CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 278 results for author: <span class="mathjax">Tang, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Tang%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tang, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tang%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tang, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Tang%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Tang%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+J&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13331">arXiv:2411.13331</a> <span> [<a href="https://arxiv.org/pdf/2411.13331">pdf</a>, <a href="https://arxiv.org/format/2411.13331">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Versatile photonic frequency synthetic dimensions using a single Mach-Zehnder-interferometer-assisted device on thin-film lithium niobate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhao-An Wang</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+X">Xiao-Dong Zeng</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yi-Tao Wang</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+J">Jia-Ming Ren</a>, <a href="/search/physics?searchtype=author&query=Ao%2C+C">Chun Ao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhi-Peng Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wei Liu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+N">Nai-Jie Guo</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+L">Lin-Ke Xie</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jun-You Liu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yu-Hang Ma</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y">Ya-Qi Wu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shuang Wang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jian-Shun Tang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13331v1-abstract-short" style="display: inline;"> Investigating physical models with photonic synthetic dimensions has been generating great interest in vast fields of science. The rapid developing thin-film lithium niobate (TFLN) platform, for its numerous advantages including high electro-optic coefficient and scalability, is well compatible with the realization of synthetic dimensions in the frequency together with spatial domain. While coupli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13331v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13331v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13331v1-abstract-full" style="display: none;"> Investigating physical models with photonic synthetic dimensions has been generating great interest in vast fields of science. The rapid developing thin-film lithium niobate (TFLN) platform, for its numerous advantages including high electro-optic coefficient and scalability, is well compatible with the realization of synthetic dimensions in the frequency together with spatial domain. While coupling resonators with fixed beam splitters is a common experimental approach, it often lacks tunability and limits coupling between adjacent lattices to sites occupying the same frequency domain positions. Here, on the contrary, we conceive the resonator arrays connected by electro-optic tunable Mach-Zehnder interferometers in our configuration instead of fixed beam splitters. By applying bias voltage and RF modulation on the interferometers, our design extends such coupling to long-range scenario and allows for continuous tuning on each coupling strength and synthetic effective magnetic flux. Therefore, our design enriches controllable coupling types that are essential for building programmable lattice networks and significantly increases versatility. As the example, we experimentally fabricate a two-resonator prototype on the TFLN platform, and on this single chip we realize well-known models including tight-binding lattices, topological Hall ladder and Creutz ladder. We directly observe the band structures in the quasi-momentum space and important phenomena such as spin-momentum locking and the Aharonov-Bohm cage effect. These results demonstrate the potential for convenient simulations of more complex models in our configuration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13331v1-abstract-full').style.display = 'none'; document.getElementById('2411.13331v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10721">arXiv:2411.10721</a> <span> [<a href="https://arxiv.org/pdf/2411.10721">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> High-gain optical parametric amplification with continuous-wave pump using domain-engineered thin film lithium niobate waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+M">Mengwen Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chenyu Wang</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+K">Kunpeng Jia</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+X">Xiao-Hui Tian</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jie Tang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+C">Chunxi Zhu</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+X">Xiaowen Gu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Z">Zexing Zhao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zikang Wang</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+Z">Zhilin Ye</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Ji Tang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+Z">Zhong Yan</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+G">Guang Qian</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+B">Biaobing Jin</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhenlin Wang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+S">Shi-Ning Zhu</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zhenda Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10721v1-abstract-short" style="display: inline;"> While thin film lithium niobate (TFLN) is known for efficient signal generation, on-chip signal amplification remains challenging from fully integrated optical communication circuits. Here we demonstrate the first continuous-wave-pump optical parametric amplification (OPA) using an x-cut domain-engineered TFLN waveguide, with high gain over the telecom band up to 13.9 dB, and test it for high sign… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10721v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10721v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10721v1-abstract-full" style="display: none;"> While thin film lithium niobate (TFLN) is known for efficient signal generation, on-chip signal amplification remains challenging from fully integrated optical communication circuits. Here we demonstrate the first continuous-wave-pump optical parametric amplification (OPA) using an x-cut domain-engineered TFLN waveguide, with high gain over the telecom band up to 13.9 dB, and test it for high signal-to-noise ratio signal amplification using a commercial optical communication module pair. Fabricated in wafer scale using common process as devices including modulators, this OPA device marks an important step in TFLN photonic integration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10721v1-abstract-full').style.display = 'none'; document.getElementById('2411.10721v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09958">arXiv:2411.09958</a> <span> [<a href="https://arxiv.org/pdf/2411.09958">pdf</a>, <a href="https://arxiv.org/format/2411.09958">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Post-selection shifts the transition frequency of helium in an atomic beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wen%2C+J">Jin-Lu Wen</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jia-Dong Tang</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+Y">Ya-Nan Lv</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Y+R">Yu R. Sun</a>, <a href="/search/physics?searchtype=author&query=Zou%2C+C">Chang-Ling Zou</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+J">Jun-Feng Dong</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+S">Shui-Ming Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09958v1-abstract-short" style="display: inline;"> Post-selecting output states in measurements can effectively amplify weak signals and improve precision. However, post-selection effects may also introduce unintended biases in precision measurements. Here, we investigate the influence of post-selection in the precision spectroscopy of the $2^3S - 2^3P$ transition of helium ($^4$He) using an atomic beam. We directly observe that post-selection bas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09958v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09958v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09958v1-abstract-full" style="display: none;"> Post-selecting output states in measurements can effectively amplify weak signals and improve precision. However, post-selection effects may also introduce unintended biases in precision measurements. Here, we investigate the influence of post-selection in the precision spectroscopy of the $2^3S - 2^3P$ transition of helium ($^4$He) using an atomic beam. We directly observe that post-selection based on atomic positions causes a shift in the measured transition frequency, amounting to approximately -55 kHz. After accounting for this post-selection shift, we obtain a corrected frequency of $276,764,094,712.45 \pm 0.86$ kHz for the $2^3S_1 - 2^3P_0$ transition. Combining this result with existing data for $^3$He, we derive a new value for the difference in squared nuclear charge radii, $未r^2 [r_{h}^{2} - r_伪^{2}] = 1.0733 \pm 0.0021$ fm$^2$. This value shows a $2.8蟽$ deviation from measurements of muonic helium ions, potentially pointing to new physics that challenges lepton universality in quantum electrodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09958v1-abstract-full').style.display = 'none'; document.getElementById('2411.09958v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages including appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09345">arXiv:2411.09345</a> <span> [<a href="https://arxiv.org/pdf/2411.09345">pdf</a>, <a href="https://arxiv.org/format/2411.09345">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DarkSHINE Baseline Design Report: Physics Prospects and Detector Technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jing Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Ji-Yuan Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jun-Feng Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+C">Chang-Bo Fu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jun Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yi-Han Guo</a>, <a href="/search/physics?searchtype=author&query=Khaw%2C+K+S">Kim Siang Khaw</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jia-Lin Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Y">Yu-ming Lin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+D">Dan-Ning Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kang Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kun Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qi-Bin Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhi Liu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Ze-Jia Lu</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+M">Meng Lv</a>, <a href="/search/physics?searchtype=author&query=Song%2C+S">Si-Yuan Song</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+T">Tong Sun</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jian-Nan Tang</a>, <a href="/search/physics?searchtype=author&query=Wan%2C+W">Wei-Shi Wan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Dong Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiao-Long Wang</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09345v1-abstract-short" style="display: inline;"> DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High repetition rate XFEL and Extreme light facility (SHINE). This report elaborates the baseline design of DarkSHINE experiment by introducing the physics g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09345v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09345v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09345v1-abstract-full" style="display: none;"> DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High repetition rate XFEL and Extreme light facility (SHINE). This report elaborates the baseline design of DarkSHINE experiment by introducing the physics goals, experimental setups, details of each sub-detector system technical designs, signal and backgground modelings, expected search sensitivities and future prospects, which mark an important step towards the further prototyping and technical demonstrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09345v1-abstract-full').style.display = 'none'; document.getElementById('2411.09345v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07620">arXiv:2411.07620</a> <span> [<a href="https://arxiv.org/pdf/2411.07620">pdf</a>, <a href="https://arxiv.org/format/2411.07620">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Investigation and optimization of the deconvolution method for PMT waveform reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jingzhe Tang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+T">Tianying Xiao</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+X">Xuan Tang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yongbo Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07620v1-abstract-short" style="display: inline;"> Photomultiplier tubes (PMTs) are extensively employed as photosensors in neutrino and dark matter detection. The precise charge and timing information extracted from the PMT waveform plays a crucial role in energy and vertex reconstruction. In this study, we investigate the deconvolution algorithm utilized for PMT waveform reconstruction, while enhancing the timing separation ability for pile-up h… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07620v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07620v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07620v1-abstract-full" style="display: none;"> Photomultiplier tubes (PMTs) are extensively employed as photosensors in neutrino and dark matter detection. The precise charge and timing information extracted from the PMT waveform plays a crucial role in energy and vertex reconstruction. In this study, we investigate the deconvolution algorithm utilized for PMT waveform reconstruction, while enhancing the timing separation ability for pile-up hits by redesigning filters based on the time-frequency uncertainty principle. This filter design sacrifices signal-to-noise ratio (SNR) to achieve narrower pulse widths. Furthermore, we optimize the selection of signal pulses in the case of low SNR based on Short-Time Fourier Transform (STFT). Monte Carlo data confirms that our optimization yields enhanced reconstruction performance: improving timing separation ability for pile-up hits from $\sim$10 ns to $3\sim5$ ns, while controlling residual nonlinearity of charge reconstruction within 1\%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07620v1-abstract-full').style.display = 'none'; document.getElementById('2411.07620v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02966">arXiv:2411.02966</a> <span> [<a href="https://arxiv.org/pdf/2411.02966">pdf</a>, <a href="https://arxiv.org/format/2411.02966">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5281/zenodo.13970100">10.5281/zenodo.13970100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MuCol Milestone Report No. 5: Preliminary Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Accettura%2C+C">Carlotta Accettura</a>, <a href="/search/physics?searchtype=author&query=Adrian%2C+S">Simon Adrian</a>, <a href="/search/physics?searchtype=author&query=Agarwal%2C+R">Rohit Agarwal</a>, <a href="/search/physics?searchtype=author&query=Ahdida%2C+C">Claudia Ahdida</a>, <a href="/search/physics?searchtype=author&query=Aim%C3%A9%2C+C">Chiara Aim茅</a>, <a href="/search/physics?searchtype=author&query=Aksoy%2C+A">Avni Aksoy</a>, <a href="/search/physics?searchtype=author&query=Alberghi%2C+G+L">Gian Luigi Alberghi</a>, <a href="/search/physics?searchtype=author&query=Alden%2C+S">Siobhan Alden</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+L">Luca Alfonso</a>, <a href="/search/physics?searchtype=author&query=Amapane%2C+N">Nicola Amapane</a>, <a href="/search/physics?searchtype=author&query=Amorim%2C+D">David Amorim</a>, <a href="/search/physics?searchtype=author&query=Andreetto%2C+P">Paolo Andreetto</a>, <a href="/search/physics?searchtype=author&query=Anulli%2C+F">Fabio Anulli</a>, <a href="/search/physics?searchtype=author&query=Appleby%2C+R">Rob Appleby</a>, <a href="/search/physics?searchtype=author&query=Apresyan%2C+A">Artur Apresyan</a>, <a href="/search/physics?searchtype=author&query=Asadi%2C+P">Pouya Asadi</a>, <a href="/search/physics?searchtype=author&query=Mahmoud%2C+M+A">Mohammed Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&query=Auchmann%2C+B">Bernhard Auchmann</a>, <a href="/search/physics?searchtype=author&query=Back%2C+J">John Back</a>, <a href="/search/physics?searchtype=author&query=Badea%2C+A">Anthony Badea</a>, <a href="/search/physics?searchtype=author&query=Bae%2C+K+J">Kyu Jung Bae</a>, <a href="/search/physics?searchtype=author&query=Bahng%2C+E+J">E. J. Bahng</a>, <a href="/search/physics?searchtype=author&query=Balconi%2C+L">Lorenzo Balconi</a>, <a href="/search/physics?searchtype=author&query=Balli%2C+F">Fabrice Balli</a>, <a href="/search/physics?searchtype=author&query=Bandiera%2C+L">Laura Bandiera</a> , et al. (369 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02966v1-abstract-short" style="display: inline;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02966v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02966v1-abstract-full" style="display: none;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power consumption of the facility. The data is collected from a collaborative spreadsheet and transferred to overleaf. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'none'; document.getElementById('2411.02966v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18817">arXiv:2410.18817</a> <span> [<a href="https://arxiv.org/pdf/2410.18817">pdf</a>, <a href="https://arxiv.org/format/2410.18817">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Conceptual Design of the Muonium-to-Antimuonium Conversion Experiment (MACE) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bai%2C+A">Ai-Yu Bai</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+H">Hanjie Cai</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C">Chang-Lin Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Siyuan Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xurong Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yu Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+W">Weibin Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+L">Ling-Yun Dai</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+R">Rui-Rui Fan</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+L">Li Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zihao Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+Y">Yuan He</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+Z">Zhilong Hou</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yinyuan Huang</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+H">Huan Jia</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+H">Hao Jiang</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+H">Han-Tao Jing</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+X">Xiaoshen Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hai-Bo Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jincheng Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+S">Shulin Liu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+G">Guihao Lu</a>, <a href="/search/physics?searchtype=author&query=Miao%2C+H">Han Miao</a>, <a href="/search/physics?searchtype=author&query=Ning%2C+Y">Yunsong Ning</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18817v1-abstract-short" style="display: inline;"> The spontaneous conversion of muonium to antimuonium is one of the interesting charged lepton flavor violation phenomena, offering a sensitive probe of potential new physics and serving as a tool to constrain the parameter space beyond the Standard Model. Utilizing a high-intensity muon beam, a Michel electron magnetic spectrometer and a positron transport solenoid together with a positron detecti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18817v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18817v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18817v1-abstract-full" style="display: none;"> The spontaneous conversion of muonium to antimuonium is one of the interesting charged lepton flavor violation phenomena, offering a sensitive probe of potential new physics and serving as a tool to constrain the parameter space beyond the Standard Model. Utilizing a high-intensity muon beam, a Michel electron magnetic spectrometer and a positron transport solenoid together with a positron detection system, MACE aims to discover or constrain this rare process at the conversion probability beyond the level of $10^{-13}$. This report provides an overview of the theoretical framework and detailed experimental design in the search for the muonium-to-antimuonium conversion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18817v1-abstract-full').style.display = 'none'; document.getElementById('2410.18817v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">115 pages, 59 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05635">arXiv:2410.05635</a> <span> [<a href="https://arxiv.org/pdf/2410.05635">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> </div> <p class="title is-5 mathjax"> Novel inverse multi-objective optimization-empowered design of microperforated panels for enhanced low-frequency noise mitigation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Duo Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+S">Sichen Yuan</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiong Tang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+K">Kai Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05635v1-abstract-short" style="display: inline;"> Microperforated panels (MPPs) display excellent capacity in noise control applications owing to their high strength, simple design, and efficacy in low-frequency sound absorption. Traditionally, the development of MPPs has relied on a trial-and-error design approach. Although simple optimization-based methods have recently begun to be employed, these designs often overlook practical considerations… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05635v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05635v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05635v1-abstract-full" style="display: none;"> Microperforated panels (MPPs) display excellent capacity in noise control applications owing to their high strength, simple design, and efficacy in low-frequency sound absorption. Traditionally, the development of MPPs has relied on a trial-and-error design approach. Although simple optimization-based methods have recently begun to be employed, these designs often overlook practical considerations, such as the increased costs associated with adding more MPP layers, which presents a gap to achieve the practical feasibility of MPP deployment. To address this, the study aims to develop an inverse multi-objective optimization-empowered framework for MPP design to enhance low-frequency noise mitigation while minimizing fabrication costs. Specifically, a finite element (FE) model is established to conduct the acoustic analysis of MPPs, followed by thorough experimental validation. A novel multi-objective particle swarm optimization algorithm (MOPSO) is then developed to cope with mixed-type design variables with interrelations inherent to the MPP architecture. Using the high-fidelity FE model as a cornerstone, the MOPSO guides the inverse optimization analysis to yield multiple non-dominant solutions. These solutions not only avoid the trap of local optima, but also allow for continuous screening to ensure the engineering viability based on empirical judgment. The results clearly demonstrate the effectiveness of the proposed methodology. The MPPs designed in this study show great potential for mitigating indoor noise in buildings, addressing noise issues arising from rapid urbanization and transportation development. Furthermore, the novel optimization strategy proposed in this study holds wide applicability for other sound absorption materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05635v1-abstract-full').style.display = 'none'; document.getElementById('2410.05635v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05155">arXiv:2410.05155</a> <span> [<a href="https://arxiv.org/pdf/2410.05155">pdf</a>, <a href="https://arxiv.org/format/2410.05155">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Formation of Anisotropic Polarons in Antimony Selenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yijie Shi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xi Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhong Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Hua%2C+F">Fuyong Hua</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C">Chao Chen</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+C">Chunlong Hu</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiang Tang</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+W">Wenxi Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05155v1-abstract-short" style="display: inline;"> Antimony Selenide (Sb$_2$Se$_3$) is an attractive candidate of photovoltaics with not yet satisfying efficiency. Beside defects, polaron formation originated from lattice distortion was proposed to account for trapping free carriers, and the subsequent photoexcitation dynamics and optoelectronic properties, but such a mechanism is still lack of structural observations. Here we directly track the p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05155v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05155v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05155v1-abstract-full" style="display: none;"> Antimony Selenide (Sb$_2$Se$_3$) is an attractive candidate of photovoltaics with not yet satisfying efficiency. Beside defects, polaron formation originated from lattice distortion was proposed to account for trapping free carriers, and the subsequent photoexcitation dynamics and optoelectronic properties, but such a mechanism is still lack of structural observations. Here we directly track the pathways of carrier and lattice evolutions after photoexcitation through optical and electron diffraction pump-probe methods, revealing the temporal correlations between dynamics of both degrees of freedom. The observed opposite separation changes of Se2-Sb2 and Sb2-Sb1 atom pairs in a few picoseconds, and the intermediate state induced by local structural distortions lasting several tens of picoseconds, coinciding with the optical phonons population and coupling, and the trapping process of carriers, respectively, together with the analyses of modulation on diffuse scattering by the atomic displacement fields of polaron model, indicate the formation of anisotropic polarons with large size. Our findings provide carrier and structural information for helping the elucidation of polaron scenario in Sb2Se3, and probably in materials with anisotropic structure and soft lattice which are popular in developing novel optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05155v1-abstract-full').style.display = 'none'; document.getElementById('2410.05155v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.17114">arXiv:2408.17114</a> <span> [<a href="https://arxiv.org/pdf/2408.17114">pdf</a>, <a href="https://arxiv.org/format/2408.17114">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design of a CsI(Tl) Calorimeter for Muonium-to-Antimuonium Conversion Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+S">Siyuan Chen</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+S">Shihan Zhao</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+W">Weizhi Xiong</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+Y">Ye Tian</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+H">Hui Jiang</a>, <a href="/search/physics?searchtype=author&query=Ling%2C+J">Jiacheng Ling</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shishe Wang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jian Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.17114v2-abstract-short" style="display: inline;"> The Muonium-to-Antimuonium Conversion Experiment (MACE) is proposed to search for charged lepton flavor violation and increase the sensitivity by three orders of magnitude compared to the PSI experiment in the 1990s. A clear signature of this conversion is the positron produced from antimuonium decay. This paper presents a near-$4蟺$-coverage calorimeter designed for MACE, which can provide an ener… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17114v2-abstract-full').style.display = 'inline'; document.getElementById('2408.17114v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.17114v2-abstract-full" style="display: none;"> The Muonium-to-Antimuonium Conversion Experiment (MACE) is proposed to search for charged lepton flavor violation and increase the sensitivity by three orders of magnitude compared to the PSI experiment in the 1990s. A clear signature of this conversion is the positron produced from antimuonium decay. This paper presents a near-$4蟺$-coverage calorimeter designed for MACE, which can provide an energy resolution of 9% at 511 keV, and a signal efficiency of 55.5% for annihilation $纬$-ray events at maximum. Detailed Monte-Carlo simulations using MACE offline software based on \textsc{Geant4} are performed for geometry optimization, coincidence system design, background estimation, and benchmark detector validation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17114v2-abstract-full').style.display = 'none'; document.getElementById('2408.17114v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02984">arXiv:2408.02984</a> <span> [<a href="https://arxiv.org/pdf/2408.02984">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Direct measurement of topological invariants through temporal adiabatic evolution of bulk states in the synthetic Brillouin zone </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhao-Xian Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yuan-hong Zhang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+X">Xiao-Chen Sun</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+R">Ruo-Yang Zhang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiang-Shan Tang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+X">Xin Yang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+X">Xue-Feng Zhu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yan-Qing Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02984v1-abstract-short" style="display: inline;"> Mathematically, topological invariants arise from the parallel transport of eigenstates on the energy bands, which, in physics, correspond to the adiabatic dynamical evolution of transient states. It determines the presence of boundary states, while lacking direct measurements. Here, we develop time-varying programmable coupling circuits between acoustic cavities to mimic the Hamiltonians in the B… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02984v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02984v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02984v1-abstract-full" style="display: none;"> Mathematically, topological invariants arise from the parallel transport of eigenstates on the energy bands, which, in physics, correspond to the adiabatic dynamical evolution of transient states. It determines the presence of boundary states, while lacking direct measurements. Here, we develop time-varying programmable coupling circuits between acoustic cavities to mimic the Hamiltonians in the Brillouin zone, with which excitation and adiabatic evolution of bulk states are realized in a unit cell. By extracting the Berry phases of the bulk band, topological invariants, including the Zak phase for the SSH model and the Chern number for the AAH model, are obtained convincingly. The bulk state evolution also provides insight into the topological charges of our newly developed non-Abelian models, which are also verified by observing the adiabatic eigenframe rotation. Our work not only provides a general recipe for telling various topological invariants but also sheds light on transient acoustic wave manipulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02984v1-abstract-full').style.display = 'none'; document.getElementById('2408.02984v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20723">arXiv:2407.20723</a> <span> [<a href="https://arxiv.org/pdf/2407.20723">pdf</a>, <a href="https://arxiv.org/format/2407.20723">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design of High-speed readout electronics for the DarkSHINE electromagnetic calorimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yihan Guo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kun Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yongqi Tan</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiannan Tang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+W">Weihao Wu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H">Haijun Yang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Z">Zhiyu Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhi%2C+W">Wei Zhi</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Z">Zhizhen Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20723v1-abstract-short" style="display: inline;"> The DarkSHINE experiment aims to search for dark photons by measuring the energy loss of the electrons recoiled from fixed-target. Its electromagnetic calorimeter is primarily responsible for accurately reconstructing the energy of the recoil electrons and bremsstrahlung photons. The performance of the electromagnetic calorimeter is crucial, as its energy measurement precision directly determines… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20723v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20723v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20723v1-abstract-full" style="display: none;"> The DarkSHINE experiment aims to search for dark photons by measuring the energy loss of the electrons recoiled from fixed-target. Its electromagnetic calorimeter is primarily responsible for accurately reconstructing the energy of the recoil electrons and bremsstrahlung photons. The performance of the electromagnetic calorimeter is crucial, as its energy measurement precision directly determines the sensitivity to the search for dark photons. The DarkSHINE electromagnetic calorimeter uses LYSO crystals to form a fully absorptive electromagnetic calorimeter. It utilizes SiPMs to detect scintillation light in the crystals, and its readout electronics system deduces the deposited energy in the crystals by measuring the number of photoelectric signals generated by the SiPMs. The DarkSHINE electromagnetic calorimeter aims to operate at an event rate of 1-10 MHz, detecting energies ranging from 1 MeV to 1 GeV. To meet the requirements of high energy measurement precision, high event rate, and large dynamic range, we have researched and designed a readout electronics system based on dual-channel high-speed ADCs and a customized DAQ. The front-end amplification part of this system uses low-noise trans-impedance amplifiers to achieve high-precision waveform amplification. It successfully achieves a dynamic range up to a thousandfold through a double-gain readout scheme. The digital part uses 1 GSPS high-speed ADCs to achieve non-dead-time, high-precision waveform digitization. The DAQ part uses JESD204B high-speed serial protocol to read out the signal from ADC, and transmit it to PC software for processing and storage. Test results show a signal-to-noise ratio greater than 66 dBFS and an ENOB greater than 10.6 bits. Energy spectra measurements have been conducted using LYSO crystals and SiPMs, and an energy resolution of 5.96% at the 2.6 MeV gamma peak of Th-232 has been achieved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20723v1-abstract-full').style.display = 'none'; document.getElementById('2407.20723v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17800">arXiv:2407.17800</a> <span> [<a href="https://arxiv.org/pdf/2407.17800">pdf</a>, <a href="https://arxiv.org/format/2407.17800">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design of a LYSO Crystal Electromagnetic Calorimeter for DarkSHINE Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+Z">Zhiyu Zhao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qibin Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jiyuan Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jing Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Junfeng Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+C">Changbo Fu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jun Guo</a>, <a href="/search/physics?searchtype=author&query=Khaw%2C+K+S">Kim Siang Khaw</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+D">Danning Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kun Liu</a>, <a href="/search/physics?searchtype=author&query=Song%2C+S">Siyuan Song</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+T">Tong Sun</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiannan Tang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yufeng Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+W">Weihao Wu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H">Haijun Yang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Y">Yuming Lin</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+R">Rui Yuan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yulei Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yunlong Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+B">Baihong Zhou</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17800v2-abstract-short" style="display: inline;"> This paper presents the design and optimization of a LYSO crystal electromagnetic calorimeter (ECAL) for the DarkSHINE experiment, which aims to search for dark photons as potential mediators of dark forces. The ECAL design was evaluated through comprehensive simulations, focusing on optimizing dimensions, material selection, energy distribution, and energy resolution. The ECAL configuration consi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17800v2-abstract-full').style.display = 'inline'; document.getElementById('2407.17800v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17800v2-abstract-full" style="display: none;"> This paper presents the design and optimization of a LYSO crystal electromagnetic calorimeter (ECAL) for the DarkSHINE experiment, which aims to search for dark photons as potential mediators of dark forces. The ECAL design was evaluated through comprehensive simulations, focusing on optimizing dimensions, material selection, energy distribution, and energy resolution. The ECAL configuration consists of 21$\times$21$\times$11 LYSO crystals, each measuring 2.5$\times$2.5$\times$4 cm$^3$, arranged in a staggered layout to improve signal detection efficiency. A 4 GeV energy dynamic range was established to ensure accurate energy measurements without saturation, which is essential for background rejection and signal identification. A detailed digitization model was developed to simulate the scintillation, SiPM, and ADC behaviors, providing a more realistic representation of detector performance. Additionally, the study assessed radiation damage in the ECAL region, highlighting the necessity of radiation-resistant scintillators and silicon sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17800v2-abstract-full').style.display = 'none'; document.getElementById('2407.17800v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14553">arXiv:2407.14553</a> <span> [<a href="https://arxiv.org/pdf/2407.14553">pdf</a>, <a href="https://arxiv.org/format/2407.14553">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Machine Learning for Improved Current Density Reconstruction from 2D Vector Magnetic Images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Reed%2C+N+R">Niko R. Reed</a>, <a href="/search/physics?searchtype=author&query=Bhutto%2C+D">Danyal Bhutto</a>, <a href="/search/physics?searchtype=author&query=Turner%2C+M+J">Matthew J. Turner</a>, <a href="/search/physics?searchtype=author&query=Daly%2C+D+M">Declan M. Daly</a>, <a href="/search/physics?searchtype=author&query=Oliver%2C+S+M">Sean M. Oliver</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiashen Tang</a>, <a href="/search/physics?searchtype=author&query=Olsson%2C+K+S">Kevin S. Olsson</a>, <a href="/search/physics?searchtype=author&query=Langellier%2C+N">Nicholas Langellier</a>, <a href="/search/physics?searchtype=author&query=Ku%2C+M+J+H">Mark J. H. Ku</a>, <a href="/search/physics?searchtype=author&query=Rosen%2C+M+S">Matthew S. Rosen</a>, <a href="/search/physics?searchtype=author&query=Walsworth%2C+R+L">Ronald L. Walsworth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14553v2-abstract-short" style="display: inline;"> The reconstruction of electrical current densities from magnetic field measurements is an important technique with applications in materials science, circuit design, quality control, plasma physics, and biology. Analytic reconstruction methods exist for planar currents, but break down in the presence of high spatial frequency noise or large standoff distance, restricting the types of systems that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14553v2-abstract-full').style.display = 'inline'; document.getElementById('2407.14553v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14553v2-abstract-full" style="display: none;"> The reconstruction of electrical current densities from magnetic field measurements is an important technique with applications in materials science, circuit design, quality control, plasma physics, and biology. Analytic reconstruction methods exist for planar currents, but break down in the presence of high spatial frequency noise or large standoff distance, restricting the types of systems that can be studied. Here, we demonstrate the use of a deep convolutional neural network for current density reconstruction from two-dimensional (2D) images of vector magnetic fields acquired by a quantum diamond microscope (QDM) utilizing a surface layer of Nitrogen Vacancy (NV) centers in diamond. Trained network performance significantly exceeds analytic reconstruction for data with high noise or large standoff distances. This machine learning technique can perform quality inversions on lower SNR data, reducing the data collection time by a factor of about 400 and permitting reconstructions of weaker and three-dimensional current sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14553v2-abstract-full').style.display = 'none'; document.getElementById('2407.14553v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures. Includes Supplemental Information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14036">arXiv:2407.14036</a> <span> [<a href="https://arxiv.org/pdf/2407.14036">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultra-compact beam steering nanolasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xinghong Chen</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+M">Mingxuan Gu</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiankai Tang</a>, <a href="/search/physics?searchtype=author&query=Sang%2C+Y">Yungang Sang</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+B">Bingrui Xiang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">Kong Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+G">Guanjie Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xingyuan Wang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X">Xuhan Guo</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+L">Linjie Zhou</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+W">Wengang Wu</a>, <a href="/search/physics?searchtype=author&query=Mao%2C+Y">Yifei Mao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14036v1-abstract-short" style="display: inline;"> The miniaturization and integration of beam steering devices have consistently been the focus of the field. Conventional methods alter the eigenmode of the optical cavity by regulating the refractive index. Due to the weak nonlinear effect of the optical system, the device must be sufficiently large to achieve sufficient light modulation. The effective method for miniaturizing beam steering device… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14036v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14036v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14036v1-abstract-full" style="display: none;"> The miniaturization and integration of beam steering devices have consistently been the focus of the field. Conventional methods alter the eigenmode of the optical cavity by regulating the refractive index. Due to the weak nonlinear effect of the optical system, the device must be sufficiently large to achieve sufficient light modulation. The effective method for miniaturizing beam steering devices currently in use is based on metasurfaces. However, this type of device necessitates the input of a laser source, which precludes the simultaneous generation and control of light in a single device. Here we propose a miniaturized beam steering device that employs mode selection between different bound states in the continuum (BIC) states through phase change material. The device is capable of simultaneously achieving both light generation and beam steering (33掳) in a single device with a size of only 25 渭m and with a low threshold of 8.9 kW cm-2. Furthermore,it is possible to achieve a significant degree of dynamic wavelength tunability, with a range extending up to 296 nm. This method achieves high-efficient regulation of light properties by dynamically controlling the system's topological charge, circumventing the problem of weak nonlinearity in traditional methods. Furthermore, the integration of phase change materials with nanolasers enables the direct alteration of lasing properties, which provides a novel idea for dynamic light control. The device process scheme based on phase change materials is straightforward, direct, and highly compatible, which will be advantageous for its intended application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14036v1-abstract-full').style.display = 'none'; document.getElementById('2407.14036v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12450">arXiv:2407.12450</a> <span> [<a href="https://arxiv.org/pdf/2407.12450">pdf</a>, <a href="https://arxiv.org/format/2407.12450">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Interim report for the International Muon Collider Collaboration (IMCC) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Accettura%2C+C">C. Accettura</a>, <a href="/search/physics?searchtype=author&query=Adrian%2C+S">S. Adrian</a>, <a href="/search/physics?searchtype=author&query=Agarwal%2C+R">R. Agarwal</a>, <a href="/search/physics?searchtype=author&query=Ahdida%2C+C">C. Ahdida</a>, <a href="/search/physics?searchtype=author&query=Aim%C3%A9%2C+C">C. Aim茅</a>, <a href="/search/physics?searchtype=author&query=Aksoy%2C+A">A. Aksoy</a>, <a href="/search/physics?searchtype=author&query=Alberghi%2C+G+L">G. L. Alberghi</a>, <a href="/search/physics?searchtype=author&query=Alden%2C+S">S. Alden</a>, <a href="/search/physics?searchtype=author&query=Amapane%2C+N">N. Amapane</a>, <a href="/search/physics?searchtype=author&query=Amorim%2C+D">D. Amorim</a>, <a href="/search/physics?searchtype=author&query=Andreetto%2C+P">P. Andreetto</a>, <a href="/search/physics?searchtype=author&query=Anulli%2C+F">F. Anulli</a>, <a href="/search/physics?searchtype=author&query=Appleby%2C+R">R. Appleby</a>, <a href="/search/physics?searchtype=author&query=Apresyan%2C+A">A. Apresyan</a>, <a href="/search/physics?searchtype=author&query=Asadi%2C+P">P. Asadi</a>, <a href="/search/physics?searchtype=author&query=Mahmoud%2C+M+A">M. Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&query=Auchmann%2C+B">B. Auchmann</a>, <a href="/search/physics?searchtype=author&query=Back%2C+J">J. Back</a>, <a href="/search/physics?searchtype=author&query=Badea%2C+A">A. Badea</a>, <a href="/search/physics?searchtype=author&query=Bae%2C+K+J">K. J. Bae</a>, <a href="/search/physics?searchtype=author&query=Bahng%2C+E+J">E. J. Bahng</a>, <a href="/search/physics?searchtype=author&query=Balconi%2C+L">L. Balconi</a>, <a href="/search/physics?searchtype=author&query=Balli%2C+F">F. Balli</a>, <a href="/search/physics?searchtype=author&query=Bandiera%2C+L">L. Bandiera</a>, <a href="/search/physics?searchtype=author&query=Barbagallo%2C+C">C. Barbagallo</a> , et al. (362 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12450v1-abstract-short" style="display: inline;"> The International Muon Collider Collaboration (IMCC) [1] was established in 2020 following the recommendations of the European Strategy for Particle Physics (ESPP) and the implementation of the European Strategy for Particle Physics-Accelerator R&D Roadmap by the Laboratory Directors Group [2], hereinafter referred to as the the European LDG roadmap. The Muon Collider Study (MuC) covers the accele… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12450v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12450v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12450v1-abstract-full" style="display: none;"> The International Muon Collider Collaboration (IMCC) [1] was established in 2020 following the recommendations of the European Strategy for Particle Physics (ESPP) and the implementation of the European Strategy for Particle Physics-Accelerator R&D Roadmap by the Laboratory Directors Group [2], hereinafter referred to as the the European LDG roadmap. The Muon Collider Study (MuC) covers the accelerator complex, detectors and physics for a future muon collider. In 2023, European Commission support was obtained for a design study of a muon collider (MuCol) [3]. This project started on 1st March 2023, with work-packages aligned with the overall muon collider studies. In preparation of and during the 2021-22 U.S. Snowmass process, the muon collider project parameters, technical studies and physics performance studies were performed and presented in great detail. Recently, the P5 panel [4] in the U.S. recommended a muon collider R&D, proposed to join the IMCC and envisages that the U.S. should prepare to host a muon collider, calling this their "muon shot". In the past, the U.S. Muon Accelerator Programme (MAP) [5] has been instrumental in studies of concepts and technologies for a muon collider. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12450v1-abstract-full').style.display = 'none'; document.getElementById('2407.12450v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document summarises the International Muon Collider Collaboration (IMCC) progress and status of the Muon Collider R&D programme</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span> [<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18597">arXiv:2406.18597</a> <span> [<a href="https://arxiv.org/pdf/2406.18597">pdf</a>, <a href="https://arxiv.org/format/2406.18597">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Relative Measurement and Extrapolation of the Scintillation Quenching Factor of $伪$-Particles in Liquid Argon using DEAP-3600 Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+DEAP+Collaboration"> The DEAP Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Alp%C3%ADzar-Venegas%2C+M">M. Alp铆zar-Venegas</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W">W. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=C%C3%A1rdenas-Montes%2C+M">M. C谩rdenas-Montes</a>, <a href="/search/physics?searchtype=author&query=Choudhary%2C+S">S. Choudhary</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Crampton%2C+R">R. Crampton</a>, <a href="/search/physics?searchtype=author&query=Daugherty%2C+S">S. Daugherty</a>, <a href="/search/physics?searchtype=author&query=DelGobbo%2C+P">P. DelGobbo</a>, <a href="/search/physics?searchtype=author&query=Di+Stefano%2C+P">P. Di Stefano</a>, <a href="/search/physics?searchtype=author&query=Dolganov%2C+G">G. Dolganov</a>, <a href="/search/physics?searchtype=author&query=Doria%2C+L">L. Doria</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+F+A">F. A. Duncan</a>, <a href="/search/physics?searchtype=author&query=Dunford%2C+M">M. Dunford</a>, <a href="/search/physics?searchtype=author&query=Ellingwood%2C+E">E. Ellingwood</a> , et al. (79 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18597v2-abstract-short" style="display: inline;"> The knowledge of scintillation quenching of $伪$-particles plays a paramount role in understanding $伪$-induced backgrounds and improving the sensitivity of liquid argon-based direct detection of dark matter experiments. We performed a relative measurement of scintillation quenching in the MeV energy region using radioactive isotopes ($^{222}$Rn, $^{218}$Po and $^{214}$Po isotopes) present in trace… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18597v2-abstract-full').style.display = 'inline'; document.getElementById('2406.18597v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18597v2-abstract-full" style="display: none;"> The knowledge of scintillation quenching of $伪$-particles plays a paramount role in understanding $伪$-induced backgrounds and improving the sensitivity of liquid argon-based direct detection of dark matter experiments. We performed a relative measurement of scintillation quenching in the MeV energy region using radioactive isotopes ($^{222}$Rn, $^{218}$Po and $^{214}$Po isotopes) present in trace amounts in the DEAP-3600 detector and quantified the uncertainty of extrapolating the quenching factor to the low-energy region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18597v2-abstract-full').style.display = 'none'; document.getElementById('2406.18597v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures (added 1 figure, revised 3 figures), 2 tables, revised sections 3, 4, 5. Accepted in Eur. Phys. J. C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15450">arXiv:2406.15450</a> <span> [<a href="https://arxiv.org/pdf/2406.15450">pdf</a>, <a href="https://arxiv.org/ps/2406.15450">ps</a>, <a href="https://arxiv.org/format/2406.15450">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Diamond Microscope for Narrowband Magnetic Imaging with High Spatial and Spectral Resolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yin%2C+Z">Zechuan Yin</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiashen Tang</a>, <a href="/search/physics?searchtype=author&query=Hart%2C+C+A">Connor A. Hart</a>, <a href="/search/physics?searchtype=author&query=Blanchard%2C+J+W">John W. Blanchard</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+X">Xinyan Xiang</a>, <a href="/search/physics?searchtype=author&query=Satyajit%2C+S">Saipriya Satyajit</a>, <a href="/search/physics?searchtype=author&query=Bhalerao%2C+S">Smriti Bhalerao</a>, <a href="/search/physics?searchtype=author&query=Tao%2C+T">Tao Tao</a>, <a href="/search/physics?searchtype=author&query=DeVience%2C+S+J">Stephen J. DeVience</a>, <a href="/search/physics?searchtype=author&query=Walsworth%2C+R+L">Ronald L. Walsworth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15450v2-abstract-short" style="display: inline;"> The quantum diamond microscope (QDM) is a recently developed technology for near-field imaging of magnetic fields with micron-scale spatial resolution. In the present work, we integrate a QDM with a narrowband measurement protocol and a lock-in camera; and demonstrate imaging of radiofrequency (RF) magnetic field patterns produced by microcoils, with spectral resolution $\approx1$\,Hz. This RF-QDM… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15450v2-abstract-full').style.display = 'inline'; document.getElementById('2406.15450v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15450v2-abstract-full" style="display: none;"> The quantum diamond microscope (QDM) is a recently developed technology for near-field imaging of magnetic fields with micron-scale spatial resolution. In the present work, we integrate a QDM with a narrowband measurement protocol and a lock-in camera; and demonstrate imaging of radiofrequency (RF) magnetic field patterns produced by microcoils, with spectral resolution $\approx1$\,Hz. This RF-QDM provides multi-frequency imaging with a central detection frequency that is easily tunable over the MHz-scale, allowing spatial discrimination of both crowded spectral peaks and spectrally well-separated signals. The present instrument has spatial resolution $\approx2\,\mathrm{渭m}$, field-of-view $\approx300\times300\,\mathrm{渭m^2}$, and per-pixel sensitivity to narrowband fields $\sim{1}\,$nT$\cdot$Hz$^{-1/2}$. Spatial noise can be reduced to the picotesla scale by signal averaging and/or spatial binning. The RF-QDM enables simultaneous imaging of the amplitude, frequency, and phase of narrowband magnetic field patterns at the micron-scale, with potential applications in real-space NMR imaging, AC susceptibility mapping, impedance tomography, analysis of electronic circuits, and spatial eddy-current-based inspection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15450v2-abstract-full').style.display = 'none'; document.getElementById('2406.15450v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12522">arXiv:2406.12522</a> <span> [<a href="https://arxiv.org/pdf/2406.12522">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Photohermal Microswimmer Penetrate Cell Membrane with Cavitation Bubble </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zeng%2C+B">Binglin Zeng</a>, <a href="/search/physics?searchtype=author&query=Lai%2C+J">Jialin Lai</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jingyuan Chen</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yaxin Huang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+C">Changjin Wu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+C">Chao Huang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q">Qingxin Guo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiaofeng Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shuai Li</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jinyao Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12522v2-abstract-short" style="display: inline;"> Self-propelled micromotors can efficiently convert ambient energy into mechanical motion, which is of great interest for its potential biomedical applications in delivering therapeutics noninvasively. However, navigating these micromotors through biological barriers remains a significant challenge as most micromotors do not provide sufficient disruption forces in in-vivo conditions. In this study,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12522v2-abstract-full').style.display = 'inline'; document.getElementById('2406.12522v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12522v2-abstract-full" style="display: none;"> Self-propelled micromotors can efficiently convert ambient energy into mechanical motion, which is of great interest for its potential biomedical applications in delivering therapeutics noninvasively. However, navigating these micromotors through biological barriers remains a significant challenge as most micromotors do not provide sufficient disruption forces in in-vivo conditions. In this study, we employed focused scanning laser from conventional confocal microscope to manipulate carbon microbottle based microswimmers. With the increasing of the laser power, the microswimmers' motions translates from autonomous to directional, and finally the high power laser induced the microswimmer explosions, which effectively deliveres microbottle fragments through the cell membrane. It is revealed that photothermally-induced cavitation bubbles enable the propulsion of microbottles in liquids, where the motion direction can be precisely regulated by the scanning orientation of the laser. Furthermore, the membrane penetration ability of the microbottles promised potential applications in drug delivery and cellular injections. As microbottles navigate toward cells, we strategically increase the laser power to trigger their explosion. By loading microswimmers with transfection genes, cytoplasmic transfection can be realized, which is demonstrated by successful gene transfection of GPF in cells. Our findings open new possibilities for cell injection and gene transfection using micromotors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12522v2-abstract-full').style.display = 'none'; document.getElementById('2406.12522v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 00Axx </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01944">arXiv:2406.01944</a> <span> [<a href="https://arxiv.org/pdf/2406.01944">pdf</a>, <a href="https://arxiv.org/format/2406.01944">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A table-top high-sensitivity gyroscope based on slow light and cavity enhanced photon drag </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=She%2C+M">Min She</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiangshan Tang</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+K">Keyu Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01944v1-abstract-short" style="display: inline;"> A high-sensitivity gyroscope is vital for both investigation of the fundamental physics and monitor of the subtle variation of Earth's behaviors. However, it is challenge to realize a portable gyroscope with sensitivity approaching a small fraction of the Earth's rotation rate. Here, we theoretically propose a method for implementing a table-top gyroscope with remarkably high sensitivity based on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01944v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01944v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01944v1-abstract-full" style="display: none;"> A high-sensitivity gyroscope is vital for both investigation of the fundamental physics and monitor of the subtle variation of Earth's behaviors. However, it is challenge to realize a portable gyroscope with sensitivity approaching a small fraction of the Earth's rotation rate. Here, we theoretically propose a method for implementing a table-top gyroscope with remarkably high sensitivity based on photon drag in a rotating dielectric object. By inserting an $\text{Er}^{3+}$-doped glass rod in a Fabry-P茅rot optical cavity with only 20 cm length, we theoretically show that the giant group refractive index and the narrowing cavity linewidth due to slow light can essentially increase the nonreciprocal phase shift due to the photon drag to achieve a rotation sensitivity of $26$ frad/s/$\sqrt{Hz}$. This work paves the way to accurately detect tiny variations of the Earth's rotation rate and orientation, and even can test the geodetic and frame-dragging effects predicted by the general relativity with a small-volume equipment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01944v1-abstract-full').style.display = 'none'; document.getElementById('2406.01944v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07303">arXiv:2405.07303</a> <span> [<a href="https://arxiv.org/pdf/2405.07303">pdf</a>, <a href="https://arxiv.org/format/2405.07303">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for solar axions by Primakoff effect with the full dataset of the CDEX-1B Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+S+K">S. K. Liu</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&query=He%2C+J+R">J. R. He</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Karmakar%2C+S">S. Karmakar</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07303v1-abstract-short" style="display: inline;"> We present the first limit on $g_{A纬}$ coupling constant using the Bragg-Primakoff conversion based on an exposure of 1107.5 kg days of data from the CDEX-1B experiment at the China Jinping Underground Laboratory. The data are consistent with the null signal hypothesis, and no excess signals are observed. Limits of the coupling $g_{A纬}<2.08\times10^{-9}$ GeV$^{-1}$ (95\% C.L.) are derived for axio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07303v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07303v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07303v1-abstract-full" style="display: none;"> We present the first limit on $g_{A纬}$ coupling constant using the Bragg-Primakoff conversion based on an exposure of 1107.5 kg days of data from the CDEX-1B experiment at the China Jinping Underground Laboratory. The data are consistent with the null signal hypothesis, and no excess signals are observed. Limits of the coupling $g_{A纬}<2.08\times10^{-9}$ GeV$^{-1}$ (95\% C.L.) are derived for axions with mass up to 100 eV/$c^2$. Within the hadronic model of KSVZ, our results exclude axion mass $>5.3~\rm{eV}/c^2$ at 95\% C.L. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07303v1-abstract-full').style.display = 'none'; document.getElementById('2405.07303v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01862">arXiv:2405.01862</a> <span> [<a href="https://arxiv.org/pdf/2405.01862">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Many-Body Configurational Spectral Splitting between Trion and Charged Exciton in a Monolayer Semiconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiacheng Tang</a>, <a href="/search/physics?searchtype=author&query=Ning%2C+C">Cun-Zheng Ning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01862v1-abstract-short" style="display: inline;"> Many-body electron-hole complexes in a semiconductor are important both from a fundamental physics point of view and for practical device applications. A three-body system of electrons (e) and holes (h) (2e1h, or 1e2h) in a two-band semiconductor is commonly believed to be associated with two spectral peaks for the exciton and trion (or charged exciton), respectively. But both the validity of this… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01862v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01862v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01862v1-abstract-full" style="display: none;"> Many-body electron-hole complexes in a semiconductor are important both from a fundamental physics point of view and for practical device applications. A three-body system of electrons (e) and holes (h) (2e1h, or 1e2h) in a two-band semiconductor is commonly believed to be associated with two spectral peaks for the exciton and trion (or charged exciton), respectively. But both the validity of this understanding and the physical meaning of a trion or charged exciton have not been thoroughly examined. From the physics point of view, there are two different configurations, (e)(eh) or (eeh), which could be considered charged exciton and trion, respectively. Here (...) represents an irreducible cluster with respect to Coulomb interactions. In this paper, we consider these issues related to the 2e1h three-body problem theoretically and experimentally using monolayer MoTe2 as an example. Our theoretical tools involve the three-body Bethe-Salpeter Equation (BSE) and the cluster expansion technique, especially their correspondence. Experimentally, we measure the photoluminescence spectrum on a gate-controlled monolayer MoTe2. We found two spectral peaks that are 21 and 4 meV, respectively, below the exciton peak, in contrast to the single "trion" peak from the conventional understanding. We show that, while the three-body BSE in a two-band model can reproduce all spectral features, the cluster-expansion technique shows that the two peaks correspond to the charged exciton (e)(eh) and trion (eeh), respectively. In other words, there is a spectral splitting due to the two different many-body configurations. Furthermore, we find that the trion only exists in the intervalley case, while the charged exciton exists both for the intervalley and intravalley cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01862v1-abstract-full').style.display = 'none'; document.getElementById('2405.01862v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01853">arXiv:2405.01853</a> <span> [<a href="https://arxiv.org/pdf/2405.01853">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Spectral Features of the Fourth Order Irreducible Correlations in a Monolayer Semiconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiacheng Tang</a>, <a href="/search/physics?searchtype=author&query=Ning%2C+C">Cun-Zheng Ning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01853v1-abstract-short" style="display: inline;"> Understanding high-order correlations or multi-particle entities in a many-body system is not only of fundamental importance in condensed matter physics, but also critical for many technological applications. So far, higher-order multi-particle irreducible correlations in semiconductors have not been studied beyond the second-order or two-particle case. In this paper, we study the correlation of t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01853v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01853v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01853v1-abstract-full" style="display: none;"> Understanding high-order correlations or multi-particle entities in a many-body system is not only of fundamental importance in condensed matter physics, but also critical for many technological applications. So far, higher-order multi-particle irreducible correlations in semiconductors have not been studied beyond the second-order or two-particle case. In this paper, we study the correlation of two electrons and two holes (2e2h) using the four-body Bethe-Salpeter equation (4B-BSE) and applied to the calculation of the helicity-resolved absorption between the two-body and four-body states for a monolayer MoTe2. Surprisingly, we found a rich series of spectral peaks within an energy span of ~40 meV below the exciton that has not been seen before. To understand the origin of the new spectral peaks, the Feynman diagrams of the 4B BSE are recast into the cluster expansion formalism, allowing us to study the individual effects of selected clusters or correlations of various orders. We found that the irreducible clusters of orders up to the 3rd and their factorized combinations cannot explain the spectral features. Importantly, we found that the 4th order irreducible correlation is necessary and sufficient to explain the new features. The 4th order irreducible correlation corresponds to a four-particle irreducible cluster involving two electrons and two holes, alternatively called quadron or quadruplon. The new 4th order correlation or four-particle entity not only enriches our understanding of many-body correlations but also could provide new mechanism for light emission or absorption for possible new optoelectronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01853v1-abstract-full').style.display = 'none'; document.getElementById('2405.01853v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2207.12760</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01626">arXiv:2405.01626</a> <span> [<a href="https://arxiv.org/pdf/2405.01626">pdf</a>, <a href="https://arxiv.org/format/2405.01626">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Mineral Detection of Neutrinos and Dark Matter 2024. Proceedings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Baum%2C+S">Sebastian Baum</a>, <a href="/search/physics?searchtype=author&query=Huber%2C+P">Patrick Huber</a>, <a href="/search/physics?searchtype=author&query=Stengel%2C+P">Patrick Stengel</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+N">Natsue Abe</a>, <a href="/search/physics?searchtype=author&query=Ang%2C+D+G">Daniel G. Ang</a>, <a href="/search/physics?searchtype=author&query=Apollonio%2C+L">Lorenzo Apollonio</a>, <a href="/search/physics?searchtype=author&query=Araujo%2C+G+R">Gabriela R. Araujo</a>, <a href="/search/physics?searchtype=author&query=Balogh%2C+L">Levente Balogh</a>, <a href="/search/physics?searchtype=author&query=Boukhtouchen%2C+P+B+Y">Pranshu Bhaumik Yilda Boukhtouchen</a>, <a href="/search/physics?searchtype=author&query=Bramante%2C+J">Joseph Bramante</a>, <a href="/search/physics?searchtype=author&query=Caccianiga%2C+L">Lorenzo Caccianiga</a>, <a href="/search/physics?searchtype=author&query=Calabrese-Day%2C+A">Andrew Calabrese-Day</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+Q">Qing Chang</a>, <a href="/search/physics?searchtype=author&query=Collar%2C+J+I">Juan I. Collar</a>, <a href="/search/physics?searchtype=author&query=Ebadi%2C+R">Reza Ebadi</a>, <a href="/search/physics?searchtype=author&query=Elykov%2C+A">Alexey Elykov</a>, <a href="/search/physics?searchtype=author&query=Freese%2C+K">Katherine Freese</a>, <a href="/search/physics?searchtype=author&query=Fung%2C+A">Audrey Fung</a>, <a href="/search/physics?searchtype=author&query=Galelli%2C+C">Claudio Galelli</a>, <a href="/search/physics?searchtype=author&query=Gleason%2C+A+E">Arianna E. Gleason</a>, <a href="/search/physics?searchtype=author&query=Perez%2C+M+G">Mariano Guerrero Perez</a>, <a href="/search/physics?searchtype=author&query=Hakenm%C3%BCller%2C+J">Janina Hakenm眉ller</a>, <a href="/search/physics?searchtype=author&query=Hanyu%2C+T">Takeshi Hanyu</a>, <a href="/search/physics?searchtype=author&query=Hasebe%2C+N">Noriko Hasebe</a>, <a href="/search/physics?searchtype=author&query=Hirose%2C+S">Shigenobu Hirose</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01626v1-abstract-short" style="display: inline;"> The second "Mineral Detection of Neutrinos and Dark Matter" (MDvDM'24) meeting was held January 8-11, 2024 in Arlington, VA, USA, hosted by Virginia Tech's Center for Neutrino Physics. This document collects contributions from this workshop, providing an overview of activities in the field. MDvDM'24 was the second topical workshop dedicated to the emerging field of mineral detection of neutrinos a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01626v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01626v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01626v1-abstract-full" style="display: none;"> The second "Mineral Detection of Neutrinos and Dark Matter" (MDvDM'24) meeting was held January 8-11, 2024 in Arlington, VA, USA, hosted by Virginia Tech's Center for Neutrino Physics. This document collects contributions from this workshop, providing an overview of activities in the field. MDvDM'24 was the second topical workshop dedicated to the emerging field of mineral detection of neutrinos and dark matter, following a meeting hosted by IFPU in Trieste, Italy in October 2022. Mineral detectors have been proposed for a wide variety of applications, including searching for dark matter, measuring various fluxes of astrophysical neutrinos over gigayear timescales, monitoring nuclear reactors, and nuclear disarmament protocols; both as paleo-detectors using natural minerals that could have recorded the traces of nuclear recoils for timescales as long as a billion years and as detectors recording nuclear recoil events on laboratory timescales using natural or artificial minerals. Contributions to this proceedings discuss the vast physics potential, the progress in experimental studies, and the numerous challenges lying ahead on the path towards mineral detection. These include a better understanding of the formation and annealing of recoil defects in crystals; identifying the best classes of minerals and, for paleo-detectors, understanding their geology; modeling and control of the relevant backgrounds; developing, combining, and scaling up imaging and data analysis techniques; and many others. During the last years, MDvDM has grown rapidly and gained attention. Small-scale experimental efforts focused on establishing various microscopic readout techniques are underway at institutions in North America, Europe and Asia. We are looking ahead to an exciting future full of challenges to overcome, surprises to be encountered, and discoveries lying ahead of us. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01626v1-abstract-full').style.display = 'none'; document.getElementById('2405.01626v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Summary and proceedings of the MDvDM'24 conference, Jan 8-11 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00299">arXiv:2405.00299</a> <span> [<a href="https://arxiv.org/pdf/2405.00299">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Thermal stability and phase transformation of $伪$-, $魏(蔚)$-, and $纬$-Ga$_2$O$_3$ thin films to $尾$-Ga$_2$O$_3$ under various ambient conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+J">J. Tang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+K">K. Jiang</a>, <a href="/search/physics?searchtype=author&query=Tseng%2C+P">P. Tseng</a>, <a href="/search/physics?searchtype=author&query=Kurchin%2C+R+C">R. C. Kurchin</a>, <a href="/search/physics?searchtype=author&query=Porter%2C+L+M">L. M. Porter</a>, <a href="/search/physics?searchtype=author&query=Davis%2C+R+F">R. F. Davis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00299v1-abstract-short" style="display: inline;"> Phase transitions in metastable $伪$-, $魏(蔚)$-, and $纬$-Ga$_2$O$_3$ films to thermodynamically stable $尾$-Ga$_2$O$_3$ during annealing in air, N$_2$, and vacuum have been systematically investigated via in-situ high-temperature X-ray diffraction and scanning electron microscopy. These respective polymorphs exhibited thermal stability to around 471-525$^\circ$C, 773-825$^\circ$C, and 490-575… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00299v1-abstract-full').style.display = 'inline'; document.getElementById('2405.00299v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00299v1-abstract-full" style="display: none;"> Phase transitions in metastable $伪$-, $魏(蔚)$-, and $纬$-Ga$_2$O$_3$ films to thermodynamically stable $尾$-Ga$_2$O$_3$ during annealing in air, N$_2$, and vacuum have been systematically investigated via in-situ high-temperature X-ray diffraction and scanning electron microscopy. These respective polymorphs exhibited thermal stability to around 471-525$^\circ$C, 773-825$^\circ$C, and 490-575$^\circ$C before transforming into $尾$-Ga$_2$O$_3$, across all tested ambient conditions. Particular crystallographic orientation relationships were observed before and after the phase transitions, i.e., (0006) $伪$-Ga$_2$O$_3$ $\parallel$ $(\overline{4}02)$ $尾$-Ga$_2$O$_3$, (004) $魏(蔚)$-Ga$_2$O$_3$ $\parallel$ (310) and $(\overline{4}02)$ $尾$-Ga$_2$O$_3$, and (400) $纬$-Ga$_2$O$_3$ $\parallel$ (400) $尾$-Ga$_2$O$_3$. The phase transition of $伪$-Ga$_2$O$_3$ to $尾$-Ga$_2$O$_3$ resulted in catastrophic damage to the film and upheaval of the surface. The respective primary and possibly secondary causes of this damage are the +8.6% volume expansion and the dual displacive and reconstructive transformations that occur during this transition. The $魏(蔚)$- and $纬$-Ga$_2$O$_3$ films converted to $尾$-Ga$_2$O$_3$ via singular reconstructive transformations with small changes in volume and unchanged surface microstructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00299v1-abstract-full').style.display = 'none'; document.getElementById('2405.00299v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14673">arXiv:2404.14673</a> <span> [<a href="https://arxiv.org/pdf/2404.14673">pdf</a>, <a href="https://arxiv.org/format/2404.14673">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> High-Dimensional Two-Photon Quantum Controlled Phase-Flip Gate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+M">Mingyuan Chen</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiangshan Tang</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+M">Miao Cai</a>, <a href="/search/physics?searchtype=author&query=Nori%2C+F">Franco Nori</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+K">Keyu Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14673v1-abstract-short" style="display: inline;"> High-dimensional quantum systems have been used to reveal interesting fundamental physics and to improve information capacity and noise resilience in quantum information processing. However, it remains a significant challenge to realize universal two-photon quantum gates in high dimensions with high success probability. Here, by considering an ion-cavity QED system, we theoretically propose, to th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14673v1-abstract-full').style.display = 'inline'; document.getElementById('2404.14673v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14673v1-abstract-full" style="display: none;"> High-dimensional quantum systems have been used to reveal interesting fundamental physics and to improve information capacity and noise resilience in quantum information processing. However, it remains a significant challenge to realize universal two-photon quantum gates in high dimensions with high success probability. Here, by considering an ion-cavity QED system, we theoretically propose, to the best of our knowledge, the first high-dimensional, deterministic and universal two-photon quantum gate. By using an optical cavity embedded with a single trapped 40Ca+ ion, we achieve a high average fidelity larger than 98% for a quantum controlled phase-flip gate in four-dimensional space, spanned by photonic spin angular momenta and orbital angular momenta. Our proposed system can be an essential building block for high-dimensional quantum information processing, and also provides a platform for studying high-dimensional cavity QED. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14673v1-abstract-full').style.display = 'none'; document.getElementById('2404.14673v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10470">arXiv:2404.10470</a> <span> [<a href="https://arxiv.org/pdf/2404.10470">pdf</a>, <a href="https://arxiv.org/ps/2404.10470">ps</a>, <a href="https://arxiv.org/format/2404.10470">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/41/4/044205">10.1088/0256-307X/41/4/044205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reversible optical isolators and quasi-circulators using a magneto-optical Fabry-P茅rot cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+T">Tiantian Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+W">Wenpeng Zhou</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhixiang Li</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+Y">Yutao Tang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+F">Fan Xu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+H">Haodong Wu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Han Zhang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiang-Shan Tang</a>, <a href="/search/physics?searchtype=author&query=Ruan%2C+Y">Ya-Ping Ruan</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+K">Keyu Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10470v1-abstract-short" style="display: inline;"> Nonreciprocal optical devices are essential for laser protection, modern optical communication and quantum information processing by enforcing one-way light propagation. The conventional Faraday magneto-optical nonreciprocal devices rely on a strong magnetic field, which is provided by a permanent magnet. As a result, the isolation direction of such devices is fixed and severely restricts their ap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10470v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10470v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10470v1-abstract-full" style="display: none;"> Nonreciprocal optical devices are essential for laser protection, modern optical communication and quantum information processing by enforcing one-way light propagation. The conventional Faraday magneto-optical nonreciprocal devices rely on a strong magnetic field, which is provided by a permanent magnet. As a result, the isolation direction of such devices is fixed and severely restricts their applications in quantum networks.In this work, we experimentally demonstrate the simultaneous one-way transmission and unidirectional reflection by using a magneto-optical Fabry-P茅rot cavity and a magnetic field strength of $50~\milli\tesla$. An optical isolator and a three-port quasi-circulator are realized based on this nonreciprocal cavity system. The isolator achieves an isolation ratio of up to $22~\deci\bel$ and an averaged insertion loss down to $0.97~\deci\bel$. The quasi-circulator is realized with a fidelity exceeding $99\%$ and an overall survival probability of $89.9\%$, corresponding to an insertion loss of $\sim 0.46~\deci\bel$. The magnetic field is provided by an electromagnetic coil, thereby allowing for reversing the light circulating path. The reversible quasi-circulator paves the way for building reconfigurable quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10470v1-abstract-full').style.display = 'none'; document.getElementById('2404.10470v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics Letters 4 (2024), 044205 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09793">arXiv:2404.09793</a> <span> [<a href="https://arxiv.org/pdf/2404.09793">pdf</a>, <a href="https://arxiv.org/format/2404.09793">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> First Search for Light Fermionic Dark Matter Absorption on Electrons Using Germanium Detector in CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+J+X">J. X. Liu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&query=He%2C+J+R">J. R. He</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Karmakar%2C+S">S. Karmakar</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09793v1-abstract-short" style="display: inline;"> We present the first results of the search for sub-MeV fermionic dark matter absorbed by electron targets of Germanium using the 205.4~kg$\cdot$day data collected by the CDEX-10 experiment, with the analysis threshold of 160~eVee. No significant dark matter (DM) signals over the background are observed. Results are presented as limits on the cross section of DM--electron interaction. We present ne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09793v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09793v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09793v1-abstract-full" style="display: none;"> We present the first results of the search for sub-MeV fermionic dark matter absorbed by electron targets of Germanium using the 205.4~kg$\cdot$day data collected by the CDEX-10 experiment, with the analysis threshold of 160~eVee. No significant dark matter (DM) signals over the background are observed. Results are presented as limits on the cross section of DM--electron interaction. We present new constraints of cross section in the DM range of 0.1--10 keV/$c^2$ for vector and axial-vector interaction. The upper limit on the cross section is set to be $\rm 5.5\times10^{-46}~cm^2$ for vector interaction, and $\rm 1.8\times10^{-46}~cm^2$ for axial-vector interaction at DM mass of 5 keV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09793v1-abstract-full').style.display = 'none'; document.getElementById('2404.09793v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.20276">arXiv:2403.20276</a> <span> [<a href="https://arxiv.org/pdf/2403.20276">pdf</a>, <a href="https://arxiv.org/format/2403.20276">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Constraints on the Blazar-Boosted Dark Matter from the CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+R">R. Xu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.20276v1-abstract-short" style="display: inline;"> We report new constraints on light dark matter (DM) boosted by blazars using the 205.4 kg day data from the CDEX-10 experiment located at the China Jinping Underground Laboratory. Two representative blazars, TXS 0506+56 and BL Lacertae are studied. The results derived from TXS 0506+56 exclude DM-nucleon elastic scattering cross sections from $4.6\times 10^{-33}\ \rm cm^2$ to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20276v1-abstract-full').style.display = 'inline'; document.getElementById('2403.20276v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.20276v1-abstract-full" style="display: none;"> We report new constraints on light dark matter (DM) boosted by blazars using the 205.4 kg day data from the CDEX-10 experiment located at the China Jinping Underground Laboratory. Two representative blazars, TXS 0506+56 and BL Lacertae are studied. The results derived from TXS 0506+56 exclude DM-nucleon elastic scattering cross sections from $4.6\times 10^{-33}\ \rm cm^2$ to $1\times10^{-26}\ \rm cm^2$ for DM masses between 10 keV and 1 GeV, and the results derived from BL Lacertae exclude DM-nucleon elastic scattering cross sections from $2.4\times 10^{-34}\ \rm cm^2$ to $1\times10^{-26}\ \rm cm^2$ for the same range of DM masses. The constraints correspond to the best sensitivities among solid-state detector experiments in the sub-MeV mass range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20276v1-abstract-full').style.display = 'none'; document.getElementById('2403.20276v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.20263">arXiv:2403.20263</a> <span> [<a href="https://arxiv.org/pdf/2403.20263">pdf</a>, <a href="https://arxiv.org/format/2403.20263">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2446-2">10.1007/s11433-024-2446-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Dark Matter Particles from Evaporating Primordial Black Holes via Electron Scattering in the CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z+H">Z. H. Zhang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.20263v2-abstract-short" style="display: inline;"> Dark matter (DM) is a major constituent of the Universe. However, no definite evidence of DM particles (denoted as ``$蠂$") has been found in DM direct detection (DD) experiments to date. There is a novel concept of detecting $蠂$ from evaporating primordial black holes (PBHs). We search for $蠂$ emitted from PBHs by investigating their interaction with target electrons. The examined PBH masses range… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20263v2-abstract-full').style.display = 'inline'; document.getElementById('2403.20263v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.20263v2-abstract-full" style="display: none;"> Dark matter (DM) is a major constituent of the Universe. However, no definite evidence of DM particles (denoted as ``$蠂$") has been found in DM direct detection (DD) experiments to date. There is a novel concept of detecting $蠂$ from evaporating primordial black holes (PBHs). We search for $蠂$ emitted from PBHs by investigating their interaction with target electrons. The examined PBH masses range from 1$\times$10$^{15}$ to 7$\times$10$^{16}$ g under the current limits of PBH abundance $f_{PBH}$. Using 205.4 kg$\cdot$day data obtained from the CDEX-10 experiment conducted in the China Jinping Underground Laboratory, we exclude the $蠂$--electron ($蠂$--$e$) elastic-scattering cross section $蟽_{蠂e} \sim 5\times10^{-29}$ cm$^2$ for $蠂$ with a mass $m_蠂\lesssim$ 0.1 keV from our results. With the higher radiation background but lower energy threshold (160 eV), CDEX-10 fill a part of the gap in the previous work. If ($m_蠂$, $蟽_{蠂e}$) can be determined in the future, DD experiments are expected to impose strong constraints on $f_{PBH}$ for large $M_{PBH}$s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20263v2-abstract-full').style.display = 'none'; document.getElementById('2403.20263v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, 3 tables. Version updated to match SCPMA version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Mech. Astron. 67, 101011 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02948">arXiv:2403.02948</a> <span> [<a href="https://arxiv.org/pdf/2403.02948">pdf</a>, <a href="https://arxiv.org/format/2403.02948">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Front-end electronics development of large-area SiPM arrays for high-precision single-photon time measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhi%2C+W">Wei Zhi</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+R">Ruike Cao</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiannan Tang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Mingxin Wang</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+Y">Yongqi Tan</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+W">Weihao Wu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+D">Donglian Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02948v2-abstract-short" style="display: inline;"> TRopIcal DEep-sea Neutrino Telescope (TRIDENT) plans to incorporate silicon photomultipliers (SiPMs) with superior time resolution in addition to photomultiplier tubes (PMTs) into its detection units, namely hybrid Digital Optical Modules (hDOMs), to improve its angular resolution. However, the time resolution significantly degrades for large-area SiPMs due to the large detector capacitance, posin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02948v2-abstract-full').style.display = 'inline'; document.getElementById('2403.02948v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02948v2-abstract-full" style="display: none;"> TRopIcal DEep-sea Neutrino Telescope (TRIDENT) plans to incorporate silicon photomultipliers (SiPMs) with superior time resolution in addition to photomultiplier tubes (PMTs) into its detection units, namely hybrid Digital Optical Modules (hDOMs), to improve its angular resolution. However, the time resolution significantly degrades for large-area SiPMs due to the large detector capacitance, posing significant challenges for the readout electronics of SiPMs in hDOM. We analyzed the influences of series and parallel connections when constructing a large-area SiPM array and designed a series-parallel connection SiPM array with differential output. We also designed a high-speed pre-amplifier based on transformers (MABA-007159) and radio frequency amplifiers (BGA2803), and an analog multi-channel summing circuit based on operational amplifiers (LMH6629). We measured the single photon time resolution (SPTR) of a $4\times4$ SiPM (Hamamatsu S13360-3050PE) array ($12\times12~\mathrm{mm}^2$) of approximately 300 ps FWHM. This front-end readout design enables the large-area SiPM array to achieve high-precision single photon time measurement in one readout channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02948v2-abstract-full').style.display = 'none'; document.getElementById('2403.02948v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version. 12 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00308">arXiv:2403.00308</a> <span> [<a href="https://arxiv.org/pdf/2403.00308">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Longitudinal beam dynamics design fpr Super Tau-Charm Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Linhao Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+T">Tao Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Sangya Li</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jingyu Tang</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+Q">Qing Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00308v1-abstract-short" style="display: inline;"> The project of Super Tau-Charm Facility (STCF) proposed in China, as a new-generation high-luminosity $e^+e^-$ collider in the low-energy region with the center-of-mass energy of 2-7 GeV, is well underway. The luminosity is targeted at $1.0\times10^{35} cm^{-2}s^{-1}$ at the optimized beam energy of 2 GeV. Longitudinal beam dynamics becomes of great importance for the STCF due to the constraints f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00308v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00308v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00308v1-abstract-full" style="display: none;"> The project of Super Tau-Charm Facility (STCF) proposed in China, as a new-generation high-luminosity $e^+e^-$ collider in the low-energy region with the center-of-mass energy of 2-7 GeV, is well underway. The luminosity is targeted at $1.0\times10^{35} cm^{-2}s^{-1}$ at the optimized beam energy of 2 GeV. Longitudinal beam dynamics becomes of great importance for the STCF due to the constraints from the novel beam-beam effect called coherent X-Z instability and severe beam collective effects. In this paper, we will develop an iterative optimization model for the STCF longitudinal beam dynamics design, which takes into account the influence of transverse dynamics, coherent X-Z instability, and collective effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00308v1-abstract-full').style.display = 'none'; document.getElementById('2403.00308v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05780">arXiv:2401.05780</a> <span> [<a href="https://arxiv.org/pdf/2401.05780">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Tunable terahertz photodetector using ferroelectric-integrated graphene plasmonics for portable spectrometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+L">Lin Lin</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Junxiong Guo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shangdong Li</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+T">Tianxun Gong</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+J">Juan Xia</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zenghui Wang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jun Tang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jinxing Zhang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Y">Yuan Lin</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+W">Wen Huang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiaosheng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05780v1-abstract-short" style="display: inline;"> Terahertz (THz) detector has great potential for use in imaging, spectroscopy, and communications due to its fascinating interactions between radiation and matter. However, current THz detection devices have limitations in sensitivity, operating frequency range, and bulky footprint. While recent ferroelectric-integrated graphene plasmonic devices show promise in overcoming these limitations, they… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05780v1-abstract-full').style.display = 'inline'; document.getElementById('2401.05780v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05780v1-abstract-full" style="display: none;"> Terahertz (THz) detector has great potential for use in imaging, spectroscopy, and communications due to its fascinating interactions between radiation and matter. However, current THz detection devices have limitations in sensitivity, operating frequency range, and bulky footprint. While recent ferroelectric-integrated graphene plasmonic devices show promise in overcoming these limitations, they are not yet extended to the THz range. Here, we propose a wavelength-sensitive terahertz detector that uses a single layer graphene integrated onto the ferroelectric thin film with patterned polarization domains. This device works at room temperature, with high responsivity and detectivity by coupling graphene plasmons with THz frequencies through spatial modulation of carrier behaviors using ferroelectric polarization, without requiring additional local electrodes. By reconfiguring an interweaving squared ferroelectric domain array with alternating upward and downward polarizations to highly confine graphene surface plasmon polaritons, our device achieves an ultrahigh responsivity of 1717 A W-1 and a normalized detectivity of 1.07*10^13 Jones at a resonance frequency of 6.30 THz and a 0.3 V bias voltage. We also show that the device makes possible for spectrum reconstruction application of portable spectrometer combining the mathematical algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05780v1-abstract-full').style.display = 'none'; document.getElementById('2401.05780v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12327">arXiv:2312.12327</a> <span> [<a href="https://arxiv.org/pdf/2312.12327">pdf</a>, <a href="https://arxiv.org/format/2312.12327">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The PMT System of the TRIDENT Pathfinder Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+F">Fuyudi Zhang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+F">Fan Hu</a>, <a href="/search/physics?searchtype=author&query=Xian%2C+S">Shishen Xian</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+W">Wei Tian</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wenlian Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jianglai Liu</a>, <a href="/search/physics?searchtype=author&query=Miao%2C+P">Peng Miao</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Z">Zhengyang Sun</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiannan Tang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+Z">Zebo Tang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+M">Mingxin Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+D">Donglian Xu</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+Z">Ziping Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12327v1-abstract-short" style="display: inline;"> Next generation neutrino telescopes are highly anticipated to boost the development of neutrino astronomy. A multi-cubic-kilometer neutrino telescope, TRopIcal DEep-sea Neutrino Telescope (TRIDENT), was proposed to be built in the South China Sea. The detector aims to achieve ~ 0.1 degree angular resolution for track-like events at energy above 100 TeV by using hybrid digital optical modules, open… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12327v1-abstract-full').style.display = 'inline'; document.getElementById('2312.12327v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12327v1-abstract-full" style="display: none;"> Next generation neutrino telescopes are highly anticipated to boost the development of neutrino astronomy. A multi-cubic-kilometer neutrino telescope, TRopIcal DEep-sea Neutrino Telescope (TRIDENT), was proposed to be built in the South China Sea. The detector aims to achieve ~ 0.1 degree angular resolution for track-like events at energy above 100 TeV by using hybrid digital optical modules, opening new opportunities for neutrino astronomy. In order to measure the water optical properties and marine environment of the proposed TRIDENT site, a pathfinder experiment was conducted, in which a 100-meter-long string consisting of three optical modules was deployed at a depth of 3420 m to perform in-situ measurements. The central module emits light by housing LEDs, whereas the other two modules detect light with two independent and complementary systems: the PMT and the camera systems. By counting the number of detected photons and analyzing the photon arrival time distribution, the PMT system can measure the absorption and scattering lengths of sea water, which serve as the basic inputs for designing the neutrino telescope. In this paper, we present the design concept, calibration and performance of the PMT system in the pathfinder experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12327v1-abstract-full').style.display = 'none'; document.getElementById('2312.12327v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.11491">arXiv:2312.11491</a> <span> [<a href="https://arxiv.org/pdf/2312.11491">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Lithium niobate-enhanced laser photoacoustic spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+H">Haoyang Lin</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+W">Wenguo Zhu</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+Y">Yongchun Zhong</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jieyuan Tang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+H">Huihui Lu</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+J">Jianhui Yu</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+H">Huadan Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.11491v1-abstract-short" style="display: inline;"> In this paper, the photoacoustic spectroscopy technique based on lithium niobate crystals is initially reported, to our knowledge. A novel dual-cantilever tuning fork structure and new electrodes have been designed using Y-cut 128掳 blackened lithium niobate wafers. The tuning fork, with a resonant frequency of only 10.46 kHz and a prong gap of 1 mm, is engineered to achieve superior performance in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11491v1-abstract-full').style.display = 'inline'; document.getElementById('2312.11491v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.11491v1-abstract-full" style="display: none;"> In this paper, the photoacoustic spectroscopy technique based on lithium niobate crystals is initially reported, to our knowledge. A novel dual-cantilever tuning fork structure and new electrodes have been designed using Y-cut 128掳 blackened lithium niobate wafers. The tuning fork, with a resonant frequency of only 10.46 kHz and a prong gap of 1 mm, is engineered to achieve superior performance in photoacoustic spectroscopy. In the demonstration experiment, acetylene was detected using a 1.53 um semiconductor laser, achieving a detection limit of about 9 ppb within a one-second integration time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.11491v1-abstract-full').style.display = 'none'; document.getElementById('2312.11491v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.11560">arXiv:2311.11560</a> <span> [<a href="https://arxiv.org/pdf/2311.11560">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c04661">10.1021/acs.nanolett.3c04661 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bright nonblinking photoluminescence with blinking lifetime from a nanocavity-coupled quantum dot </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhiyuan Wang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jianwei Tang</a>, <a href="/search/physics?searchtype=author&query=Han%2C+J">Jiahao Han</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+J">Juan Xia</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+T">Tianzi Ma</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xue-Wen Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.11560v1-abstract-short" style="display: inline;"> Colloidal semiconductor quantum dots (QDs) are excellent luminescent nanomaterials for a broad range of optoelectronic applications. Their photoluminescence blinking, however, hinders their practical use in many aspects. It has been shown that coupling QDs to plasmonic nanostructures may provide a viable way to suppress blinking. Nevertheless, the underlying mechanism of blinking suppression remai… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11560v1-abstract-full').style.display = 'inline'; document.getElementById('2311.11560v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.11560v1-abstract-full" style="display: none;"> Colloidal semiconductor quantum dots (QDs) are excellent luminescent nanomaterials for a broad range of optoelectronic applications. Their photoluminescence blinking, however, hinders their practical use in many aspects. It has been shown that coupling QDs to plasmonic nanostructures may provide a viable way to suppress blinking. Nevertheless, the underlying mechanism of blinking suppression remains unclear and debated. Here, by deterministically coupling a single QD to a plasmonic nanocavity, we clarify the mechanism of blinking suppression, and demonstrate unprecedentedly bright emission from a single colloidal QD. In particular, we report for the first time that the coupled system exhibits nonblinking photoluminescence with blinking lifetime, which shows that the elimination of photoluminescence blinking originates from enhanced quantum yield of the charged states. We identify that the radiative decay rate is boosted from (48 ns)-1 to (0.7 ns)-1, which outcompetes Auger processes and enables similar quantum yields for charged and neutral excitons. Moreover, we demonstrate ultrabright photoluminescence of up to 17 million detected photons per second from a single QD. This work sheds new light on the goal of achieving ultrabright nonblinking QDs and may benefit a variety of QD-based applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.11560v1-abstract-full').style.display = 'none'; document.getElementById('2311.11560v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages; 3 figures;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 24, 1761 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.06019">arXiv:2311.06019</a> <span> [<a href="https://arxiv.org/pdf/2311.06019">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-dimensional vibration sensing and simultaneous self-homodyne optical transmission of single wavelength net 5.36 Tb/s signal using telecom 7-core fiber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jianwei Tang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xueyang Li</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+B">Bang Yang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+C">Chen Cheng</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+Y">Yaguang Hao</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yifan Xu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jiali Li</a>, <a href="/search/physics?searchtype=author&query=He%2C+Z">Zhixue He</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yanfu Yang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+W">Weisheng Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.06019v1-abstract-short" style="display: inline;"> We present a high-capacity self-homodyne optical transmission system that enables simultaneously multidimensional vibration sensing based on a weakly-coupled 7-core fiber. To our knowledge, we demonstrate for the first-time detection of fiber vibration direction along with strength, frequency, and location of the vibration source, while transmitting in the meantime single-carrier 16 QAM signal rea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06019v1-abstract-full').style.display = 'inline'; document.getElementById('2311.06019v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.06019v1-abstract-full" style="display: none;"> We present a high-capacity self-homodyne optical transmission system that enables simultaneously multidimensional vibration sensing based on a weakly-coupled 7-core fiber. To our knowledge, we demonstrate for the first-time detection of fiber vibration direction along with strength, frequency, and location of the vibration source, while transmitting in the meantime single-carrier 16 QAM signal reaching a net date rate of 5.36 Tb/s over 41.4 km of telecom 7-core fiber. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06019v1-abstract-full').style.display = 'none'; document.getElementById('2311.06019v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12493">arXiv:2310.12493</a> <span> [<a href="https://arxiv.org/pdf/2310.12493">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Atomic-scale investigation of $纬$-Ga$_2$O$_3$ deposited on MgAl$_2$O$_4$ and its relationship with $尾$-Ga$_2$O$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+J">J. Tang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+K">K. Jiang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+C">C. Xu</a>, <a href="/search/physics?searchtype=author&query=Cabral%2C+M+J">M. J. Cabral</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+K">K. Xiao</a>, <a href="/search/physics?searchtype=author&query=Porter%2C+L+M">L. M. Porter</a>, <a href="/search/physics?searchtype=author&query=Davis%2C+R+F">R. F. Davis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12493v2-abstract-short" style="display: inline;"> Nominally phase-pure $纬$-$Ga_2O_3$ was deposited on (100) $MgAl_2O_4$ within a narrow temperature window centered at $\sim$470 $^{\circ}$C using metal-organic chemical vapor deposition (MOCVD). The film deposited at 440 $^{\circ}$C exhibited either poor crystallization or an amorphous structure; the film grown at 500 $^{\circ}$C contained both $尾$-$Ga_2O_3$ and $纬$-$Ga_2O_3$. A nominally phase-pur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12493v2-abstract-full').style.display = 'inline'; document.getElementById('2310.12493v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12493v2-abstract-full" style="display: none;"> Nominally phase-pure $纬$-$Ga_2O_3$ was deposited on (100) $MgAl_2O_4$ within a narrow temperature window centered at $\sim$470 $^{\circ}$C using metal-organic chemical vapor deposition (MOCVD). The film deposited at 440 $^{\circ}$C exhibited either poor crystallization or an amorphous structure; the film grown at 500 $^{\circ}$C contained both $尾$-$Ga_2O_3$ and $纬$-$Ga_2O_3$. A nominally phase-pure $尾$-$Ga_2O_3$ film was obtained at 530 $^{\circ}$C. Atomic-resolution scanning transmission electron microscopy (STEM) investigations of the $纬$-$Ga_2O_3$ film grown at 470 $^{\circ}$C revealed a high density of antiphase boundaries. A planar defect model developed for $纬$-$Al_2O_3$ was extended to explain the stacking sequences of the Ga sublattice observed in the STEM images of $纬$-$Ga_2O_3$. The presence of the 180$^{\circ}$ rotational domains and 90$^{\circ}$ rotational domains of $尾$-$Ga_2O_3$ inclusions within the $纬$-$Ga_2O_3$ matrix is discussed within the context of a comprehensive investigation of the epitaxial relationship between those two phases in the as-grown film at 470 $^{\circ}$C and the same film annealed at 600 $^{\circ}$C. The results led to the hypotheses that (i) incorporation of certain dopants including Si, Ge, Sn, Mg, Al, and Sc, into $尾$-$Ga_2O_3$, locally stabilizes the "$纬$-phase" and (ii) the site preference(s) for these dopants promotes the formation of the "$纬$-phase" and/or $纬$-$Ga_2O_3$ solid solutions. However, in the absence of such dopants, pure $纬$-$Ga_2O_3$ remains the least stable $Ga_2O_3$ polymorph, as indicated by its very narrow growth window, lower growth temperatures relative to other $Ga_2O_3$ polymorphs, and the largest calculated difference in Helmholtz free energy per formula unit between $纬$-$Ga_2O_3$ and $尾$-$Ga_2O_3$ than all other polymorphs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12493v2-abstract-full').style.display = 'none'; document.getElementById('2310.12493v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The following article has been submitted to APL Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.06144">arXiv:2310.06144</a> <span> [<a href="https://arxiv.org/pdf/2310.06144">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ions-induced Epitaxial Growth of Perovskite Nanocomposites for Highly Efficient Light-Emitting Diodes with EQE Exceeding 30% </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xing%2C+Z">Zhaohui Xing</a>, <a href="/search/physics?searchtype=author&query=Du%2C+Q">Qing Du</a>, <a href="/search/physics?searchtype=author&query=Pang%2C+P">Peiyuan Pang</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+G">Guangrong Jin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+T">Tanghao Liu</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Y">Yang Shen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Dengliang Zhang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+B">Bufan Yu</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Y">Yue Liang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jianxin Tang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">Lei Wang</a>, <a href="/search/physics?searchtype=author&query=Xing%2C+G">Guichuang Xing</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jiangshan Chen</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+D">Dongge Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.06144v2-abstract-short" style="display: inline;"> Metal halide perovskites, a class of cost-effective semiconductor materials, are of great interest for modern and upcoming display technologies that prioritize the light-emitting diodes (LEDs) with high efficiency and excellent color purity. The prevailing approach to achieving efficient luminescence from pervoskites is enhancing exciton binding effect and confining carriers by reducing their dime… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06144v2-abstract-full').style.display = 'inline'; document.getElementById('2310.06144v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.06144v2-abstract-full" style="display: none;"> Metal halide perovskites, a class of cost-effective semiconductor materials, are of great interest for modern and upcoming display technologies that prioritize the light-emitting diodes (LEDs) with high efficiency and excellent color purity. The prevailing approach to achieving efficient luminescence from pervoskites is enhancing exciton binding effect and confining carriers by reducing their dimensionality or grain size. However, splitting pervoskite lattice into smaller ones generates abundant boundaries in solid films and results in more surface trap states, needing exact passivation to suppress trap-assisted nonradiative losses. Here, an ions-induced heteroepitaxial growth method is employed to assembe perovskite lattices with different structures into large-sized grains to produce lattice-anchored nanocomposites for efficient LEDs with high color purity. This approach enables the nanocomposite thin films, composed of three-dimensional (3D) CsPbBr3 and its variant of zero-dimensional (0D) Cs4PbBr6, to feature significant low trap-assisted nonradiative recombination, enhanced light out-coupling with a corrugated surface, and well-balanced charge carrier transport. Based on the resultant 3D/0D perovskite nanocomposites, we demonstrate the perovskite LEDs achieving an remarkable external quantum efficiency of 31.0% at the emission peak of 521 nm with a narrow full width at half-maximum of only 18 nm. This research introduces a novel approach to the development of well-assembled nanocomposites for perovskite LEDs, demonstrating high efficiency comparable to that of state-of-the-art organic LEDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06144v2-abstract-full').style.display = 'none'; document.getElementById('2310.06144v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05669">arXiv:2310.05669</a> <span> [<a href="https://arxiv.org/pdf/2310.05669">pdf</a>, <a href="https://arxiv.org/format/2310.05669">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Transverse Emittance Reduction in Muon Beams by Ionization Cooling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+MICE+Collaboration"> The MICE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&query=Vankova-Kirilova%2C+G">G. Vankova-Kirilova</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Y+P">Y. P. Song</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J+Y">J. Y. Tang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&query=Chignoli%2C+F">F. Chignoli</a>, <a href="/search/physics?searchtype=author&query=Mazza%2C+R">R. Mazza</a>, <a href="/search/physics?searchtype=author&query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&query=Orestano%2C+D">D. Orestano</a>, <a href="/search/physics?searchtype=author&query=Tortora%2C+L">L. Tortora</a>, <a href="/search/physics?searchtype=author&query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&query=Ishimoto%2C+S">S. Ishimoto</a>, <a href="/search/physics?searchtype=author&query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&query=Sung%2C+C+K">C. K. Sung</a>, <a href="/search/physics?searchtype=author&query=Filthaut%2C+F">F. Filthaut</a>, <a href="/search/physics?searchtype=author&query=Fedorov%2C+M">M. Fedorov</a>, <a href="/search/physics?searchtype=author&query=Jokovic%2C+D">D. Jokovic</a>, <a href="/search/physics?searchtype=author&query=Maletic%2C+D">D. Maletic</a>, <a href="/search/physics?searchtype=author&query=Savic%2C+M">M. Savic</a> , et al. (112 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05669v2-abstract-short" style="display: inline;"> Accelerated muon beams have been considered for next-generation studies of high-energy lepton-antilepton collisions and neutrino oscillations. However, high-brightness muon beams have not yet been produced. The main challenge for muon acceleration and storage stems from the large phase-space volume occupied by the beam, derived from the muon production mechanism through the decay of pions from pro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05669v2-abstract-full').style.display = 'inline'; document.getElementById('2310.05669v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05669v2-abstract-full" style="display: none;"> Accelerated muon beams have been considered for next-generation studies of high-energy lepton-antilepton collisions and neutrino oscillations. However, high-brightness muon beams have not yet been produced. The main challenge for muon acceleration and storage stems from the large phase-space volume occupied by the beam, derived from the muon production mechanism through the decay of pions from proton collisions. Ionization cooling is the technique proposed to decrease the muon beam phase-space volume. Here we demonstrate a clear signal of ionization cooling through the observation of transverse emittance reduction in beams that traverse lithium hydride or liquid hydrogen absorbers in the Muon Ionization Cooling Experiment (MICE). The measurement is well reproduced by the simulation of the experiment and the theoretical model. The results shown here represent a substantial advance towards the realization of muon-based facilities that could operate at the energy and intensity frontiers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05669v2-abstract-full').style.display = 'none'; document.getElementById('2310.05669v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages and 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> STFC-P-2023-004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14982">arXiv:2309.14982</a> <span> [<a href="https://arxiv.org/pdf/2309.14982">pdf</a>, <a href="https://arxiv.org/format/2309.14982">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.171001">10.1103/PhysRevLett.132.171001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Limits on Solar Reflected Dark Matter with a New Approach on Accelerated-Dark-Matter-Electron Analysis in Semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z+Y">Z. Y. Zhang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14982v3-abstract-short" style="display: inline;"> Recently a dark matter-electron (DM-electron) paradigm has drawn much attention. Models beyond the standard halo model describing DM accelerated by high energy celestial bodies are under intense examination as well. In this Letter, a velocity components analysis (VCA) method dedicated to swift analysis of accelerated DM-electron interactions via semiconductor detectors is proposed and the first HP… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14982v3-abstract-full').style.display = 'inline'; document.getElementById('2309.14982v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14982v3-abstract-full" style="display: none;"> Recently a dark matter-electron (DM-electron) paradigm has drawn much attention. Models beyond the standard halo model describing DM accelerated by high energy celestial bodies are under intense examination as well. In this Letter, a velocity components analysis (VCA) method dedicated to swift analysis of accelerated DM-electron interactions via semiconductor detectors is proposed and the first HPGe detector-based accelerated DM-electron analysis is realized. Utilizing the method, the first germanium based constraint on sub-GeV solar reflected DM-electron interaction is presented with the 205.4 kg$\cdot$day dataset from the CDEX-10 experiment. In the heavy mediator scenario, our result excels in the mass range of 5$-$15 keV/$c^2$, achieving a 3 orders of magnitude improvement comparing with previous semiconductor experiments. In the light mediator scenario, the strongest laboratory constraint for DM lighter than 0.1 MeV/$c^2$ is presented. The result proves the feasibility and demonstrates the vast potential of the VCA technique in future accelerated DM-electron analyses with semiconductor detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14982v3-abstract-full').style.display = 'none'; document.getElementById('2309.14982v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Version updated to match PRL version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 171001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14614">arXiv:2309.14614</a> <span> [<a href="https://arxiv.org/pdf/2309.14614">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Multiferroic Magnon Spin-Torque Based Reconfigurable Logic-In-Memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chai%2C+Y">Yahong Chai</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+Y">Yuhan Liang</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+C">Cancheng Xiao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yue Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+B">Bo Li</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+D">Dingsong Jiang</a>, <a href="/search/physics?searchtype=author&query=Pal%2C+P">Pratap Pal</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+Y">Yongjian Tang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Hetian Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yuejie Zhang</a>, <a href="/search/physics?searchtype=author&query=Skowro%C5%84ski%2C+W">Witold Skowro艅ski</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qinghua Zhang</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+L">Lin Gu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+J">Jing Ma</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+P">Pu Yu</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jianshi Tang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Y">Yuan-Hua Lin</a>, <a href="/search/physics?searchtype=author&query=Yi%2C+D">Di Yi</a>, <a href="/search/physics?searchtype=author&query=Ralph%2C+D+C">Daniel C. Ralph</a>, <a href="/search/physics?searchtype=author&query=Eom%2C+C">Chang-Beom Eom</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+H">Huaqiang Wu</a>, <a href="/search/physics?searchtype=author&query=Nan%2C+T">Tianxiang Nan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14614v1-abstract-short" style="display: inline;"> Magnons, bosonic quasiparticles carrying angular momentum, can flow through insulators for information transmission with minimal power dissipation. However, it remains challenging to develop a magnon-based logic due to the lack of efficient electrical manipulation of magnon transport. Here we present a magnon logic-in-memory device in a spin-source/multiferroic/ferromagnet structure, where multife… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14614v1-abstract-full').style.display = 'inline'; document.getElementById('2309.14614v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14614v1-abstract-full" style="display: none;"> Magnons, bosonic quasiparticles carrying angular momentum, can flow through insulators for information transmission with minimal power dissipation. However, it remains challenging to develop a magnon-based logic due to the lack of efficient electrical manipulation of magnon transport. Here we present a magnon logic-in-memory device in a spin-source/multiferroic/ferromagnet structure, where multiferroic magnon modes can be electrically excited and controlled. In this device, magnon information is encoded to ferromagnetic bits by the magnon-mediated spin torque. We show that the ferroelectric polarization can electrically modulate the magnon spin-torque by controlling the non-collinear antiferromagnetic structure in multiferroic bismuth ferrite thin films with coupled antiferromagnetic and ferroelectric orders. By manipulating the two coupled non-volatile state variables (ferroelectric polarization and magnetization), we further demonstrate reconfigurable logic-in-memory operations in a single device. Our findings highlight the potential of multiferroics for controlling magnon information transport and offer a pathway towards room-temperature voltage-controlled, low-power, scalable magnonics for in-memory computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14614v1-abstract-full').style.display = 'none'; document.getElementById('2309.14614v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.07025">arXiv:2309.07025</a> <span> [<a href="https://arxiv.org/pdf/2309.07025">pdf</a>, <a href="https://arxiv.org/ps/2309.07025">ps</a>, <a href="https://arxiv.org/format/2309.07025">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> A linear model of synergetic current drive with lower-hybrid wave and electron cyclotron wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+J+N">J. N. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S+Y">S. Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Mou%2C+M+L">M. L. Mou</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+C+J">C. J. Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.07025v3-abstract-short" style="display: inline;"> A linear model of synergetic current drive (SCD) with lower-hybrid wave (LHW) and electron cyclotron wave (ECW) is proposed to efficiently calculate the quantitative SCD efficiency and reveal the conditions for the occurrence of SCD. In this model, the response function dominated by collisions in the presence of LHW is derived from the adjoint equations by using perturbation and Green-Function tec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07025v3-abstract-full').style.display = 'inline'; document.getElementById('2309.07025v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.07025v3-abstract-full" style="display: none;"> A linear model of synergetic current drive (SCD) with lower-hybrid wave (LHW) and electron cyclotron wave (ECW) is proposed to efficiently calculate the quantitative SCD efficiency and reveal the conditions for the occurrence of SCD. In this model, the response function dominated by collisions in the presence of LHW is derived from the adjoint equations by using perturbation and Green-Function techniques, where the relativistic effect and the trapped effect are taken into account. The SCD efficiency is compared with the commonly used ECW current drive (ECCD) efficiency in the parameter space using our linear model. The results show two features of the synergy effect, One is that it is inclined to occurs at smaller $y = 2蠅_{c}/蠅$ with the fixed ECW parallel refractive index $n_{\parallel}$, and the other is that the threshold values of $y$, at which the synergy effect becomes sufficiently significant, shifts towards higher values with a decreasing $n_{\parallel}$. The quasilinear simulation on ECCD and SCD efficiency with a two-dimensional Fokker-Planck code are consistent with the results of the linear model in trends. Based on the linear SCD efficiency, criteria for the occurrence and the sufficient significance of the synergy effect are suggested, which indicate that the synergy effect is dependent on the power factor that quantifies the degree of the overlap of the two waves' quasilinear domains, the LHW power, and synergy electrons. The present work provides a method of quick matching and calculating of SCD with LHW and ECW, and may be important for the real-time application of the SCD in future reactors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.07025v3-abstract-full').style.display = 'none'; document.getElementById('2309.07025v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05933">arXiv:2309.05933</a> <span> [<a href="https://arxiv.org/pdf/2309.05933">pdf</a>, <a href="https://arxiv.org/format/2309.05933">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Workshop on a future muon program at FNAL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Corrodi%2C+S">S. Corrodi</a>, <a href="/search/physics?searchtype=author&query=Oksuzian%2C+Y">Y. Oksuzian</a>, <a href="/search/physics?searchtype=author&query=Edmonds%2C+A">A. Edmonds</a>, <a href="/search/physics?searchtype=author&query=Miller%2C+J">J. Miller</a>, <a href="/search/physics?searchtype=author&query=Tran%2C+H+N">H. N. Tran</a>, <a href="/search/physics?searchtype=author&query=Bonventre%2C+R">R. Bonventre</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+D+N">D. N. Brown</a>, <a href="/search/physics?searchtype=author&query=Meot%2C+F">F. Meot</a>, <a href="/search/physics?searchtype=author&query=Singh%2C+V">V. Singh</a>, <a href="/search/physics?searchtype=author&query=Kolomensky%2C+Y">Y. Kolomensky</a>, <a href="/search/physics?searchtype=author&query=Tripathy%2C+S">S. Tripathy</a>, <a href="/search/physics?searchtype=author&query=Borrel%2C+L">L. Borrel</a>, <a href="/search/physics?searchtype=author&query=Bub%2C+M">M. Bub</a>, <a href="/search/physics?searchtype=author&query=Echenard%2C+B">B. Echenard</a>, <a href="/search/physics?searchtype=author&query=Hitlin%2C+D+G">D. G. Hitlin</a>, <a href="/search/physics?searchtype=author&query=Jafree%2C+H">H. Jafree</a>, <a href="/search/physics?searchtype=author&query=Middleton%2C+S">S. Middleton</a>, <a href="/search/physics?searchtype=author&query=Plestid%2C+R">R. Plestid</a>, <a href="/search/physics?searchtype=author&query=Porter%2C+F+C">F. C. Porter</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+R+Y">R. Y. Zhu</a>, <a href="/search/physics?searchtype=author&query=Bottura%2C+L">L. Bottura</a>, <a href="/search/physics?searchtype=author&query=Pinsard%2C+E">E. Pinsard</a>, <a href="/search/physics?searchtype=author&query=Teixeira%2C+A+M">A. M. Teixeira</a>, <a href="/search/physics?searchtype=author&query=Carelli%2C+C">C. Carelli</a>, <a href="/search/physics?searchtype=author&query=Ambrose%2C+D">D. Ambrose</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05933v1-abstract-short" style="display: inline;"> The Snowmass report on rare processes and precision measurements recommended Mu2e-II and a next generation muon facility at Fermilab (Advanced Muon Facility) as priorities for the frontier. The Workshop on a future muon program at FNAL was held in March 2023 to discuss design studies for Mu2e-II, organizing efforts for the next generation muon facility, and identify synergies with other efforts (e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05933v1-abstract-full').style.display = 'inline'; document.getElementById('2309.05933v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05933v1-abstract-full" style="display: none;"> The Snowmass report on rare processes and precision measurements recommended Mu2e-II and a next generation muon facility at Fermilab (Advanced Muon Facility) as priorities for the frontier. The Workshop on a future muon program at FNAL was held in March 2023 to discuss design studies for Mu2e-II, organizing efforts for the next generation muon facility, and identify synergies with other efforts (e.g., muon collider). Topics included high-power targetry, status of R&D for Mu2e-II, development of compressor rings, FFA and concepts for muon experiments (conversion, decays, muonium and other opportunities) at AMF. This document summarizes the workshop discussions with a focus on future R&D tasks needed to realize these concepts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05933v1-abstract-full').style.display = 'none'; document.getElementById('2309.05933v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">68 pages, 36 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-23-464-PPD, CALT-TH-2023-036 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01843">arXiv:2309.01843</a> <span> [<a href="https://arxiv.org/pdf/2309.01843">pdf</a>, <a href="https://arxiv.org/format/2309.01843">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2024/07/009">10.1088/1475-7516/2024/07/009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected WIMP sensitivity of the CDEX-50 dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Karmakar%2C+S">S. Karmakar</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H+B">H. B. Li</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01843v2-abstract-short" style="display: inline;"> CDEX-50 is a next-generation project of the China Dark Matter Experiment (CDEX) that aims to search for dark matter using a 50-kg germanium detector array. This paper comprises a thorough summary of the CDEX-50 dark matter experiment, including an investigation of potential background sources and the development of a background model. Based on the baseline model, the projected sensitivity of weakl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01843v2-abstract-full').style.display = 'inline'; document.getElementById('2309.01843v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01843v2-abstract-full" style="display: none;"> CDEX-50 is a next-generation project of the China Dark Matter Experiment (CDEX) that aims to search for dark matter using a 50-kg germanium detector array. This paper comprises a thorough summary of the CDEX-50 dark matter experiment, including an investigation of potential background sources and the development of a background model. Based on the baseline model, the projected sensitivity of weakly interacting massive particle (WIMP) is also presented. The expected background level within the energy region of interest, set to 2--2.5 keVee, is $\sim$0.01 counts keVee$^{-1}$ kg$^{-1}$ day$^{-1}$. At 90\% confidence level, the expected sensitivity to spin-independent WIMP-nucleon couplings is estimated to reach a cross-section of 5.1 $\times$ 10$^{-45}$ cm$^{2}$ for a WIMP mass of 5 GeV/c$^{2}$ with an exposure objective of 150 kg$\cdot$year and an analysis threshold of 160 eVee. This science goal will correspond to the most sensitive results for WIMPs with a mass of 2.2--8 GeV/c$^{2}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01843v2-abstract-full').style.display = 'none'; document.getElementById('2309.01843v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures. Version updated to match JCAP version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 07 (2024) 009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15253">arXiv:2308.15253</a> <span> [<a href="https://arxiv.org/pdf/2308.15253">pdf</a>, <a href="https://arxiv.org/format/2308.15253">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Development of a SciFi-based beam monitor for COMET </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yu Xu</a>, <a href="/search/physics?searchtype=author&query=Ning%2C+Y">Yunsong Ning</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+Z">Zhizhen Qin</a>, <a href="/search/physics?searchtype=author&query=Teng%2C+Y">Yao Teng</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+C">Changqing Feng</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jian Tang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yu Chen</a>, <a href="/search/physics?searchtype=author&query=Fukao%2C+Y">Yoshinori Fukao</a>, <a href="/search/physics?searchtype=author&query=Mihara%2C+S">Satoshi Mihara</a>, <a href="/search/physics?searchtype=author&query=Oishi%2C+K">Kou Oishi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15253v2-abstract-short" style="display: inline;"> COMET is a leading experiment to search for coherent conversion of $渭^- \mathrm{N}\to e^- \mathrm{N}$ with a high-intensity pulsed muon beamline, produced by the innovative slow extraction techniques. Therefore, it is critical to measure the characteristics of the muon beam. We set up a Muon Beam Monitor (MBM), where scintillation fibers (SciFi) weaved in the cross shape are coupled to silicon pho… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15253v2-abstract-full').style.display = 'inline'; document.getElementById('2308.15253v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15253v2-abstract-full" style="display: none;"> COMET is a leading experiment to search for coherent conversion of $渭^- \mathrm{N}\to e^- \mathrm{N}$ with a high-intensity pulsed muon beamline, produced by the innovative slow extraction techniques. Therefore, it is critical to measure the characteristics of the muon beam. We set up a Muon Beam Monitor (MBM), where scintillation fibers (SciFi) weaved in the cross shape are coupled to silicon photomultipliers (SiPM), to measure the spatial profile and timing structure of the extracted muon beam for COMET. The MBM detector has been tested successfully with a proton beamline in China Spallation Neutron Source (CSNS) and taken data with good performance in the commissioning run called COMET Phase-$伪$. Experience of the MBM development, such as the mechanical structure and electronics readout, and its beam measurement results will be shared. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15253v2-abstract-full').style.display = 'none'; document.getElementById('2308.15253v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14768">arXiv:2308.14768</a> <span> [<a href="https://arxiv.org/pdf/2308.14768">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> </div> <p class="title is-5 mathjax"> Sedenion algebra for three lepton/quark generations and its relations to SU(5) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+Q">Qiang Tang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jau Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14768v2-abstract-short" style="display: inline;"> In this work, we analyze two models beyond the Standard Models descriptions that make ad hoc hypotheses of three point-like lepton and quark generations without explanations of their physical origins. Instead of using the same Dirac equation involving four anti-commutative matrices for all such structure-less elementary particles, we consider in the first model the use of sixteen direct-product ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14768v2-abstract-full').style.display = 'inline'; document.getElementById('2308.14768v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14768v2-abstract-full" style="display: none;"> In this work, we analyze two models beyond the Standard Models descriptions that make ad hoc hypotheses of three point-like lepton and quark generations without explanations of their physical origins. Instead of using the same Dirac equation involving four anti-commutative matrices for all such structure-less elementary particles, we consider in the first model the use of sixteen direct-product matrices of quaternions that are related to Diracs gamma matrices. This associative direct-product matrix model could not generate three fermion generations satisfying Einsteins mass-energy relation. We show that sedenion algebra contains five distinct quaternion sub-algebras and three octonion sub-algebras but with a common intersecting quaternion algebra. This model naturally leads to precisely three generations as each of the non-associative octonion sub-algebra leads to one fermion generation. Moreover, we demonstrate the use of basic sedenion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14768v2-abstract-full').style.display = 'none'; document.getElementById('2308.14768v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.08845">arXiv:2308.08845</a> <span> [<a href="https://arxiv.org/pdf/2308.08845">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> </div> <p class="title is-5 mathjax"> Efficient spectral broadening and few-cycle pulse generation with multiple thin water films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jiacheng Huang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+X">Xiang Lu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+F">Feilong Hu</a>, <a href="/search/physics?searchtype=author&query=Long%2C+J">Jie Long</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiajun Tang</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">Lixin He</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qingbin Zhang</a>, <a href="/search/physics?searchtype=author&query=Lan%2C+P">Pengfei Lan</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+P">Peixiang Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.08845v1-abstract-short" style="display: inline;"> High-energy, few-cycle laser pulses are essential for numerous applications in the fields of ultrafast optics and strong-field physics, due to their ultrafast temporal resolution and high peak intensity. In this work, different from the traditional hollow-core fibers and multiple thin solid plates, we represent the first demonstration of the octave-spanning supercontinuum broadening by utilizing m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08845v1-abstract-full').style.display = 'inline'; document.getElementById('2308.08845v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.08845v1-abstract-full" style="display: none;"> High-energy, few-cycle laser pulses are essential for numerous applications in the fields of ultrafast optics and strong-field physics, due to their ultrafast temporal resolution and high peak intensity. In this work, different from the traditional hollow-core fibers and multiple thin solid plates, we represent the first demonstration of the octave-spanning supercontinuum broadening by utilizing multiple ultrathin liquid films (MTLFs) as the nonlinear media. The continuum covers a range from 380 to 1050 nm, corresponding to a Fourier transform limit pulse width of 2.5 fs, when 35 fs Ti:sapphire laser pulse is applied on the MTLFs. The output pulses are compressed to 3.9 fs by employing chirped mirrors. Furthermore, a continuous high-order harmonic spectrum up to the 33rd order is realized by subjecting the compressed laser pulses to interact with Kr gas. The utilization of flowing water films eliminates permanent optical damage and enables wider and stronger spectrum broadening. Therefore, this MTLFs scheme provides new solutions for the generation of highly efficient femtosecond supercontinuum and nonlinear pulse compression, with potential applications in the fields of strong-field physics and attosecond science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08845v1-abstract-full').style.display = 'none'; document.getElementById('2308.08845v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11250">arXiv:2307.11250</a> <span> [<a href="https://arxiv.org/pdf/2307.11250">pdf</a>, <a href="https://arxiv.org/format/2307.11250">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.055001">10.1103/PhysRevLett.131.055001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Active Q-switched X-Ray Regenerative Amplifier Free-Electron Laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jingyi Tang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/physics?searchtype=author&query=Morgan%2C+J">Jenny Morgan</a>, <a href="/search/physics?searchtype=author&query=Hemsing%2C+E">Erik Hemsing</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Zhirong Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11250v1-abstract-short" style="display: inline;"> Despite tremendous progress in x-ray free-electron laser (FEL) science over the last decade, future applications still demand fully coherent, stable x-rays that have not been demonstrated in existing X-ray FEL facilities. In this Letter, we describe an active Q-switched x-ray regenerative amplifier FEL scheme to produce fully coherent, high-brightness, hard x rays at a high-repetition rate. By usi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11250v1-abstract-full').style.display = 'inline'; document.getElementById('2307.11250v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11250v1-abstract-full" style="display: none;"> Despite tremendous progress in x-ray free-electron laser (FEL) science over the last decade, future applications still demand fully coherent, stable x-rays that have not been demonstrated in existing X-ray FEL facilities. In this Letter, we describe an active Q-switched x-ray regenerative amplifier FEL scheme to produce fully coherent, high-brightness, hard x rays at a high-repetition rate. By using simple electron-beam phase space manipulation, we show this scheme is flexible in controlling the x-ray cavity quality factor Q and hence the output radiation. We report both theoretical and numerical studies on this scheme with a wide range of accelerator, x-ray cavity, and undulator parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11250v1-abstract-full').style.display = 'none'; document.getElementById('2307.11250v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Tang%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Tang%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Tang%2C+J&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>