CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;46 of 46 results for author: <span class="mathjax">Liang, B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Liang%2C+B">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liang, B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liang%2C+B&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liang, B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13052">arXiv:2410.13052</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13052">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Exploring Nanoscale Photoresponse Mechanisms for Enhanced Photothermoelectric Effects in van der Waals Interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+D">Da Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qiushi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Boqun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+N">Ning Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xuezhi Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yaodong Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Lake%2C+R+K">Roger K. Lake</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+R">Ruoxue Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M">Ming Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13052v1-abstract-short" style="display: inline;"> Integrated photodetectors are crucial for their high speed, sensitivity, and efficient power consumption. In these devices, photocurrent generation is primarily attributed to the photovoltaic (PV) effect, driven by electron hole separations, and the photothermoelectric (PTE) effect, which results from temperature gradients via the Seebeck effect. As devices shrink, the overlap of these mechanisms-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13052v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13052v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13052v1-abstract-full" style="display: none;"> Integrated photodetectors are crucial for their high speed, sensitivity, and efficient power consumption. In these devices, photocurrent generation is primarily attributed to the photovoltaic (PV) effect, driven by electron hole separations, and the photothermoelectric (PTE) effect, which results from temperature gradients via the Seebeck effect. As devices shrink, the overlap of these mechanisms-both dependent on the Fermi level and band structure-complicates their separate evaluation at the nanoscale. This study introduces a novel 3D photocurrent nano-imaging technique specifically designed to distinctly map these mechanisms in a Schottky barrier photodiode featuring a molybdenum disulfide and gold (MoS2 Au) interface. We uncover a significant PTE-dominated region extending several hundred nanometers from the electrode edge, a characteristic facilitated by the weak electrostatic forces typical in 2D materials. Unexpectedly, we find that incorporating hexagonal boron nitride (hBN), known for its high thermal conductivity, markedly enhances the PTE response. This counterintuitive enhancement stems from an optimal overlap between thermal and Seebeck profiles, presenting a new pathway to boost device performance. Our findings highlight the capability of this imaging technique to not only advance optoelectronic applications but also to deepen our understanding of light matter interactions within low-dimensional systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13052v1-abstract-full').style.display = 'none'; document.getElementById('2410.13052v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07957">arXiv:2409.07957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07957">pdf</a>, <a href="https://arxiv.org/format/2409.07957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Rapid Parameter Estimation for Extreme Mass Ratio Inspirals Using Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bo Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+H">Hong Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+T">Tianyu Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=wang%2C+H">He wang</a>, <a href="/search/physics?searchtype=author&amp;query=Evangelinelis%2C+H">Herik Evangelinelis</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yuxiang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=liu%2C+C">Chang liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+M">Manjia Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+X">Xiaotong Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Y">Yong Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+M">Minghui Du</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+W">Wei-Liang Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Z">Ziren Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07957v1-abstract-short" style="display: inline;"> Extreme-mass-ratio inspiral (EMRI) signals pose significant challenges in gravitational wave (GW) astronomy owing to their low-frequency nature and highly complex waveforms, which occupy a high-dimensional parameter space with numerous variables. Given their extended inspiral timescales and low signal-to-noise ratios, EMRI signals warrant prolonged observation periods. Parameter estimation becomes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07957v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07957v1-abstract-full" style="display: none;"> Extreme-mass-ratio inspiral (EMRI) signals pose significant challenges in gravitational wave (GW) astronomy owing to their low-frequency nature and highly complex waveforms, which occupy a high-dimensional parameter space with numerous variables. Given their extended inspiral timescales and low signal-to-noise ratios, EMRI signals warrant prolonged observation periods. Parameter estimation becomes particularly challenging due to non-local parameter degeneracies, arising from multiple local maxima, as well as flat regions and ridges inherent in the likelihood function. These factors lead to exceptionally high time complexity for parameter analysis while employing traditional matched filtering and random sampling methods. To address these challenges, the present study applies machine learning to Bayesian posterior estimation of EMRI signals, leveraging the recently developed flow matching technique based on ODE neural networks. Our approach demonstrates computational efficiency several orders of magnitude faster than the traditional Markov Chain Monte Carlo (MCMC) methods, while preserving the unbiasedness of parameter estimation. We show that machine learning technology has the potential to efficiently handle the vast parameter space, involving up to seventeen parameters, associated with EMRI signals. Furthermore, to our knowledge, this is the first instance of applying machine learning, specifically the Continuous Normalizing Flows (CNFs), to EMRI signal analysis. Our findings highlight the promising potential of machine learning in EMRI waveform analysis, offering new perspectives for the advancement of space-based GW detection and GW astronomy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07957v1-abstract-full').style.display = 'none'; document.getElementById('2409.07957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07125">arXiv:2407.07125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07125">pdf</a>, <a href="https://arxiv.org/format/2407.07125">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Rapid Parameter Estimation for Merging Massive Black Hole Binaries Using Continuous Normalizing Flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bo Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+M">Minghui Du</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">He Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yuxiang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+X">Xiaotong Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Qiang%2C+L">Li-e Qiang</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Z">Ziren Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07125v2-abstract-short" style="display: inline;"> Detecting the coalescences of massive black hole binaries (MBHBs) is one of the primary targets for space-based gravitational wave observatories such as LISA, Taiji, and Tianqin. The fast and accurate parameter estimation of merging MBHBs is of great significance for the global fitting of all resolvable sources, as well as the astrophysical interpretation of gravitational wave signals. However, su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07125v2-abstract-full').style.display = 'inline'; document.getElementById('2407.07125v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07125v2-abstract-full" style="display: none;"> Detecting the coalescences of massive black hole binaries (MBHBs) is one of the primary targets for space-based gravitational wave observatories such as LISA, Taiji, and Tianqin. The fast and accurate parameter estimation of merging MBHBs is of great significance for the global fitting of all resolvable sources, as well as the astrophysical interpretation of gravitational wave signals. However, such analyses usually entail significant computational costs. To address these challenges, inspired by the latest progress in generative models, we explore the application of continuous normalizing flows (CNFs) on the parameter estimation of MBHBs. Specifically, we employ linear interpolation and trig interpolation methods to construct transport paths for training CNFs. Additionally, we creatively introduce a parameter transformation method based on the symmetry in the detector&#39;s response function. This transformation is integrated within CNFs, allowing us to train the model using a simplified dataset, and then perform parameter estimation on more general data, hence also acting as a crucial factor in improving the training speed. In conclusion, for the first time, within a comprehensive and reasonable parameter range, we have achieved a complete and unbiased 11-dimensional rapid inference for MBHBs in the presence of astrophysical confusion noise using CNFs. In the experiments based on simulated data, our model produces posterior distributions comparable to those obtained by nested sampling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07125v2-abstract-full').style.display = 'none'; document.getElementById('2407.07125v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14202">arXiv:2405.14202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.14202">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Giant Acoustic Geometric Spin and Orbital Hall Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Y">Yang Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jingjing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14202v1-abstract-short" style="display: inline;"> Acoustic waves in fluid with spin-0 nature have been long believed not to support spin Hall effect and strong orbital Hall effect that enables experimental observation. Here we report the first theoretical explication and experimental demonstration of giant acoustic geometric spin and orbital Hall effect characterized by a large transverse shift. We reveal that this effect occurs when a vortex bea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14202v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14202v1-abstract-full" style="display: none;"> Acoustic waves in fluid with spin-0 nature have been long believed not to support spin Hall effect and strong orbital Hall effect that enables experimental observation. Here we report the first theoretical explication and experimental demonstration of giant acoustic geometric spin and orbital Hall effect characterized by a large transverse shift. We reveal that this effect occurs when a vortex beam is observed from a tilted reference frame free of wave-interface interactions or gradient-index media needed for observing conventional ones, and can be amplified by simply binding the beam tightly. Thanks to this mechanism, large transverse shifts proportional to angular momentum are observed in a compact system. Our work provides deeper insights into the physics of angular momentum of classic waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14202v1-abstract-full').style.display = 'none'; document.getElementById('2405.14202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07218">arXiv:2405.07218</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.07218">pdf</a>, <a href="https://arxiv.org/format/2405.07218">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Chained Flexible Capsule Endoscope: Unraveling the Conundrum of Size Limitations and Functional Integration for Gastrointestinal Transitivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+S">Sishen Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Guang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Baijia Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Lailu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Q">Qingzhuo Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+S">Shuang Song</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+H">Hongliang Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07218v1-abstract-short" style="display: inline;"> Capsule endoscopes, predominantly serving diagnostic functions, provide lucid internal imagery but are devoid of surgical or therapeutic capabilities. Consequently, despite lesion detection, physicians frequently resort to traditional endoscopic or open surgical procedures for treatment, resulting in more complex, potentially risky interventions. To surmount these limitations, this study introduce&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07218v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07218v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07218v1-abstract-full" style="display: none;"> Capsule endoscopes, predominantly serving diagnostic functions, provide lucid internal imagery but are devoid of surgical or therapeutic capabilities. Consequently, despite lesion detection, physicians frequently resort to traditional endoscopic or open surgical procedures for treatment, resulting in more complex, potentially risky interventions. To surmount these limitations, this study introduces a chained flexible capsule endoscope (FCE) design concept, specifically conceived to navigate the inherent volume constraints of capsule endoscopes whilst augmenting their therapeutic functionalities. The FCE&#39;s distinctive flexibility originates from a conventional rotating joint design and the incision pattern in the flexible material. In vitro experiments validated the passive navigation ability of the FCE in rugged intestinal tracts. Further, the FCE demonstrates consistent reptile-like peristalsis under the influence of an external magnetic field, and possesses the capability for film expansion and disintegration under high-frequency electromagnetic stimulation. These findings illuminate a promising path toward amplifying the therapeutic capacities of capsule endoscopes without necessitating a size compromise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07218v1-abstract-full').style.display = 'none'; document.getElementById('2405.07218v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10373">arXiv:2404.10373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.10373">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A newly developed multi-kilo-channel high-speed and precision waveform digitization system for neutrino experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">H. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+T">T. Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+C">C. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Q">Q. Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">B. Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+G">G. Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+B">B. Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">S. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">J. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10373v1-abstract-short" style="display: inline;"> The Jinping Neutrino Experiment(JNE), conducted within the China Jinping Underground Laboratory, aims to detect and analyze of solar neutrinos, geo-neutrinos, and supernova neutrinos. A one-ton prototype will soon be in commision with an upgrade from 30 channels to 60 channels, which will increase the data bandwidth by one to two orders of magnitude and exceed the capacity of the current CAEN DAQ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10373v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10373v1-abstract-full" style="display: none;"> The Jinping Neutrino Experiment(JNE), conducted within the China Jinping Underground Laboratory, aims to detect and analyze of solar neutrinos, geo-neutrinos, and supernova neutrinos. A one-ton prototype will soon be in commision with an upgrade from 30 channels to 60 channels, which will increase the data bandwidth by one to two orders of magnitude and exceed the capacity of the current CAEN DAQ system. Additionally, enhancing the performance and flexibility of JNE DAQ system is crucial. This paper presents the design of a new Tsinghua DAQ system for the JNE and its performance and stability. The new Tsinghua DAQ(THDAQ) system for JNE is based on the cPCI protocol and demonstrates powerful performance improvements: ADC ENOB of the THDAQ system approximately exceeds 9.8-bit, marking a 14% improvement over the CAEN DAQ system; The maximum clock deviation within a single chassis is 85.6 ps, satisfying sub-nanosecond synchronization criteria; Each DAQ board features two QSFP+ optical ports with 82.5Gbps transmission capability, while the PCIe board supports a transmission rate of 100.2 Gbps. In addition, comparative experiments between the two systems were also tested in detail. The analysis results of waveform and charge spectrum prove the high stability of the THDAQ system. This provides a foundation for the 60-channel and 4000-channel DAQ systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10373v1-abstract-full').style.display = 'none'; document.getElementById('2404.10373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13091">arXiv:2402.13091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.13091">pdf</a>, <a href="https://arxiv.org/format/2402.13091">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2024.139016">10.1016/j.physletb.2024.139016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gravitational Wave Signal Extraction Against Non-Stationary Instrumental Noises with Deep Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yuxiang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+M">Minghui Du</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bo Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">He Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13091v3-abstract-short" style="display: inline;"> Sapce-borne gravitational wave antennas, such as LISA and LISA-like mission (Taiji and Tianqin), will offer novel perspectives for exploring our Universe while introduce new challenges, especially in data analysis. Aside from the known challenges like high parameter space dimension, superposition of large number of signals etc., gravitational wave detections in space would be more seriously affect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13091v3-abstract-full').style.display = 'inline'; document.getElementById('2402.13091v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13091v3-abstract-full" style="display: none;"> Sapce-borne gravitational wave antennas, such as LISA and LISA-like mission (Taiji and Tianqin), will offer novel perspectives for exploring our Universe while introduce new challenges, especially in data analysis. Aside from the known challenges like high parameter space dimension, superposition of large number of signals etc., gravitational wave detections in space would be more seriously affected by anomalies or non-stationarities in the science measurements. Considering the three types of foreseeable non-stationarities including data gaps, transients (glitches), and time-varying noise auto-correlations, which may come from routine maintenance or unexpected disturbances during science operations, we developed a deep learning model for accurate signal extractions confronted with such anomalous scenarios. Our model exhibits the same performance as the current state-of-the-art models do for the ideal and anomaly free scenario, while shows remarkable adaptability in extractions of coalescing massive black hole binary signal against all three types of non-stationarities and even their mixtures. This also provide new explorations into the robustness studies of deep learning models for data processing in space-borne gravitational wave missions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13091v3-abstract-full').style.display = 'none'; document.getElementById('2402.13091v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures, 6 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Published in Physics Letters B, Volume 858, November 2024, 139016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06302">arXiv:2312.06302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06302">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-iterative Methods in Inhomogeneous Background Inverse Scattering Imaging Problem Assisted by Swin Transformer Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Du%2C+N">Naike Du</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+T">Tiantian Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+R">Rencheng Song</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+K">Kuiwen Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bingyuan Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+S">Sheng Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+X">Xiuzhu Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06302v1-abstract-short" style="display: inline;"> A deep learning-assisted inversion method is proposed to solve the inhomogeneous background imaging problem. Three non-iterative methods, namely the distorted-Born (DB) major current coefficients method, the DB modified Born approximation method, and the DB connection method, are introduced to address the inhomogeneous background inverse scattering problem. These methods retain the multiple scatte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06302v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06302v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06302v1-abstract-full" style="display: none;"> A deep learning-assisted inversion method is proposed to solve the inhomogeneous background imaging problem. Three non-iterative methods, namely the distorted-Born (DB) major current coefficients method, the DB modified Born approximation method, and the DB connection method, are introduced to address the inhomogeneous background inverse scattering problem. These methods retain the multiple scattering information by utilizing the major current obtained through singular value decomposition of the Green&#39;s function and the scattered field, without resourcing to optimization techniques. As a result, the proposed methods offer improved reconstruction resolution and accuracy for unknown objects embedded in inhomogeneous backgrounds, surpassing the backpropagation scheme (BPS) and Born approximation (BA) method that disregard the multiple scattering effect. To further enhance the resolution and accuracy of the reconstruction, a Shifted-Window (Swin) transformer network is employed for capturing super-resolution information in the images. The attention mechanism incorporated in the shifted window facilitates global interactions between objects, thereby enhancing the performance of the inhomogeneous background imaging algorithm while reducing computational complexity. Moreover, an adaptive training method is proposed to enhance the generalization ability of the network. The effectiveness of the proposed methods is demonstrated through both synthetic data and experimental data. Notably, super-resolution imaging is achieved with quasi real-time speed, indicating promising application potential for the proposed algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06302v1-abstract-full').style.display = 'none'; document.getElementById('2312.06302v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We have submitted this paper to TGRS(IEEE Transactionson Geoscience andRemote Sensing) on 29-Jan-2023; and resubmitted on 12-Jul-2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19510">arXiv:2310.19510</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.19510">pdf</a>, <a href="https://arxiv.org/format/2310.19510">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Photophysics of O-band and transition metal color centers in monolithic silicon for quantum communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sarihan%2C+M+C">Murat Can Sarihan</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">Jiahui Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+J+H">Jin Ho Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+C">Cody Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Azizur-Rahman%2C+K+M">Khalifa M. Azizur-Rahman</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Baolai Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+C+W">Chee Wei Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19510v2-abstract-short" style="display: inline;"> Color centers at the low-dispersion O-band wavelengths are an essential resource for long-lifetime quantum network nodes toward memory-assisted quantum communications using energy-time entanglement. In this work, we explore the process of developing T centers and other color center defects to improve qubit storage and radiative efficiency while examining the photoluminescence dynamics. We have ext&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19510v2-abstract-full').style.display = 'inline'; document.getElementById('2310.19510v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19510v2-abstract-full" style="display: none;"> Color centers at the low-dispersion O-band wavelengths are an essential resource for long-lifetime quantum network nodes toward memory-assisted quantum communications using energy-time entanglement. In this work, we explore the process of developing T centers and other color center defects to improve qubit storage and radiative efficiency while examining the photoluminescence dynamics. We have extended the $TX_{0}$ lifetime of T centers by 65% to 1.56 $渭$s. Furthermore, we discover the presence of a $^*Cu_n^m$ related doublet emission around 1312 nm close to the zero-dispersion wavelength, with a spin degeneracy resulting in a magnetic-field induced broadening by 25% under 0.5 T, which can be an alternative to T centers as a high-fidelity spin-photon interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19510v2-abstract-full').style.display = 'none'; document.getElementById('2310.19510v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04989">arXiv:2309.04989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.04989">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-zero Integral Spin of Acoustic Vortices and Spin-orbit Interaction in Longitudinal Acoustics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Y">Yang Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jingjing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04989v1-abstract-short" style="display: inline;"> Spin and orbital angular momenta (AM) are of fundamental interest in wave physics. Acoustic wave, as a typical longitudinal wave, has been well studied in terms of orbital AM, but still considered unable to carry non-zero integral spin AM or spin-orbital interaction in homogeneous media due to its spin-0 nature. Here we give the first self-consistent analytical calculations of spin, orbital and to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04989v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04989v1-abstract-full" style="display: none;"> Spin and orbital angular momenta (AM) are of fundamental interest in wave physics. Acoustic wave, as a typical longitudinal wave, has been well studied in terms of orbital AM, but still considered unable to carry non-zero integral spin AM or spin-orbital interaction in homogeneous media due to its spin-0 nature. Here we give the first self-consistent analytical calculations of spin, orbital and total AM of guided vortices under different boundary conditions, revealing that vortex field can carry non-zero integral spin AM. We also introduce for acoustic waves the canonical-Minkowski and kinetic-Abraham AM, which has aroused long-lasting debate in optics, and prove that only the former is conserved with the corresponding symmetries. Furthermore, we present the theoretical and experimental observation of the spin-orbit interaction of vortices in longitudinal acoustics, which is thought beyond attainable in longitudinal waves in the absence of spin degree of freedom. Our work provides a solid platform for future studies of the spin and orbital AM of guided acoustic waves and may open up a new dimension for acoustic vortex-based applications such as underwater communications and object manipulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04989v1-abstract-full').style.display = 'none'; document.getElementById('2309.04989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05510">arXiv:2308.05510</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.05510">pdf</a>, <a href="https://arxiv.org/format/2308.05510">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-023-2270-7">10.1007/s11433-023-2270-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Advancing Space-Based Gravitational Wave Astronomy: Rapid Parameter Estimation via Normalizing Flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Du%2C+M">Minghui Du</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bo Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">He Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+Z">Ziren Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yueliang Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05510v2-abstract-short" style="display: inline;"> Gravitational wave (GW) astronomy is witnessing a transformative shift from terrestrial to space-based detection, with missions like Taiji at the forefront. While the transition brings unprecedented opportunities for exploring massive black hole binaries (MBHBs), it also imposes complex challenges in data analysis, particularly in parameter estimation amidst confusion noise. Addressing this gap, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05510v2-abstract-full').style.display = 'inline'; document.getElementById('2308.05510v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05510v2-abstract-full" style="display: none;"> Gravitational wave (GW) astronomy is witnessing a transformative shift from terrestrial to space-based detection, with missions like Taiji at the forefront. While the transition brings unprecedented opportunities for exploring massive black hole binaries (MBHBs), it also imposes complex challenges in data analysis, particularly in parameter estimation amidst confusion noise. Addressing this gap, we utilize scalable normalizing flow models to achieve rapid and accurate inference within the Taiji environment. Innovatively, our approach simplifies the data&#39;s complexity, employs a transformation mapping to overcome the year-period time-dependent response function, and unveils additional multimodality in the arrival time parameter. Our method estimates MBHBs several orders of magnitude faster than conventional techniques, maintaining high accuracy even in complex backgrounds. These findings significantly enhance the efficiency of GW data analysis, paving the way for rapid detection and alerting systems and enriching our ability to explore the universe through space-based GW observation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05510v2-abstract-full').style.display = 'none'; document.getElementById('2308.05510v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures. Published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SCIENCE CHINA Physics, Mechanics &amp; Astronomy, Volume 67, Issue 3: 230412 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.07364">arXiv:2307.07364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.07364">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Single-sensor and real-time ultrasonic imaging using an AI-driven disordered metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jie Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jingjing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Y">Yang Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jing Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Christensen%2C+J">Johan Christensen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.07364v1-abstract-short" style="display: inline;"> Non-destructive testing and medical diagnostic techniques using ultrasound has become indispensable in evaluating the state of materials or imaging the internal human body, respectively. To conduct spatially resolved high-quality observations, conventionally, sophisticated phased arrays are used both at the emitting and receiving ends of the setup. In comparison, single-sensor imaging techniques o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07364v1-abstract-full').style.display = 'inline'; document.getElementById('2307.07364v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.07364v1-abstract-full" style="display: none;"> Non-destructive testing and medical diagnostic techniques using ultrasound has become indispensable in evaluating the state of materials or imaging the internal human body, respectively. To conduct spatially resolved high-quality observations, conventionally, sophisticated phased arrays are used both at the emitting and receiving ends of the setup. In comparison, single-sensor imaging techniques offer significant benefits including compact physical dimensions and reduced manufacturing expenses. However, recent advances such as compressive sensing have shown that this improvement comes at the cost of additional time-consuming dynamic spatial scanning or multi-mode mask switching, which severely hinders the quest for real-time imaging. Consequently, real-time single-sensor imaging, at low cost and simple design, still represents a demanding and largely unresolved challenge till this day. Here, we bestow on ultrasonic metasurface with both disorder and artificial intelligence (AI). The former ensures strong dispersion and highly complex scattering to encode the spatial information into frequency spectra at an arbitrary location, while the latter is used to decode instantaneously the amplitude and spectral component of the sample under investigation. Thus, thanks to this symbiosis, we demonstrate that a single fixed sensor suffices to recognize complex ultrasonic objects through the random scattered field from an unpretentious metasurface, which enables real-time and low-cost imaging, easily extendable to 3D. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07364v1-abstract-full').style.display = 'none'; document.getElementById('2307.07364v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.14616">arXiv:2306.14616</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.14616">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A Cu3BHT-Graphene van der Waals Heterostructure with Strong Interlayer Coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhiyong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+S">Shuai Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wenjie Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Baokun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T+J">Tsai Jung Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Hambsch%2C+M">Mike Hambsch</a>, <a href="/search/physics?searchtype=author&amp;query=P%C3%B6hls%2C+J+F">Jonas F. P枚hls</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+Y">Yufeng Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jianjun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lan%2C+T">Tianshu Lan</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiaodong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+H">Haoyuan Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Polozij%2C+M">Miroslav Polozij</a>, <a href="/search/physics?searchtype=author&amp;query=Mannsfeld%2C+S+C+B">Stefan C. B. Mannsfeld</a>, <a href="/search/physics?searchtype=author&amp;query=Kaiser%2C+U">Ute Kaiser</a>, <a href="/search/physics?searchtype=author&amp;query=Bonn%2C+M">Mischa Bonn</a>, <a href="/search/physics?searchtype=author&amp;query=Weitz%2C+R+T">R. Thomas Weitz</a>, <a href="/search/physics?searchtype=author&amp;query=Heine%2C+T">Thomas Heine</a>, <a href="/search/physics?searchtype=author&amp;query=Parkin%2C+S+S+P">Stuart S. P. Parkin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H+I">Hai I Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+R">Renhao Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+X">Xinliang Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.14616v1-abstract-short" style="display: inline;"> Two dimensional van der Waals heterostructures (2D are of significant interest due to their intriguing physical properties that are critically defined by the constituent monolayers and their interlayer coupling . However, typical inorganic 2 D vdWhs fall into the weakly coupled region, limiting efficient interfacial charge flow crucial for developing high performance quantum opto electronics. Here&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14616v1-abstract-full').style.display = 'inline'; document.getElementById('2306.14616v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.14616v1-abstract-full" style="display: none;"> Two dimensional van der Waals heterostructures (2D are of significant interest due to their intriguing physical properties that are critically defined by the constituent monolayers and their interlayer coupling . However, typical inorganic 2 D vdWhs fall into the weakly coupled region, limiting efficient interfacial charge flow crucial for developing high performance quantum opto electronics. Here, we demonstrate strong interlayer coupling in Cu3 BHT (BHT = benzenehexathiol) graphene vdWhs an organic inorganic bilayer characterized by prominent interlayer charge transfer Monolayer Cu3 BHT with a Kagome lattice is synthesized on the water surface and then coupled with graphene to produce a cm2 scale 2D vdWh. Spectroscopic and electrical studies, along with theoretical calculation s show significant hole transfer from monolayer Cu3 BHT to graphene upon contact , being characteristic fingerprints for strong interlayer coupling This study unveils the great potential of integrating highly pi-conjugated 2D coordination polymers (2DCPs) into 2D vdWhs to explor e intriguing physical phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14616v1-abstract-full').style.display = 'none'; document.getElementById('2306.14616v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13921">arXiv:2306.13921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.13921">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/40/5/058503">10.1088/0256-307X/40/5/058503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhancement of Carrier Mobility in Semiconductor Nanostructures by Carrier Distribution Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Binxi Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+L">Luhao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jiachen Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jian Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Y">Yi Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Songlin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13921v1-abstract-short" style="display: inline;"> Two-dimensional (2D) van der Waals semiconductors are appealing for low-power transistors. Here, we show the feasibility in enhancing carrier mobility in 2D semiconductors through engineering the vertical distribution of carriers confined inside the ultrathin channels via symmetrizing gate configuration or increasing channel thickness. Through self-consistently solving the Schr枚dinger-Poisson equa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13921v1-abstract-full').style.display = 'inline'; document.getElementById('2306.13921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13921v1-abstract-full" style="display: none;"> Two-dimensional (2D) van der Waals semiconductors are appealing for low-power transistors. Here, we show the feasibility in enhancing carrier mobility in 2D semiconductors through engineering the vertical distribution of carriers confined inside the ultrathin channels via symmetrizing gate configuration or increasing channel thickness. Through self-consistently solving the Schr枚dinger-Poisson equations, the shapes of electron envelope functions are extensively investigated by clarifying their relationship with gate configuration, channel thickness, dielectric permittivity, and electron density. The impacts of electron distribution variation on various carrier scattering matrix elements and overall carrier mobility are insightfully clarified. It is found that the carrier mobility can be generally enhanced in the dual-gated configuration due to the centralization of carrier redistribution in the nanometer-thick semiconductor channels and the rate of increase reaches up to 23% in HfO$_2$ dual-gated 10-layer MoS$_2$ channels. This finding represents a viable strategy for performance optimization in transistors consisting of 2D semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13921v1-abstract-full').style.display = 'none'; document.getElementById('2306.13921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chinese Physics Letters, 40, 058503 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.01374">arXiv:2306.01374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.01374">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Acoustic meta-stethoscope for cardiac auscultation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zheng-Ji Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jing-Jing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jing Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jian-Chun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.01374v1-abstract-short" style="display: inline;"> Straight cylindrical stethoscopes serve as an important alternative to conventional stethoscopes whose application in the treatment of infectious diseases might be limited by the use of protective clothing. Yet their miniaturization is challenging due to the low-frequency of bioacoustics signal. Here, we design and experimentally implement a meta-stethoscope with subwavelength size, simple fabrica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01374v1-abstract-full').style.display = 'inline'; document.getElementById('2306.01374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.01374v1-abstract-full" style="display: none;"> Straight cylindrical stethoscopes serve as an important alternative to conventional stethoscopes whose application in the treatment of infectious diseases might be limited by the use of protective clothing. Yet their miniaturization is challenging due to the low-frequency of bioacoustics signal. Here, we design and experimentally implement a meta-stethoscope with subwavelength size, simple fabrication, easy assembly yet high sensitivity, which simply comprises multiple round perforated plate units and a cylindrical shell. We elucidate our proposed mechanism by analytically deriving the frequency response equation, which proves that the equivalent acoustic propagation path is substantially increased by the high-index metamaterial, enabling downscaling of the meta-stethoscope to subwavelength footprint. The acoustic performance of meta-stethoscope is experimentally characterized by monitoring the cardiac auscultation on clothed human body. The simulated and measured results agree well, with both showing the expected enhancement of sensitivity of our proposed meta-stethoscope (~ 10 dB) within the predicted working frequency range from 80 to 130 Hz despite its compactness and simplicity. Our designed portable, detachable yet effective meta-stethoscope opens a route to metamaterial-enabled stethoscope paradigm, with potential applications in diverse scenarios such as medical diagnosis and acoustic sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01374v1-abstract-full').style.display = 'none'; document.getElementById('2306.01374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07174">arXiv:2305.07174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.07174">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Chess-board Acoustic Crystals with Momentum-space Nonsymmorphic Symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yanqiu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z+Y">Z. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y+X">Y. X. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07174v1-abstract-short" style="display: inline;"> Spatial symmetries appearing in both real and momentum space are of fundamental significance to crystals. However, in the conventional framework, every space group in real space, either symmorphic or nonsymmorphic, corresponds to a symmorphic dual in momentum space. Our experiment breaks the framework by showing that in a 2D acoustic crystal with chess-board pattern of $蟺$ and 0 fluxes, mirror ref&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07174v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07174v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07174v1-abstract-full" style="display: none;"> Spatial symmetries appearing in both real and momentum space are of fundamental significance to crystals. However, in the conventional framework, every space group in real space, either symmorphic or nonsymmorphic, corresponds to a symmorphic dual in momentum space. Our experiment breaks the framework by showing that in a 2D acoustic crystal with chess-board pattern of $蟺$ and 0 fluxes, mirror reflections are manifested nonsymmorphically as glide reflections in momentum space. These momentum-space nonsymmorphic symmetries stem from projective, rather than ordinary, representations of the real-space symmetries due to the peculiar flux pattern. Moreover, our experiment demonstrates that the glide reflection can reduce the topological type of the Brillouin zone from the torus to the Klein bottle, resulting in novel topological phases with new topological invariants. Since crystalline topologies are based on momentum-space symmetries, our work paves the way for utilizing engineerable gauge fluxes over artificial crystals to extend the current topological classifications into the broader regime of momentum-space nonsymmorphic symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07174v1-abstract-full').style.display = 'none'; document.getElementById('2305.07174v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages,3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15291">arXiv:2303.15291</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.15291">pdf</a>, <a href="https://arxiv.org/format/2303.15291">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Predicting the Future of the CMS Detector: Crystal Radiation Damage and Machine Learning at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Joshi%2C+B">Bhargav Joshi</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Taihui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Buyun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Rusack%2C+R">Roger Rusack</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+J">Ju Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15291v1-abstract-short" style="display: inline;"> The 75,848 lead tungstate crystals in CMS experiment at the CERN Large Hadron Collider are used to measure the energy of electrons and photons produced in the proton-proton collisions. The optical transparency of the crystals degrades slowly with radiation dose due to the beam-beam collisions. The transparency of each crystal is monitored with a laser monitoring system that tracks changes in the o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15291v1-abstract-full').style.display = 'inline'; document.getElementById('2303.15291v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15291v1-abstract-full" style="display: none;"> The 75,848 lead tungstate crystals in CMS experiment at the CERN Large Hadron Collider are used to measure the energy of electrons and photons produced in the proton-proton collisions. The optical transparency of the crystals degrades slowly with radiation dose due to the beam-beam collisions. The transparency of each crystal is monitored with a laser monitoring system that tracks changes in the optical properties of the crystals due to radiation from the collision products. Predicting the optical transparency of the crystals, both in the short-term and in the long-term, is a critical task for the CMS experiment. We describe here the public data release, following FAIR principles, of the crystal monitoring data collected by the CMS Collaboration between 2016 and 2018. Besides describing the dataset and its access, the problems that can be addressed with it are described, as well as an example solution based on a Long Short-Term Memory neural network developed to predict future behavior of the crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15291v1-abstract-full').style.display = 'none'; document.getElementById('2303.15291v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04809">arXiv:2211.04809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.04809">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.054404">10.1103/PhysRevB.107.054404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant efficiency of long-range orbital torque in Co/Nb bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Fufu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bokai Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jie Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+C">Chenglong Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+C">Changjun Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04809v1-abstract-short" style="display: inline;"> We report unambiguously experimental evidence of a strong orbital current in Nb films with weak spin-orbit coupling via the spin-torque ferromagnetic resonance (ST-FMR) spectrum for Fe/Nb and Co/Nb bilayers. The sign change of the damping-like torque in Co/Nb demonstrates a large spin-orbit correlation and thus great efficiency of orbital torque in Co/Nb. By studying the efficiency as a function o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04809v1-abstract-full').style.display = 'inline'; document.getElementById('2211.04809v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04809v1-abstract-full" style="display: none;"> We report unambiguously experimental evidence of a strong orbital current in Nb films with weak spin-orbit coupling via the spin-torque ferromagnetic resonance (ST-FMR) spectrum for Fe/Nb and Co/Nb bilayers. The sign change of the damping-like torque in Co/Nb demonstrates a large spin-orbit correlation and thus great efficiency of orbital torque in Co/Nb. By studying the efficiency as a function of the thickness of Nb sublayer, we reveal a long orbital diffusion length (~3.1 nm) of Nb. Further planar Hall resistance (PHE) measurements at positive and negative applying current confirm the nonlocal orbital transport in ferromagnetic-metal/Nb heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04809v1-abstract-full').style.display = 'none'; document.getElementById('2211.04809v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.15192">arXiv:2209.15192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.15192">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Sound non-reciprocity based on synthetic magnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhaoxian Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhengwei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Weng%2C+J">Jingkai Weng</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yanqing Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianchun Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Alu%2C+A">Andrea Alu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.15192v1-abstract-short" style="display: inline;"> Synthetic magnetism has been recently realized using spatiotemporal modulation patterns, producing non-reciprocal steering of charge-neutral particles such as photons and phonons. Here, we design and experimentally demonstrate a non-reciprocal acoustic system composed of three compact cavities interlinked with both dynamic and static couplings, in which phase-correlated modulations induce a synthe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15192v1-abstract-full').style.display = 'inline'; document.getElementById('2209.15192v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.15192v1-abstract-full" style="display: none;"> Synthetic magnetism has been recently realized using spatiotemporal modulation patterns, producing non-reciprocal steering of charge-neutral particles such as photons and phonons. Here, we design and experimentally demonstrate a non-reciprocal acoustic system composed of three compact cavities interlinked with both dynamic and static couplings, in which phase-correlated modulations induce a synthetic magnetic flux that breaks time-reversal symmetry. Within the rotating wave approximation, the transport properties of the system are controlled to efficiently realize large non-reciprocal acoustic transport. By optimizing the coupling strengths and modulation phases, we achieve frequency-preserved unidirectional transport with 45-dB isolation ratio and 0.85 forward transmission. Our results open to the realization of acoustic nonreciprocal technologies with high efficiency and large isolation, and offer a route towards Floquet topological insulators for sound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15192v1-abstract-full').style.display = 'none'; document.getElementById('2209.15192v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.12999">arXiv:2208.12999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.12999">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Remote Water-to-air Eavesdropping through Phase-Engineered Impedance Matching Metasurfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jing-jing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zheng-wei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jian-chun Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Alu%2C+A">Andrea Alu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.12999v1-abstract-short" style="display: inline;"> Efficiently receiving underwater sound remotely from air is a long-standing challenge in acoustics hindered by the large impedance mismatch at the water-air interface. Here we introduce and experimentally demonstrate a technique for remote and efficient water-to-air eavesdropping through phase-engineered impedance matching metasurfaces. By judiciously engineering an ultrathin mechanically-rigid bo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12999v1-abstract-full').style.display = 'inline'; document.getElementById('2208.12999v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.12999v1-abstract-full" style="display: none;"> Efficiently receiving underwater sound remotely from air is a long-standing challenge in acoustics hindered by the large impedance mismatch at the water-air interface. Here we introduce and experimentally demonstrate a technique for remote and efficient water-to-air eavesdropping through phase-engineered impedance matching metasurfaces. By judiciously engineering an ultrathin mechanically-rigid boundary, we make the water-air interface acoustically transparent and at the same time we are able to pattern the transmitted wavefront, enabling efficient control over the effective spatial location of a distant airborne sensor such that it can measure underwater signals with large signal-to-noise ratio as if placed close to the physical underwater source. Such airborne eavesdropping of underwater sound is experimentally demonstrated with a measured sensitivity enhancement exceeding 38 dB at 8 kHz. We further demonstrate opportunities for orbital-angular-momentum-multiplexed communications and underwater acoustic communications. Our metasurface opens new avenues for communication and sensing, which may be translated to nano-optics and radio-frequencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.12999v1-abstract-full').style.display = 'none'; document.getElementById('2208.12999v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.14160">arXiv:2204.14160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.14160">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient, High-purity, Robust Sound Frequency Conversion with a Linear Metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+C">Chengbo Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+J">Jincheng Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yujiang Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Weng%2C+J">Jingkai Weng</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+C">Cheng-Wei Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.14160v1-abstract-short" style="display: inline;"> The intrinsic limitation of the material nonlinearity inevitably results in the poor mode purity, conversion efficiency and real-time reconfigurability of the generated harmonic waves, both in optics and acoustics. Rotational Doppler effect provides us an intuitive paradigm to shifting the frequency in a linear system, which needs to be facilitated by a spiraling phase change upon the wave propaga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.14160v1-abstract-full').style.display = 'inline'; document.getElementById('2204.14160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.14160v1-abstract-full" style="display: none;"> The intrinsic limitation of the material nonlinearity inevitably results in the poor mode purity, conversion efficiency and real-time reconfigurability of the generated harmonic waves, both in optics and acoustics. Rotational Doppler effect provides us an intuitive paradigm to shifting the frequency in a linear system, which needs to be facilitated by a spiraling phase change upon the wave propagation. Here we numerically and experimentally present a rotating linear vortex metasurface and achieve close-to-unity mode purity (above 95%) and conversion efficiency (above 65%) in audible sound frequency as low as 3000 Hz. The topological charge of the transmitted sound is almost immune from the rotational speed and transmissivity, demonstrating the mechanical robustness and stability in adjusting the high-performance frequency conversion in situ. These features enable us to cascade multiple vortex metasurfaces to further enlarge and diversify the extent of sound frequency conversion, which are experimentally verified. Our strategy takes a step further towards the freewheeling sound manipulation at acoustic frequency domain, and may have far-researching impacts in various acoustic communications, signal processing, and contactless detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.14160v1-abstract-full').style.display = 'none'; document.getElementById('2204.14160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04971">arXiv:2204.04971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.04971">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> A new artificial photosynthetic system coupling photovoltaic electrocatalysis with photothermal catalysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yaguang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+F">Fanqi Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+X">Xianhua Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+D">Dachao Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=San%2C+X">Xingyuan San</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Baolai Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+G">Guangsheng Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S">Shufang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+L">Lin Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Q">Qingbo Meng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04971v1-abstract-short" style="display: inline;"> In this work, we present a novel artificial photosynthetic paradigm with square meter (m2) level scalable production by integrating photovoltaic electrolytic water splitting device and solar heating CO2 hydrogenation device, successfully achieving the synergy of 1 sun driven 19.4% solar to chemical energy efficiency (STC) for CO production (2.7 times higher than state of the art of large-sized art&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04971v1-abstract-full').style.display = 'inline'; document.getElementById('2204.04971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04971v1-abstract-full" style="display: none;"> In this work, we present a novel artificial photosynthetic paradigm with square meter (m2) level scalable production by integrating photovoltaic electrolytic water splitting device and solar heating CO2 hydrogenation device, successfully achieving the synergy of 1 sun driven 19.4% solar to chemical energy efficiency (STC) for CO production (2.7 times higher than state of the art of large-sized artificial photosynthetic systems) with a low cost (equivalent to 1/7 of reported artificial photosynthetic systems). Furthermore, the outdoor artificial photosynthetic demonstration with 1.268 m2 of scale exhibits the CO generation amount of 258.4 L per day, the STC of ~15.5% for CO production in winter, which could recover the cost within 833 suuny days of operation by selling CO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04971v1-abstract-full').style.display = 'none'; document.getElementById('2204.04971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22pages,3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.02527">arXiv:2202.02527</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.02527">pdf</a>, <a href="https://arxiv.org/format/2202.02527">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/ac8e9a">10.1088/1674-1056/ac8e9a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Complex-amplitude Fourier single-pixel imaging via coherent structured illumination </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Ya-Nan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+H">Hong-Yun Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+J">Jia-Cheng Han</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">De-Zhong Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Su-Heng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hong-Chao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bao-Lai Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.02527v1-abstract-short" style="display: inline;"> We propose a method of complex-amplitude Fourier single-pixel imaging (CFSI) with coherent structured illumination to acquire both the amplitude and phase of an object. In the proposed method, an object is illustrated by a series of coherent structured light fields which are generated by a phase-only spatial light modulator, the complex Fourier spectrum of the object can be acquired sequentially b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02527v1-abstract-full').style.display = 'inline'; document.getElementById('2202.02527v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.02527v1-abstract-full" style="display: none;"> We propose a method of complex-amplitude Fourier single-pixel imaging (CFSI) with coherent structured illumination to acquire both the amplitude and phase of an object. In the proposed method, an object is illustrated by a series of coherent structured light fields which are generated by a phase-only spatial light modulator, the complex Fourier spectrum of the object can be acquired sequentially by a single-pixel photodetector. Then the desired complex-amplitude image can be retrieved directly by applying an inverse Fourier transform. We experimentally implemented this CFSI with several different types of objects. The experimental results show that the proposed method provides a promising complex-amplitude imaging approach with high quality and a stable configuration. Thus, it might find broad applications in optical metrology and biomedical science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02527v1-abstract-full').style.display = 'none'; document.getElementById('2202.02527v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.02333">arXiv:2109.02333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.02333">pdf</a>, <a href="https://arxiv.org/format/2109.02333">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OL.431082">10.1364/OL.431082 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Full-color photon-counting single-pixel imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Ya-Nan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+H">Hong-Yun Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+J">Jia-Cheng Han</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hong-Chao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Su-Heng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+D">De-Zhong Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bao-Lai Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.02333v1-abstract-short" style="display: inline;"> We propose and experimentally demonstrate a high-efficiency single-pixel imaging (SPI) scheme by integrating time-correlated single-photon counting (TCSPC) with time-division multiplexing to acquire full-color images at extremely low light level. This SPI scheme uses a digital micromirror device to modulate a sequence of laser pulses with preset delays to achieve three-color structured illuminatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.02333v1-abstract-full').style.display = 'inline'; document.getElementById('2109.02333v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.02333v1-abstract-full" style="display: none;"> We propose and experimentally demonstrate a high-efficiency single-pixel imaging (SPI) scheme by integrating time-correlated single-photon counting (TCSPC) with time-division multiplexing to acquire full-color images at extremely low light level. This SPI scheme uses a digital micromirror device to modulate a sequence of laser pulses with preset delays to achieve three-color structured illumination, then employs a photomultiplier tube into the TCSPC module to achieve photon-counting detection. By exploiting the time-resolved capabilities of TCSPC, we demodulate the spectrum-image-encoded signals, and then reconstruct high-quality full-color images in a single-round of measurement. Based on this scheme, the strategies such as single-step measurement, high-speed projection, and undersampling can further improve the imaging efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.02333v1-abstract-full').style.display = 'none'; document.getElementById('2109.02333v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.10183">arXiv:2103.10183</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.10183">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abj1198">10.1126/sciadv.abj1198 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Observation of Efficient Nonreciprocal Mode Transitions via Spatiotemporally-Modulated Acoustic Metamaterials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhaoxian Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+Y">Yugui Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Haoxiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jingjing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yujiang Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xuefeng Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Alu%2C+A">Andrea Alu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yanqing Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.10183v1-abstract-short" style="display: inline;"> In lossless acoustic systems, mode transitions are always time-reversible, consistent with Lorentz reciprocity, giving rise to symmetric sound manipulation in space-time. To overcome this fundamental limitation and break space-time symmetry, nonreciprocal sound steering is realized by designing and experimentally implementing spatiotemporally-modulated acoustic metamaterials. Relying on no slow me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.10183v1-abstract-full').style.display = 'inline'; document.getElementById('2103.10183v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.10183v1-abstract-full" style="display: none;"> In lossless acoustic systems, mode transitions are always time-reversible, consistent with Lorentz reciprocity, giving rise to symmetric sound manipulation in space-time. To overcome this fundamental limitation and break space-time symmetry, nonreciprocal sound steering is realized by designing and experimentally implementing spatiotemporally-modulated acoustic metamaterials. Relying on no slow mechanical parts, unstable and noisy airflow or complicated piezoelectric array, our mechanism uses the coupling between an ultrathin membrane and external electromagnetic field to realize programmable, dynamic control of acoustic impedance in a motionless and noiseless manner. The fast and flexible impedance modulation at the deeply subwavelength scale enabled by our compact metamaterials provides an effective unidirectional momentum in space-time to realize irreversible transition in k-蠅 space between different diffraction modes. The nonreciprocal wave-steering functionality of the proposed metamaterial is elucidated by theoretically deriving the time-varying acoustic response and demonstrated both numerically and experimentally via two distinctive examples of unidirectional evanescent wave conversion and nonreciprocal blue-shift focusing. This work can be further extended into the paradigm of Bloch waves and impact other vibrant domains, such as non-Hermitian topological acoustics and parity-time-symmetric acoustics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.10183v1-abstract-full').style.display = 'none'; document.getElementById('2103.10183v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Adv. 7, eabj1198 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.01112">arXiv:2007.01112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.01112">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/LED.2020.2997319">10.1109/LED.2020.2997319 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Top-down fabricated reconfigurable FET with two symmetric and high-current on-states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Simon%2C+M">Maik Simon</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Boshen Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Fischer%2C+D">Dustin Fischer</a>, <a href="/search/physics?searchtype=author&amp;query=Knaut%2C+M">Martin Knaut</a>, <a href="/search/physics?searchtype=author&amp;query=Tahn%2C+A">Alexander Tahn</a>, <a href="/search/physics?searchtype=author&amp;query=Mikolajick%2C+T">Thomas Mikolajick</a>, <a href="/search/physics?searchtype=author&amp;query=Weber%2C+W+M">Walter M. Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.01112v1-abstract-short" style="display: inline;"> We demonstrate a top-down fabricated reconfigurable field effect transistor (RFET) based on a silicon nanowire that can be electrostatically programmed to p- and n-configuration. The device unites a high symmetry of transfer characteristics, high on/off current ratios in both configurations and superior current densities in comparison to other top-down fabricated RFETs. Two NiSi2/Si Schottky junct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01112v1-abstract-full').style.display = 'inline'; document.getElementById('2007.01112v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.01112v1-abstract-full" style="display: none;"> We demonstrate a top-down fabricated reconfigurable field effect transistor (RFET) based on a silicon nanowire that can be electrostatically programmed to p- and n-configuration. The device unites a high symmetry of transfer characteristics, high on/off current ratios in both configurations and superior current densities in comparison to other top-down fabricated RFETs. Two NiSi2/Si Schottky junctions are formed inside the wire and gated individually. The narrow omega-gated channel is fabricated by a repeated SiO2 etch and growth sequence and a conformal TiN deposition. The gate and Schottky contact metal work functions and the oxide-induced compressive stress to the Schottky junction are adjusted to result in only factor 1.6 higher p- than n-current for in absolute terms identical gate voltages and identical drain voltages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01112v1-abstract-full').style.display = 'none'; document.getElementById('2007.01112v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nanowires, Reconfigurable field effect transistors, Polarity control, Electrostatic doping, Silicon on insulator technology, Omega-gates, Multiple-gate devices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> in IEEE Electron Device Letters, vol. 41, no. 7, pp. 1110-1113, July 2020, doi: 10.1109/LED.2020.2997319 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.07122">arXiv:1909.07122</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.07122">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-19693-x">10.1038/s41467-020-19693-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Meta-neural-network for Realtime and Passive Deep-learning-based Object Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Weng%2C+J">Jingkai Weng</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yujiang Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+C">Chengbo Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xue-feng Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jing Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.07122v1-abstract-short" style="display: inline;"> Deep-learning recently show great success across disciplines yet conventionally require time-consuming computer processing or bulky-sized diffractive elements. Here we theoretically propose and experimentally demonstrate a purely-passive &#34;meta-neural-network&#34; with compactness and high-resolution for real-time recognizing complicated objects by analyzing acoustic scattering. We prove our meta-neura&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07122v1-abstract-full').style.display = 'inline'; document.getElementById('1909.07122v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.07122v1-abstract-full" style="display: none;"> Deep-learning recently show great success across disciplines yet conventionally require time-consuming computer processing or bulky-sized diffractive elements. Here we theoretically propose and experimentally demonstrate a purely-passive &#34;meta-neural-network&#34; with compactness and high-resolution for real-time recognizing complicated objects by analyzing acoustic scattering. We prove our meta-neural-network mimics standard neural network despite its small footprint, thanks to unique capability of its metamaterial unit cells, dubbed &#34;meta-neurons&#34;, to produce deep-subwavelength-distribution of discrete phase shift as learnable parameters during training. The resulting device exhibits the &#34;intelligence&#34; to perform desired tasks with potential to address the current trade-off between reducing device&#39;s size, cost and energy consumption and increasing recognition speed and accuracy, showcased by an example of handwritten digit recognition. Our mechanism opens the route to new metamaterial-based deep-learning paradigms and enable conceptual devices such as smart transducers automatically analyzing signals, with far-reaching implications for acoustics, optics and related fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.07122v1-abstract-full').style.display = 'none'; document.getElementById('1909.07122v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.07298">arXiv:1908.07298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.07298">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6463/ab3b6a">10.1088/1361-6463/ab3b6a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flexibility of Ga-containing Type-II superlattice for long-wavelength infrared detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Delmas%2C+M">M. Delmas</a>, <a href="/search/physics?searchtype=author&amp;query=Kwan%2C+D+C+M">D. C. M. Kwan</a>, <a href="/search/physics?searchtype=author&amp;query=Debnath%2C+M+C">M. C. Debnath</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B+L">B. L. Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Huffaker%2C+D+L">D. L. Huffaker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.07298v1-abstract-short" style="display: inline;"> In this paper, the flexibility of long-wavelength Type-II InAs/GaSb superlattice (Ga-containing SL) is explored and investigated from the growth to the device performance. First, several samples with different SL period composition and thickness are grown by molecular beam epitaxy. Nearly strain-compensated SLs on GaSb exhibiting an energy band gap between 105 to 169 meV at 77K are obtained. Secon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07298v1-abstract-full').style.display = 'inline'; document.getElementById('1908.07298v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.07298v1-abstract-full" style="display: none;"> In this paper, the flexibility of long-wavelength Type-II InAs/GaSb superlattice (Ga-containing SL) is explored and investigated from the growth to the device performance. First, several samples with different SL period composition and thickness are grown by molecular beam epitaxy. Nearly strain-compensated SLs on GaSb exhibiting an energy band gap between 105 to 169 meV at 77K are obtained. Second, from electronic band structure calculation, material parameters are extracted and compared for the different grown SLs. Finally, two p-i-n device structures with different SL periods are grown and their electrical performance compared. Our investigation shows that an alternative SL design could potentially be used to improve the device performance of diffusion-limited devices for long-wavelength infrared detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.07298v1-abstract-full').style.display = 'none'; document.getElementById('1908.07298v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.00797">arXiv:1908.00797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.00797">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.infrared.2018.09.012">10.1016/j.infrared.2018.09.012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Material and device characterization of Type-II InAS/GaSb superlattice infrared detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Delmas%2C+M">M. Delmas</a>, <a href="/search/physics?searchtype=author&amp;query=Debnath%2C+M+C">M. C. Debnath</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B+L">B. L. Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Huffaker%2C+D+L">D. L. Huffaker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.00797v1-abstract-short" style="display: inline;"> This work investigates midwave infrared Type-II InAs/GaSb superlattice (SL) grown by molecular beam epitaxy on GaSb substrate. In order to compensate the natural tensile strain of the InAs layers, two different shutter sequences have been explored during the growth. The first one consists of growing an intentional InSb layer at both interfaces (namely GaSb-on-InAs and InAs-on-GaSb interfaces) by m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.00797v1-abstract-full').style.display = 'inline'; document.getElementById('1908.00797v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.00797v1-abstract-full" style="display: none;"> This work investigates midwave infrared Type-II InAs/GaSb superlattice (SL) grown by molecular beam epitaxy on GaSb substrate. In order to compensate the natural tensile strain of the InAs layers, two different shutter sequences have been explored during the growth. The first one consists of growing an intentional InSb layer at both interfaces (namely GaSb-on-InAs and InAs-on-GaSb interfaces) by migration enhanced epitaxy while the second uses the antimony-for-arsenic exchange to promote an InSb-like interface at the GaSb-on-InAs interface. SLs obtained via both methods are compared in terms of structural, morphological and optical properties by means of high-resolution x-ray diffraction, atomic force microscopy and photoluminescence spectroscopy. By using the second method, we obtained a nearly strain-compensated SL on GaSb with a full width at half maximum of 56 arcsec for the first-order SL satellite peak. Relatively smooth surface has been achieved with a root mean square value of about 0.19 nm on a 2 $渭m$ x 2 $渭m$ scan area. Finally, a p-i-n device structure having a cut-off wavelength of 5.15 $渭m$ at 77K has been demonstrated with a dark-current level of $8.3 * 10^{-8} A/cm^2$ at -50 mV and a residual carrier concentration of $9.7 * 10^{14} cm^{-3}$, comparable to the state-of-the-art. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.00797v1-abstract-full').style.display = 'none'; document.getElementById('1908.00797v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.07427">arXiv:1904.07427</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.07427">pdf</a>, <a href="https://arxiv.org/format/1904.07427">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Acoustic manipulation through zero-thickness perforated plane with strong-coupling effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hao%2C+L">Liu-Ming Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+X">Xin-Ye Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jian-Chun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.07427v1-abstract-short" style="display: inline;"> How to manipulate acoustic waves through thinner structures is always a challenging problem due to the linear proportional relationship between the structural thickness and the acoustic wavelength. Here, we show the possibility of breaking this relationship by the strong-coupling effects of the radiated waves on the zero-thickness two-dimensional perforated plane, rather than reducing the thicknes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07427v1-abstract-full').style.display = 'inline'; document.getElementById('1904.07427v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.07427v1-abstract-full" style="display: none;"> How to manipulate acoustic waves through thinner structures is always a challenging problem due to the linear proportional relationship between the structural thickness and the acoustic wavelength. Here, we show the possibility of breaking this relationship by the strong-coupling effects of the radiated waves on the zero-thickness two-dimensional perforated plane, rather than reducing the thickness of the three-dimensional structure by the resonance mechanism of the cavity structure. The strong-coupling effects can be achieved and regulated by the self and mutual radiation between acoustic waves from different holes in the zero-thickness plane. We experimentally demonstrate the effectiveness of our approach by implementing acoustic focusing and holography. Our work introduces a different perspective for manipulating acoustic waves and will enable the application of ultrathin acoustic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.07427v1-abstract-full').style.display = 'none'; document.getElementById('1904.07427v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.05845">arXiv:1812.05845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.05845">pdf</a>, <a href="https://arxiv.org/format/1812.05845">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrathin acoustic parity-time symmetric metasurface cloak </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hao-Xiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Rosendo-Lopez%2C+M">Maria Rosendo-Lopez</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yi-Fan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+X">Xu-Dong Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Torrent%2C+D">Daniel Torrent</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jian-Chum Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Christensen%2C+J">Johan Christensen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.05845v1-abstract-short" style="display: inline;"> Invisibility or unhearability cloaks have been made possible by using metamaterials making light or sound flow around obstacle without the trace of reflections or shadows. Metamaterials are known for being flexible building units that can mimic a host of unusual and extreme material responses, which are essential when engineering artificial material properties to realize a coordinate transforming&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05845v1-abstract-full').style.display = 'inline'; document.getElementById('1812.05845v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.05845v1-abstract-full" style="display: none;"> Invisibility or unhearability cloaks have been made possible by using metamaterials making light or sound flow around obstacle without the trace of reflections or shadows. Metamaterials are known for being flexible building units that can mimic a host of unusual and extreme material responses, which are essential when engineering artificial material properties to realize a coordinate transforming cloak. Bending and stretching the coordinate grid in space requires stringent material parameters, therefore, small inaccuracies and inevitable material losses become sources for unwanted scattering that are decremental to the desired effect. These obstacles further limit the possibility to achieve a robust concealment of sizeable objects from either radar or sonar detection. By using a elaborate arrangement of gain and lossy acoustic media respecting parity-time symmetry, we built an one-way unhearability cloak capable to hide objects seven times larger than acoustic wavelength. Generally speaking, our approach has no limits in terms of working frequency, shape, or size, specifically though, we demonstrate how, in principle, an object of the size of a human can be hidden from audible sound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05845v1-abstract-full').style.display = 'none'; document.getElementById('1812.05845v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.10554">arXiv:1710.10554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.10554">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4993891">10.1063/1.4993891 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Omnidirectional Ventilated Acoustic Barrier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hai-long Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yi-fan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jing Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jun Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jian-chun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.10554v1-abstract-short" style="display: inline;"> As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a tradeoff between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here we design and experimentally implemen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10554v1-abstract-full').style.display = 'inline'; document.getElementById('1710.10554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.10554v1-abstract-full" style="display: none;"> As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a tradeoff between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here we design and experimentally implement an omnidirectional acoustic barrier with planar profile, subwavelength thickness (0.18lambda) yet high ventilation. The proposed mechanism is based on the interference between the resonant scattering of discrete states and the background scattering of continuous states that induces Fano-like asymmetric transmission profile. Benefitting from the binarystructured design of coiled unit and hollow pipe, it maximally simplifies the design and fabrication while ensuring the ventilation for all the non resonant units with open tubes. The simulated and measured results agree well, showing the effectiveness of our proposed mechanism to block low frequency sound coming from various directions while allowing 63% of the air flow to pass. We anticipate our design to open routes to design sound insulators and to enable applications in traditionally unattainable cases such as those calling for noise reduction and cooling simultaneously. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.10554v1-abstract-full').style.display = 'none'; document.getElementById('1710.10554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages 4figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.08944">arXiv:1706.08944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.08944">pdf</a>, <a href="https://arxiv.org/format/1706.08944">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Twisted Acoustics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">Xue Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jian-chun Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+C">Cheng-Wei Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.08944v2-abstract-short" style="display: inline;"> We use metasurfaces to enable acoustic orbital angular momentum (a-OAM) based multiplexing in real-time, postprocess-free and sensor-scanning-free fashions to improve the bandwidth of acoustic communication, with intrinsic compatibility and expandability to cooperate with other multiplexing technologies. The mechanism relied on encoding information onto twisted beams is numerically and experimenta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.08944v2-abstract-full').style.display = 'inline'; document.getElementById('1706.08944v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.08944v2-abstract-full" style="display: none;"> We use metasurfaces to enable acoustic orbital angular momentum (a-OAM) based multiplexing in real-time, postprocess-free and sensor-scanning-free fashions to improve the bandwidth of acoustic communication, with intrinsic compatibility and expandability to cooperate with other multiplexing technologies. The mechanism relied on encoding information onto twisted beams is numerically and experimentally demonstrated by realizing the real-time picture transfer, which differs from existing static data transfer by encoding data onto OAM states. Our study can boost the capacity of acoustic communication links and offer potential to revolutionize relevant fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.08944v2-abstract-full').style.display = 'none'; document.getElementById('1706.08944v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.07277">arXiv:1702.07277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.07277">pdf</a>, <a href="https://arxiv.org/format/1702.07277">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.9.034035">10.1103/PhysRevApplied.9.034035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Directional radiation of sound waves by a subwavelength source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fan%2C+X">Xu-Dong Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yi-Fan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jian-chun Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Likun Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.07277v2-abstract-short" style="display: inline;"> We propose and experimentally achieve a directional dipole field radiated by an omnidirectional monopole source enclosed in a subwavelength structure of acoustically hybrid resonances. The whole structure has its every dimension at an order smaller than the sound wavelength. The significance is that the radiation efficiency is up to 2.3 of the radiation by traditional dipole consisting of two out-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.07277v2-abstract-full').style.display = 'inline'; document.getElementById('1702.07277v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.07277v2-abstract-full" style="display: none;"> We propose and experimentally achieve a directional dipole field radiated by an omnidirectional monopole source enclosed in a subwavelength structure of acoustically hybrid resonances. The whole structure has its every dimension at an order smaller than the sound wavelength. The significance is that the radiation efficiency is up to 2.3 of the radiation by traditional dipole consisting of two out-of-phase monopoles in the same space. This study eventually takes an essential step towards solving the long-existing barrier of inefficient radiation of directional sound waves in low frequencies, and inspires the ultimate radiation of arbitrary multipoles or even a highly directional beam by a monopole in limited spaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.07277v2-abstract-full').style.display = 'none'; document.getElementById('1702.07277v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 9, 034035 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.08908">arXiv:1701.08908</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.08908">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.7.021034">10.1103/PhysRevX.7.021034 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultra-thin Acoustic Metasurface-Based Schroeder Diffuser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yifan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+X">Xudong Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianchun Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Jing%2C+Y">Yun Jing</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.08908v1-abstract-short" style="display: inline;"> Schroeder diffuser is a classical design, proposed over 40 years ago, for artificially creating optimal and predictable sound diffuse reflection. It has been widely adopted in architectural acoustics and it has also shown substantial potential in noise control, ultrasound imaging, microparticle manipulation, among others. The conventional Schroeder diffuser, however, has a considerable thickness o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.08908v1-abstract-full').style.display = 'inline'; document.getElementById('1701.08908v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.08908v1-abstract-full" style="display: none;"> Schroeder diffuser is a classical design, proposed over 40 years ago, for artificially creating optimal and predictable sound diffuse reflection. It has been widely adopted in architectural acoustics and it has also shown substantial potential in noise control, ultrasound imaging, microparticle manipulation, among others. The conventional Schroeder diffuser, however, has a considerable thickness on the order of one wavelength, severely impeding its applications for low frequency sound. In this paper, a new class of ultra-thin and planar Schroeder diffusers are proposed based on the concept of acoustic metasurface. Both numerical and experimental results demonstrate satisfactory sound diffuse reflection produced from the metasurface-based Schroeder diffuser despite it being one order of magnitude thinner than the conventional one. The proposed design not only offer promising building blocks with great potential to profoundly impact architectural acoustics and related fields, but also constitutes a major step towards real-world applications of acoustic metasurfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.08908v1-abstract-full').style.display = 'none'; document.getElementById('1701.08908v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 7, 021034 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.00142">arXiv:1608.00142</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.00142">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Identifying vital edges in Chinese air route network via memetic algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Du%2C+W">Wen-Bo Du</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bo-Yuan Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+G">Gang Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Lordan%2C+O">Oriol Lordan</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X">Xian-Bin Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.00142v1-abstract-short" style="display: inline;"> Due to its rapid development in the past decade, air transportation system has attracted considerable research attention from diverse communities. While most of the previous studies focused on airline networks, here we systematically explore the robustness of the Chinese air route network, and identify the vital edges which form the backbone of Chinese air transportation system. Specifically, we e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00142v1-abstract-full').style.display = 'inline'; document.getElementById('1608.00142v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.00142v1-abstract-full" style="display: none;"> Due to its rapid development in the past decade, air transportation system has attracted considerable research attention from diverse communities. While most of the previous studies focused on airline networks, here we systematically explore the robustness of the Chinese air route network, and identify the vital edges which form the backbone of Chinese air transportation system. Specifically, we employ a memetic algorithm to minimize the network robustness after removing certain edges hence the solution of this model is the set of vital edges. Counterintuitively, our results show that the most vital edges are not necessarily the edges of highest topological importance, for which we provide an extensive explanation from the microscope of view. Our findings also offer new insights to understanding and optimizing other real-world network systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00142v1-abstract-full').style.display = 'none'; document.getElementById('1608.00142v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.04765">arXiv:1605.04765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.04765">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Non-Hermitian acoustic metamaterial for the complete control of sound by accessing the exceptional points </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yi-Fan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X">Xue-Feng Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+X">Xu-Dong Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+X">Xin-Ye Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jing Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jian-Chun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.04765v1-abstract-short" style="display: inline;"> Non-Hermitian systems always play a negative role in wave manipulations due to inherent non-conservation of energy as well as loss of information. Recently, however, there has been a paradigm shift on utilizing non-Hermitian systems to implement varied miraculous wave controlling. For example, parity-time symmetric media with well-designed loss and gain are presented to create a nontrivial effect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.04765v1-abstract-full').style.display = 'inline'; document.getElementById('1605.04765v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.04765v1-abstract-full" style="display: none;"> Non-Hermitian systems always play a negative role in wave manipulations due to inherent non-conservation of energy as well as loss of information. Recently, however, there has been a paradigm shift on utilizing non-Hermitian systems to implement varied miraculous wave controlling. For example, parity-time symmetric media with well-designed loss and gain are presented to create a nontrivial effect of unidirectional diffraction, which is observed near the exceptional points (EPs) in the non-Hermitian systems. Here, we report the design and realization of non-Hermitian acoustic metamaterial (NHAM) and show that by judiciously tailoring the inherent loss, the phase and amplitude of reflection can possibly be tuned in a decoupled manner. Such decoupled tuning of phase and amplitude is closely related to the EPs. As a demonstration of functionality, we experimentally generate a high-quality acoustic hologram via NHAM. Our work may open a new degree of freedom for realizing the complete control of sound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.04765v1-abstract-full').style.display = 'none'; document.getElementById('1605.04765v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.05633">arXiv:1603.05633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.05633">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1371/journal.pone.0177187">10.1371/journal.pone.0177187 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interface Condition for the Darcy Velocity at the Water-oil Flood Front in the Porous Medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Peng%2C+X">Xiaolong Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Baosheng Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.05633v1-abstract-short" style="display: inline;"> Flood front is the jump interface where fluids distribute discontinuously, whose interface condition is the theoretical basis of a mathematical model of the multiphase flow in porous medium. The conventional interface condition at the jump interface is expressed as the continuous Darcy velocity and fluid pressure (named CVCM ). Our study has inspected this conclusions. First, it is revealed that t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05633v1-abstract-full').style.display = 'inline'; document.getElementById('1603.05633v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.05633v1-abstract-full" style="display: none;"> Flood front is the jump interface where fluids distribute discontinuously, whose interface condition is the theoretical basis of a mathematical model of the multiphase flow in porous medium. The conventional interface condition at the jump interface is expressed as the continuous Darcy velocity and fluid pressure (named CVCM ). Our study has inspected this conclusions. First, it is revealed that the principle of mass conservation has no direct relation to the velocity conservation, and the former is not the true foundation of the later, because the former only reflects the kinetic characteristic of the fluid particles at one position(the interface), but not the neighborhood of the interface which required by the later. Then the reasonableness of CVCM is queried from the following three aspects:(1)Using Mukat&#39;s two phase seepage equation and the mathematical method of apagoge, we have disproved the continuity of each fluid velocity;(2)Since the analytical solution of the equation of Buckley-Leveret equations is acquirable, its velocity jumps at the flood front presents an appropriate example to disprove the CVCM;(3) The numerical simulation model gives impractical result that flood front would stop moving if CVCM were used to calculate the velocities at the interface between two gridcells. Subsequently, a new one, termed as Jump Velocity Condition Model (JVCM), is deduced from Muskat&#39;s two phase seepage equations and Darcy&#39;s law without taking account of the capillary force and compressibility of rocks and fluids. Finally, several cases are presented. And the comparisons of the velocity, pressure difference and the front position, which are given by JVCM, CVCM and SPU, have shown that the result of JVCM is the closest to the exact solution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05633v1-abstract-full').style.display = 'none'; document.getElementById('1603.05633v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages,six figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.03758">arXiv:1507.03758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.03758">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> An acoustic invisible gateway </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yi-Fan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+X">Xin-Ye Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Kan%2C+W">Wei-Wei Kan</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jun Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jian-Chun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.03758v1-abstract-short" style="display: inline;"> The recently-emerged concept of &#34;invisible gateway&#34; with the extraordinary capability to block the waves but allow the passage of other entities has attracted great attentions due to the general interests in illusion devices. However, the possibility to realize such a fascinating phenomenon for acoustic waves has not yet been explored, which should be of paramount significance for acoustical appli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.03758v1-abstract-full').style.display = 'inline'; document.getElementById('1507.03758v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.03758v1-abstract-full" style="display: none;"> The recently-emerged concept of &#34;invisible gateway&#34; with the extraordinary capability to block the waves but allow the passage of other entities has attracted great attentions due to the general interests in illusion devices. However, the possibility to realize such a fascinating phenomenon for acoustic waves has not yet been explored, which should be of paramount significance for acoustical applications but would necessarily involve experimental difficulty. Here we design and experimentally demonstrate an acoustic invisible gateway (AIG) capable of concealing a channel under the detection of sound. Instead of &#34;restoring&#34; a whole block of background medium by using transformation acoustics that inevitably requires complementary or restoring media with extreme parameters, we propose an inherently distinct methodology that only aims at engineering the surface impedance at the &#34;gate&#34; to mimic a rigid &#34;wall&#34; and can be conveniently implemented by decorating meta-structures behind the channel. Such a simple yet effective design of AIG also enables analyzing the physics behind this extraordinary phenomenon in an analytical manner, which agrees quite well with the numerical and experimental results. Furthermore, our scheme offers possibility to manipulate the symmetry of AIGs freely, which is proven both theoretically and experimentally by demonstrating two distinctive examples of one-way and two-way AIGs. We anticipate the realization of AIGs will open new avenues to illusion acoustics with potential applications in acoustic measurement and acoustic device, and provide inspirations for similar researches in other fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.03758v1-abstract-full').style.display = 'none'; document.getElementById('1507.03758v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.01049">arXiv:1506.01049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.01049">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Broadband non-reciprocal transmission of sound with invariant frequency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gu%2C+Z">Zhong-ming Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jie Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+X">Xin-ye Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jian-chun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.01049v1-abstract-short" style="display: inline;"> The emergence of &#34;acoustic diode&#34; (AD) capable of rectifying acoustic wave like electrical diodes do to electricity has been believed to be able to offer unconventional manipulation on sound, e.g., to isolate the wrong-way reflection, and therefore have great potential in various important scenarios such as medical ultrasound applications. However, the existing ADs have always been suffering from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.01049v1-abstract-full').style.display = 'inline'; document.getElementById('1506.01049v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.01049v1-abstract-full" style="display: none;"> The emergence of &#34;acoustic diode&#34; (AD) capable of rectifying acoustic wave like electrical diodes do to electricity has been believed to be able to offer unconventional manipulation on sound, e.g., to isolate the wrong-way reflection, and therefore have great potential in various important scenarios such as medical ultrasound applications. However, the existing ADs have always been suffering from the problem that the transmitted wave must have either doubled frequency or deviated direction, lacking the most crucial features for achieving such expectations in practice. Here we design and experimentally demonstrate a broadband yet compact non-reciprocal device with hitherto inaccessible functionality of maintaining the original frequency and high forward transmission while virtually blocking the backscattered wave, which is close to what a perfect AD is expected to provide and is promising to play the essential role in realistic acoustic systems like electric diodes do in electrical circuits. Such an extreme ability comes from inherently distinct mechanism based on the exploration of the acoustic characteristics in complex domain, in comparison to the previous designs that only utilize the real part of acoustical parameters. Furthermore, our design enables improving the sensitivity and the robustness of device simultaneously by tailoring an individual structural parameter, which can be regarded as the unique advantage over its electrical or thermal counterparts. We envision our design will take a significant step towards the realization of applicable acoustic one-way devices with potential applications in many scenarios, and inspire the research of non-reciprocal wave manipulation in other fields like electromagnetics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.01049v1-abstract-full').style.display = 'none'; document.getElementById('1506.01049v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.01421">arXiv:1501.01421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.01421">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Energy flux pattern of inverse Goos-Hanchen shift in photonic crystals with negative index of refraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jinbing Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Binming Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jiabi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Q">Qiang Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhuang%2C+S">Songlin Zhuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.01421v1-abstract-short" style="display: inline;"> The energy flux patterns of inverse Goos-Hanchen (GH) shift around the interface between air and negatively refractive photonic crystal (NRPhC) with different surface terminations is investigated. Results show that NRPhC exhibits inverse GH shift in TM and TE polarization, and the localization and pattern of energy flux differ in TM and TE polarizations and are strongly affected by surface termina&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.01421v1-abstract-full').style.display = 'inline'; document.getElementById('1501.01421v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.01421v1-abstract-full" style="display: none;"> The energy flux patterns of inverse Goos-Hanchen (GH) shift around the interface between air and negatively refractive photonic crystal (NRPhC) with different surface terminations is investigated. Results show that NRPhC exhibits inverse GH shift in TM and TE polarization, and the localization and pattern of energy flux differ in TM and TE polarizations and are strongly affected by surface termination. This is different to the condition of negative permittivity materials (i.e., metal), which only presents inverse GH shift in TM polarization. In the case of TE polarization, the energy flux pattern exhibits the flux of backward wave whose localization changes from the surface to inside of NRPhC with the variation of surface termination. In the case of TM polarization, the energy flux pattern is always confined within the surface of NRPhC, whereas its pattern changes from the flux of backward wave to vortices at the surface of NRPhC, which is different to the energy flux of TM polarization of metal. By properly truncating the surface of NRPhC we can control the magnitude of inverse GH shift for TM and TE polarized light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.01421v1-abstract-full').style.display = 'none'; document.getElementById('1501.01421v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages,6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.4476">arXiv:1412.4476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.4476">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2040-8978/18/7/075103">10.1088/2040-8978/18/7/075103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Influence of surface termination on inverse Goos-H盲nchen shift of negatively refractive photonic crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jinbing Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Binming Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jiabi Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+X">Xiaoshu Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Q">Qiang Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhuang%2C+S">Songlin Zhuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.4476v4-abstract-short" style="display: inline;"> The effect of surface termination on the inverse Goos Hanchen (GH) shift of two dimensional (2D) negatively refractive photonic crystal (NRPhC) containing air holes arranged in hexagonal lattice in a dielectric background is investigated for TM polarization. Results show that the magnitude of the inverse GH shift of 2DNRPhC strongly depends on surface termination even for an incident beam with a f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4476v4-abstract-full').style.display = 'inline'; document.getElementById('1412.4476v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.4476v4-abstract-full" style="display: none;"> The effect of surface termination on the inverse Goos Hanchen (GH) shift of two dimensional (2D) negatively refractive photonic crystal (NRPhC) containing air holes arranged in hexagonal lattice in a dielectric background is investigated for TM polarization. Results show that the magnitude of the inverse GH shift of 2DNRPhC strongly depends on surface termination even for an incident beam with a fixed frequency and incidence angle. Further study by calculating the dispersion of surface mode of 2D-NRPhC as a function of surface termination reveals that 2DNRPhC presents large inverse Goos Hanchen shift at those terminations where surface mode is excited, that is, large inverse Goos-Hanchen shift originates from backward surface mode of 2DNRPhC. In addition, the coupling coefficient of incident field into the field of surface mode as a function of surface termination is studied and demonstrates above results. This paper provides technical information regarding the combination of various functional photonic elements in the design of integrated optical circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4476v4-abstract-full').style.display = 'none'; document.getElementById('1412.4476v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages,6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Optics, 18, 075103 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.1350">arXiv:1409.1350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.1350">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultra-Broadband Acoustic Metasurface for Manipulating the Reflected Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yi-Fan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+X">Xin-Ye Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+R">Rui-Qi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">Xue Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Tu%2C+J">Juan Tu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jian-Chun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.1350v1-abstract-short" style="display: inline;"> We have designed and experimentally realized an ultra-broadband acoustic metasurface (UBAM) capable of going beyond the intrinsic limitation of bandwidth in existing designs of optical/acoustical metasurfaces. Both the numerical and experimental results demonstrate that the UBAM made of subwavelength gratings can manipulate the reflected phase-front within a bandwidth larger than 2 octaves. A simp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.1350v1-abstract-full').style.display = 'inline'; document.getElementById('1409.1350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.1350v1-abstract-full" style="display: none;"> We have designed and experimentally realized an ultra-broadband acoustic metasurface (UBAM) capable of going beyond the intrinsic limitation of bandwidth in existing designs of optical/acoustical metasurfaces. Both the numerical and experimental results demonstrate that the UBAM made of subwavelength gratings can manipulate the reflected phase-front within a bandwidth larger than 2 octaves. A simple physical model based on the phased array theory is developed for interpreting this extraordinary phenomenon as well as obtaining deeper insight to the underlying physics of our design. We anticipate the UBAM to open new avenue to the design and application of broadband acoustical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.1350v1-abstract-full').style.display = 'none'; document.getElementById('1409.1350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.2962">arXiv:1403.2962</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.2962">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Broadband omnidirectional invisibility for sound in three dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kan%2C+W">Weiwei Kan</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Bin Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+R">Ruiqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">Xue Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+X">Xin-ye Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+L">Lei-lei Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J">Jianchun Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.2962v1-abstract-short" style="display: inline;"> Acoustic cloaks that make object undetectable to sound waves have potential applications in a variety of scenarios and have received increasing interests recently. However, the experimental realization of a three-dimensional (3D) acoustic cloak that works within broad ranges of operating frequency and incident angle still remains a challenge despite the paramount importance for the practical appli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.2962v1-abstract-full').style.display = 'inline'; document.getElementById('1403.2962v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.2962v1-abstract-full" style="display: none;"> Acoustic cloaks that make object undetectable to sound waves have potential applications in a variety of scenarios and have received increasing interests recently. However, the experimental realization of a three-dimensional (3D) acoustic cloak that works within broad ranges of operating frequency and incident angle still remains a challenge despite the paramount importance for the practical application of cloaking devices. Here we report the design and experimental demonstration of the first 3D broadband cloak capable of cancelling the scattering field near curved surfaces. Unlike the ground cloaks that only work in the presence of a flat boundary, the proposed scheme can render the invisibility effect for an arbitrarily curved boundary. The designed cloak simply comprises homogeneous positive-index anisotropic materials, with parameters completely independent of either the cloaked object or the boundary. With the flexibility of applying to arbitrary boundaries and the potential of being extended to yield 3D acoustic illusion effects, our method may take major a step toward the application of acoustic cloaks in reality and open the avenue to build other acoustic devices with versatile functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.2962v1-abstract-full').style.display = 'none'; document.getElementById('1403.2962v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.2042">arXiv:1306.2042</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.2042">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Strongly coupled slow-light polaritons in one-dimensional disordered localized states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gao%2C+J">Jie Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Combrie%2C+S">Sylvain Combrie</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">Baolai Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Schmitteckert%2C+P">Peter Schmitteckert</a>, <a href="/search/physics?searchtype=author&amp;query=Lehoucq%2C+G">Gaelle Lehoucq</a>, <a href="/search/physics?searchtype=author&amp;query=Xavier%2C+S">Stephane Xavier</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+X">Xinan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Busch%2C+K">Kurt Busch</a>, <a href="/search/physics?searchtype=author&amp;query=Huffaker%2C+D+L">Diana L. Huffaker</a>, <a href="/search/physics?searchtype=author&amp;query=De+Rossi%2C+A">Alfredo De Rossi</a>, <a href="/search/physics?searchtype=author&amp;query=Wong%2C+C+W">Chee Wei Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.2042v1-abstract-short" style="display: inline;"> Cavity quantum electrodynamics advances the coherent control of a single quantum emitter with a quantized radiation field mode, typically piecewise engineered for the highest finesse and confinement in the cavity field. This enables the possibility of strong coupling for chip-scale quantum processing, but till now is limited to few research groups that can achieve the precision and deterministic r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.2042v1-abstract-full').style.display = 'inline'; document.getElementById('1306.2042v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.2042v1-abstract-full" style="display: none;"> Cavity quantum electrodynamics advances the coherent control of a single quantum emitter with a quantized radiation field mode, typically piecewise engineered for the highest finesse and confinement in the cavity field. This enables the possibility of strong coupling for chip-scale quantum processing, but till now is limited to few research groups that can achieve the precision and deterministic requirements for these polariton states. Here we observe for the first time coherent polariton states of strong coupled single quantum dot excitons in inherently disordered one-dimensional localized modes in slow-light photonic crystals. Large vacuum Rabi splittings up to 311 渭eV are observed, one of the largest avoided crossings in the solid-state. Our tight-binding models with quantum impurities detail these strong localized polaritons, spanning different disorder strengths, complementary to model-extracted pure dephasing and incoherent pumping rates. Such disorder-induced slow-light polaritons provide a platform towards coherent control, collective interactions, and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.2042v1-abstract-full').style.display = 'none'; document.getElementById('1306.2042v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures and supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.0904">arXiv:1101.0904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.0904">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Harry Potter&#39;s Cloak </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+X+F">X. F. Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+B">B. Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Tu%2C+J">J. Tu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+D">D. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+J+C">J. C. Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.0904v1-abstract-short" style="display: inline;"> The magic &#34;Harry Potter&#39;s cloak&#34; has been the dream of human beings for really long time. Recently, transformation optics inspired from the advent of metamaterials offers great versatility for manipulating wave propagation at will to create amazing illusion effects. In the present work, we proposed a novel transformation recipe, in which the cloaking shell somehow behaves like a &#34;cloaking lens&#34;, t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.0904v1-abstract-full').style.display = 'inline'; document.getElementById('1101.0904v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.0904v1-abstract-full" style="display: none;"> The magic &#34;Harry Potter&#39;s cloak&#34; has been the dream of human beings for really long time. Recently, transformation optics inspired from the advent of metamaterials offers great versatility for manipulating wave propagation at will to create amazing illusion effects. In the present work, we proposed a novel transformation recipe, in which the cloaking shell somehow behaves like a &#34;cloaking lens&#34;, to provide almost all desired features one can expect for a real magic cloak. The most exciting feature of the current recipe is that an object with arbitrary characteristics (e.g., size, shape or material properties) can be invisibilized perfectly with positive-index materials, which significantly benefits the practical realization of a broad-band cloaking device fabricated with existing materials. Moreover, the one concealed in the hidden region is able to undistortedly communicate with the surrounding world, while the lens-like cloaking shell will protect the cloaked source/sensor from being traced back by outside detectors by creating a virtual image. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.0904v1-abstract-full').style.display = 'none'; document.getElementById('1101.0904v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10