform surface codes on large-scale devices. These codes are not applicable on current superconducting devices with nearest-neighbor connections. To rectify the deficiency in connectivity of superconducting circuit system, we experimentally demonstrate a convenient on-chip coupler of centimeters long and propose an extra coupler layer to map the qubit array to a binary-tree connecting graph. This mapping layout reduces the average qubit entangling distance from O(N) to O(logN), demonstrating an exponentially enhanced connectivity with eliminated crosstalk. The entangling gate with the coupler is performed between two fluxonium qubits, reaching a fidelity of 99.37 % while the system static ZZ rate remains as low as 144 Hz without active cancellation or circuit parameter targeting. With the scalable binary tree structure and high-fidelity non-local entanglement, novel quantum algorithms can be implemented on the superconducting qubit system, positioning it as a strong competitor to other physics systems regarding circuit connectivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18902v1-abstract-full').style.display = 'none'; document.getElementById('2502.18902v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.18732">arXiv:2502.18732</a> <span> [<a href="https://arxiv.org/pdf/2502.18732">pdf</a>, <a href="https://arxiv.org/format/2502.18732">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Colossal magnetoresistance in a quasi-two-dimensional cluster glass semiconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pradhan%2C+S+K">Suman Kalyan Pradhan</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+W">Weiqi Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jicheng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+Y">Yongli Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+W">Wenxing Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinbo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+Y">Yanglong Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+R">Rui Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.18732v1-abstract-short" style="display: inline;"> With a surge of interest in spintronics, the manipulation and detection of colossal magnetoresistance in quasi-two-dimensional layered magnetic materials have become a key focus, driven by their relatively scarce occurrence compared to giant magnetoresistance and tunneling magnetoresistance. This study presents an investigation into the desired colossal magnetoresistance, achieved by introducing m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18732v1-abstract-full').style.display = 'inline'; document.getElementById('2502.18732v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.18732v1-abstract-full" style="display: none;"> With a surge of interest in spintronics, the manipulation and detection of colossal magnetoresistance in quasi-two-dimensional layered magnetic materials have become a key focus, driven by their relatively scarce occurrence compared to giant magnetoresistance and tunneling magnetoresistance. This study presents an investigation into the desired colossal magnetoresistance, achieved by introducing magnetic frustration through Te doping in quasi-two-dimensional antiferromagnet Cr2Se3 matrix. The resulting Cr0.98SeTe0.27 exhibits cluster glass-like behavior with a freezing temperature of 28 K. Magnetotransport studies reveal a significant negative magnetoresistance of up to 32%. Additionally, angle-dependent transport measurements demonstrate a magnetic field-induced transition from positive to negative resistance anisotropy, suggesting a magnetic field-driven alteration in the electronic structure of this narrow band gap semiconductor, a characteristic feature of the colossal magnetoresistance effect. This behavior is further corroborated by density functional theory calculations. This systematic investigation provides a crucial understanding of the control of colossal magnetoresistance in quasi-two-dimensional materials via competing exchange interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18732v1-abstract-full').style.display = 'none'; document.getElementById('2502.18732v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16812">arXiv:2502.16812</a> <span> [<a href="https://arxiv.org/pdf/2502.16812">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Room-temperature field-tunable radiofrequency rectification in epitaxial SrIrO3 films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+L">Liang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+Z">Zongzheng Du</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jinhua Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+P">Pingbo Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+B">Bicong Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+T">Tao Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiahao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+Z">Zehao Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+M">Meng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Junxue Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wenqing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hai-zhou Lu</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+H">Hongtao He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16812v1-abstract-short" style="display: inline;"> Although significant advancements have been made in wireless technologies and portable devices, it remains a challenge for high-frequency and nanowatt-level radiofrequency rectification. In this work, we report a pronounced radiofrequency rectification up to 37 GHz in nominally centrosymmetric SrIrO3 epitaxial films, with the minimum detectable power as low as ~300 nanowatts. Strikingly, the SrIrO… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16812v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16812v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16812v1-abstract-full" style="display: none;"> Although significant advancements have been made in wireless technologies and portable devices, it remains a challenge for high-frequency and nanowatt-level radiofrequency rectification. In this work, we report a pronounced radiofrequency rectification up to 37 GHz in nominally centrosymmetric SrIrO3 epitaxial films, with the minimum detectable power as low as ~300 nanowatts. Strikingly, the SrIrO3 rectifier is highly field-tunable and exhibits a strong in-plane field anisotropy, thus showing a unique advantage in broad-band radiofrequency rectification. The rectification effect can persist up to at least 360 K and shows a sensitive temperature dependence including a sign inversion. By a systematic study of the nonlinear transport properties of SrIrO3, it is further revealed that the radiofrequency rectification originates from the nonlinear Hall effect with the dominant contribution from field-induced Berry curvature dipole. Our work demonstrates the superior performance of the field-tunable SrIrO3 rectifiers, unleashing the great application potential of centrosymmetric materials in harvesting and detecting ambient electromagnetic energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16812v1-abstract-full').style.display = 'none'; document.getElementById('2502.16812v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07293">arXiv:2502.07293</a> <span> [<a href="https://arxiv.org/pdf/2502.07293">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Global Universal Scaling and Ultra-Small Parameterization in Machine Learning Interatomic Potentials with Super-Linearity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Y">Yanxiao Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Sheng%2C+Y">Ye Sheng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xiaoxin Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Yuyan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+M">Mingqiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yabei Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+C">Caichao Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wenqing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07293v1-abstract-short" style="display: inline;"> Using machine learning (ML) to construct interatomic interactions and thus potential energy surface (PES) has become a common strategy for materials design and simulations. However, those current models of machine learning interatomic potential (MLIP) provide no relevant physical constrains, and thus may owe intrinsic out-of-domain difficulty which underlies the challenges of model generalizabilit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07293v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07293v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07293v1-abstract-full" style="display: none;"> Using machine learning (ML) to construct interatomic interactions and thus potential energy surface (PES) has become a common strategy for materials design and simulations. However, those current models of machine learning interatomic potential (MLIP) provide no relevant physical constrains, and thus may owe intrinsic out-of-domain difficulty which underlies the challenges of model generalizability and physical scalability. Here, by incorporating physics-informed Universal-Scaling law and nonlinearity-embedded interaction function, we develop a Super-linear MLIP with both Ultra-Small parameterization and greatly expanded expressive capability, named SUS2-MLIP. Due to the global scaling rooting in universal equation of state (UEOS), SUS2-MLIP not only has significantly-reduced parameters by decoupling the element space from coordinate space, but also naturally outcomes the out-of-domain difficulty and endows the potentials with inherent generalizability and scalability even with relatively small training dataset. The nonlinearity-enbeding transformation for interaction function expands the expressive capability and make the potentials super-linear. The SUS2-MLIP outperforms the state-of-the-art MLIP models with its exceptional computational efficiency especially for multiple-element materials and physical scalability in property prediction. This work not only presents a highly-efficient universal MLIP model but also sheds light on incorporating physical constraints into artificial-intelligence-aided materials simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07293v1-abstract-full').style.display = 'none'; document.getElementById('2502.07293v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05960">arXiv:2502.05960</a> <span> [<a href="https://arxiv.org/pdf/2502.05960">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electric field control of nonlinear Hall effect in Weyl semimetal TaIrTe4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiaju Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+L">Lujun Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yanghui Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lina Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Niu%2C+W">Wei Niu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shuo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+F">Feng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+P">Ping Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+S">Shuang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Pu%2C+Y">Yong Pu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05960v1-abstract-short" style="display: inline;"> The nonlinear Hall effect (NLHE), as an important probe to reveal the symmetry breaking in topological properties of materials, opens up a new dimension for exploring the energy band structure and electron transport mechanism of quantum materials. Current studies mainly focus on the observation of material intrinsic the NLHE or inducing the NLHE response by artificially constructing corrugated/twi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05960v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05960v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05960v1-abstract-full" style="display: none;"> The nonlinear Hall effect (NLHE), as an important probe to reveal the symmetry breaking in topological properties of materials, opens up a new dimension for exploring the energy band structure and electron transport mechanism of quantum materials. Current studies mainly focus on the observation of material intrinsic the NLHE or inducing the NLHE response by artificially constructing corrugated/twisted twodimensionalmaterial systems. Notably, the modulation of NLHE signal strength, a core parameter of device performance, has attracted much attention, while theoretical predictions suggest that an applied electric field can achieve the NLHE enhancement through modulation of the Berry curvature dipole (BCD). Here we report effective modulation the magnitude and sign of the NLHE by applying additional constant electric fields of different directions and magnitudes in the semimetal TaIrTe4. The NLHE response strength is enhanced by 168 times compared to the intrinsic one at 4 K when the additional constant electric field of -0.5 kV/cm is applied to the b-axis of TaIrTe4 and the through a.c. current is parallel to the TaIrTe4 a-axis. Scaling law analysis suggests that the enhancement may be the result of the combined effect of the electric field on the intrinsic BCD and disorder scattering effect of TaIrTe4. This work provides a means to study the properties of TaIrTe4, as well as a valuable reference for the study of novel electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05960v1-abstract-full').style.display = 'none'; document.getElementById('2502.05960v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14584">arXiv:2501.14584</a> <span> [<a href="https://arxiv.org/pdf/2501.14584">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ambient pressure growth of bilayer nickelate single crystals with superconductivity over 90 K under high pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+F">Feiyu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+D">Di Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Dou%2C+J">Jie Dou</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+N">Ning Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+L">Liang Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+C">Chao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+L">Lingzhen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Y">Yulin Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jun Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jian Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cai%2C+W">Weizhao Cai</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+J">Jinguang Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+Q">Qiang Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+R">Rui Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+Q">Qiaoshi Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Tao%2C+X">Xutang Tao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Junjie Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14584v1-abstract-short" style="display: inline;"> Recently, the Ruddlesden-Popper bilayer nickelate La3Ni2O7 has been discovered as a high temperature superconductor with Tc near 80 K above 14 GPa.[1-3] The search for nickelate superconductors with higher Tc, the preparation of high-quality single crystals, and the removal of high-pressure conditions including single crystal growth under high gas pressure and achievement of high Tc superconductiv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14584v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14584v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14584v1-abstract-full" style="display: none;"> Recently, the Ruddlesden-Popper bilayer nickelate La3Ni2O7 has been discovered as a high temperature superconductor with Tc near 80 K above 14 GPa.[1-3] The search for nickelate superconductors with higher Tc, the preparation of high-quality single crystals, and the removal of high-pressure conditions including single crystal growth under high gas pressure and achievement of high Tc superconductivity under high pressure, are the most challenging tasks. Here, we present ambient pressure flux growth of high-quality bilayer nickelate single crystals with superconductivity up to 91 K under high pressure. Single crystals of bilayer La3-xRxNi2O7-y with dimensions up to 220 um on the edge were successfully grown using flux method at atmosphere conditions. Single crystal X-ray diffraction, nuclear quadrupole resonance, energy dispersion spectroscopy and scanning transmission electron microscopy measurements evidenced high quality of bilayer La2SmNi2O7-y single crystals in average structure and local structure. Superconductivity has been observed in high pressure resistivity measurements of annealed La2SmNi2O7-y single crystals with Tc onset up to 91 K, which is the highest among the known superconducting nickelates. Our results not only demonstrate a new and easy-to-access method for synthesizing high-quality bilayer nickelate single crystals, but also providing a direction for discovering superconducting nickelates with higher Tc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14584v1-abstract-full').style.display = 'none'; document.getElementById('2501.14584v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13588">arXiv:2501.13588</a> <span> [<a href="https://arxiv.org/pdf/2501.13588">pdf</a>, <a href="https://arxiv.org/format/2501.13588">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spin-polarized STM measurement scheme for quantum geometric tensor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shu-Hui Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jin Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+D">Ding-Fu Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J">Jia-Ji Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=You%2C+W">Wen-Long You</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wen Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+K">Kai Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13588v1-abstract-short" style="display: inline;"> Quantum geometric tensor (QGT) reflects the geometry of the eigenstates of a system's Hamiltonian. The full characterization of QGT is essential for various quantum systems. However, it is challenging to characterize the QGT of the solid-state systems. Here we present a scheme by using spin-polarized STM to measure QGT of two-dimensional solid-state systems, in which the spin texture is extracted… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13588v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13588v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13588v1-abstract-full" style="display: none;"> Quantum geometric tensor (QGT) reflects the geometry of the eigenstates of a system's Hamiltonian. The full characterization of QGT is essential for various quantum systems. However, it is challenging to characterize the QGT of the solid-state systems. Here we present a scheme by using spin-polarized STM to measure QGT of two-dimensional solid-state systems, in which the spin texture is extracted from geometric amplitudes of Friedel oscillations induced by the intentionally introduced magnetic impurity and then the QGT is derived from the momentum differential of spin texture. The surface states of topological insulator (TISS), as a model spin system, is promising to demonstrate the scheme. In a TI slab, the gapped TISS host finite quantum metric and Berry curvature as the symmetric real part and the antisymmetric imaginary part of QGT, respectively. Thus, a detailed calculations guide the use of the developed scheme to measure the QGT of gapped TISS with or without an external in-plane magnetic field. This study provides a feasible scheme for measuring QGT of two-dimensional solid-state systems, and hints at the great potential of the information extraction from the geometric amplitudes of STM and other measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13588v1-abstract-full').style.display = 'none'; document.getElementById('2501.13588v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.11248">arXiv:2501.11248</a> <span> [<a href="https://arxiv.org/pdf/2501.11248">pdf</a>, <a href="https://arxiv.org/format/2501.11248">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Microscopic evidence of charge- and spin-density waves in La$_3$Ni$_2$O$_{7-未}$ revealed by $^{139}$La-NQR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">J. Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+J">J. Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">G. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N+N">N. N. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Dou%2C+J">J. Dou</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+A+F">A. F. Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+J+G">J. G. Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+G">Guo-qing Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+R">R. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.11248v1-abstract-short" style="display: inline;"> The recent discovery of superconductivity in La$_3$Ni$_2$O$_{7-未}$ with a transition temperature $T_c$ close to 80 K at high pressures has attracted significant attention, due particularly to a possible density wave (DW) transition occurring near the superconducting dome. Identifying the type of DW order is crucial for understanding the origin of superconductivity in this system. However, owing to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11248v1-abstract-full').style.display = 'inline'; document.getElementById('2501.11248v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.11248v1-abstract-full" style="display: none;"> The recent discovery of superconductivity in La$_3$Ni$_2$O$_{7-未}$ with a transition temperature $T_c$ close to 80 K at high pressures has attracted significant attention, due particularly to a possible density wave (DW) transition occurring near the superconducting dome. Identifying the type of DW order is crucial for understanding the origin of superconductivity in this system. However, owing to the presence of La$_4$Ni$_3$O$_{10}$ and other intergrowth phases in La$_3$Ni$_2$O$_{7-未}$ samples, extracting the intrinsic information from the La$_3$Ni$_2$O$_7$ phase is challenging. In this study, we employed $^{139}$La nuclear quadrupole resonance (NQR) measurements to eliminate the influence of other structural phases in the sample and obtain microscopic insights into the DW transition in La$_3$Ni$_2$O$_{7-未}$. Below the DW transition temperature $T_{\rm DW} \sim$ 153K, we observe a distinct splitting in the $\pm$ 5/2 $\leftrightarrow$ $\pm$ 7/2 transition of the NQR resonance peak at the La(2) site, while only a line broadening is seen in the $\pm$ 3/2 $\leftrightarrow$ $\pm$ 5/2 transition peak. Through further analysis of the spectra, we show that the line splitting is due to the unidirectional charge modulation. A magnetic line broadening is also observed below $T_{\rm DW}$, accompanied by a large enhancement of the spin-lattice relaxation rate, indicating the formation of magnetic ordered moments in the DW state. Our results suggest the formation of charge- and spin-density wave order in La$_3$Ni$_2$O$_{7-未}$ simultaneously, thereby offering critical insights into the electronic correlations in Ni-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11248v1-abstract-full').style.display = 'none'; document.getElementById('2501.11248v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.09047">arXiv:2501.09047</a> <span> [<a href="https://arxiv.org/pdf/2501.09047">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Surface transport and barrier effects in metal halide perovskites explored by bias polarity switching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Betusiak%2C+M">Marian Betusiak</a>, <a href="/search/cond-mat?searchtype=author&query=Grill%2C+R">Roman Grill</a>, <a href="/search/cond-mat?searchtype=author&query=Belas%2C+E">Eduard Belas</a>, <a href="/search/cond-mat?searchtype=author&query=Praus%2C+P">Petr Praus</a>, <a href="/search/cond-mat?searchtype=author&query=Brynza%2C+M">Mykola Brynza</a>, <a href="/search/cond-mat?searchtype=author&query=Ahmadi%2C+M">Mahshid Ahmadi</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jonghee Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Musiienko%2C+A">Artem Musiienko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.09047v1-abstract-short" style="display: inline;"> Surface transport and barrier effects in metal halide perovskites explored by bias polarity switching. By bias polarity switching we experimentally proved that free and trapped holes accumulate beneath the contact barrier. Further investigation proved that the duration of bias pulse changes surface properties that surprisingly affect only free holes. Temperature dependence of accumulated hole diss… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09047v1-abstract-full').style.display = 'inline'; document.getElementById('2501.09047v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.09047v1-abstract-full" style="display: none;"> Surface transport and barrier effects in metal halide perovskites explored by bias polarity switching. By bias polarity switching we experimentally proved that free and trapped holes accumulate beneath the contact barrier. Further investigation proved that the duration of bias pulse changes surface properties that surprisingly affect only free holes. Temperature dependence of accumulated hole dissipation revealed two activation energies 150meV the height of the barrier and 770meV corresponding to a yet unknown process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.09047v1-abstract-full').style.display = 'none'; document.getElementById('2501.09047v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures in main article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05547">arXiv:2501.05547</a> <span> [<a href="https://arxiv.org/pdf/2501.05547">pdf</a>, <a href="https://arxiv.org/format/2501.05547">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Deep learning of phase transitions with minimal examples </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Abuali%2C+A">Ahmed Abuali</a>, <a href="/search/cond-mat?searchtype=author&query=Clarke%2C+D+A">David A. Clarke</a>, <a href="/search/cond-mat?searchtype=author&query=Hjorth-Jensen%2C+M">Morten Hjorth-Jensen</a>, <a href="/search/cond-mat?searchtype=author&query=Konstantinidis%2C+I">Ioannis Konstantinidis</a>, <a href="/search/cond-mat?searchtype=author&query=Ratti%2C+C">Claudia Ratti</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jianyi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05547v1-abstract-short" style="display: inline;"> Over the past several years, there have been many studies demonstrating the ability of neural networks and deep learning methods to identify phase transitions in many physical systems, notably in classical statistical physics systems. One often finds that the prediction of deep learning methods trained on many ensembles below and above the critical temperature $T_{\mathrm{c}}$ behave analogously t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05547v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05547v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05547v1-abstract-full" style="display: none;"> Over the past several years, there have been many studies demonstrating the ability of neural networks and deep learning methods to identify phase transitions in many physical systems, notably in classical statistical physics systems. One often finds that the prediction of deep learning methods trained on many ensembles below and above the critical temperature $T_{\mathrm{c}}$ behave analogously to an order parameter, and this analogy has been successfully used to locate $T_{\mathrm{c}}$ and estimate universal critical exponents. In this work, we pay particular attention to the ability of a convolutional neural network to capture these critical parameters for the 2-$d$ Ising model, when the network is trained on configurations at $T=0$ and $T=\infty$ only. We apply histogram reweighting to the neural network prediction and compare its capabilities when trained more conventionally at multiple temperatures. We find that the network trained on two temperatures is still able to identify $T_{\mathrm{c}}$ and $谓$, while the extraction of $纬$ becomes more challenging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05547v1-abstract-full').style.display = 'none'; document.getElementById('2501.05547v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04688">arXiv:2501.04688</a> <span> [<a href="https://arxiv.org/pdf/2501.04688">pdf</a>, <a href="https://arxiv.org/format/2501.04688">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Observation of topological prethermal strong zero modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+S">Si Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Zixuan Song</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+Y">Yihang Han</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yiyang He</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Han Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jianan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yanzhe Wang</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04688v1-abstract-short" style="display: inline;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04688v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04688v1-abstract-full" style="display: none;"> Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking paradigm for understanding quantum matter. They are characterized by topological boundary states robust against perturbations that respect the protecting symmetry. In a clean system without disorder, these edge modes typically only occur for the ground states of systems with a bulk energy gap and would not survive at finite temperatures due to mobile thermal excitations. Here, we report the observation of a distinct type of topological edge modes, which are protected by emergent symmetries and persist even up to infinite temperature, with an array of 100 programmable superconducting qubits. In particular, through digital quantum simulation of the dynamics of a one-dimensional disorder-free "cluster" Hamiltonian, we observe robust long-lived topological edge modes over up to 30 cycles at a wide range of temperatures. By monitoring the propagation of thermal excitations, we show that despite the free mobility of these excitations, their interactions with the edge modes are substantially suppressed in the dimerized regime due to an emergent U(1)$\times$U(1) symmetry, resulting in an unusually prolonged lifetime of the topological edge modes even at infinite temperature. In addition, we exploit these topological edge modes as logical qubits and prepare a logical Bell state, which exhibits persistent coherence in the dimerized and off-resonant regime, despite the system being disorder-free and far from its ground state. Our results establish a viable digital simulation approach to experimentally exploring a variety of finite-temperature topological phases and demonstrate a potential route to construct long-lived robust boundary qubits that survive to infinite temperature in disorder-free systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04688v1-abstract-full').style.display = 'none'; document.getElementById('2501.04688v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04679">arXiv:2501.04679</a> <span> [<a href="https://arxiv.org/pdf/2501.04679">pdf</a>, <a href="https://arxiv.org/format/2501.04679">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Exploring nontrivial topology at quantum criticality in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S">Sheng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+F">Feitong Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yujie Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Shibo Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yu Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+N">Ning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+T">Tingting Li</a>, <a href="/search/cond-mat?searchtype=author&query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+Y">Yihang Han</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+Y">Yiyang He</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Han Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jianan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yanzhe Wang</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04679v1-abstract-short" style="display: inline;"> The discovery of nontrivial topology in quantum critical states has introduced a new paradigm for classifying quantum phase transitions and challenges the conventional belief that topological phases are typically associated with a bulk energy gap. However, realizing and characterizing such topologically nontrivial quantum critical states with large particle numbers remains an outstanding experimen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04679v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04679v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04679v1-abstract-full" style="display: none;"> The discovery of nontrivial topology in quantum critical states has introduced a new paradigm for classifying quantum phase transitions and challenges the conventional belief that topological phases are typically associated with a bulk energy gap. However, realizing and characterizing such topologically nontrivial quantum critical states with large particle numbers remains an outstanding experimental challenge in statistical and condensed matter physics. Programmable quantum processors can directly prepare and manipulate exotic quantum many-body states, offering a powerful path for exploring the physics behind these states. Here, we present an experimental exploration of the critical cluster Ising model by preparing its low-lying critical states on a superconducting processor with up to $100$ qubits. We develop an efficient method to probe the boundary $g$-function based on prepared low-energy states, which allows us to uniquely identify the nontrivial topology of the critical systems under study. Furthermore, by adapting the entanglement Hamiltonian tomography technique, we recognize two-fold topological degeneracy in the entanglement spectrum under periodic boundary condition, experimentally verifying the universal bulk-boundary correspondence in topological critical systems. Our results demonstrate the low-lying critical states as useful quantum resources for investigating the interplay between topology and quantum criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04679v1-abstract-full').style.display = 'none'; document.getElementById('2501.04679v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.03712">arXiv:2501.03712</a> <span> [<a href="https://arxiv.org/pdf/2501.03712">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Field-free perpendicular magnetization switching of low critical current density at room temperature in TaIrTe4/ferromagnet heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wei%2C+L">Lujun Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+P">Pai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+J">Jincheng Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yanghui Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lina Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+P">Ping Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+F">Feng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Niu%2C+W">Wei Niu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+F">Fei Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiaju Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+S">Shuang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Y">Yu Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+T">Tianyu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+J">Jiarui Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Weihao Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jian Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+J">Jun Du</a>, <a href="/search/cond-mat?searchtype=author&query=Pu%2C+Y">Yong Pu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.03712v1-abstract-short" style="display: inline;"> Spin-orbit torque-induced perpendicular magnetization switching has attracted much attention due to the advantages of nonvolatility, high density, infinite read/write counts, and low power consumption in spintronic applications. To achieve field-free deterministic switching of perpendicular magnetization, additional magnetic field, magnetic layer assistance, or artificially designed structural sym… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03712v1-abstract-full').style.display = 'inline'; document.getElementById('2501.03712v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.03712v1-abstract-full" style="display: none;"> Spin-orbit torque-induced perpendicular magnetization switching has attracted much attention due to the advantages of nonvolatility, high density, infinite read/write counts, and low power consumption in spintronic applications. To achieve field-free deterministic switching of perpendicular magnetization, additional magnetic field, magnetic layer assistance, or artificially designed structural symmetry breaking are usually required, which are not conducive to the high-density integration and application of low-power devices. However, 2D Weyl semimetals with low-symmetry structures have recently been found to generate z-spin-polarized currents, which may induce out-of-plane damping-like torques to their neighboring ferromagnetic layers, and realize deterministic perpendicular magnetization switching at zero magnetic field. In this Letter, we report that current-induced field-free magnetization switching at room temperature can be achieved in a perpendicularly magnetized TaIrTe4/Pt/Co/Pt device, and the critical switching current density can be lowered to be about 2.64*105 Acm-2. This study suggests that TaIrTe4 has great potential for the design of room-temperature efficient spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.03712v1-abstract-full').style.display = 'none'; document.getElementById('2501.03712v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02440">arXiv:2501.02440</a> <span> [<a href="https://arxiv.org/pdf/2501.02440">pdf</a>, <a href="https://arxiv.org/format/2501.02440">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Disentangling Cation-Polyanion Coupling in Solid Electrolytes: Which Anion Motion Dominates Cation Transport? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+K">Ke Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jitai Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhai%2C+Y">Yu Zhai</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hui Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02440v1-abstract-short" style="display: inline;"> Lithium and sodium solid electrolytes feature polyanion frameworks and highly mobile cations. Understanding and quantifying the impact of polyanion dynamics on cations will help us to unravel the complex role that anion play in superionic conductors. However, no experimental or computational method can directly extract this information, as polyanion dynamics are always coupled with other factors t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02440v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02440v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02440v1-abstract-full" style="display: none;"> Lithium and sodium solid electrolytes feature polyanion frameworks and highly mobile cations. Understanding and quantifying the impact of polyanion dynamics on cations will help us to unravel the complex role that anion play in superionic conductors. However, no experimental or computational method can directly extract this information, as polyanion dynamics are always coupled with other factors that affect ion mobility. Here, we present the pioneering study that combines constraint algorithm and machine-learning molecular dynamics to quantitatively reveal the effects of polyanion translation, rotation, and vibration on cation mobility across a diverse material class. Ultralong-time, large-scale machine-learning molecular dynamics simulations with selective constraints on each anion motion mode unequivocally yield results at near room and elevated temperatures. In sharp contrast to the previous understanding that facile anion rotation primarily facilitates cation transport, the strong coupling between anion translation and vibration with cation diffusion has been unraveled for the first time; we find that translation, rotation, and vibration can each directly drive superionicity, with one typically dominant in each class of materials. Anion rotation dominates cation transport when the rotation frequency matches the cation hopping frequency, whereas anion translation prevails at higher and vibration at lower rotation frequencies. The impact of anion dynamics on cation diffusion becomes more prominent at lower temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02440v1-abstract-full').style.display = 'none'; document.getElementById('2501.02440v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18942">arXiv:2412.18942</a> <span> [<a href="https://arxiv.org/pdf/2412.18942">pdf</a>, <a href="https://arxiv.org/format/2412.18942">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Multipolar Ferroelectricity in the Mott Regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+P">Pengwei Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiahao Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G+v">Gang v. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18942v1-abstract-short" style="display: inline;"> Ferroelectricity has been one major focus in modern fundamental research and technological application. We consider the physical origin of improper ferroelectricity in Mott insulating materials. Beyond the well-known Katsura-Nagaosa-Balatsky's inverse Dzyaloshinskii-Moriya mechanism for the noncollinearly ordered magnets, we point out the induction of the electric polarizations in the multipolar o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18942v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18942v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18942v1-abstract-full" style="display: none;"> Ferroelectricity has been one major focus in modern fundamental research and technological application. We consider the physical origin of improper ferroelectricity in Mott insulating materials. Beyond the well-known Katsura-Nagaosa-Balatsky's inverse Dzyaloshinskii-Moriya mechanism for the noncollinearly ordered magnets, we point out the induction of the electric polarizations in the multipolar ordered Mott insulators. Using the multiflavor representation for the multipolar magnetic moments, we can show the crossover or transition from the pure inverse Dzyaloshinskii-Moriya mechanism to the pure multipolar origin for the ferroelectricity, and also incorporate the intermediate regime with the mixture of both origins. We expect our results to inspire the reexamination of the ferroelectricity among the multipolar-ordered magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18942v1-abstract-full').style.display = 'none'; document.getElementById('2412.18942v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+8 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15990">arXiv:2412.15990</a> <span> [<a href="https://arxiv.org/pdf/2412.15990">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Feedback Regulated Opto-Mechanical Soft Robotic Actuators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jianfeng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Pi%2C+H">Haotian Pi</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+Z">Zixuan Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+H">Hongshuang Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Shou%2C+W">Wan Shou</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+H">Hao Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15990v1-abstract-short" style="display: inline;"> Natural organisms can convert environmental stimuli into sensory feedback to regulate their body and realize active adaptivity. However, realizing such a feedback-regulation mechanism in synthetic material systems remains a grand challenge. It is believed that achieving complex feedback mechanisms in responsive materials will pave the way toward autonomous, intelligent structure and actuation with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15990v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15990v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15990v1-abstract-full" style="display: none;"> Natural organisms can convert environmental stimuli into sensory feedback to regulate their body and realize active adaptivity. However, realizing such a feedback-regulation mechanism in synthetic material systems remains a grand challenge. It is believed that achieving complex feedback mechanisms in responsive materials will pave the way toward autonomous, intelligent structure and actuation without complex electronics. Inspired by living systems, we report a general principle to design and construct such feedback loops in light-responsive materials. Specifically, we design a baffle-actuator mechanism to incorporate programmed feedback into the opto-mechanical responsiveness. By simply addressing the baffle position with respect to the incident light beam, positive and negative feedback are programmed. We demonstrate the transformation of a light-bending strip into a switcher, where the intensity of light determines the energy barrier under positive feedback, realizing multi-stable shape-morphing. By leveraging the negative feedback and associated homeostasis, we demonstrate two soft robots, i.e., a locomotor and a swimmer. Furthermore, we unveil the ubiquity of feedback in light-responsive materials, which provides new insight into self-regulated robotic matters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15990v1-abstract-full').style.display = 'none'; document.getElementById('2412.15990v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12263">arXiv:2412.12263</a> <span> [<a href="https://arxiv.org/pdf/2412.12263">pdf</a>, <a href="https://arxiv.org/ps/2412.12263">ps</a>, <a href="https://arxiv.org/format/2412.12263">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Scaling Behavior of Magnetoresistance and Hall Resistivity in Altermagnet CrSb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Peng%2C+X">Xin Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yuzhi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shengnan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">Yi Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yuran Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+Y">Yahui Su</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+C">Chunxiang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+T">Tingyu Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hangdong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinhu Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+B">Bin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+Z">Zhong Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+J">Jianhua Du</a>, <a href="/search/cond-mat?searchtype=author&query=Jiao%2C+Z">Zhiwei Jiao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Q">Quansheng Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+M">Minghu Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12263v1-abstract-short" style="display: inline;"> The discovery of altermagnet (AM) marks a significant advancement in magnetic materials, combining characteristics of both ferromagnetism and antiferromagnetism. In this Letter, we focus on CrSb, which has been verified to be an AM and to exhibit substantial spin splitting near the Fermi level. After successfully growing high-quality CrSb single crystals, we performed comprehensive magnetization,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12263v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12263v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12263v1-abstract-full" style="display: none;"> The discovery of altermagnet (AM) marks a significant advancement in magnetic materials, combining characteristics of both ferromagnetism and antiferromagnetism. In this Letter, we focus on CrSb, which has been verified to be an AM and to exhibit substantial spin splitting near the Fermi level. After successfully growing high-quality CrSb single crystals, we performed comprehensive magnetization, magnetoresistance (MR), and Hall resistivity measurements, along with the electronic structure, and Fermi surface (FS) calculations, as well as the magneto-transport property numerical simulations. An antiferromagnetic transition occurring at $T_{N}$ = 712 K was reconfirmed. It was found that both experimental MR and Hall resistivity are consistent with the numerical simulation results, and exhibit obvious scaling behavior. The nonlinear Hall resistivity is due to its multi-band structure, rather than an anomalous Hall effect (AHE). Especially, the scaling behavior in Hall resistivity is first observed within an AM material. These findings demonstrate that the magneto-transport properties in CrSb originate from the intrinsic electronic structure and are dominated by the Lorentz force. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12263v1-abstract-full').style.display = 'none'; document.getElementById('2412.12263v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12258">arXiv:2412.12258</a> <span> [<a href="https://arxiv.org/pdf/2412.12258">pdf</a>, <a href="https://arxiv.org/ps/2412.12258">ps</a>, <a href="https://arxiv.org/format/2412.12258">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Universal Scaling Behavior of Transport Properties in Non-Magnetic RuO$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Peng%2C+X">Xin Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhihao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shengnan Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+Y">Yi Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yuran Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Su%2C+Y">Yahui Su</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+C">Chunxiang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+T">Tingyu Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+L">Le Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yazhou Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hangdong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinhu Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+B">Bin Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yuke Li</a>, <a href="/search/cond-mat?searchtype=author&query=Xi%2C+C">Chuanying Xi</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+J">Jianhua Du</a>, <a href="/search/cond-mat?searchtype=author&query=Jiao%2C+Z">Zhiwei Jiao</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Q">Quansheng Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+M">Minghu Fang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12258v1-abstract-short" style="display: inline;"> As a prototypical altermagnet, RuO$_{2}$ has been subject to many controversial reports regarding its magnetic ground state and the existence of crystal Hall effects. We obtained high-quality RuO$_{2}$ single crystal with a residual resistivity ratio (RRR = 152), and carefully measured its magnetization, longitudinal resistivity ($蟻_{xx}$) and Hall resistivity ($蟻_{yx}$) up to 35 T magnetic field.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12258v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12258v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12258v1-abstract-full" style="display: none;"> As a prototypical altermagnet, RuO$_{2}$ has been subject to many controversial reports regarding its magnetic ground state and the existence of crystal Hall effects. We obtained high-quality RuO$_{2}$ single crystal with a residual resistivity ratio (RRR = 152), and carefully measured its magnetization, longitudinal resistivity ($蟻_{xx}$) and Hall resistivity ($蟻_{yx}$) up to 35 T magnetic field. We also calculated its electronic band, Fermi surface, and conducted numerical simulations for its transport properties. It was found that no magnetic transition occurs below 400 K, and that all the transport properties are consistent with the numerical simulations results, indicating that the magnetotransport properties originate from the intrinsic electronic structures and are dominated by the Lorentz force. Particularly, no crystal Hall effects were observed in our RuO$_{2}$ samples and both magnetoresistance and Hall resistivity follow scaling behavior. These results demonstrate that RuO$_{2}$ is a typical semimetal, rather than an altermagnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12258v1-abstract-full').style.display = 'none'; document.getElementById('2412.12258v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09866">arXiv:2412.09866</a> <span> [<a href="https://arxiv.org/pdf/2412.09866">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> A Simplified Model for Predicting and Designing High-Temperature Ambient-Pressure Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sun%2C+Y">Yuting Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S">Shixu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+X">Xin-Gao Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Ji-Hui Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09866v1-abstract-short" style="display: inline;"> Searching for ambient-pressure conventional superconductors with critical temperatures ($T_C$) higher than 40 K and implementable synthesis routes is a key challenge in the field of high-temperature superconductivity, mainly due to lack of efficient and effective models to estimate $T_C$ of potential systems. In this work, we propose a simplified model to estimate the dimensionless electron-phonon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09866v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09866v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09866v1-abstract-full" style="display: none;"> Searching for ambient-pressure conventional superconductors with critical temperatures ($T_C$) higher than 40 K and implementable synthesis routes is a key challenge in the field of high-temperature superconductivity, mainly due to lack of efficient and effective models to estimate $T_C$ of potential systems. In this work, we propose a simplified model to estimate the dimensionless electron-phonon coupling (EPC) strength \lambbda and thus $T_C$ by separately treating the EPC matrix elements which evaluate the pairing strength and the phonon-assisted nesting function P(w) which evaluates the matching of electron bands and phonon spectra for forming potential electron pairs via phonons. By applying the model to screen over the Computational 2D Materials Database (C2DB), we successfully identify several systems with TC exceeding 20 K as confirmed by accurate first-principles calculations. Especially, Ti$_3$N$_2$H$_2$ has a record high $T_C$ value among known MXenes, which is 52 K (78 K) according to isotropic (anisotropic) Migdal-Eliashberg equations under ambient pressure. More importantly, we propose a feasible synthesis route for Ti$_3$N$_2$H$_2$ starting from the experimentally synthesized MXene Ti$_4$N$_3$. Beyond demonstrating its feasibility and efficiency in identifying high-$T_C$ superconductors, our model illuminates the critical roles of the matching between electron band and phonon spectra as a necessary condition in determining $T_C$ and points out the directions for prediction and design of high-$T_C$ superconductors, which is exemplified by showing a novel designed system Ti$_3$N$_2$H$_2$ with a possible $T_C$ of 80 K under ambient pressure. Our model opens new avenues for exploring high-$T_C$ systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09866v1-abstract-full').style.display = 'none'; document.getElementById('2412.09866v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08517">arXiv:2412.08517</a> <span> [<a href="https://arxiv.org/pdf/2412.08517">pdf</a>, <a href="https://arxiv.org/format/2412.08517">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Smart Holes: Analogue black holes with the right temperature and entropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiayue Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Afshordi%2C+N">Niayesh Afshordi</a>, <a href="/search/cond-mat?searchtype=author&query=Torabian%2C+M">Mahdi Torabian</a>, <a href="/search/cond-mat?searchtype=author&query=Jafari%2C+S+A">Seyed Akbar Jafari</a>, <a href="/search/cond-mat?searchtype=author&query=Baskaran%2C+G">G. Baskaran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08517v2-abstract-short" style="display: inline;"> In analogue gravity studies, the goal is to replicate black hole phenomena, such as Hawking radiation, within controlled laboratory settings. In the realm of condensed matter systems, this may happen in 2D tilted Dirac cone materials based on honeycomb lattice. In particular, we compute the entropy of this system, and find it has the same form as black hole Bekenstein-Hawking entropy, if an analog… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08517v2-abstract-full').style.display = 'inline'; document.getElementById('2412.08517v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08517v2-abstract-full" style="display: none;"> In analogue gravity studies, the goal is to replicate black hole phenomena, such as Hawking radiation, within controlled laboratory settings. In the realm of condensed matter systems, this may happen in 2D tilted Dirac cone materials based on honeycomb lattice. In particular, we compute the entropy of this system, and find it has the same form as black hole Bekenstein-Hawking entropy, if an analogue horizon forms. Hence, these systems can be potential analogues of quantum black holes. We show that this entropy is primarily concentrated in the region where the tilt parameter is close to one, which corresponds to the location of the analogue black hole horizon. Additionally, when nonlinear effects are taken into account, the entropy is peaked in a small pocket of the Fermi sea that forms behind the analogue event horizon, which we call the \textit{Fermi puddle}. We further refer to this new type of analogue black hole as a {\it smart hole}, since, in contrast to dumb holes, it can simulate both the correct temperature {\it and} entropy of general relativistic black holes. These results provide an opportunity to illuminate various quantum facets of black hole physics in a laboratory setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08517v2-abstract-full').style.display = 'none'; document.getElementById('2412.08517v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures; v2 minor edits, added references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.02433">arXiv:2412.02433</a> <span> [<a href="https://arxiv.org/pdf/2412.02433">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ab initio Study on Lithium Anode Interface Instability and Stabilization of Superionic Li3InCl6 and Li6PS5Cl Solid Electrolytes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C">Cheng-Man Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hsu%2C+C">Chao-Hsiang Hsu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jing-Sen Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Tsai%2C+P">Ping-Chun Tsai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.02433v1-abstract-short" style="display: inline;"> Emerging superionic conductors Li3InCl6 (LIC) and Li6PS5Cl (LPSC) are very promising for solid-state electrolytes (SSEs) in all-solid-state lithium batteries (ASSLBs). However, unstable lithium-anode interfaces in LIC and LPSC have been observed through experiments and ab initio calculations, while the interphases formed in determining interfacial stability remain unclear. In this study, we invest… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02433v1-abstract-full').style.display = 'inline'; document.getElementById('2412.02433v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.02433v1-abstract-full" style="display: none;"> Emerging superionic conductors Li3InCl6 (LIC) and Li6PS5Cl (LPSC) are very promising for solid-state electrolytes (SSEs) in all-solid-state lithium batteries (ASSLBs). However, unstable lithium-anode interfaces in LIC and LPSC have been observed through experiments and ab initio calculations, while the interphases formed in determining interfacial stability remain unclear. In this study, we investigate the ab initio stability of LIC-Li and LPSC-Li interfaces and interphases. Our ab initio calculations revealed that both interfaces are not chemically or electrochemically thermodynamically stable. Interestingly, the LPSC-Li has a stable interphase, but the LIC-Li doesn't. Moreover, the interlayers were systematically evaluated for the LIC-Li and LPSC-Li interfaces, and the desired interlayer materials are clarified for the two interfaces. This ab initio understanding of the interfaces, interphases and interlayers would help the development of a variety of stable interfaces in ASSLBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.02433v1-abstract-full').style.display = 'none'; document.getElementById('2412.02433v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00803">arXiv:2412.00803</a> <span> [<a href="https://arxiv.org/pdf/2412.00803">pdf</a>, <a href="https://arxiv.org/format/2412.00803">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Quantum simulation of the phase transition of the massive Thirring model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gong%2C+J">Jia-Qi Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Ji-Chong Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00803v1-abstract-short" style="display: inline;"> The rapid development of quantum computing technology has made it possible to study the thermodynamic properties of fermionic systems at finite temperatures through quantum simulations on a quantum computer. This provides a novel approach to the study of the chiral phase transition of fermionic systems. Among these, the quantum minimally entangled typical thermal states (QMETTS) algorithm has rece… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00803v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00803v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00803v1-abstract-full" style="display: none;"> The rapid development of quantum computing technology has made it possible to study the thermodynamic properties of fermionic systems at finite temperatures through quantum simulations on a quantum computer. This provides a novel approach to the study of the chiral phase transition of fermionic systems. Among these, the quantum minimally entangled typical thermal states (QMETTS) algorithm has recently attracted considerable interest. The massive Thirring model, which exhibits a variety of phenomena at low temperatures, includes both a chiral phase transition and a topologically non-trivial ground state. It therefore raises the intriguing question of whether its phase transition can be studied using a quantum simulation approach. In this study, the chiral phase transition of the massive Thirring model and its dual topological phase transition are studied using the QMETTS algorithm. The results show that QMETTS is able to accurately reproduce the phase transition and thermodynamic properties of the massive Thirring model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00803v1-abstract-full').style.display = 'none'; document.getElementById('2412.00803v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19538">arXiv:2411.19538</a> <span> [<a href="https://arxiv.org/pdf/2411.19538">pdf</a>, <a href="https://arxiv.org/format/2411.19538">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Haldane phase, field-induced magnetic ordering and Tomonaga-Luttinger liquid behavior in a spin-one chain compound NiC$_2$O$_4$$\cdot$2NH$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Shuo Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Zhanlong Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yanhong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jun Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+K">Kefan Du</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xiaoyu Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Z">Ze Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Y">Ying Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jie Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zhengxin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&query=Cui%2C+Y">Yi Cui</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+R">Rui Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hongcheng Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Yu%2C+W">Weiqiang Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19538v1-abstract-short" style="display: inline;"> We performed single-crystal magnetic susceptibility and $^1$H NMR measurements on a quasi-1D, spin-1 antiferromagnet NiC$_2$O$_4$$\cdot$2NH$_3$, with temperature down to 100 mK and with field up to 26 T. With field applied along the chain direction (crystalline $b$ direction), a spin gap is determined at low fields. Our susceptibility and spin-lattice relaxation measurements reveal a Haldane phase… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19538v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19538v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19538v1-abstract-full" style="display: none;"> We performed single-crystal magnetic susceptibility and $^1$H NMR measurements on a quasi-1D, spin-1 antiferromagnet NiC$_2$O$_4$$\cdot$2NH$_3$, with temperature down to 100 mK and with field up to 26 T. With field applied along the chain direction (crystalline $b$ direction), a spin gap is determined at low fields. Our susceptibility and spin-lattice relaxation measurements reveal a Haldane phase at low field, with an intrachain exchange coupling $J$ $\approx$ 35 K and an easy-plane single-ion anisotropy of 17 K. A field-induced antiferromagnetic (AFM) ordering emerges at fields of 2.1 T, which sets a three-dimensional (3D) quantum critical point (QCP). The high-temperature spin-lattice relaxation rates $1/T_1$ resolves an onset of Tomonaga-Luttinger liquid behavior at field above $3.5$ T, which characterizes a hidden 1D QCP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19538v1-abstract-full').style.display = 'none'; document.getElementById('2411.19538v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18843">arXiv:2411.18843</a> <span> [<a href="https://arxiv.org/pdf/2411.18843">pdf</a>, <a href="https://arxiv.org/format/2411.18843">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Laser-Controlled Nonlinear Hall Effect in Tellurium Solids via Nonlinear Phononics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xi Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiali Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+P">Peizhe Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jia Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18843v1-abstract-short" style="display: inline;"> A Terahertz (THz) laser with strong strength could excite more than one phonons and induce a transient lattice distortion termed as nonlinear phononics. This process allows dynamic control of various physical properties, including topological properties. Here, using first-principles calculations and dynamical simulations, we demonstrate that THz laser excitation can modulate the electronic structu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18843v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18843v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18843v1-abstract-full" style="display: none;"> A Terahertz (THz) laser with strong strength could excite more than one phonons and induce a transient lattice distortion termed as nonlinear phononics. This process allows dynamic control of various physical properties, including topological properties. Here, using first-principles calculations and dynamical simulations, we demonstrate that THz laser excitation can modulate the electronic structure and the signal of nonlinear Hall effect in elemental solid tellurium (Te). By strongly exciting the chiral phonon mode, we observe a non-equilibrium steady state characterized by lattice distortion along the breathing vibrational mode. This leads to a transition of Te from a direct to an indirect semiconductor. In addition, the energy dispersion around the Weyl point is deformed, leading to variations in the local Berry curvature dipole. As a result, the nonlinear Hall-like current in Te can be modulated with electron doping where the sign of current could be reversed under a strong THz laser field. Our results may stimulate further research on coupled quasiparticles in solids and the manipulation of their topological transport properties using THz lasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18843v1-abstract-full').style.display = 'none'; document.getElementById('2411.18843v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12336">arXiv:2411.12336</a> <span> [<a href="https://arxiv.org/pdf/2411.12336">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Double Splay Nematic Order in Confined Polar Fluids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Z">Zhongjie Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+M">Miao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+A">Aile Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+S">Shengzhu Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jidan Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+M">Mingjun Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Aya%2C+S">Satoshi Aya</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+Q">Qi-Huo Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12336v1-abstract-short" style="display: inline;"> In this study, we demonstrate that when a ferroelectric nematic is confined between two glass plates coated with ionic polymers, a modulated phase emerges in a narrow temperature range between the nematic and ferroelectric nematic phases. This modulated phase emerges from the nematic phase in a continuous manner and then transforms into the ferroelectric nematic phase via a first-order transition… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12336v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12336v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12336v1-abstract-full" style="display: none;"> In this study, we demonstrate that when a ferroelectric nematic is confined between two glass plates coated with ionic polymers, a modulated phase emerges in a narrow temperature range between the nematic and ferroelectric nematic phases. This modulated phase emerges from the nematic phase in a continuous manner and then transforms into the ferroelectric nematic phase via a first-order transition upon cooling. Using optical microscopy, we provide compelling evidence that this modulated phase corresponds to the theoretically predicted double splay nematic phase. In this phase, splay deformations alternate in two orthogonal directions oriented at 45掳 to the substrate surfaces, creating a modulation wavelength that is twice the thickness of the cell. Our experiments with different ionic coatings reveal that only polymeric cationic coatings effectively promote the formation of this phase, highlighting the critical role of electrical screening. These findings not only confirm the existence of the double splay nematic phase but also provide insights into the distinctive topological defects of this phase in confined geometries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12336v1-abstract-full').style.display = 'none'; document.getElementById('2411.12336v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08558">arXiv:2411.08558</a> <span> [<a href="https://arxiv.org/pdf/2411.08558">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Effect of Top Al$_2$O$_3$ Interlayer Thickness on Memory Window and Reliability of FeFETs With TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) Gate Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hu%2C+T">Tao Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+X">Xinpei Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+R">Runhao Han</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jia Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Bai%2C+M">Mingkai Bai</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+S">Saifei Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+Z">Zeqi Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Ding%2C+Y">Yajing Ding</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S">Shuai Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+K">Kai Han</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yanrong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Jing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yuanyuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Ke%2C+X">Xiaoyu Ke</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+X">Xiaoqing Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Chai%2C+J">Junshuai Chai</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+H">Hao Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiaolei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenwu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+T">Tianchun Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08558v1-abstract-short" style="display: inline;"> We investigate the effect of top Al2O3 interlayer thickness on the memory window (MW) of Si channel ferroelectric field-effect transistors (Si-FeFETs) with TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) gate structure. We find that the MW first increases and then remains almost constant with the increasing thickness of the top Al2O3. The phenomenon is attributed to the lower electric… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08558v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08558v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08558v1-abstract-full" style="display: none;"> We investigate the effect of top Al2O3 interlayer thickness on the memory window (MW) of Si channel ferroelectric field-effect transistors (Si-FeFETs) with TiN/Al$_2$O$_3$/Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_x$/Si (MIFIS) gate structure. We find that the MW first increases and then remains almost constant with the increasing thickness of the top Al2O3. The phenomenon is attributed to the lower electric field of the ferroelectric Hf$_{0.5}$Zr$_{0.5}$O$_2$ in the MIFIS structure with a thicker top Al2O3 after a program operation. The lower electric field makes the charges trapped at the top Al2O3/Hf0.5Zr0.5O$_2$ interface, which are injected from the metal gate, cannot be retained. Furthermore, we study the effect of the top Al$_2$O$_3$ interlayer thickness on the reliability (endurance characteristics and retention characteristics). We find that the MIFIS structure with a thicker top Al$_2$O$_3$ interlayer has poorer retention and endurance characteristics. Our work is helpful in deeply understanding the effect of top interlayer thickness on the MW and reliability of Si-FeFETs with MIFIS gate stacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08558v1-abstract-full').style.display = 'none'; document.getElementById('2411.08558v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02228">arXiv:2411.02228</a> <span> [<a href="https://arxiv.org/pdf/2411.02228">pdf</a>, <a href="https://arxiv.org/format/2411.02228">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> SPEA -- an analytical thermodynamic model for defect phase diagram </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jing Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Abdelkawy%2C+A">Ahmed Abdelkawy</a>, <a href="/search/cond-mat?searchtype=author&query=Todorova%2C+M">Mira Todorova</a>, <a href="/search/cond-mat?searchtype=author&query=Neugebauer%2C+J">J枚rg Neugebauer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02228v1-abstract-short" style="display: inline;"> We propose an analytical thermodynamic model for describing defect phase transformations, which we term the statistical phase evaluation approach (SPEA). The SPEA model assumes a Boltzmann distribution of finite size phase fractions and calculates their statistical average. To benchmark the performance of the model, we apply it to construct binary surface phase diagrams of metal alloys. Two alloy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02228v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02228v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02228v1-abstract-full" style="display: none;"> We propose an analytical thermodynamic model for describing defect phase transformations, which we term the statistical phase evaluation approach (SPEA). The SPEA model assumes a Boltzmann distribution of finite size phase fractions and calculates their statistical average. To benchmark the performance of the model, we apply it to construct binary surface phase diagrams of metal alloys. Two alloy systems are considered: a Mg surface with Ca substitutions and a Ni surface with Nb substitutions. To construct a firm basis against which the performance of the analytical model can be leveled, we first perform Monte Carlo (MC) simulations coupled with cluster expansion of density functional theory dataset. We then demonstrate the SPEA model to reproduce the MC results accurately. Specifically, it correctly predicts the surface order-disorder transitions as well as the coexistence of the 1/3 ordered phase and the disordered phase. Finally, we compare the SPEA method to the sublattice model commonly used in the CALPHAD approach to describe ordered and random solution phases and their transitions. The proposed SPEA model provides a highly efficient approach for modeling defect phase transformations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02228v1-abstract-full').style.display = 'none'; document.getElementById('2411.02228v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main: 10 pagers, 9 figures, SI: 2 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01464">arXiv:2411.01464</a> <span> [<a href="https://arxiv.org/pdf/2411.01464">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.134.086301">10.1103/PhysRevLett.134.086301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic breakdown strength: theoretical derivation and first-principles calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+S">Shixu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+H">Hongjun Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Gong%2C+X">Xin-Gao Gong</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Ji-Hui Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01464v1-abstract-short" style="display: inline;"> Intrinsic breakdown strength (F_bd), as the theoretical upper limit of electric field strength that a material can sustain, plays important roles in determining dielectric and safety performance. The well accepted concept is that a larger band gap (E_g) often leads to a larger intrinsic breakdown strength. In this work, we analytically derive a simplified model of F_bd, showing a linear relationsh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01464v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01464v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01464v1-abstract-full" style="display: none;"> Intrinsic breakdown strength (F_bd), as the theoretical upper limit of electric field strength that a material can sustain, plays important roles in determining dielectric and safety performance. The well accepted concept is that a larger band gap (E_g) often leads to a larger intrinsic breakdown strength. In this work, we analytically derive a simplified model of F_bd, showing a linear relationship between F_bd and the maximum electron density of states (DOS_max) within the energy range spanning from the conduction band minimum (CBM) to CBM+E_g. Using the Wannier interpolation technique to reduce the cost of calculating the F_bd for various three- and two-dimensional materials, we find that the calculated F_bd did not show any simple relationship with band gap, but it behaves linearly with the DOS_max, consistent with our theoretical derivation. Our work shows that the DOS_max is more fundamental than the band gap value in determining the F_bd, thus providing useful physical insights into the intrinsic dielectric breakdown strength and opening directions for improving high-power devices. The dimensional effects on F_bd has also been revealed that monolayers tend to have larger F_bd due to reduced screening effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01464v1-abstract-full').style.display = 'none'; document.getElementById('2411.01464v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17686">arXiv:2410.17686</a> <span> [<a href="https://arxiv.org/pdf/2410.17686">pdf</a>, <a href="https://arxiv.org/format/2410.17686">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Strain-modulated Valley Polarization and Piezomagnetic Effects in Altermagnetic Cr$_2$S$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chen%2C+C">Chen Chen</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+X">Xiaoyang He</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+Q">Qizhen Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Quan%2C+C">Chuye Quan</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+H">Haojie Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+S">Shilei Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jianping Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xing'ao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17686v1-abstract-short" style="display: inline;"> Altermagnetism exhibits advantages over both ferromagnetic and antiferromagnetic counterparts by enabling spin splitting within antiferromagnetic materials. Currently, it is established that valley polarization in altermagnetism remains largely insensitive to spin-orbit coupling and spin. Here, using Cr$_2$S$_2$ as a case study, we investigate the mechanism through which an external field modulate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17686v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17686v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17686v1-abstract-full" style="display: none;"> Altermagnetism exhibits advantages over both ferromagnetic and antiferromagnetic counterparts by enabling spin splitting within antiferromagnetic materials. Currently, it is established that valley polarization in altermagnetism remains largely insensitive to spin-orbit coupling and spin. Here, using Cr$_2$S$_2$ as a case study, we investigate the mechanism through which an external field modulates valley polarization in altermagnetism. This effect arises from the external field's disruption of diagonal mirror symmetry $M_{xy}$, consequently inducing valley polarization within the material. Strain not only induces valley polarization but also generates an almost uniform magnetic field, which can reach as high as 118.39 T under 5% uniaxial strain. In addition, this symmetry breaking in Cr$_2$S$_2$ monolayers results in significant piezomagnetic properties, merging piezomagnetic and altermagnetic characteristics in two-dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17686v1-abstract-full').style.display = 'none'; document.getElementById('2410.17686v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11173">arXiv:2410.11173</a> <span> [<a href="https://arxiv.org/pdf/2410.11173">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Ferroaxial phonons in chiral and polar NiCo2TeO6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Martinez%2C+V+A">V. A. Martinez</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Y. Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Lyzwa%2C+F">F. Lyzwa</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Z. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Won%2C+C+J">C. J. Won</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+K">K. Du</a>, <a href="/search/cond-mat?searchtype=author&query=Kiryukhin%2C+V">V. Kiryukhin</a>, <a href="/search/cond-mat?searchtype=author&query=Cheong%2C+S">S-W. Cheong</a>, <a href="/search/cond-mat?searchtype=author&query=Sirenko%2C+A+A">A. A. Sirenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11173v1-abstract-short" style="display: inline;"> Perfect circular dichroism has been observed in the Raman scattering by the optical phonons in single chiral domain NiCo2TeO6 crystals. The selection rules for the optical phonons are determined by the combination of the chiral structure C and the electric polarization P along the c-axis. These two symmetry operations are equivalent to the ferroaxial order (C dot P) = A, so the observed optical ph… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11173v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11173v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11173v1-abstract-full" style="display: none;"> Perfect circular dichroism has been observed in the Raman scattering by the optical phonons in single chiral domain NiCo2TeO6 crystals. The selection rules for the optical phonons are determined by the combination of the chiral structure C and the electric polarization P along the c-axis. These two symmetry operations are equivalent to the ferroaxial order (C dot P) = A, so the observed optical phonons are referred to as "ferroaxial". For a given Raman scattering geometry the observed effect may also be described as a complete non-reciprocal propagation of the optical phonons, whose preferable vector direction is determined by the sign of C dot P. The combination of Raman scattering and polarization plane rotation of the transmitted white light allows for identification of the direction of electric polarization P in mono domain chiral crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11173v1-abstract-full').style.display = 'none'; document.getElementById('2410.11173v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19726">arXiv:2409.19726</a> <span> [<a href="https://arxiv.org/pdf/2409.19726">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c04137">10.1021/acs.nanolett.4c04137 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On-Chip Terahertz Spectroscopy for Dual-Gated van der Waals Heterostructures at Cryogenic Temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Seo%2C+J">Junseok Seo</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Z">Zhengguang Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Park%2C+S">Seunghyun Park</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jixiang Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+F">Fangzhou Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+S">Shenyong Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yuxuan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+T">Tonghang Han</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+L">Lihan Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Yacoby%2C+A">Amir Yacoby</a>, <a href="/search/cond-mat?searchtype=author&query=Ju%2C+L">Long Ju</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19726v2-abstract-short" style="display: inline;"> Van der Waals heterostructures have emerged as a versatile platform to study correlated and topological electron physics. Spectroscopy experiments in the THz regime are crucial, since the energy of THz photons matches that of relevant excitations and charge dynamics. However, their micron-size and complex (dual-)gated structures have challenged such measurements. Here, we demonstrate on-chip THz s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19726v2-abstract-full').style.display = 'inline'; document.getElementById('2409.19726v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19726v2-abstract-full" style="display: none;"> Van der Waals heterostructures have emerged as a versatile platform to study correlated and topological electron physics. Spectroscopy experiments in the THz regime are crucial, since the energy of THz photons matches that of relevant excitations and charge dynamics. However, their micron-size and complex (dual-)gated structures have challenged such measurements. Here, we demonstrate on-chip THz spectroscopy on a dual-gated bilayer graphene device at liquid helium temperature. To avoid unwanted THz absorption by metallic gates, we developed a scheme of operation by combining semiconducting gates and optically controlled gating. This allows us to measure the clean THz response of graphene without being affected by the gates. We observed the THz signatures of electric-field-induced bandgap opening at the charge neutrality. We measured Drude conductivities at varied charge densities and extracted key parameters, including effective masses and scattering rates. This work paves the way for studying novel emergent phenomena in dual-gated two-dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19726v2-abstract-full').style.display = 'none'; document.getElementById('2409.19726v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18264">arXiv:2409.18264</a> <span> [<a href="https://arxiv.org/pdf/2409.18264">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Partial Complementary Energy Densities, Their Variational Principles and Applications in Elasticity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jiashi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18264v1-abstract-short" style="display: inline;"> Partial complementary energy densities are introduced through partial Legendre transforms from the strain energy density of linear elasticity. They have mixed components of the strain and stress tensors. Mixed variational principles based on these energy densities are presented. It is shown that these variational principles are useful in the derivation of two- and one-dimensional theories of elast… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18264v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18264v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18264v1-abstract-full" style="display: none;"> Partial complementary energy densities are introduced through partial Legendre transforms from the strain energy density of linear elasticity. They have mixed components of the strain and stress tensors. Mixed variational principles based on these energy densities are presented. It is shown that these variational principles are useful in the derivation of two- and one-dimensional theories of elastic plates and rods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18264v1-abstract-full').style.display = 'none'; document.getElementById('2409.18264v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18258">arXiv:2409.18258</a> <span> [<a href="https://arxiv.org/pdf/2409.18258">pdf</a>, <a href="https://arxiv.org/format/2409.18258">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.206501">10.1103/PhysRevLett.133.206501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Capping effects on spin and charge excitations in parent and superconducting Nd1-xSrxNiO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Fan%2C+S">S. Fan</a>, <a href="/search/cond-mat?searchtype=author&query=LaBollita%2C+H">H. LaBollita</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Q">Q. Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Khan%2C+N">N. Khan</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+Y">Y. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+T">T. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Bhartiya%2C+V">V. Bhartiya</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+W">W. Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">J. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+S">S. Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Barbour%2C+A">A. Barbour</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">X. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Cano%2C+A">A. Cano</a>, <a href="/search/cond-mat?searchtype=author&query=Bernardini%2C+F">F. Bernardini</a>, <a href="/search/cond-mat?searchtype=author&query=Nie%2C+Y">Y. Nie</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Z">Z. Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/cond-mat?searchtype=author&query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&query=Botana%2C+A+S">A. S. Botana</a>, <a href="/search/cond-mat?searchtype=author&query=Pelliciari%2C+J">J. Pelliciari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18258v1-abstract-short" style="display: inline;"> Superconductivity in infinite layer nickelates Nd1-xSrxNiO2 has so far been achieved only in thin films raising questions on the role of substrates and interfaces. Given the challenges associated with their synthesis it is imperative to identify their intrinsic properties. We use Resonant Inelastic X-ray Scattering (RIXS) to investigate the influence of the SrTiO3 capping layer on the excitations… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18258v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18258v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18258v1-abstract-full" style="display: none;"> Superconductivity in infinite layer nickelates Nd1-xSrxNiO2 has so far been achieved only in thin films raising questions on the role of substrates and interfaces. Given the challenges associated with their synthesis it is imperative to identify their intrinsic properties. We use Resonant Inelastic X-ray Scattering (RIXS) to investigate the influence of the SrTiO3 capping layer on the excitations of Nd1-xSrxNiO2 (x = 0 and 0.2). Spin excitations are observed in parent and 20% doped Nd1-xSrxNiO2 regardless of capping, proving that magnetism is intrinsic to infinite-layer nickelates and appears in a significant fraction of their phase diagram. In parent and superconducting Nd1-xSrxNiO2, the spin excitations are slightly hardened in capped samples compared to the non-capped ones. Additionally, a weaker Ni - Nd charge transfer peak at ~ 0.6 eV suggests that the hybridization between Ni 3d and Nd 5d orbitals is reduced in capped samples. From our data, capping induces only minimal differences in Nd1-xSrxNiO2 and we phenomenologically discuss these differences based on the reconstruction of the SrTiO3 - NdNiO2 interface and other mechanisms such as crystalline disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18258v1-abstract-full').style.display = 'none'; document.getElementById('2409.18258v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13601">arXiv:2409.13601</a> <span> [<a href="https://arxiv.org/pdf/2409.13601">pdf</a>, <a href="https://arxiv.org/format/2409.13601">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Constructions and Applications of Irreducible Representations of Spin-Space Groups </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Ziyin Song</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+A+Z">A. Z. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+Z">Zhong Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jian Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Fang%2C+C">Chen Fang</a>, <a href="/search/cond-mat?searchtype=author&query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Z">Zheng-Xin Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13601v1-abstract-short" style="display: inline;"> Spin-space groups (SSGs), including the traditional space groups (SGs) and magnetic space groups (MSGs) as subsets, describe the complete symmetries of magnetic materials with weak spin-orbit coupling (SOC). In the present work, we systematically study the irreducible representations (irreps) of SSGs by focusing on the projective irreps of the little co-group $L(k)$ of any momentum point $\pmb k$.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13601v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13601v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13601v1-abstract-full" style="display: none;"> Spin-space groups (SSGs), including the traditional space groups (SGs) and magnetic space groups (MSGs) as subsets, describe the complete symmetries of magnetic materials with weak spin-orbit coupling (SOC). In the present work, we systematically study the irreducible representations (irreps) of SSGs by focusing on the projective irreps of the little co-group $L(k)$ of any momentum point $\pmb k$. We analysis the factor systems of $L(k)$, and then reduce the projective regular representation of $L(k)$ into direct sum of irreps using the Hamiltonian approach. Especially, for collinear SSGs which contain continuous spin rotation operations, we adopt discrete subgroups to effectively capture their characteristics. Furthermore, we apply the representation theory of SSGs to study the band structure of electrons and magnons in magnetic materials. After identifying the SSG symmetry group, we extract relevant irreps and determine the $k\cdot p$ models. As an example, we illustrate how our approach works for the material \ch{Mn3Sn}. Degeneracies facilitated by SSG symmetry are observed, underscoring the effectiveness of application in material analysis. The SSG recognition and representation code is uploaded to GitHub, the information of irreps of all SSGs is also available in the online Database. Our work provides a practical toolkit for exploring the intricate symmetries of magnetic materials and paves the way for future advances in materials science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13601v1-abstract-full').style.display = 'none'; document.getElementById('2409.13601v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12496">arXiv:2409.12496</a> <span> [<a href="https://arxiv.org/pdf/2409.12496">pdf</a>, <a href="https://arxiv.org/format/2409.12496">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.111.064102">10.1103/PhysRevB.111.064102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic threshold electric field for domain wall motion in ferroelectrics based on discretized phase-field model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Tian%2C+H">Huanhuan Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jianguo Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+M">Ming Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12496v2-abstract-short" style="display: inline;"> With the development of ferroelectric memories, it is becoming increasingly important to understand the ferroelectric switching behaviors at small applied electric fields. In this \rv{paper}, we use discretized phase-field models to systematically investigate the intrinsic threshold electric field (TEF) to drive flat 180$^\circ$ and 90$^\circ$ domain walls (DWs), which can not be captured by conti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12496v2-abstract-full').style.display = 'inline'; document.getElementById('2409.12496v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12496v2-abstract-full" style="display: none;"> With the development of ferroelectric memories, it is becoming increasingly important to understand the ferroelectric switching behaviors at small applied electric fields. In this \rv{paper}, we use discretized phase-field models to systematically investigate the intrinsic threshold electric field (TEF) to drive flat 180$^\circ$ and 90$^\circ$ domain walls (DWs), which can not be captured by continuum models. The results show that this TEF increases as the ratio of DW width to unit cell size decreases, and it becomes significant if the DW width is thinner than two unit cells. The results are qualitatively consistent with existing first-principles studies and cryogenic experiments. In addition, this work proposes a conceptual model to explain the activation electric field (AEF) observed in experiments at room temperature. This work improves the understanding of DW motion kinetics at small applied fields, and shows that the mesh size and orientation are both important for the phase-field modeling of the above process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12496v2-abstract-full').style.display = 'none'; document.getElementById('2409.12496v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B (2025): 111, 064102 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10936">arXiv:2409.10936</a> <span> [<a href="https://arxiv.org/pdf/2409.10936">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of hydrostatic-pressure-modulated giant caloric effect and electronic topological transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinying Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xingchen Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yibo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+X">Xuebin Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Y">Yiting Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Q">Qiusa Ren</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+P">Ping He</a>, <a href="/search/cond-mat?searchtype=author&query=Lyu%2C+M">Meng Lyu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Binbin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shouguo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+G">Guangheng Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xixiang Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+E">Enke Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10936v1-abstract-short" style="display: inline;"> Phase transition is a fundamental phenomenon in condensed matter physics, in which states of matter transform to each other with various critical behaviors under different conditions. The magnetic martensitic transformation features significant multi-caloric effects that benefit the solid-state cooling or heat pumping. Meanwhile, the electronic topological transition (ETT) driven by pressure has b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10936v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10936v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10936v1-abstract-full" style="display: none;"> Phase transition is a fundamental phenomenon in condensed matter physics, in which states of matter transform to each other with various critical behaviors under different conditions. The magnetic martensitic transformation features significant multi-caloric effects that benefit the solid-state cooling or heat pumping. Meanwhile, the electronic topological transition (ETT) driven by pressure has been rarely reported in martensitic systems. Here, the modulation effects of hydrostatic pressure on phase transitions in a magnetic martensitic alloy are reported. Owing to the huge volume expansion during the transition, the martensitic transition temperature is driven from 339 to 273 K by pressure within 1 GPa, resulting in highly tunable giant baro- and magneto-caloric effects (BCE and MCE) in a wide working temperature range. Interestingly, an ETT was further induced by pressure in the martensite phase, with a sudden drop of the measured saturation magnetization around 0.6 GPa. First-principles calculations reveal a sharp change in the density of states (DOS) due to the orbit shift around the Fermi level at the same pressure and reproduce the experimental observation of magnetization. Besides, the ETT is accompanied by remarkable changes in the lattice parameters and the unit-cell orthorhombicity. The study provides insight into pressure-modulated exotic phase-transition phenomena in magnetic martensitic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10936v1-abstract-full').style.display = 'none'; document.getElementById('2409.10936v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figs</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09718">arXiv:2409.09718</a> <span> [<a href="https://arxiv.org/pdf/2409.09718">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Evolution of structure, magnetism, and electronic/thermal-transports of Ti(Cr)-substituted Fe2CrV all-d-metal Heusler ferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Y">Yiting Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zeng%2C+Q">Qingqi Zeng</a>, <a href="/search/cond-mat?searchtype=author&query=Lyu%2C+M">Meng Lyu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junyan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinying Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yibo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Ren%2C+Q">Qiusa Ren</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Binbin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hongxiang Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+E">Enke Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09718v1-abstract-short" style="display: inline;"> All-d-metal full-Heusler alloys possess superior mechanical properties and high spin polarization, which would play an important role in spintronic applications. Despite this, their electrical and thermal transport properties have not been comprehensively investigated till now. In this work, we present an analysis on the evolution of structural, magnetic and transport properties of Cr- and Ti-subs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09718v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09718v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09718v1-abstract-full" style="display: none;"> All-d-metal full-Heusler alloys possess superior mechanical properties and high spin polarization, which would play an important role in spintronic applications. Despite this, their electrical and thermal transport properties have not been comprehensively investigated till now. In this work, we present an analysis on the evolution of structural, magnetic and transport properties of Cr- and Ti-substituted Fe2CrV all-d-metal Heusler alloys by combining theoretical calculations and experiments. Both series of alloys crystallize in Hg2CuTi-type structure. With increasing Ti doping, the calculated total magnetic moments of Fe50Cr25V25-xTix decrease linearly. The experimental saturation magnetization is highly consistent with theoretical calculations and Slater-Pauling rule when x < 4, indicating the highly ordered atomic occupation. The magnetization and Curie temperature can be significantly tuned by altering spin polarizations and exchange interactions. The introduction of the foreign atom, Ti, results in a linear increase in residual resistivity, while electron-phonon scattering keeps relatively constant. The maximum values for electrical and thermal transport properties are observed in the stoichiometric Fe2CrV composition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09718v1-abstract-full').style.display = 'none'; document.getElementById('2409.09718v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figs and 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09712">arXiv:2409.09712</a> <span> [<a href="https://arxiv.org/pdf/2409.09712">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Topological Nodal Chains and Transverse Transports in Ferromagnetic Centrosymmetric Semimetal FeIn2S4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junyan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Y">Yibo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Dong%2C+X">Xuebin Dong</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinying Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lyu%2C+M">Meng Lyu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Binbin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hongxiang Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+S">Shouguo Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+B">Baogen Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09712v1-abstract-short" style="display: inline;"> Nodal chain semimetals protected by nonsymmorphic symmetries are distinct from Dirac and Weyl semimetals, featuring unconventional topological surface states and resulting in anomalous magnetotransport properties. Here, we reveal that the ferromagnetic FeIn2S4 is a suitable nodal chain candidate in theory. Centrosymmetric FeIn2S4 with nonsymmorphic symmetries shows half-metallicity and clean band-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09712v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09712v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09712v1-abstract-full" style="display: none;"> Nodal chain semimetals protected by nonsymmorphic symmetries are distinct from Dirac and Weyl semimetals, featuring unconventional topological surface states and resulting in anomalous magnetotransport properties. Here, we reveal that the ferromagnetic FeIn2S4 is a suitable nodal chain candidate in theory. Centrosymmetric FeIn2S4 with nonsymmorphic symmetries shows half-metallicity and clean band-crossings with hourglass-type dispersion tracing out nodal lines. Owing to glide mirror symmetries, the nontrivial nodal loops form nodal chain, which is associated with the perpendicular glide mirror planes. These nodal chains are robust against spin-orbital interaction, giving rise to the coexistence of drumhead-type surface states and closed surface Fermi arcs. Moreover, the nodal loops protected by nonsymmorphic symmetry contribute to large anomalous Hall conductivity and the anomalous Nernst conductivity. Our results provide a platform to explore the intriguing topological state and transverse transport properties in magnetic system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09712v1-abstract-full').style.display = 'none'; document.getElementById('2409.09712v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 figs and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09709">arXiv:2409.09709</a> <span> [<a href="https://arxiv.org/pdf/2409.09709">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Scaling the topological transport based on an effective Weyl model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shen Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jinying Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Lyu%2C+M">Meng Lyu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junyan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Binbin Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+H">Hongxiang Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+W">Wenqing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+E">Enke Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+B">Baogen Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09709v1-abstract-short" style="display: inline;"> Magnetic topological semimetals are increasingly fueling interests in exotic electronic-thermal physics including thermoelectrics and spintronics. To control the transports of topological carriers in such materials becomes a central issue. However, the topological bands in real materials are normally intricate, leaving obstacles to understand the transports in a physically clear way. Parallel to t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09709v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09709v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09709v1-abstract-full" style="display: none;"> Magnetic topological semimetals are increasingly fueling interests in exotic electronic-thermal physics including thermoelectrics and spintronics. To control the transports of topological carriers in such materials becomes a central issue. However, the topological bands in real materials are normally intricate, leaving obstacles to understand the transports in a physically clear way. Parallel to the renowned effective two-band model in magnetic field scale for semiconductors, here, an effective Weyl-band model in temperature scale was developed with pure Weyl state and a few meaningful parameters for topological semimetals. Based on the model, a universal scaling was established and subsequently verified by reported experimental transports. The essential sign regularity of anomalous Hall and Nernst transports was revealed with connection to chiralities of Weyl nodes and carrier types. Upon a double-Weyl model, a concept of Berry-curvature ferrimagnetic structure, as an analogy to the real-space magnetic structure, was further proposed and well described the emerging sign reversal of Nernst thermoelectric transports in temperature scale. Our study offers a convenient tool for scaling the Weyl-fermion-related transport physics, and promotes the modulations and applications of magnetic topological materials in future topological quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09709v1-abstract-full').style.display = 'none'; document.getElementById('2409.09709v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Five figs</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04800">arXiv:2409.04800</a> <span> [<a href="https://arxiv.org/pdf/2409.04800">pdf</a>, <a href="https://arxiv.org/ps/2409.04800">ps</a>, <a href="https://arxiv.org/format/2409.04800">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jacs.4c04910">10.1021/jacs.4c04910 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FePd2Te2: An Anisotropic Two-Dimensional Ferromagnet with One-Dimensional Fe Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shi%2C+B">Bingxian Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Geng%2C+Y">Yanyan Geng</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hengning Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jianhui Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shang%2C+C">Chenglin Shang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+M">Manyu Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Mi%2C+S">Shuo Mi</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J">Jiale Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+F">Feihao Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Gui%2C+X">Xuejuan Gui</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+J">Jinchen Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Juanjuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+D">Daye Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hongxia Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Qin%2C+J">Jianfei Qin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+H">Hongliang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hao%2C+L">Lijie Hao</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+M">Mingliang Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zhihai Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+G">Guolin Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+P">Peng Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04800v1-abstract-short" style="display: inline;"> Two-dimensional (2D) magnets have attracted significant attentions in recent years due to their importance in the research on both fundamental physics and spintronic applications. Here, we report the discovery of a new ternary compound FePd2Te2. It features a layered quasi-2D crystal structure with one-dimensional Fe zigzag chains extending along the b-axis in the cleavage plane. Single crystals o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04800v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04800v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04800v1-abstract-full" style="display: none;"> Two-dimensional (2D) magnets have attracted significant attentions in recent years due to their importance in the research on both fundamental physics and spintronic applications. Here, we report the discovery of a new ternary compound FePd2Te2. It features a layered quasi-2D crystal structure with one-dimensional Fe zigzag chains extending along the b-axis in the cleavage plane. Single crystals of FePd2Te2 with centimeter-size could be grown. Density functional theory calculations, mechanical exfoliation and atomic force microscopy on these crystals reveal that they are 2D materialsthat can be thinned down to 5 nm. Magnetic characterization shows that FePd2Te2 is an easy-plane ferromagnet with Tc 183 K and strong in-plane uniaxial magnetic anisotropy. Magnetoresistance and anomalous Hall effect demonstrate that ferromagnetism could maintain in FePd2Te2 flakes with large coercivity. A crystal twinning effect is observed by scanning tunneling microscopy which makes the Fe chains right-angle bent in the cleavage plane and creates an intriguing spin texture. Our results show that FePd2Te2 is a correlated anisotropic 2D magnets that may attract multidisciplinary research interests. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04800v1-abstract-full').style.display = 'none'; document.getElementById('2409.04800v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J.Am.Chem.Soc.2024,146,21546-21554 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02073">arXiv:2409.02073</a> <span> [<a href="https://arxiv.org/pdf/2409.02073">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.ads8601">10.1126/sciadv.ads8601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing subterahertz atomic vibrations in quantum paraelectrics by surface-sensitive spintronic terahertz spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chu%2C+Z">Zhaodong Chu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Junyi Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Hwangbo%2C+K">Kyle Hwangbo</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+J">Jianguo Wen</a>, <a href="/search/cond-mat?searchtype=author&query=Bielinski%2C+A+R">Ashley R. Bielinski</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Martinson%2C+A+B+F">Alex B. F. Martinson</a>, <a href="/search/cond-mat?searchtype=author&query=Hruszkewycz%2C+S">Stephan Hruszkewycz</a>, <a href="/search/cond-mat?searchtype=author&query=Fong%2C+D+D">Dillon D. Fong</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xiaodong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Norman%2C+M+R">Michael R. Norman</a>, <a href="/search/cond-mat?searchtype=author&query=Bhattacharya%2C+A">Anand Bhattacharya</a>, <a href="/search/cond-mat?searchtype=author&query=Wen%2C+H">Haidan Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02073v2-abstract-short" style="display: inline;"> Understanding surface collective dynamics in quantum materials is crucial for advancing quantum technologies. For example, surface phonon modes in quantum paraelectrics are thought to play an essential role in facilitating interfacial superconductivity. However, detecting these modes, especially below 1 terahertz (THz), is challenging due to limited sampling volumes and the need for high spectrosc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02073v2-abstract-full').style.display = 'inline'; document.getElementById('2409.02073v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02073v2-abstract-full" style="display: none;"> Understanding surface collective dynamics in quantum materials is crucial for advancing quantum technologies. For example, surface phonon modes in quantum paraelectrics are thought to play an essential role in facilitating interfacial superconductivity. However, detecting these modes, especially below 1 terahertz (THz), is challenging due to limited sampling volumes and the need for high spectroscopic resolution. Here, we report surface soft transverse optical (TO1) phonon dynamics in KTaO3 and SrTiO3 by developing surface-sensitive spintronic THz spectroscopy that can sense the collective modes only a few nanometers deep from the surface. In KTaO3, the TO1 mode softens and sharpens with decreasing temperature, leveling off at 0.7 THz. In contrast, this mode in SrTiO3 broadens significantly below the quantum paraelectric crossover and coincides with the hardening of a sub-meV phonon mode related to the antiferrodistortive transition. These observations that deviate from their bulk properties may have implications for interfacial superconductivity and ferroelectricity. The developed technique opens opportunities for sensing low-energy surface excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02073v2-abstract-full').style.display = 'none'; document.getElementById('2409.02073v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The main text consists of 24 pages and includes 4 figures. Supplementary Information is also provided. Science Advances accepted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 29 Nov 2024 Vol 10, Issue 48 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15684">arXiv:2408.15684</a> <span> [<a href="https://arxiv.org/pdf/2408.15684">pdf</a>, <a href="https://arxiv.org/format/2408.15684">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> A quasi-ohmic back contact achieved by inserting single-crystal graphene in flexible Kesterite solar cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ji%2C+Y">Yixiong Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+W">Wentong Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yan%2C+D">Di Yan</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+W">Wei Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+J">Jialu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Tang%2C+S">Shi Tang</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+J">Jintao Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Bullock%2C+J">James Bullock</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+M">Mei Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xin Li</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhancheng Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jun Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wei%2C+X">Xingzhan Wei</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+H">Haofei Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+F">Fangyang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Mulvaney%2C+P">Paul Mulvaney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15684v1-abstract-short" style="display: inline;"> Flexible photovoltaics with a lightweight and adaptable nature that allows for deployment on curved surfaces and in building facades have always been a goal vigorously pursued by researchers in thin-film solar cell technology. The recent strides made in improving the sunlight-to-electricity conversion efficiency of kesterite Cu$_{2}$ZnSn(S, Se)$_{4}$ (CZTSSe) suggest it to be a perfect candidate.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15684v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15684v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15684v1-abstract-full" style="display: none;"> Flexible photovoltaics with a lightweight and adaptable nature that allows for deployment on curved surfaces and in building facades have always been a goal vigorously pursued by researchers in thin-film solar cell technology. The recent strides made in improving the sunlight-to-electricity conversion efficiency of kesterite Cu$_{2}$ZnSn(S, Se)$_{4}$ (CZTSSe) suggest it to be a perfect candidate. However, making use of rare Mo foil in CZTSSe solar cells causes severe problems in thermal expansion matching, uneven grain growth, and severe problems at the back contact of the devices. Herein, a strategy utilizing single-crystal graphene to modify the back interface of flexible CZTSSe solar cells is proposed. It will be shown that the insertion of graphene at the Mo foil/CZTSSe interface provides strong physical support for the subsequent deposition of the CZTSSe absorber layer, improving the adhesion between the absorber layer and the Mo foil substrate. Additionally, the graphene passivates the rough sites on the surface of the Mo foil, enhancing the chemical homogeneity of the substrate, and resulting in a more crystalline and homogeneous CZTSSe absorber layer on the Mo foil substrate. The detrimental reaction between Mo and CZTSSe has also been eliminated. Through an analysis of the electrical properties, it is found that the introduction of graphene at the back interface promotes the formation of a quasi-ohmic contact at the back contact, decreasing the back contact barrier of the solar cell, and leading to efficient collection of charges at the back interface. This investigation demonstrates that solution-based CZTSSe photovoltaic devices could form the basis of cheap and flexible solar cells. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15684v1-abstract-full').style.display = 'none'; document.getElementById('2408.15684v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15233">arXiv:2408.15233</a> <span> [<a href="https://arxiv.org/pdf/2408.15233">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Signatures of Chiral Superconductivity in Rhombohedral Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Han%2C+T">Tonghang Han</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Z">Zhengguang Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Hadjri%2C+Z">Zach Hadjri</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+L">Lihan Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Zhenghan Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+W">Wei Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yuxuan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Cotten%2C+A+A">Armel A. Cotten</a>, <a href="/search/cond-mat?searchtype=author&query=Sedeh%2C+O+S">Omid Sharifi Sedeh</a>, <a href="/search/cond-mat?searchtype=author&query=Weldeyesus%2C+H">Henok Weldeyesus</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jixiang Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Seo%2C+J">Junseok Seo</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+S">Shenyong Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+M">Muyang Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Haoyang Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+G">Gang Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Hua%2C+Z">Zhenqi Hua</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+P">Peng Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Zumb%C3%BChl%2C+D+M">Dominik M. Zumb眉hl</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+L">Liang Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Ju%2C+L">Long Ju</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15233v2-abstract-short" style="display: inline;"> Chiral superconductors are unconventional superconducting states that break time reversal symmetry spontaneously and typically feature Cooper pairing at non-zero angular momentum. Such states may host Majorana fermions and provide an important platform for topological physics research and fault-tolerant quantum computing. Despite intensive search and prolonged studies of several candidate systems,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15233v2-abstract-full').style.display = 'inline'; document.getElementById('2408.15233v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15233v2-abstract-full" style="display: none;"> Chiral superconductors are unconventional superconducting states that break time reversal symmetry spontaneously and typically feature Cooper pairing at non-zero angular momentum. Such states may host Majorana fermions and provide an important platform for topological physics research and fault-tolerant quantum computing. Despite intensive search and prolonged studies of several candidate systems, chiral superconductivity has remained elusive so far. Here we report the discovery of robust unconventional superconductivity in rhombohedral tetra- and penta-layer graphene in the absence of moir茅 superlattice effects. We observed two superconducting states in the gate-induced flat conduction bands with Tc up to 300 mK and charge density ne as low as 2.4*1011 cm-2 in three tetralayer and two pentalayer devices. Spontaneous time-reversal-symmetry-breaking (TRSB) due to electron's orbital motion is found, and several observations indicate the chiral nature of these superconducting states, including: 1. In the superconducting state, Rxx shows magnetic hysteresis in varying out-of-plane magnetic field B, which is absent from all other superconductors; 2. the superconducting states are immune to in-plane magnetic field and are developed within a spin- and valley-polarized quarter-metal phase; 3. the normal states show anomalous Hall signals at zero magnetic field and magnetic hysteresis. We also observed a critical B of up to 1.4 Tesla, higher than any graphene superconductivity reported so far and indicates a strong-coupling superconductivity close to the BCS-BEC crossover. Our observations establish a pure carbon material for the study of topological superconductivity, and pave the way to explore Majorana modes and topological quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15233v2-abstract-full').style.display = 'none'; document.getElementById('2408.15233v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12509">arXiv:2408.12509</a> <span> [<a href="https://arxiv.org/pdf/2408.12509">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Commensurate and Incommensurate Chern Insulators in Magic-angle Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Z">Zaizhe Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jingxin Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+B">Bo Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Z">Zuo Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shu Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X">Xiaoxia Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+Q">Qing Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+T">Tao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+D">Donghua Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kaihui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Zhida Song</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jianpeng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+X">Xiaobo Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12509v1-abstract-short" style="display: inline;"> The interplay between strong electron-electron interaction and symmetry breaking can have profound influence on the topological properties of materials. In magic angle twisted bilayer graphene (MATBG), the flat band with a single SU(4) flavor associated with the spin and valley degrees of freedom gains non-zero Chern number when C2z symmetry or C2zT symmetry is broken. Electron-electron interactio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12509v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12509v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12509v1-abstract-full" style="display: none;"> The interplay between strong electron-electron interaction and symmetry breaking can have profound influence on the topological properties of materials. In magic angle twisted bilayer graphene (MATBG), the flat band with a single SU(4) flavor associated with the spin and valley degrees of freedom gains non-zero Chern number when C2z symmetry or C2zT symmetry is broken. Electron-electron interaction can further lift the SU(4) degeneracy, leading to the Chern insulator states. Here we report a complete sequence of zero-field Chern insulators at all odd integer fillings (v = +-1, +-3) with different chirality (C = 1 or -1) in hBN aligned MATBG which structurally breaks C2z symmetry. The Chern states at hole fillings (v = -1, -3), which are firstly observed in this work, host an opposite chirality compared with the electron filling scenario. By slightly doping the v = +-3 states, we have observed new correlated insulating states at incommensurate moir茅 fillings which is highly suggested to be intrinsic Wigner crystals according to our theoretical calculations. Remarkably, we have observed prominent Streda-formula violation around v = -3 state. By doping the Chern gap at v = -3 with notable number of electrons at finite magnetic field, the Hall resistance Ryx robustly quantizes to ~ h/e2 whereas longitudinal resistance Rxx vanishes, indicating that the chemical potential is pinned within a Chern gap, forming an incommensurate Chern insulator. By providing the first experimental observation of zero-field Chern insulators in the flat valence band, our work fills up the overall topological framework of MATBG with broken C2z symmetry. Our findings also demonstrate that doped topological flat band is an ideal platform to investigate exotic incommensurate correlated topological states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12509v1-abstract-full').style.display = 'none'; document.getElementById('2408.12509v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages. 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12504">arXiv:2408.12504</a> <span> [<a href="https://arxiv.org/pdf/2408.12504">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> All-Electrical Layer-Spintronics in Altermagnetic Bilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Peng%2C+R">Rui Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+J">Jin Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+L">Lin Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Ong%2C+W">Wee-Liat Ong</a>, <a href="/search/cond-mat?searchtype=author&query=Ho%2C+P">Pin Ho</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+C+S">Chit Siong Lau</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Junwei Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ang%2C+Y+S">Yee Sin Ang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12504v2-abstract-short" style="display: inline;"> Electrical manipulation of spin-polarized current is highly desirable yet tremendously challenging in developing ultracompact spintronic device technology. Here we propose a scheme to realize the all-electrical manipulation of spin-polarized current in an altermagnetic bilayer. Such a bilayer system can host layer-spin locking, in which one layer hosts a spin-polarized current while the other laye… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12504v2-abstract-full').style.display = 'inline'; document.getElementById('2408.12504v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12504v2-abstract-full" style="display: none;"> Electrical manipulation of spin-polarized current is highly desirable yet tremendously challenging in developing ultracompact spintronic device technology. Here we propose a scheme to realize the all-electrical manipulation of spin-polarized current in an altermagnetic bilayer. Such a bilayer system can host layer-spin locking, in which one layer hosts a spin-polarized current while the other layer hosts a current with opposite spin polarization. An out-of-plane electric field breaks the layer degeneracy, leading to a gate-tunable spin-polarized current whose polarization can be fully reversed upon flipping the polarity of the electric field. Using first-principles calculations, we show that CrS bilayer with C-type antiferromagnetic exchange interaction exhibits a hidden layer-spin locking mechanism that enables the spin polarization of the transport current to be electrically manipulated via the layer degree of freedom. We demonstrate that sign-reversible spin polarization as high as 87% can be achieved at room temperature. This work presents the pioneering concept of layer-spintronics which synergizes altermagnetism and bilayer stacking to achieve efficient electrical control of spin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12504v2-abstract-full').style.display = 'none'; document.getElementById('2408.12504v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Yang%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Yang%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>