CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 358 results for author: <span class="mathjax">Liu, Q</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Liu%2C+Q">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, Q"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+Q&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, Q"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Liu%2C+Q&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Q&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Q&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Q&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Q&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Q&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12417">arXiv:2411.12417</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12417">pdf</a>, <a href="https://arxiv.org/format/2411.12417">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Variational learning of integrated quantum photonic circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+C">Chengran Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Mok%2C+W">Wai-Keong Mok</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+L">Lingxiao Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">Hong Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+F">Feng Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+X">Xianshu Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Lo%2C+G">Guo-Qiang Lo</a>, <a href="/search/physics?searchtype=author&amp;query=Chin%2C+L+K">Lip Ket Chin</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Y">Yuzhi Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Thompson%2C+J">Jayne Thompson</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+M">Mile Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+A+Q">Ai Qun Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12417v1-abstract-short" style="display: inline;"> Integrated photonic circuits play a crucial role in implementing quantum information processing in the noisy intermediate-scale quantum (NISQ) era. Variational learning is a promising avenue that leverages classical optimization techniques to enhance quantum advantages on NISQ devices. However, most variational algorithms are circuit-model-based and encounter challenges when implemented on integra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12417v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12417v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12417v1-abstract-full" style="display: none;"> Integrated photonic circuits play a crucial role in implementing quantum information processing in the noisy intermediate-scale quantum (NISQ) era. Variational learning is a promising avenue that leverages classical optimization techniques to enhance quantum advantages on NISQ devices. However, most variational algorithms are circuit-model-based and encounter challenges when implemented on integrated photonic circuits, because they involve explicit decomposition of large quantum circuits into sequences of basic entangled gates, leading to an exponential decay of success probability due to the non-deterministic nature of photonic entangling gates. Here, we present a variational learning approach for designing quantum photonic circuits, which directly incorporates post-selection and elementary photonic elements into the training process. The complicated circuit is treated as a single nonlinear logical operator, and a unified design is discovered for it through variational learning. Engineering an integrated photonic chip with automated control, we adjust and optimize the internal parameters of the chip in real time for task-specific cost functions. We utilize a simple case of designing photonic circuits for a single ancilla CNOT gate with improved success rate to illustrate how our proposed approach works, and then apply the approach in the first demonstration of quantum stochastic simulation using integrated photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12417v1-abstract-full').style.display = 'none'; document.getElementById('2411.12417v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09345">arXiv:2411.09345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09345">pdf</a>, <a href="https://arxiv.org/format/2411.09345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DarkSHINE Baseline Design Report: Physics Prospects and Detector Technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jing Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Ji-Yuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jun-Feng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Chang-Bo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+J">Jun Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Y">Yi-Han Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Khaw%2C+K+S">Kim Siang Khaw</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jia-Lin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Yu-ming Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Dan-Ning Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi-Bin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Z">Ze-Jia Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+M">Meng Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+S">Si-Yuan Song</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+T">Tong Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jian-Nan Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+W">Wei-Shi Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+D">Dong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiao-Long Wang</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09345v1-abstract-short" style="display: inline;"> DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High repetition rate XFEL and Extreme light facility (SHINE). This report elaborates the baseline design of DarkSHINE experiment by introducing the physics g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09345v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09345v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09345v1-abstract-full" style="display: none;"> DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High repetition rate XFEL and Extreme light facility (SHINE). This report elaborates the baseline design of DarkSHINE experiment by introducing the physics goals, experimental setups, details of each sub-detector system technical designs, signal and backgground modelings, expected search sensitivities and future prospects, which mark an important step towards the further prototyping and technical demonstrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09345v1-abstract-full').style.display = 'none'; document.getElementById('2411.09345v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21611">arXiv:2410.21611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21611">pdf</a>, <a href="https://arxiv.org/format/2410.21611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Krause%2C+C">Claudius Krause</a>, <a href="/search/physics?searchtype=author&amp;query=Giannelli%2C+M+F">Michele Faucci Giannelli</a>, <a href="/search/physics?searchtype=author&amp;query=Kasieczka%2C+G">Gregor Kasieczka</a>, <a href="/search/physics?searchtype=author&amp;query=Nachman%2C+B">Benjamin Nachman</a>, <a href="/search/physics?searchtype=author&amp;query=Salamani%2C+D">Dalila Salamani</a>, <a href="/search/physics?searchtype=author&amp;query=Shih%2C+D">David Shih</a>, <a href="/search/physics?searchtype=author&amp;query=Zaborowska%2C+A">Anna Zaborowska</a>, <a href="/search/physics?searchtype=author&amp;query=Amram%2C+O">Oz Amram</a>, <a href="/search/physics?searchtype=author&amp;query=Borras%2C+K">Kerstin Borras</a>, <a href="/search/physics?searchtype=author&amp;query=Buckley%2C+M+R">Matthew R. Buckley</a>, <a href="/search/physics?searchtype=author&amp;query=Buhmann%2C+E">Erik Buhmann</a>, <a href="/search/physics?searchtype=author&amp;query=Buss%2C+T">Thorsten Buss</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+R+P+D+C">Renato Paulo Da Costa Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Caterini%2C+A+L">Anthony L. Caterini</a>, <a href="/search/physics?searchtype=author&amp;query=Chernyavskaya%2C+N">Nadezda Chernyavskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Corchia%2C+F+A+G">Federico A. G. Corchia</a>, <a href="/search/physics?searchtype=author&amp;query=Cresswell%2C+J+C">Jesse C. Cresswell</a>, <a href="/search/physics?searchtype=author&amp;query=Diefenbacher%2C+S">Sascha Diefenbacher</a>, <a href="/search/physics?searchtype=author&amp;query=Dreyer%2C+E">Etienne Dreyer</a>, <a href="/search/physics?searchtype=author&amp;query=Ekambaram%2C+V">Vijay Ekambaram</a>, <a href="/search/physics?searchtype=author&amp;query=Eren%2C+E">Engin Eren</a>, <a href="/search/physics?searchtype=author&amp;query=Ernst%2C+F">Florian Ernst</a>, <a href="/search/physics?searchtype=author&amp;query=Favaro%2C+L">Luigi Favaro</a>, <a href="/search/physics?searchtype=author&amp;query=Franchini%2C+M">Matteo Franchini</a>, <a href="/search/physics?searchtype=author&amp;query=Gaede%2C+F">Frank Gaede</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21611v1-abstract-short" style="display: inline;"> We present the results of the &#34;Fast Calorimeter Simulation Challenge 2022&#34; - the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few tens of thousand voxels. The 31 individual submissions span a wide range of current popular generative architectures, including Variational AutoEncoder&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21611v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21611v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21611v1-abstract-full" style="display: none;"> We present the results of the &#34;Fast Calorimeter Simulation Challenge 2022&#34; - the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few tens of thousand voxels. The 31 individual submissions span a wide range of current popular generative architectures, including Variational AutoEncoders (VAEs), Generative Adversarial Networks (GANs), Normalizing Flows, Diffusion models, and models based on Conditional Flow Matching. We compare all submissions in terms of quality of generated calorimeter showers, as well as shower generation time and model size. To assess the quality we use a broad range of different metrics including differences in 1-dimensional histograms of observables, KPD/FPD scores, AUCs of binary classifiers, and the log-posterior of a multiclass classifier. The results of the CaloChallenge provide the most complete and comprehensive survey of cutting-edge approaches to calorimeter fast simulation to date. In addition, our work provides a uniquely detailed perspective on the important problem of how to evaluate generative models. As such, the results presented here should be applicable for other domains that use generative AI and require fast and faithful generation of samples in a large phase space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21611v1-abstract-full').style.display = 'none'; document.getElementById('2410.21611v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">204 pages, 100+ figures, 30+ tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> HEPHY-ML-24-05, FERMILAB-PUB-24-0728-CMS, TTK-24-43 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17518">arXiv:2410.17518</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17518">pdf</a>, <a href="https://arxiv.org/format/2410.17518">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Univariate Conditional Variational Autoencoder for Morphogenic Patterns Design in Frontal Polymerization-Based Manufacturing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qibang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+P">Pengfei Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Abueidda%2C+D">Diab Abueidda</a>, <a href="/search/physics?searchtype=author&amp;query=Vyas%2C+S">Sagar Vyas</a>, <a href="/search/physics?searchtype=author&amp;query=Koric%2C+S">Seid Koric</a>, <a href="/search/physics?searchtype=author&amp;query=Gomez-Bombarelli%2C+R">Rafael Gomez-Bombarelli</a>, <a href="/search/physics?searchtype=author&amp;query=Geubelle%2C+P">Philippe Geubelle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17518v2-abstract-short" style="display: inline;"> Under some initial and boundary conditions, the rapid reaction-thermal diffusion process taking place during frontal polymerization (FP) destabilizes the planar mode of front propagation, leading to spatially varying, complex hierarchical patterns in thermoset polymeric materials. Although modern reaction-diffusion models can predict the patterns resulting from unstable FP, the inverse design of p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17518v2-abstract-full').style.display = 'inline'; document.getElementById('2410.17518v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17518v2-abstract-full" style="display: none;"> Under some initial and boundary conditions, the rapid reaction-thermal diffusion process taking place during frontal polymerization (FP) destabilizes the planar mode of front propagation, leading to spatially varying, complex hierarchical patterns in thermoset polymeric materials. Although modern reaction-diffusion models can predict the patterns resulting from unstable FP, the inverse design of patterns, which aims to retrieve process conditions that produce a desired pattern, remains an open challenge due to the non-unique and non-intuitive mapping between process conditions and manufactured patterns. In this work, we propose a probabilistic generative model named univariate conditional variational autoencoder (UcVAE) for the inverse design of hierarchical patterns in FP-based manufacturing. Unlike the cVAE, which encodes both the design space and the design target, the UcVAE encodes only the design space. In the encoder of the UcVAE, the number of training parameters is significantly reduced compared to the cVAE, resulting in a shorter training time while maintaining comparable performance. Given desired pattern images, the trained UcVAE can generate multiple process condition solutions that produce high-fidelity hierarchical patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17518v2-abstract-full').style.display = 'none'; document.getElementById('2410.17518v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13052">arXiv:2410.13052</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13052">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Exploring Nanoscale Photoresponse Mechanisms for Enhanced Photothermoelectric Effects in van der Waals Interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+D">Da Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qiushi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Boqun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+N">Ning Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xuezhi Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yaodong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+R">Ruoxue Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M">Ming Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13052v1-abstract-short" style="display: inline;"> Integrated photodetectors are crucial for their high speed, sensitivity, and efficient power consumption. In these devices, photocurrent generation is primarily attributed to the photovoltaic (PV) effect, driven by electron hole separations, and the photothermoelectric (PTE) effect, which results from temperature gradients via the Seebeck effect. As devices shrink, the overlap of these mechanisms-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13052v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13052v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13052v1-abstract-full" style="display: none;"> Integrated photodetectors are crucial for their high speed, sensitivity, and efficient power consumption. In these devices, photocurrent generation is primarily attributed to the photovoltaic (PV) effect, driven by electron hole separations, and the photothermoelectric (PTE) effect, which results from temperature gradients via the Seebeck effect. As devices shrink, the overlap of these mechanisms-both dependent on the Fermi level and band structure-complicates their separate evaluation at the nanoscale. This study introduces a novel 3D photocurrent nano-imaging technique specifically designed to distinctly map these mechanisms in a Schottky barrier photodiode featuring a molybdenum disulfide and gold (MoS2 Au) interface. We uncover a significant PTE-dominated region extending several hundred nanometers from the electrode edge, a characteristic facilitated by the weak electrostatic forces typical in 2D materials. Unexpectedly, we find that incorporating hexagonal boron nitride (hBN), known for its high thermal conductivity, markedly enhances the PTE response. This counterintuitive enhancement stems from an optimal overlap between thermal and Seebeck profiles, presenting a new pathway to boost device performance. Our findings highlight the capability of this imaging technique to not only advance optoelectronic applications but also to deepen our understanding of light matter interactions within low-dimensional systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13052v1-abstract-full').style.display = 'none'; document.getElementById('2410.13052v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09109">arXiv:2410.09109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09109">pdf</a>, <a href="https://arxiv.org/format/2410.09109">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Compressing high-resolution data through latent representation encoding for downscaling large-scale AI weather forecast model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qian Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+B">Bing Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhuang%2C+X">Xiaoran Zhuang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+X">Xiaohui Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+Z">Zhiming Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09109v1-abstract-short" style="display: inline;"> The rapid advancement of artificial intelligence (AI) in weather research has been driven by the ability to learn from large, high-dimensional datasets. However, this progress also poses significant challenges, particularly regarding the substantial costs associated with processing extensive data and the limitations of computational resources. Inspired by the Neural Image Compression (NIC) task in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09109v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09109v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09109v1-abstract-full" style="display: none;"> The rapid advancement of artificial intelligence (AI) in weather research has been driven by the ability to learn from large, high-dimensional datasets. However, this progress also poses significant challenges, particularly regarding the substantial costs associated with processing extensive data and the limitations of computational resources. Inspired by the Neural Image Compression (NIC) task in computer vision, this study seeks to compress weather data to address these challenges and enhance the efficiency of downstream applications. Specifically, we propose a variational autoencoder (VAE) framework tailored for compressing high-resolution datasets, specifically the High Resolution China Meteorological Administration Land Data Assimilation System (HRCLDAS) with a spatial resolution of 1 km. Our framework successfully reduced the storage size of 3 years of HRCLDAS data from 8.61 TB to just 204 GB, while preserving essential information. In addition, we demonstrated the utility of the compressed data through a downscaling task, where the model trained on the compressed dataset achieved accuracy comparable to that of the model trained on the original data. These results highlight the effectiveness and potential of the compressed data for future weather research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09109v1-abstract-full').style.display = 'none'; document.getElementById('2410.09109v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08472">arXiv:2410.08472</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08472">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Modeling and Simulation of 2D Transducers Based on Suspended Graphene-Based Heterostructures in Nanoelectromechanical Pressure Sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Quan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chang He</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jie Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wendong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+X">Xuge Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08472v1-abstract-short" style="display: inline;"> Graphene-based 2D heterostructures exhibit excellent mechanical and electrical properties, which are expected to exhibit better performances than graphene for nanoelectromechanical pressure sensors. Here, we built the pressure sensor models based on suspended heterostructures of graphene/h-BN, graphene/MoS2, and graphene/MoSe2 by using COMSOL Multiphysics finite element software. We found that sus&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08472v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08472v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08472v1-abstract-full" style="display: none;"> Graphene-based 2D heterostructures exhibit excellent mechanical and electrical properties, which are expected to exhibit better performances than graphene for nanoelectromechanical pressure sensors. Here, we built the pressure sensor models based on suspended heterostructures of graphene/h-BN, graphene/MoS2, and graphene/MoSe2 by using COMSOL Multiphysics finite element software. We found that suspended circular 2D membranes show the best sensitivity to pressures compared to rectangular and square ones. We simulated the deflections, strains, resonant frequencies, and Young&#39;s moduli of suspended graphene-based heterostructures under the conditions of different applied pressures and geometrical sizes, built-in tensions, and the number of atomic layers of 2D membranes. The Young&#39;s moduli of 2D heterostructures of graphene, graphene/h-BN, graphene/MoS2, and graphene/MoSe2 were estimated to be 1.001TPa, 921.08 GPa, 551.11 GPa, and 475.68 GPa, respectively. We also discuss the effect of highly asymmetric cavities on device performance. These results would contribute to the understanding of the mechanical properties of graphene-based heterostructures and would be helpful for the design and manufacture of high-performance NEMS pressure sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08472v1-abstract-full').style.display = 'none'; document.getElementById('2410.08472v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02256">arXiv:2410.02256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02256">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JSEN.2024.3419243">10.1109/JSEN.2024.3419243 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Recent Advances in Graphene-Based Pressure Sensors: A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhe Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Quan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+H">Hongliang Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Ke%2C+N">Ningfeng Ke</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jie Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wendong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+X">Xuge Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02256v1-abstract-short" style="display: inline;"> In recent years, pressure sensors have been widely used as crucial technology components in industrial, healthcare, consumer electronics, and automotive safety applications. With the development of intelligent technologies, there is a growing demand for pressure sensors with higher sensitivity, smaller size, and wider detection range. Graphene and its derivatives, as novel emerging materials in re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02256v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02256v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02256v1-abstract-full" style="display: none;"> In recent years, pressure sensors have been widely used as crucial technology components in industrial, healthcare, consumer electronics, and automotive safety applications. With the development of intelligent technologies, there is a growing demand for pressure sensors with higher sensitivity, smaller size, and wider detection range. Graphene and its derivatives, as novel emerging materials in recent years, have received widespread attention from researchers due to their unique mechanical and electrical properties, and are considered as promising sensing materials for the high-performance pressure sensors. In general, graphene-based pressure sensors can be classified into flexible pressure sensors and gas pressure sensors. In this paper, we firstly introduce the basic properties of graphene and its derivatives and then review the research progress of both graphene-based flexible pressure sensors and graphene-based gas pressure sensors respectively, focusing on different sensing mechanisms. Finally, the application prospects of graphene-based pressure sensors as well as future challenges are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02256v1-abstract-full').style.display = 'none'; document.getElementById('2410.02256v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02255">arXiv:2410.02255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02255">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JSEN.2024.3398003">10.1109/JSEN.2024.3398003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Recent Advances in Graphene-Based Humidity Sensors with the Focus of Structural Design: A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+H">Hongliang Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jie Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhe Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Quan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+G">Gaohan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wendong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+X">Xuge Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02255v1-abstract-short" style="display: inline;"> The advent of the 5G era means that the concepts of robot, VR/AR, UAV, smart home, smart healthcare based on IoT (Internet of Things) have gradually entered human life. Since then, intelligent life has become the dominant direction of social development. Humidity sensors, as humidity detection tools, not only convey the comfort of human living environment, but also display great significance in th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02255v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02255v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02255v1-abstract-full" style="display: none;"> The advent of the 5G era means that the concepts of robot, VR/AR, UAV, smart home, smart healthcare based on IoT (Internet of Things) have gradually entered human life. Since then, intelligent life has become the dominant direction of social development. Humidity sensors, as humidity detection tools, not only convey the comfort of human living environment, but also display great significance in the fields of meteorology, medicine, agriculture and industry. Graphene-based materials exhibit tremendous potential in humidity sensing owing to their ultra-high specific surface area and excellent electron mobility under room temperature for application in humidity sensing. This review begins with the introduction of examples of various synthesis strategies of graphene, followed by the device structure and working mechanism of graphene-based humidity sensor. In addition, several different structural design methods of graphene are summarized, demonstrating the structural design of graphene can not only optimize the performance of graphene, but also bring significant advantages in humidity sensing. Finally, key challenges hindering the further development and practical application of high-performance graphene-based humidity sensors are discussed, followed by presenting the future perspectives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02255v1-abstract-full').style.display = 'none'; document.getElementById('2410.02255v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13989">arXiv:2409.13989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13989">pdf</a>, <a href="https://arxiv.org/format/2409.13989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuqing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rongyang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+X">Xuesong He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhi%2C+X">Xuyang Zhi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feiyang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Deguang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+H">Huadong Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jian Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zimu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shijin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+G">Guoping Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+G">Guiquan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+D">Defu Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+E">Enhong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13989v1-abstract-short" style="display: inline;"> There is a growing interest in the role that LLMs play in chemistry which lead to an increased focus on the development of LLMs benchmarks tailored to chemical domains to assess the performance of LLMs across a spectrum of chemical tasks varying in type and complexity. However, existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13989v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13989v1-abstract-full" style="display: none;"> There is a growing interest in the role that LLMs play in chemistry which lead to an increased focus on the development of LLMs benchmarks tailored to chemical domains to assess the performance of LLMs across a spectrum of chemical tasks varying in type and complexity. However, existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals. To this end, we propose \textbf{\textit{ChemEval}}, which provides a comprehensive assessment of the capabilities of LLMs across a wide range of chemical domain tasks. Specifically, ChemEval identified 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks which are informed by open-source data and the data meticulously crafted by chemical experts, ensuring that the tasks have practical value and can effectively evaluate the capabilities of LLMs. In the experiment, we evaluate 12 mainstream LLMs on ChemEval under zero-shot and few-shot learning contexts, which included carefully selected demonstration examples and carefully designed prompts. The results show that while general LLMs like GPT-4 and Claude-3.5 excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge. Conversely, specialized LLMs exhibit enhanced chemical competencies, albeit with reduced literary comprehension. This suggests that LLMs have significant potential for enhancement when tackling sophisticated tasks in the field of chemistry. We believe our work will facilitate the exploration of their potential to drive progress in chemistry. Our benchmark and analysis will be available at {\color{blue} \url{https://github.com/USTC-StarTeam/ChemEval}}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13989v1-abstract-full').style.display = 'none'; document.getElementById('2409.13989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07375">arXiv:2409.07375</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07375">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> PRIME: Phase Reversed Interleaved Multi-Echo acquisition enables highly accelerated distortion-free diffusion MRI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jun%2C+Y">Yohan Jun</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qiang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+T">Ting Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+J">Jaejin Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Fujita%2C+S">Shohei Fujita</a>, <a href="/search/physics?searchtype=author&amp;query=Yong%2C+X">Xingwang Yong</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S+Y">Susie Y Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Ning%2C+L">Lipeng Ning</a>, <a href="/search/physics?searchtype=author&amp;query=Yendiki%2C+A">Anastasia Yendiki</a>, <a href="/search/physics?searchtype=author&amp;query=Rathi%2C+Y">Yogesh Rathi</a>, <a href="/search/physics?searchtype=author&amp;query=Bilgic%2C+B">Berkin Bilgic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07375v1-abstract-short" style="display: inline;"> Purpose: To develop and evaluate a new pulse sequence for highly accelerated distortion-free diffusion MRI (dMRI) by inserting an additional echo without prolonging TR, when generalized slice dithered enhanced resolution (gSlider) radiofrequency encoding is used for volumetric acquisition. Methods: A phase-reversed interleaved multi-echo acquisition (PRIME) was developed for rapid, high-resolution&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07375v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07375v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07375v1-abstract-full" style="display: none;"> Purpose: To develop and evaluate a new pulse sequence for highly accelerated distortion-free diffusion MRI (dMRI) by inserting an additional echo without prolonging TR, when generalized slice dithered enhanced resolution (gSlider) radiofrequency encoding is used for volumetric acquisition. Methods: A phase-reversed interleaved multi-echo acquisition (PRIME) was developed for rapid, high-resolution, and distortion-free dMRI, which includes two echoes where the first echo is for target diffusion-weighted imaging (DWI) acquisition with high-resolution and the second echo is acquired with either 1) lower-resolution for high-fidelity field map estimation, or 2) matching resolution to enable efficient diffusion relaxometry acquisitions. The sequence was evaluated on in vivo data acquired from healthy volunteers on clinical and Connectome 2.0 scanners. Results: In vivo experiments demonstrated that 1) high in-plane acceleration (Rin-plane of 5-fold with 2D partial Fourier) was achieved using the high-fidelity field maps estimated from the second echo, which was made at a lower resolution/acceleration to increase its SNR while matching the effective echo spacing of the first readout, 2) high-resolution diffusion relaxometry parameters were estimated from dual-echo PRIME data using a white matter model of multi-TE spherical mean technique (MTE-SMT), and 3) high-fidelity mesoscale DWI at 550 um isotropic resolution could be obtained in vivo by capitalizing on the high-performance gradients of the Connectome 2.0 scanner. Conclusion: The proposed PRIME sequence enabled highly accelerated, high-resolution, and distortion-free dMRI using an additional echo without prolonging scan time when gSlider encoding is utilized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07375v1-abstract-full').style.display = 'none'; document.getElementById('2409.07375v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01203">arXiv:2409.01203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01203">pdf</a>, <a href="https://arxiv.org/format/2409.01203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Deriving a working hypothesis in thermodynamics on electromagnetic work from first principles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q+H">Q. H. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01203v1-abstract-short" style="display: inline;"> The Maxwell stress tensor for the linear and uniform media in static electromagnetic field implies a new form of pressure caused by the mutual field energy density. When it is introduced into the fundamental thermodynamic equation for the media, we have a new pressure-volume work term. The combination of new term and proper electromagnetic work term naturally gives the well-known form that is curr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01203v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01203v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01203v1-abstract-full" style="display: none;"> The Maxwell stress tensor for the linear and uniform media in static electromagnetic field implies a new form of pressure caused by the mutual field energy density. When it is introduced into the fundamental thermodynamic equation for the media, we have a new pressure-volume work term. The combination of new term and proper electromagnetic work term naturally gives the well-known form that is currently obtained by a working hypothesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01203v1-abstract-full').style.display = 'none'; document.getElementById('2409.01203v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10106">arXiv:2408.10106</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.10106">pdf</a>, <a href="https://arxiv.org/ps/2408.10106">ps</a>, <a href="https://arxiv.org/format/2408.10106">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.4c04543">10.1021/acs.nanolett.4c04543 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Edge detection imaging by quasi-bound states in the continuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tingting Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+J">Jumin Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+L">Lei Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+M">Meibao Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+L">Lipeng Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+T">Tianbao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qiegen Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+L">Lujun Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+S">Shuyuan Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10106v1-abstract-short" style="display: inline;"> Optical metasurfaces have revolutionized analog computing and image processing at sub-wavelength scales with faster speed and lower power consumption. They typically involve spatial differentiation with engineered angular dispersion. Quasi-bound states in the continuum (quasi-BICs) have recently emerged as a powerful tool for tailoring properties of optical resonances. While quasi-BICs have been e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10106v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10106v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10106v1-abstract-full" style="display: none;"> Optical metasurfaces have revolutionized analog computing and image processing at sub-wavelength scales with faster speed and lower power consumption. They typically involve spatial differentiation with engineered angular dispersion. Quasi-bound states in the continuum (quasi-BICs) have recently emerged as a powerful tool for tailoring properties of optical resonances. While quasi-BICs have been explored in various applications that require high $Q$-factors and enhanced field confinement, their full potential in image processing remains unexplored. Here, we demonstrate edge detection imaging by leveraging a quasi-BIC in an all-dielectric metasurface. This metasurface, composed of four nanodisks per unit cell, supports a polarization-independent quasi-BIC through structural perturbations, allowing simultaneously engineering $Q$-factor and angular dispersion. Importantly, we find that with suitable parameters, this quasi-BIC metasurface can perform isotropic two-dimensional spatial differentiation, which is the core element for realizing edge detection. Following the theoretical design, we fabricate the metasurfaces on the silicon-on-insulator platform and experimentally validate their capability of high-quality, efficient, and uniform edge detection imaging under different incident polarizations. Our results illuminate the mechanisms of edge detection with quasi-BIC metasurfaces and highlight new opportunities for their application in ultra-compact, low-power optical computing devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10106v1-abstract-full').style.display = 'none'; document.getElementById('2408.10106v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 24 (45), 14466-14474 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04274">arXiv:2408.04274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04274">pdf</a>, <a href="https://arxiv.org/format/2408.04274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Field of View Expansion for Resonant Beam Information and Power Transfer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Han%2C+S">Shun Han</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+W">Wen Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M">Mingqing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+M">Mengyuan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+S">Shuaifan Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qingwen Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04274v1-abstract-short" style="display: inline;"> Simultaneous wireless information and power transfer (SWIPT) leverages lightwave as the wireless transmission medium, emerging as a promising technology in the future Internet of Things (IoT) scenarios. The use of retro-reflectors in constructing spatially separated laser resonators (SSLR) enables a self-aligning wireless transmission system with the self-reproducing resonant beam, i.e. resonant b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04274v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04274v1-abstract-full" style="display: none;"> Simultaneous wireless information and power transfer (SWIPT) leverages lightwave as the wireless transmission medium, emerging as a promising technology in the future Internet of Things (IoT) scenarios. The use of retro-reflectors in constructing spatially separated laser resonators (SSLR) enables a self-aligning wireless transmission system with the self-reproducing resonant beam, i.e. resonant beam system (RBS). However, it&#39;s effective Field of View (FoV) is physically limited by the size of retroreflectors and still requires significant improvement. This restricts the transmitter from providing seamless wireless connectivity and power supply to receivers within a large dynamic movement range. In this paper, we propose an FoV-enlarged resonant beam system operating at a meter distance by incorporating a telescope. The telescope plays a crucial role in minimizing the extra loss inflicted on the gain medium, which typically arises from the deviation of the resonant beam within the cavity. Further, we construct the proposed telescope-based RBS and experimentally demonstrate that the design could expand the FoV to 28$^\circ$ over 1 m transmission distance is about triple that of the ordinary RBS design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04274v1-abstract-full').style.display = 'none'; document.getElementById('2408.04274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03272">arXiv:2408.03272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03272">pdf</a>, <a href="https://arxiv.org/format/2408.03272">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Suppression of Edge Localized Modes in ITER Baseline Scenario in EAST using Edge Localized Magnetic Perturbations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+P">P. Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Y. Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+M">M. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Loarte%2C+A">A. Loarte</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+Q">Y. Q. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+C">C. Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+S">S. Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Sheng%2C+H">H. Sheng</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+Y">Y. Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Q">Q. Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">H. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Paz-Soldan%2C+C+A">C. A. Paz-Soldan</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+G">G. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+S">S. Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+G">G. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+K">K. He</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+T">T. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+D">D. Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+B">B. Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+J">J. Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H+H">H. H. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">S. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Weisberg%2C+D">D. Weisberg</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+X">X. Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+W">W. Xu</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03272v1-abstract-short" style="display: inline;"> We report the suppression of Type-I Edge Localized Modes (ELMs) in the EAST tokamak under ITER baseline conditions using $n = 4$ Resonant Magnetic Perturbations (RMPs), while maintaining energy confinement. Achieving RMP-ELM suppression requires a normalized plasma beta ($尾_N$) exceeding 1.8 in a target plasma with $q_{95}\approx 3.1$ and tungsten divertors. Quasi-linear modeling shows high plasma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03272v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03272v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03272v1-abstract-full" style="display: none;"> We report the suppression of Type-I Edge Localized Modes (ELMs) in the EAST tokamak under ITER baseline conditions using $n = 4$ Resonant Magnetic Perturbations (RMPs), while maintaining energy confinement. Achieving RMP-ELM suppression requires a normalized plasma beta ($尾_N$) exceeding 1.8 in a target plasma with $q_{95}\approx 3.1$ and tungsten divertors. Quasi-linear modeling shows high plasma beta enhances RMP-driven neoclassical toroidal viscosity torque, reducing field penetration thresholds. These findings demonstrate the feasibility and efficiency of high $n$ RMPs for ELM suppression in ITER. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03272v1-abstract-full').style.display = 'none'; document.getElementById('2408.03272v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17800">arXiv:2407.17800</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17800">pdf</a>, <a href="https://arxiv.org/format/2407.17800">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design of a LYSO Crystal Electromagnetic Calorimeter for DarkSHINE Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zhiyu Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qibin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jiyuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jing Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Junfeng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+C">Changbo Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+J">Jun Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Khaw%2C+K+S">Kim Siang Khaw</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Danning Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+S">Siyuan Song</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+T">Tong Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jiannan Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yufeng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+W">Weihao Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Haijun Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Y">Yuming Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+R">Rui Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yulei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yunlong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+B">Baihong Zhou</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17800v2-abstract-short" style="display: inline;"> This paper presents the design and optimization of a LYSO crystal electromagnetic calorimeter (ECAL) for the DarkSHINE experiment, which aims to search for dark photons as potential mediators of dark forces. The ECAL design was evaluated through comprehensive simulations, focusing on optimizing dimensions, material selection, energy distribution, and energy resolution. The ECAL configuration consi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17800v2-abstract-full').style.display = 'inline'; document.getElementById('2407.17800v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17800v2-abstract-full" style="display: none;"> This paper presents the design and optimization of a LYSO crystal electromagnetic calorimeter (ECAL) for the DarkSHINE experiment, which aims to search for dark photons as potential mediators of dark forces. The ECAL design was evaluated through comprehensive simulations, focusing on optimizing dimensions, material selection, energy distribution, and energy resolution. The ECAL configuration consists of 21$\times$21$\times$11 LYSO crystals, each measuring 2.5$\times$2.5$\times$4 cm$^3$, arranged in a staggered layout to improve signal detection efficiency. A 4 GeV energy dynamic range was established to ensure accurate energy measurements without saturation, which is essential for background rejection and signal identification. A detailed digitization model was developed to simulate the scintillation, SiPM, and ADC behaviors, providing a more realistic representation of detector performance. Additionally, the study assessed radiation damage in the ECAL region, highlighting the necessity of radiation-resistant scintillators and silicon sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17800v2-abstract-full').style.display = 'none'; document.getElementById('2407.17800v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08559">arXiv:2407.08559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08559">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Study of a Novel Capacitive Pressure Sensor Using Spiral Comb Electrodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wenjie Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Q">Qi Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yiqun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">Liang He</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Y">Yuanlin Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhuqing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yubo Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jianfeng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+C">Cao Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08559v1-abstract-short" style="display: inline;"> For traditional capacitive pressure sensors, high nonlinearity and poor sensitivity greatly limited their sensing applications. Hence, an innovative design of capacitors based on spiral comb electrodes is proposed for high-sensitivity pressure detection in this work. Compared to traditional capacitive pressure sensors with straight plate electrodes, the proposed sensor with the spiral electrodes i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08559v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08559v1-abstract-full" style="display: none;"> For traditional capacitive pressure sensors, high nonlinearity and poor sensitivity greatly limited their sensing applications. Hence, an innovative design of capacitors based on spiral comb electrodes is proposed for high-sensitivity pressure detection in this work. Compared to traditional capacitive pressure sensors with straight plate electrodes, the proposed sensor with the spiral electrodes increases the overlap areas of electrodes sufficiently, the pressure sensitivity can thus be greatly improved. Moreover, the capacitance variation of the proposed sensor is dominated by the change of the overlap area of the electrodes rather than the electrode&#39;s distance, the linearity can also thus be improved to higher than 0.99. Theoretical analysis and COMSOL-based finite element simulation have been implemented for principle verification and performance optimization. Simulation results show that the proposed design has a mechanical sensitivity of 1.5x10-4 m/Pa, capacitive sensitivity of 1.10 aF/Pa, and nonlinear error of 3.63%, respectively, at the pressure range from 0 to 30 kPa. An equivalent experiment has been further carried out for verification. Experimental results also show that both the sensitivity and linearity of capacitive pressure sensors with spiral electrodes are higher than those with straight electrodes. This work not only provides a new avenue for capacitor design, but also can be applied to high-sensitivity pressure detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08559v1-abstract-full').style.display = 'none'; document.getElementById('2407.08559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> - </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08202">arXiv:2407.08202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08202">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> A rotational ellipsoid model for solid Earth tide with high precision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yongfeng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yunfei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qiang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+X">Xianqing Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+P">Pu Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08202v2-abstract-short" style="display: inline;"> Solid Earth tide represents the response of solid Earth to the lunar (solar) gravitational force. The yielding solid Earth due to the force has been thought to be a prolate ellipsoid since the time of Lord Kelvin, yet the ellipsoid&#39;s geometry such as major semi-axis&#39;s length, minor semi-axis&#39;s length, and flattening remains unresolved. Additionally, the tidal displacement of reference point is con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08202v2-abstract-full').style.display = 'inline'; document.getElementById('2407.08202v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08202v2-abstract-full" style="display: none;"> Solid Earth tide represents the response of solid Earth to the lunar (solar) gravitational force. The yielding solid Earth due to the force has been thought to be a prolate ellipsoid since the time of Lord Kelvin, yet the ellipsoid&#39;s geometry such as major semi-axis&#39;s length, minor semi-axis&#39;s length, and flattening remains unresolved. Additionally, the tidal displacement of reference point is conventionally resolved through a combination of expanded potential equations and given Earth model. Here we present a geometric model in which both the ellipsoid&#39;s geometry and the tidal displacement of reference point can be resolved through a rotating ellipse with respect to the Moon (Sun). We test the geometric model using 23-year gravity data from 22 superconducting gravimeter (SG) stations and compare it with the current model recommended by the IERS (International Earth Rotation System) conventions (2010), the average Root Mean Square (RMS) deviation of the gravity change yielded by the geometric model against observation is 6.47 渭Gal (equivalent to 2.07 cm), while that yielded by the current model is 30.77 渭Gal (equivalent to 9.85 cm). The geometric model will greatly contribute to many application fields such as geodesy, geophysics, astronomy, and oceanography. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08202v2-abstract-full').style.display = 'none'; document.getElementById('2407.08202v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19421">arXiv:2406.19421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19421">pdf</a>, <a href="https://arxiv.org/format/2406.19421">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The Belle II Detector Upgrades Framework Conceptual Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aihara%2C+H">H. Aihara</a>, <a href="/search/physics?searchtype=author&amp;query=Aloisio%2C+A">A. Aloisio</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D+P">D. P. Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Aversano%2C+M">M. Aversano</a>, <a href="/search/physics?searchtype=author&amp;query=Babeluk%2C+M">M. Babeluk</a>, <a href="/search/physics?searchtype=author&amp;query=Bahinipati%2C+S">S. Bahinipati</a>, <a href="/search/physics?searchtype=author&amp;query=Banerjee%2C+S">Sw. Banerjee</a>, <a href="/search/physics?searchtype=author&amp;query=Barbero%2C+M">M. Barbero</a>, <a href="/search/physics?searchtype=author&amp;query=Baudot%2C+J">J. Baudot</a>, <a href="/search/physics?searchtype=author&amp;query=Beaubien%2C+A">A. Beaubien</a>, <a href="/search/physics?searchtype=author&amp;query=Becherer%2C+F">F. Becherer</a>, <a href="/search/physics?searchtype=author&amp;query=Bergauer%2C+T">T. Bergauer</a>, <a href="/search/physics?searchtype=author&amp;query=Bernlochner.%2C+F+U">F. U. Bernlochner.</a>, <a href="/search/physics?searchtype=author&amp;query=Bertacchi%2C+V">V. Bertacchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bertolone%2C+G">G. Bertolone</a>, <a href="/search/physics?searchtype=author&amp;query=Bespin%2C+C">C. Bespin</a>, <a href="/search/physics?searchtype=author&amp;query=Bessner%2C+M">M. Bessner</a>, <a href="/search/physics?searchtype=author&amp;query=Bettarini%2C+S">S. Bettarini</a>, <a href="/search/physics?searchtype=author&amp;query=Bevan%2C+A+J">A. J. Bevan</a>, <a href="/search/physics?searchtype=author&amp;query=Bhuyan%2C+B">B. Bhuyan</a>, <a href="/search/physics?searchtype=author&amp;query=Bona%2C+M">M. Bona</a>, <a href="/search/physics?searchtype=author&amp;query=Bonis%2C+J+F">J. F. Bonis</a>, <a href="/search/physics?searchtype=author&amp;query=Borah%2C+J">J. Borah</a>, <a href="/search/physics?searchtype=author&amp;query=Bosi%2C+F">F. Bosi</a>, <a href="/search/physics?searchtype=author&amp;query=Boudagga%2C+R">R. Boudagga</a> , et al. (186 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19421v2-abstract-short" style="display: inline;"> We describe the planned near-term and potential longer-term upgrades of the Belle II detector at the SuperKEKB electron-positron collider operating at the KEK laboratory in Tsukuba, Japan. These upgrades will allow increasingly sensitive searches for possible new physics beyond the Standard Model in flavor, tau, electroweak and dark sector physics that are both complementary to and competitive wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19421v2-abstract-full').style.display = 'inline'; document.getElementById('2406.19421v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19421v2-abstract-full" style="display: none;"> We describe the planned near-term and potential longer-term upgrades of the Belle II detector at the SuperKEKB electron-positron collider operating at the KEK laboratory in Tsukuba, Japan. These upgrades will allow increasingly sensitive searches for possible new physics beyond the Standard Model in flavor, tau, electroweak and dark sector physics that are both complementary to and competitive with the LHC and other experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19421v2-abstract-full').style.display = 'none'; document.getElementById('2406.19421v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Editor: F. Forti 170 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-REPORT-2024-1, BELLE2-REPORT-2024-042 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11099">arXiv:2406.11099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.11099">pdf</a>, <a href="https://arxiv.org/ps/2406.11099">ps</a>, <a href="https://arxiv.org/format/2406.11099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.L220401">10.1103/PhysRevB.109.L220401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gateway to all-optical spin switching in Heusler ferrimagnets: Pancharatnam-Berry tensor and magnetic moment ratio </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G+P">G. P. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+Q">Y. Q. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Si%2C+M+S">M. S. Si</a>, <a href="/search/physics?searchtype=author&amp;query=Allbritton%2C+N">Nicholas Allbritton</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y+H">Y. H. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=H%C3%BCbner%2C+W">Wolfgang H眉bner</a>, <a href="/search/physics?searchtype=author&amp;query=George%2C+T+F">Thomas F. George</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11099v1-abstract-short" style="display: inline;"> All-optical spin switching (AOS) is a new phenomenon found in a small group of magnetic media, where a single laser pulse can switch spins from one direction to another, without assistance of a magnetic field, on a time scale much shorter than existing magnetic technology. However, despite intensive efforts over a decade, its underlying working principle remains elusive. Here through manganese-bas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11099v1-abstract-full').style.display = 'inline'; document.getElementById('2406.11099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11099v1-abstract-full" style="display: none;"> All-optical spin switching (AOS) is a new phenomenon found in a small group of magnetic media, where a single laser pulse can switch spins from one direction to another, without assistance of a magnetic field, on a time scale much shorter than existing magnetic technology. However, despite intensive efforts over a decade, its underlying working principle remains elusive. Here through manganese-based Heusler ferrimagnets, we show that a group of flat bands around the Fermi level act as gateway states to form efficient channels or spin switching, where their noncentrosymmetry allows us to correlate the spin dynamics to the second-order optical response. To quantify their efficacy, we introduce the third-rank Pancharatnam-Berry tensor (PB tensor), $\boldsymbol畏^{(3)}=\langle i |{\bf p} |m\rangle \langle m|{\bf p} |f\rangle \langle f|{\bf p} |i\rangle,$ where $|i\rangle$, $|m\rangle$ and $|f\rangle$ are initial, intermediate and final band states, respectively, and ${\bf p}$ is the momentum operator. A picture emerges: Those which show AOS, such as the recently discovered Mn$_2$RuGa, always have a large PB tensor element} but have a small sublattice spin moment ratio, consistent with the prior experimental small remanence criterion. This does not only reveal that the delicate balance between the large PB tensor element and the small sublattice spin ratio plays a decisive role in AOS, but also, conceptually, connects the $n$th-order nonlinear optics to $(n+1)$th-rank PB tensors in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11099v1-abstract-full').style.display = 'none'; document.getElementById('2406.11099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, four figures. Published in Physical Review B Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08888">arXiv:2406.08888</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08888">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Vector Angular Spectrum Model for light travelling in scattering media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kaige Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hengkang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zeqi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+B">Bin Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+X">Xing Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Q">Qiang Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qiang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08888v1-abstract-short" style="display: inline;"> Strongly scattering media disrupt both the wavefront distribution and the polarization state of the incident light field. Controlling and effectively utilizing depolarization effects are crucial for optical applications in highly scattering environments, such as imaging through dense fog. However, current simulation models have difficulty simulating the evolution of vector light fields within scat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08888v1-abstract-full').style.display = 'inline'; document.getElementById('2406.08888v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08888v1-abstract-full" style="display: none;"> Strongly scattering media disrupt both the wavefront distribution and the polarization state of the incident light field. Controlling and effectively utilizing depolarization effects are crucial for optical applications in highly scattering environments, such as imaging through dense fog. However, current simulation models have difficulty simulating the evolution of vector light fields within scattering media, posing challenges for studying vector light fields in strongly scattering environments. Here, we propose the Vector Angular Spectrum (VAS) model for simulating the propagation of vector light fields within scattering media. By introducing the angular spectrum distribution of vector light scattering and polarization conversion mechanisms, this model can simulate the depolarization effects of vector light propagating through strongly scattering media. The VAS model has also been used to investigate the focusing of vector scattered light through scattering media. Furthermore, the simulation results of the model have been validated through experiments. The proposed VAS model is expected to play a role in the theoretical research of vector scattered light and optical applications in strongly scattering environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08888v1-abstract-full').style.display = 'none'; document.getElementById('2406.08888v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03163">arXiv:2406.03163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.03163">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Foundation Models for Geophysics: Reviews and Perspectives </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+J">Jianwei Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03163v1-abstract-short" style="display: inline;"> Recently, large models, or foundation models have demonstrated outstanding performance and have been applied in a variety of disciplines, such as chemistry, biology, economics, etc. Foundation models, trained on vast amounts of data, can be adapted to a wide range of use cases. The emergence of foundation models has a significant impact on the research paradigms in these fields. Geophysics is a sc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03163v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03163v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03163v1-abstract-full" style="display: none;"> Recently, large models, or foundation models have demonstrated outstanding performance and have been applied in a variety of disciplines, such as chemistry, biology, economics, etc. Foundation models, trained on vast amounts of data, can be adapted to a wide range of use cases. The emergence of foundation models has a significant impact on the research paradigms in these fields. Geophysics is a scientific field dedicated to exploring and understanding the Earth&#39;s structures and states through the application of physical principles and the analysis of multimodal geophysical data. In the field of geophysics, the processing and interpretation of geophysical data are characterized by three primary features: extensive data volume, multimodality, and dependence on experience. These characteristics provide a suitable environment as well as challenges for the development and breakthrough of foundation models in the field of geophysics. In this perspective, we discuss the potential applications and research directions of geophysical foundation models (GeoFMs), exploring new research paradigms in geophysics in the era of foundation models. Exploration geophysics is the main focus, while the development of foundation models in remote sensing, seismology, and other related sub-disciplines in geophysics is also discussed. In the meantime, we also propose two strategies for constructing GeoFMs and discuss challenges that may arise during the process of development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03163v1-abstract-full').style.display = 'none'; document.getElementById('2406.03163v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10154">arXiv:2405.10154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.10154">pdf</a>, <a href="https://arxiv.org/ps/2405.10154">ps</a>, <a href="https://arxiv.org/format/2405.10154">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Quantum CZ Gate based on Single Gradient Metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Y">Yu Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Z">Zhaohua Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Guixin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+X">Xi-Feng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+Q">Qihuang Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+Y">Ying Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10154v1-abstract-short" style="display: inline;"> We propose a scheme to realize quantum controlled-Z (CZ) gates through single gradient metasurface. Using its unique parallel beam-splitting feature, i.e., a series of connected beam splitters with the same splitting ratio, one metasurface can support a CZ gate, several independent CZ gates, or a cascaded CZ gates. Taking advantage of the input polarization determined output path-locking feature,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10154v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10154v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10154v1-abstract-full" style="display: none;"> We propose a scheme to realize quantum controlled-Z (CZ) gates through single gradient metasurface. Using its unique parallel beam-splitting feature, i.e., a series of connected beam splitters with the same splitting ratio, one metasurface can support a CZ gate, several independent CZ gates, or a cascaded CZ gates. Taking advantage of the input polarization determined output path-locking feature, both polarization-encoded and path-encoded CZ gates can be demonstrated on the same metasurface, which further improves the integration level of quantum devices. Our research paves the way for integrating quantum logical function through the metasurface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10154v1-abstract-full').style.display = 'none'; document.getElementById('2405.10154v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09456">arXiv:2405.09456</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09456">pdf</a>, <a href="https://arxiv.org/format/2405.09456">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Photonic Landau levels in a high-dimensional frequency-degenerate cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pan%2C+J">Jing Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhaoyang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Y">Yuan Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+X">Xing Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Y">Yijie Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qiang Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09456v1-abstract-short" style="display: inline;"> Topological orders emerge in both microscopic quantum dynamics and macroscopic materials as a fundamental principle to characterize intricate properties in nature with vital significance, for instance, the Landau levels of electron systems in magnetic field. Whilst, recent advances of synthetic photonic systems enable generalized concepts of Landau levels across fermionic and bosonic systems, exte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09456v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09456v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09456v1-abstract-full" style="display: none;"> Topological orders emerge in both microscopic quantum dynamics and macroscopic materials as a fundamental principle to characterize intricate properties in nature with vital significance, for instance, the Landau levels of electron systems in magnetic field. Whilst, recent advances of synthetic photonic systems enable generalized concepts of Landau levels across fermionic and bosonic systems, extending the modern physical frontier. However, the controls of Landau levels of photons were only confined in complex artificial metamaterials or multifolded cavities. Here, we exploit advanced structured light laser technology and propose the theory of high-dimensional frequency-degeneracy, which enables photonic Landau level control in a linear open laser cavity with simple displacement tuning of intracavity elements. This work not only create novel structured light with new topological effects but also provides broad prospects for Bose-analogue quantum Hall effects and topological physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09456v1-abstract-full').style.display = 'none'; document.getElementById('2405.09456v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06605">arXiv:2405.06605</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.06605">pdf</a>, <a href="https://arxiv.org/format/2405.06605">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Calo-VQ: Vector-Quantized Two-Stage Generative Model in Calorimeter Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qibin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shimmin%2C+C">Chase Shimmin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiulong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shlizerman%2C+E">Eli Shlizerman</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Hsu%2C+S">Shih-Chieh Hsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06605v3-abstract-short" style="display: inline;"> We introduce a novel machine learning method developed for the fast simulation of calorimeter detector response, adapting vector-quantized variational autoencoder (VQ-VAE). Our model adopts a two-stage generation strategy: initially compressing geometry-aware calorimeter data into a discrete latent space, followed by the application of a sequence model to learn and generate the latent tokens. Exte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06605v3-abstract-full').style.display = 'inline'; document.getElementById('2405.06605v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06605v3-abstract-full" style="display: none;"> We introduce a novel machine learning method developed for the fast simulation of calorimeter detector response, adapting vector-quantized variational autoencoder (VQ-VAE). Our model adopts a two-stage generation strategy: initially compressing geometry-aware calorimeter data into a discrete latent space, followed by the application of a sequence model to learn and generate the latent tokens. Extensive experimentation on the Calo-challenge dataset underscores the efficiency of our approach, showcasing a remarkable improvement in the generation speed compared with conventional method by a factor of 2000. Remarkably, our model achieves the generation of calorimeter showers within milliseconds. Furthermore, comprehensive quantitative evaluations across various metrics are performed to validate physics performance of generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06605v3-abstract-full').style.display = 'none'; document.getElementById('2405.06605v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01962">arXiv:2405.01962</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01962">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Optical skyrmions from metafibers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+T">Tiantian He</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Y">Yuan Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Lele Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+H">Hongkun Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Mata-Cervera%2C+N">Nilo Mata-Cervera</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dan Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+P">Ping Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qiang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Y">Yijie Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Q">Qirong Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01962v1-abstract-short" style="display: inline;"> Optical skyrmions are an emerging class of structured light with sophisticated particle-like topologies with great potential for revolutionizing modern informatics. However, the current generation of optical skyrmions involves complex or bulky systems, hindering their development of practical applications. Here, exploiting the emergent &#34;lab-on-fiber&#34; technology, we demonstrate the design of a meta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01962v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01962v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01962v1-abstract-full" style="display: none;"> Optical skyrmions are an emerging class of structured light with sophisticated particle-like topologies with great potential for revolutionizing modern informatics. However, the current generation of optical skyrmions involves complex or bulky systems, hindering their development of practical applications. Here, exploiting the emergent &#34;lab-on-fiber&#34; technology, we demonstrate the design of a metafiber-integrated photonic skyrmion generator. We not only successfully generated high-quality optical skyrmions from metafibers, but also experimentally verified their remarkable properties, such as regulability and topological stability with deep-subwavelength features beyond the diffraction limits. Our flexible and fiber-integrated optical skyrmions platform paves the avenue for future applications of topologically-enhanced remote super-resolution microscopy and super-robust information transfer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01962v1-abstract-full').style.display = 'none'; document.getElementById('2405.01962v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00506">arXiv:2405.00506</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.00506">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Significant tuning of internal mode coupling in doubly clamped MEMS beam resonators by thermal effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qian Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Uchida%2C+K">Kohei Uchida</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hua Li</a>, <a href="/search/physics?searchtype=author&amp;query=Hirakawa%2C+K">Kazuhiko Hirakawa</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Ya Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00506v1-abstract-short" style="display: inline;"> Intermodal coupling has been demonstrated to be a promising mechanism for the development of advanced micro/nanoelectromechanical devices. However, strong mode coupling remains a key challenge limiting the practical application of intermodal coupling. Furthermore, the insight into physical mechanisms underlying mode coupling and the capability to quantitatively tune the mode coupling is also limit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00506v1-abstract-full').style.display = 'inline'; document.getElementById('2405.00506v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00506v1-abstract-full" style="display: none;"> Intermodal coupling has been demonstrated to be a promising mechanism for the development of advanced micro/nanoelectromechanical devices. However, strong mode coupling remains a key challenge limiting the practical application of intermodal coupling. Furthermore, the insight into physical mechanisms underlying mode coupling and the capability to quantitatively tune the mode coupling is also limited. Here, we experimentally and theoretically demonstrate the significant tunability of mode coupling by using the thermal tuning effect, yet in an asymmetric doubly-clamped MEMS beam resonator, enabling various coupling strength to be implemented for practical applications. In this system, two out-of-plane vibrational modes are mechanically coupled through displacement-induced tension, and their mode coupling strength arises from both hardening and softening nonlinearities of the two modes, thus allowing for the tuning of mode coupling strength by thermally enhancing the softening nonlinearity of the MEMS beam. Our results demonstrate a feasible approach to tune the mode coupling and offer insights into fundamental mechanism of mode coupling in MEMS beam resonators, paving the way for the development of MEMS resonators with enhanced performance and application-specific tunability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00506v1-abstract-full').style.display = 'none'; document.getElementById('2405.00506v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09948">arXiv:2404.09948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09948">pdf</a>, <a href="https://arxiv.org/format/2404.09948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Scalable photonic diffractive generators through sampling noises from scattering medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhan%2C+Z">Ziyu Zhan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qiang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+X">Xing Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09948v1-abstract-short" style="display: inline;"> Photonic computing, with potentials of high parallelism, low latency and high energy efficiency, have gained progressive interest at the forefront of neural network (NN) accelerators. However, most existing photonic computing accelerators concentrate on discriminative NNs. Large-scale generative photonic computing machines remain largely unexplored, partly due to poor data accessibility, accuracy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09948v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09948v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09948v1-abstract-full" style="display: none;"> Photonic computing, with potentials of high parallelism, low latency and high energy efficiency, have gained progressive interest at the forefront of neural network (NN) accelerators. However, most existing photonic computing accelerators concentrate on discriminative NNs. Large-scale generative photonic computing machines remain largely unexplored, partly due to poor data accessibility, accuracy and hardware feasibility. Here, we harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise, thereby achieving hardware consistency by solely pursuing the spatial parallelism of light. To realize experimental data accessibility, we design two encoding strategies between images and optical noise latent space that effectively solves the training problem. Furthermore, we utilize advanced photonic NN architectures including cascaded and parallel configurations of diffraction layers to enhance the image generation performance. Our results show that the photonic generator is capable of producing clear and meaningful synthesized images across several standard public datasets. As a photonic generative machine, this work makes an important contribution to photonic computing and paves the way for more sophisticated applications such as real world data augmentation and multi modal generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09948v1-abstract-full').style.display = 'none'; document.getElementById('2404.09948v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07857">arXiv:2404.07857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07857">pdf</a>, <a href="https://arxiv.org/format/2404.07857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> </div> </div> <p class="title is-5 mathjax"> Optical next generation reservoir computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jianqi Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Baek%2C+Y">YoonSeok Baek</a>, <a href="/search/physics?searchtype=author&amp;query=Tsuchiyama%2C+K">Kohei Tsuchiyama</a>, <a href="/search/physics?searchtype=author&amp;query=Joly%2C+M">Malo Joly</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qiang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gigan%2C+S">Sylvain Gigan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07857v3-abstract-short" style="display: inline;"> Artificial neural networks with internal dynamics exhibit remarkable capability in processing information. Reservoir computing (RC) is a canonical example that features rich computing expressivity and compatibility with physical implementations for enhanced efficiency. Recently, a new RC paradigm known as next generation reservoir computing (NGRC) further improves expressivity but compromises its&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07857v3-abstract-full').style.display = 'inline'; document.getElementById('2404.07857v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07857v3-abstract-full" style="display: none;"> Artificial neural networks with internal dynamics exhibit remarkable capability in processing information. Reservoir computing (RC) is a canonical example that features rich computing expressivity and compatibility with physical implementations for enhanced efficiency. Recently, a new RC paradigm known as next generation reservoir computing (NGRC) further improves expressivity but compromises its physical openness, posing challenges for realizations in physical systems. Here we demonstrate optical NGRC with computations performed by light scattering through disordered media. In contrast to conventional optical RC implementations, we drive our optical reservoir directly with time-delayed inputs. Much like digital NGRC that relies on polynomial features of delayed inputs, our optical reservoir also implicitly generates these polynomial features for desired functionalities. By leveraging the domain knowledge of the reservoir inputs, we show that the optical NGRC not only predicts the short-term dynamics of the low-dimensional Lorenz63 and large-scale Kuramoto-Sivashinsky chaotic time series, but also replicates their long-term ergodic properties. Optical NGRC shows superiority in shorter training length, increased interpretability and fewer hyperparameters compared to conventional optical RC based on scattering media, while achieving better forecasting performance. Our optical NGRC framework may inspire the realization of NGRC in other physical RC systems, new applications beyond time-series processing, and the development of deep and parallel architectures broadly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07857v3-abstract-full').style.display = 'none'; document.getElementById('2404.07857v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07458">arXiv:2404.07458</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07458">pdf</a>, <a href="https://arxiv.org/format/2404.07458">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> I-mode Plasma Confinement Improvement by Real-time Lithium Injection and its Classification on EAST Tokamak </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+X+M">X. M. Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+X+L">X. L. Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+A+D">A. D. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Y+T">Y. T. Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhuang%2C+G">G. Zhuang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H+Q">H. Q. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+L+Q">L. Q. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+E+Z">E. Z. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+B">B. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zuo%2C+G+Z">G. Z. Zuo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+C">C. Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">J. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+W+X">W. X. Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+L+T">L. T. Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+F">S. F. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+W">W. Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+T+Q">T. Q. Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Zang%2C+Q">Q. Zang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+H+L">H. L. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+M">M. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H+D">H. D. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X+J">X. J. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+X">X. Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+X+D">X. D. Lin</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07458v1-abstract-short" style="display: inline;"> I-mode is a promising regime for future fusion reactors due to the high energy confinement and the moderate particle confinement. However, the effect of lithium, which has been widely applied for particle recycling and impurity control, on I-mode plasma is still unclear. Recently, experiments of real-time lithium powder injection on I-mode plasma have been carried out in EAST Tokamak. It was found&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07458v1-abstract-full').style.display = 'inline'; document.getElementById('2404.07458v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07458v1-abstract-full" style="display: none;"> I-mode is a promising regime for future fusion reactors due to the high energy confinement and the moderate particle confinement. However, the effect of lithium, which has been widely applied for particle recycling and impurity control, on I-mode plasma is still unclear. Recently, experiments of real-time lithium powder injection on I-mode plasma have been carried out in EAST Tokamak. It was found that the confinement performance of the I-mode can be improved by the lithium powder injection, which can strongly reduce electron turbulence (ET) and then trigger ion turbulence (IT). Four different regimes of I-mode have been identified in EAST. The Type I I-mode plasma is characterized by the weakly coherent mode (WCM) and the geodesic-acoustic mode (GAM). The Type II I-mode is featured as the WCM and the edge temperature ring oscillation (ETRO). The Type III I-mode corresponds to the plasma with the co-existence of ETRO, GAM, and WCM. The Type IV I-mode denotes the plasma with only WCM but without ETRO and GAM. It has been observed that WCM and ETRO are increased with lithium powder injection due to the reduction of ion and electron turbulence, and the enhancement of the pedestal electron temperature gradient. EAST experiments demonstrate that lithium powder injection is an effective tool for real-time control and confinement improvement of I-mode plasma. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07458v1-abstract-full').style.display = 'none'; document.getElementById('2404.07458v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08233">arXiv:2403.08233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08233">pdf</a>, <a href="https://arxiv.org/ps/2403.08233">ps</a>, <a href="https://arxiv.org/format/2403.08233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A Parallel Beam Splitting Based on Gradient Metasurface: Preparation and Fusion of Quantum Entanglement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Y">Yu Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Z">Zhaohua Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Guixin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+X">Xi-Feng Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+Q">Qihuang Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+Y">Ying Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08233v1-abstract-short" style="display: inline;"> Gradient metasurface, formed by a set of subwavelength unit cells with different phase modulation, is widely used in polarized beam splitting (BS) in the classical and quantum optics. Specifically, its phase gradient allows the path and polarization of multiple output lights to be locked by corresponding inputs.Using this unique path-polarization locked property, we demonstrate that the single met&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08233v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08233v1-abstract-full" style="display: none;"> Gradient metasurface, formed by a set of subwavelength unit cells with different phase modulation, is widely used in polarized beam splitting (BS) in the classical and quantum optics. Specifically, its phase gradient allows the path and polarization of multiple output lights to be locked by corresponding inputs.Using this unique path-polarization locked property, we demonstrate that the single metasurface can function as sequentially linked beamsplitters, enabling the parallelization of a series of BS processes. Such a parallel BS metasurface provides a multi-beam interference capability for both classical and quantum light manipulation. Taking this advantage, we first prepare path and polarization hybrid entangled states of two, three, and multi photons from unentangled photon sources. Then, the ability of parallel BS-facilitated entanglement is applied to demonstrate entanglement fusion among entangled photon pairs, which can greatly enlarge the entanglement dimension. The principle of parallel BS through the metasurface opens up a versatile way to manipulate the quantum state at the micro/nano scale, which will have potential applications in on-chip quantum optics and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08233v1-abstract-full').style.display = 'none'; document.getElementById('2403.08233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02926">arXiv:2403.02926</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.02926">pdf</a>, <a href="https://arxiv.org/format/2403.02926">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Cascade enhancement and efficient collection of single photon emission under topological protection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jia%2C+Y">Yali Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Z">Zhaohua Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Mo%2C+Z">Zihan Mo</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+Q">Qihuang Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+Y">Ying Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02926v2-abstract-short" style="display: inline;"> High emission rate, high collection efficiency, and immunity to the defects are the requirements of implementing on-chip single photon sources. Here, we theoretically demonstrate that both cascade enhancement and high collection efficiency of emitted photons from single emitter can be achieved simultaneously in topological photonic crystal containing a resonant dielectric nanodisk. The nanodisk ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02926v2-abstract-full').style.display = 'inline'; document.getElementById('2403.02926v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02926v2-abstract-full" style="display: none;"> High emission rate, high collection efficiency, and immunity to the defects are the requirements of implementing on-chip single photon sources. Here, we theoretically demonstrate that both cascade enhancement and high collection efficiency of emitted photons from single emitter can be achieved simultaneously in topological photonic crystal containing a resonant dielectric nanodisk. The nanodisk excited by a magnetic emitter can be regarded as a large equivalent magnetic dipole. The near-field overlapping between this equivalent magnetic dipole and edge state enables to achieve a cascade enhancement of single photon emission with Purcell factor exceeding 4*10^3. These emitted photons are guided into edge states with collection efficiency of more than 90%, which is also corresponding to quantum yield due to topological anti-scattering and the absence of absorption. The proposed mechanism under topological protection has potential applications in on-chip light-matter interaction, quantum light sources, and nanolasers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02926v2-abstract-full').style.display = 'none'; document.getElementById('2403.02926v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02915">arXiv:2403.02915</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.02915">pdf</a>, <a href="https://arxiv.org/format/2403.02915">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Topological-Vacuum-Induced Strong Photon-Exciton Coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jia%2C+Y">Yali Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Mo%2C+Z">Zihan Mo</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Z">Zhaohua Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+Y">Yu Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+Q">Qihuang Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+Y">Ying Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02915v2-abstract-short" style="display: inline;"> The electromagnetic vacuum construction based on micro-nano photonic structures is able to engineer the photon-exciton interaction at the single quantum level. Here, through engineering the electromagnetic vacuum background formed by edge states, we demonstrate a strong photon-exciton coupling in topological photonic crystal containing a dielectric nanoantenna. By guiding the scattering photons in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02915v2-abstract-full').style.display = 'inline'; document.getElementById('2403.02915v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02915v2-abstract-full" style="display: none;"> The electromagnetic vacuum construction based on micro-nano photonic structures is able to engineer the photon-exciton interaction at the single quantum level. Here, through engineering the electromagnetic vacuum background formed by edge states, we demonstrate a strong photon-exciton coupling in topological photonic crystal containing a dielectric nanoantenna. By guiding the scattering photons into the edge states, the linewidth of nanoantenna with more than hundred nanometers in air can be reduced into only several nanometers due to topological robustness, so that both strong coupling condition and high photon collection efficiency can be achieved. Electromagnetic vacuum background under topological protection holds great promise for controlling the light-matter interaction in quantum optics and on-chip quantum information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02915v2-abstract-full').style.display = 'none'; document.getElementById('2403.02915v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.15706">arXiv:2402.15706</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.15706">pdf</a>, <a href="https://arxiv.org/format/2402.15706">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Effects of Non-local Pseudopotentials on the Electrical and Thermal Transport Properties of Aluminum: A Density Functional Theory Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qianrui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mohan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.15706v1-abstract-short" style="display: inline;"> Accurate prediction of electron transport coefficients is crucial for understanding warm dense matter. Utilizing the density functional theory (DFT) with the Kubo-Greenwood formula is widely used to evaluate the electrical and thermal conductivities of electrons. By adding the non-local potential correction term that appears in the dynamic Onsager coefficient and using two different norm-conservin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15706v1-abstract-full').style.display = 'inline'; document.getElementById('2402.15706v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.15706v1-abstract-full" style="display: none;"> Accurate prediction of electron transport coefficients is crucial for understanding warm dense matter. Utilizing the density functional theory (DFT) with the Kubo-Greenwood formula is widely used to evaluate the electrical and thermal conductivities of electrons. By adding the non-local potential correction term that appears in the dynamic Onsager coefficient and using two different norm-conserving pseudopotentials, we predict the electrical and thermal conductivities of electrons for liquid Al (1000 K) and warm dense Al (0.2 to 10 eV). We systematically investigate the effects of non-local terms in the pseudopotentials and the frozen-core approximation on the conductivities. We find that taking into account the non-local potential correction and validating the frozen core approximation is essential for accurately calculating the electrical and thermal transport properties of electrons across a wide range of temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15706v1-abstract-full').style.display = 'none'; document.getElementById('2402.15706v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.15077">arXiv:2402.15077</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.15077">pdf</a>, <a href="https://arxiv.org/format/2402.15077">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The Pixel Charging-up effect in Gas Micro-Pixel Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yi%2C+D">Difan Yi</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qian Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hongbang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+F">Fei Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+H">Huanbo Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+L">Lin Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+Z">Zuke Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yangheng Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.15077v2-abstract-short" style="display: inline;"> This study investigates the charging-up effect on the Topmetal-II- chip in Gas Micro-Pixel Detectors(GMPD). It is found that this effect differs from the charging-up typically observed in gas detector multiplier devices and increases the relative gain of the detector. The research indicates that this effect originates from the accumulation of charges on the insulating layer of the chip&#39;s pixel sur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15077v2-abstract-full').style.display = 'inline'; document.getElementById('2402.15077v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.15077v2-abstract-full" style="display: none;"> This study investigates the charging-up effect on the Topmetal-II- chip in Gas Micro-Pixel Detectors(GMPD). It is found that this effect differs from the charging-up typically observed in gas detector multiplier devices and increases the relative gain of the detector. The research indicates that this effect originates from the accumulation of charges on the insulating layer of the chip&#39;s pixel surface. Iterative simulations using COMSOL and GARFIELD++ are employed to model the variation of detector relative gain with the charging-up effect, and a simple yet effective model is proposed, which aligns well with experimental data. The feasibility of validating the deposition of resistive materials and adjusting the local voltage distribution on the chip to suppress charging-up effects and enhance the relative gain is also verified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.15077v2-abstract-full').style.display = 'none'; document.getElementById('2402.15077v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11449">arXiv:2402.11449</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11449">pdf</a>, <a href="https://arxiv.org/ps/2402.11449">ps</a>, <a href="https://arxiv.org/format/2402.11449">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Nonlinear harmonic spectra in bilayer van der Waals antiferromagnets CrX$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+Q">Y. Q. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Si%2C+M+S">M. S. Si</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G+P">G. P. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11449v1-abstract-short" style="display: inline;"> Bilayer antiferromagnets CrX$_{3}$ (X $=$ Cl, Br, and I) are promising materials for spintronics and optoelectronics that are rooted in their peculiar electronic structures. However, their bands are often hybridized from the interlayer antiferromagnetic ordering, which are difficult to disentangle by traditional methods. In this work, we theoretically show that nonlinear harmonic spectra can diffe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11449v1-abstract-full').style.display = 'inline'; document.getElementById('2402.11449v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11449v1-abstract-full" style="display: none;"> Bilayer antiferromagnets CrX$_{3}$ (X $=$ Cl, Br, and I) are promising materials for spintronics and optoelectronics that are rooted in their peculiar electronic structures. However, their bands are often hybridized from the interlayer antiferromagnetic ordering, which are difficult to disentangle by traditional methods. In this work, we theoretically show that nonlinear harmonic spectra can differentiate subtle differences in their electronic states. In contrast to prior nonlinear optical studies which often use one or two photon energies, we systematically study the wavelength-dependent nonlinear harmonic spectra realized by hundreds of individual dynamical simulations under changed photon energies. Through turning on and off some excitation channels, we can pinpoint every dipole-allowed transition that largely contributes to the second and third harmonics. With the help of momentum matrix elements, highly entangled resonance peaks at a higher energy above the band edge can be assigned to specific transitions between the valence bands and three separate regions of conduction bands. Our findings demonstrate a feasible means to detect very complex electronic structures in an important family of two-dimensional antiferromagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11449v1-abstract-full').style.display = 'none'; document.getElementById('2402.11449v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11172">arXiv:2402.11172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11172">pdf</a>, <a href="https://arxiv.org/format/2402.11172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> A Model of Solar Magnetic Flux Rope Eruption Initiated Primarily by Magnetic Reconnection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qingjun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+C">Chaowei Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+X">Xinkai Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+X">Xueshang Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Zuo%2C+P">Pingbing Zuo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yi Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11172v1-abstract-short" style="display: inline;"> There is a heated debate regarding the specific roles played by ideal magnetohydrodynamic (MHD) instability and magnetic reconnection in the causes of solar eruptions. In the context with a pre-existing magnetic flux rope (MFR) before an eruption, it is widely believed that an ideal MHD instability, in particular, the torus instability, is responsible for triggering and driving the eruption, while&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11172v1-abstract-full').style.display = 'inline'; document.getElementById('2402.11172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11172v1-abstract-full" style="display: none;"> There is a heated debate regarding the specific roles played by ideal magnetohydrodynamic (MHD) instability and magnetic reconnection in the causes of solar eruptions. In the context with a pre-existing magnetic flux rope (MFR) before an eruption, it is widely believed that an ideal MHD instability, in particular, the torus instability, is responsible for triggering and driving the eruption, while reconnection, as invoked in the wake of the erupting MFR, plays a secondary role. Here we present a new numerical MHD model in which the eruption of a pre-existing MFR is primarily triggered and driven by reconnection. In this model, a stable MFR embedded in a strapping field is set as the initial condition. A surface converging flow is then applied at the lower boundary, pushing magnetic flux towards to the main polarity inversion line. It drives a quasi-static evolution of the system, during which a current layer is built up below the MFR with decreasing thickness. Once reconnection starts in the current sheet, the eruption commences, which indicates that the reconnection plays a determining role in triggers the eruption. By further analyzing the works done by in the magnetic flux of the pre-existing MFR and the newly reconnected flux during the acceleration stage of the eruption, we find that the latter plays a major role in driving the eruption. Such a model may explain observed eruptions in which the pre-eruption MFR has not reached the conditions for ideal instability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11172v1-abstract-full').style.display = 'none'; document.getElementById('2402.11172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures, accepted by MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.09652">arXiv:2401.09652</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.09652">pdf</a>, <a href="https://arxiv.org/format/2401.09652">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1741-4326/ad4e47">10.1088/1741-4326/ad4e47 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heuristic predictions of RMP configurations for ELM suppression in ITER burning plasmas and their impact on divertor performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Frerichs%2C+H">H. Frerichs</a>, <a href="/search/physics?searchtype=author&amp;query=van+Blarcum%2C+J">J. van Blarcum</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+Y">Y. Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">L. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+Q">Y. Q. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Loarte%2C+A">A. Loarte</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+J+-">J. -K. Park</a>, <a href="/search/physics?searchtype=author&amp;query=Pitts%2C+R+A">R. A. Pitts</a>, <a href="/search/physics?searchtype=author&amp;query=Schmitz%2C+O">O. Schmitz</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S+M">S. M. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.09652v1-abstract-short" style="display: inline;"> A subspace of resonant magnetic perturbation (RMP) configurations for edge localized mode (ELM) suppression is predicted for H-mode burning plasmas at 15 MA current and 5.3 T magnetic field in ITER. Perturbation of the core plasma can be reduced by a factor of 2 for equivalent edge stability proxies, while the perturbed plasma boundary geometry remains mostly resilient. The striation width of pert&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09652v1-abstract-full').style.display = 'inline'; document.getElementById('2401.09652v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.09652v1-abstract-full" style="display: none;"> A subspace of resonant magnetic perturbation (RMP) configurations for edge localized mode (ELM) suppression is predicted for H-mode burning plasmas at 15 MA current and 5.3 T magnetic field in ITER. Perturbation of the core plasma can be reduced by a factor of 2 for equivalent edge stability proxies, while the perturbed plasma boundary geometry remains mostly resilient. The striation width of perturbed field lines connecting from the main plasma (normalized poloidal flux $&lt; 1$) to the divertor targets is found to be significantly larger than the expected heat load width in the absence of RMPs. This facilitates heat load spreading with peak values at an acceptable level below 10 MW m${}^{-2}$ on the outer target already at moderate gas fueling and low Ne seeding for additional radiative dissipation of the 100 MW of power into the scrape-off layer (SOL). On the inner target, however, re-attachment is predicted away from the equilibrium strike point due to increased upstream heat flux, higher downstream temperature and less efficient impurity radiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.09652v1-abstract-full').style.display = 'none'; document.getElementById('2401.09652v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted in Nuclear Fusion</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.03673">arXiv:2401.03673</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.03673">pdf</a>, <a href="https://arxiv.org/format/2401.03673">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Comparing discriminating abilities of evaluation metrics in link prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiao%2C+X">Xinshan Jiao</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuyan Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qian Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+Y">Yilin Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+Y">Yan-Li Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+E">En Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+D">Dong Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+T">Tao Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.03673v1-abstract-short" style="display: inline;"> Link prediction aims to predict the potential existence of links between two unconnected nodes within a network based on the known topological characteristics. Evaluation metrics are used to assess the effectiveness of algorithms in link prediction. The discriminating ability of these evaluation metrics is vitally important for accurately evaluating link prediction algorithms. In this study, we pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03673v1-abstract-full').style.display = 'inline'; document.getElementById('2401.03673v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.03673v1-abstract-full" style="display: none;"> Link prediction aims to predict the potential existence of links between two unconnected nodes within a network based on the known topological characteristics. Evaluation metrics are used to assess the effectiveness of algorithms in link prediction. The discriminating ability of these evaluation metrics is vitally important for accurately evaluating link prediction algorithms. In this study, we propose an artificial network model, based on which one can adjust a single parameter to monotonically and continuously turn the prediction accuracy of the specifically designed link prediction algorithm. Building upon this foundation, we show a framework to depict the effectiveness of evaluating metrics by focusing on their discriminating ability. Specifically, a quantitative comparison in the abilities of correctly discerning varying prediction accuracies was conducted encompassing nine evaluation metrics: Precision, Recall, F1-Measure, Matthews Correlation Coefficient (MCC), Balanced Precision (BP), the Area Under the receiver operating characteristic Curve (AUC), the Area Under the Precision-Recall curve (AUPR), Normalized Discounted Cumulative Gain (NDCG), and the Area Under the magnified ROC (AUC-mROC). The results indicate that the discriminating abilities of the three metrics, AUC, AUPR, and NDCG, are significantly higher than those of other metrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03673v1-abstract-full').style.display = 'none'; document.getElementById('2401.03673v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02133">arXiv:2401.02133</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02133">pdf</a>, <a href="https://arxiv.org/format/2401.02133">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Weak effects of electron-phonon interactions on the lattice thermal conductivity of wurtzite GaN with high electron concentrations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+J">Jianshi Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shouhang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Tong%2C+Z">Zhen Tong</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+C">Cheng Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiangchuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qianqian Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+Y">Yucheng Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+M">Meng An</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiangjun Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02133v2-abstract-short" style="display: inline;"> Wurtzite gallium nitride (GaN) has great potential for high-frequency and high-power applications due to its excellent electrical and thermal transport properties. However, enhancing the performance of GaN-based power electronics relies on heavy doping. Previous studies showed that electron-phonon interactions have strong effects on the lattice thermal conductivity of GaN due to the Fr枚hlich inter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02133v2-abstract-full').style.display = 'inline'; document.getElementById('2401.02133v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02133v2-abstract-full" style="display: none;"> Wurtzite gallium nitride (GaN) has great potential for high-frequency and high-power applications due to its excellent electrical and thermal transport properties. However, enhancing the performance of GaN-based power electronics relies on heavy doping. Previous studies showed that electron-phonon interactions have strong effects on the lattice thermal conductivity of GaN due to the Fr枚hlich interaction. Surprisingly, our investigation reveals weak effects of electron-phonon interactions on the lattice thermal conductivity of n-type GaN at ultra-high electron concentrations and the impact of the Fr枚hlich interaction can be ignored. The small phonon-electron scattering rate is attributed to the limited scattering channels, quantified by the Fermi surface nesting function. In contrast, there is a significant reduction in the lattice thermal conductivity of p-type GaN at high hole concentrations due to the relatively larger Fermi surface nesting function. Meanwhile, as p-type GaN has relatively smaller electron-phonon matrix elements, the reduction in lattice thermal conductivity is still weaker than that observed in p-type silicon. Our work provides a deep understanding of thermal transport in doped GaN and the conclusions can be further extended to other wide-bandgap semiconductors, including $尾$-Ga2O3, AlN, and ZnO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02133v2-abstract-full').style.display = 'none'; document.getElementById('2401.02133v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01020">arXiv:2401.01020</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01020">pdf</a>, <a href="https://arxiv.org/format/2401.01020">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Long-lived Microwave Electromechanical Systems Enabled by Cubic Silicon-Carbide Membrane Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yulong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+H">Huanying Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qichun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Haihua Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Sillanp%C3%A4%C3%A4%2C+M+A">Mika A. Sillanp盲盲</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Tiefu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01020v1-abstract-short" style="display: inline;"> Cubic silicon-carbide crystals, known for their high thermal conductivity and in-plane stress, hold significant promise for the development of high-quality ($Q$) mechanical oscillators. Enabling coherent electrical manipulation of long-lived mechanical resonators would be instrumental in advancing the development of phononic memories, repeaters, and transducers for microwave quantum states. In thi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01020v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01020v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01020v1-abstract-full" style="display: none;"> Cubic silicon-carbide crystals, known for their high thermal conductivity and in-plane stress, hold significant promise for the development of high-quality ($Q$) mechanical oscillators. Enabling coherent electrical manipulation of long-lived mechanical resonators would be instrumental in advancing the development of phononic memories, repeaters, and transducers for microwave quantum states. In this study, we demonstrate the compatibility of high-stress and crystalline (3C-phase) silicon-carbide membranes with superconducting microwave circuits. We establish a coherent electromechanical interface for long-lived phonons, allowing precise control over the electromechanical cooperativity. This interface enables tunable slow-light time with group delays extending up to an impressive duration of \emph{an hour}. We then investigate a phononic memory based on the high-$Q$ ($10^{8}$) silicon-carbide membrane, capable of storing and retrieving microwave coherent states \emph{on-demand}. The thermal and coherent components can be distinguished through state tomography in quadrature phase space, which shows an exponential increase and decay trend respectively as the storage time increases. The electromechanical interface and phononic memory made from crystalline silicon-carbide membrane possess enticing attributes, including low microwave-induced mechanical heating, phase coherence, an energy decay time of $T_{1}=19.9$~s, and it acquires less than one quantum noise within $蟿_{\textrm{coh}}=41.3$~ms storage period. These findings underscore the unique opportunities provided by cubic silicon-carbide membrane crystals for the storage and transfer of quantum information across distinct components of hybrid quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01020v1-abstract-full').style.display = 'none'; document.getElementById('2401.01020v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13818">arXiv:2312.13818</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.13818">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Hyperuniformity on Mars: Pebbles scattered on sand </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Z">Zheng Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Hallet%2C+B">Bernard Hallet</a>, <a href="/search/physics?searchtype=author&amp;query=Sipos%2C+A+A">Andr谩s A. Sipos</a>, <a href="/search/physics?searchtype=author&amp;query=Domokos%2C+G">G谩bor Domokos</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Quan-Xing Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13818v2-abstract-short" style="display: inline;"> In Gale Crater near Mars&#39; equator, dunes and ripples of sand stand out from the general orderless, rocky terrain. In addition, images from Curiosity, the Mars Science Laboratory rover, reveal more subtle orderly forms: widespread, meter-scale domains of evenly spaced, pebble-size rocks (termed clasts) on wind-blown sand in scattered locations. Here, we examine quantitatively several clast domains&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13818v2-abstract-full').style.display = 'inline'; document.getElementById('2312.13818v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13818v2-abstract-full" style="display: none;"> In Gale Crater near Mars&#39; equator, dunes and ripples of sand stand out from the general orderless, rocky terrain. In addition, images from Curiosity, the Mars Science Laboratory rover, reveal more subtle orderly forms: widespread, meter-scale domains of evenly spaced, pebble-size rocks (termed clasts) on wind-blown sand in scattered locations. Here, we examine quantitatively several clast domains on both Mars and Earth, and compare their geometry with that of random points. The clast distributions are more orderly than expected by chance; they differ significantlty from those associated with uniform (Poisson) random processes. Moreover, they are hyperuniform, a self-organized state recently recognized in diverse active materials and biological systems but that appears novel for planetary surfaces. These patches are often surrounded by recent wind-borne ripples, suggesting an interplay between sand transport, ripple activity and clasts. Using numerical simulations, we show that clast displacements induced by gravity, combined with the evolution of the sand surface caused by aeolian sand transport and ripple migration, can produce realistic hyperuniform and random clast distributions, as well as distinct clast alignements. Our findings highlight the existence of easily overlooked disordered hyperuniform states on ground surfaces, suggesting novel self-organized states beyond distinct geometric patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13818v2-abstract-full').style.display = 'none'; document.getElementById('2312.13818v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 5 figures; updated Fig. 3 and 5</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06216">arXiv:2312.06216</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06216">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Emergent giant ferroelectric properties in cost-effective raw zirconia dioxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xianglong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z">Zengxu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+S">Songbai Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+M">Mingqiang Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yuanmin Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yihao Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+M">Mao Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Lang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06216v3-abstract-short" style="display: inline;"> Ferroelectric fluorite dioxides like hafnium (HfO2)-based materials are considered to be one of the most potential candidates for nowadays large-scale integrated-circuits (ICs). While zirconia (ZrO2)-based fluorites materials, which has the same structure as HfO2 and more abundant resources and lower cost of raw materials, is usually thought to be anti- or ferroelectric-like. Here we reported a gi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06216v3-abstract-full').style.display = 'inline'; document.getElementById('2312.06216v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06216v3-abstract-full" style="display: none;"> Ferroelectric fluorite dioxides like hafnium (HfO2)-based materials are considered to be one of the most potential candidates for nowadays large-scale integrated-circuits (ICs). While zirconia (ZrO2)-based fluorites materials, which has the same structure as HfO2 and more abundant resources and lower cost of raw materials, is usually thought to be anti- or ferroelectric-like. Here we reported a giant ferroelectric remnant polarization (Pr) amounted to 53 渭C/cm2 in orthorhombic ZrO2 thin film at room temperature. This ferroelectricity arises from an electric field induced anti-ferroelectric to ferroelectric phase transition which is particularly noticeable at 77 K. Our work reveals the intrinsic ferroelectricity in ZrO2 thin films and offers a new pathway to understand the ferroelectricity origin in fluorite oxides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06216v3-abstract-full').style.display = 'none'; document.getElementById('2312.06216v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05320">arXiv:2312.05320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05320">pdf</a>, <a href="https://arxiv.org/format/2312.05320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.2514/1.J063440">10.2514/1.J063440 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Uncertainty-aware Surrogate Models for Airfoil Flow Simulations with Denoising Diffusion Probabilistic Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qiang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Thuerey%2C+N">Nils Thuerey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05320v4-abstract-short" style="display: inline;"> Leveraging neural networks as surrogate models for turbulence simulation is a topic of growing interest. At the same time, embodying the inherent uncertainty of simulations in the predictions of surrogate models remains very challenging. The present study makes a first attempt to use denoising diffusion probabilistic models (DDPMs) to train an uncertainty-aware surrogate model for turbulence simul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05320v4-abstract-full').style.display = 'inline'; document.getElementById('2312.05320v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05320v4-abstract-full" style="display: none;"> Leveraging neural networks as surrogate models for turbulence simulation is a topic of growing interest. At the same time, embodying the inherent uncertainty of simulations in the predictions of surrogate models remains very challenging. The present study makes a first attempt to use denoising diffusion probabilistic models (DDPMs) to train an uncertainty-aware surrogate model for turbulence simulations. Due to its prevalence, the simulation of flows around airfoils with various shapes, Reynolds numbers, and angles of attack is chosen as the learning objective. Our results show that DDPMs can successfully capture the whole distribution of solutions and, as a consequence, accurately estimate the uncertainty of the simulations. The performance of DDPMs is also compared with varying baselines in the form of Bayesian neural networks and heteroscedastic models. Experiments demonstrate that DDPMs outperform the other methods regarding a variety of accuracy metrics. Besides, it offers the advantage of providing access to the complete distributions of uncertainties rather than providing a set of parameters. As such, it can yield realistic and detailed samples from the distribution of solutions. We also evaluate an emerging generative modeling variant, flow matching, in comparison to regular diffusion models. The results demonstrate that flow matching addresses the problem of slow sampling speed typically associated with diffusion models. As such, it offers a promising new paradigm for uncertainty quantification with generative models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05320v4-abstract-full').style.display = 'none'; document.getElementById('2312.05320v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published on AIAA Journal. Code and dataset can be found at https://github.com/tum-pbs/Diffusion-based-Flow-Prediction</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 76G25 (Primary) 68T37 (Secondary) </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIAA Journal 2024 62:8, 2912-2933 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01780">arXiv:2311.01780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01780">pdf</a>, <a href="https://arxiv.org/format/2311.01780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s41365-024-01502-5">10.1007/s41365-024-01502-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Design of Hadronic Calorimeter for DarkSHINE Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+R">Rui Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hanqing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+K">Kun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qibin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+S">Siyuan Song</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+T">Tong Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yufeng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Haijun Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Junhua Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yulei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zhiyu Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+C">Chunxiang Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xuliang Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yifan Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01780v4-abstract-short" style="display: inline;"> The sensitivity of the dark photon search through invisible decay final states in low background experiments significantly relies on the neutron and muon veto efficiency, which depends on the amount of material used and the design of detector geometry. This paper presents an optimized design of a hadronic calorimeter (HCAL) used for the DarkSHINE experiment, which is studied using a GEANT4-based s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01780v4-abstract-full').style.display = 'inline'; document.getElementById('2311.01780v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01780v4-abstract-full" style="display: none;"> The sensitivity of the dark photon search through invisible decay final states in low background experiments significantly relies on the neutron and muon veto efficiency, which depends on the amount of material used and the design of detector geometry. This paper presents an optimized design of a hadronic calorimeter (HCAL) used for the DarkSHINE experiment, which is studied using a GEANT4-based simulation framework. The geometry is optimized by comparing a traditional design with uniform absorbers to one that uses different thicknesses at different locations of the detector, which enhances the efficiency of vetoing low-energy neutrons at the sub-GeV level. The overall size and total amount of material used in HCAL are optimized to be lower due to the load and budget requirements, while the overall performance is studied to meet the physical objectives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01780v4-abstract-full').style.display = 'none'; document.getElementById('2311.01780v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.00503">arXiv:2311.00503</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.00503">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Ray computational ghost imaging based on rotational modulation method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Z">Zhi Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Sangang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+S">Shan Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+S">Sirun Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+R">Rongrong Su</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+C">Chuxiang Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L">Li Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+Y">Yucheng Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M">Mingzhe Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Yi Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.00503v1-abstract-short" style="display: inline;"> The CGI (CGI) has the potential of low cost, low dose, and high resolution, which is very attractive for the development of radiation imaging field. However, many sub-coding plates must be used in the modulation process, which greatly affects the development of CGI technology. In order to reduce the coding plates, we refer to the rotation method of computed tomography (CT), then propose a novel CG&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00503v1-abstract-full').style.display = 'inline'; document.getElementById('2311.00503v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.00503v1-abstract-full" style="display: none;"> The CGI (CGI) has the potential of low cost, low dose, and high resolution, which is very attractive for the development of radiation imaging field. However, many sub-coding plates must be used in the modulation process, which greatly affects the development of CGI technology. In order to reduce the coding plates, we refer to the rotation method of computed tomography (CT), then propose a novel CGI method based on rotational modulation method of a single-column striped coding plate. This method utilizes the spatial variation of a single sub-coding plate (rotation) to realize multiple modulation of the ray field and improves the utilization rate of a single sub-coding plate. However, for this rotation scheme of CGI, the traditional binary modulation matrix is no longer applicable. To obtain the system matrix of the rotated striped coding plate, an area model based on beam boundaries is established. Subsequently, numerical and Monte Carlo simulations were conducted. The results reveal that our scheme enables high-quality imaging of N*N resolution objects using only N sub-coding plates, under both full-sampling and under-sampling scenarios. Moreover, our scheme demonstrates superiority over the Hadamard scheme in both imaging quality and the number of required sub-coding plates, whether in scenarios of full-sampling or under-sampling. Finally, an 伪 ray imaging platform was established to further demonstrate the feasibility of the rotational modulation method. By employing our scheme, a mere 8 sub-coding plates were employed to achieve CGI of the radiation source intensity distribution, achieving a resolution of 8*8. Therefore, the novel ray CGI based on rotational modulation method can achieve high-quality imaging effect with fewer sub-coding plates, which has important practical value and research significance for promoting single-pixel radiation imaging technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00503v1-abstract-full').style.display = 'none'; document.getElementById('2311.00503v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17016">arXiv:2310.17016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.17016">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Boosting output performance of contact-separation mode triboelectric nanogenerators by adopting discontinuity and fringing effect: experiment and modelling studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+T">Teresa Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+H">Han Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Valizadeh%2C+N">Navid Valizadeh</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qiong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Bittner%2C+F">Florian Bittner</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L">Ling Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Rabczuk%2C+T">Timon Rabczuk</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">Xiaoning Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhuang%2C+X">Xiaoying Zhuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17016v1-abstract-short" style="display: inline;"> Triboelectric nanogenerators (TENGs) are promising self-powering supplies for a diverse range of intelligent sensing and monitoring devices, especially due to their capability of harvesting electric energy from low frequency and small-scale mechanical motions. Inspired by the fact that contact-separation mode TENGs with small contact areas harvest high electrical outputs due to fringing effect, th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17016v1-abstract-full').style.display = 'inline'; document.getElementById('2310.17016v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17016v1-abstract-full" style="display: none;"> Triboelectric nanogenerators (TENGs) are promising self-powering supplies for a diverse range of intelligent sensing and monitoring devices, especially due to their capability of harvesting electric energy from low frequency and small-scale mechanical motions. Inspired by the fact that contact-separation mode TENGs with small contact areas harvest high electrical outputs due to fringing effect, this study employed discontinuity on the dielectric side of contact-separation mode TENGs to promote fringing electric fields for the enhancement of electrical outputs. The results reveal that the TENGs with more discontinuities show higher overall electric performance. Compared to pristine TENGs, the TENGs with cross discontinuities increased the surface charge by 50% and the power density by 114%. However, one should avoid generating discontinuities on tribonegative side of TENGs using metal blade within a positive-ion atmosphere due to the neutralization through electrically conductive metal blade. The computational simulation validated that the TENGs with discontinuities obtained higher electrical outputs, and further investigated the effect of discontinuity gap size and array distance on TENGs performance. This study has provided a promising method for the future design of TENGs using discontinuous structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17016v1-abstract-full').style.display = 'none'; document.getElementById('2310.17016v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13176">arXiv:2310.13176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13176">pdf</a>, <a href="https://arxiv.org/format/2310.13176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> ITER-IA 3D MHD Simulations of Shattered Pellet Injection(SPI)- D1.1 Optimization of the SPI model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+C+C">Charlson. C. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Lyons%2C+B+C">B. C. Lyons</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+Q">Y. Q. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=McClenaghan%2C+J+T">J. T. McClenaghan</a>, <a href="/search/physics?searchtype=author&amp;query=Parks%2C+P+B">P. B. Parks</a>, <a href="/search/physics?searchtype=author&amp;query=Lao%2C+L+L">L. L. Lao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13176v1-abstract-short" style="display: inline;"> This report is in partial fulfillment of deliverable D1.1 Optimization of the SPI model and summarizes axisymmetric ITER SPI parameter scans performed by the NIMROD code for several ITER equilibria. These axisymmetric parameter scans are to assess the sensitivity of various injection parameters in preparation for 3D MHD SPI simulations. The scans are comprised of 5 scenarios: S1 - fragment size sc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13176v1-abstract-full').style.display = 'inline'; document.getElementById('2310.13176v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13176v1-abstract-full" style="display: none;"> This report is in partial fulfillment of deliverable D1.1 Optimization of the SPI model and summarizes axisymmetric ITER SPI parameter scans performed by the NIMROD code for several ITER equilibria. These axisymmetric parameter scans are to assess the sensitivity of various injection parameters in preparation for 3D MHD SPI simulations. The scans are comprised of 5 scenarios: S1 - fragment size scan : 3 uniform pencil beam, 1 distributed size pencil beam S2 - velocity scan : v = [250,500,750]m/s S3 - velocity dispersion scan : dv/v = [0.2,0.4] (linear distribution) S4 - poloidal extent of plume : [15&#39; ,45&#39; ] (linear distribution) (dv/v=0.2) S5 - poloidal injection angle : +/-[20&#39; ,45&#39; ] (dv/v=0.2) These scans are performed with several ITER equilibria representative of the operating range, from low current and thermal energy (H123 5MA, 29MJ Hydrogen H-mode) to high current and high thermal energy (DT24 15MA, 370MJ D-T H-mode). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13176v1-abstract-full').style.display = 'none'; document.getElementById('2310.13176v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in partial fulfillment of ITER Agreement Ref: IO/IA/20/4300002130 to the Agreement on Scientific Cooperation Ref: LGA-2019-A-73</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13172">arXiv:2310.13172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13172">pdf</a>, <a href="https://arxiv.org/format/2310.13172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> ITER-IA 3D MHD Simulations of Shattered Pellet Injection(SPI) -- D1.3 Code Validation (DIII-D) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kim%2C+C+C">Charlson. C. Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Bechtel%2C+T">T. Bechtel</a>, <a href="/search/physics?searchtype=author&amp;query=Herfindal%2C+J+L">J. L. Herfindal</a>, <a href="/search/physics?searchtype=author&amp;query=Lyons%2C+B+C">B. C. Lyons</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y+Q">Y. Q. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Parks%2C+P+B">P. B. Parks</a>, <a href="/search/physics?searchtype=author&amp;query=Lao%2C+L">L. Lao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13172v1-abstract-short" style="display: inline;"> This report is in partial fulfillment of deliverable D1.3 Code Validation (DIII-D). These simulations focus on thermal quench phase of the SPI mitigation and are not typically carried beyond it to the current spike and subsequent current quench. NIMROD SPI simulations[1] are validated against DIII-D experiments. The target plasma for these simulations is DIII-D 160606@02990ms. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13172v1-abstract-full" style="display: none;"> This report is in partial fulfillment of deliverable D1.3 Code Validation (DIII-D). These simulations focus on thermal quench phase of the SPI mitigation and are not typically carried beyond it to the current spike and subsequent current quench. NIMROD SPI simulations[1] are validated against DIII-D experiments. The target plasma for these simulations is DIII-D 160606@02990ms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13172v1-abstract-full').style.display = 'none'; document.getElementById('2310.13172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in partial fulfillment of ITER Agreement Ref: IO/IA/20/4300002130 to the Agreement on Scientific Cooperation Ref: LGA-2019-A-73</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Liu%2C+Q&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Q&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Q&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Q&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Q&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Liu%2C+Q&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10