CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 123 results for author: <span class="mathjax">Cui, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Cui%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Cui, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Cui%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Cui, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Cui%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Cui%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cui%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cui%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08538">arXiv:2411.08538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08538">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Intelligent Adaptive Metasurface in Complex Wireless Environments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H+Q">Han Qing Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+J+Y">Jun Yan Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+D">Hui Dong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+L">Lijie Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M+Z">Meng Zhen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Z+H">Zi Hang Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+R">Si Ran Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z+X">Zheng Xing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+W">Wankai Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+S">Shi Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J+W">Jun Wei Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Q">Qiang Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+T+J">Tie Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08538v1-abstract-short" style="display: inline;"> The programmable metasurface is regarded as one of the most promising transformative technologies for next-generation wireless system applications. Due to the lack of effective perception ability of the external electromagnetic environment, there are numerous challenges in the intelligent regulation of wireless channels, and it still relies on external sensors to reshape electromagnetic environmen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08538v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08538v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08538v1-abstract-full" style="display: none;"> The programmable metasurface is regarded as one of the most promising transformative technologies for next-generation wireless system applications. Due to the lack of effective perception ability of the external electromagnetic environment, there are numerous challenges in the intelligent regulation of wireless channels, and it still relies on external sensors to reshape electromagnetic environment as desired. To address that problem, we propose an adaptive metasurface (AMS) which integrates the capabilities of acquiring wireless environment information and manipulating reflected electromagnetic (EM) waves in a programmable manner. The proposed design endows the metasurfaces with excellent capabilities to sense the complex electromagnetic field distributions around them and then dynamically manipulate the waves and signals in real time under the guidance of the sensed information, eliminating the need for prior knowledge or external inputs about the wireless environment. For verification, a prototype of the proposed AMS is constructed, and its dual capabilities of sensing and manipulation are experimentally validated. Additionally, different integrated sensing and communication (ISAC) scenarios with and without the aid of the AMS are established. The effectiveness of the AMS in enhancing communication quality is well demonstrated in complex electromagnetic environments, highlighting its beneficial application potential in future wireless systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08538v1-abstract-full').style.display = 'none'; document.getElementById('2411.08538v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05690">arXiv:2411.05690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05690">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Multiple-partition cross-modulation programmable metasurface empowering wireless communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J+W">Jun Wei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+Z+J">Zhen Jie Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+L+J">Li Jie Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+W+W">Wan Wan Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+X">Xinxin Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+Z+H">Zhi Hui Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+Y">Jing Yu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+J+M">Jie Ming Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z+X">Zheng Xing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+R">Si Ran Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J+W">Jun Wei Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J+N">Jia Nan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+D">Hui Dong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+J+Y">Jun Yan Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Q">Qiang Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+T+J">Tie Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05690v1-abstract-short" style="display: inline;"> With the versatile manipulation capability, programmable metasurfaces are rapidly advancing in their intelligence, integration, and commercialization levels. However, as the programmable metasurfaces scale up, their control configuration becomes increasingly complicated, posing significant challenges and limitations. Here, we propose a multiple-partition cross-modulation (MPCM) programmable metasu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05690v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05690v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05690v1-abstract-full" style="display: none;"> With the versatile manipulation capability, programmable metasurfaces are rapidly advancing in their intelligence, integration, and commercialization levels. However, as the programmable metasurfaces scale up, their control configuration becomes increasingly complicated, posing significant challenges and limitations. Here, we propose a multiple-partition cross-modulation (MPCM) programmable metasurface to enhance the wireless communication coverage with low hardware complexity. We firstly propose an innovative encoding scheme to multiply the control voltage vectors of row-column crossing, achieving high beamforming precision in free space while maintaining low control hardware complexity and reducing memory requirements for coding sequences. We then design and fabricate an MPCM programmable metasurface to confirm the effectiveness of the proposed encoding scheme. The simulated and experimental results show good agreements with the theoretically calculated outcomes in beam scanning across the E and H planes and in free-space beam pointing. The MPCM programmable metasurface offers strong flexibility and low complexity by allowing various numbers and combinations of partition items in modulation methods, catering to diverse precision demands in various scenarios. We demonstrate the performance of MPCM programmable metasurface in a realistic indoor setting, where the transmissions of videos to specific receiver positions are successfully achieved, surpassing the capabilities of traditional programmable metasurfaces. We believe that the proposed programmable metasurface has great potentials in significantly empowering the wireless communications while addressing the challenges associated with the programmable metasurface&#39;s design and implementation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05690v1-abstract-full').style.display = 'none'; document.getElementById('2411.05690v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07576">arXiv:2410.07576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07576">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Simplified radar architecture based on information metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+R">Si Ran Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z+Y">Zhan Ye Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+N">Shao Nan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+J+Y">Jun Yan Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J+W">Jun Wei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+Z+J">Zhen Jie Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+L+J">Li Jie Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+M+K">Meng Ke Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Q+Y">Qun Yan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+D">Hui Dong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Z+J">Zhang Jie Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Q">Qiang Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+T+J">Tie Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07576v1-abstract-short" style="display: inline;"> Modern radar typically employs a chain architecture that consists of radio-frequency (RF) and intermediate frequency (IF) units, baseband digital signal processor, and information display. However, this architecture often results in high costs, significant hardware demands, and integration challenges. Here we propose a simplified radar architecture based on space-time-coding (STC) information meta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07576v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07576v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07576v1-abstract-full" style="display: none;"> Modern radar typically employs a chain architecture that consists of radio-frequency (RF) and intermediate frequency (IF) units, baseband digital signal processor, and information display. However, this architecture often results in high costs, significant hardware demands, and integration challenges. Here we propose a simplified radar architecture based on space-time-coding (STC) information metasurfaces. With their powerful capabilities to generate multiple harmonic frequencies and customize their phases, the STC metasurfaces play a key role in chirp signal generation, transmission, and echo reception. Remarkably, the receiving STC metasurface can implement dechirp processing directly on the RF level and realize the digital information outputs, which are beneficial to lower the hardware requirement at the receiving end while potentially shortening the time needed for conventional digital processing. As a proof of concept, the proposed metasurface radar is tested in a series of experiments for target detection and range/speed measurement, yielding results comparable to those obtained by conventional methods. This study provides valuable inspiration for a new radar system paradigm to combine the RF front ends and signal processors on the information metasurface platform that offers essential functionalities while significantly reducing the system complexity and cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07576v1-abstract-full').style.display = 'none'; document.getElementById('2410.07576v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13989">arXiv:2409.13989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13989">pdf</a>, <a href="https://arxiv.org/format/2409.13989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yuqing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rongyang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+X">Xuesong He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhi%2C+X">Xuyang Zhi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+F">Feiyang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Deguang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+H">Huadong Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jian Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zimu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shijin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+G">Guoping Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+G">Guiquan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lian%2C+D">Defu Lian</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+E">Enhong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13989v1-abstract-short" style="display: inline;"> There is a growing interest in the role that LLMs play in chemistry which lead to an increased focus on the development of LLMs benchmarks tailored to chemical domains to assess the performance of LLMs across a spectrum of chemical tasks varying in type and complexity. However, existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13989v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13989v1-abstract-full" style="display: none;"> There is a growing interest in the role that LLMs play in chemistry which lead to an increased focus on the development of LLMs benchmarks tailored to chemical domains to assess the performance of LLMs across a spectrum of chemical tasks varying in type and complexity. However, existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals. To this end, we propose \textbf{\textit{ChemEval}}, which provides a comprehensive assessment of the capabilities of LLMs across a wide range of chemical domain tasks. Specifically, ChemEval identified 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks which are informed by open-source data and the data meticulously crafted by chemical experts, ensuring that the tasks have practical value and can effectively evaluate the capabilities of LLMs. In the experiment, we evaluate 12 mainstream LLMs on ChemEval under zero-shot and few-shot learning contexts, which included carefully selected demonstration examples and carefully designed prompts. The results show that while general LLMs like GPT-4 and Claude-3.5 excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge. Conversely, specialized LLMs exhibit enhanced chemical competencies, albeit with reduced literary comprehension. This suggests that LLMs have significant potential for enhancement when tackling sophisticated tasks in the field of chemistry. We believe our work will facilitate the exploration of their potential to drive progress in chemistry. Our benchmark and analysis will be available at {\color{blue} \url{https://github.com/USTC-StarTeam/ChemEval}}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13989v1-abstract-full').style.display = 'none'; document.getElementById('2409.13989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15069">arXiv:2408.15069</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15069">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Geometric Artifact Correction for Symmetric Multi-Linear Trajectory CT: Theory, Method, and Generalization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhisheng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Yanxu Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shangyu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+L">Legeng Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shunli Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Junning Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15069v1-abstract-short" style="display: inline;"> For extending CT field-of-view to perform non-destructive testing, the Symmetric Multi-Linear trajectory Computed Tomography (SMLCT) has been developed as a successful example of non-standard CT scanning modes. However, inevitable geometric errors can cause severe artifacts in the reconstructed images. The existing calibration method for SMLCT is both crude and inefficient. It involves reconstruct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15069v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15069v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15069v1-abstract-full" style="display: none;"> For extending CT field-of-view to perform non-destructive testing, the Symmetric Multi-Linear trajectory Computed Tomography (SMLCT) has been developed as a successful example of non-standard CT scanning modes. However, inevitable geometric errors can cause severe artifacts in the reconstructed images. The existing calibration method for SMLCT is both crude and inefficient. It involves reconstructing hundreds of images by exhaustively substituting each potential error, and then manually identifying the images with the fewest geometric artifacts to estimate the final geometric errors for calibration. In this paper, we comprehensively and efficiently address the challenging geometric artifacts in SMLCT, , and the corresponding works mainly involve theory, method, and generalization. In particular, after identifying sensitive parameters and conducting some theory analysis of geometric artifacts, we summarize several key properties between sensitive geometric parameters and artifact characteristics. Then, we further construct mathematical relationships that relate sensitive geometric errors to the pixel offsets of reconstruction images with artifact characteristics. To accurately extract pixel bias, we innovatively adapt the Generalized Cross-Correlation with Phase Transform (GCC-PHAT) algorithm, commonly used in sound processing, for our image registration task for each paired symmetric LCT. This adaptation leads to the design of a highly efficient rigid translation registration method. Simulation and physical experiments have validated the excellent performance of this work. Additionally, our results demonstrate significant generalization to common rotated CT and a variant of SMLCT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15069v1-abstract-full').style.display = 'none'; document.getElementById('2408.15069v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68U10 (Primary) 68V99; 68Q30(Secondary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11332">arXiv:2408.11332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11332">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> High-quality imaging of large areas through path-difference ptychography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jizhe Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yi Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+K">Kang Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+W">Wenfeng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Sha%2C+H">Haozhi Sha</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11332v1-abstract-short" style="display: inline;"> Tilting planar samples for multi-zone-axes observation is a routine procedure in electron microscopy. However, this process invariably introduces optical path differences in the electron beam across different sample positions, significantly compromising image quality, particularly over large fields of view. To address this challenge, we developed path difference ptychography (PDP), a method capabl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11332v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11332v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11332v1-abstract-full" style="display: none;"> Tilting planar samples for multi-zone-axes observation is a routine procedure in electron microscopy. However, this process invariably introduces optical path differences in the electron beam across different sample positions, significantly compromising image quality, particularly over large fields of view. To address this challenge, we developed path difference ptychography (PDP), a method capable of decoupling path differences from the four-dimensional data during reconstruction. This enables the acquisition of high-quality, large-scale images, facilitating a more comprehensive understanding and analysis of materials microstructure. Moreover, PDP has the potential to promote the widespread application of ptychographic tomography in the analysis of planar samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11332v1-abstract-full').style.display = 'none'; document.getElementById('2408.11332v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03075">arXiv:2408.03075</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03075">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Characterizing the current systems in the Martian ionosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gao%2C+J">Jiawei Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Shibang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Mittelholz%2C+A">Anna Mittelholz</a>, <a href="/search/physics?searchtype=author&amp;query=Rong%2C+Z">Zhaojin Rong</a>, <a href="/search/physics?searchtype=author&amp;query=Persson%2C+M">Moa Persson</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Z">Zhen Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+H">Haoyu Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiaodong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chuanfei Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Klinger%2C+L">Lucy Klinger</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jun Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+Y">Yong Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Yongxin Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03075v1-abstract-short" style="display: inline;"> When the solar wind interacts with the ionosphere of an unmagnetized planet, it induces currents that form an induced magnetosphere. These currents and their associated magnetic fields play a pivotal role in controlling the movement of charged particles, which is essential for understanding the escape of planetary ions. Unlike the well-documented magnetospheric current systems, the ionospheric cur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03075v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03075v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03075v1-abstract-full" style="display: none;"> When the solar wind interacts with the ionosphere of an unmagnetized planet, it induces currents that form an induced magnetosphere. These currents and their associated magnetic fields play a pivotal role in controlling the movement of charged particles, which is essential for understanding the escape of planetary ions. Unlike the well-documented magnetospheric current systems, the ionospheric current systems on unmagnetized planets remain less understood, which constrains the quantification of electrodynamic energy transfer from stars to these planets. Here, utilizing eight years of data from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, we investigate the global distribution of ionospheric currents on Mars. We have identified two distinct current systems in the ionosphere: one aligns with the solar wind electric field yet exhibits hemispheric asymmetry perpendicular to the electric field direction; the other corresponds to the flow pattern of annually-averaged neutral winds. We propose that these two current systems are driven by the solar wind and atmospheric neutral winds, respectively. Our findings reveal that Martian ionospheric dynamics are influenced by the neutral winds from below and the solar wind from above, highlighting the complex and intriguing nature of current systems on unmagnetized planets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03075v1-abstract-full').style.display = 'none'; document.getElementById('2408.03075v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12306">arXiv:2406.12306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12306">pdf</a>, <a href="https://arxiv.org/format/2406.12306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Interacting Mathieu equation, synchronization dynamics and collision-induced velocity exchange in trapped ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Benbouza%2C+A">Asma Benbouza</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+X">Xiaoshui Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J+M">Jin Ming Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12306v1-abstract-short" style="display: inline;"> Recently, large-scale trapped ion systems have been realized in experiments for quantum simulation and quantum computation. They are the simplest systems for dynamical stability and parametric resonance. In this model, the Mathieu equation plays the most fundamental role for us to understand the stability and instability of a single ion. In this work, we investigate the dynamics of trapped ions wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12306v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12306v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12306v1-abstract-full" style="display: none;"> Recently, large-scale trapped ion systems have been realized in experiments for quantum simulation and quantum computation. They are the simplest systems for dynamical stability and parametric resonance. In this model, the Mathieu equation plays the most fundamental role for us to understand the stability and instability of a single ion. In this work, we investigate the dynamics of trapped ions with the Coulomb interaction based on the Hamiltonian equation. We show that the many-body interaction will not influence the phase diagram for instability. Then, the dynamics of this model in the large damping limit will also be analytically calculated using few trapped ions. Furthermore, we find that in the presence of modulation, synchronization dynamics can be observed, showing an exchange of velocities between distant ions on the left side and on the right side of the trap. These dynamics resemble to that of the exchange of velocities in Newton&#39;s cradle for the collision of balls at the same time. These dynamics are independent of their initial conditions and the number of ions. As a unique feature of the interacting Mathieu equation, we hope this behavior, which leads to a quasi-periodic solution, can be measured in current experimental systems. Finally, we have also discussed the effect of anharmonic trapping potential, showing the desynchronization during the collision process. It is hopped that the dynamics in this many-body Mathieu equation with damping may find applications in quantum simulations. This model may also find interesting applications in dynamics systems as a pure mathematical problem, which may be beyond the results in the Floquet theorem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12306v1-abstract-full').style.display = 'none'; document.getElementById('2406.12306v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04973">arXiv:2406.04973</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04973">pdf</a>, <a href="https://arxiv.org/format/2406.04973">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.033602">10.1103/PhysRevLett.133.033602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterizing Biphoton Spatial Wave Function Dynamics with Quantum Wavefront Sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yi Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhao-Di Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Miao%2C+R">Rui-Heng Miao</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jin-Ming Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+M">Mu Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xiao-Ye Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04973v2-abstract-short" style="display: inline;"> With an extremely high dimensionality, the spatial degree of freedom of entangled photons is a key tool for quantum foundation and applied quantum techniques. To fully utilize the feature, the essential task is to experimentally characterize the multiphoton spatial wave function including the entangled amplitude and phase information at different evolutionary stages. However, there is no effective&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04973v2-abstract-full').style.display = 'inline'; document.getElementById('2406.04973v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04973v2-abstract-full" style="display: none;"> With an extremely high dimensionality, the spatial degree of freedom of entangled photons is a key tool for quantum foundation and applied quantum techniques. To fully utilize the feature, the essential task is to experimentally characterize the multiphoton spatial wave function including the entangled amplitude and phase information at different evolutionary stages. However, there is no effective method to measure it. Quantum state tomography is costly, and quantum holography requires additional references. Here we introduce quantum Shack-Hartmann wavefront sensing to perform efficient and reference-free measurement of the biphoton spatial wave function. The joint probability distribution of photon pairs at the back focal plane of a microlens array is measured and used for amplitude extraction and phase reconstruction. In the experiment, we observe that the biphoton amplitude correlation becomes weak while phase correlation shows up during free-space propagation. Our work is a crucial step in quantum physical and adaptive optics and paves the way for characterizing quantum optical fields with high-order correlations or topological patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04973v2-abstract-full').style.display = 'none'; document.getElementById('2406.04973v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 6 pages, 4 figures; Supplemental Material: 13 pages, 11 figures. (c) 2024 American Physical Society</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 033602 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01281">arXiv:2406.01281</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.01281">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> Noninvasive Extraction of Maternal and Fetal Electrocardiograms Using Progressive Periodic Source Peel-off </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+X">Xuanyu Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+H">Haowen Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jiawen Cui</a>, <a href="/search/physics?searchtype=author&amp;query=She%2C+Y">Yangfan She</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dongfang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">Lai Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01281v4-abstract-short" style="display: inline;"> Abdominal electrocardiogram (AECG) gives a safe and non-invasive way to monitor fetal well-being during pregnancy using surface electrodes. However, it is challenging to extract weak fetal ECG (fECG) from the AECG recordings with larger maternal ECG (mECG) and external noises. In this study, we introduce a novel progressive periodic source peel-off (PPSP) method for extracting periodic ECG sources&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01281v4-abstract-full').style.display = 'inline'; document.getElementById('2406.01281v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01281v4-abstract-full" style="display: none;"> Abdominal electrocardiogram (AECG) gives a safe and non-invasive way to monitor fetal well-being during pregnancy using surface electrodes. However, it is challenging to extract weak fetal ECG (fECG) from the AECG recordings with larger maternal ECG (mECG) and external noises. In this study, we introduce a novel progressive periodic source peel-off (PPSP) method for extracting periodic ECG sources from multi-channel AECG recordings, including three main modules: 1) A periodic constrained FastICA (PCFICA) module with ECG physiology-informed constraints for extracting precise ECG spike trains, 2) A singular value decomposition module for estimating ECG waveforms, and 3) A peel-off strategy that facilitates to discern weak fECG source by eliminating previously separated sources or noises. The performance of the PPSP method was examined on two public databases, synthetic data and our clinical data. For extracting fECG spike trains, our PPSP method achieved an F1-scores of 99.59% on public data, 99.50% on synthetic data at the highest noise level. It further yielded the lowest RMSE of fetal heart rate of 6.20% on clinical data. It significantly outperformed other state-of-the-art methods on any set of data (p &lt; 0.05). This study demonstrated effectiveness of the PPSP method for extracting and separating mECG and weak fECG signals, with high precision especially at high noise levels. Our study promotes noninvasive measurement and intelligent monitoring of both fetal and maternal heart activities towards advanced healthcare in perinatal medicine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01281v4-abstract-full').style.display = 'none'; document.getElementById('2406.01281v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16289">arXiv:2405.16289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.16289">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Intensity adaptive optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zimo Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Y">Yifei Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Antonello%2C+J">Jacopo Antonello</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Z">Zipei Song</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jiahe Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+B">Binguo Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jingyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+B">Bangshan Sun</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+H">Honghui He</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+L">Lin Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Fells%2C+J+A+J">Julian A. J. Fells</a>, <a href="/search/physics?searchtype=author&amp;query=Elston%2C+S+J">Steve J. Elston</a>, <a href="/search/physics?searchtype=author&amp;query=Booth%2C+M+J">Martin J. Booth</a>, <a href="/search/physics?searchtype=author&amp;query=Morris%2C+S+M">Stephen M. Morris</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chao He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16289v1-abstract-short" style="display: inline;"> Adaptive optics (AO) is a powerful tool used in a wide range of research areas spanning from aerospace to microscopy. To date, AO has largely been applied to optical phase aberration correction, with recent advances extending to include the vectorial properties of light. However, intensity errors widely exist in optical systems, yet their associated correction methods are still very much in their&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16289v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16289v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16289v1-abstract-full" style="display: none;"> Adaptive optics (AO) is a powerful tool used in a wide range of research areas spanning from aerospace to microscopy. To date, AO has largely been applied to optical phase aberration correction, with recent advances extending to include the vectorial properties of light. However, intensity errors widely exist in optical systems, yet their associated correction methods are still very much in their infancy. Here, we propose a new adaptive optics method that is termed intensity adaptive optics (I-AO), which features a dual-feedback loop for intensity aberration correction that addresses both intensity uniformity and the overall intensity. We demonstrate that I-AO can operate in both sensor-based and sensorless regimes and validate its feasibility by quantitatively analysing the quality of the focus of an aberrated optical system. This technique expands the AO toolkit, broadens its scope of application, and opens a new avenue for next-generation AO innovations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16289v1-abstract-full').style.display = 'none'; document.getElementById('2405.16289v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08145">arXiv:2404.08145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.08145">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Polar vortex hidden in twisted bilayers of paraelectric SrTiO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sha%2C+H">Haozhi Sha</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yixuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Y">Yunpeng Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+W">Wenfeng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jizhe Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qian Li</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Houbing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08145v1-abstract-short" style="display: inline;"> Polar topologies, such as vortex and skyrmion, have attracted significant interest due to their unique physical properties and promising applications in high-density memory devices. Currently, most polar vortices are observed in heterostructures containing ferroelectric materials and constrained by substrates. In this study, we unravel arrays of polar vortices formed in twisted freestanding bilaye&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08145v1-abstract-full').style.display = 'inline'; document.getElementById('2404.08145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08145v1-abstract-full" style="display: none;"> Polar topologies, such as vortex and skyrmion, have attracted significant interest due to their unique physical properties and promising applications in high-density memory devices. Currently, most polar vortices are observed in heterostructures containing ferroelectric materials and constrained by substrates. In this study, we unravel arrays of polar vortices formed in twisted freestanding bilayers composed of SrTiO3, a quantum-paraelectric material. Depth-resolved structures of the bilayers are measured with deep-sub-angstrom resolution and one picometer accuracy using multislice ptychography, enabling identification of the three-dimensional variations of polarization topology. Our findings reveal the evolution of the polar vortices in the twisted overlapping layers, demonstrating the reverse of rotation manner in the depth direction. Twisted freestanding bilayers provide a unique platform for exploration and modulation of novel polar topologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08145v1-abstract-full').style.display = 'none'; document.getElementById('2404.08145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02661">arXiv:2404.02661</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02661">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Terahertz channel modeling based on surface sensing characteristics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jiayuan Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Da Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jiabiao Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiacheng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+G">Guohao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+X">Xiangkun He</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+Y">Yue Su</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+F">Fei Song</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+P">Peian Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+J">Jianjun Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02661v2-abstract-short" style="display: inline;"> The dielectric properties of environmental surfaces, including walls, floors and the ground, etc., play a crucial role in shaping the accuracy of terahertz (THz) channel modeling, thereby directly impacting the effectiveness of communication systems. Traditionally, acquiring these properties has relied on methods such as terahertz time-domain spectroscopy (THz-TDS) or vector network analyzers (VNA&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02661v2-abstract-full').style.display = 'inline'; document.getElementById('2404.02661v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02661v2-abstract-full" style="display: none;"> The dielectric properties of environmental surfaces, including walls, floors and the ground, etc., play a crucial role in shaping the accuracy of terahertz (THz) channel modeling, thereby directly impacting the effectiveness of communication systems. Traditionally, acquiring these properties has relied on methods such as terahertz time-domain spectroscopy (THz-TDS) or vector network analyzers (VNA), demanding rigorous sample preparation and entailing a significant expenditure of time. However, such measurements are not always feasible, particularly in novel and uncharacterized scenarios. In this work, we propose a new approach for channel modeling that leverages the inherent sensing capabilities of THz channels. By comparing the results obtained through channel sensing with that derived from THz-TDS measurements, we demonstrate the method&#39;s ability to yield dependable surface property information. The application of this approach in both a miniaturized cityscape scenario and an indoor environment has shown consistency with experimental measurements, thereby verifying its effectiveness in real-world settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02661v2-abstract-full').style.display = 'none'; document.getElementById('2404.02661v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in Nano Communication Networks</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.20019">arXiv:2403.20019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.20019">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> An ultraviolet photodetector based on conductive hydrogenated TiO$_2$ film prepared by radio frequency atmospheric pressure plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Haozhe Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jie Cui</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+T">Tao He</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+G">Gaote Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.20019v1-abstract-short" style="display: inline;"> The growing demand for real-time ultraviolet (UV) monitoring calls for a simple, rapid, and low-cost strategy to prepare UV photodetectors. We prepare a wearable real-time UV photodetector based on hydrogenated titanium dioxide film synthesized by radio frequency atmospheric pressure plasma. The conductivity of our hydrogenated titanium dioxide is improved to 10.2 S cm$^{-1}$, 9 orders of magnitud&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20019v1-abstract-full').style.display = 'inline'; document.getElementById('2403.20019v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.20019v1-abstract-full" style="display: none;"> The growing demand for real-time ultraviolet (UV) monitoring calls for a simple, rapid, and low-cost strategy to prepare UV photodetectors. We prepare a wearable real-time UV photodetector based on hydrogenated titanium dioxide film synthesized by radio frequency atmospheric pressure plasma. The conductivity of our hydrogenated titanium dioxide is improved to 10.2 S cm$^{-1}$, 9 orders of magnitude higher than that of pristine titanium dioxide after 10 min plasma treatment. Plasma hydrogenation disrupts the surface crystal structure, introducing oxygen vacancies (OVs) that create self-doped titanium(III) and titanium (II) species. First-principles calculations indicate the OVs raise the Fermi level of TiO$_2$ and distort the lattice nearby. Our optimized film has a distinctive periodic switching characteristic under intermittent illumination and good responsivity from 280 - 400 nm, peaking at 632.35 mA W^{-1}$ at 365 nm. The fabricated wearable sensor based on the optimized film effectively performs the monitoring of the daily variation of ambient UV intensity in three typical weather types and transferring its data to a smartphone via Wi-Fi. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20019v1-abstract-full').style.display = 'none'; document.getElementById('2403.20019v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15020">arXiv:2403.15020</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15020">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/aelm.202400041">10.1002/aelm.202400041 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All van der Waals three-terminal SOT-MRAM realized by topological ferromagnet Fe3GeTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jingyuan Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+K">Kai-Xuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15020v1-abstract-short" style="display: inline;"> Magnetic van der Waals (vdW) materials have attracted massive attention because of their academic interest and application potential for the past few years. Its main advantage is the intrinsic two-dimensionality, enabling much smaller devices of novel concepts. One particular exciting direction lies in the current-driven spin-orbit torque (SOT). Here, we, for the first time, realize an all vdW thr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15020v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15020v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15020v1-abstract-full" style="display: none;"> Magnetic van der Waals (vdW) materials have attracted massive attention because of their academic interest and application potential for the past few years. Its main advantage is the intrinsic two-dimensionality, enabling much smaller devices of novel concepts. One particular exciting direction lies in the current-driven spin-orbit torque (SOT). Here, we, for the first time, realize an all vdW three-terminal SOT memory, employing the unique physics principle of gigantic intrinsic SOT of Fe3GeTe2 (FGT) and the well-known industry-adopted tunnelling magnetoresistance (TMR) effect. We designed the device operation procedure and fabricated the FGT/h-BN/FGT vdW heterostructure as a proof of concept. This device exhibits a classical TMR effect and unambiguously demonstrates the conception by precise performance as expected: the magnetic information of the top-FGT is written by current-driven SOT and read out by TMR separately. The writing and reading current paths are physically decoupled, enhancing the design and optimization flexibility substantially and further strengthening the device&#39;s endurance naturally. Our work would prompt more expansive use of vdW magnets for spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15020v1-abstract-full').style.display = 'none'; document.getElementById('2403.15020v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 7 figures, Accepted by Advanced Electronic Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07535">arXiv:2401.07535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.07535">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Time-varying k-domain modulation around a point sink in time reversal cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jin-Shan Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+R">Ren Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+Y">Yanhe Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">Bing-Zhong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07535v1-abstract-short" style="display: inline;"> This paper derives and investigates a time-varying k-domain modulation in vector form using a time-reversal (TR) field decomposition theory proposed for the first time. First, the proposed theory illustrates that the TR field can exhibit super-resolution property from the perspective of spatial focusing pattern if a point sink is set at the initial source point. Afterward, the instantaneous TR fie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07535v1-abstract-full').style.display = 'inline'; document.getElementById('2401.07535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07535v1-abstract-full" style="display: none;"> This paper derives and investigates a time-varying k-domain modulation in vector form using a time-reversal (TR) field decomposition theory proposed for the first time. First, the proposed theory illustrates that the TR field can exhibit super-resolution property from the perspective of spatial focusing pattern if a point sink is set at the initial source point. Afterward, the instantaneous TR fields with and without the point sink, as well as their k-domain patterns are compared to illustrate the time-varying k-domain modulation, which accounts for the superresolution property. The phenomenon observed and derived in this paper shows great potential in the applications empowered by super-resolution focusing, such as wireless communication carrying the subwavelength information and high spatial resolution wireless power transfer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07535v1-abstract-full').style.display = 'none'; document.getElementById('2401.07535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02439">arXiv:2401.02439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02439">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Information limit of 15 pm achieved with bright-field ptychography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sha%2C+H">Haozhi Sha</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jizhe Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+W">Wenfeng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02439v1-abstract-short" style="display: inline;"> It is generally assumed that a high spatial resolution of a microscope requires a large numerical aperture of the imaging lens or detector. In this study, the information limit of 15 pm is achieved in transmission electron microscopy using only the bright-field disk (small numerical aperture) via multislice ptychography. The results indicate that high-frequency information has been encoded in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02439v1-abstract-full').style.display = 'inline'; document.getElementById('2401.02439v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02439v1-abstract-full" style="display: none;"> It is generally assumed that a high spatial resolution of a microscope requires a large numerical aperture of the imaging lens or detector. In this study, the information limit of 15 pm is achieved in transmission electron microscopy using only the bright-field disk (small numerical aperture) via multislice ptychography. The results indicate that high-frequency information has been encoded in the electrons scattered to low angles due to the multiple scattering of electrons in the objects, making it possible to break the diffraction limit of imaging via bright-field ptychography. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02439v1-abstract-full').style.display = 'none'; document.getElementById('2401.02439v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14384">arXiv:2312.14384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.14384">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202312824">10.1002/adma.202312824 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broken inversion symmetry in van der Waals topological ferromagnetic metal iron germanium telluride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+K">Kai-Xuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ju%2C+H">Hwiin Ju</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+H">Hyuncheol Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jingyuan Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Keum%2C+J">Jihoon Keum</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+J">Je-Geun Park</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J+S">Jong Seok Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14384v1-abstract-short" style="display: inline;"> Inversion symmetry breaking is critical for many quantum effects and fundamental for spin-orbit torque, which is crucial for next-generation spintronics. Recently, a novel type of gigantic intrinsic spin-orbit torque has been established in the topological van-der-Waals (vdW) magnet iron germanium telluride. However, it remains a puzzle because no clear evidence exists for interlayer inversion sym&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14384v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14384v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14384v1-abstract-full" style="display: none;"> Inversion symmetry breaking is critical for many quantum effects and fundamental for spin-orbit torque, which is crucial for next-generation spintronics. Recently, a novel type of gigantic intrinsic spin-orbit torque has been established in the topological van-der-Waals (vdW) magnet iron germanium telluride. However, it remains a puzzle because no clear evidence exists for interlayer inversion symmetry breaking. Here, we report the definitive evidence of broken inversion symmetry in iron germanium telluride directly measured by the second harmonic generation (SHG) technique. Our data show that the crystal symmetry reduces from centrosymmetric P63/mmc to noncentrosymmetric polar P3m1 space group, giving the three-fold SHG pattern with dominant out-of-plane polarization. Additionally, the SHG response evolves from an isotropic pattern to a sharp three-fold symmetry upon increasing Fe deficiency, mainly due to the transition from random defects to ordered Fe vacancies. Such SHG response is robust against temperature, ensuring unaltered crystalline symmetries above and below the ferromagnetic transition temperature. These findings add crucial new information to our understanding of this interesting vdW metal, iron germanium telluride: band topology, intrinsic spin-orbit torque and topological vdW polar metal states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14384v1-abstract-full').style.display = 'none'; document.getElementById('2312.14384v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 9 figures, Accepted by Advanced Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05610">arXiv:2312.05610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05610">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Vectorial adaptive optics for advanced imaging systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Y">Yifei Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zimo Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jiahe Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jingyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chao He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05610v1-abstract-short" style="display: inline;"> Vectorial adaptive optics (V-AO) is a cutting-edge technique extending conventional AO into the vectorial domain encompassing both polarization and phase feedback correction for optical systems. However, previous V-AO approaches focus on point correction. In this letter, we extend this AO approach into the imaging domain. We show how V-AO can benefit an aberrated imaging system to enhance not only&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05610v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05610v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05610v1-abstract-full" style="display: none;"> Vectorial adaptive optics (V-AO) is a cutting-edge technique extending conventional AO into the vectorial domain encompassing both polarization and phase feedback correction for optical systems. However, previous V-AO approaches focus on point correction. In this letter, we extend this AO approach into the imaging domain. We show how V-AO can benefit an aberrated imaging system to enhance not only scalar imaging but also the quality of vectorial information. Two important criteria, vectorial precision and uniformity are put forward and used in practice to evaluate the performance of the correction. These experimental validations pave the way for real-world imaging for V-AO technology and its applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05610v1-abstract-full').style.display = 'none'; document.getElementById('2312.05610v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18148">arXiv:2311.18148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18148">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> A universal optical modulator for synthetic topologically tuneable structured matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chao He</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+B">Binguo Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+Z">Zipei Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zimo Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Y">Yifei Ma</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+H">Honghui He</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+L">Lin Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Marozsak%2C+T">Tade Marozsak</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+A">An Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+R">Rui Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+P">Peixiang Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+X">Xuke Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+B">Bangshan Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jiahe Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+Y">Yuxi Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Salter%2C+P">Patrick Salter</a>, <a href="/search/physics?searchtype=author&amp;query=Fells%2C+J+A">Julian AJ Fells</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+B">Ben Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shaoxiong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+L">Limei Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+H">Hui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Elston%2C+S+J">Steve J Elston</a>, <a href="/search/physics?searchtype=author&amp;query=Zhan%2C+Q">Qiwen Zhan</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+C">Chengwei Qiu</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18148v1-abstract-short" style="display: inline;"> Topologically structured matter, such as metasurfaces and metamaterials, have given rise to impressive photonic functionality, fuelling diverse applications from microscopy and holography to encryption and communication. Presently these solutions are limited by their largely static nature and preset functionality, hindering applications that demand dynamic photonic systems with reconfigurable topo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18148v1-abstract-full').style.display = 'inline'; document.getElementById('2311.18148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18148v1-abstract-full" style="display: none;"> Topologically structured matter, such as metasurfaces and metamaterials, have given rise to impressive photonic functionality, fuelling diverse applications from microscopy and holography to encryption and communication. Presently these solutions are limited by their largely static nature and preset functionality, hindering applications that demand dynamic photonic systems with reconfigurable topologies. Here we demonstrate a universal optical modulator that implements topologically tuneable structured matter as virtual pixels derived from cascading low functionality tuneable devices, altering the paradigm of phase and amplitude control to encompass arbitrary spatially varying retarders in a synthetic structured matter device. Our approach opens unprecedented functionality that is user-defined with high flexibility, allowing our synthetic structured matter to act as an information carrier, beam generator, analyser, and corrector, opening an exciting path to tuneable topologies of light and matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18148v1-abstract-full').style.display = 'none'; document.getElementById('2311.18148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.09989">arXiv:2310.09989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.09989">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Defect-induced helicity-dependent terahertz emission in Dirac semimetal PtTe2 thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhongqiang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+H">Hongsong Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+X">Xinjuan Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jizhe Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+Z">Zuanming Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+D">Da Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+K">Kankan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+R">Ruxin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+W">Wei Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+L">Liqi Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+T">Tianyu Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yequan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Caihong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xi%2C+X">Xiaoxiang Xi</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+F">Fengqi Song</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhai%2C+X">Xuechao Zhai</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+B">Biaobing Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xuefeng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.09989v2-abstract-short" style="display: inline;"> Nonlinear transport enabled by symmetry breaking in quantum materials has aroused considerable interest in condensed matter physics and interdisciplinary electronics. However, the nonlinear optical response in centrosymmetric Dirac semimetals via the defect engineering has remained highly challenging. Here, we observe the helicity-dependent terahertz (THz) emission in Dirac semimetal PtTe2 thin fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09989v2-abstract-full').style.display = 'inline'; document.getElementById('2310.09989v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.09989v2-abstract-full" style="display: none;"> Nonlinear transport enabled by symmetry breaking in quantum materials has aroused considerable interest in condensed matter physics and interdisciplinary electronics. However, the nonlinear optical response in centrosymmetric Dirac semimetals via the defect engineering has remained highly challenging. Here, we observe the helicity-dependent terahertz (THz) emission in Dirac semimetal PtTe2 thin films via circular photogalvanic effect (CPGE) under normal incidence. This is activated by artificially controllable out-of-plane Te-vacancy defect gradient, which is unambiguously evidenced by the electron ptychography. The defect gradient lowers the symmetry, which not only induces the band spin splitting, but also generates the giant Berry curvature dipole (BCD) responsible for the CPGE. Such BCD-induced helicity-dependent THz emission can be manipulated by the Te-vacancy defect concentration. Furthermore, temperature evolution of the THz emission features the minimum of the THz amplitude due to the carrier compensation. Our work provides a universal strategy for symmetry breaking in centrosymmetric Dirac materials for efficient nonlinear transport and facilitates the promising device applications in integrated optoelectronics and spintronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.09989v2-abstract-full').style.display = 'none'; document.getElementById('2310.09989v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04124">arXiv:2310.04124</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.04124">pdf</a>, <a href="https://arxiv.org/format/2310.04124">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.langmuir.3c02318">10.1021/acs.langmuir.3c02318 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Melting process of frozen sessile droplets on superhydrophobic surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jiawang Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+T">Tianyou Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Che%2C+Z">Zhizhao Che</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04124v1-abstract-short" style="display: inline;"> Superhydrophobic surfaces can exhibit icephobicity in many ways due to their large contact angles and small rolling angles. The melting process of frozen droplets on superhydrophobic surfaces is still unclear, hindering the understanding of surface icephobicity. In this experimental study of the melting process of frozen sessile droplets on superhydrophobic surfaces, we find two types of melting m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04124v1-abstract-full').style.display = 'inline'; document.getElementById('2310.04124v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04124v1-abstract-full" style="display: none;"> Superhydrophobic surfaces can exhibit icephobicity in many ways due to their large contact angles and small rolling angles. The melting process of frozen droplets on superhydrophobic surfaces is still unclear, hindering the understanding of surface icephobicity. In this experimental study of the melting process of frozen sessile droplets on superhydrophobic surfaces, we find two types of melting morphologies with opposite vortex directions on a single-scale nano-structured (SN) superhydrophobic substrate and a hierarchical-scale micro-nano-structured (HMN) superhydrophobic substrate. Melting pattern visualizations and flow field measurements showwed Marangoni convection and natural convection occuring in the melting sessile droplets. For the HMN superhydrophobic substrate, the internal flow was found to be dominated by Marangoni convection due to the temperature gradient along the surface of the droplet. For the SN superhydrophobic substrate, Marangoni convection was inhibited by the superhydrophobic particles at the surface of the droplet, which were shed from the fragile superhydrophobic substrate during the freezing--melting process, as confirmed by surface characterizations of the substrate and flow measurements of a water pool. These results will help researchers better understand the melting process of frozen droplets and in designing novel icephobic surfaces for numerous applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04124v1-abstract-full').style.display = 'none'; document.getElementById('2310.04124v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.13379">arXiv:2309.13379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.13379">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.rinp.2023.106990">10.1016/j.rinp.2023.106990 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust light bullets in Rydberg gases with moir茅 lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Ze-Yang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jun-Hao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yuan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jin-Long Cui</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jun-Rong He</a>, <a href="/search/physics?searchtype=author&amp;query=Ruan%2C+G">Guo-Long Ruan</a>, <a href="/search/physics?searchtype=author&amp;query=Malomed%2C+B+A">Boris A. Malomed</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+S">Si-Liu Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.13379v1-abstract-short" style="display: inline;"> Rydberg electromagnetically-induced transparency has been widely studied as a medium supporting light propagation under the action of nonlocal nonlinearities. Recently, optical potentials based on moir茅 lattices (MLs) were introduced for exploring unconventional physical states. Here, we predict a possibility of creating fully three-dimensional (3D) light bullets (LBs) in cold Rydberg gases under&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13379v1-abstract-full').style.display = 'inline'; document.getElementById('2309.13379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.13379v1-abstract-full" style="display: none;"> Rydberg electromagnetically-induced transparency has been widely studied as a medium supporting light propagation under the action of nonlocal nonlinearities. Recently, optical potentials based on moir茅 lattices (MLs) were introduced for exploring unconventional physical states. Here, we predict a possibility of creating fully three-dimensional (3D) light bullets (LBs) in cold Rydberg gases under the action of ML potentials. The nonlinearity includes local self-defocusing and long-range focusing terms, the latter one induced by the Rydberg-Rydberg interaction. We produce zero-vorticity LB families of the fundamental, dipole, and quadrupole types, as well as vortex LBs. They all are gap solitons populating finite bandgaps of the underlying ML spectrum. Stable subfamilies are identified utilizing the combination of the anti-Vakhitov-Kolokolov criterion, computation of eigenvalues for small perturbations, and direct simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13379v1-abstract-full').style.display = 'none'; document.getElementById('2309.13379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Results in Physics 53 (2023) 106990 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14470">arXiv:2307.14470</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14470">pdf</a>, <a href="https://arxiv.org/format/2307.14470">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Predicting Relative Populations of Protein Conformations without a Physics Engine Using AlphaFold2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=da+Silva%2C+G+M">Gabriel Monteiro da Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J+Y">Jennifer Y. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Dalgarno%2C+D+C">David C. Dalgarno</a>, <a href="/search/physics?searchtype=author&amp;query=Lisi%2C+G+P">George P. Lisi</a>, <a href="/search/physics?searchtype=author&amp;query=Rubenstein%2C+B+M">Brenda M. Rubenstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14470v1-abstract-short" style="display: inline;"> This paper presents a novel approach for predicting the relative populations of protein conformations using AlphaFold 2, an AI-powered method that has revolutionized biology by enabling the accurate prediction of protein structures. While AlphaFold 2 has shown exceptional accuracy and speed, it is designed to predict proteins&#39; single ground state conformations and is limited in its ability to pred&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14470v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14470v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14470v1-abstract-full" style="display: none;"> This paper presents a novel approach for predicting the relative populations of protein conformations using AlphaFold 2, an AI-powered method that has revolutionized biology by enabling the accurate prediction of protein structures. While AlphaFold 2 has shown exceptional accuracy and speed, it is designed to predict proteins&#39; single ground state conformations and is limited in its ability to predict fold switching and the effects of mutations on conformational landscapes. Here, we demonstrate how AlphaFold 2 can directly predict the relative populations of different conformations of proteins and even accurately predict changes in those populations induced by mutations by subsampling multiple sequence alignments. We tested our method against NMR experiments on two proteins with drastically different amounts of available sequence data, Abl1 kinase and the granulocyte-macrophage colony-stimulating factor, and predicted changes in their relative state populations with accuracies in excess of 80%. Our method offers a fast and cost-effective way to predict protein conformations and their relative populations at even single point mutation resolution, making it a useful tool for pharmacology, analyzing NMR data, and studying the effects of evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14470v1-abstract-full').style.display = 'none'; document.getElementById('2307.14470v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2; J.3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.10366">arXiv:2306.10366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.10366">pdf</a>, <a href="https://arxiv.org/format/2306.10366">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Cold hybrid electrical-optical ion trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jin-Ming Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+S">Shi-Jia Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+X">Xi-Wang Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yun-Feng Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.10366v1-abstract-short" style="display: inline;"> Advances in research such as quantum information and quantum chemistry require subtle methods for trapping particles (including ions, neutral atoms, molecules, etc.). Here we propose a hybrid ion trapping method by combining a Paul trap with optical tweezers. The trap combines the advances of the deep-potential feature for the Paul trap and the micromotion-free feature for the optical dipole trap.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10366v1-abstract-full').style.display = 'inline'; document.getElementById('2306.10366v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.10366v1-abstract-full" style="display: none;"> Advances in research such as quantum information and quantum chemistry require subtle methods for trapping particles (including ions, neutral atoms, molecules, etc.). Here we propose a hybrid ion trapping method by combining a Paul trap with optical tweezers. The trap combines the advances of the deep-potential feature for the Paul trap and the micromotion-free feature for the optical dipole trap. By modulating the optical-dipole trap synchronously with the radio frequency voltage of the Paul trap, the alternating electrical force in the trap center is fully counteracted, and the micromotion temperature of a cold trapped ion can reach the order of nK while the trap depth is beyond 300K. These features will enable cold collisions between an ion and an atom in the $s$-wave regime and stably trap the produced molecular ion in the cold hybrid system. This will provide a unique platform for probing the interactions between the ions and the surrounding neutral particles and enable the investigation of new reaction pathways and reaction products in the cold regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10366v1-abstract-full').style.display = 'none'; document.getElementById('2306.10366v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19560">arXiv:2305.19560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.19560">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0142818">10.1063/5.0142818 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlation between Macroscopic and Microscopic Relaxation Dynamics of Water: Evidence for Two Liquid Forms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vinh%2C+N+Q">Nguyen Q. Vinh</a>, <a href="/search/physics?searchtype=author&amp;query=Doan%2C+L+C">Luan C. Doan</a>, <a href="/search/physics?searchtype=author&amp;query=Hoang%2C+N+L+H">Ngoc L. H. Hoang</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J+R">Jiarong R. Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Sindle%2C+B">Ben Sindle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19560v1-abstract-short" style="display: inline;"> Water is vital for life, and without it biomolecules and cells cannot maintain their structures and functions. The remarkable properties of water originate from its ability to form hydrogen-bonding networks and dynamics, which the connectivity constantly alters because of the orientation rotation of individual water molecules. Experimental investigation of the dynamics of water, however, has prove&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19560v1-abstract-full').style.display = 'inline'; document.getElementById('2305.19560v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19560v1-abstract-full" style="display: none;"> Water is vital for life, and without it biomolecules and cells cannot maintain their structures and functions. The remarkable properties of water originate from its ability to form hydrogen-bonding networks and dynamics, which the connectivity constantly alters because of the orientation rotation of individual water molecules. Experimental investigation of the dynamics of water, however, has proven challenging due to the strong absorption of water at terahertz frequencies. In response, by employing a high-precision terahertz spectrometer, we have measured and characterized the terahertz dielectric response of water from supercooled liquid to near the boiling point to explore the motions. The response reveals dynamic relaxation processes corresponding to the collective orientation, single-molecule rotation, and structural rearrangements resulting from breaking and reforming hydrogen bonds in water. We have observed the direct relationship between the macroscopic and microscopic relaxation dynamics of water, and the results have provided evidence of two liquid forms in water with different transition temperatures and thermal activation energies. The results reported here thus provide an unprecedented opportunity to directly test microscopic computational models of water dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19560v1-abstract-full').style.display = 'none'; document.getElementById('2305.19560v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Chemical Physics 158, 204507 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.11112">arXiv:2304.11112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.11112">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Adaptive beamforming for optical wireless communication via fiber modal control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yiwen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+X">Xinda Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuzhe Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xuebing Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jian Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+L">Lei Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Juhao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zilun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+S">Shaohua Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+Z">Zizheng Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Koonen%2C+A+M+J">A. M. J. Koonen</a>, <a href="/search/physics?searchtype=author&amp;query=Hsu%2C+C+W">Chia Wei Hsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.11112v2-abstract-short" style="display: inline;"> High-speed optical wireless communication can address the exponential growth in data traffic. Adaptive beamforming customized for the target location is crucial, but existing solutions such as liquidcrystal spatial light modulators and microelectromechanical systems require costly micro/nano manufacturing, delicate alignment, and a high degree of mechanical stability. These challenges reflect the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11112v2-abstract-full').style.display = 'inline'; document.getElementById('2304.11112v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.11112v2-abstract-full" style="display: none;"> High-speed optical wireless communication can address the exponential growth in data traffic. Adaptive beamforming customized for the target location is crucial, but existing solutions such as liquidcrystal spatial light modulators and microelectromechanical systems require costly micro/nano manufacturing, delicate alignment, and a high degree of mechanical stability. These challenges reflect the fragility of integrating a fiber network with micro/nano mechanical or photonic systems. Here, we realize low-cost, low-loss, and fiber-compatible beamforming and continuous beam steering through controlled bending of a multi-mode fiber that modifies its modal coupling, and use it to enable flexible optical wireless communication at 10 Gb/s. By using the fiber modal coupling as degrees of freedom rather than an impediment, this approach offers a promising solution for flexible and cost-effective optical wireless communication networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.11112v2-abstract-full').style.display = 'none'; document.getElementById('2304.11112v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.11733">arXiv:2302.11733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.11733">pdf</a>, <a href="https://arxiv.org/ps/2302.11733">ps</a>, <a href="https://arxiv.org/format/2302.11733">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acb6f8">10.3847/1538-4357/acb6f8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantification of the Writhe Number Evolution of Solar Filament Axes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Z">Zhenjun Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+C">Chaowei Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+H">Hongqiang Song</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuming Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Y">Yongqiang Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.11733v1-abstract-short" style="display: inline;"> Solar filament eruptions often show complex and dramatic geometric deformation that is highly relevant to the underlying physical mechanism triggering the eruptions. It has been well known that the writhe of filament axes is a key parameter characterizing its global geometric deformation, but a quantitative investigation of the development of writhe during its eruption is still lacking. Here we in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.11733v1-abstract-full').style.display = 'inline'; document.getElementById('2302.11733v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.11733v1-abstract-full" style="display: none;"> Solar filament eruptions often show complex and dramatic geometric deformation that is highly relevant to the underlying physical mechanism triggering the eruptions. It has been well known that the writhe of filament axes is a key parameter characterizing its global geometric deformation, but a quantitative investigation of the development of writhe during its eruption is still lacking. Here we introduce the Writhe Application Toolkit (WAT) which can be used to characterize accurately the topology of filament axes. This characterization is achieved based on the reconstruction and writhe number computation of three-dimensional paths of the filament axes from dual-perspective observations. We apply this toolkit to four dextral filaments located in the northern hemisphere with a counterclockwise (CCW) rotation during their eruptions. Initially, all these filaments possess a small writhe number (=&lt;0.20) indicating a weak helical deformation of the axes. As the CCW rotation kicks in, their writhe numbers begin to decrease and reach large negative values. Combined with the extended C膬lug膬reanu theorem, the absolute value of twist is deduced to decrease during the rotation. Such a quantitative analysis strongly indicates a consequence of the conversion of twist into writhe for the studied events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.11733v1-abstract-full').style.display = 'none'; document.getElementById('2302.11733v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.11103">arXiv:2302.11103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.11103">pdf</a>, <a href="https://arxiv.org/format/2302.11103">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> The Mechanism of Magnetic Flux Rope Rotation During Solar Eruption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Z">Zhenjun Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+C">Chaowei Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+X">Xiaoyu Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuming Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Y">Yongqiang Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.11103v1-abstract-short" style="display: inline;"> Solar eruptions often show the rotation of filaments, which is a manifestation of the rotation of erupting magnetic flux rope (MFR). Such a rotation of MFR can be induced by either the torque exerted by a background shear-field component (which is an external cause) or the relaxation of the magnetic twist of the MFR (an internal cause). For a given chirality of the erupting field, both the externa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.11103v1-abstract-full').style.display = 'inline'; document.getElementById('2302.11103v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.11103v1-abstract-full" style="display: none;"> Solar eruptions often show the rotation of filaments, which is a manifestation of the rotation of erupting magnetic flux rope (MFR). Such a rotation of MFR can be induced by either the torque exerted by a background shear-field component (which is an external cause) or the relaxation of the magnetic twist of the MFR (an internal cause). For a given chirality of the erupting field, both the external and internal drivers cause the same rotation direction. Therefore, it remains elusive from direct observations which mechanism yields the dominant contribution to the rotation. In this paper, we exploit a full MHD simulation of solar eruption by tether-cutting magnetic reconnection to study the mechanism of MFR rotation. In the simulation, the MFR&#39;s height-rotation profile suggests that the force by the external shear-field component is a dominant contributor to the rotation. Furthermore, the torque analysis confirms that it is also the only factor in driving the counterclockwise rotation. On the contrary, the Lorentz torque inside the MFR makes a negative effect on this counterclockwise rotation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.11103v1-abstract-full').style.display = 'none'; document.getElementById('2302.11103v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12929">arXiv:2212.12929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.12929">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/PRJ.471905">10.1364/PRJ.471905 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological metasurface: From passive toward active and beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=You%2C+J+W">Jian Wei You</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+Z">Zhihao Lan</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Q">Qian Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Z">Zhen Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yihao Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+F">Fei Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+M">Meng Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+T+J">Tie Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12929v2-abstract-short" style="display: inline;"> Metasurfaces are subwavelength structured thin films consisting of arrays of units that allow the controls of polarization, phase and amplitude of light over a subwavelength thickness. The recent developments in topological photonics have greatly broadened the horizon in designing the metasurfaces for novel functional applications. In this review, we summarize recent progress in the research field&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12929v2-abstract-full').style.display = 'inline'; document.getElementById('2212.12929v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12929v2-abstract-full" style="display: none;"> Metasurfaces are subwavelength structured thin films consisting of arrays of units that allow the controls of polarization, phase and amplitude of light over a subwavelength thickness. The recent developments in topological photonics have greatly broadened the horizon in designing the metasurfaces for novel functional applications. In this review, we summarize recent progress in the research field of topological metasurfaces, firstly from the perspectives of passive and active in the classical regime, and then in the quantum regime. More specifically, we begin by examining the passive topological phenomena in two-dimensional photonic systems, including both time-reversal broken systems and time-reversal preserved systems. Subsequently, we move to discuss the cutting-edge studies of the active topological metasurfaces, including nonlinear topological metasurfaces and reconfigurable topological metasurfaces. After overviewing the topological metasurfaces in the classical regime, we show how the topological metasurfaces could provide a new platform for quantum information and quantum many-body physics. Finally, we conclude and describe some challenges and future directions of this fast-evolving field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12929v2-abstract-full').style.display = 'none'; document.getElementById('2212.12929v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.13837">arXiv:2211.13837</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.13837">pdf</a>, <a href="https://arxiv.org/format/2211.13837">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> End-to-End Stochastic Optimization with Energy-Based Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kong%2C+L">Lingkai Kong</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jiaming Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Zhuang%2C+Y">Yuchen Zhuang</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+R">Rui Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Prakash%2C+B+A">B. Aditya Prakash</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.13837v1-abstract-short" style="display: inline;"> Decision-focused learning (DFL) was recently proposed for stochastic optimization problems that involve unknown parameters. By integrating predictive modeling with an implicitly differentiable optimization layer, DFL has shown superior performance to the standard two-stage predict-then-optimize pipeline. However, most existing DFL methods are only applicable to convex problems or a subset of nonco&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13837v1-abstract-full').style.display = 'inline'; document.getElementById('2211.13837v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.13837v1-abstract-full" style="display: none;"> Decision-focused learning (DFL) was recently proposed for stochastic optimization problems that involve unknown parameters. By integrating predictive modeling with an implicitly differentiable optimization layer, DFL has shown superior performance to the standard two-stage predict-then-optimize pipeline. However, most existing DFL methods are only applicable to convex problems or a subset of nonconvex problems that can be easily relaxed to convex ones. Further, they can be inefficient in training due to the requirement of solving and differentiating through the optimization problem in every training iteration. We propose SO-EBM, a general and efficient DFL method for stochastic optimization using energy-based models. Instead of relying on KKT conditions to induce an implicit optimization layer, SO-EBM explicitly parameterizes the original optimization problem using a differentiable optimization layer based on energy functions. To better approximate the optimization landscape, we propose a coupled training objective that uses a maximum likelihood loss to capture the optimum location and a distribution-based regularizer to capture the overall energy landscape. Finally, we propose an efficient training procedure for SO-EBM with a self-normalized importance sampler based on a Gaussian mixture proposal. We evaluate SO-EBM in three applications: power scheduling, COVID-19 resource allocation, and non-convex adversarial security game, demonstrating the effectiveness and efficiency of SO-EBM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13837v1-abstract-full').style.display = 'none'; document.getElementById('2211.13837v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NeurIPS 2022 Oral</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12008">arXiv:2211.12008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.12008">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2023.12.044">10.1016/j.scib.2023.12.044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomic-resolution imaging of magnetism via ptychographic phase retrieval </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jizhe Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Sha%2C+H">Haozhi Sha</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+W">Wenfeng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12008v2-abstract-short" style="display: inline;"> Atomic-scale characterization of spin textures in solids is essential for understanding and tuning properties of magnetic materials and devices. While high-energy electrons are employed for atomic-scale imaging of materials, they are insensitive to the spin textures. In general, the magnetic contribution to the phase of high-energy electron wave is 1000 times weaker than the electrostatic potentia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12008v2-abstract-full').style.display = 'inline'; document.getElementById('2211.12008v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12008v2-abstract-full" style="display: none;"> Atomic-scale characterization of spin textures in solids is essential for understanding and tuning properties of magnetic materials and devices. While high-energy electrons are employed for atomic-scale imaging of materials, they are insensitive to the spin textures. In general, the magnetic contribution to the phase of high-energy electron wave is 1000 times weaker than the electrostatic potential. Via accurate phase retrieval through electron ptychography, here we show that the magnetic phase can be separated from the electrostatic one, opening the door to atomic-resolution characterization of spin textures in magnetic materials and spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12008v2-abstract-full').style.display = 'none'; document.getElementById('2211.12008v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12395">arXiv:2210.12395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.12395">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Joint Detections of Frequency and Direction of Arrival in Wideband Based on Programmable Metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">He Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+B">Yun Bo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+W+S">Wang Sheng Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S+J">Sheng Jie Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+J+L">Jia Lin Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+Y">Shi Yu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+T+J">Tie Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12395v1-abstract-short" style="display: inline;"> We propose to achieve joint detections of frequency and direction of arrival in wideband using single sensor based on an active metasurface with programmable transmission states of pass and stop. By integrating two PIN diodes with the opposite directions into the proposed single-layer and ultrathin meta-atom, the transmission performance with 10 dB difference between the pass and stop states is re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12395v1-abstract-full').style.display = 'inline'; document.getElementById('2210.12395v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12395v1-abstract-full" style="display: none;"> We propose to achieve joint detections of frequency and direction of arrival in wideband using single sensor based on an active metasurface with programmable transmission states of pass and stop. By integrating two PIN diodes with the opposite directions into the proposed single-layer and ultrathin meta-atom, the transmission performance with 10 dB difference between the pass and stop states is realized in the bandwidth from 5.9 GHz to 8.8 GHz using field-circuit co-simulations. Accordingly, random receiving patterns are generated by controlling the programmable metasurface composed of the switchable meta-atoms. Afterwards, the frequency and direction information of sources located in the far field are detected using the modified algorithm of estimating signal parameters via rotational invariance techniques (ESPRIT) and the compressive sensing method, respectively. A sample of the programmable metasurface is fabricated and the voltage control system is built up correspondingly. To entirely verify the validity of the proposed method, we conduct three kinds of experiments with one single source, double sources with different frequencies, and double sources with the same frequency, respectively. In all cases, the source information of frequency and direction has been detected preciously in measurements in the frequency band from 6.2 GHz to 8.8 GHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12395v1-abstract-full').style.display = 'none'; document.getElementById('2210.12395v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.13171">arXiv:2208.13171</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.13171">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Magnetic detection under high pressures using designed silicon vacancy centers in silicon carbide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jun-Feng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+L">Lin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiao-Di Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jin-Ming Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+D">Di-Fan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+J">Ji-Yang Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+Y">Yu Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H">Hai-An Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+W">Wan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+W">Wu-Xi Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+J">Jin-Wei Yan</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Z">Zhen-Xuan He</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zheng-Hao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+Z">Zhi-He Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hai-Ou Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wen Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Gregoryanz%2C+E">Eugene Gregoryanz</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.13171v2-abstract-short" style="display: inline;"> Pressure-induced magnetic phase transition is attracting interest due to its ability to detect superconducting behaviour at high pressures in diamond anvil cells. However, detection of the local sample magnetic properties is a great challenge due to the small sample chamber volume. Recently, optically detected magnetic resonance (ODMR) of nitrogen vacancy (NV) centers in diamond have been used for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13171v2-abstract-full').style.display = 'inline'; document.getElementById('2208.13171v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.13171v2-abstract-full" style="display: none;"> Pressure-induced magnetic phase transition is attracting interest due to its ability to detect superconducting behaviour at high pressures in diamond anvil cells. However, detection of the local sample magnetic properties is a great challenge due to the small sample chamber volume. Recently, optically detected magnetic resonance (ODMR) of nitrogen vacancy (NV) centers in diamond have been used for in-situ pressure-induced phase transition detection. However, owing to their four orientation axes and temperature-dependent zero-field-splitting, interpreting the observed ODMR spectra of NV centers remain challenging. Here, we study the optical and spin properties of implanted silicon vacancy defects in 4H-SiC, which is single-axis and temperature-independent zero-field-splitting. Using this technique, we observe the magnetic phase transition of Nd2Fe14B at about 7 GPa and map the critical temperature-pressure phase diagram of the superconductor YBa2Cu3O6.6. These results highlight the potential of silicon vacancy-based quantum sensors for in-situ magnetic detection at high pressures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13171v2-abstract-full').style.display = 'none'; document.getElementById('2208.13171v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08888">arXiv:2205.08888</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.08888">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1402-4896/acbca8">10.1088/1402-4896/acbca8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantification of the atomic surfaces and volumes of a metal cluster based on the molecular surface model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+Y">Yifan Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Junzhi Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08888v1-abstract-short" style="display: inline;"> The atomic volume and surface are important geometric quantities for calculating various macroscopic physical quantities from atomic models. This paper proposes a new analytical method to calculate the atomic volumes and surfaces of a metal cluster. This method adopts metallic radii to describe atom sizes and constructs the overall volume/surface by the molecular surface (MS) model. It divides clu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08888v1-abstract-full').style.display = 'inline'; document.getElementById('2205.08888v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08888v1-abstract-full" style="display: none;"> The atomic volume and surface are important geometric quantities for calculating various macroscopic physical quantities from atomic models. This paper proposes a new analytical method to calculate the atomic volumes and surfaces of a metal cluster. This method adopts metallic radii to describe atom sizes and constructs the overall volume/surface by the molecular surface (MS) model. It divides cluster atoms into two types: interior atoms and boundary atoms. For an interior atom, the method defines a variational Voronoi cell as its volume. For a boundary atom, the method defines the intersection of the overall cluster volume and its variational Voronoi cell as its volume. The atomic surfaces are calculated along with the volume calculations. This new method considers the effect of atom sizes and can calculate not only the overall volume of a cluster but also the individual volume for each atom. This method provides computational support for multiscale coupled calculations from the microscale to macroscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08888v1-abstract-full').style.display = 'none'; document.getElementById('2205.08888v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.00280">arXiv:2205.00280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.00280">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1186/s43593-022-00019-x">10.1186/s43593-022-00019-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Q">Qian Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+W">Wei Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Q">Qiang Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+L">Lingsong Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+T">Tianyi Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">Yajun Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+X">Xinxin Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+T">Tao Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Che Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+Z">Ze Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Kong%2C+X">Xianghong Kong</a>, <a href="/search/physics?searchtype=author&amp;query=Abbasi%2C+Q+H">Qammer H. Abbasi</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Lianlin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+C">Cheng-Wei Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yuanqing Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+T+J">Tie Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.00280v1-abstract-short" style="display: inline;"> Brain-computer interfaces (BCIs), invasive or non-invasive, have projected unparalleled vision and promise for assisting patients in need to better their interaction with the surroundings. Inspired by the BCI-based rehabilitation technologies for nerve-system impairments and amputation, we propose an electromagnetic brain-computer-metasurface (EBCM) paradigm, regulated by human&#39;s cognition by brai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.00280v1-abstract-full').style.display = 'inline'; document.getElementById('2205.00280v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.00280v1-abstract-full" style="display: none;"> Brain-computer interfaces (BCIs), invasive or non-invasive, have projected unparalleled vision and promise for assisting patients in need to better their interaction with the surroundings. Inspired by the BCI-based rehabilitation technologies for nerve-system impairments and amputation, we propose an electromagnetic brain-computer-metasurface (EBCM) paradigm, regulated by human&#39;s cognition by brain signals directly and non-invasively. We experimentally show that our EBCM platform can translate human&#39;s mind from evoked potentials of P300-based electroencephalography to digital coding information in the electromagnetic domain non-invasively, which can be further processed and transported by an information metasurface in automated and wireless fashions. Directly wireless communications of the human minds are performed between two EBCM operators with accurate text transmissions. Moreover, several other proof-of-concept mind-control schemes are presented using the same EBCM platform, exhibiting flexibly-customized capabilities of information processing and synthesis like visual-beam scanning, wave modulations, and pattern encoding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.00280v1-abstract-full').style.display = 'none'; document.getElementById('2205.00280v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> https://doi.org/10.1186/s43593-022-00019-x </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> eLight 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09003">arXiv:2203.09003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.09003">pdf</a>, <a href="https://arxiv.org/format/2203.09003">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-Testing of a Single Quantum System: Theory and Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+X">Xiao-Min Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Y">Yi Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Arora%2C+A+S">Atul Singh Arora</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+M">Ming-Zhong Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Bharti%2C+K">Kishor Bharti</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+W">Wei Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+P">Ping-Xing Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jin-Ming Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bi-Heng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yun-Feng Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Roland%2C+J">J茅r茅mie Roland</a>, <a href="/search/physics?searchtype=author&amp;query=Cabello%2C+A">Ad谩n Cabello</a>, <a href="/search/physics?searchtype=author&amp;query=Kwek%2C+L">Leong-Chuan Kwek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09003v1-abstract-short" style="display: inline;"> Certifying individual quantum devices with minimal assumptions is crucial for the development of quantum technologies. Here, we investigate how to leverage single-system contextuality to realize self-testing. We develop a robust self-testing protocol based on the simplest contextuality witness for the simplest contextual quantum system, the Klyachko-Can-Binicio臒lu-Shumovsky (KCBS) inequality for t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09003v1-abstract-full').style.display = 'inline'; document.getElementById('2203.09003v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09003v1-abstract-full" style="display: none;"> Certifying individual quantum devices with minimal assumptions is crucial for the development of quantum technologies. Here, we investigate how to leverage single-system contextuality to realize self-testing. We develop a robust self-testing protocol based on the simplest contextuality witness for the simplest contextual quantum system, the Klyachko-Can-Binicio臒lu-Shumovsky (KCBS) inequality for the qutrit. We establish a lower bound on the fidelity of the state and the measurements (to an ideal configuration) as a function of the value of the witness under a pragmatic assumption on the measurements we call the KCBS orthogonality condition. We apply the method in an experiment with randomly chosen measurements on a single trapped $^{40}{\rm Ca}^+$ and near-perfect detection efficiency. The observed statistics allow us to self-test the system and provide the first experimental demonstration of quantum self-testing of a single system. Further, we quantify and report that deviations from our assumptions are minimal, an aspect previously overlooked by contextuality experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09003v1-abstract-full').style.display = 'none'; document.getElementById('2203.09003v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19+6 pages, 2+1 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08034">arXiv:2203.08034</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.08034">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-031-17247-2_8">10.1007/978-3-031-17247-2_8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Noise-level-aware Framework for PET Image Denoising </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Ye Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jianan Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Junyu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+G">Guodong Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Wollenweber%2C+S">Scott Wollenweber</a>, <a href="/search/physics?searchtype=author&amp;query=Jansen%2C+F">Floris Jansen</a>, <a href="/search/physics?searchtype=author&amp;query=Jang%2C+S">Se-In Jang</a>, <a href="/search/physics?searchtype=author&amp;query=Kim%2C+K">Kyungsang Kim</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+K">Kuang Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Quanzheng Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08034v1-abstract-short" style="display: inline;"> In PET, the amount of relative (signal-dependent) noise present in different body regions can be significantly different and is inherently related to the number of counts present in that region. The number of counts in a region depends, in principle and among other factors, on the total administered activity, scanner sensitivity, image acquisition duration, radiopharmaceutical tracer uptake in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08034v1-abstract-full').style.display = 'inline'; document.getElementById('2203.08034v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08034v1-abstract-full" style="display: none;"> In PET, the amount of relative (signal-dependent) noise present in different body regions can be significantly different and is inherently related to the number of counts present in that region. The number of counts in a region depends, in principle and among other factors, on the total administered activity, scanner sensitivity, image acquisition duration, radiopharmaceutical tracer uptake in the region, and patient local body morphometry surrounding the region. In theory, less amount of denoising operations is needed to denoise a high-count (low relative noise) image than images a low-count (high relative noise) image, and vice versa. The current deep-learning-based methods for PET image denoising are predominantly trained on image appearance only and have no special treatment for images of different noise levels. Our hypothesis is that by explicitly providing the local relative noise level of the input image to a deep convolutional neural network (DCNN), the DCNN can outperform itself trained on image appearance only. To this end, we propose a noise-level-aware framework denoising framework that allows embedding of local noise level into a DCNN. The proposed is trained and tested on 30 and 15 patient PET images acquired on a GE Discovery MI PET/CT system. Our experiments showed that the increases in both PSNR and SSIM from our backbone network with relative noise level embedding (NLE) versus the same network without NLE were statistically significant with p&lt;0.001, and the proposed method significantly outperformed a strong baseline method by a large margin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08034v1-abstract-full').style.display = 'none'; document.getElementById('2203.08034v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.11967">arXiv:2202.11967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.11967">pdf</a>, <a href="https://arxiv.org/format/2202.11967">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac52a9">10.3847/1538-4357/ac52a9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherence of ion cyclotron resonance for damping ion cyclotron waves in space plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Q">Qiaowen Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xingyu Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jiansen He</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jun Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+H">Hairong Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Verscharen%2C+D">Daniel Verscharen</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+D">Die Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.11967v1-abstract-short" style="display: inline;"> Ion cyclotron resonance is one of the fundamental energy conversion processes through field-particle interaction in collisionless plasmas. However, the key evidence for ion cyclotron resonance (i.e., the coherence between electromagnetic fields and the ion phase space density) and the resulting damping of ion cyclotron waves (ICWs) has not yet been directly observed. Investigating the high-quality&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11967v1-abstract-full').style.display = 'inline'; document.getElementById('2202.11967v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.11967v1-abstract-full" style="display: none;"> Ion cyclotron resonance is one of the fundamental energy conversion processes through field-particle interaction in collisionless plasmas. However, the key evidence for ion cyclotron resonance (i.e., the coherence between electromagnetic fields and the ion phase space density) and the resulting damping of ion cyclotron waves (ICWs) has not yet been directly observed. Investigating the high-quality measurements of space plasmas by the Magnetospheric Multiscale (MMS) satellites, we find that both the wave electromagnetic field vectors and the bulk velocity of the disturbed ion velocity distribution rotate around the background magnetic field. Moreover, we find that the absolute gyro-phase angle difference between the center of the fluctuations in the ion velocity distribution functions and the wave electric field vectors falls in the range of (0, 90) degrees, consistent with the ongoing energy conversion from wave-fields to particles. By invoking plasma kinetic theory, we demonstrate that the field-particle correlation for the damping ion cyclotron waves in our theoretical model matches well with our observations. Furthermore, the wave electric field vectors ($未\mathbf{E&#39;}_{\mathrm {wave,\perp}}$), the ion current density ($未\mathbf{J}_\mathrm {i,\perp}$) and the energy transfer rate ($未\mathbf{J}_\mathrm {i,\perp}\cdot 未\mathbf{E&#39;}_{\mathrm {wave,\perp}}$) exhibit quasi-periodic oscillations, and the integrated work done by the electromagnetic field on the ions are positive, indicates that ions are mainly energized by the perpendicular component of the electric field via cyclotron resonance. Therefore, our combined analysis of MMS observations and kinetic theory provides direct, thorough, and comprehensive evidence for ICW damping in space plasmas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.11967v1-abstract-full').style.display = 'none'; document.getElementById('2202.11967v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.10446">arXiv:2202.10446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.10446">pdf</a>, <a href="https://arxiv.org/format/2202.10446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> </div> <p class="title is-5 mathjax"> EINNs: Epidemiologically-informed Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rodr%C3%ADguez%2C+A">Alexander Rodr铆guez</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jiaming Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Ramakrishnan%2C+N">Naren Ramakrishnan</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+B">Bijaya Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Prakash%2C+B+A">B. Aditya Prakash</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.10446v2-abstract-short" style="display: inline;"> We introduce EINNs, a framework crafted for epidemic forecasting that builds upon the theoretical grounds provided by mechanistic models as well as the data-driven expressibility afforded by AI models, and their capabilities to ingest heterogeneous information. Although neural forecasting models have been successful in multiple tasks, predictions well-correlated with epidemic trends and long-term&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10446v2-abstract-full').style.display = 'inline'; document.getElementById('2202.10446v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.10446v2-abstract-full" style="display: none;"> We introduce EINNs, a framework crafted for epidemic forecasting that builds upon the theoretical grounds provided by mechanistic models as well as the data-driven expressibility afforded by AI models, and their capabilities to ingest heterogeneous information. Although neural forecasting models have been successful in multiple tasks, predictions well-correlated with epidemic trends and long-term predictions remain open challenges. Epidemiological ODE models contain mechanisms that can guide us in these two tasks; however, they have limited capability of ingesting data sources and modeling composite signals. Thus, we propose to leverage work in physics-informed neural networks to learn latent epidemic dynamics and transfer relevant knowledge to another neural network which ingests multiple data sources and has more appropriate inductive bias. In contrast with previous work, we do not assume the observability of complete dynamics and do not need to numerically solve the ODE equations during training. Our thorough experiments on all US states and HHS regions for COVID-19 and influenza forecasting showcase the clear benefits of our approach in both short-term and long-term forecasting as well as in learning the mechanistic dynamics over other non-trivial alternatives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.10446v2-abstract-full').style.display = 'none'; document.getElementById('2202.10446v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Appears in AAAI 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.09073">arXiv:2202.09073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.09073">pdf</a>, <a href="https://arxiv.org/ps/2202.09073">ps</a>, <a href="https://arxiv.org/format/2202.09073">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ac5740">10.3847/2041-8213/ac5740 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Rotation of Magnetic Flux Rope Formed during Solar Eruption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Z">Zhenjun Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+C">Chaowei Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+R">Rui Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuming Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+L">Lijuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.09073v1-abstract-short" style="display: inline;"> The eruptions of solar filaments often show rotational motion about their rising direction, but it remains elusive what mechanism governs such rotation and how the rotation is related to the initial morphology of the pre-eruptive filament (and co-spatial sigmoid), filament chirality, and magnetic helicity. The conventional view regarding the rotation as a result of a magnetic flux rope (MFR) under&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09073v1-abstract-full').style.display = 'inline'; document.getElementById('2202.09073v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.09073v1-abstract-full" style="display: none;"> The eruptions of solar filaments often show rotational motion about their rising direction, but it remains elusive what mechanism governs such rotation and how the rotation is related to the initial morphology of the pre-eruptive filament (and co-spatial sigmoid), filament chirality, and magnetic helicity. The conventional view regarding the rotation as a result of a magnetic flux rope (MFR) under-going the ideal kink instability still has confusion in explaining these relationships. Here we proposed an alternative explanation for the rotation during eruptions, by analyzing a magnetohydrodynamic simulation in which magnetic reconnection initiates an eruption from a sheared arcade configuration and an MFR is formed during eruption through the reconnection. The simulation reproduces a reverse S-shaped MFR with dextral chirality, and the axis of this MFR rotates counterclockwise while rising, which compares favorably with a typical filament eruption observed from dual viewing angles. By calculating the twist and writhe numbers of the modeled MFR during its eruption, we found that accompanied with the rotation, the nonlocal writhe of the MFR&#39;s axis decreases while the twist of its surrounding field lines increases, and this is distinct from the kink instability, which converts magnetic twist into writhe of the MFR axis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09073v1-abstract-full').style.display = 'none'; document.getElementById('2202.09073v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.10576">arXiv:2112.10576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.10576">pdf</a>, <a href="https://arxiv.org/format/2112.10576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> SenAOReFoc: A Closed-Loop Sensorbased Adaptive Optics and Remote Focusing Control Software </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jiahe Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Hampson%2C+K+M">Karen M. Hampson</a>, <a href="/search/physics?searchtype=author&amp;query=Wincott%2C+M">Matthew Wincott</a>, <a href="/search/physics?searchtype=author&amp;query=Booth%2C+M+J">Martin J. Booth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.10576v1-abstract-short" style="display: inline;"> SenAOReFoc is a closed-loop sensorbased adaptive optics (AO) and remote focusing control software that works with a deformable mirror (DM) and a Shack-Hartmann wavefront sensor (SHWS). It is programmed in Python and is open-source on Github https://github.com/jiahecui/SenAOReFoc. A detailed user guide can be found in the Github repository. Here, we give a brief summary of basic software functional&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10576v1-abstract-full').style.display = 'inline'; document.getElementById('2112.10576v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.10576v1-abstract-full" style="display: none;"> SenAOReFoc is a closed-loop sensorbased adaptive optics (AO) and remote focusing control software that works with a deformable mirror (DM) and a Shack-Hartmann wavefront sensor (SHWS). It is programmed in Python and is open-source on Github https://github.com/jiahecui/SenAOReFoc. A detailed user guide can be found in the Github repository. Here, we give a brief summary of basic software functionalities, a statement of need, and some examples for the usage of this software. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10576v1-abstract-full').style.display = 'none'; document.getElementById('2112.10576v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.08676">arXiv:2111.08676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.08676">pdf</a>, <a href="https://arxiv.org/format/2111.08676">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Smart Radio Environments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gradoni%2C+G">Gabriele Gradoni</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Renzo%2C+M">Marco Di Renzo</a>, <a href="/search/physics?searchtype=author&amp;query=Diaz-Rubio%2C+A">Ana Diaz-Rubio</a>, <a href="/search/physics?searchtype=author&amp;query=Tretyakov%2C+S">Sergei Tretyakov</a>, <a href="/search/physics?searchtype=author&amp;query=Caloz%2C+C">Christophe Caloz</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+Z">Zhen Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Alu%2C+A">Andrea Alu</a>, <a href="/search/physics?searchtype=author&amp;query=Lerosey%2C+G">Geoffroy Lerosey</a>, <a href="/search/physics?searchtype=author&amp;query=Fink%2C+M">Mathias Fink</a>, <a href="/search/physics?searchtype=author&amp;query=Galdi%2C+V">Vincenzo Galdi</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+T+J">Tie Jun Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Frazier%2C+B">Benjamin Frazier</a>, <a href="/search/physics?searchtype=author&amp;query=Anlage%2C+S">Steven Anlage</a>, <a href="/search/physics?searchtype=author&amp;query=Salucci%2C+M">Marco Salucci</a>, <a href="/search/physics?searchtype=author&amp;query=Massa%2C+A">Andrea Massa</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Q">Qiang Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jinghe Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+S">Shi Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Dardari%2C+D">Davide Dardari</a>, <a href="/search/physics?searchtype=author&amp;query=Decarli%2C+N">Nicolo Decarli</a>, <a href="/search/physics?searchtype=author&amp;query=Yurduseven%2C+O">Okan Yurduseven</a>, <a href="/search/physics?searchtype=author&amp;query=Matthaiou%2C+M">Michail Matthaiou</a>, <a href="/search/physics?searchtype=author&amp;query=Kenney%2C+M">Mitchell Kenney</a>, <a href="/search/physics?searchtype=author&amp;query=Gordon%2C+G">George Gordon</a>, <a href="/search/physics?searchtype=author&amp;query=Georgiou%2C+O">Orestis Georgiou</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.08676v1-abstract-short" style="display: inline;"> This Roadmap takes the reader on a journey through the research in electromagnetic wave propagation control via reconfigurable intelligent surfaces. Meta-surface modelling and design methods are reviewed along with physical realisation techniques. Several wireless applications are discussed, including beam-forming, focusing, imaging, localisation, and sensing, some rooted in novel architectures fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08676v1-abstract-full').style.display = 'inline'; document.getElementById('2111.08676v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.08676v1-abstract-full" style="display: none;"> This Roadmap takes the reader on a journey through the research in electromagnetic wave propagation control via reconfigurable intelligent surfaces. Meta-surface modelling and design methods are reviewed along with physical realisation techniques. Several wireless applications are discussed, including beam-forming, focusing, imaging, localisation, and sensing, some rooted in novel architectures for future mobile communications networks towards 6G. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.08676v1-abstract-full').style.display = 'none'; document.getElementById('2111.08676v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">55 pages, 22 figures, submitted to Reviews of Electromagnetics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08435">arXiv:2109.08435</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.08435">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TAP.2022.3168278">10.1109/TAP.2022.3168278 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Design of Programmable Transmitarray with Independent Controls of Transmission Amplitude and Phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">He Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y+B">Yun Bo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+C+Y">Chao Yue Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+S+Y">Shu Yue Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+Y">Shi Yu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H+P">Hai Peng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+T+J">Tie Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08435v1-abstract-short" style="display: inline;"> A design method of programmable transmitarray with independent controls of transmission amplitude and phase is proposed in C-band. The unit cell with cascaded structures mainly consists of four parts, including the receiving antenna, reconfigurable attenuator with PIN diodes, reconfigurable phase shifter with varactors and transmitting antenna. Correspondingly, various manipulations of spatial ele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08435v1-abstract-full').style.display = 'inline'; document.getElementById('2109.08435v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08435v1-abstract-full" style="display: none;"> A design method of programmable transmitarray with independent controls of transmission amplitude and phase is proposed in C-band. The unit cell with cascaded structures mainly consists of four parts, including the receiving antenna, reconfigurable attenuator with PIN diodes, reconfigurable phase shifter with varactors and transmitting antenna. Correspondingly, various manipulations of spatial electromagnetic (EM) fields are achieved by varying the bias voltages of PIN diodes and varactors in the transmitarray. The fabricated unit cell is measured in a standard waveguide, and the whole array with 8*8 unit cells is measured with two horns for calibration of the programmable EM features. The experimental results show that the transmission magnitude can range from -16 dB to -3.6 dB and the transmission phase achieves 270-degree coverage independently under the 16-bit programmable control. To further exhibit the capability and functionality of the proposed transmitarray, the waveform engineering of adaptive beamforming and power-allocation beamforming are separately realized in the experiment. The measured results have good agreements with our theoretical calculations, verifying the validity of our design method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08435v1-abstract-full').style.display = 'none'; document.getElementById('2109.08435v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.11802">arXiv:2107.11802</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.11802">pdf</a>, <a href="https://arxiv.org/format/2107.11802">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.043108">10.1103/PhysRevA.104.043108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimized pulsed sideband cooling and enhanced thermometry of trapped ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Rasmusson%2C+A+J">A. J. Rasmusson</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Onofrio%2C+M">Marissa D&#39;Onofrio</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Y">Yuanheng Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jiafeng Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Richerme%2C+P">Philip Richerme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.11802v2-abstract-short" style="display: inline;"> Resolved sideband cooling is a standard technique for cooling trapped ions below the Doppler limit to near their motional ground state. Yet, the most common methods for sideband cooling implicitly rely on low Doppler-cooled temperatures and tightly confined ions, and they cannot be optimized for different experimental conditions. Here we introduce a framework which calculates the fastest possible&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11802v2-abstract-full').style.display = 'inline'; document.getElementById('2107.11802v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.11802v2-abstract-full" style="display: none;"> Resolved sideband cooling is a standard technique for cooling trapped ions below the Doppler limit to near their motional ground state. Yet, the most common methods for sideband cooling implicitly rely on low Doppler-cooled temperatures and tightly confined ions, and they cannot be optimized for different experimental conditions. Here we introduce a framework which calculates the fastest possible pulsed sideband cooling sequence for a given number of pulses and set of experimental parameters, and we verify its improvement compared to traditional methods using a trapped $^{171}$Yb$^+$ ion. After extensive cooling, we find that the ion motional distribution is distinctly non-thermal and thus not amenable to standard thermometry techniques. We therefore develop and experimentally validate an improved method to measure ion temperatures after sideband cooling. These techniques will enable more efficient cooling and thermometry within trapped-ion systems, especially those with high initial temperatures or spatially-extended ion wavepackets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11802v2-abstract-full').style.display = 'none'; document.getElementById('2107.11802v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures including 2 appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, 043108 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03471">arXiv:2107.03471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03471">pdf</a>, <a href="https://arxiv.org/format/2107.03471">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2058-9565/ac1e38">10.1088/2058-9565/ac1e38 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An open-endcap blade trap for radial-2D ion crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Y">Yuanheng Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jiafeng Cui</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Onofrio%2C+M">Marissa D&#39;Onofrio</a>, <a href="/search/physics?searchtype=author&amp;query=Rasmusson%2C+A+J">A. J. Rasmusson</a>, <a href="/search/physics?searchtype=author&amp;query=Howell%2C+S+W">Stephen W. Howell</a>, <a href="/search/physics?searchtype=author&amp;query=Richerme%2C+P">Philip Richerme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03471v1-abstract-short" style="display: inline;"> We present the design and experimental demonstration of an open-endcap radio frequency trap to confine ion crystals in the radial-two dimensional (2D) structural phase. The central axis of the trap is kept free of obstructions to allow for site-resolved imaging of ions in the 2D crystal plane, and the confining potentials are provided by four segmented blade electrodes. We discuss the design chall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03471v1-abstract-full').style.display = 'inline'; document.getElementById('2107.03471v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03471v1-abstract-full" style="display: none;"> We present the design and experimental demonstration of an open-endcap radio frequency trap to confine ion crystals in the radial-two dimensional (2D) structural phase. The central axis of the trap is kept free of obstructions to allow for site-resolved imaging of ions in the 2D crystal plane, and the confining potentials are provided by four segmented blade electrodes. We discuss the design challenges, fabrication techniques, and voltage requirements for implementing this open-endcap trap. Finally, we validate its operation by confining up to 29 ions in a 2D triangular lattice, oriented such that both in-plane principal axes of the 2D crystal lie in the radial direction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03471v1-abstract-full').style.display = 'none'; document.getElementById('2107.03471v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages (including references and 1 appendix), 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Sci. Technol. 6, 044009 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.02753">arXiv:2105.02753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.02753">pdf</a>, <a href="https://arxiv.org/format/2105.02753">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6455/ac076c">10.1088/1361-6455/ac076c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Susceptibility of Trapped-Ion Qubits to Low-Dose Radiation Sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jiafeng Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Rasmusson%2C+A+J">A. J. Rasmusson</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Onofrio%2C+M">Marissa D&#39;Onofrio</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Y">Yuanheng Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Wolanski%2C+E">Evangeline Wolanski</a>, <a href="/search/physics?searchtype=author&amp;query=Richerme%2C+P">Philip Richerme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.02753v2-abstract-short" style="display: inline;"> We experimentally study the real-time susceptibility of trapped-ion quantum systems to small doses of ionizing radiation. We expose an ion-trap apparatus to a variety of $伪$, $尾$, and $纬$ sources and measure the resulting changes in trapped-ion qubit lifetimes, coherence times, gate fidelities, and motional heating rates. We found no quantifiable degradation of ion trap performance in the presence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02753v2-abstract-full').style.display = 'inline'; document.getElementById('2105.02753v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.02753v2-abstract-full" style="display: none;"> We experimentally study the real-time susceptibility of trapped-ion quantum systems to small doses of ionizing radiation. We expose an ion-trap apparatus to a variety of $伪$, $尾$, and $纬$ sources and measure the resulting changes in trapped-ion qubit lifetimes, coherence times, gate fidelities, and motional heating rates. We found no quantifiable degradation of ion trap performance in the presence of low-dose radiation sources for any of the measurements performed. This finding is encouraging for the long-term prospects of using ion-based quantum information systems in extreme environments, indicating that much larger doses may be required to induce errors in trapped-ion quantum processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.02753v2-abstract-full').style.display = 'none'; document.getElementById('2105.02753v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, 1 table, slightly revised text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. B: At. Mol. Opt. Phys. 54, 13LT01 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06005">arXiv:2102.06005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.06005">pdf</a>, <a href="https://arxiv.org/format/2102.06005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202140277">10.1051/0004-6361/202140277 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The configuration and failed eruption of a complex magnetic flux rope above a 未 sunspot region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+L">Lijuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiajia Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jun Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuming Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+G">Guoqiang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Z">Zhenjun Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06005v1-abstract-short" style="display: inline;"> Aims. We investigate the configuration of a complex flux rope above a 未 sunspot region in NOAA AR 11515, and its eruptive expansion during a confined M5.3-class flare. Methods. We study the formation of the 未 sunspot using continuum intensity images and photospheric vector magnetograms provided by SDO/HMI. We use EUV and UV images provided by SDO/AIA, and hard X-ray emission recorded by RHESSI t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06005v1-abstract-full').style.display = 'inline'; document.getElementById('2102.06005v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06005v1-abstract-full" style="display: none;"> Aims. We investigate the configuration of a complex flux rope above a 未 sunspot region in NOAA AR 11515, and its eruptive expansion during a confined M5.3-class flare. Methods. We study the formation of the 未 sunspot using continuum intensity images and photospheric vector magnetograms provided by SDO/HMI. We use EUV and UV images provided by SDO/AIA, and hard X-ray emission recorded by RHESSI to investigate the eruptive details. The coronal magnetic field is extrapolated with a non-linear force free field (NLFFF) method, based on which the flux rope is identified by calculating the twist number Tw and squashing factor Q. We search the null point via a modified Powell hybrid method. Results. The collision between two emerging spot groups form the 未 sunspot. A bald patch (BP) forms at the collision location, above which a complex flux rope is identified. The flux rope has multiple layers, with one compact end and one bifurcated end, having Tw decreasing from the core to the boundary. A null point is located above the flux rope. The eruptive process consists of precursor flaring at a &#39;v&#39;-shaped coronal structure, rise of the filament, and flaring below the filament, corresponding well with the NLFFF topological structures, including the null point and the flux rope with BP and hyperbolic flux tube (HFT). Two sets of post-flare loops and three flare ribbons support the bifurcation configuration of the flux rope. Conclusions. The precursor reconnection, which occurs at the null point, weakens the overlying confinement to allow the flux rope to rise, fitting the breakout model. The main phase reconnection, which may occur at the BP or HFT, facilitates the flux rope rising. The results suggest that the 未 spot configuration presents an environment prone to the formation of complex magnetic configurations which will work together to produce activities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06005v1-abstract-full').style.display = 'none'; document.getElementById('2102.06005v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 648, A106 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09372">arXiv:2101.09372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.09372">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Full Poincar茅 polarimetry enabled through physical inference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chao He</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+J">Jianyu Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+J">Jintao Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Antonello%2C+J">Jacopo Antonello</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+B">Ben Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jingyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+J">Jiahe Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+J">Ji Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+M">Min Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Elson%2C+D+S">Daniel S. Elson</a>, <a href="/search/physics?searchtype=author&amp;query=Xi%2C+P">Peng Xi</a>, <a href="/search/physics?searchtype=author&amp;query=Forbes%2C+A">Andrew Forbes</a>, <a href="/search/physics?searchtype=author&amp;query=Booth%2C+M+J">Martin J. Booth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09372v3-abstract-short" style="display: inline;"> While polarisation sensing is vital in many areas of research, with applications spanning from microscopy to aerospace, traditional approaches are limited by method-related error amplification or accumulation, placing fundamental limitations on precision and accuracy in single-shot polarimetry. Here, we put forward a new measurement paradigm to circumvent this, introducing the notion of a universa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09372v3-abstract-full').style.display = 'inline'; document.getElementById('2101.09372v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09372v3-abstract-full" style="display: none;"> While polarisation sensing is vital in many areas of research, with applications spanning from microscopy to aerospace, traditional approaches are limited by method-related error amplification or accumulation, placing fundamental limitations on precision and accuracy in single-shot polarimetry. Here, we put forward a new measurement paradigm to circumvent this, introducing the notion of a universal full Poincar茅 generator to map all polarisation analyser states into a single vectorially structured light field, allowing all vector components to be analysed in a single-shot with theoretically user-defined precision. To demonstrate the advantage of our approach, we use a common GRIN optic as our mapping device and show mean errors of &lt;1% for each vector component, enhancing the sensitivity by around three times, allowing us to sense weak polarisation aberrations not measurable by traditional single-shot techniques. Our work paves the way for next-generation polarimetry, impacting a wide variety of applications relying on weak vector measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09372v3-abstract-full').style.display = 'none'; document.getElementById('2101.09372v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Cui%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Cui%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cui%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Cui%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10